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PREFACE

Differential g&etry  has a long  l&dry  as a &ld  of mathematics
and yet its rigorous foundaticvn  in”&e  realm of contemporary
mathematics is:nlatively  new. We h& written this book, the
first of the twe;ivolumes of the Fdatiwdf  D@nntial  Geometry,
with the intition  of provid&  a”l  v&&tic introduction to
differential ‘&ometry  w&h  @ also,  &ve’  ‘a~ a reference book.

Our primary conce~  was to make it ,+l&&ta.@ed  as much as
possible and to give compl&  ~MO&  of ali’&d&d  results in the
foundation. We hope that; &&  pw has been $chieved  with
the following arrangtments.  In chapter I we have given a brief
survq  ;of  differentiablei  m&nKMs, ,I$&  mtips Ad ,fibre  bundles.
The readers who-areu&amil&  G&h
from t+e books +f  Chevotlley,

&din.,qay  learn thi subjects
ppin, Pontrjagin,

and Steenrod, listed in the Bilk aie our standard
references in Chapter I. We a coficise  account
of tensor- algti &d MU&  fiek&  th&“&n&l  theme of which
is the notiib;i  ef8~h’aFtihc  ‘k&ebr&  of tensOr  fields. In the
Appdiccs,  we have  @Gn some ‘r&t&s  from topology, Lie grbup
theory and othirs which %ve  n’eed  & .the  iain text. With these
preparations, the main t&t  of thi book is &l&ontained.

Chapter II -c&ntains&e  conilection  theory of Ehresmann and
its lateq development. Results in this chapter are applied to
linear and affifie cdnnections  in Chapter III atid  to Riemannian
connections in Chapter IV. Mat~y  basic results on normal
coordinates, convex neighborhoods, dis!ance, cotipleteness  and
Monomy  groups are’ p&&l  here completely, including the di:
Rham decomposition thearem  for Ri&mannian  m&lds;  ‘I -

In Chhpter  v,  -we ‘int&&ce  the sectional curvature  of’ a
Rieme  lM%&Id.‘a&i  tbt  Spaces  of constant curvattire.  A
more complete treMment!&“&$ert&  of Riemanni&  manifolds
involving Hctional  ‘&&+attrS  depends on “talculus  of iariations
and will tie given II. We’ discuss flat’ affine and
Riemannian connec a*.  IV.

In Chapter  VI; trqnsfornihtions  and infinitesimal
transformations which p&cx+e  a given linear connection or A

Eemambn  metric. We include here various results concerning
R$ci  tensor, holoztomy and infmitesimal  isometries. We then’

.’ V
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treat the wtension
equivaleqC

of local, transformations and the so-called
Q problem for a&e and Riemannian connections.

The  resuh  in this chap ter are closely related to differential
geometry  ,c$  qhomogeaeous
sPaces)  wt\i&  ‘are planocd

spaces .(in particula*$~  symmetric

In .al!,  t&  chapters,
for Volume&I.

with various
we have tried& familiarize $b. readers

techniques of computatio&phich  are curmtly  in
use in di&rential  geometry. These T:,- (1) classical tensor
calculus  with indices ; (2) exterior differew  calculus of E. Cartan.
and (3) formalism of covariant  differentiatiqn  a,Y, which is thd
newest  among  the the’&  -We have also jllu,sfr;tsed  as wk  see fit
the methods of using ,?. suitable bundle or &o&&g directly in)
the base space.

,
/.,,  :.’

The Notes  include B&F .,histprical facts and supplementary
results Pertinent to thi  .&i;&fent  of the present, v&me.  The
Bibliogr@!Y  at the en&&+*  only .tboge  booti  and papers

* which we quote thro~$$&uZ~~,~~k.  ,+ -_ I ‘. ‘.$  f
Theoqems,  prop~i~~n~~~~l~o~~~~~  ;IKe”&mbered  for each

section. For example,  in e+& ,&@@qs  qayr,  &apter  II, Theorem
3.1 is in S,sMon 3. IrJ.the re&&,+~~~
tQ simply  as Theorem

r; it will be referred
3.l,:~~~iR~ot~~~.~IFUbsequent

it is referred to as TheA)rem $.I cQf.(&pta&*
chapters,

‘.Ve  originally  phmg$  toAte  ~@&&&,which  would include
the content  o< he  present ,vc&@  ~5  .weU.+s &e following topics:
submanifolds; variat+ns  of’ t&  leng#  ‘hgral;  differential
geometry  of complex and  K4&r;unanifblds;,~fferential  geometry
of homogeneo?rs  spaces; symme&  spaceg;.cbaracteristic  classes.
The considerations  of tjple,;an$  spase,h3ve  made it desirable to.
divide  the book in two,voluqes.  The:top&  mentihned  above will ’
therefore be included in.V@ume  II.

In concluding the preface, we sb+d  like, to thank ,Professor
L. Bers, who invited. US to undertgke this project, a@ Inter-
science Publishers, a~‘di$sidn of Jc&n Wiley a,nd ‘Sons, for their
patience and kind coaparat$n.  We ‘se  greqtly  indebted tp, Dr.
A. J. Lohwater,  Dr. ,H. C)sreki, Mess+!A.  Howard,and  E. Ruh for
their kind help which resulted  in maqy  improvements .of  both the
content and the prescnt+#on.  .We al& acknowledger;- th.e  grants of
the National Science Fo&&&n  which support&p+rt  oift:he work
included  in this book., ;,,, j r: -;f
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A @d&&~~of  %@.$&h&  on’s &I;&&&  ‘space S is a set
r of transformations sai$y&g  the foli~wG3~  a&ms:

(1) Each J-e  F is-a.  hotie@merphism  ef an open. set (called the
domain ,off)  of S 0.~0 .another  *open  set (called the range off) of
s ; -,-.  ” j x it

(2) Iffc  T’,  their the restriction off to an arbitrary open subset
of the domain off is i.n  F;

~(3)  &et  Us=  uUj where, each Ui.is.an  .open  set  of S. A homeo-
mkphisn;ijcof,  c’ontb  a‘n?open  s&df  S belongs to I’ if the’restric-
tion off .t0  Ul’is in I‘ fcir Lverv  i:- :, “ i

(4) -For  every cfpen  set U iFS;‘tlie  identity transfbrmation  of Lr
is in r; , ,,  . ‘,,  :

(5) .Iffc  l’, thenf-’  f I’; : . ; 1*
446) :Iff*  11 is aq  bomeamorphism~of  U .on&o  VTadi,*f-“  5 I:  is a

homeomorphism of IJ’  onto V’ and if%  V .n U’.~  is hen-empty,
then. the homeomorphism  f’ df ,of j-1( K n U’)bofitb.  f’( P n Li’)
is. in 1‘. I i
kkgi?#S:qfe~  examples of psixdogroupk~~l&h  ai: used in this

b%.  -@ Jj#  bsrhe  pwofu-  t.upla~  of re.4:  numbers (xl, x2 . . , x”)
~~th’th~~~~~t~l~g~~~.A  fitdppingJ  of an .open set oikni  into
R”!  js sai&+l,be  of ~~~~-,.C$  r =+1.,:-Z, 2 ., . aa, if f is con-
tinuously r tirnq  &@&qentiable.  By -class  CO l&z  mea.2  thatf:$
continuous. By cla&CX&yz.  mean..tkt  Lf is real anal& :Tbe
@dagroup  6’(W)  .~&#@g#iv7natitilPs  of.class  CT  of R” -is &he  :f*et  of!
homeomocphisms  J d,?,n:&peaiset  +&R”  onto: an. own; set of*w
such that  both f an&f?  iare .pf cl&O.  OsW;ously  i”fiR”)  &  ca.
pseudogroup  of transformations ‘of  RI. If r < s,  then P(‘“) is a

I
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subpseudogroup of l?(R”).  If we consider only those f~  P(R”)
whose Jacobiang  ,are positive everywhere,. we obtain a sub-
pseudogroup  of ,P(R”).  T h i s subpseudogroup,
QR”),  is calied~ the pseudogroup of o$ntatt

denoted by

thy of doSs  0 of R”.  Let C” be”tl&#&e
numbers with the usual topology. The ps
(i.e., complex analytic)
defined and will be den&ii

.yqf~iions  of C* cm. be
by%+@&).  We  shall iden

R*“, when necessary, by mapping (21,  . . . , P)  E  Cn  into (x!,  . . . ;
x”, y’, . . . , y”) e R2”,  where .,$ = xi + &j. ‘8 Under this id&iii-  l

cation, l?(O)  is a,
An atlas of a ti

of rq(RsR)  for,any  Y. F

group  r is a
Mcom$Q.iile  %v.i” 4&*&o-

fa~~t~&g~  gUj,  vi>,  @Ied  charts,  s~!y~;.~.
(a) Each Ut.$,bz+n,ov$pt  of $ and CJU, = M; 2. . I

(b) Each qi isra~hor&&norphism  of &i onto an open set of S;
j’ (c) Whenever .U;,  ti, U, is non-empty, the mapping qi 0 $’  of

gf(Ui  A U,) onto qj(  Ui n U,) is an element of r.
.:-:A complete atlas of Mcompatible  with r is an atlas of&f  com-

patible with r which is not contained in ther atlas of M
compatible with r.  Every atlas of M eo e with I’ is con-
tained in a unique complete
fact, given an atlas A =

Qj 0 p-l:  Sp(U  n Vi)  + yi(U”i  Wi)
is an element of I’  whenever U A Vi is non&rpty.  Then ;kis the
complete atlas containing A. ‘.  I

If  l” is a subpseudogroup of I’, then an SatEas  of Mucompatible
with l” k compatible with l?.
A dt@xntiable  manifold of class c’  is a Hausdorff space with a

fixed complete *atlas compatible with P(R”).  The integer I is’
called the dimension of the manifold. Any atlas ofJa  RMdorff
space compatible with P(R”),  enlarged  to al  compkte  ad&
defines a dii$erentiable  structure of class’O.,Since  p(R”)  3 T’(R”)
for t < s,  a diffekentiable  structure of~4ass  (?fldefinh  uniquely  a
di&ren&ble  structure of class C. k differentiable mamk~ld of
c&s  @”  is “also  called a rcal’ktj&  manifold. (TW&W!  *he  bIc
we shall  hostly  consider differentiable manifolds ofi t&s  cm.  %’

. ii ‘,’
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a dl&entiable  manifold or, s’
‘differentiable manifold of classT

ly, manifold, we shall mean a

complex dimension n is a Ha
y.) A complex (anabtic)  manifold  of

atlas comp.a$>le  with I’(CP)“’
rff  space with a fixed complete

of class C’ 1s a Hausdorff spa
ented  differentiable manifold
,a  fixed complete atlas com-

patible with.~~(R”).  An orien&j  differentiable  structure of class
Cr gives rise to a differenti#e  structnre ‘of class $7  uniquely.
Not every difherentiable  str&&e  of&l&  Cr is thus dbtained;  if
it is obtained from an &kntied  Ont$&“is.  .called  orientable.  &I
orientable man&Id  of class 8. $&&s  &.actly  two orientations
if it is connect&L I&$&g  the.  pro$‘o&ris  fact to t,he reader,
we shal15pn~y  i$$.$  ,&w  h’  r&ii,&  &&e  of .an  oriented
+anifold.  If af2ariZly  ;(afc&&j(&,  ~st) d&es anfo$ented  manifold,
.then  the, ,f{mjly of  &2&s  ;( p6,  .vi) &#nes the manifold with the
reverse$  o+ntdt$ori  where tyi is the’composition of i, with the
transformation (xl,xs~.  ; . , x”) + (-&,  a?, . . . , x”) of R”. Since
r(v) c r;(w),
fold of class C. ;

every complex man&d  is oriented as a ma&-‘

For any structure under consider%io~  (e.g., differentiable.
structure of class Cr), an allowable chart is a chart which belongs
to the fixed complete atlas de&&g  the structure. From now on,
by a chart ,WF  shall mean an allowable chart. Given an allowable
chart (Vi,  vi) of. an n-dimensional manifold M of class CI,  the
system of.functions  x1  0 qi, . . . , X” 0 vi defined on Ui is called a
local coordinate q&m  in -Ui. We say then that U, is a coordinate neigh-
borhood. For every point p of M;it is possible to find a chart ( Ui, yi)
such  that &)  i the origin of R” and v; is a homeomorphism of
Vi onto kn?op&  set of R” defined by I.&l  < a, , . . , Ix”]  < a for
some‘“” “*yhve number  a. Vi is then  called a cub+  tuighbor&od of p.

’ . IIl,&‘~aturd’ manner R” is an’oriented  manifold of class Cr for
auy  “Y; ‘a~cliart  ‘con&s  of an elementfof I’i(R*) and the domain
off. Si$@rly?,, q.!‘q a conipIex mar$bld.  Any open sr&et  N of a
manifold M of&&~  is a manifiold  of class C in a natural manner.
a chart of N is &ve&‘bi (oi,  n A!‘, -$I,)  where (Vi,  &)  is a chart 0;
M and y$  is the re&&@  tif  ++  .t&  ‘VI&p  X. SimilaAy,  f&i complex
manifolds. ’ ‘. 1 ” ‘.  . ” ,,;,‘:;:-’ .  .

Given two man&l&  &” *‘MI  of class 0;  a’ mapping
f: M *‘MI  is said to be dif&&iable  of class clc,  k 5 r,  if, for
every chart  (Vi,  vi) of M and every chart (V,, yj) of M’ such that
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4. l~O~‘NDATIONS  OF DIP&&;~TIAL  GEOMETRY

fir’,,  = I;, the n$pping  ylj Lf 0 vi I of q),(  U,) into wj(  V,j ‘is
differentiable of c$ass  12”;.  If ul, . . . , U” is a local co$inate  syst&.
in IT,  and ,vl.,  :‘;. . , v r’s is a local coordinate systefn:;\i yj,  lhenf
may be” YxprcsSed  by a set of diffei&tiable  functions,  oft~~~s~‘~~~:II ‘r r:. ‘:

,,tal. Efl(d,  . . . ,TP),  . . . ;.v,‘”  ep(d,  . . , , li”). i!- ”
.;,.

By a’dQ@rentiable  VM/$& or ,simp&,  a ‘$.@ing,  we  shall &$,n  a
mapping of class C” .,A &Gxentiable  f&&ion  0~ cl+  Ck,  on # is
zi inapping  of class C” ?f A4 into  R. Thet&fin,it&  of a h&&@&‘1  QT.
(or complex anal$k)  *ppifig  b; function i?si&lar.

By a dferenti$le  &e  of cl&  cn:  in M;;ck~~a$~$$$  c@&&$-
able map@ng,g,f  “clasd  Ck  of a closkd  intq@3”fgl.b]  6%  R.‘into 111,_.
namely, tEe’ rcst?iction of a differentiable mapping of claps  CLi$f
an open  inteival  containing [q-h] into A4. We shall riow  define’s
tangent vector (or  simply’  a @for)  ai a point p. of ‘M.  Let s(p)  be tke
glgebra  of differentiab!e‘functions  ofcla’ss  C’ defined in a neighbdi-
good ofp.  Let x(t)  %e  P c&%  ‘&  &Gs’  Cl, n 2 t S,;fi,  such that
x(t,,)  = p. The vector tansent  to_the  cufve x(t&$‘p  1s a mapping
X:. iQ) ,*.R  de3ined by+“‘:. , ‘,‘I.  .I

‘. ., /’ ’ Xf = ~,d&(t))/a)~o.  ‘$
.In other words,. dyf  is the ‘&i\i”&%e  off  in‘ the~directidn  ‘of the
cllrve x(t)%  t’==  to. Tlie~~~rror,;~~atisfrdsthe  fdllowinq conditiond:

8. . . L  )I  “:
(,l) X is a linear mapl+&r#$(p)  into R; 4.

the dimension’of  M. Let ul, .,.  f , U” be a local coordinate syqqn
in aLcoordinate  neighb&hood  G pf p. For ea& j, ($/,@j), is a
mapping of 5Cp)  &to, &,,  which satisfies condit;ons  lQl+vd  (2)
ah:ove.  We shall s&v.  that‘?t.he  set  -of vyct@$  at b is ‘thq.,vqctor
space with basis (i318~‘)~,  . :,.  , (a/a~‘~)~,.‘.  c;iy$n any  &r%  x(t)
with h ‘k x(t,);‘l&‘uj  - x’(t)j.,j  -- 1, . :.:‘n,  ibc  its equAtio1~!5  in
terms of the local coordinate sy2tt:m  $, . . . a $!, $ThqqV, .).,”>

(nf(x(t)~~po,” ;I;  .xj (@i&q,  . (&j(d)~dk\jo~:*,  ‘.s
c 2 I

* !“lll  I?,,:  \Illnnr:l!icirl  Ill),,,lirri:,  -(‘” 5,:  ,,,,!,,,  +‘yf11.14  T-o::,!~~,,;.. ’

which proves tll,kt cvcry  \‘cctor  at p is a linear ccimbination  0.
(apfl)  ),,  . . . 1 (a/&)  i,. C:on\,crsely,  gi\.cn  a lincnr combination
c p(aptfl)  ,,, ronsidcr the curv~‘&finecl  by

I$ -.-=  IIJ(  p) i- pkp  I j = 1,  . . . , 72.

Then the vector tnn,g:cllt  to 21?iii &rve  at t -~  0 is x S’(a/&‘),,.
T o  prove the l i nea r  ind&~~ence  tJf (aj+‘)  xj, .  .  .  ,  (a/au”),,

assur11c  ?;  p(a/allq,,  ::  0 .  Trig’:’

:  ~~~*~,::;  j :.  ;

0 Tz  x p(auqj3+j;  ,;.+k f o r k -  l,...,?l.

This complctcs  thd *probf  of’&r  as$crtion.  ‘I’hc  set  of tangent
vectors at p,  denoted by 7’;(%)  or 7’,,,  ’IS callrcl  the tcqenl space  01
M at p: The n-tuple  of not&&s  El, . . ..,  :‘I \vill be called the com-
@one@ of the.vector  2 p(apj, with respect to the local coordi-
nate system d, . . . . , Y”.

Remark. It is known that if a manifold AI is of class C,‘“, then
T,,(M) coincides with the space of X: 3(p) -+ R satisfking condi-
tions (1) and (1) above, where z(p) now denotes  the algcbrn  of all
C” fimctions  around p.  From now on we shall consider mainly
manifolds of class c,“‘: and mappirqs  of class C*‘.

’ A&ctorjeld  X on a mafiifold  111 is an assignment of n ve:tor  XP
to cd  point 6 of A/.  Iffis  a $iffcrentiablc  function on IZ~,  then
XJis  a functioh on .li  defined by (.yf)  (pi  -:: LY,,.J A vcsctor  field X
is rallcd  djfhvztiobfe  if .x/-is  diffcrcntiablc  for  cbverv  differentiable
function J In terms of a 10~21  coordinatr  svstcn;  uI,  . . . , ~‘1,  ii
vector field ,Y  may be cxl~r~sscd  by  .Y  x IJ(~/&J), whcrc  ij arc
functions defined  in the coordinat<%  r~t~igl~l>nrlloc~d,  called  the
components of .Y  with rcspcct  to $, . . . , 11” . .Y  is differentiable if
and only if its componc~rrts

I
E1 arc  diff~~l-c:ntiablc.

Let F(M)  br the s,$  of‘ all diffirrntinblc  \.cctor  fields on .\I.  It’
is” a’ real vector spacr undet  tllc*  ri;ltural atl~lition and scalar
multiphcatioh.  If  X and I’  arc  ill X(  .\f),  dcfinc the. bracket
[X,  IrT  as’s mapping from the. riii 6 of’  fiitic:tions  on .\I into itsctf
bY

[X,  Yjf == X(  I:/‘; “l’(A4’f’).

We shall show that [KI’J is a \.ciLor  ficlu.  In terlns of a local
coordinate system ul;.*  . . , II”, \vc \Vrite. .
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A l-form w can be defined also as an g(M)-linear mapping of
the S(M)-module S(M) into S(M).  The two definitions are
related by (cf. Proposition 3.1) ,

.
(y(X)),  = (wp,  X,>>  ,&  WW, P E M.

Let AT,(M)  be the exterior algebra over T,*(M). An r-form OJ
’ is an assignment of an element of degree r in A T,*(M) to each
point p ‘Of M. In terms of a local coordinate system al, . . . , un,  ti
can be expressed uniquely as

.”

1.’

I

0= Is d1  <$,<  . . . <,.,A  *.,. .+, &I  A:. *  *  i dd’.

The r$hm  ‘ii,  is  - called  di$erentiabh  if the components f .
are a&differentiable. By an r-fm &q shall mean a differenti*%;
r-form. An Cforr&  w can be defined a&  as a skew-symmetric
r-linear.mapping  ‘.over .5(M)  of X(M) x X(M) x . * . x Z(M)
(I  times) into. s(M).  The two definitions are related as follows.
Ifo,,...,
(

w, are l-forms and X,, . . . , X,.  are vector fields, then
* * * A 0,)(X1, . . . , X,)  is l/r!  times the determinant of the

ztk  (w,(Xk))j:,-,  ,...,  r  of de-
We denote by *b*  = W(M) the totality of (differentiable) r-

forms on M for each r = 0, 1, . . . , n.  Then BO(M)  = B(M).
Each ID’(M)  is a real vector space and can be also considered as
an s(M)-module:  for f E G(M) and w 6 W(M),  fo is an r-form
defined by (fo),, =f@)wa,  p,r M. .We set .& = B(M)  =
Z~=J)‘(M).  With respect to the exterior product, D(M)  forms an
algebra over the real @umber field. Exterior di$erentiation  d can
be characterized as follows: \

(1) d is an R-linear mapping of D(M)  into itself such that
d(T)  = w+‘;

(2) For a function f 6 Do, df is the total differential;
(3) If-w e 9’ and r c ID”,  then

d(w  A 7r)  - doh,r  + (-l)‘o~&;

Then
‘_

[X q”f = Zj,E(SP?‘w)~  - ?www>(aflau’).
This means &t  IX, yl is a veeto’$ield  whose components 4th
respect to G, ‘1 . . , ZP iffe given  6 &(~~(a$/&~)  - $(w/&.P)),
j= l,..., n;  With respect  to this’ b@ket  operation, Z@f)  is ,a
Lie algebra over the real number (of infinite  dimcnsioris~.
In particular, we have Jacobi’s id

We may also regard 3s(“Aa) as a module over%& algebra B(M)  of
differentiable function  on A# aa &Jlows.  Iff is a function and X
is a vector field on M, then f X is a vector field on AJ de&cd  by
(fX),  = f(p)X,,  for p d M. Then

uxdy1  =.m rl +f(Xg)  y - 9WjX

AS c S(M), X,Y  e X(M).

For a point p of M, the dual vector space T,*(M) of the tan’genr
spaceT,,(M),  .;S called the space of covectors-  at p.  An assignment of
a covector at each point p is called a l-foti (dzjhential  form of
degree 1). For e+eh functionf  on M, the total di$erential  (df), off
at p is defined by

(km,,  m = Xf for X E T,(M),

where  ( , >‘  denotes the value of the first entry on the second
entry as a linear functional on T,(M). If uf,‘.  . . , Ua is .a  local
coordinate system in a neighborhood ofp, then the total drfheren-

’tials  (du’).,  . . . , (dun),  Form a basis for T,(M).  In fact, ~ they
form the dual basis of the basis (a/aul),,  . . . , (a/8tra), fbr  r9(M).
In a neighborhood ofp, every l-form o can be uniqu&’  written  a~

w = Z,  fj duj,

where f, are functions defined in the neighborhood of p and are
called the compowh  of w with respect to ul, . . , , u”. The .l:form
w is called di&wztiahle  if fj  are differentiable (this conchtron  is
independent of the choice of a local coordinate system). We shall
only consider differentiable 1 -forms.

(4) d2  = 0.
In-terms of a local coordinate system, if o = +.  . .<.i,&  . . a@  A
* * . A du”,  then dw = pi,<. ..<i,  dfil...i,  A duil  * .

. .I,
- A du’r.

It will be later necessary to consider differential forms with
values in an arbitrary vector space. Let V be an m-dimensional
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real vector space. A V-valued r-form w on 91 is an assignment to
e&h  p o i n t  p 6 hl  a  ske\v-symmetric r-linear mapping of
T,,(M) “: ’ - * x T,(M)  (r  times) into V. Ifwe taka  basis e,,  . . . ,
e,,, for V, we can write CO  uniquely &s  CO  = CJ’!!itiji-+,ej, where
09 are usual r-forms on. M. w is dgerentiabie,  by definition, if
CO  are all differentiable. The exterior derivative du>  is defined to
be Cy!Ll  dco’  * e,, which is a V-yalued.  (Y + I)-form.

Given a mappingf of a manif&&  J4 into another manifold ‘G’,
the d$Grential  at p off L&e  linear  mapping. f* of T,,(M) into
T,,,,,(M’)  d fi de ne as follows. For each X l T,(M),.choose  a curve
x(f) in M such that X is the vector tangent to x(t) at p = x($).
Thcn,f;(X)  is the vector tangent to the curve f(x(t))  at f(p)  =
1.(x(t,,)). It follows immediately that if g is a function differentiable
‘in .t  neighborhood off(p), then (f,(X))g  = X(s of).  When it is
necessary  to Specify the point p,  we write (f*),,.  When there is no
danger of confusion, we may simply write f instead off,. The
transpose of (f,),  is a linear mapping of T;,,(M’)  inio T,f(IZi).
For any r-form w’  on Aii’, we define an r-foim  f *o’  on kl  by

(f*d)(X,,  . . - , X,)  = ~‘(f*X,,  * * - ,;f;x;),

x1,...; Xr  E  WW.

‘I’hr exterior differentiation d commutes with f *: d(f *w') =
J‘* (h').

;1  mapping f of M into ‘21’ is said  to be of rank r at p E M  if the
tlirncnsion of f,(  T,(,M)) is r. If the, rank .of f at p is equal lo
II dim i$f, (f,),  is itijectite  and dim M-6 dim M’. If the rank
of:/‘at p is equal to n’  = dim .21’,  (.f;)  ,,  is su<jective  and. dim 111  1:
dim .\I’.  By the implicit function theorem, \CC  haI2

~‘KOPOSI?.ION  1 . 1 . I.ei f be a mappit~~~  of .!I  into Al’ and  1)  ~2  fwint
oJ‘  .21.

(1) !I‘(./;),, is injectiw,  there c*.rist  (I loccil  coordinnte  system  u’,  . . . II”
in  N nri,~hborhood  1-J  of 1)  nnd n loc~~l  coordinate s_rstem  c’,  . . . , ~1”’  in  (1
nc’i,:rlrhr,rhoo(i  q/.f‘(  p) .wrh  that ‘ :,

~~‘(.f(Y))  fI’(Y) jilr q c I' crnd  i:-l.,...,  n.. 7
r

IN Jwrticrtlirr,  J‘ is II homcomorphi~m  of li onto f (CT). j
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(2)  If (f,)  p  is surjective,  there exist a local coordinnte .r_sstem  ul,  . ..,u ‘&
in a neighborhood U of p and a local coordinate swtum  ~1,  . . . , v”’  of

f(p) such that

qf(q))  = ui(d for q E U and i =: 1,  . . . , n’.

In particular, the mapping J U -+ M’ is open.
(3];& (f,)  D is a linear isomorphism  :& T,,( .W)  onto T,,,,(M’),

then f dejines a homeomorphism  of a neighbwhoon  U ofp onto a neighbor-
hood ‘$’ off(p) and -iF  ‘iitversle  f -l : V -+’  U is XSO  di$erentiabli.

For the pryof,:  se% E%‘+lley  [ 1; pp. 7%80;1.  .’
,j.’ ” ,:, ‘2  i.,

,& nqpping  f of, M iniq  &fT  ?i  ,.cal&l  an immersion if .(f,)@  is
,injqc$ve  &r every point p of.M. We say then that M is immersql
in M’ by f or that ,M is an immersed,,~ubma,+fdd  qf M’. When
an imme&n:f  is,injective,  it is &lled,an.  imbedding  of  M&to  M’.
Wesay  then that EM  (or,the image f (kl))  &an  imbeddedsubmanifld
(or, simply, a subman~$~ld)  of M,J.  A submanifold ,mF.y  or-may not
be .a clqsed  gubset  of, J4’.  ThertoRplogy  of a subin+fold  is in

- ^nduced ii-om  M’. 3.n

Ej;ample  1;  1.. Let f be + “function  defined ,on-a,in;l;inifold Mt.
Let &4  bc the set of Mints  p,s  .%?$I such that.f((p),  = 0.  If,(@),;  #, 0
at every point p of M, then it is possible to introduce the structure
of a manifold..,&  M so that  ,M  is a closed submanif0lk.J  # J4’,
called the &perp@e  de&d b2 the equation f = 0. More gen&l~y,
let-&4pe  the. set.pf-common’  zerQs  bf fqnctionq;f,;..  . . ,,f;-defined
qn M’r.,:!$  the dime=@,  say k,Lpf,t&,s.ubspace  .of r:(M) spanned
bl::k#il,,  .,)  ..;,  (P~~)...~is.i~pepe;e;e;e;e;e;e;e;e;e;e;e;e;e;ent,pf~,g  M, t$n  kJ is. a closed
submanifold  of @’  of dimension dirn.44’ - k.

“A ~&j%vfiibr@is~‘~f  a‘ Manifold  y c%i, ahother  mahifold  ‘;I!’  is a
hotieor&P@&&  p duch  that’ljm 4p and F-’  ai’e difFerentiable.“k
diffe&norphisn%  6f?Mk &&“&elf  is calie$.  a:  d@xmtindle  ‘f&m+

formation (or, simply, a trunsform.ution)  of 39. A transf&nation  a,
of M, indukes  -an  &it&&phi.&  cp* 3 the algebra P(M)  of
differentiak..Qn+  on &&an&,&  particular, an automorphism  of
the algebq~,$(M~  of f@cti.wcq.N: ‘.  *
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It induces also an .au
Ftor  fiekls b y

tomJ>rphrwn  pi* of the Lie algebra T(M) of

&% = ~i%l,tx,),
i\;hcre

dd  -P, + $4).
%%ey.  ahi related by .I

” #‘(k+xlf)  f X(4p*fl” f=‘Is X(M) and f~ 50.
Altktigh any mapping  up ofA#into  k’&i&u  d&rent&$.&

cd on M’ into a &ffe~q@a&m  (p*(w!)  Q&M;  ‘9.w mt s&d  a
vector field on Mint0  a vector  fkld on M’ iri general. We say that
a vector field !Fdki A4 ijl’+relu&d!t~  a veCtor field ,X’  on m;s
h>l& = Xi,,,for  a!1  p c iU. I$  X’and Y are qkrelated  to X? &$&$
respectively, Theri  ‘[X, Yl is ,prelated to [X; Yr]. ’ ’ 4 3’ P+ ”

A distributkk  S of ditiensiti  I on a manifold ‘M&&i
ment to each point  p ofM’$n +Iimerision&l  stibs$a&  8;.;bf
I! is c+llid  d$f&ttMB~if  evefy &Snt p -hWae  neighborhood U
amlt,;4iffer&~~on -El; ky, Xi, L’; . , X,., which
form a basis oPSh’at’*‘q.* U.LThe’  set X,, ; F  ,:;, XV is call&P’k
local baris foT tlik&kt%b@n  S in,ri: ‘A ‘vecto$&@ ,X is said :t,#’
belong to ‘S if X, c 8; for  Up c ML  Finally, ~kPi$%al~&d  inooluti~e if
[X, r] belongs to S whenevef ttH0 vector field3.k and Y belong to
S. By a dismbution  MW  ‘shall always mean $ differentiable dis-
tribution. .g,: :

A connected subman%old~~N4$$#  is. called an kc@  manifard  of ’
the dh&bntion  S iff* ( T;(N)) %k ‘8; @&%ll $-e  N, where f is the
imbeddirig of N into M. If thei%&.@b  ~&hkk‘i&tq@ man&&d bf
S which .contains  N, N k ci4ii&#J~  nm*indd!iide&l mar&d WS.
The classical theorem of J+obeniuk &k  %e  ‘formulated as follows.

.’
F~OPOS~ON  1.2 . Let S 6; an ihd&c  .d&$wtion  & Q &ar$$d

M. Through eoery  .ppiut-  p L ,Jf,  the  #+ws  a u@que  ,ma.Gnal  intug4
man#kld  N(B)  of S,.  Any integral man##d  t&ugh p is an..oplro;~
manifold of N(p). ,; 1 ,: .: t .;

For the p&,  see Chevalley [ 1, p. 941.  We $Iso state  ., pi. i

PROPOS~ON  1.3. ~2  S be an Cwtk
M. Let W be a submanifold  of M z&we
integtar  manifolds  of S. Let f be  a difkntiabk  mapping.+oJa  manifold  N

i
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int;,  M u(N)  c w.IJ W sati.$e~  the second ‘axiom of count-
>bi&, then f is tf$k@a&  as a mapping  Oj  N znto W.I

For the ‘pr~@~  s& Chevalley fl, p. 95, Proposition 11.  Ike-
place analytic$y

t?+@
>“er$  by differentiability throughout and

observe that w”  n eB  ,rie:  be connected since the differeiitiabiliky
0Ff  is ,a local matter.

We now define the product of two manifolds M and N of
dimension m qd rr,  .respectively.  If M is defined by an atlas A =
((U,,  q,)) and,  .rV,&,sk&~cd  by  an  atlas  B = {( Vj, wJ), then  the
natural di@ke#j&  structure on the topologicalspace M 4~:  N
is define&&y  a&t&s C,(,Ui  x V,, vi x !v,)),  where qDi  Y”Y~:  U, x
v, -+ Rt*“-  A,@$ x .&?, is defined in :a nat+ manner.. -Note,
that this ,adas  is .8ot, w@ete  even if A and, B are complete. For
every  p&t (p,  &ofiM  zc,N,  tb,,t,angwlt  apace  T,dM  x NJ
can * be identif$edj.wi’&t~ the @e&t  -8um T&M). + T,(N)  in a
natural marmer,;‘J!I~m4y,  for,,&&@ n(M) and Y c r,(N),  choose
curves x(t) andl(Q  such tl+ ,&-is  went to x(t)  at p =+ x(&J  and
Y is tangent to,y(t)  at q =y(t,J.  Den  (X, Y) c 7’,,(M)  + T,(N)
is identifie#  &h,

$”
e vector 2 a T,,,(M x 4).  which is tangent

to the curve 4 =  W,yW  at (A 41  =  (.wkMt~b  Let
Xc T,,,q,(M  x-&f&e tie UC&U  tangetit  to&e cwve (x(t), q)‘in
M Y N at (p, q). Similarly, let Y z T,,,j(M  x N) be the vector
tangent to&e  curve (p, yet))  .in M x N at (p, q). In other words,
X is the image of X by the kapping  ‘M -+  M x N:,which  sends

p’ E M into @‘, q) and r is the image of Y,.by  the mapping
N-M  x Mwhich sends q’cUinto (p,q’). Then’2  ==X+  l’,
becwe,  for any &m&on  f dn  M 2.!N,  Zf = (df((xCt),y(t))/dt),,,o
is, by the &&rule,  equ&to  . .

‘.,.!~~~~(t~~Y~~jkU)l-b  ;t’ ~&(~j,y(t))lru):-,  = xf + Pf.,a. , ,



Fl(P’)  = 9 (I’,  ‘I) for 1’  E 41  sand  y&‘)  = ~7(p,  q’)  ‘for.:.  q’  6 N. I./

Proof. ., prb&  the definitions ofiT,  ?, vl,  and q2,  it follows ,that
d‘f)  = vl*(‘y) and v:*(F)’  = g,,(Y). H
,*m  =- ,,*(W  + y’2*w:.

ence, v*(z)  =:  9bt(X)  +
Q E D .

Note that if 1’ = M ‘x &i&d  9‘ is fhe ickntity  transformation,”
then the preceding prop~$G&rcducrs  to the formula:Z  := X + ?.

Let X be a vdctor fi&J.on  a manifkld  Al. A curve’x(t),ii&:llp<  is
called an intej+”  6t$ve  6f 3T if, for”every paraxti&te~~#Je  ,$?%k
vector Xx(,,,) is tangenT”to’  the &rvk-;G(t)  tit%(t,,).‘:Fbr  any point pii
of .21,  there is a unique integral curve -x(t) ‘of X,  defined for
ItI  c : E  for some E  5 0;  such thatp,) z x(0).  In -fact, kt  ~17.  . . , U” :
be a local iooidinbte  system iti a neighborhtiQd  @Of /I,,  ai14 let .
x == x p(.a/au  )1  in [J.  Th&h;an  i&@  &@&X:is  a solution of ‘ ,
the Sotbwing  System of ord48tirgt  diReie&&&$&ions  : -

?Ilr’
* . :3 -; ” j .‘,  : <y%.j’; t

du’fdt  z+  E+‘(t);  ;L.L%,,  I‘?‘(&,  ’
v :‘: * \..,  ‘-- .‘ :
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(2’)  If t,s,t  $- J l Z, and if,!),  yS(p)  E  11, then

PJf,t(P)  -= ClddP)).
=

As in the case of a l-parameter group of transformations, P)~
induces a vector field X defined on IT.  We now prove the converse.

PROPOSITION 1 .5. Let X be a vectorjeld  on a manijold  M. For each
point po  of M, there exist a neighborhood U asp,, a,positive  number E
and a local l-parameter group  of local transformations qp,:
t E I,, which induces the given X.

u -+ M,

We shall say that X generates a local l-parameter group of
local transformations pll in a neighborhood of p,,.  If there exists
f (global) l-parameter group of transformations of Al which
Induces X, tflerz we say that X is complete. If pi,(p)  is defined on
I, x M for .some~  e, then X is complete.

Proof. Let ul, . . . , 24” be a local coordinate system in a
neighborhood W of p,,  such ‘that ul(p,,) = . . . 7 un(pO) = 0.
Let X = I; ti(alj  . . . , u”)(&‘/&“)  in W, Consider the following
system of ordinary linear differential equations : -

df’/dt  = F’(f’(t),‘.  . . ,&t)), i =  l,...,n

with unknoivn functions f’(t), 1:. . ,f”(t).  By the fundamental
theorem for systems of ordinary differential equations (see
Appendix l),  there exists a unique set of functions fl(t;  u)

f”(t;  u),  defined for u = (ul,  . . . , u”) with lujl .I 6,  anh’ ‘f,i
ItI  < el, which form a solution of the differential equntio?  for
each fixed IL  and satisfy the initial conditions:

f’(0;  u)  = ui. . ’c:  :’
Set 97t(r.Qt::“--(y1(t; u),  . . ; ,f”(t;  f4)).  for (tl  < &I  and zd in U =:
{u;  lu’l F.%}.‘JIf  It‘},.*IsI  and, It + sl are all less than &I  and b:th
u,and  ps(u)’  &%&+UI; theri  the functions gi(t) -fi(t  d-  s; u) are
easily seen to bi%‘sbQtioii  of the differential equation for the
initial conditions &@j =f’(s;  u). By the uniqueness of the
solution, we haveg’(t)  A’f’(t;  pjs(uj).  This proves that vI(v (u))  =:
~~  >(u).  Since pO  is thi identity transformation of C’,j  the;e  kxist
0 1,  0 and E :- 0 such that, ,for  U = {u;  Iu’I < b),  vt(U)  c U, i[
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ItI  < E. Hence,  ~-t(q&>> = &Q),&))  = tpo(u)  = u for every
u (E  U and Itl c e. This proves that qt is a diffeomorphism  of u
for  I4 < E. Thus, yt is a local l-parameter group of local tran+
fhnatkm  defined on 1,  x U. From the  construction of vi,  j it is
obvious that pit induces the given mujr’field  X in U. ‘QED.

Rmark. In the course of the preceding proof, we showed also
that if two local I-parameter groups of local transformations vt
and yt defined  on 1,  x U induce the same vector field  on U, they
coincide on U.

PROPOSITION  1.6.
complete.

On a compact manifold  M, UV~ ~~ctmjidd  X is

Proof . For each point p E  M, let U(p)  be a neighborhood of p
and E(P) a. positive number such that the vector field X gem-rates
a local l-parameter group of local transformations q1  ‘on
I+)  X U(p). Since A4 is compact, the open covering (u(p)  ; p E  M}
has a finite
min k(PJ,  . . . ,

subcovering (U(p,);  i z 1, . . ‘..  , k).  Let’ E’ =
s(p,)).  It is clear that v,,(p)  is.defined  on 1,  x A4

and, hence, on R x M.. i QED.
In what follows, we shall not give explicitly the domain of

definition for a given vector field X and the corresponding local
l-parameter group of local transformations qt. Each formula:is
valid whenever it makes sense, and it is easy to specify, if necessary,
the domain of definition for vector. fields or transformations
involved.

PROPOSITION 1.7. Let 9 be a tranformation,  of M. If -a vectorjield
X generates a local I-parameter group of local transfoonnations  vt,  then the
vector jeld  v*X generates y Q  q+  0 v-l. . .

Proof . It is clear that 9 0 qt P 9-l is a local l-parameter group
of local transformations. To show that it induces the vector
fie’ld 9,*X,  let p be an arb&ary  point of M and q = (p-‘(P).
Since q+ induces X, the v&or  X, E  T,(M) is tangent @the  curve
4) = ad at 4  = x(0).  It follows that the vector 1

hJ*XL  = P)*(XJ E =&w ,...‘
is tangent to the curve y(t) = q o pt(q)  = 9 o pt 0 @(& QED.

COROLLARY 1.8. A vector jield  X is inzwiant  b&!  q?  that is,
v*X = X, if and on& if  p,  commutes with yt.
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, We now give a geometric interpretation of the bracket [X, yl
’ oE&o  vect&  fields.

PROPOSITION 1.9. Let  X and Y be vectorjW.s  on M. If X genera&
a local l-parameter group of local transformations qr, then

[X,  Y-J  =ynl[Y - ((Pt)*yJ*

More precistly,

Lx,  % = fim: CY,  - U~JJL19 P c MS

The limit on the  right hand side is taken with respect to the
natural topology of the tangent vector space 7’,(M). We first
prove two lemmas.

LEMMA 1.. If f (t,!)  is a @t&n  on I, x M, where I, is an open
interval ( -e,  d),  such thut  f (0, p) = 0+&r all p E  M, then  there  exists Q
function g(t&)  OR  1,  x M such tlrat f(t,#)  = t * g(t, p). Moreover,
g(o,  p) =f’(o,  p), 7.th f t = aflat,fi  p E M.

Proof. It is sufficient to define  ‘+!

QED.

LEMMA 2. Let xg#?@u& p~.8ii&jk?&&  fon M, there exists a
function g,(p) ,= g(t,  p)@h  t&f  0 (py  = f +.t  * g, andg, = Xf on M.

The function g(t,  p) is defined,  &r each fixed p c M, in ItI  < E
for some E.

Proof. Consider f(t,  $) =fl&#)  - f(p) and apply Lemma
1. Thenfoq,  =f + t*g,?Wehave

= Fi i&(P)  = go(P)*

QED.

Proof of Propos&u  1.9. Gim a function f on y,  take a
’ function g, such. thntfi  yolt  ~j  + t * g, and go  = Xf  (Lemma 2).
Setp(t)  7 v;!(P).  Their-  I .

b4*Y)f=  (r(fo  QiHPCS * wL4t,  + t ’ m>,(t)
”
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and

= X,,(Yf) - Y,g,,  = EJ3’l,f, ja.

proving our assertion. QED.

COROLLARY 1.10. With the same Gotti&rG  as in Proposition 1.9,
we have more genera@

b?J *[XT Yl = 1’,y  f [(q&Y  - (%+t)*Yl.
for any value ofs.

Proof. For a fixed value of s, consider the vector field (PJ * Y
and apply Proposition J.9. Then we have .2...

:

= pf E(vJ*Y  - (%+J*yl:’.

since 9, 0 pt =-  vn+(. On the other hand, (9,3  *X = X by Corollary
1.8. Since (Q~J*  preServes  the bracket, we obtain IIa/

QED.

Remark. The conclusion of Corollary 1.10 can be written as

COROLL\RY  1.11. Suppose X and Y generate local l-param%r
groups q’t  and yS, respeciiveb.  Then yt  0 lyS  = yS  0  ql  for every s and  t
if and only ;f  [X, Y] = 0.

Proof . If q‘,  0 vs = Y)~ 11  yr for every s and t, Y is invark&bY
cvory  Q7; by Corollary 1.8. By Proposition 1.9, [X2  fJY=  0.
Conversely, if [X, I’]  = 0,  then d((y,),Y)/dt  = 0 fey e$$?  < by
Corollary 1 .I0 (SW  Remark, above). Therefore, (&;Y 1s d con-
stantvector at each point /J  so that Y is invariant by. &very  pt. By
Corollary 1.8, every lys commutes with every vt. QED.

I. DIFFERENTIABLE MANIFOLDS 1 7

2. Tensor algebras

We fix a ground field F which will be the real number field R
or the cornpIe? number field C in our applications. All vector
spaces we coilsider  arc finite dimensional over F unless otherwise
stated. Mfe  define the tensor product U @ V of two vector spaces U
and V as follows. Let M(U, V) be the vector space which has the
set U x V as a basis, i.e,, the free vector space generated by the
pairs (u,  v) where u f U and u E  V. Let N be the vector subspace  of
,\I(  U, V) spanned by elements of the form

(u + u’, v) - (%  4 - (4  4, $4 v .+ 0’) - (u,  v) -l -&,.v’),

(ru,  u) - r(u,.v), (u, .TU)  - r(u, v),

‘where  u& E.U? v,v’  E  V and r Q F. We set U @ V = M(U,  V)jN.
For evei+  pair ‘(u, u) considered as an element of M( U, V), its
image by the natural projection M( U, V) -+ U @ V will be
denoted by u @ u. Define,the  canonical bilinear mapping 9 of U x V
into U @ V by

, ,.r
<i. ‘&,  ZJ)  = ‘u  @ D for  (u,  v) B U x V.

Let- W be a vector space and y : U x V ---*  W a bilinear
mapping. We say that the couple ( W, y) has the universalfactoriza-
tion proper0  f&-U x V if for every vector space $ and every bilinear
mapping f: U x V --+ S there exists a unique  linear mapping
g:  W+Ssuch  that-f  =goy. l

iROPOSITION  2.1. The cbuple  (U @ V, 91)  has the universal
factorization property for U X  V. If a coupl~“-(  W,. y)  has the universal
factorization proper& for U x V, then (U,@ V,.‘~.J)  and ( W, yl)  are
&omor@&.  irz tire sense that +&e exi& a linea; isomdiphism  (T:  U @ V .+
W.+@$qt  ,y- =,o  0  F. ’

Prbof’.  Let  S be any vector s;ace  and f: U x V -+ S any
bilinear mapsjf?g,,$ince  U;. 3 V is a basis for M(U,  V), we can
extend  f to a IQq$+~r&~q  mapping f’ : M( U, V) - 5’.  Since f
is bilinear, f ’ vanishes  OR~ . f Therefore,f’  induces a linear mapping

,I&g:. U @ V -+ S. Obiiou-  y, f = g 0 cp.  The uniqueness of such a
mapping g follows from tb” fact that 91(  U x V) spans U @ V. Let
( W, y) be Z+ couple hati@$%hi’  universal factorization property

.for U x V. By the universal fadtorization  property of (U @ V, q)
:. ,I

.
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(resp.  of ( W,  p)),  there exists a unique linear mapping  0: u 0 V+
W(resp.~:W-~UOV)suchthaty=uo~(r~p.~=~~~).
Hence, tp = ToOoQ)and~=dOToy.Usingthtuniquenessofg
in the definition of the universal factorization &perty,.  we
concludk  that T 0 (r  and 0 0 T are the identity transfbrr&o~  of
U X v and  W respectively. QED.

PR6P&gON 2.2. The  is  a unique i.somorphirm  of U @ V onto
V8U.~~sGndruOvifftovQuforollu~~C!dvrV.  :

Proof  Let fi U  X V+V@U be t&e..l$lhear  mapping
defined by f (u, V) = v @ tl. By Proposition 1.1, there is a unique
linear mapping g: U @ V ~v@vsuchthatg(u@o)  Av@u..
Similarly, there is a unique linear mapping g’: V @ U + U @ V
such that g’(v @ u) = u @ v. Evidently, g’ 0 g and g 0 g’ are the
identity transformations of U  @I V and V @ U  respectively.
Hence, g is the desired isomorphism; QED.

The proofs of the following two proposi&ns  are similar and
hence omitted. :i
'PROPOSITION 2.3. If we regard the ground&&dF  qs a l-dimensional

vector space ova  F, th.ere is a unique isomorphism  of F @ U  onto U which
sends  7 @ u into N for aN r c F and u E U. Similarly, for U  @ F and U.

PROPOSITI~?J 2.4. ?@r~kaun&etiom4q5&smof(U@  V)  @W
ontouQ(v@w)whiEh~~uQv)~w~Y~(vQw)fo7
ailu6U,v6V,indW:6W.  :..

Therefore,It  is meaning@ W  write U  @ V @ ti  Given vector
spaces U,, . . . , U,, t.he~~r  prdaucf  U, 0. . + @‘U,  can ,be
defined inductively. &et;  ‘p:,  vi x l * * X‘ ‘.Uk  --+-.  U, @I * * . ‘&I  ‘Uk
be the multilinear
u1  Q * * ’ Q up

I$*.,  $kh set@  (uI, . . . , ui)  into
Then, ‘trs  iijixtropositkk 2.1, $e  couple (Us .@I

l . . @ U,,  ‘p) can be charaet&$cd,,by  the pniversal  factorkN$b
propertyforU,x**:XUk’  b .’ .

8 ~.  .‘I  (

Proposition 2.2 can be also generalized. For any permu
xof(l,..., k), there is a unique  isom~rphisro  of VI @ * * *I@  V,
onto UncI,  @ .  ..QU&.  which  s e n d s  &&y...@u;“~tO. . . i
u=w 0 * * * 0 %(n* ;:..

PROPOSITZON  2.4.1. &va&h@+~Jf,:*.U,  -+ &$ = 1, 2,
there is a unique linqaz yua##g  fi..U, @I  U, + V, 8. Vd  such  that
fh 0 u2) =fX%)  Of,(%)& all  Ul T  Ul a?Jd  4 6 u,.
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ProoK Consider the bilinear mapping  U,  x U,  -c V,  @ V,
which sends (~1,  %)  intofi(uI)  @f,(uJ and apply Proposition 2.1.

QED.
The generalization of Proposition 2.4.1 to the case with more

than two mappings is obvious. The mapping f just given will be
denoted by,fi Of,.

PROP&ON  2.5.
then’

if U;  + L& aknotes  the direct  sum of U, and U,,

(u,+U,)QV=U,Qv+U*Qv.
Similar~, . .

u Q (V,  + VA = u Q v,  + u Q v,.
Proof. Leti,:U,-+U,+U,andi,:U,~U,+U,b~the

injections. Let pI: U, + U, 3 VI  and ps:  U, + U, - U,  be the
projections. Thenp, 0 i, and&o  i* arethe identity transformations
of U, and Us respectively. Both ba  0 i, and p1 Q iz are the zero .
mappings. By Proposition 2.4.1,  i, and the identity transformation
of V induce a linear mapping iI:  ?a  @ V + (U, + U,) @ V.
Similarly, &,  ‘6;;  and Jl are defined.  Zt follows that II  0 Z, and
A O 4 are the identity transfkmations  of U, @ V and U, @ V
respectively and & 0 f,.  and fil 0 ;a  are the zero mappings. This
proves the first isorkphism~  The proof for the second is similar.

“ 4,
By the induction, we ob#&;-.

QED.
.

(Q+ . . . + :QV+.*,+‘u,Qv*

PROPOSITXON  2.6. If absfisfor  U&&;. . 1
abasisforV,t~(u,Q~~~i~X,..~,~;j=l

, v, is

forY~V.hplnrtinrlar,dimU~.V=dLnUdi~,~~
n) is a basis

be tb?  ai~tmcwi~nal s@pace of U  spanned by
~dih~orp.l  iubspqco  of V spanned by v,.  By

,

By Proposition 2.3, &b  W;  @Y  V,  is a I-dimensional vector space
spanned by uf Q v,l -,,jJ  ,i, QED.

c
For a vect?:  space U, we,,c+op  by U*  the d&al vector space of
For u 6 U  and u* 6 U*, (u,.  u”>  denotes the value of the linear

Gnktional  u* on u. ’

.



V) be the space of .linear  mappings of
isomorphism g of U @ V onto

L(u*,  v) su&  th&-  -3

k(u  @ 4)u”  L (u,  u*:v for a!!<  u l U, v c V and u* E U*.

PrOOf. CQnsider  the bilinear mapping.f:  L/’  x V -+ L( U*,  V)
defined by (f‘(*,  u))u*  = :u, U*)V  and apply Proposition 2:I:
Then  there is a unique linear mapping g; U @ V-+  ,C(,!J*,  V)
such that (g(u  0 u))u*  = (u,  u*>v.  To’ prove that‘ g.  is ah  iso-
morphism, let ul, . . . , urn be a basis for U, uf,  . . . , u;  ‘the
dual basis for u*  and ul, . . . , v,, a basis for V. We shall show that
(g(~~  @ vj) ; i = 1, . . . , m;j = 1, . . . , a}  is linearly indepehdent,
IfX  a,,g(u,  @ vj)  = 0 where aij E F, then

0  = (C aijg(ui @ v,))uf  = IS  akjvj

and, hence, all ai, vanish. Since dim U $3  V = dim L(U*,  V)!
g is an- isomorphism of U @ V onto L( U*, V). QED.‘.

‘h&omoN  2.8. Given  ’ ttio vector spaces U and V, therk is i’
unique z&morphism  g of U* @ V* onto  (U 0  V)* such that I.  I.w+t

(g(u*  @ u*))(u  @ v),  = (24,  u*)(u,  u*> ‘- 1’  (,’

fir  411  u E u; u$$p,  y.; y,,u*  5  ,v;. ‘L :+. 3

Proof. Apply Proposition 2.1 -to the bilinear mapping
f:  u*  x v* -+ (U @I  v)* define&~  b y ff(@~‘ir*f))(u  @ u) ~=
(u,  u*)(u,  v*). To prove that g k<w*  iso,vorpl$m,’  take bys  for
U, V, U*, and V* and proceed as’i&  the pr?of  of Proposition 2.7.; ..‘- *.‘L. * ‘ .* QED.

We  now  define  various  ttns~~*spa$?e$  ?v&  a fix&I  vector space
V. For a positive integei’r,,  we ,shdl ptfi  T’ = V @ ; * * @ v ,(r
times  tensor  produd) the’c&ai$rian’t’tt?nsor  space of degree,  f.  An
element  $f  T* will be  called  a ‘contravariant  tensor of  degree’  Y.  If
r = 1, Tl is nothing. but V. By convention, we agree that “@is
the ground field F itself. Similarly, T,  = V* 0 * * * @ V* (S e
tensor  product)  .is  caued  the couariant  tensor space of degree s an$lb
elements  covariant  tensors of  degree S. ‘Then T, = V* and&‘&
convention, T,  = F. .

\ We shall give the expksions  for these tensors with iesp&.to  a
basis of Vi Let e,,  . . . , er be a basis for V and el, . . . , e n&e  dual_.

.
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basis  for V*. By Proposition 2.6, (e,,  0 * - - @ ei,;  1 ; i,, . . . ,
i, 5 n} is a basis for T,. Every contravariant tensor K of degree r
can beexpressed  uniquely as a linear combination

/ \ :. I

5 : K = Xi  ,,.... &...ir,ei, @ * * * @ ei,r
where  #I . . G are the com&nents  df R with respect to the basis
e,,  . . . , e, of V. 3imilarly,  every covariant tensor L of degree s
can expressed uniquely as a linear combination

L  =  x.J,9...9j,Lj  ,... )$?‘I  0  * . ’ 8  cir,

where Lj,  , , .j; are the components of i.
For a change 9f basis’of V, the compo<ents of tensors are subject

tb the ;follewi.ng  tra,nsfo.ymatio&.  Let .e,,  . . . , e, and i,,  . . . , C,i be
two b&es bf V related by a linear transformation,. -k

Zi’= Zj A{ej, i=l ,...,n.

The corresponding‘cha-nge of the dual bases in V* is .given  by

2.i  = C ,Blej2  J s iz  1 ,...,n,

where B = (Bj)  is the inverse.matrix  of the matrix A .=  c-4;)  so
that

Xj $Bj  = 8;.

If K is a contravariant tensor of,degree  r,  its components Kil ..  . ‘r
and PI..  . i,

by
with respect to {e,}  ai?d  {it}  respectively are related

jpl  ’ . . i, = cj,,  . . . , j, AIt . . . A!#.  . . jr.
JI

Similarly, the components of a covariant tensor L of dcgrcc s m-e
rel&te&%jy- i - .

:rificati@$f  t&se ,f?r-m+s  is left to the reader
*We define the’ ‘[$ixec&‘@zsor  s&ace  of @c  (r, s), or tensor space OJ

contravariant degree r a&  cuearia+ degree s, as the tensoP  product
T:=TIoT,=V’~;*~.OV~V**...~~~~  (V:r times
V* : s times). In particti&:~T~  = T’,  T,”  = T,  and Ti = F, Ai
ekment  of Ti is called a tensor.pft_ype  (r, s), or tensor of contravariant
degree  r and covariant degree s. In terms of a basis e,, . . . , e,,of Vand
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the dual basis el, . . . , en of V*,  every tensor K of type (Y, S)  can
be expressed uniquely as

K = xi ,,.,., ir,jl ,...,  j,
p1...4J,...j;C;~@*‘-  * Of%,  @P  0 - * - ,@.++a,.) I , / “1~

where Kj; : : :,,5 are called the components of K with respect to the
basis el,"', e,; For .d  change’of  S&is  Zi = Ej A$,, we, have the
following transformations $compon*ts:

‘(2.1)’ Rj::::$ &‘2;  Ajf;+.  A@Q  . . e, . ~K$y.-&.

S e t  T.=‘Z;,,  ,,g so ‘that an <element  of. T is of th
r, r”pI,oK:, where K: l x are zero except for a @rite  number of
them. We shall now make T into an associative algebra over F by
defining the product of two tensors K C T:  and L e-q as follows.
From the universal factorization property of the tensor prod-
uct, it folloys  that there exists a unique bilinear mapping of q x
q i n t o  *=; which sends (ui  @ * . . @ ZJ~  @ or 0 . . . @ a,*,
Wl  @ * * * @w,  @)w:  @*** @ wz)  e T x T into u1 @ * * *  $0
q 0 WI  8 ...~w,~~~...~v,*~w:~...  @w,*eT$.
The image of (K, L) E T: x q by this bilinear mapping will be
denoted by K @ L. In terms of components, if K is given by
K;‘: : : :,,% and L is given by el*.*.*.“,+ then

(K @ L)f::::w;  = K~P:$)+-~.

We now define the notion of contraction. Let Y,S  2 1. To each
ordered pair of integers (&j) such that 1 5 i d r and 1 5 j 5 S,
we associate a linear mapping, called the contraction and denoted
byC,ofT:into~S:whichfnapsarl~:*..  @v, @u:  @es*  @v:
into

eJ4,  q>% 0 * * * @ 2+-l  @ v,,,  @ - ’ * @ v,
@ vf @ ’ - - @ v&1 @$+1  @ *,* * @ v,*,

where ui  ,...,  v,e.V and vt ,..., ZJ,’  c V*. The uniqueness and
the etitence  of C follow from the universal factorization property
of the tensor product. In terms of components, the contraction C
maps a tensor K l T: with components q::f% into a ‘tensor
CK d rr: whose components, an given apY

(CK)f::-fi-;  = X, K;:::::::f:,

where the superscript k appears at the *&th  position and  the sub-
script k appears at the j-th position.
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We shall now interpret tensors as multilinear mappings.

PROPOSITION  2.9. T, is isomorphic, in a natural way, to the vector
space of all r-linear mappingi  of V x . ’ ’ x V into F.

PROPOSITION 2. IO. T’  is isomokphic,  in a natural way, to the vector
space of all T-linear  mappings of V* x * * * x V* into F.

Proof. We prove only Proposition 2.9. By generalizing
Proposition 2.8, we see that T, = V* @ * * * @ V* is the dual
vector space of T = V @ . . * @ V. On the other hand, it
follows from the universal factorization property of the tensor
product that the space of linear mappings ‘of T”  = V @ . . . @ V
into F is isomorphic to the space of r-linear niappings of V x - - -
x VintoF. / QED.

Following the interpretation in Proposition 2.9, we consider a
tensor ‘K h T,, as an r-linear mapping V x - - - x V -+  F and
write K(v,;  . . . , ur)  c F for ur,  . . . , u, c V.

e PROPOSITION 2.11. Ti is- isomorphic, in a natural way, to the vector
space of all r-linear mappings of V x * * * X  V into V.

Proof. T: is, by definition, V @ T, which is canonically iso-
morphic with T,  @ V by Proposition 2.2. By Proposition 2.7,
T,  @ V is isomorphic to the space of linear mappings of the dual
space of T,, that is T’,  into V. Again, by the universal factorization
property of the tensor product, the space of linear mappings of T
into V can be identified with the space of r-linear mappings of
v x  *-* x V into V. QED.

With this interpretation, any tensor K of type (1, r) is an r-linear

3 mapping of V x * * -
01, - - . , v,) c V. If

x V into V which maps (ui, . . . , UJ i%o
ei, . , . . ,

z  Kji.;.iiei  @ ejl  @ * . *
e, is a basis for V, then K =

of V 5 ;.  ’ *
@ ejr corresponds to an r-linear mapping

X V into V such thqt  #C(C,~,  . . . , ej,) = X4  Kj,.  . .j,ei.
Simllq inkeFpreta$m  can be niade for tensors of type (r, s) in

general, but we @ll,not  go into it.
Example 2.1. If.ti  s;V arid  V* Q V*, then u @ v*  is a tensor of

type (1, 1). The contra&on  C: ‘T: + F maps v @ U* into (v,  v*>.
In general, a tensor K &+pe  (I,  1) can be regarded as a linear
endomorphism of V and&e contraction CK of K is then the trace
of the corresponding endomorphism.  In fact, if e,,  .  . .,e,  is a



24 FOUNDATIbNS  OF DIFFERENTIAL GEOMETRY

basis for V and K has components Kj with respect  to this basis,
then the cndomorphism corresponding to K sends ej  into xi $ei,
Clearly, the trace of R and the contraction CK of K are both
equal  to Xi Ki.

Example 2.2. An inner product g on a real vector space,  v  is  a
covariant  tensor of degree 2 which satisfies (1) g(u,  u)  + 0 and
g(v,  u)  =  0  i f  a n d  o n l y  i f  u  FL  0  (positive  d e f i n i t e )  a n d  ( 2 )
g(u,  u’) = g(u’,  u)  (symmetric).

Let T(U) and T(V) be the ten.&  algebras over \.ector  spaces
U and V. If A.  is a linear isomorphism  of. U on to  V,  then i ts
transpose A*  is a linear isomorphism of V* onto U*  and A*--’  is a
linear isomorphism of U*  &to  V*. By Profiosition  2.4, we obtain
a linear isomorphkm  d  @ A*-‘:  U @ U* -+ 1’ @ V*.  In’general,
we obtain a linear isomorphism of T( U) onto T(V) which maps
T:(U) onto T:( It). Th’1s isomorphism, called the extension of A and
denoted by the same letter A, is the unique algebra isomorphism
‘I’(  [J) + T(V) which extends A: U -+ V; the*  uniqu&esF  follows
from the fact that T(U) is generated by F, U and CT*.  It is also
easy to see that the extension of A commutes w$h  .~~ery:  contrac-
tion C.

l’KOPOSITION  2 . 1 2 .  ‘/Thefd..is  a natural 1 : 1 correspondence between
/he  linear isomorphisms of a @&lor  space U onto another vector space V and
[he  cllSqehrtr  isomorphisms of T(U) onto T(V) which preserve f@e and
commrrle  rclilJ1,  ,contructions.

I,/ /)ar/icnlar,  the group of automorphism  of Vi’s  isomorphic, in a natural
zq’.  with &he  group of aulomorphisms  of the tensor algebra T( r’)  zelhich
pres.,er:‘c  t p crud conmufe rejilh  conlractions.

l’rool: ‘l’hc  only thing which has to be proved  now is that
e\~!-  algebra  isomorphism, say .f, of T(U) onto T( l’) is induced
from ;II~  isomorphism ,I of IV  onto V,  provided that f preserves
t!‘l>t‘  ai~l  commutes  \vith contractions. Since f is type-preserving,
it II~;I~S  T,‘,)~(- -- I.’ isomorphically onto Ti(  V) = V.  Deriote  the
IXW  r-ic t ion (I[:/‘  10 I * II)- . f.  Since j: maps every element of the field
F T;;  into itself‘  and  c.ommutcuj’\vith  every c2ntraktion  C, we
ira\x-. fix  all u  E I_ ;tnd  I/*  F  I -*, ’ ’

*‘

-fy+ Q tl*j)r-f(&ll*:)  = (u, u*)..
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Hence,  fu*  = id*-'U*. T h e extension of .A and f agrees on F, U
and L;*.  Since the tensor algebra T(U) is generated by F, Ii and
U*, f coincides with the extension of -4. O_ED.

Let T be the tensor algebra qver a vector space 1: A linear
endomorphism D of T is called a derivation if it satisfies the following
conditions :

(a) D is type-preserving, i.e., ‘k maps T: into itself;
(b) D(K @L)  = DK 0  L + K Q L)Z.  for all tensors A and L;
(c) D commutes with every contraction C.
The set of derivations of T forms ,a  vector space. It forms a Lie

algebra if we set [D,  0’1  = DD’ - D’D for derivations 11  and 1)‘.
Similarly, the set of linear endomorphisms of V forms a 1.k
algebra, Since a derivation D maps T:, = +I’ into itself by (a!,  it
induces an endomorphism, say n,  of ,‘c’.

PROPOSITION  2.13. The Lie algebra of derir1alion.s  of T( 1,‘) i.1  iw-
mor$hic  with the Lie algebra of endonlorphisms  of V. The isomo~j~hi.~nl  is
given by assigning to each derivation ifs  resfriction  to V.

Proof. It is clear thit  D 2 11 is a Lie algebra homomorl~hisn~.
From (b) it follows easily that I1 mjps  every  clement of F inio  0.
Hence, for u  6  V and v*  E V*, we have

Since Dv = Bv, Dv*  = - ll*rl* where  I)*  is thd transpose of 11.
Since T is generated by F, II and I’*, 11 is uniquely dctcrminc,tl  its
restriction to F, V and V*. It  follows that 11  *Ii is  iujccti\.c..
Conversely, given an endomorphism 11 of 1,‘. \VC  tlrfinc  Da 0
for a E F, Dv z-z Uz!  for zt E V atid  Dv*  -=  --Ij*;,* fiw i,*  6 I’* ml&
then, extend D to a derivation of T by (b). ‘1%~ cGylt.ncc  of /j
follows from the uhiversal factorization propcrt~  of the tensor
product. - 1 ‘(_ (LED.

ZGclnrj>le 2.3. Let, $;be  a tensor of type (1, 1) ant1  consider  it
as an cndomorphism of V. Then th(a a~~~onlolphi~rn  of T(  1’)
induced by an automocphism -4 of I’ maps the tensor A-  into the
tensor .lii:l -:. On the other hand, the d<G\.ation  ofT(  1.‘  induced
by an endombrphism B of C’ maps K into [I), li] =  Ilh’  - K’w.
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: ,I  3 .  2iigg.w  fields
.d, ^/

,cci ?“, = ?‘i(k)  be the tangent space to a manifold 121  at  a
point x and T(x)  the tensor algebra over T,: T(Y) = X T;(x),
where T:(x) is the tensor space.of type (r,  J)  over 7’;:  A &ensorJeld
OX tee  (I;  s) on a subset N oCA#  is & assignment of a tensor
K, E T,‘(X)  to each point x of N. In a coordinate neighborhood U
with a local coordinate system  xl, . ‘. . , Xn,  we take Xi  = a/&l,
i = 1;,,.  . . ,
cd

R, as a ‘basis for each tangent space T,, x E CT,  and
=I&‘,  i = 1,. . . ,;&,‘iis  the dual basis, of T,“.  A tensor field R

Of.*‘@,  s)  defined on U is then expressed by
: :‘+x* = cgl:?l:::k$  0’.  . .‘@x;,  @(J’  0.. . @ &,

wh&-e  KG . . . i3,.  ,j: are functions on U, called t.he comfionents  of h’  with
respect to the local coordinate system xl, . . . , .v’. W’e  say that K
is of class Ck  if its components Kj; : : :j: are functions of class C’k; of
course, it has to be verified that this notion is indcpendent.of  a
local coordinate system. This is easily, done by means of the
formula (2.1) where the matrix (.A;)  is to be replaced by the
Jacobian,matrix  between two local coordinate systems. From now
on, we shall mean by a tensor field that of class C” unless otherwise
stated.

In section 5, iYe shall interpret a tensor field as a differentiable
cross section of a certain fibre bundle over M. We shall give here
another in&zpretation  of tensor fields of type (0, r)  and (1, r)
from the. viewpoint  of Propositions 2.9 and 2.11. Let 5 be the
algebra of functions (of class Cw)  on M and 3 the s-module of
vector fields on M.

L

PROPOSITION 3.1. A tensor jield  K of t@e  (0, r) (reqh  Qpe ( 1, 7))

on M can be considered as an r-linear mapping  of X x - * * x X into
3  (resp.  X) such that

K(fA  * ** Jx) .=‘f1  * * -f,K(X*,  * : * ,a
for fi  6  5  and Xi E X.

Conversely, any such mapping can be considered as a tensor jeld  of ppe
(0, 7) (re.@.  trpe  (1,  4).

Proof. Given a tensor field K,of  type (0, I)  (resp. type (1, r)),
K, is an r-linear mapping of T, x * * * x T, into R (resp. TJ

n

L

.

by proposition 2.9 (resp, Proposition 2. I 1) and hence.(X,,  . . . , X7)
- (K(X,, * - . , X,)).  = K,(  (X,),,  . . . , (X,),) is an r-linear map-
ping of X x * * . x 3 into $j (resp. 3E)  satisfying the preceding
condition. Conversely, let K: I x . . * x X -+ 3 (resp. 5) be an
r-linear mapping over 3. The essential point of the proof i&. to
show that the value of the function (resp. the vectcu”‘,&ld)
WI,  * - * , A’,)  at a point x depends only on the-values of&
at x. This will imply that K induces an r-iinear  mapping of.
T,(M) x . . . x T,(M) into R (resp. T,(M))  for ,each  x.  We
first observe that the mapping K can ,be  Iocalized.  Namely, we
have

LEMMA. IfXi  = Yi in a neighborhood 2.1’  of x for i = 1, , . . , T,
thin we have

K(X,> . . . , X,)  = K(Y,,  . . . , 1(+)  in U.

Proof of Lemma. It is sufficient to show that if X1  e 0 in ri,
then K(X,,  . . . , X,)  = 0 in Li. For anyy . Z  U, letfbe  a differenti-
able function on M such that f(r)  = 0 .and  f = I outside U.
Then Xi =fX1 and K(X,,  . . . ,.X,)  =f X(X,,  . . . , X,), which .
vanishes atp. This proves the lemma.

To complete the proof of Proposition 3.1, it is sufficient to
show that if Xi vanishes at- a point x,  so does K(Xr, . . . , X,).
Let x1,  . . . , ,V  be a coordinate system around x so that X, =
zsifi  (a/w). w e may take vector fields Yi and differentiable func-
tions gi  on M such that gi  =fi  and Yi = (a/8$)  for i ‘= 1, . . . , n
in some neighborhood U of x.  Then Xi = Ci  g’Y; in U. By the
lemma, K(X,,  . . . , X,)  = Ci  gi - K(Yi,  X2,  . . . , X,)  in U. Since
g(f)  =f’(x)  = 0 for i = 1, . . . j n, K(+T,,  . . . , Xr)  vanishes at x.

QED.

l$xam$e  3.1. A (pos$ive definite) Riemannian  metric on M is a
covariant tensor field‘g of degree’2 which satisfies (1) g(k,  X) 2 0
for all X 4 X, and &X,  X) = 0 if and only if X = 0 and (2)
g(Y,  X) = g(X, Y) for  all, X, YE 3E.  In other words, g assigns an
inner product in each tangent space T,(M),  x E  M (cf. Example
2.2). In terms of a local coordinate system xr,  . . . ,, XT’,  the com-
psnems of g are given. by g&j  = g(  a/axi,  a/&&).  It has been
customary to write dss  = I: iid dxi  dxj  for g.
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Ewrrl~lle  3.2, A cliffcrc~nti~ll  form 11)  of degree 7’ is nothing but a
coCn.riant  tensor fi&l  of tlcgrc:~  P which is ske\v-symmetric :

fAX(l,7  * * *) .I&)  =-  F(n)  f,,  (S,,  . . . ) XJ  ,,

where TT  is an arbitrarv permutation  of (1, 2, . . . , r)  and c/n)  is
its sign. For any covallant  tensor K at * or anv covarianf  tensor
field  K on .\I,  WC  define the alternotion  A ;1s  foll;n\s:

(:lK)(X,,  . . . ) A-#.)  = ; s,  F(T)  * K(X,(,,,  . . . ) ‘Yo(r,:‘,

\vli(.r(a  lhc summation is taken over all pcrmutat.ions  77 of (1, 2, . . . ,
r).  It is easy  to verify  that . IA’ is skew-symmetric for any ii and that
K is ske\\.-symmetric if and only if .M  -_;  K. If 0) and 0)’ are
dilkrcntial  forms of degree r and s rcspcctivcly,  then (:I . . (1)’ is
;1  co\-ariant  tC'JiSOY  fic*ld of C1CgL.W  r -.  . Y  and (I)  A 0)’  - -l(cfJ  1, ffJ’j.

ZCvcrin/de  3.r(. The .~),))II~IP/~~--~~~o)I  s can bc”de&d  is follows. ‘If
K is, ;I covariant tensor, or tensor field  of degree r,.  then

For any K, SK  is s)~mmctric  and SK  = K if and only if h” is
symmetric.

\\‘c  nolv proceed to dcfinc the notion of’Lie  differentiation.
I,ct Z:(.\f)  bc the set of tensor ficlcls  of type (r, s) clcfined  on .11
and set X(.11) := XcxL. oZ~(Llf).  Then Z(.\Z)  is an algebra  over
the Ical  number  field R, the multiplication 12,  bting clcfined
point1  ise, i.c.,  if K,t E  2(A1)  ‘then’ (li’ @ L), = K, !.‘3  L, for all
.y E  ,\I.  If y is a transformation ‘of -!I,  its differential y* gives a
linear isomorphism of ‘the tangent  space TC,  -.l,,,(.ll)  onto the
tangent space T,(M).  By Proposition 2.12, this linear isomorphism
can be extended  to an isomorphism of the tensor algebra T(g-l(x))
onto the tensor algebra T(x), which we dcnotc by $ Given a
tensor field K, we define a tensor field +K  by , .,’

(NJ = wLl,,,L ,II  E  -21. r
. ?

In this way, every transformation p of .\I indu&  an algebra
automorphism of 2(,11)  lvhich prcscrvcs  type and  ‘commutes withI
contractions.

Let X be a vector field on .\I and crI  a lb&l  I-Parameter  group
of local transformations  gcncratccl  by -X (cf.  Proposition 1.5).  WC
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shall define the Lie derivative L,K  of n tensor Jield K with resject to a
vecforjek? X asmows.  EYor the sake of simplicity, we assume that

. ~~  is a global l-parameter group of transformations of .\I; the
reader will have no difficulty in modifying the definition when X
is not complete. I:or each t , a; is an automorphism of the algebra
Z(M).  For any tensor fie1d.K CSZQJ{,  we set

The mapping L,‘, of 2(M) into itseIf which sends K into L,K  is
called  the Lie’ dzfirentiation  with respct  to,‘X.  .We,Iiave

P PROP~SITIOX  3 . 2 .  L i e  dl$erenfiation  L, w i t h  &pect  t o  n zmecfor
jel4  X sntisJes the following conditions:

(a) L, is a derivation of Z(M), that is, it is linear a’hd  .&i.$es

L,(K @ K ’ )  =  (L,K)  @ K’ +  K @ (L,K’)

fOY  all K,  K’ $.2(M)  ;
(b) L, is type-preserving: L,(Z:(.CI))  c Z:(M);
(c) L, commutes with every contraction of a tensor jeld;
(d) L, f = Xf fir  ever_y  function f;
(e) L,Y = [X, Y] fof eber_l,  vectdr~field  I’.

:
Proof. It is clear that L, is linear. I.et Q’~  be a local l-param-

eter group of local transformations generated by X. Then
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Since $I preserves type and comFMes~.with  contractions, so does
L,. Iff  is a function on M, thtti  7;; r :.‘-

. ’ .,  .I- .,

&f)(4 = yz f [.f!x)  -f&‘%)]  = -‘,‘y  f f&$%)  l-f(x)].
‘* ,; . b hkjPL

If we observe that pl;’ ==‘vLtii &local l-parameter g@ot$of  local
transformations generated by IX, we see that L ‘,-f I= - ( - X)f =
X$ Finally (e) is a restateme&  of Proposition 1.9. QED.

By a derivation of 2(M), we shall mean a mapping of Z  (.%I)  into
itself which satisfies conditions (.a), (b) and (cj of Proposition 3.2.

Let S be a tensor field of type (1, I). For each x E  ;\I,  S, is a
linear endomorphism of the tangent space T,(M).  By Proposition
2.13, S, can be uniquely extended to a derivation of the tensor
algebra T(x) over T,(M).  For every tensor field K, define SK by
(SK);  = S.J,,  x E  M. Then S is a derivation of Z(M). We have

PROPOSITION  3;3; Every derivation D of Z(M) can be decomposed
unique@  as follows:

D = L, + S,

where X is iz vector field and S is a tensorjeld  of t$e (‘I, 1).
Proof. Since D is type-preserving, it maps S(M)  into itself and

satisfies’ D( fg) = Dfa  g*  + f *  02 for f,g  E s(M).  It fbllows  that
there is *a iPector  field X such that Df = Xf for every f c S(M).
Clearly, D - L, is a derivation of Z(M) which is zero on s(M),
We shall show that<an)r derivation D which is zero on S(M)  is
induced by a tensor tieid  of type (I, 1). For any vector field Y,
BY is a vector &@+I$,  for any func$ion  f,  D( f Y) = Df * Y +
f*  DY =f* D.Y  sitice  Qf = 0 by assumption. By Proposition 3.1,
there is a unique  tens& field S qf type (1, 1) such that DY = SY
for every vector field  Y. To show that a eaincides with the dekva-
tion iI+ced  by S; it. is sufficient to prove the following

LEMMA. Twa derivations D, ’ and D,  of 2(M) coincide ;f they
coincide on S(M)  and g(M).

Proof. We first observ‘e  that a derivation D can be localized,
that is, if a tinsor  .field K vanishes on an open set U, then DK
v&$&es  on U. In fact, for each j, E  U, letf be a function such that
f@]‘~O  a n d  f = l outside U. Then K = f *  K and hence
B&,A,  Df  - K +f*  DK. Since K and f vanish at x, so does DK.

c
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It follows  that if two tensor fields, Ix;  and K’ coincide on an open
set U, then DK and DK’ coincide on 1-y.

Set D = D, - D,. Our problem is now to prove that jf a
derivation D is zero on S(M)  and X(,Zlj, then it is zero on Z(M).
Let K be a tensor field of type (r, 5) and x an arbitrary point of ~44.
To show  that DK vanishes at ?c,  let V bc a coordinate neighborhood
of x with a local coordinate system x1,  . . . , x”  and let

where Xi  = 6’/axi and Q j = dxl.  M’e  may extend Kj;.::.:k,  Xi and
CJ to M and assume that the equaliiy  holds in a smaller neighbor-
hbod ,u ofx.  Since D can be localized,  it sulkcS  to ~116~ that

But this will follow at once if wc  show that I~J  = 0 for every
l-form w on ,21.  Let Y be any vector field and C:  21(.2,I)  ---+  3(:VI)
the obvious contraction so that C(Y  & 6J) = (I)(Y) is a function
(cf. Example 2.1). Then we have

0 = D(C(Y  &G))  = C(D(Y  & 6~))

- C(DY  00)  + C(Y (3 DOJ)  = C(Y 6 I~J),  = (Dti)j(k’).

Since this holds for every vector field Y, WC have D~J  = 0. QED.

The set of all derivations of ‘I(-41) forms a Lie algebra over R
(of infinite dimensions) with respect to the natural addition and
multiplication and the bracket  operation defined by [I),  U’]K =-I
D(D’K)  - D’(DK),  From Proposition 2.13, it follows that the
set”of  all tensor fields S of type (1, 1) forms a subalgebra  of the Lit
algebra of derivations  of Z(M).  In the proof of Proposition 3.3,’
we showed that a derivation of l(.Zlj.  is induted  by a tensor field
of type.(  l,$ l,h if:and only ifi t is zero on 2 ( Af),  It follows immediately
that if D is-a ,$@+ion  Qf  Z  (ilr) and S is a tensor field of type
(l,.l),  then [D,S] is zero on 3’y(.Z()  and, hence, is induced by a
tensor field of.  type (I,?.  In other words, the  set  of Ieruor,fie/dr  qf
Qpe  (1,  1) is an ideal of th&Lie  algebra of derivations oj’ 1(.111).  On the
other hand, the .ret  of Lie d{fffrentiations  L.,, X E x(:\fj,  jkns  a
subakebm  nfthe I,ie a/g&a  oj‘derka/ions qf x(,\f).  This follotvs  from
the follow&g.
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PROPOSITION 3.4. For any vectorfields  A’ and Y,  we  have

Proof. By virtue of Lemma above, it is sufficient to show that
[L,,  Lt.]  has th e same effect as ktIg,  i.1 on 5(A4)  and%(M).  For

J’e  I,  we have I,:  I,

[IdaS,  Ly]f  = XYf- YXf=  [X,  Y]f  = L,,,  J’:‘.

For Z E  E(M),  we have

[L*y,L,.]Z  = [X,  [Y, Z]] - [Y, [X,  Z]] = [[X,  Y], zjr::i

by the Jacobi identity. yh

PROPOSITION 3.5. Let K be a tensor Jield of !@e (1, r) which we
&rpret  as in Proposition 3.1. For any vector field X, we have then

“(L.~K)(Y,,  . . . , Y,) - [X,  K(Y,,  -.  - > J?l .<

- C;=, K(Y,,  . . . ‘,  [X, Y,], . . . , Y,).

4 Proof. \Ye have *

K( Y,, . . . , YJ  = C, - . - C,(Y,  @ - . - @ Y,  @ K),

where C,,  . . . , C, are obvious contractions. Using conditions (a)
and (c) of Proposition 3.2, we have, for any derivation D of
W),
U(K(Y,,  . . . ) YJ)  =  (DK):(y1:  : I. ,  Y,)

$-  Cj  K(Y,j..  . , DYi,. , l ) Y,).

If 11 = L,, then (e) of Proposition 3.2 implies Proposition 3.5.
QED.

Generalizing Corollary 1.10, we obtain

PROPOSITION 3.6. Let q!:‘t  be a local I-parameter group of locat  pans-
formations generated b,v  a vector Jield X. For anzl  tensor field e.we  have

ps(L,Kj  = --(d(&Kj/dtj,;,. ,.

Proof. By definition,
1

c
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Replacing  K by p,K,  IVC  obtain

L,&K)  =  ‘,I$ C&K  - g1  ,$J  =  -(d(q,Kj/dt),  #.
.

Our probtetn is therefore to prove that $,V(L,xK)  ==‘Ls(i,K),
i . e . ,  L,K LL +,,  ’ - L, 1 F,<(K)  for all tensor fields K. It is a
straiglltfixxxrcl  verification to see that q;  ’ 9 I,,  0 8. is a derivation
of 3 (.24).  By Lemma in the proof of Proposition 3.3, it is sufficient
to prove that I,,v  and $;~l  0 L, 0 @,,  coincide on s(M) and X(M).
We already noted in the proof of Corollary. 1.10 that t,hey coincide
on X(.14).  The fact that they coincide,,on  s.(M) follows -from the
following formulas (cf,.§l?.  Chapter I) : .,
. : ;

c$~*((pl;xjjj G’x(y*f),  :,

I$-‘f  = p*f, . . 3

which ho!il for any transformation v of M and from (v,?),S := X
(cf. CoroI‘l,try  1.8). , QED.

COROLLARY  ?.7. . ! /txvqrJield  & is @variant.by  pf  for every t ifand
on!>,  ;s L,K : 0 .

Let V(.A1)  1~. 111c  ,IxI(  (Q  c)l’differential  forms of degree r defined
on A4,  i.e., skew-sv  ~ltntc.~ric~  covariant tensor fields of degree r.
With respect to tlu esf(*rior  product,  Z(M) = 6:“; 0 V(M)
forms an algclxx  0v.c  ’ R. A derivation (resp. skew-derizxtion)  of
a(M)  is a linecir ttt;tppittg  0 of ‘c(*‘I,f)  into itself which satisfies

D(OJ A O J ’ )  = Ih A 0) A-  (1)  A BJJ fore,  ,Y!>’  E  a(M)

,@Sp.  =  Dtu  A t:’ -1 ( - -  l)‘t!J A b>’ for f,J E a'(M), W' E a(hf)).I

A-gerivation  or, a skew-derivation D-of a(.11) is said to be of.
degree k’ifjt~maps  W(.14)  into V+“(.V)  for every r. The  exterior
differentiationidC’is’  a skew-derivation of degree 1. As a general
result on derivatibns  and skew-derivations of 9(.24),‘we  have

,.;t:i
PROPOSITION  3.8. ,!(a) .@‘,L)  and D’ are  derir,ation.r  of degree k and

k’  respectivel.v,  then [D,,  A:$ iF  a derivation  of de<qrec  k -1 k!.
(b) If D is a derivation: of degree k and D’ is .a skew-derivation of

&%ree  k’,  then ID, 0’3 is a&w-derivation of degree k 7 k’.
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(c) If D and D’ are ,skew-derivation of degree k and k’ respectively,
then DD' + DfD is a derivation of degree k + k’.

(d) A denbation  or a skewderivutioa  is completely determined by its
$cf  on Q°CM)  = 3(M) and W(M).

Proof . The verification of (a),  (b), and (c) is straightforward.
The proof of (6) is similar to that of Lemma for Proposition 3.3.

,’  ’ QED.

PROPOSITION  3.9. For. ev&y  “&or  fieM 2,  L, is a derivation of
de&+ 0 of %(.M)  w&h commhtes  with tht  exterior di$erentiation  d.
C&ie&,  ~;nley de&vat&y  @degree  0 03”  B(M)  which tommutes  with d
is ep&$o  Lxfor  some~vector$ld X.’ :

Proof. Observe first that L,  cornmu&  ‘with the aIternation  A
defined in Example 3.2. This follows immediately from the
following formula : ’

(I-+))  (Y,, . . . , YJ = X(w(Y,, : . . ) Y,))

- ci “(.Y,, . . . ) &Y, YJ, . . . ) Y,),

whose proof is the same as that of Proposition 3.5, Hence,
.e:,(a(.ll))  c a(M)  and, for any o,  o’ < %(-\I),  we have

r-2 ,Lscc, A @’  + (d A L,iu’.
> .c i” Pi i

‘10 pro\~c  that L, commutesrwith  Q(veJirst  observe that, for any
Il.ansfi,lm,~tion  y of M, @J = (y-‘)*o  and, hence, 9 commutes
\sith (/.  I.ct  ff t bc alocal  I -pattimeter  <group  of local transformations
generated by X.  From ~,~~(/I~~,  y- (I(+,oJ)  and the definition of
L,o  it follows that Ley(&‘,  =-  d(~s,c~~,i  for every (U l %(nl).
Conversely, let 21 be-.  a derivation  of degree 0 of a(M)  which
commutes with d. Since n mapsV(.\,l)  = s(M)  into itself, D is
a derivation of 3(M)  and there is a vector,>.,field  ,X such that
Df = Xf  for every JE 8(-U). Set D’. 7 D, 7 L.,. Then II’ is a
derivation of p(U) such that ulf = 0 for every f 6 Z(-u). By
.q&&.#‘fd~-sf  fro+Gtiorl  3.8, in ocder to prove  D’  = 0, it is
s’u@Sent  to pro&  Q‘(r) rr (j fit  t&y  i&&n ~3; &St  as in Lemma

for ‘Pr+&ot)  3.3, U’ can be locabzed-  andit is’ sufficient to show
that  D’w  = 0 when CO  is of th&  fOrmfdg’*berhf,g.  e g(M)  (because
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w is locally of the form 2; fi dx’  with respect to a local coordinate
system x1,  . . . , x”). Let w = fdg. From D’f = 0 and U’(&) =
d(D’g) = 0, we obtain

D’(w)  = (D’f)  dg + f. D’(dg) = 0.
QED.

For each vector field X, we’define a skew-derivation lay,  called
the interior Product with respect to X,  of degree - 1 of 3(&U)  such
that

(a) Lx’  f = 0 for every f c Do(M)  ;
(b) lays = W(X)  for every cu  c W(M).

By (d) of Proposition 3.8, such a skew-derivation is .unique  if it
exists. To prove its existence, we consider, for each r, the con-
traction C: Z:(M)  -+ 2:-,(M) associated with the pair (1, 1).
Consider every r-form o as an element of Zp(A4)  and define
L~LO  = C(X 0 0).  In other words,

-kx4(L  * * .‘> Y,-,) = r * 0(X,  Y,, . . . , Y,-,) for Yi E  X(M).

The verification that 1x thus defined is a skew-derivation of B(M)
iS  left. to the reader; L*~(Q  A 0~‘)  = bso)  A flJ’  + (- 1)‘~  A L~OJ’,
where Q c lo’(M)  and o’ E  D)“(M),  follows easily from the following
formula :

(w A @J’)  (Y,, Y2, . . . ) Y,.J
?

c ~(j;  k) OJ(&,, .  .  .  ,  ~&J’(Ykl,  . .  .  >  Y,,),

“‘where the summation is taken over all possible partitions of
(1, * - -, r + s)  into (ji,  . . . ,j,)  and (k,, . . . , k,) and,&(j; k)  s&ids
for the sign’ of the permutation (1, . . . , r -+  S)  .+ (ji, . . . ,j,,
k;; ; : * >  q.

Since (&fi$(Y,  . . . , zi,-,)  = r(r - I) 30(X,X, Y,, . . , , Y,J  =
0 ,  wehavvet,i.-’

I i$ z 0.

As.relations  among il, Ls,  and cs,  we have

PROPO$ITIO~V  3.10, +>  L, =  d 0 lx  $ lx  0  dfor every vectorjeld
..&-  lb)  {Lx,  Q.] = +i, y1  fo? any vector&hfs X and Y.

Proof. By (c) of Proposition 3.8, d 0 cx + tx 0 d is a d.’  ivation
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of degree  0. It commutes with d &xause  dz  = 0.  By Proposition
3.9, it is qua1  to the Lie differtntiation  Gith  respect  to some
vector ficld.To  prove that it is actually equal  to  L,, we have only
to show that L.vf  = (d 0 1-v  -!-  l-v 9 d)f for every function j: But
this is obvious since I-, f = Xf  and (d I’ 1 s i 1 dv  1 d)f  = ls(r6J‘) =

w-) w = 47 To Prtive the second assertion (b), observe  first
that [L,, tt.1  is a skew-derivation of degree -1 and that both
[L,, or] and lt.V,.rl  are zero on z(M).  By (d) of Proposition 3.8,
it is sufhcient  to show that they have the same effect on every
l-form CO.  As we noted in the proof of Proposition 3.9, we have
(L,w)  (Y) = X(w(Y))  - OJ([X, Y]) which can be proved in the
same way as Proposition 3.5. Hence,

{L,, ly]W =  L&o(Y))  - ly(L.yW) =  X(0(Y))  - (L,o)( Y)

=  OJ([&  Y])  =  /,s,  t.lOJ.
QED.

As an application of Proposition 3.10 we shall prove

PROPOSITION 3.11. If w E’s  an r-jirnir,  then

(d4(&, X,, - . - , XT)

1
= - c;,,  ( -l)‘xi(ciJ(XO, . . . ) xi, . . . ) XJ)
rfl

1 cf-
r+l

,)~jij-C,(-l)i+j~,J([x,,  s,],  x,,,  . . . , xi,.  :.;  sj,. . .,x,),

where the sym/bol  h  means that the term ii omitten.  (The cases r = 1 and 2
are part&la+  useful,) Jf w is a l-form, then

‘(dOJ)(x,  Y) = ;{X(OJ(Y))  - j-(clJ(X))  - co([x,  Y]!}, ‘,

X2Yd(M).
If 0)  is a 2:form, tfwn .i

(dw,(x,  Y,  2)  = f{x(w(r-, z)) -i-  y(,,(z, x)) t z(W(x, I’))

- OJ([;t; I ’ ] ,  2) ,,([Y, z], x)  ..--  CjJ([z,  xi-],  Y)),

i x;r;z  E 3qAf).

Proof. The proof is by .induction  on r. If r = O,‘&&i  (I)  is a
function and dw(I\;,)  :L- XOcjj, which shows that the&rmula  above l.*

Ii

.

r
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is  true for Y = 0.  Assume that  the finm$a  is true for r - 1.
I.et CO  be an r-form and, to simplifi  the notation, set X == X,,.  By
(a,  -df  Proposition 3.10,

(Y -:- :) dW(‘YZ  x,, . . . , -\,, ‘,l s do):.  (.U,, . . . ) X,)

(l,.slfJ‘:  (.L,,  .  .  .  ,  .Yrj (d 3 I,~oJ)(X,,  . . . , ,I;).

As \ve  noted in the  proof of Proposition 3.9,

Since I \-u,  is ;m  (r 2 ll-form,  we have, by induction assumption,

Our Proposition follows immcdiatcly  from these  three f’orttrulas.
(21-1).

-Kmnrk. 1:ormulas  in Proposition 3.11 are valid also fbr
vector-space valued forms.

x,x t X(M).
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Then the mapping S: X(M) x X(-M) - x(  $f)  is a tensor jield of ppe
(1, 2) and S(X,  Y) = -S(Y,  X),.

Proof. By a straightforward calculation, we see that s is a
bilinear mapping of the S(M)-module X(M) 2:  X(M) into the
B(M)-module X(M) . By Proposition 3.1, S is a tensor field of
type (1, 2). The verificati,on  of S(X,  Y) = --$(I’, X)  is easy.

QED.

We call S the torsion of A and B. The construction of 5 was
discovered by Xijenhuis [ 11.

X Lie group G is a group which is at the same time a differentiable
manifold such that the group operation (a, b) E G x G + ab-1 E G
is a differentiable mapping of G x C into G. Since G is locally
connected, the connected component of the identity, denoted by
GO, is an open subgroup of G. GO  is generated by any neighborhood.
of the identity e. In particular, it is the sum of at most countably
many compact sets and satisfies the second axiom of countability.
It follows that G satisfies the second axiom of countability if and
only if the factor group G/Go  consists of at most countably many
elements. .

M’e  denote  b)f  I,, (resp. Z?,,)  the left (resp. right) translation of
G by ;tn element o E  G:  L,x  ~-2  us (resp.  R,x  = xa) for every x E  G.
For tz c G,  ad II is the inner automorphism of G defined by
(ad a),~  = nsa  l Sol- ever).  x E  G.

A4 vector field  X on C;  is called left invariant (resp. right invariant)
if it is invariant by all left translations L,, (resp. right translations
&j,  (I E  G.  A left or right invariant vector field is always differenti-
able. We define 111c  Lie algebra CJ of G to be the set of all left
invariant vector tiehis  on G with the usual addition, scalar multi-
plication and In-;tcket  operation. -4s  a vector space.  $1 is isomorphic
\yith the tang;‘?: SPXC T,(G)  at the identity, the isomorphism
l>c,il-rg qi\.en by tht, urapping  which sends X E $1 into X,, ‘the value
(,f’  .\-  .tt e. ‘l’huo  CJ is ;j I,ie subalgebra of dimension * (ti = dim G)
of the I,ic aIgcbra  cif \ cc,tor  fields X(G).

F,vcr)-  A c $3 gc ncr,ltcs  a (global) I-paramefer  group  of trans-
* f(,rnlations  of G.  In&cd,  if p,  is a local l;$arametcr  group Of lOCal+

.
(

-
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transformations generated by A and. qte  is defined for Jtl  < E,
then ppta can be defined for It]  < E  for every a E  G and is equal to
L,(pte)  as q?t  commutes with every L, by Corollary 1.8. Since y,a
is defined for ] tJ  < E for every a E  G, vta is defined for ItI  < 03 for

‘every a E  G. Set a, = qte.  Then atfs = atas  for all t,s E  R. We call
a, the l-parameter subgroup of G generated by A. Another characteriza-
tion of a, is that it is a unique curve in G such that its tangent
vector ci, at a, is equal to LotA,  and that a, = e. In other words, it is
a unique solution of the differential equation a;-‘at  = A, with
initial condition a, = e. Denote a, = qle by exp A. It,follows that
exp tA  = a, for all ,t. The mapping A - exp A of g into G is
called the pjonential  mapping.

Example 4.1. GL(n; R) and gl(n;  R). Let GL(n;  R) be the
group of all real n x n non-singular matrices A = (aj)  (the matrix
whose +h row andj-th  column entry is a;) ; the multiplication is
given by

(A# = C;=,  sib; for A = (a:) and B = (b&

GL(n; R) can be considered as an open subset and, hence, as an
open submanifold of Rn2. With respect to this differentiable
structure, GL(n; R) is a Lie group. Its identity component
consists of matrices of positive determinant. The set $(n;  R) of
all n x n real matrices ‘Forms an n2-dimensional  Lie algebra with
bracket operation defined by [A, B] = AR - B-4.  It- is known
that the Lie algebra of GL(n;  R) can be identifi,ed with gl(n; R)
and the exponential mapping nl(n; R) + GL(n;  R) coincides
with the usual exponential mapping cxp A = S,,C  (),  tl”/li !

Example 4.2. O(n) and o(n). The group O(n) of all n .< n
orthogonal matrices is a compact Lit  group. Its identity com-
ponent, consisting of elements of determinant 1, is denoted b)
so(n),  The Lie algebra o(n) of all skew-svmmctr-ic  n j,’ n matrices
can be iden&ed  with the Lie algebra of O[X)  and the exponential
mapping o(nJ  -+-Q(n)  is the,usual  one. l‘he  dimension of O(n) is
equal to n(n - 1.)/Z, :

By a Lie subgroup of a,Lie  group G, we  shall mean a subgroup H
which is at the same time a submanifold of G such that Hitself  is
a Lie group with respect ,to  this differentiable structure. A left
invariant vector ficlcl  on Ii  is c~cterrninetl  by  its value at E and this
tangent \.ectc)r  nt t’  ol’/i  dcterminc:, ;t  hali invariant vector field on
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.
G. It f$lows that the L-
sfiljalgebra  of 9. Co

le algebra 1)  of H can be identified with a
nversely, every subalgebra $ of Q is the Lie

algebra of a unique connected Lie subgroup H of G.  This is
proved roughly as follows. To each point x of G,  we ass&b  the
space of all#,;l,, .4  E  0.  Then this is an involuti1.r  distribution and
the maximal iritegral  submanifbld  through P of this distribution is
the desired group H (cf. Chevalley [1 ; p. 109, ‘I’heorcm  11). t

Thtis  there is a 1 :l correspondence between  connected Lie
subgroups of G and Lie subalgebras of the Lit  algebra $1. We
make a few remarks about nonconnrctcd  Lit  subgroups. Let H
be an arbitrary subgroup of a Lit  group G.  Ry  providing H with
the discrete topology, we may regard W as a O-dimensional Lie
subgroup of 6’. This also means that a subgroup IZ  of G can be
regarded as a Lie subgroup of G possibly in many dcfferent  ways
(that is, with respect to diflkrent  clifkr~ntiable  structures). ‘l%
remedy  this situation, we impose  t/w  cotcdition  tht H/Ho,  where HO  is
the id&!>%  con~~onenf  oJ‘H  with re.+ect  to it.,  oiL:n  ioi~o/~),qy,  is countable, or in
other wordh.,  Hstltissjics  the secondaxiom  oj’courrttrbili!~~. j ;\ subgroup, with
a discrete topology, oi”C  is a Lie subgroup only  il‘it  is countable.)
Under this condition, we have the uniqueness of Lie subgroup
structure in the following, sense. Let H be a subgroup of ‘a  Lie
group G. Assume that H has ttvo differdntiable  structures, denoted
by H, and F,,  so that it is a L,ie subgroup of G:  If both W, and H2
satisfy the second axiom of countability, the identity mapping of
H onto itself is a diffeomorphism of H, ‘onto I%,.“Consid$%  the
identity mapping f: H, -+ Hz.  Since the identity compotieht  of
H2 is a maximal integral submanifold of the distribution defined
by the Lie algebra of H2,f:  H, + Hz is differentiable by Proposi-
tion 1.3. Similaryf-I:  Hz  --f  H, is differentiable.

Every automorphism p:  of a Lie group G induces an auto-
morphism p‘* of its Lie. algebra g;  in fact, if -21  6 0, ~*-4  is again a
kft invariant vector field and T.+[.J,  111  = [q*d,  T*B] for
;i,B E  !I.  In particular, for every a E  C, ad a which maps .V  into
axa-’ induces an automorphisni of 9, denoted also by ad n.  The
representation n - ad a ofG  is called the ndjoint  refmsmtcrtion  of G
in !I.  For every a 6 G and rl E  9, we ha\‘e  (ad (1j:1 = (H,, ])*A,
because axa-  I= L,R,.,x = R,,-,L,,x  and .1  is left  im.ariant.  Let
A,B  E  n and ql  the l-parameter group of transformations of G
generated by B. Set al = ,-xp td = vI(e:t. Then  ~~iu)  = xa,  for

,
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.x  E  C. By Proposition 1.9, we have

It follows that if H is an invariant Lie subgroup of 6’, its Lie
algebra b is an ideal of g,  that is, A E  9 and ZZ E  b imply [B, 111  E  b.
Conversely, the connected Lie subgroup H generated by an ideal
@  of 9 is an invariant subgroup cjf G.

A differential form co  on G is called left invariant if (L,) *m  = (1)
for every a E G. The vector space g * formed by all left invariant
I-forms is the, dual space of the Lie algebra g:  if 11 c n and WE g*,
then the function W(A) is constant on 6’. If B is ,a left invariant
form, then so is do),  because the exterior  differentiation commutes
with p*. From Proposition 3.11 we  obtain the equation of Maarer-
Cartan  :

do(A;  B)‘=  -&o([A, B]) for LO  E  g* and h,u  E  g.

The canonical l-&rm  13 on G is the left invariant !I-calued  l-form
uniquely determined by ‘_

‘.
O(A) 1 A for A e 9.

Let E,, . . ‘. , E, be a basis for g and set

‘8  = Cfc,  B’E,.

Then O’, . . . , 0’ form a basis for the space of left invariant real
l-forms on G. We set .‘

[E,, Ek] = X;: 1 c;J,
‘_::
where  .the  c$‘s,  are calied  t&e  structu<~  constants of 9 with ,respect
to thd b&ii  E,, E,. It can be easily  verified that the cquatinn. . . .
of Maure$%rtti  is given by:

def  = --pjl.k~=l  c;kej  A ek, i= l,...,r.

We now cd&d&$k.  transiormation  groups. We say that a Lie
group G is a Lie tr&.$mration  group on a manifold -41 or that G ac.ts
(differentiably)  on ,U,if the following conditions are satisfied :

(1) Every element a of G induces a iransformation  of -A!,
.denoted  by x --+ xa where x f M;
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(2) (a, x) l G x M + xa t M is a differentiable mapping;
(3) x(ab)  = (x+b for all a,b E  G and x E  M.

We also write.&>  for  xa and say that G acts on M on the right.  If
we write ax and assume (ab)x = a(bx) instead of (3),  we say that
G acts on A4 on the left and we use the notation L,x  for ax also.
Note that Rob  = R, 0 R, and I~,,  = L, 0 L,,. From (3) and from
the fact that each R,  or I,,  is one-to-one on A4,  it follows that R,
and L, are the identity transformation of M:

We say‘ that G acts e$ctiveb  (resp. free@)  on M if R,x = x fir
all x E  M (resp. for some x E  Mj implies that a = e.

If G acts on M on the right, we assign to each element A l g a
vector field A* on A4 as follows. The action of the l-parameter
subgroup a, = exp tA on A4 induces a vector field on M, which
will be denoted by A* (cf. $1).

PROPOSITION 4.1, Let a Lie group G act on M.  on the right. The
m&&g a: g -+ X(M) which sends A into A* is a Lie algebra homo-
morphism. If G,  acts e$ectively  on M, then a is an isomorphism  of 9 into
X(M). If G acts freely on M, then, for each non-zero A c g,  a(A) never
vanishes on M.

Proof. First we observe that a can be defined also in the
following manner. For, every x E  M, let gz be the mapping
a 6 G + xa c M. Then. (aE)*.4,,  = (aA4),. It follo\zs that a is a
linear mapping of g into fi(i%4). To prove that (T  commutes with
the bracket, let A,B  l g,  A* = a-4,  R* = aB and a, =- exp t-4.
By Proposition 1.9, WC have

Fro;  the fact that R,, 0 a,, -1(c)  2 XU~~‘CU, for c c G, we obtain
(denoting the differential  ofh  mapping by the same letter)
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by virtue of the formula for [A, B] in g in terms of ad G. We have
thus proved that a is a homomorphism of the Lie algebra g into
the Lie ‘algebra X(M). Suppose that aA  = 0 everywhere on M.
This means that the .l-parameter  group of transformations Rat
is trivial, that is, Rat  is the identity transformation of M for every
t.  If G is effective on M, this implies that a, = e for every t and
hence A = 0. To prove the last assertion of our proposition,
assume aA.vanishes  at some point x of M. Then Rat  leaves x fixed
for every t.  If G acts freely on AM, this implies that a, = e for every
t and hence A = 0. QED.

Although we defined a Lie group as a group which is a differenti-
able manifold such that the group operatidn  (a, b) - ab-’ is
differentiable, we may replace differentiability by real analyticity
without loss  of.ge.nerality  for  the following reason.:The  exponen-
tial mapping is one-to-one,.near the origin of rg;  that is,  there is an
open neighborhood N of 0 in g such that exp is a’ dxeomorphism
of N onto an open neighborhood U of e in 6.  .(cf’.  Chevalley- [ 1;
p. 1181 or Pontrjagin [l ; $391).  Consider the atlas of G which
consists of charts, (&z,  (p,),  a c G, where va:  Ua  --f N is the inverse,
mapping of R,,  0  exp:  N. -+ Ua. (Here, Ua  means R,(U) and N is
considered as an open set of R” by an identification of g with R”.)
With respect to this atlas, G is a real analytic manifold and the
group operation (a, 6)  - ab-’ is real analytic (cf. Pontrjagin
[ 1; p. 2571).  We shall need later the following

PROPOSITION 4.2. Let G be a Lie group and H a closed subgroup of
G. ,Then  the quotient s&e  G/H  admits a structur<‘of  real analytic manifoold-
in such a ruay  that the  action of’G on G/H  is real ‘analytic, that ts, lhc
mapping c x G/H + G/H which maps (a, bH) into abH  is real
&k&tic: In particular, the projedon  G -+ G/M is real analytic.

For the proof, see Chevalley [l ; pp. 109-l 111.
There‘ ig’frtither  important class of quotient spa&s;  Let C be an

abstract group acting on a topological space M 0~1  the right as a
group of home&&@&ns.  The action of G is called prop&$ &is-
continuous if it satisAee  the?  following conditions:

(1)’ l’f t&  @imts~%$@d  x’.  of M are not congruent modulo G
(i.e., R,x  # x!#or q&y  S:&@),  then x and x’  have  neighborhoods

‘.u  and  U’ ~wpectively, &i&  that A,(U)  n UN is empty for all
,.,a*G; : . :‘Y .“‘:s

d.



(2, ~‘oI. each .Y E Ci,  the isotropy grow.~;,  z (a E  G; &ax  = xj is
finite; : : ‘ > ! !

(3) l*~ach  s E  .\f  has a nci~hbor~~~,[~:‘;  stable by  &,,+ch  that
IT  n Ii,, is cnlpty  for  C\:er);  (2 B GrQ@t  contained  in G,.

Condition ( 1 1 implies that the quori;ent  space  ,\I/c  is Hausdorff.
If tllf?  a c t i o n  o f  (; i s  free, t h e n  cQndition  (2j  is autoina&lly
satisfied.

PKOPOSIIION  -413. Let c be n properly discontinuous group of
dljfirentinble  (resp. real  clna@ic‘)  transform&ions  acting fr<ely’  o n  a
d~fferentinhle  (re.yfj.  real  nna!ytic)  mnnifld  -21.  Then the quotient spnce
-\i/C;  hns  a structure of d~firentiable  (resk.  recll  analytic) manifold such
thd the jrojertion n: .I/  --f ,11/C  is d$Jerentiable  (resp. real anal_ytic).

Proof’. Condition (3) implies that every  point of AI/G  has a
neighborhood  T/such  that n is a homeomorphism ofeach’6onnected
component of ~--l( Vj:0ni0  1’. Let U be a connected component
of x-I( V):Choosing  Vsufficien#  small, we  may assume that’there
is an admissible chart (I’; ‘I’), fvhcre  if : l! -+ R”,  for the manifold
AI.  Introduce a differeniiable  (rcsp. real  ana!)*ticj  structure in
IV/(;  by taking (I’, v), \\,here  ~1 is the composite of ~1: V -+ I:
and <r,  as an admissible  chart. ‘I‘he  verification of details is left-to
the reader. QED.

Remark. X complex analytic analogur  of, 6ropGti~n  4.3 ,can
b e  pro\xd  i n  the same  w a y . ;

To give us&l  criteria  for properly discontinuous Rl‘OtIPS,  \VC

define a weaker  notion of discontinuous groups. ‘The  action of 211
abstrac;  group G on a topological space .21 is called ~i.~~~t~li~~t~~~  if,
for c\‘cry  .Y c .I1 and,every  sequence  of elements  (n,,\r  of C; (jvhere
n,,  arc all mutually distinct), the sequence (K,,,,.Y.\  does not con-
x’erge to a point in M.

~ROPOSII-IOX  4...-4.  y Ezers  discontinuous group c; of isometrle&  of 0
me&ric  @uce .\I<  is .pro[~erII~  c~is~onli~uow  .

P r o o f .  ()bserve  f & t  t h a t ,  f o r  each  .x E .\I,. the or,bit  .YG F
(Q; 0 E (;\  is closed in .\I.  Given a point x’ outside \he or,bit..rC,
let r be a posi,ti\,e  number  s u c h  that  2r  i.s.:lsss.  thalj  the distance
bet\veerl  .r: and  the orbit  .dII.  I,ct li ?hd  1.’ be &c:..O@cn  splleres..of
radius  r  ate centers  .r  a n d  XI rcspestively.  Then  &(I-)  n K i s
empty li)r all n  c G, thus  proving condition ( 1 :I.  ( tondition  (2)
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is always satisfied by a discontinuous action. TO prov:  (3);‘ for
each .Y  e M, let r be a positive number such that 2r  is less than the
distance between x and the closed set xG - {x}. It suficcs  to take
the open sphere of radius r and center x as II. QED.

Let G be a topological group and H a closed subgraup  of G.
Then  G, hence, any subgroup ol‘G’  acts on the quofient space G/H
on the left.

PROPOSITIO,u  4.5. Let G’ be a topological group and H (1 compact
subgrou/’  of G.  Then the action of evey  discrete subgroup II oj’C on G/H
(an  the l$t) is &continuous.

Proof.,, Assuming that the action of D is not discontinuous,
let x andy  be points of G/H  and (d,) a sequence of distinct elements -
of L) such that d,x converges toy. Let p:  G + G/H be the projection
and write x = p(a)  and  _y  = p(b) where a,b E G. Let  I’ b e  a
neighborhood of  the identi ty e  of  G such  tha t  b-VVV--lV-lb-’
contains no element of D other than e,  Since p(bV)  is a neighbor-
hood ofy,  there is an integer N such that d,x c p(bV)  for all n > K.
H e n c e ,  .d,,nH  = p-*(d,x)  c p-‘(p(bV))  =  bVH f o r  n  :, N.  F o r
each n B I\; there  exist u,,  E l’ and h,,  E H such that d,,a  7 bv,,h,!.
Since H is compact, WC  may assume (by taking a subsequence  if
nectssar).)  that  A, , converges to an element h  E H and hence “’
h,, = u,,II for II > N, where u,, e 1’.  We have thcrelijrc  11 -
bzl,,u,&’  for 11 ‘) N. Consequently,  d,d;l is in bI’F-1,’  ‘1’  lb “1’ if
i,j > K. ‘This means n,  =- d, if i,j -sb  A’,  contradicting our assump-
tion. QED.

In applying the theory of Lie transformation groups to diffcren-
tiai geometry, it is important to show that a certain  given group
of differentiable transformations of a manifold can be made into
a Lie transformation group by introducing a suitable diflerentiabie
s$ructure  in it. For the proof of the following theorem, wc refer the
r&a&r  to A%fontgomery-%ippin  [ 1; p. 208  and p. 2121.

THEOREM  4 . 6  L e t  C; b e  a locnl!v  con+zct  eflective  trtm.~brmntion
group of a co&@ed  mtmifold  -41  of class Ck,  1 -;-  k ::I W,  and  let each
transformntion  ofX  ;be  of clnss  C’.
G’ x ,\I ---+  .\  1  is  <of  class  c”,  .

Then G is n Lie grou+  and the m%apping

\t’e  s h a l l  pro\-c t h e  fbllo\ving  rcsuit,  cssentiniiy  d u r  t o  v a n
Dantaig  and \xn cicr Waerden  [ 11.
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THEOREM 4.7. The group G of isometries of a connected, localb com-
pact metric space M is locally compact  with respect to the compact-open
topology.

Proof. We recall that the ‘compact-open topology of G is
defined as follows. For any finite number of pairs (K,,  u,)  of
compact subsets Ki and open subsets  r/, of M, let ‘W = M/(X,,  . ‘ <  . ,
Ks;U,,..., U,)  ={yeG;@+)‘i=  U, for i = l,...,~}.  ,Then
the sets W of this form are taken as a base for the open  sets t&G.
Since M is regular and locally Cmpact,  the group multiplication
GxG - G and the group’action  G x M 3 M’are:  continuous
(cf. Steenrod  [l ; p. 193).  The continuity of the mapping G -+ G
which sends y into + wills  ‘be proved using the assumption
in Theorem 4.7, although it follows from a weaker ‘assumption
(cf. Arens [ 11).

Every connected, locally compact metric space satisfies the
second axiom of countability (see Appendix 2). Since’M is locally
compact and satisfies the second axiom of countability, G satisfies
the second axiom of countability. This justifies the use of sequences
in proving the local compactness of G (cf. Kelley I]1  ; p. 158])..
The proof is divided into several lemmas.

LEMMA 1. Jet a f M and let E > 0 be such that U(a; E) =
{x 6  M; d&x),  < e) ,h.as ?compact  closure (where d is the distance).

*Denote  by V=  the open neighborhood ZJ(a;  e/4) of a. Let q,, be a quence
of isometries such j that. q,,(b) converges for some point b c V,. I!T en there
exist a compact set K and an integer N such thpt  cp,(  VJ c .K fop  every
n > N. d  *

Proof. Choose N such that n > N implies”<(v,(b),  q,,(6))  <
~14.  If x E V, and, n > N, then we have

d(v,,,(x),  e(a))  S d(~,(x),  pp,(W  2 4qn(b),  ~db))
*

= 4x;  b)  + d(pP,(b)>  P.v(~))

+ dk,O),  ada>>

+ d(b,  a) < e,

using the fact that q,,  and qn , are isometrics. This means that
q,,(  V,)  is contained in U(qAv(a)  ; e). But U(vN(@);  e) = ‘P.&%  6))
since rev is an isometry. Thus the closure-X of U(v.v(a); &) =;
vAY(U(a;  E)) is compact and p,,(,V,) c K for n > N..
LEMMA 2. In the notation if  Lemma 1, ersume  again thaf cp,(b)
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converges for some b .E V,. Then there is a subsequence P),,~  of Q),,  such that
q,,(x)  converges for each x E V,. -

Proof. Let {b,} b e a countabld’ietwhich  is dense in V,. (Such
a {b,} exists since M is separable,) By Lemma 1, there is an N
such that v,(  V,)  is in K for n > N. In particular, q,(b,)  is in K.
Choose a subsequence cpl,& such that 9+Jbl)  converges. From
this subsequence, we choose a subsequence Q)~,~  such that ~)~,~(b~)
converges, and so on. The diagonal sequence qk,k(  6,) converges
for every n = 1,2,.... To prove that ~~,~(x)  converges for
every x E V,, we change the notation and may assume that v,(bi)
converges for each i = 1, 2, . . . . Let x 4 V,  and 6 > 0. Choose
bi  such that d(x, 6J  i a/4. There is an N,  such that d(vn(bJ,
cp,(bJ) < 6/4  for n,m > Ni.  Then we have

If(%M,  %M)  5 4%(x)>  %W  + 4Ynv4,  %m
,

+ 4sdbi),  ~,&9)
= 24x,  bi) + dhk),  v,,db,))  < 6. -

Thus q”,(x)  &a Cauchy  sequence. On the other hand, Lemma 1
says that q,(x) is in a compact set K for all n > N. Thus v,(x)
converges.

LEMMA 3. Let p,, be a sequence of isometries such, that p7,(a)  con-
verges for some point a E M. Then there is a subsequence P),+  such that
v,(x)  convergesfor each x f M. (The coonectedness-of Mis essentially
used here.)
P r o o f . For each x E  M, let V, = U(x; e/4) such that U(x; E)

has compact closure (this E may vary--from point to point, but we
L choose one.such  e for each x) . We define a chain as a finite sequence

‘of  open sets V,  such  that (1) *each  Vi is of the form V, for some
,x;(2)  ~~r‘cont ains  a; (3) Vi  and Vi+r  have a common point. We

ass& every ljointy  of M is in the last term of some chain. In
fact, it is ‘tggr’t&~ee that the set of such paints y is open and
closed. M b$ng  co+cted,  the set coincides with M.

This being Said~$btise  a countable  set (be} which is dense in M.
For b,,  let Vi, V,, . ‘:,j- V, be a chain with 6, CE  V,. By assumption
q,(a)  converges. By  Z&mma  2, we may choose a subsequence
(which we may stil1 deslpte by o),,  by changing the notation) such

that p),(x)  converges for each x E  VI. Since V, n yZ is non-empty,
Lemma 2 allows us to choose a subsequence which converges for
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each x E  V,,  and so on. Thus the original sequenceYn  has a sub-
Sequence yl,a  such that 9~t,~(b,)  converges. From this, Subsequence,
we may further choose a subsequence vFa,k  such that Q;~,~(~,J
converges. As in the proof of Lemma 2, we obtain, thediagonal
subsequence qk,k such that qk,lr(bn)  converges for each 10,” Denote
this diagonal subsequence by P),,,  by changing the notation. Thus
v,(bJ  converges for each 6,.

We now want to show that p,,(x)  converges  for each’ i e M, In
I’,,  there is some bi  so that there exist an N and a compact set K
such that p),(Vz) C K for n > N by Lemma 1, Proceeding as in
the second half of the proof for Lemma 2, we can prove  that ~$1
is a Cauchy  sequence. Since p,(x) c K for n > N, we.  conclude
that vn(x)  converges.

LEMMA 4. Assume that Q),,  i.s  a sequence of isometries such that v,,(x)
converges for each x e M. Dejne  q(x) = ,ll%  p,,(x) for each x. Then
a,  is an isometry. .

Proof. Clearly, d(q(x),  p(y))  = d(x,y)  for any x9 z M. For
any a E  M, let 4’  = p(a), From ~(cD,-’  0 p(a), a) ,= d(g?(a),  p,,(a)),
it follows that y,;‘(a’)  converges to a. By Lemma 3, there is a
subsequence v,,, such that &t(y)  converges for every y 6 M.
Define a mapping v by v(y) = $2 p&‘(y). Then y preserves
distance, that is, d(y(x),  y(r)) = d(;,y)  for any XJ  E  M. From

d(y(y(xh  4 = dcp& Y~YY(4),  4 = I& 4cp,‘WH~  4

= ji% +?w,  Y,(X)) = 4?w Y(X))  = 09.
it follows that y(9~(x))  = x or each x’;  M. This means that Q, mapsf

I
M onto M. Since y preserves distance and maps M onto M, y-’
exists and is obviously equal to 9. Thus 9~  is an isometiy.

LEMMA 5. Let vi  be a sequence of isometries and 9 an isometry. y
yn(x)  converges to y(x) for every x c M, then the convergence is unz$@
on every compact subset K of M. I ysf-

Proof . Let 6 > 0 be given. For each point a c K, .c&!?e:  an
integer N,  such that n > N, implies d(v,(a),  T(a))  +8/4.  Let
W, = U(a;  d/4).  Then or any x E  W, and n >,  N,,..we  havef

d(yJx),  y(x)) ~2  d(v,,(x),  q,(a))  + d(~,(a),‘j’@~  + d(‘P(a), cF!x)). :,
<2d(x,a)  +b/4  <6.  .._

JVe  shall no; $zplete  the pioofof  Thcorcm 4.7. First, observe
that 9” + 9 with respect to the compact-open topology is equiva-
lent to the uniform convergence of F,,  to 9’ on every compact sub-
set of M. If 9,, - 9 in G. (with respect  to the compact-open
topology),. then Lemma 6 implies that  F;:‘(X)  ---f  P-‘(X)  for ever)
x’e  .U, and the convergence is uniform ‘on every compact subset
by Lemma 5.  Thus 9,;’ --+ q-”  in G. This means that the mapping
G --+ G which maps p7 into p-l  is continuous.

To prove that G is locally compact, let a c hl  and U an open
neighborhood of a with compact closure. We shall show that the
neighborhood W ‘= W(a; U)’ = 1; c G; ~(a) E  U} of the identity
of G has compact closure. Let v)n be a sequence of elements in W.
Since v,(a)  is contained in the compact set U, closurd  of U, we
can choose, by Lemma 3, a subsequence vn,  such that ~J,,(x)
converges for every x z M. The mapping 9 defined by v(x)  =Z
lim vn,(x)  is an isometry of M by Lemma 4. By Lemma 5,
Y “ r ---f  q uniformly on every compact subset of M, that is, vnp  --+ y
in G, proving that W has compact closure. QED:

COROLLARY 4.8 . Under the assumption of Theorem 4.7, the iso-
tropy subgroup G, = {p’ E G; q(a)  = a)  oj‘  G at a is compact for ellev
aEM.

1 PToof... Let Q)~  b.e  a sequence of elements of G,. Since 9 ,,(a.) = a
for every n, there is a subsequence Q,,,  which converges to an
element $J &G,,.by  Lemmas 3, 4, and 5. QED.,,
COROLLARY 4.9. If Al is a loml!~  compact metric space with a

jnite  number of c&&ted  components, the group G of isometrics  oj‘ ;I1 is
hll_y  compact with re@ct  to the compact-oken  topolo@.

Proof. Decompose’ M into its connected components Mi,
kf = lJfzl  Mi. Choose a point a, in each  .Mi and an open



5 0 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

neighborhood Vi of a, in Mi’ with compact closure. Then
WC% . . . , a,;  U1, . : . , us>  ==  (i,.e  G,;  (p(q)  f &for  i = 1, . , . , S}
is a neighborhood of the identity of‘ G with compact closure,

,i‘. Q E D .

COROLLARY 4.10. If M is &Vnipact  in addition to th&  {$$$$&i  of
Corollary 4.9, thtyn  G is compact. _. ,‘.

Proof . Let G* = (p1  B G; q(MJ F Mt for i = 1, . . . . , $;.T&n
G* is a subgroup of G of finite index. In the proof of Co&l@ry
4.9, let U, = MtiT  Then %*  is compact. Hence, G is compact.I ‘QEIIf:

5. Fibre  bundles

Let M be a manifold and G a Lie group. A (difirentiable)
p&cipal  jbre  btindle  over M with group G consists of a manifold’ P
and an action of G on P satisfying the following conditionsi

(1) G acts freely on P on the right; (10  a)i,,rlP  2 -G  :;~a  G,
R,u  c P;

(2) M is the quotient space of P by t&e equivalency  r&ion
induced by G, M = PIG, and the canonical projection P: P - M
is differentiable ;

(3) P .is locally trivial,that  is, every point x of M has a neighbor-
hood U such that kl( U) is isomorphic with q x G in the s&se
that there is a diffeomorphism  ‘y : g-‘(U) - U x G.,  su& i th?t
y(u)  = (X(U), q(u))  where ~.is.  a ,mapping  of r-l(‘U)  into G
satisfying v(W) = (pl(u))a  for,all  u f 7r-!(,@  ,a&  a E G. ,/:

A principal fibre bundle will be deuo@  Jby ‘P(M,,  G,  *),
P(M, G)  ,or simply P. We call P the total spat2  or.the  bdci  @ace,
M the base  space, G the structure group and v the pr?jecti@n.‘.Fa  each
x 6 M, ~-r(x) is a closed submanifold of P, called the@8  over ~8
If u is a point of S+(X),  then W-*(X)  is the set of points ua, 4 6 f;~
and is .called  the fibre through u.  Every fibi’@ is diffeom’J%,
to G.

7,t’)  ..,‘

Given a Lie group G and a manifold M, G acts f$‘d&~
P = M x G on the right as follows. For
(x, u)  E  M x G into (x, ab) E  M x G. The
P(M, G) thus obtained is called trivial, ;: i:, : _, L;

From local triviality of P( M, G) we see th@.  ff  w 1s  a  sub-
manifold  of M  t.hm T-*(W)  ( W, G) is a &$&al  8bre bundle.
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We call it  the  Portion of P over W or the restriction of P to W and
denote it by P 1 W.

Given a principal fibre bundle p( M, G), the action of G on P
induces a homomorphism gof  the Lie algebra g of G into the Lie
algebra I(P)  of vector f$lds  on P by Proposition 4.1. For each
A E 9,  A* = a(A)  is called‘ the fundamental vector JTeld  corresponding
to A. Since the action”@.G  sends each fibre into itself, A,* is
tangent to the fib+:‘&  ’ h+,eac  u E  P. As G acts freely on P, A*
never vanishes on’P-‘($4 f 0) by Proposition 4. I. The dimension
of each fibre being equal to that of g, the mapping A --+  (A*), of
g into, ,T,(p)‘ls  a linear isomorphism of g onto the tangent space
at u of the fibre through u.  We prove

PROPOSITION 5.1. Let A* be the fundamental vector jield  corre-
spondiq  to A‘r 9.  For each a E G, (R,),A*  is the fundamental vector
jkld  comsponding  to (ad (a-‘))A  B 9.

Proof. Since A* is induced by the l-parameter group of
transformations  Rat where a, = exp tA, the vector field (R,)*A*
is induced by the l-parameter group of transformations
&&&-i  = &+_ - by Proposition 1.7. Our assertion follows
from the fact that a-lep  is the l-parameter group. generated
by (ad (a-l))A  6 g. QED.

The concept of fun amental  vector fields will prove to bed
useful in the theory of connections.

In order to relate our intrinsic definition of a principal.fibre
bundle to the definition and the construction by means of an

provided with a dif-

Conversely, we have
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PRoPosITIoN  5.2. Let .\I be a manifold, Ct.‘%}  an i$l;n  colfering  of A4
anti (; n Lie  gro@.  Givfn  a mclpping ‘y,iz:  U, n l’,,  ---f  C;.@  eve9  non-
em/)!  1% 1 7x n l:,j,  irr such a wq that the relations (*)  1. are,s+sJie~,  we
can  construct a (~$&erentiable)  grincipal  Jbre bund& &A{, F).  with
trcln.rition.functions  VI,~,.

-.
-i

Proof. We first observe that the relations (*) imply &($  + e
for cvcry  .Y  E  ti,  and y~(x)y,,~(x)  = e for every X.E  rj; A O&J+.
Xx  = I-, K G for each index ~1  and let X =,  U,X, he t.hebpo-
logical sum of X,; each clement of X is a triple (x,  x,  a) where a is
some index, x E  1~‘~ and 0 E  G. Since each -?&  ‘is a differentiable
manifold and X is a disjoint union of Xx,  X is a differentiable
manifold in a natural way. We introduce an equivalence relation
p in X as follows. We say that (TX,  x,  a) c {g} x X, is equivalent to
(I,‘,  y, b)  d [/i’).  x x, if and only if x=yrI/,  “Up and b =
yl,%(x)a.  We remark that (GC, x, a) and (cI,~,  b)  are equivalent if
and only if x- &y and u = b. Let P be the quotient space of X by
this equivalence relation p.  We first show that G acts freei)rcan  P
on the right and that P/G = M. By definition, each c 4 G maps
the p-equivalence class of (cc, x,  a) into the p-equivalence class  of
(x, x,  ac) . It is easy to see that this definition is independent of the
choice of representative (a, x,  a) and that G acts freely on P on
the right. The projection r: P -+ M maps, by definition, the\
p-equivalence class of (a, x, a) into x; the definition of x is inde-
pendent of the choice of representative (a, x, a). For u,u  E  ,P,
T(~) = x(v)  if and only if v = UC f&,some  c c G. In fact, let
(a, x,  a) and  (B,r,  b) be representatives$s  24 ‘andl  v respectively.
If v = UC for some c c G, then y = X’  and’ h,ence  r(v) = T(U).

Conversely, if n(u)  = x =y = r(v) E  U, n UC,  then. r = YC
where  6 = ~-$,~~,(x)-ib  E  G. In order to make P into  a differenti-
able manifold, we first note that, by the natural mapping jl
X -+ P = X/p, each X, = &, x G is mapped 1: 1 onto 7r-r(  Ua),l,i
We introduce a differentiable structure in P by requiring ,$$t
~-r(,?,~~)  is an open submanifold of P and that the m,a  p%3
X -+ P induces a diffeomorphism of X, = a

8 Q
U x G onto-q- (U,).

This is possible  since every point of P is contained in n: -yual)  for.
some t( and the identification of (a, X,  U)  with’  (/% % %‘pa(“)“)  is
made by means of differentiable mappings. It is %y.to  check that
the action of G on P is differentiable and P(M, G,  n) 1s a dlf%rentl-
able principal fibre bundle. Finally,  the transition functions of P
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corresponding to the covering {U,> are precisely the given vfi, if
we define v~: n-l(U,)  ---L  U x G by y,(u) = (x n)
u z +(  U) is the p-equivalence@class  of (a, x, u)  . > > where

QED.
A homomorphism f of a principal fibre bundle P’(M’, G’) into

another principal fibre bundle P(M, G) consists of a mapping
f’: P’ -P and a homomorphismf”: G’  -+ G such thatfJ(u’&) =
f’(u’)f “(a) for a11 u’  c P’  and a’ E  G’. For the sake of simplicity, we
shall denote f’ andf”  by the same letterf:  Every homomorphism

f: P’ -+ P maps each fibre of P’ into a fibre of @ and hence
induces a mapping of M’ into M, which willbe  also denoted byf.
A homomorphism f: P’(M’, G’)
01’  injection if’f:  P’  3

- P( M, G) :is called tin imbedding
P is an imbedding and if f: G’  -+ G is a

monomorphism. Iff:  P’
mapping f: Al

-+ P is an imbedding, then the induced
- M is also an imbeddingi  By identifying P’  with

f(p),  G’ withf(G’)  and A/’ with f(M’);  we say that P’(M’, G’) is
a subbundle of P(M,  G). If, moreover, M’ = izI and the induced
mapping f: M’ - Ad is the identity transformation of M,

f: P’(  M’, G’) - P(M, G) is called a reduction of the structure
group G of P(AIF  G) to G’. The subbundle P’(M, G’) is called areduced bundle. Given P(A4,  G) and a Lie subgroup G’  of G, we say
that the structure group G is reducible to G’ if there is a reduced
bundle P’(M,  G’). Note that we’ do not require in general that
G’ is a closed subgroup of G. This generality is needed in the
theory of connections.

PROPOSITION 5.3.
_.

The structure gro.up  G of a princ@lJibre bundle
P(M,  G)‘  is reducible to a Lie subgroup G’ ifund  on& if  there is an open
covering (U,) of M with a set of transition fun’ctions  yfll  which take their
values in G’.

Proof.
G’

Suppose first that the structure group G is reducible to
and. let P’(M, G’) be a. reduced bundle. Consider P’ as a

$ubmanjfold  of2..  Let {U,} be
each v’-L(&): (a’:

an open covering of M such that
the projection of P’ onto M) is provided with

an isomorphism;  u -+(n’(u),  v:(u)) of r’--‘(U)  onto U, :< G’.
The corresponding transition functions take tzheir values in G’.
Now, for the same’ covering {U,),  we define an isomorphism of
“;I(  U,)  (n: the projection ofPonto  M) onto U x G by extending
9..  as follows. Every v E  n-l(Q)  may be repretented  in the form
U = @a  for some u < n’-l(Lf,) and u E  G and we set Q)=(V)  = pA(u
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It is easy to see that qa(u)  is independent of the choice ofrepresen-
tation  v = ua. We see then that v -+ (r(v), %(u))  is anisomorphism
of ~-l(  U,)  onto U, x G. The corresponding transition functions
wan = pa (p,(v))-’  = F;(U)  (~C(JJ))-’  take theirval,ues  in G’.

Conversely, assume that there is a covering {U,)  of “44 with a
set of transition functions vPa all taking values in a Lie subgroup

. G’ of G. For U, n U, # 4, yti is a differentiable mapping of
U, 0 U, into a-Lie  group G such that ~~cl(U~  n 17,)  c G’. The
crucial point is that lygd is a differentiable mapping of Ua  n U, Into.
G’ with respect to, .&e. differentiable. structure of G’., This follows
from Proposition 1.3 ; note that a Lie subgroup satisfies the
second axiom of countability by definition, cf. $4. By Proposition
5.2, we can construct ‘a principal fibre bundle P’.(M,  G’) from

Finally, we imbed P’ into P as follows. Let
-‘(U,)  be the composite of the following three

d-1(  U,)  --+  U, x G’ ---f  U, x G T T+(  U,).

It is easy to see thatf,  = fs  on n’-i(  U, n UB)  and that the mapping
f: P’ ---f P thus defined  by { fa} is an injection. QED.

Let P(M, G) be ap rincipak fibre bundle and F a manifold on
which G acts on the left: ,(a,  E) B G x F 4 a$ E  F. We shall
construct a fibre bundle E(M,  F,.  G, P) associated with P with
standard fibre F. On the product manifold P k F, we let G act on
the right as follows: an element a 6 G maps (u, 5)  c P x F into
(uu, a-it)  d P x F. The quotient space of P x F by this group
action is denoted by E = P x Q F. A differentiable structure will
be introduced in E later and at this moment E is only a set. The
tipping F x F -+ M which maps (u,  6)  into q(u) induces a

mqphg  Q,  called the projection, of E onto M. For each x e MI
theset  nz’(x)  is called the fihre of E over X. Every pomt x.?of M
has a neighborhood U such that T+(U)  is isomorphic to U x G.
Identifying m-l(U) with U x G, we see that the action  of G on
n-i(U)  x Fontherightisgivenby ’ ;c.,;  1.

(x; a, 6)  + (x, ab, b-15) for(x,a,e)eU  x.G.xF  a n d  LEG.

It follows that the isomorphism n-‘(U),  w U X G induces  an
isomorphism 7ri’(  U)  = U x F.  We can therefore introduce a

_ *
’

i
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. ‘% differentiable stnid&e  in E by. the requirement that rril(  U)  is
an open submanifold of E which is diffeomorphic  with U x F

1
hism n;r(  U) .&  d .@.  The  projection n,,is
le mapping of E onto M;,+We  call ‘E or more

G, 9) the&e bundle over the base M, with (standard)
I J&e  F aqd  (structure) qfufi  G, which is associated  &th the &inci#u~  1:.

jbre  bundle ‘P. .f *: . ’
-

PROPOSITION 5.4. Let  P(  M, G)‘ be a prjp$ai~brc  b&d;;  I&P  d
ihanifold  on which G Bets  on.  fhe lej?.  Let E(A&  F,  G, P) be the j&e.
bundle associated.urith  P. For each u E  P and each F E I*‘,  denote by ut th.
image of (II,  t) E P x F 4~ the natural projection  P x F -+ E. Then
each u 6 P is a mapping of F dnto  F,  = ail(x)  where x = n(u.)  and ’

(ua)E=u(aS)  forueP,a.;.G,CrF.  <.

The proof is trivial and is left to the reader.”
By an isomorphism of a fib&  @,  = ri’(x),  x E  M, onto .another

fibre FY, y E  M,  we mean .a  diffeomorphism which. can be repre-
sented: in the ‘form,. D Q q-1, where $ c +(i)  ahd u B TF-!(~  are
considered as mappings of F ;&to  F,  ‘and  F, respectively. In
particular, an automorphism  of the fibre FS  $“a  .mapping  of the
form. u 0 u-l  .with  u,u  E ,-l(x):  En this case; p;f’  ua  for some*c2.r  G
so that any automorphism of Fe can be ~e$&&&d  in the form
u.0  a 0 u-l  where u is an arbitrarily fix&  Point,  of n-l(~).  The
group of automorphisms  of F,  is hence isomorphic  with tfie- :
structure group G. ” ‘::“.

&vample  5.1. G(G/H,  H) : Let G be a Lie group and H a
closed subgroup of G. We let H set on G on the right ,as  follows.

. Every a 4 H maps u f,  G into ua.. We ,,,then czbtain a differentiable
.-prhqipal  fibre bundle G(G/H,  &!),  ovef the base manifold G/H
-with  $rt+cture  group H; ,,the,  local t&&&y  follows from the
existence. of a. local cross section., It is proved in Chevalley [ 1; e
p. 1101 tha+iS,;lr  .is.  the..  projection of G onto G/H and e is the
identity of G, ;then@here is a mapping ‘a of a neighborhood of
r(e)  in G/H in$.$$& that

‘
?r 0 (I  is the identity transformation

of the neighborhood.‘$&  also &eenrod  [ 1; pp. -28-331.
Example 5.2. Bundle .of  -linear frames: Let M be a manifold of

:dim+ion  n. A linear f&e  u.at  a point x E  M is an ordered basis.
&,  i . . , X,, of the tangent space 7’,(M). Let L(M) be the set of ’
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,

all linear frames u at all points of M and let v be the mapping of’
L(M)  onto .U which maps a linear. $ame’u  at x into x. The general
linear group  cL(n;  R) acts on L(&:on the. right as follows. If

’ a f (0;)  E  GL(n;  R) and u = (X1,  . : . , X,),is  a linear frame at X,
then ua is. by definition, the linear frame (Y,;  . . . , Y,) at x defined
by Yi = Cj  u~X,.  It is clear that GL(n;  R) acts freely”bn L(M)
and z(u) = n(u)  if and only if v = ua for some u c GL(n;  R). Now
in order to introduce a differehtiable structure in -L(&), let
(xl, :. . , x”) be a local coordinate system in a coordinate ne@rbor-
hood U in M. Every frame u at x E  11 can be expressed uni@rely
in the form u = (X,, . . . , X,) with Xi  = C, X$(a/a~~),  where
(Xf)  is a non-singular matrix. This shows that r-l(U)  is in 1: 1
correspondence with U x GL(n;  R). We can make L(M) into a
differentiable manifold by taking (xj) and (Xq)  as a local coordi-
nate system in z-‘(U).  It is now easy to verify that L(M)(M,
GL(n; R)) is a principal fibre bundle. We call L(M) the bundle of
linear frames Over  A$.  In view of Proposition 5.4, a linear frame u
at x. c M can be. defined as a non-singular linear mapping of
R” onto T,(M). The two definitions are related to each other as

, follows. Let e,,  . . . , e,be the natural basis for R”: e, = (l;O,  . . . ,
O),..., e, 4 (t$.‘. .  , 0, 1). A linear frame u = (Xi, . . . , X,) at
x can be given as a linear mapping u: R” -+ T,(M) such that
uei=Xifori=.l,..., n. The action of GL(n; R) on L(hf)  can
be accordingly interpreted as follows. Consider (I = (a$  E  GL(n;  R)
as a linear transformation of R” which maps ej into Ci  !Je,.  Then
ua: R” --+ T,(M) is the composite of the following two mappings:

R” & R” A T,(M).
. .

Example 5.3. Tangent bundle: Let ,Gt(n;-R)  act on Rn  as above.
The tangent bundle T(M) over M is the bundle associated with L(M)
with standard fibre’ R”. It can be easily shown that the fibre of
T(M) over x E  M may be considered as T,(M).

Example 5.4. Tenjoy  bundles: Let T: be the tensor space of type
(Y, s) over the vector space R” as defined in $2. Fg group
GL(n  : R) can be regarded as a group of linear tr&@rmations,  of
the space T; by Proposition 2.12. With this stanaardfibre  q,  we
obtain the tensor bundle q(M) of gpe (Y, s)  o&r  M+dCch is associated
with L(M). It is easy to see that the fibre  of c(M)  over Xc  M
may be considered as the tensor space’ijvef  T,(M)  of type (Y, s).

L
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-

Returning to the general case, let I’(.ZI,  Gj  bt a princip;ll  fibre
bundle and Ha closed subgroup of G’.  In a nattap  .l  \\-a~-,  (; act?  on
the quotient space G/H on the left. Let E(M,  G/H,  G, P) bc the
associated bundle with standard fibre G/H. 011 the other hand,
being a subgroup of G, H acts on P on the.;ight.  Let P/H be the
quotient space of:P by this action of H. Then we have

PROPORTION  5.5: The bundle E = P xG  (G/H) associated with P
wtth  standard Jibre  G/H  can be ident$ed  with P/H as fokows.  An
element of E represented by (u, a&,)  E P k G/H  is mapped into the element
of P/H iepresentkd  by  ua c P, where f f G and &, is the origin of G/H,  i:e.,
the. coset  H.

Coniequentb,  P(i,  H) ii a principal&e  bundle over the base E = P/H
with structure group H. The projection P ---c E maps u e P into  u$  B E,.
where u is considered as a mapping of the standardjbre  G/F  into tijibre  of
E .

Proof. The proof is straightforward, except the local triviality
of the bundle P(E,  H): This follows from local triviality c.‘
E(M,  GJH,  G, P) and G(G}H, H) as follows. Let U be an open
set of -M  such,  that nil(U) = U x G/H and let V be an open set
of G/H such that p-‘(V) & V x H,  where p: G -+ G/H  is the
projection. Let W be the open set of ril(U)  c E which corre-
sponds to U x Y under the identification nil(U)  M U x G/H..
If ,u:  P -+ E = P/H is the projection, then p-‘(W)  m #V x H.

QED.

-

A cross section of a bundle E( M, F,  G, P) is a mapping (r:  M - E
such that VT E  0 u is the identity trdnsformation  of M. For P(M,  G)
itself, a cross sectiona:  M + ‘Petits  if and only if P is the trivial
bundle M x G (cf. Steenrod[l;  p. 361).  More generally, we have

,I ) ,.  ,
PROPOSITION 5.6. The strwture  group G of p(M, G) is reducible to

a closed su&@&@*@ifaud  on&  gthc associated bundle E(M, G/H, G, ,P)
admits 4 CSO.S+~$Q~  a: M -.E = P/H. . -

Proof . Sup~~t~.,~reducible  to a cl&ed subgroup H and let
Q(M, @)  be a Tedgad:  bundle with injection f: Q --f P. ,Let
p: P --f  E = P/H  be the projection. If u and v are in the same
6bre of Q, then v =~~t&‘for  some a c H and hence ,u(  f(v)) =
r(f(u)a)  =‘,u(f(ti>).  This‘k)leans  that ,B of is constant on each
fibre of Q and induces a mapping u: M -+ E, u(x)  =.p(f(‘u))
I ‘i
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where x = n(f(a)).  It is clear that 0 is a section of E. Conversely,
given a cross section 0,:  M - E, let Q be the set of points, a E  P
such that P(U) = a(*($)>  In other words, Q is the inverse Image
of a(M) by the projection p: P - E = P/H. For every x c M,
there is u c Q such that T(U) = x because p-l(+))  is non-empty.
Given u and v in the same fibre’of  P,  if u E Q then’v  c & ~g& and
only  when u = ua  for some a.5 H. This follows from the, fact that
p(u) = p(u)  if and .only if ?. k ua’ for some. a E  H.I ‘It is now easy
to verify that Q is a closed submanifold of P and that Q is a
principal fibre  bundle Q(M,  H) imbedded in P(M, G). QED.

Remark. The correspondence between the sections B: M -
E = P/H and the submanifolds Q is 1 :l.

r We shall now consider the question of extending a cross section
defined on a subset of the base.manifold.  A mappingfof a subset
A of a manifold M into,another  manifold is called dz$erentiable  on
A if for each point x c A, there is a differentiable mapping f, of an
open neighborhood U, of x in M into M’ such that fz y f on
U, n A. Iff is the restriction of a differentiable mapping ‘of an
open set W containing A into M’, then 1 is cleariy  differentiable
on A. ‘Given a fibre bundle E(A4, fi, G, P) and a subset A of M, by
a cross section on A we mean a differentiable mapping u of A into
E such that nE  0 u is the identity transformation of A.

T HEOREM  5.7. Let E(M, F, G, P) be <a jibre  bundle ‘such that .the
base manifold M is paracompact and the jbre  F i.s di@eomorphic  with a
Euclidean s/&e R”. Let A be a closed subset (possibly empty) !$f ‘M.
Then every cross section CT:  A --f  E defined on A can be extended @.a  cross
section dejned on M. In the particular case where A is emply,  there exists a
cross section of E defined on M. .‘:.‘

!
Proof . By the very definition of a paracompact space, :every

open covering of M has a locally finite open refinemen;t:‘:~~e’~
is normal, every locally finite open covering {Vi}  of %+ +r open
refinement {Vi} such that Pr 1”” ‘U, for all ,i, (see Apb 8).

LEMMA 1. A dxerentiable  function.  defined on aad$~~t~et~?f  It”  can
be extended to a dijerentiable  function on R”,,  (cc  Appendix 8). i I

LEMMA 2. Ever-  point of M has a neighborhood U such that every’
section of E dejned on a closed subset contained in U can be extended to,  U.

Proof. Given a point of M, it suffices to take a coordinate

c, . .
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L
neighborhood U such that vil( U) is trivial: rir{U)  w U x F.

ic with R”‘, a section on U can be identified
efined on U. By Lemma 1,

heorem
a locally finitk open

5.7. Let ‘(Ui}i,,  be
covering of M such that each U, has the

property stated in Lemma 2. Let {V,}  be an open refinement of
~5 Vi  for all i 6 1. For each subset Jof  the index

Pi.< Eet T be the set,of m (T,  J)  where J c I ’
+

and 7 ~&se$i’~
;‘:

of E defined on S,  su’ch’$h&t  .r.:~ u on A n S
The, s&J+&  r@&mpty  ; take’ Ui which me!ets,  k“&d  extend t& ;
restriction’ofa to A A Pi to a section on Pi, which is’fissible  by
the property possessed by Vi. Introduce an order in T as follows:
(T’,  s)  < (T”, J”)  if J’  C J”  and T’  = 7”  on SJ,.  Let (T,  J)  be
a,maximal  element (by using Zorn’s Lemma). Assume J # I
and let t l I - J,  On the closed’ set (A u S,) n Pi contained in
Vi, we have a well defined section ui:  ui  = u on A n Pi and
ui  = T on S, n rd.  Extend Ui to a section Ti on pi, which is
possible by the property possessed by Ui. Let J’  = J u {i} and
7’ be the section on Sp  defined by 7’ = 7 on S,  and 7’ = 7i  on
pi. Then ‘(7, J>  < (T’, J’);  which contradicts the maximality of

(7, J).  Hence, 1 = J and T is the desired section. QED.

The proof given here was taken from Godement Cl,, p. 15 I].
Example 5.5. Let L(M) be the bundle of linear frames over an

n-dimensional manifold M. The .homogeneous  space GL(n ; R) /
G(n) is known to be diffeomorphic  with a Euclidean space of
dim~ion  &r(n  + 1,) by an, argument similar to Chevalley
[ I ,  $361.  T h e  f i b r e  b u n d l e  E  =  L(M)/O(n)  with  fibre

GW;  WP( >n , associated with L(M), admits a cross section if M
is-paracorn~,(~.~Theorem  5.7). By Proposition 5.6, we see that
the st.ructure’.~t@of  L(M) can be reduced. to the orthogonal
group O(n), provided that M is paracompact. ‘: ‘.

Example 5.6. More generally, let P(M, G) be a principal fibre
/
‘ i

bundle over a paraconipact  manifold M with  group awhich  is a
.connectec&  Lie group-It.  by known that G is diffeo&&ic  with a .-
;d@t  product of any of its  maximal com@act  subgr$ps  H and a’

j- Euclidean  space (cf. Iwasawa ,[ 11).  By the same reasoning as
I

above, the structure group G’qn be reduced to H, 1

/ I
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Example 5.7. Let L(M) be the bundle of linear frames over a
manifold A4 cf dimension n. Let ( , ) be the natural inner product
in R” for which e, = (1, 0, . . , , O),  . . . , e, = (0,‘: . .‘,‘O,  1) are
orthonormal and which is invariam  by O(n) by the very definition
of O(n). We shall show ‘that each reduction of the structure
group GL(n;  R) to O(n) gives rise t&a Riemannian metric g on M. ,

Let  &CM,  O(n)) b e a reduced subbundle of L(M). When r\ e
regard each II E  L(M)  as a linear isomorphism of R” onto T,(M)
where x = T(U); each u E  Q defines an inner- product g in T,(M)
by ,-I .

g(X, Y) = (u-lx,  u-‘Y) for X, Y E  T,(k!).

The invariance of ( , ) by. O(n)  implies that g(X, Y) is independent
of the choice of u E  Q. Conversely, if M is given a Riemannian
metric g, let Q be the subset of L(M) consisting of linear frames
u = (X1,..., X,) which araorthonormal with respect to g,  If we
regard u E  L(M) as a linear isomorphism of R” onto T,(M), then
u belongs to Q if and only if (5,  6’) = g(uf,  uf’)  for all 5 ,E’  E  R”.
It is easy to verify that Q forms a reduqd  subbundle of L(M) over
M with structure group O(n).  The bundle Q will be called the
bundle of erthonormal  frames over M and will be denoted by, O(M).
An.  element, of O(M) is an orthonormal frame. ,The  result here

combined with Example 5:5 implies that every par&ompact.,manz@d
M admits h”  Riemann’ian  metric. ,We shall see later that every
Riemannian manifold is ‘a metric  space and hence paracompact.

To introduce the, notion@  induced bundle, we:prove*

PROPOSITION  5.8. Given ‘a, pr&ipal  jbre bundle P(M,  G) and.  a
mapping f of a manr$old  N into M, there is a unique (of course, unique up
to an isomorphism) principaljbre bundle Q( N, C)  with a homomorphism
f: Q ---f P which induces3  N + M and which corresponds to the {dent@1
automorphism of G.

The bundle Q(N, G) is called the bundle induced by ffrm:&M,  G)
or simply the induced bundle; it is sometimes denoted bYf-lP.

Proof. In the direct product N x P, cotider  ,the subset Q
consisting of (y, u)  E  N x P such thatf(y)  -4 w(u).  The group  G
acts on Q by (y, u):  -+ (y, u)a = (y, ua) for k&u)  E  Q and a E G.
It is easy to see that G acts freely on Q and&at  Q is a principal
fibre bundle over N with group G and -iYitb:  Projection x0 given

I :
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by  nq(y,  U) =y.  Let Q’ be another principal fibre bundle over $
with group G and f’  : Q’ i’P  a homomorphism which induces
f:  N + M and which corresponds to, the identity automorphism of
G. Then it is easy to show that the mapping of Q’ onto Q defined
by,  u’ - h&w-‘W)), u’  E  Q’, is an isomorphism of the bundle
Q’ onto Q which induces the identity transformation of N and
which corresponds to the identity automorphism of G. QED.

We recall here some results on covering spaces which-will be
used later. Given a connected, locally arcwise,  connected topo-
logical space M, a connected space E is called a covering, space over
M with projectiqnp: E -+ M if every point x of M has a connected
open neighborhood. U such,that  each connected component of
p-‘:(U)  is open in.  E and .is, n-rapped  homeomorphically onto 0’
by p. Two covering spaces p: E - M and p’ : E’ --f M are
isomorphic if there exists a homeomorphism f: E -+ E’ such that
p’ 0 f - p. A covering space p: E + M is a universal covering space
if E is simply connected. If M is a manifold, every covering space
has a. (unique) structure of manifold such that p is differentiable.
From now on we shall only consider, covering manifolds.

’PROPOSITION 5.9. (1) G’zven  a connected manifold M, there is a
unique (unique up to an isomorphism) universal covering mantfold,  which
will be denoted by A?.

(2) The universal covering manifold M  is a principaljbre bundle over hl
with group n,(M) and projection p: M  --f M, where nl(M)  is the jrst
homotopy group of M.

(3) The isomorphism classes of the core&g  spaces over M are in a 1:  1
correspondence with the conjugate classes of the subgroups of nl(M). The
Earrespondence  is given as follows. To each subgroup H of rl(M),  we
associate E = i@IH. Then th e covering mantfold  E corresponding to H is
a jbre bundle _over  M with jibre r,(M) /H associated with the principal
jibn  bt+e M(M,  r,(M)).  rf H is a normal subgroup of n,(M)
E = Ml-H is a principaljbre bundle with group rr,(M)/H  and is called
a regular^covering  mallifold  of M.

For the proof, see Steenrod  [ 1, pp. 67-7 l] or HU [ 1, pp. 89-971.
-The  action of nr(M)/H on a regular covering manifold E =

M/H is properly discontinuous. Conversely, if E is a connected
manifold and G is a properly discontinuous group of transforma-
tions acting freely on E, then E is a regular covering manifold of
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M 1= E/G as follows immediately from the condition (3) in the
~de$&ion  of properly discontinuous action  in $4.

;&ample  5.8. Consider  R” as an n+iimensional  vector space .
and let [r,  . . . , 6, be any, basis of:R?.  Let G be the subgroup. of
R” generated by,  El, , ‘,  1: ,;.&&;G  = {C  V, It;  m,  integers). Th+
action of G on R%.prop$y.~tinuo~  and R? isthe  universal
covering nianifi$@$  R”/G+.,$J&  ent manifold R/G  is called
an n-dimensional w.

EXa??lple 5.9. I.@ S”  b$ n R”+l with center at
the origin: S’.  *;t(#,  ; .  . (x’)a  = 1). Let- G be
the group consis;riri~  c&&e  identity transformation of S”  and the
transformation oE;S”  whkh’ maps (xl, . i . , x”+l)  into. (-x1, ”. . . .

i -xn+l).  Then SC,n universal covering manifold. of
9/G.  The quotient G is called the n-dimensional reel
pro]-eetitpis:spacs. .  .

*

: II
.  .

CHAPTER II

Theory of Come&ions..,II
I

:: _ I

1:.  Comections  in a $‘ncipal  jibre bundle ‘#

Let P(M,  G)  be a principal fibre bundle over ‘a m&fold  & i ’
with,group-G.  For each u l P,  let r,(P)  be the tangent space of P ‘ 1
at u and G,  the subspace  of T,(P)  consisting of vectors tang&t  to I.
the fibre through u.  A connection I’ in P is an assignmenr  &,,  a ”
subspace  Q,  of T,,(P) to each u c P such that

(a) 7’,,(P)  = G, + Q,  (direct sum);
‘l ;.I’:  :’,,

(b)  ‘Qua = (R,,),Q,  for e&y ‘ic,  e,lP  and a Q G, where &,.,I  ik ‘t,he
transformation of P in&&&@by  a 6 G,  $J4  = ua; - :I’,  I.

. . *, (c) Q,  depends differenti&Jl~:.on ‘4 .a: !E’
.;;*  Condition (b) means thtit  $e  &stributioq’u  ---c  Q,  is invariant
hy  G. We call G,  the vertical sub&ce  an4  i&~e~$orizontal  sub@uet
of &T,(P):  A vector Xc T,(P) is called verheal  +kp.  horizontal)‘ ifit
k&n  G, (resp. Q,). By (a), every’$ctor’~Xe  T,(P) can be
uniquely written as i..i_,,  - .’

we$all  Y (resp. 2) the vertical  (resp. &k&t&)  compowt  of X:&&$‘i
denote  4 by tiX (resp. nX). Condition “(c)  means, by &&&ion,
that if X,&!a ?liitrentiable  vector field on P so are v$&nd  A& ‘,.,
(It can be e&lj++ifkd  that this is equivalent to say+,&&  the,,’ :
distribution u + Q,  is clifferentiable.) ‘$- b.71 j.

Given a connect@r~  I’ in P, we define, a l-form w on >‘wi&  :!
values in the Lie algebra g of G as follows. In $5 of Chap& I, we
showed that every A c g induces a vector field A* .on P, called the
fundamental vector field corresponding to A, and that A + (A*),
is a linear isomorphism~:$$  onto G, for each q z P. For each
Xt L(P), we define, m(&)  to be the unique A l g such that

63
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(A*),, is equal to the vertical component o? X. l?is clear that
w(X) = 0 if a&l only if X is horizontal. The form w is called the
connection form of the given gonnection  I’.

PROPOSITION 1.1.
fol lowing conditions :

The connection form w of a connection satisfies the

(a’) &(A*) =‘A for every  A z g;
(b’) (R,)*w  = ad (a-‘)o,  that is, w((R,)*X) = ad (a-‘)  * o(X)

for eve9  a E G and every vectorjeld X on P, where ad denotes the .&‘oint
representation of G;in  g. 6 .

Conversel_y,‘gr%en.a  g-valued  I-form w on P satisfying conditions (a’)
and (b’), there is a unique connection I’ in P whose connection$n-m  is w.

Proof. Let w be the connection form of a connection. The
condition (a’) follows immediately from the definition of w. Since
every vector field of P can be decomposed into a horizontal vector
field and a vertical.vector  field, it is sufficient to verify (b’) in the
frlliowing two special cases: (1) X is horizontal and (Z&X is
vertical.  If X is horizontal, so is (R,),X  for every a E  C by the
condition (b) for a ‘connection. Thus, both w((R,)*X) and
ad (d-l) ; to(X) vanish: In the case when X is vertical, we may
further assume that X is a fundamental vector field A*. Then
!R,j *X is the fundamental vector field corresponding to ad (a-‘)  A
by  Proposition 5.1 of Chapter I. Thus we have: A

(R,*oj),,(X)  = w,,~,((R,),X)  = ad (a-‘)A  = ad (a’l){w,(X)).

Conversely, given .a  form’ Ed satisfying (al) and (b’), we define

Q, = (Xc T,(P); w(X) = O}.

The verification that u + Q,, defines a connection whose con-
nection form is w is easy and is left to the reader. QED.

The projection x: P -+
~T,(lz4)  f

M induces a linear mapping n: ‘Tu  (P)
or each u E  P, .where  x = r(u).  When a ,connection is

. given, n maps the horizontal‘ subspace  Q, isomor&ically  onto
T,(-14). /)  :’

The horizontal ltft  (or simply, the lift)  of a vector field X
on ii4 is a unique vector field X* on P which is .horizontal  and
which projects onto X, that is, rr(X:)  =: X&, for every u f P.
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PROPOSITION 1.2. Given a connectrIon  in P and a vectorjeld X on M,
there is a unique horizontal ltft  X* of X. The lrft  X* is invariant by R,
for every a E G. Conversely, every horizontal vectorjeld X* on P invariant
by G is the lift  of a vector-field X on M:

Proof. The existence and uniqueness of X* is clear from the
fact that n gives a linear isomorphism of, Q,  onto T,,,,,(M). To
prove that X* is differentiable if X is differentiable, we take a
neighborhood Uaf any given point x of M such that n-l(U)  R+
U x G. Using this isomorphism, we first obtain a differentiable
vector field Y on n-l(U)  such that VY = X. Then X* is the hori-
zontal component of Y and hence is differentiable. The invariance

G is clear from the invariance of the horizontal sub-
mally,  let X* be a horizontal vector field on P

invariant by G. For eiiery x z M, take .a point u E  P such that
r(u) = x and define X,  = n(X:)..The  vector X,  is independent
of the choice of u such that V(U) = x, since if u’  = ua, then
r(X,*,)  = r(R,  *  Xz) = r(X,*). It is obvious that X* is then the
lift of the vector field X. qED.

PROPOSITION 1.3. Let X* and Y* be the,horizontal  lift  of X and Y
respectively. Then.

(1) X* + Y* is the horizontal l$t of X + Y;
(2) For every function f on M, f * - X* is the horizontal lzft  offX  where

f * is the function ‘en  P dejked  by f * =  f  0 n’;
(3) The horizontal component of [X*, Y*] is the horizontal l;ft of

lx, Yl.
Proof. The first two assertions are trivial: As for the third, we

have
rr(h[X*,  Y*]) = r([X*,  Y*])  = [X, Y].

.
, QED.

Let x1,  . . . ; #‘. be a local coordinate system in a coordinate
neighborhood-El  in M. Let Xf  be the horizontal lift in n-l(V)  of
the vector fieid..Xi  = a/ax’in  Ufor each i. Then X:,  . . . , X+,  form
a local basis for. the diMbution  u + Q,  in r-l(U).

We shall’no&ex$-&s  a connection form w on P by a family. of
forms. each deSked  in an open subset of the base manifold M.
Let {UJ  be an open eering of A4 with a family of isomorphisms
wa: n-l(U,) --f  ‘U,  x- G and the corresponding family of transition

functions yM: .?!I= A Uj’ --c:  c. For each a, let u,: U;  -+ P be the
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.
&OS  section on U, defined by u,(x)  = y;‘(~,  e), x Q U,, where e
is the identity of C. Let 6 be the (left inv@@&lued)  canonical
l-form’ on G defined in $4 of Chapter T”(p.  41X,,

For each non-empty U, n U,, define ,c  ,&valued  l-form ”
fb  on u,  n 4 by ‘I.

8, sy$e.

For each a, define a g-valued l-form w,  on U, ,bl
”

.,!& . :.,0,=&x  .:  ,,‘t.  , . ,, ‘ Z  I‘)  ,;.&’
PROPOSITION 1.4. The farms  0,  and wa  are s@ject  ?o  the conditio&i

= ad (~2’) W, i-  8,
‘ I , ,

9 0~ I$@ U,. .

ConverseZy,  for every farnib  of &valued  l$om  {k.)  each dejined on U,
and satisfying the preceding condiiions,  t&-e  $ a unique connection form w
,on P which gives rise to {oc} in t&  described &nner.

Proof. If lJ, n U,  is non-empty, f+(x)  =’  uJx)y&x)  f& all
x E’  U,  n U,,. Denote -the dif%e&titials  df uo, us,  and yap by the
same letters. Then for every vector Xc T,(  U,  n U,),  the vector

qdX)  6 T,(P),  hw ere u = u@(x);is  the image of (u,(X), y@(X))  E
T,,,(P)  -I-  T,(G), where u’ z u$)  and a = y:!(x), under the
mapping P x G -+ P. By F;,vtion  1.4 (Lelbniz’s  formula)
of Chap&‘I,  we have’

where c~JX)y,(x)  means R,(a,(X))  and ~7Jx)y~(X)  is the image
.ofyti(X)  by the differential of d,(x), (T,(X)  being considered as a

ping of G into P which maps b E  G into u=(x)  b. Taking the
of o on both sides of the, &quaGty,  we obtain,

&gi)  .= ad(y&)-l)w,lX)  + e,(x). ‘)‘f  :

’ Ingeed,  if A c.  g- is ! the left ‘irivariant  vector field  on,iGy  $$ch  is
equal to Y&X)  at a = y&x)  so that: e(y,(.@)  7 A, then
u,(x)~~(x).  is the +&ye, of the fundamental vector field  A* at
u = u&)y~(x)  and. hence w(~,(x)y~(X))  7 A: T

The converse ca’n,  bt  verified, by followi%~  k&k  the pr?cewd
rpbtaining  {o,) from QL. QED,.

3

-
.
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2. Existence and extension of connections

Let P(M, G) be a principal fibre bundle and A a subset of M.
We say that a conk-  is defined; over A if, at every point u z P
with m(u)  z A, a subspace  Q; of T,(P) is given in such a way that
conditions (a) and (b) for connection  (see $1) are satisfied and Q,
depends differentiably on u in the following sense. For every point
x Q A, there exist an ogen neighborhood U and a connection in.
PIU=@(U) such that the horizontal subspace  at every
u E +(A) is the given space Q,. ’

THEOREM 2.1. ,LGt  P(M, G) be a principal Jibre bundle and A a
closed,subset  of M (A ma> be empty). If M is para+compact,  every connec-
tion dejined over A can be e&ended  to a connection in P. In particular, P
admits a connection ;f M is paracompact.

Proof .
“.ter  I.’

The proof is a replica of that of Theorem 5.7 in Chap-

LEMMA 1. A. dz&entiable  jkzction  defined on a closed s&set  of Ik’
, : can be alwcgrs  extended to a di&entiablefunction  on R” {cf. Appendix 3).

LEMMA 2. .@~?y  point of M has a neighborhood U such that every
connection dejFntd  b a, closed subjet  contained in U can be ekmded to  a
connection dejined bver  U.

f Proof . Given a. point of M, it suffices to take a coordinate
neighborhood U such that 7~-l( U) is triviali  T-~(U)  - U x G.
Dn  the trivial  bundle U x G, a connection form w is completely
determined by its behavior at the points of U x {e} (e: the
identity of G) because ‘of the property R,*(o)  = ad (a-*)o.
Furthermore, if CT:  U -+ v x G is the natural cross section, that
is, U(X)  = (x, e) for x z U, then w is completely determined by the’

. g-valued l-form p*o  on U. Iiideed,  every vector X E  T,,,,(  U x G)
,can.  be.  writtez  uniquely in &e ,form

I.  > ,;,.* -i.*  Y.-f 2,

where Y, $ tang& to, ‘U x @j  ‘ahd 2 is vertical so that Y =
u*  (r*X).  Hknce %.&vi h

W(X)  = ~olxsg*ij~ s w(zfr=  (fJ*W)(7r*X)  + A,
where A is a uniquieI e&ment  of g such that the corresponding
fundamental vectdt  field  A* is equ&to  2 at u(x).  Since A depends

; c ‘.-. --.
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only on 2,  not on the connection, o is completely  determined by
U*O.  The equation above shows that, conversely, every g-
valued l-form on U determines uniquely a connection form on
U x G. Thus Lemma 2 is reduced to the extension problem for
b-valued  l-forms on U. If {A,} is a basis for g,  then w = 2 t,J~,~,
where each wj  is a usual l-form. Thus it is sufficient to coiisidrl
the extension problem of usual,l-forms  or~~U..Let  Xl,  . . . , ,x” bc  a
local coordinate system in U.:  Then“&ery  l-form on d is of the
form Z fi dxi where each fi is a”function on U. Thus otii  problem
is reduced to the extension problem of functipns  on U. Lemma  2
now follows from Lepma  1.

By means of Lemma 2, Theorem 2.1 can be proved exactly in
tlie same way as Theorem 5.7 of Chapter I. Let {I/i}ic,  be. a
locally finite open covering of M such that each Ui has.  the
property stated in Lemma 2. Let {V<}  be an open refinement of
(Ui)  such that Pi c Ui.  For each subset J of 1, set S, = U vi.

iCJ,.

Let The  the set of pairs (7,  J)  where J c I and T is a connection
d&n&over ‘SJ  which coincides with the given connection over
A n Si. Inttioduce afi  order in T as bllows:  (7', J') < (T",  J")
if J’  c J”  and 7’ = 7” on S,,. Let (T,  J)  be a maximal element of
T. Then J = I as in the proof of Theorem. 5.7 of Chapter I and
7 is a desired connection. QED.

Remark. It is possible to prove Theorem 2.1 using Lemma 2
and a partition of unity {fi} subordinate. to [Vi}  (cf. Appendix 3).
Let r,ui  be ‘a connectioc  form on &( Ui)  which extends the given
connection over A n *Vi. Then w’~ Zi giwi  is a desired con-
nection form on P,  where each ii is thl  function on P defined by
gi  = fi 0 7T.

3. Parallelism
.

Given a connection r in a principal fibre bundle P(M,  G), we
shall define the concept of parallel displacement offibres along any
given curve 7 in the base manifold -11.

Let 7 = xf, 2 ;< t :; 6, be a pieccl\-ise  digeretitiable  c&e of .
class  ~1  in ,9/i.  A horizontal li,,i 01‘ simql!  % i;ft of T is’8  horizontal
curve 7* _-  ut. a ;..  t 2: 6, in P such that P(u!)’  = X, for a 2 t 5 b.
Here a horizontal curve in I-’  means a. piecewise differentiabie
curve of class C*  whose-tangent \‘ectors  are all horizontal. “’ s
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--c. The notion of lift of a curve corresponds to the notion of lift of a
vector field, Inteed,  if X* is the lift ofh vector field Xon 111,  then
the integral curve of X * through a point 1~”  e P is a lift of the
integral curve of X through the point .vO  = X(Q)  E  M. N’e  now
prove ’ i

PROPOSITION 3.1. Let.  7 * x,,  0 $ t ;I  1, be a curlIe  d class Cl
in M. For  an arbitray  point gb  of ,#?  &it,+
unique,kift  R*  = ut Of 7 which starts fro2  uO,

+,) = x0, fhpre  exists c!

Proof. _ By 10~4  triviality af,the*biindle,  there is a curie c1  of
class C’ in P such that v,,  = u,  and v$u() = xt  for 0; 5 t --I  1 .  A

I lift of T,  if it &i&s,  must’ be of the..form  U( = c,a,,  where n,  is a
,curye  in the strticture grotip  G Such that n,  = e. We shall now look
for a curve a, ‘in G.irhich  makes’u,  = v,a, ;L  horizontal curve. Just
a? :b the proof of Proposition 114,  \ve apply  Leibniz’s formula
(Proposition’1.4 of Chapter I) to the mapping P x G --•f  P which
maps (u,  a) into, ua and obtain

I
ut, = utat i ofa,,

where each dotted italic letter denotes ,the tangent Yector  at that
-point (‘e.g., ti, is the vec’tor  tangent.to  the curve ,* = u1  at the
pint  u,). Let w be the connection form of I’. Then; as in the proof
of Proposition 1.4, we have’

o(ri,)  = ad(a;‘)o(ti,)  + a,lci,,
,._a

where at-‘&  is now a curve in the Lie algebra g = T,(G)  of G.
The curve’u, is horizontal if and only if&z, I == --@(tit)  for every t.
The constrnction  of U, is thus r$dhced to the fqllowing

LEMMA. Let G be a Lie ~group  ana’  g its Lie’h&ebra  id&$&d  w&h
’ : T&G)  -.-Let  ,Y,,  0 5 t S 1, be a continuous GWVG  iin’ T,(G). Then there

axi.+  in G ,q  uniq!e  curue  a, ~cluss Cl  such thut  a, = e atld  h,a,’  =f
j&o 3 t & l.,,

Is t
e.

Remark. In the case where Y, =.A for all t, rb,  ,curve  a is
nothing but thti I-p@m&r  sub’group  of G generated  bv  11. C;ur
differential e$tidtion  ““;5:’  = Yt is hence a genera&a&n  of the
differkntial equati&%r  +@pqameter subgroups.

Proof of Lemma. ac%‘e  tia)r  assume that Y, is defined  and
continuous for all t, -QD’  < t,<  00.  We define a vector field  X on

.:
. _ :



70 FOUNDATIONS OF ni ~ GSXX~ETRY
',: .

G X R w ~OI~OWS. The’value of X at (a, t) A G ‘X R is by defini-
tion, eq&d to (I’&,  (d/dt)&e  Ta(G’)  X’ T;(R),  ‘wh&  z is the
natural coordinate system iri R. It is clear-that the infegral  curve
of x starting from (e, 0) is of the form (By,  t) and’;rt,  is the desired
curve in G. The only .thing we have tq,verifj.&  &t’ut  is defined
for all t, 0 ‘S; Z  S lr Let vb 4 exp tX be a: lo& l+a*meter
group of bkal transfbrmaths  ,tif G. x7 R generated  by X. For
each (e,  S)  4 G x R, there is a positive numb&  :a, duch  that
qt(e;  Y) is d&red  for Ir + 4.5  8, and I~,<.&;S(PropositiC  4.5:  of
Chapter I)., ‘Since the subset (a) x [O, 11 :G
we may choose d > 0 such that, for’

x R;is  c&p&$  *
r..g  [O, 11,  q~(e,,  r)“&’

~ defined for ItI < 6 (cf. Proof of Proposition .M.‘of Chap&I).  -d
, Choose s,,,  sip . . . , s, such that 0 = S,  < si  -2 ‘+  . . ,‘*r  #k  G.- l’$&d !i

$1 - si-i  < 6 for every i. Then QI$(C,  0) 3, (ut,  it)~‘&h9i&I’~~-  I
0 I; t 22 $1; gJ,,(e,  s,)  = (b,, a +s,)isdefinedfarO  ~VS% j- $1,
where b&l  = Yu+,l,  and we define a,,& b,+~,~ for s1  s ‘t d So;  1
. . . ; Qlu(G  .s*-*.)  ,= (CIU  h-1 + u) is defined for 0 S.  u .S  ‘zl - sbSl,
where t,c;l  = ‘YS+Vlcl,  and we% define at 5 ct-&$-l, thus
completing the construction of a,, 0 5 t S 1. QED,

ul S&I  that ~(a~)  = x1.
obtain a mapping of the
maps a0 into q.  We denote this mapping by the same .letter T and

displacement along  the curve T.  The ‘fact that
is actually an isomorphism  comes from the,

P~txmpk  3.2. Tire paralkl  a?splac&lent  along my .“curve  r
trmuprutcr~~~~~tionofGon~~~~RR,=R,~~~f~~a~G.

PI&& This follows &I&  the fact that ,evm’  h&zontal  curve

ri. .

is mapped i&to  a. horizontal curve by,&,,
< . ; ;$A$~~ Q&D.

The parallel displacement along any p&&se  differentiable
curve-of class 0 can be. defined in an obvious manner. It should
be remarked that  the  parallel displacement along a curve T is

I
-A

i”
I

/’
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1
independent of a specific parametrization xt ssed in the following

;

e v i d e n t .

“~‘i@fgayqpI  3.3. (a) If r is a piecewise dlyerentiable  curve of class
c1 3.  M, ‘t&ma  tMFlle1  displacemeN  along 4 is the inverse of the
parallel di#ac~~t  along 7. ’ .
,($I)  if 2 is  a-cuwefr&n  x toy jn M,and  p is a.cuwe  fromy  ,% z,,in  M,
&par&$  disp@cer&  along the composite curve ,u * r is theVcomposF  of
the par&#  dispkemznts  ‘7  a&#.;  ,

.:r

ll such isomorpbisms of
of Proposition 3.3. This

my group of I? with refmence  point x. Let
consisting of loops which are homotopic

‘to zero. The subgrot@  of the ,holonomy group consisting of the
* parallel displacements arising from all T E  Co(x)  is called the

restricted holonomy group of I’ with reference  point x.  The holonomy
group and the restricted holonomy group of l? with reference
point x’ will be denoted by ‘Q(x)  and @‘r(x)  respectively.



It is convenient to realize these groups as subgroups of the ,
structure group G in the following way. Let u be an arbitrarily
fixed point of the fibre n-l(x).  Each T E  C(X)  determines an element,
say, a, of G. such that T(U)  = YM.  If a 100p p c C(x)  determineS
b c G, then the composite p * T determines ba  because (i’.  7)(~)  =
/A(UU)  = (p(u))4  = uba by virtue of, Proposition 3.2. The set of
elements a Q G determined by all ,r  c C(X)  forms a subgroup of G

i

by Proposition 3.3. This subgroup,.denoted by 0(u),  is called the
llolonomy  group of F with reference point U’Q  P. The restricted holonomy
group @‘J(u)  of r with reference point u can be defined accordingly.
Note that (&&)  is a. group of isomorphis’ms of the fibre ,7~-l(x)  onto
itself and Q(u)  is a .subgroup  of G, It is-clear that there is a unique
isomorphism of 0(x) onto @(a)  which makes the following
diagram commutative :

’ f

*,  Another way of defining -(o(u)  is the following: When two points
u and v of P cr+p  be joined by a,horizdntal-curve,  we write u 4 v.
This is clearly an equivalence relation. Thin @(a)  ia equ& to the set
of a 4 G such that u N uu. Using, the fact that u N v implies uu  N vu
for any u, v c P and a c G, it is easy $0 verify once more that this
subset of G forms a subgroup of G.

. ’ PL~POSITI~,N  4.1. (a) Ifv = uu,uEG,then@(v)  =ad(a-l)(@(u)),
that is, the hqlonomy groups F)(v)  and Q(u)  are conjugate i<,G.  Sim{lar&,
@O(v)  = ad  (a-‘)(Q?(u)).  ,, _,

(b) If two points u and v of P can bejoined’by  a horizontal &rue,  then
O(u) F O(v)  a n d  W(u)  =,JV(v). * -’ ”

Proof. (a) Let b E’@(U)  so’that r&‘nb,Theri  ua  N (ub)u so that
v N (vu-l) bu = va-lbu. Thus ad (47  (b) E  @(ti). It follows -easily
that O(v)  = ad, (a-‘) (O(u)). The proof for v(u)  = ad (a-‘)(@(~))

is similar.
(b) The relation u A v implies ub N a&  for every b E  G. Since-the

relation N is transitive,, u 7 u6  if and only if v N ub;:thk IS,
b E a(u)  if and only if b Q (o(u).  To prove cl@(u)  3-@@(u),  &t p* be
a horizontal curve in P from u to v. If 6  z W(tl),  hell’  there is a
horizontal curve 7i in P from u to ub such thac’b  curve T(T*)  in
M is a loop at g(u)  homotopic to zero. Then the composite1 .a, L,

-
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(&,p*)  . -r*  . ru *-l  is a horizontal curve in P from v to vb and its
projection into M is a loop at ,n(u)  homotbpic to zero. Thus
b E  O”,(u).  Similarly, if b E @O(v),  ,&en  b E W(u). QED.

If M is connected, then for every pair of points u and v of P,
there is an element a E  G suchthat  u - ua. 1.t  follows from Propo-
sition 4.1 that if M is co&ecfed,,the  holonomy groups CD(u),  u E  P,
are all conjugate to each other.  in G and hence isomorphic with
each other.

The rest of $is section is devoted to the proof of the fact that
the holonomy group is a .Lie group.

‘~
j THEOREM 4.2 . Let P(i,  G) be a principuljbre  bundle whose base
‘manifold M is connected and puracompact. Let iD(n) @O(U),  u Q  P,  be
the holonomy group and the restricted holonomy group of a connection I?  with
reference poin’t  u. Then :

(a) @O(u) is u connected Lie subgroup or  G;
(b) @O(u) is a normal subgroup of Q(u) and %Dfu)~,@(u)  is countable.
By virtue o&this theorem, G(u)  is a Lie sub&cmp  of G whose

identity component is @(  -::

kin

:
+ Proof. We shall sho that. .ever)r  element of @O(u)  can be

joined to the identity el t.. by a piecewise,differentiable  curve
of class Ck  in G which liea in W(Y).  By the theorem in Appendix 4,
it follows then that @O(u)  is a connected tie  subgroup of G.

Let a c @O(u)  be obtain&  by the parallel displacement ,along a
piecewise differentiable loop T of class Ck  whichis  homotopic to 0.
By the factorization lemma (Appendix 7),  T is (equivalent to) a
product of small lassos of the form T;‘-*“P  *‘TV, where or is a
piecewise differentiable curve of class Ck  from x = r(u) to a. point,
say,y, and ~1  is a differentiable loop aty which lies in a coordinate

..neighborhood  ofy.  -1’t  is sufficient to show that the element of
WU) ed by ev:h  1s~  6’ c ,+A  *‘~~.can  bojoined  to the identity
elem&#  ,Tti~.&mer+t.  &obviously  ,equal  to, the  element of @O(  v)
defined by,th@~.~,  fi9re.u  is the point obtained by,the parallel
displaeement..of  u;,&ng  71. It is therefore sufficient co show that
the element b 6,  ~@@):  &fined by the differentiable loop fi  can be
joined to the identie*,element  in O’“(v)  by a differentiable’c&ve -=
of G which lies in @“@&%

Let x1 , . . . t;,x”  be a,loqal  coordinate system with origin at y



I
74 FQuNDATIONS  O F  D--L GEOMETRY

and let p be defined  by xd = x’(t),  ; = 1, . . . , 11.  Setf’(t,  s)  * s +
C1 - S)%‘(t)  fi3r.i  A 1, . . . , ft  and 0 5 t, s d 1. Then/(&  s)  =
(f%  4, - . . ,f”(t,  J))  is a differentiable mapping of class Ck of
1 X 1 into M (where .I = [0, 11)  such thatf (t, 0) is the curve ,JA
and f (t, 1) is the trivial curve y.,  Par each fixed s,  let b(s)  be the
element of (PO(U) obtained from. the, loop f (t, s),  0 5 t s 1, so
that b(0) = b &d  b(l)“+ identity. The fact that b(s)  is of class 62 : _
in s (as’s mapping of I into G) follows from the following

LEkMA.  htf:  z )< li - M b a dti$ientie&.  awTppins  of ckas.r  C* ,’
and uo(s),  0 s s ‘I  1, a’dz&&fiab&  curve of c&ss:cL  in -P,j&i that

’ 4uoW  =f(O,  4. For each jxed, s, let q(s)  be :&.#oint  of P o&&d
by the .patallel  di@lacement  of uo(s)  along  the curve f (t, s);-,whe@  ,
0 ~2  t 2 1 ands.isfied.  T~HI  t&woe  t+(s),  0 $ s d 1, ir,&&&&
able of c1a.w  CL.

Proof of Lemma. Let F: I x I-+ P be a differentiabie
mapping of class Ck  such that rr(F(t,  s)) = f (t, s) for all (b, s)  c I x
I and that F (0, s) ‘=  uo(s);  Th‘e existence of such an F follows
from local triviality of the bundle P. Set z+(s)  t F (t, s). In the
proof of Proposition 3.1, we saw that, for each fixed s,  there is a
curve a,(s), 0 ,S  t I; ‘1;  in G sut&’  that’s,@)  F e and that the
curve u~(s)$(s),  0 ~2  t 5’ 1, is horizontal.,  Set u&)  = v,(s)a,(s).  To

p prove that ai($); 0 $;  ~‘6.1,  his;‘&* differentiable curve of -class  :
Ck,  it is suEient  to show that$i”Is);-  0 g i ?%.ii,  ‘isa~difkrentiable
curvk of’cla&‘C:i”’  in p:Let  “iy &&&e c&mection  fornrofF!  Set
Y,(s) ‘= -c~(rJ~(s)),“whetie  &(;t)l’b  tht  Wxhi  tangent to the curve
described by uJs), 0 9’ t I; ~F~wbcn:s~,%~kd.  Then as in the“.

p r o o f  of’Propc&ion.3.1, a,(sj if”  a solution’ of the equation
&(.k)q(s)--l  & I”,(s);  As .$-I  the pr$fofthe’lemma  for Proposition
3:1,  we define? for &&fix&l  s, a vector field X(s) on G x R so th&
(a,(.Q;‘t)  is the  integr&kurve  of ,the.$ector field X(J) throu
point (e, 0,) t G x R: The differentiability of d,(s) irM%low?
the fact  that each solution of an ordinary linear’ div1
equa&n  &h parameter s is‘ diffekenti&k  ins as ma&ti@# the
equation is (cf:  Appendix- 1). This complke~  ‘th@@W?f’,  of’  the
le.&m&  and  hence  the proof of (a) ‘of ~&d&&i  ;”  ” -’

‘We n& prove (p).  If 7 and pi
- homotopic  to zero, the composite

& z&o.  -This  implies  that  @O@]  is’:a’-normal  ‘subgroup of O(U).
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Let Tl(M) be the first homotopy group of ?4 with reference point
X. We define a homomorphismf:  rl(M) + @(u)/0O(u)  as follows.
For each element 01  of r,(M),  let 7 be a continuous loop at x which
represents a. We may cover 7 by a finite number of coordinate
neighborhoods, modify T within each neighborhood and obtain a
piecewise differentiable loop pi of class Cr at x which is homotopic
to T.  If T; and 7s are two such loops, then 71 *  T;~ is homotopic to
zero and defines an element of W(U).  Thus, 71 and 72 define the
same element of @(u)/@(u), which is denoted by f (a). Clearly, f
is a homomorphism of ml(M) onto @(u)/~~(u).  Since M is con-
nected and paracompact,  it satisfies the second axiom of count-

bility  (Appendix 3). It follows easily that a,(M) is countable.
%. . k%ce,  cP(u)/@‘J(u)  is also countable. QED.. .

Rimmark: In 53, tie defined the parallef  @placement along any
piecewise  differentiable’ curve’ of class ‘0;  In this section, we
defined the holonomy group a(4)  using piecetiise-differentiable
curves of class @.  If we denote’by (P*(W)  the.holonomy  group thus
obtained from piecewise differentiable curves of class C”, then ‘we
have obviously @i(u)  2 U+(u)’  3 ..,  - =,  Co,(u)‘.  ye shall prove

later in $7 that these holonomy groups coincide.
/

5. Curvature form and sirwture  equation .
I ;

Let P(M, G)  be a principal fibre.bundle  and p.a  representation
of G on a finite dimensional vector space V; p(a) is a linear
transformation of V for each s rG and p(ab) t p(a)p(b)  for
a,b  E  G. A pseudotensorial  form of .degwe  r of(  P, of types  (p, V) is a V-
valued r-form 9 on P s,uch  that QIv ‘ .

;j: ; &io,  .= p(a-l> - Q_ for  f E G.
i I

_ j?

Such a form Q is called ~i%rwial_fbnn  if it ishorizontal  in 8the sense
that 9(X,,  i ,‘4 , a&)“*  8 vdX@Vm at least tone of. the tangent
vectors Xi1 of&  is vertical, i.e., tangent to .a  fib+.

’ Example 5.1. If-p, is the trivial representation of G on V, that
is, PO(a)  is the idehsity-transtbrmation  of V for each a Q G, then a
tensorial  forr&  iof de&~  r;of:  type (p,,,  V) is nothing but a form 9
on P which can be
r-form on the &3

%essed.as  9 = 7r*0]~ where 9.W  is a V-valued
*‘“t*+/.



7 6 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

Example 5.2. Let p be a representation of G on V and E the
bundle associated with P with standard fibre V qn which G acts
through p. A tensorial form p of degree r of type (p, V) can be
regarded as an assignment to each x E  M a multilinear skew-
symmetric mapping 9, of T,(M) x * * * x  T%(M)  (i. times)
into the vector space 7ri1 (~1 which is the fibre of E over x.  Namely,
we define .:

P&L  * ; - , $)  = u(@‘:,  . . . ,‘X:)), Xi E T ; ( M ) ; ’

where u is any point of P with T(U) = x and Xt is anyvector at u
such that r(XT) = Xi  for each i. 9(X:,  . . . , X:)  is then‘ an
element of the standard fibre V and u is a linear map$ng  ,of  Y
onto nix (x)  so that u(v(Xy, * * * , X:))  is an element of n;l(x).  It
can be easily verified that this element is, independent of the
choice of u and Xt.  Conversely, given  a skew-symmetric multi-
linear ~mapping $=:  T,(M) x . * * x T,(M) - nil(x) for. eacli
x E  M,, .a. tensoria]  fozm  9 of degree r of type (p, V) on P can be
defined, by .

9(x?,:.  . . ) x:) = u-‘(f5,(7r(x:),  . . :, 7&Q))), Jv  c ~ti(~,,
where x = r(u).  In particular, a tensorial O-form of type (p, V),
that is, a functionf:  P + V suc$  thatf (tra) = &+)f(u),  can be
identified with a cross section M + E.

A few special cases of Example 5.2 will be used in Chapter, III.
Let I’ be a connection in P(M, G). Let G,  and Q,  be the

vertical and the horizontal subwaces  of T,(P), respectively. Let
h: T,(P)  -+ Q,  be the projectipn.

PR~POSKTION  5.1. r pl  is a &ndotin&al  r-fm  on P of typ;
(P,  0 hen

(a) Theform qh  de$ned  &y  (vhr(X,,  . . . , X,) = q~(hX,;  . . . , hX,.),
Xi, T$P),  is a tensorial form of trp (p, V)  ;

(b) dq is a pseudotensoriaZ+  .+ l)+fenn  of t%e.(p, V);
(c) The (r + l+jkm  Dq d&cd  by Dg,  = (dy)!  is atensori~form  of

trae  (P,  v. z I ‘7
Proof , From R, o h = h 0 R,, u g G, it,rf&lows  that $ is a.

pseudotensorial form of type (p, V),  1.t is erLdtdt  &het

.
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if one of Xi’s,  is vertical., (b)  follows from R: 0 $ = d 0 R,*,  a l G.
(c) follows from (a) and (F),. QED.

The form Dp, = (dqJ)h  is called the exterior covariant derivative of
‘p  and D is called exterior covariant di$erentiation.

If p is the adjoint  representation of G in the Lie algebra 9, a
(pseudo) tensorial form of type (p, g)  is said to be of ,@e ad G. The
connection form% is a pkeudotensorial  l-form of type ad G. By
Proposition 5.1, Do is a tensorial P-form of type ad G and is
called the curvature form of w.

THEOREM 5.2 (Structure  equation). Let  o be a connection form and
B its curvature form. Then

dw(X; Y )  ‘G  -8’[w(X);  0(-Y)] + Q(X, k)
-7 b. ;for X,Y  E T,(P), u e P.

Proof. Every vector of-P is a sum of a vertical  vector and a..
ho$+&al  vectoi. Since both sides of the aboi;&’  equality ‘are
bilinear and skew-symmetric in X 8nd Y, it is sufficient td vkrify’
the. ehuality  in the followi’ng  three special. cases.

(1) Xand  Y are horizonta$In.this  case, o(X)  = o(Y) = 0 and
the equality reduces to the definition of a.

(2) X and Y are vertical. Let X‘=  A* and Y = B* at u, where
A,B Q 0.  Here ,A* and B* are the fundamental vector fields corre-
sponding to A and B respectively. By Proposition $11 of Chapter
I, we have t ’

2do(A*,  B*j  =  A*(o(B*)) - B*(co(A*))  - o([A*, B * ] )
= -[A, B]

=t;
-[o(A!), w(B*)],

since o(A*)  = A, o(B*)  = B and [A*,,+*]  = [A, B]*. On the
other hand, Q(A*,  B*) = 0.

(3) Xis horizontal and Y is vertical. We extend X to a horizontal
vector field *on  P, which will be also denoted by X. Let Y = A*
at u;wh c:.  Since the right hand side of the equality vanishes,
it is suffiCieSt4%  show that &o(X,  A*) = 0.  By Proposition 3.11 of
Chapter I, we:  have

2do(X,  A*) = X(w(A*))  - A*(w(X))  - o([X, A*])
= -&(l;y,  A*]).

NOW  it is suRici&  to p&&the  following
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form of type ad G.,  Then
L EMMA. If A* is the fundamental vector field corresponding to an

.element  A E  g and X is a horizontal vectorficld,  then [X, A*] is  horizontal.
‘: 1 Proof of Lemma. The fundamental vector field Ai  ,is induced
by R,,, where a, is,.the  l-parameter subgroup of G generated by

,, B .f  g.  By Proposition 1:9 of Chapter I, we have
‘1.  ‘.
. : ’ [X,  A*] = yrj f [R,jX)  - XJ.

If X.is  horizontal, so is R,+(X).  Thus [X, A*] is horizontal: (@ED.

” COROLLARY 5.k If both X and Y are horiwntal vectorjieldr  on’ P,
t h e n . L

”o([X,  Y]) =‘+(x, Y). I ’
‘I

Proof. Apply Proposition’ ‘1.3  of Chapter I to the lefthand.(;ide.  :
of the, structure equation‘just  proved. 1’ ”

‘.
I .,  Q$Q.:.‘i‘

The structure equation (often called “the  structure equation .$
E. Cartan”)  is sometimes written, for the sake of simplicity, ‘as
follows :

.Let e,,  . .
1

. , e, be a .basis  <for.  then Lie algebra g and c&? >,  j?.b  ‘=
, “*a,

that is,
r, the structure co&ants  of g with respect to, i,rF  .+:  ._ ,,‘e,,

,& :.
[e,, e,].=  &ejfldr jik,=.l,,;  . . , r. ‘: ,r.,

Let w = Bi oie,  and Q k Cj  C’e,.j  Then ?he  structure equation
can be expressed as follow$  * ST I :

do+ = -@,,,  c&f  A cok + @, ..t  ,=  1, . . . , r. $
. . ’

THEOREM 5.4 (Bianchi’s ident@.  D2  = 0.
’

, ‘I
Proof. By the definition of D, it suffices,, to provt  I that

dQ(X,  Y, 2) = 0 whenever X, Y,‘and 2 are at11  horizont&#ectors.
We apply the exterior differentiation-d to the strutture,&#ation.
Then -‘J

@,-  d;lwi  = --Jr,  cjk do’  A & + @ &,j  ,i&,$  + dW.

Since.&(X)  E 0 whenever X is horizontal, we haye
dL?‘(X,,.&  2) =  0

whenever .X,  Y, and 2 are all horizontal. .’ QED.

Wx,  Y)  = 44x,  Y>  -t- HvC;r>,  +‘I1 + iMx3, (PMI
fat X,Yr  T*(P), UC  P.

Proof . As in the proof,of  Theorem 5.2, ,it suffices to consider
the three special cases. The ‘only non-trivial case  is the case where
X is vertical and Y’is  horizontal. Let X = A% at 3~. where A z g.
We extend Y to a horizontal vector field on P;“&noted  also by ‘Y,
which is invariant by R,, a 6 C. (We first &,t:r$  the vector rP  to
a vector field pn M a@ .&en  lift  it to a~hor&&al  vector field  on

f’.).  Then.>[A*, yl,  = 0,. & A* .is  vertrcal,  &Q*,  y) = 0. We
. . shall shqw that ,the  iright  ‘hand’ side, of the equality ‘vanishes. ,By

Proposition 3.11 of Chapter I, we;have b

dv(A*,  Y) = ~(A+((p(Y)),--&(A*))  - &A+$) ‘= iA*(cp(Y)),
so that it- suffices to  show A*(q(Y))  + [o(A*),  q(Y)]  = 0 or
A* (q(Y))  = ,-[A e(Y)].  If a, ,denotes  the l-parameter subgroup
of G gene&edAby,A;.  t&n  .‘,  ::: %’ 1

In $5 of Chapter I, we considered certainmap@ngs  of one
principal fibre’bundle into &nother  such ‘as a homomorphism, an

study the effects of these

(&l’,  G’j -+  p (ill,,  G) be a homo-
&morph@  f: G’ + G such that the
a di&omorphism’of  M’ onto M. Let

connectionform and a’  the curvature form

(a) There is a &&&n&tion  I? in P.&t&‘&at  the horizontal sub-
?Paes of I” ..ars via@4  ,i@.$o?iwnta~  subspaces  of I? b f.

‘ : ... .

i:
.s4=&c

i I
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(b) If w and S2 are the connection form and the  pyvature  form of I?
respectively, then f *o = f * w’ and f *Cl  =*f  * !A’;-  where f - o’ or
f * Cl’  means the g’-valuedform  on P’ defined by (f.  CO’)@‘)  =f(~;(x’))
or (f*  Cl’)  (X’, Y’) = f (sl’(X’,  Y’)), where f on the right hand side is ’
the homomorphism g’ --+  g induced by f: G’  4 C.

(c) IfB’  6  P’ and u = f (u’) Q P, thnf:  G’ + b maps @ti)  onto
O(u) and @O(u’)  onto @O(y),  tihere  O(u)’ and cbo(u)  (resp.  %I@)  and
V[u’))  are  the holonomy  grollp  and th.?  restricted ho&m&y  ‘&oup.of  r
(resp.  r’)  with r@rencipoint  U (i@sp.  u’).‘ -’ ’ ’

Proof . (a)-  Given a point u E  P, choose ti’ Q pi arid dk G such
‘-that u = f @‘)a.  We define the hbrizontal  subspace  Q,  of T,(P)
by Q;,=  R, of (Q,,), where Q,,  is the horizontal sub&ace of
T,.(P’)  with respect to I”. We shall she;  that  Qi is independent
of the choice of u’  and a. If u = f (v’) b,. where v’ E  P’ and b E G,
then v’ = u’c’ for some c’  l G’. If we set c = f (G’),  then u =
f (v’)b =f (u’c’)b =f (u’)cbtindh encea * cb. WehaveR,of  (Q”,) =

x& of (&,/et)  - 4 +&(Qd  = 4 o R,  of  I&d  = R,  of (&A
which proves our assertion. We shJl  show that the distrilkion
u -+ Q,  is a connection in P. If u = f (u’)a, then ub = f (u’)ab and
QUb = R,, of (Q$) = R, 0 R,  0 f (Q,,)  = Rb(Qu), thusprovingthe
invariance of the distribution by G. We shall now prove T,,(P) =
Q,  + G,‘,  where G, is the tangent space to th.e  fibre at u. By local
triviality of P, it is sufficient to prove that the projection 7: P -+ M

-induces  a linear isomorphism 7: Q,  -T,(M),  where x % n(u).
We may assume that u = f (u’) since-the distrib’ution u -+ Q, is
invariant by G. .In the com~+$&~di?g~~m

‘_

Qujf-Qu  '

the mappings n’: Q,,  --+ T,.(k’)  and f: ?“,.(,U’)  -+ T;iid;ij  are
linear isomorphisms and hence the remaining ttio n’ihppings
must be also linear isomorphisms. The unicjuene<  b$y-is&evident
from its construction.

.,  )-,’

(b) The equality f *W = f . W’ can be re.written  as ~follows:__..

4fX’)  =f(4U) for X’  2 TU,(p’), u’  f P’.
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It is sufficient to’tierify  the above equality in the two special cases:
( 1) X’ is horizontal, and (2) X’ is vertical, Since f:  P’ + P maps
every horizontal vector into a liorizontal vector, both sides of the,
equality ‘vanish if-X’  is horizontal. If X’ is vertical, X’ = A’* at u’,
where d’ Q g’. Set 4 = f (A’) c g. Since f (u’a’) 7 f (u’)f  (a’) for
every a’ E  G’, we have f (X’) = A* at f (u’). Thus

w(fX’)  = co@*)  = A = f (A’) : f (;‘(A’*))  = f (d(X’)).

From f *w = f - w’,  we obtain d(f  *o) =~  d(f  ‘0’)  and f *do =
f * dcu’.  By the structure equation ‘(Theorem 5.2) :

we have

-gf*w,j*w]  +f*L2  = -*[f  * cd,;.  Cd] +f * w.

This  implies that f *Cl  = f * R’.
(cl  Let 7 be a loop at x ,= r(u).  Set T’  =J-~(T)  b that 7’  is a

loop ,at  x’  = I’.  Let 7’* be the horizontal lift. of T’  starting
frofi  u’.  Tti~pf  (7’*)  is the horizonjal  lift 6f T starting from u.  The
s’t&men’t  ‘(c)‘is  now evident. QED.

In the situation ‘as in Propositicm  6.1, wl say that f ‘maps the
connection I” into the connection I’. In particular, in the case
where P’(M’,  G’) is 2 reduced subbundle of P(M,  G)  with .in-
jection  f so,.that’M  = M and f:  M’ + M is the ident@  trans-
forniation, wt:  say that the connection-J’  in P is reducible to the
connection I” in P’. An autumorphism f of tha,bundle  P(M,  G) is
called an automorphism of a connection r in P if it maps r into I’, and
in this case, r is said to be invariant byj’.

‘PROPOSITION  6 . 2 .  ‘Lqt fzsP’~&4’;  .G’)“+  P(M,‘C;)  b e  a  hpmo-
&irphism’s&h that the c&&onffing  hom9morphisti.J  G’ -+ G maps G’
isomorphically  onto G. Let I’ be a c&&iion  in P, CO the connection form
and Cl  tf+&vatulcc  form,  of I’;:  Then

(a) There is a unique connection I” in P’ such that the horizorrtal  sub-
spaces of I” are mappea  int&horizontai  subspaces of JZ’  by f .

(b)  If CO’  and Q! irle .&kc.  connection form and the curvature form nf I”
respectively, then f *w = f * CO’  andf *a = f + Cl’.

(c) If u’ c. PI and u = f (u!)  E P, then the isomorphism f:  G’ + G
maps @(u’)  into O(u) and @O(u’)  into @O(u).
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Proof. We define I” by defining its connection form 0’. Set
w’  = f-l  *fees,  wheref-i:  g + g’+is the inverse of theisomorphism

f: 9’  + g induced from j’: G’ + G. Let x’  E T,#‘)  and a’ Q  G’
and set X = fX’  and a ,= f (al),. Then we have ‘ .

4&J’) =f-‘(q(f  (&x’)))  =f-‘(w&q)

= f-i(ad  (a-l)(W(X)))
=) ad (k-l)  (0(X’)).

= ad (k-l)  (f-l(w(X)))

Let A’ B g’ and set A = f(A’).  Let A* and A’* denote the funda-
mental vector fields corresponding to A and A’ respectively. Then
we have

w’(A’*)  = f-yo(A*))  =f-‘(A) = A’.

This proves that th,e  form o’ defines a connection (Proposition 1.1).
The verification of other statements is similar to the proof of
Proposition 6.1 and is left to the reader. : QED.

In the situation as in Proposition 6.2, we say that I” is induced
by f from I’. Iff is a bundle map, that is, G’ = G andf:  G’ -* G is*
the identity automorphism, then o’ =f*o.  In particular, given a
bundle P(M,  G) and a mapping f: M’ + M, every
in P induces a connection. in the induced bundle f-1P.

connection

. For any principal fibre bundles P (M, G) and Q (M, H),
P x Qis aprincipalfibre bundleover M x Mwithgroup G x H.
Let P + Q be“the  restriction of P x Q to the diagonal AM of
M x M. Since AM and M are diffeomorphic  with each other in
a natural way, we consider P + .Q  as a principal fibre bundle
over M with group G x H. The restriction of the projection P  x
Q -+ P to P +’  Q, ..denoted  by fp,  is a homomorphism with the
corresponding natural homomorphism fo:  G x H + G. $imi-
larly, forJo:  P + Q + Q and f@: G x H-c  H. . ,I <G+I::  t!”
PROPOSITION 6.3. Let I’,  and r. be corinections  in pCJfi’&  W

Q( M, H) respectiveb.  Then .‘$T  r,
(a) There is a tinique  cann&ion  I’ in P + Q s& W’h  home-

morph fp:  P + Q + P andfQ: P + Q -+  Q mi@@in@  I’,  and
rQ respectively. i “,^. ‘F,,:,-  ,

’ . .
(b) If o, op and o9  are  the  connection formr and@  Zapi  &da,  are

the curvature forms of I’,  rp,  and I’*  cqwib~,  tb

0 =fti,  +-f&+9 n =.f WP +f $,.

.-

- -
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(c) Let u i P, v z Q, and (u, v) E F + Q.’ Then the holonomy group
._ @(u,  v)‘.of  I’ (resp.  the restricted R&momy  group qO(u,  v) of r) is a .
subgfoup  of O(u)  x O(v) (resp.  @O(u)  x @O(v)).  The homomorphism
‘fa: G x H -+  G (resp.  fH:  G x H + H) maps @(u,  v) ante  9(u)

(resp.  onto a(v))  and @O(u;.  v) onto (Do(u)  (resp.  onto O”(v)),  where
@[u)and  @O(u)  (resp.  Q(v)  and @“( ))v are the holonomy group and  the
restricted holonomy group of rp jresp. I’ ,J.

The proof is similar to those of Propositions 6.1 and.6.2 and is
left to the reader.

PROPOSITION 6;4.  Let Q(M, H) be- a subbundle of P(M, ,G),
where H is a Lie.sub&up of G. Assume that the Lie algebra g of c admits

a subspace  rn.  such that g = m + h (direct sum).and ad (H)(m) = in,
where in is the Lie algebra of H. For ewry  connec+n  form o~iti  P, -the  Ij-
component  W’  of w  restricted to Q is a connection form iu Q j

Proof . Let A E  b.and  A* the fundamenta1  vector field corre-
sponding to A. Then &(A*)  is the b-component of @(A*)  =%A.
Hence, o’(A*)  = A. Let 9 be the m-component of w restricted to
Q. Let X r ‘T,(  Q) and a E H. Then

-o(R,X) = u’(R,X)  + q(R,x),

\ ad (a-r) (o(X)) =. ad (a-‘) (W’(X)):‘-&  ad p-l) (y(X)) Y
The left-hand sides of the preceding two equalities coincide.
Comparing the &components of the, right hand’sides,  we obtain
44%X) = ad tabi) (w/(,X)).  Observe.that  we used the fac;xDt
ad (a-l)(q(X))  is in m. I .

Remark. The connection -defined’ by o in P is reducible to a
connection in the subbundk-Q  if and only if the restriction of o
to Q is b-valued. Under the assumption in Proposition 6.4, this
means w’. *-‘&on  Q .  .-,

_  _. ,,:i’.  i+.: .,‘I
-3 -ii  .746  -Re&ction  t h e o r e m,a-..J

Unless otherwise, sia’ted,  a curve will mean a piecewise differ-
entiable curve of class C”. The holonomy group @),(uo)  will be
denoted by (o(h).  I 7:’  in* .

We first establish j’ ;?’

THEOREM 7.1 (Red&i&  theorem). Let P(M, G) be a principal
fibia&ndle  with a connection I’, where M is connected and paracompact.
Let “0 be an arbitrary point of P. Denote by P(uo)  the set of points in P
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which can be joined to u,,  by a horizontal cuyve. Then
(1) P(uO)  is a reduced bundle with structure group  Q(~~).
(2) The connection r is reducible to a connection in p(uo).
Proof. ( 1) We first prove ,, , _. II,;

:

LEMMA 1. Jet  Q be a subset of P(MY G) and H a Lie subgroup of
G. Assume: (1)  the projection. rr:- P L M-maps Q onto M; (2)’ Q is
stable by H, i.e., &(Q)  = &fork&h  a Q H; (3) $U,V E Q andrrju) =
T(V),  then there is an element a ‘k H s& that v = ua  ,iiand  (4) query  point
x of M  has a neighborhood U and a cross sictionta:  U -+ P such that
a(U) c Q. Then Q(M;  H) is a reduced subbundle of P(M, G):

Proof of ‘Lemma 1. For each u E  n-l(U),  let x = r(u) and
a c G the element determined by u = a(x Define an isomorphism
y: rr-r(  U) -+ U x .G  by setting y(u) = (x, a). It is easy.to see that
w maps Q n ?T- l(U) 1 :I onto U x H. Introduce a differentiable
structure in Q in such a way that p::Q  ti  r-l(U)  -+ U x  H
becomes a diqFeomorphism;  using Proposition 1.3 of Chapter I
as in the proof  of Proposition 5.3 of Chapter I, we see that Q
becomes a differentiable manifold. It isnow  evident that Q is a
principal fibre bundle-over M with group H and that Q is a
subbundle of P. 4

Gcing  back to the proof of the, first assertion of Theorem 7.1; we
see that, M being paracompact, the holonomy group @(uO)  ip a Lie
subgroup of G.  (Theorem 4.2) and that the subset P(uO)  an’d the
group @((u,)  satisfy conditions (l),  (2),  and (3) of Lemma 1 (cf.
the- second definition of @(u,J  given before Proposition 4.1 and
also Proposition 4.1 (b) ) . To verify condition (4) of Lemma 1, let
xl, . . . ) xn  be a local coordinate system around x such that x is
the origin (0, . . . , 0) with respect to this coordinate system. Let
U be a cubical neighborhood of x defined by ix’] < 6. Given any
pointy Q U, let T*  be the segment from x tog with respect to the.,?
coordinate system x1,  k . . , x”. Fix a point u c Q such that r(u) ;r  *r:
Let c(y) be the point of P obtained by the parallel displacement
of u along TV.  Then 0 : U -+ Pis a cross section such that o(U)- C Q.
Now (1) of Theorem 7.1’follows  from T,emma  l.,

(2) This is an immediate consequence of the fol1oy.n
.,.‘ .+I,  2 :’ i:,

L EMMA 2. Let Q(M,  H) be / subbundle of $$‘b) and I?  a
connection in P. If,  for every u c-Q, the horizontal  suB$ace  of T,(P) is
tangent to Q, then l? is reducible to a conn&Qp in Q.
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*  Proof of Lemma 2. We define a connection I” in Q as follows.
The horizontal subspace  of Tu(Q),  u c Q, with respect to I” is by
definition the horizontal subspace  of T,,(P) with respect to I’. It is
obvious that F is reducible to F’. QED.

We shall call P(u) the,holonomy bundle through u.  It is evident . .
that P(u) = P(v) if and only if u and v can be joined by a hori-
zontal curve. Since the rela ion- introduced in 64 (u - v if u and

6v can be joined by a horizontal curve) is an equivalence rekrtion,
we have, for every pair of points u and v of P, either e(u) = P(v)
or P(u) n P(v) = empty. In other words, P is decomposed into
the disjoint union ofthe  holonomy bundles. Since every a e G maps
each horizontal curve, into ‘a horizontal curve, R,(P(u))’  = P(ua)
and R,:“P(u) T P(ua) is an iso’mdi-pliism  with the corresponding
isomorghism  ad (a:‘)  : Qt( u ) + @(ua)‘  of the structure groups. It is
easy to see that, given any u and v, ‘there is an element a ~‘(3 such
that p(v)  = P(ua).  Thus the holonomy bundles P(u), u E P, are
all isomorphic with each other.

Using Theorem 7.1, we prove that the holonomy groups aD,(tl),
1 5 k’ 5 co, coincide as was pointed out in Remark of $4.
Thislresult  is due to .Nomizu and Ozeki [2]. .

T HEOREM 7.2. All the holonomy groups CD,(u),  1 d k I co,
coincide.

Proof. It .  is su’fficient  to show that al(u)  = <p,(u).  We ’
denote Qm(u)  by a(u)  and the holonomy bundle, through u by

P(u). We know by Theorem 7.1 that P(u) is a subbundle of P with
Q(u)  as its structure group. Define a distribution S,Q~P  by setting.  .

S, = T,(P(u)) .bbr u z P. ~5

5ince the holonomy bundles have the same dimension, say k, S is
a k-dimensional distrib+og.‘We  first prove

LEMMA 1. ;(ij  S is d$rentiable  and involutive.
,(2)  For .each  u !,$,,,P(u)  is the maximal integral mkifold  of S

t h r o u g h  u.
Proof of Lemma l’.‘(1  j We set

%:ns,  = s;  + 5;; u E P, L i”
where S; is horizontal and  S’ is vertical. The distribution S’ is
differentiable by the very d&&on  of a connection. To prove the



8 6 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

differentiability of S, it sufficq to shoy  that of S”. For each u B I’,
let U be a neighborhood of x = n(u) with a crosj  section’s:  W -+
P(u) sqh,that  o(x)  = u.  (Such a cross section’%+&+  constructed in
the proof of The&em 7.1.) Let -Ji,  . . ; , ‘%,,ti’~a:basis  of the Lie.
algebra g(u) of Q(u).  We shall define vector:fi&ls  xi,  :. . , A, on
~-l(  Uj which form ‘a basis of S”  at every :point  of n-f(V).  Let

v c d(U).  The+  .there  is.a unique  d e G such thdrt  o = cr(~(@))a.
Since  ad (a-1)  : a(u).  4 e(n)  is.Fn isomorphism~  k$  (n-l)  (A,) ,’  t =

7 are eIame*  d g(u)  and form,k,basrs  ,,for  -g(u). We set,-a-,  II
+I;;  i.‘,  r,  _.’  *

vector field. on P corr&” ’
1, . . . , r.  It is easy 6 ‘,

A9  are-differentiable and form -a basis of S” ore
7i-l(  U) . . . <

For each p&k  F,  P(U)  .%.  an integral manifold of S, since  for.
every u c P(u).,  we have  ,f;(P(u))  =:  ‘T,(P(o)-)  = S,.  Thk*rmplies
that S is invoiuti+e.

:

(2) Let &ic)*-~:th~  maximal integral ‘matiold  of%  ,through u
(cf. Proposition. lk$bf Chapter  I). Then P(u)  is an *en  submani-
fold of W(b).  W&p&e  .&at-P(&‘=  W(U).  Let u;&!  an arbitrary
point of lY(@a&l.let  ‘u($),  0 g t 5 1, be a curve in W(U)

!’
such that a($ = tl at&. ti(1) * u. Let t, be the supremum
oft,, such that .O  g.‘t  5 f&np~.  q(t)  B P(u). Since P(u),  is open in

“; ’-, W(i), t;,is  posi&e;.We  show%hat u(tJ  lies in P(u); since P(U) is
open‘in <W(U),  ‘&is  yill  i$l$ :that  t, ‘7 1, proving that u( 1) =. v
lies’in  P(a)_  The point,@$Tis $r P(u(~,))  and P(u(tr)) is open m
H’(u&)).  There &is@,,  ‘e ‘s-,0, ‘such that t, - E’ < t < t, + E
implies u(t)  c P(i(tr)  j%et-t  &e  any value such that t, - E < t < t,.
By definition of t,,!+\wk  have u(t)  Q P(u). On the other hand,
u(t) Y P(u(t,)),  Thisimplies that P(u)  = P(u(tl))  so that u(t3  l P(i)

, as we wanted to show. ‘We have thereby proved that P(u)  is
actually the mar&n@  integral manifold of S through II.

LEMMA 2. L&$&e  an involutive, C”-distribution  on a C”&$Yd.
1, is a piecewise  C%urve  whose tang* dLctor5  .it
entire curve xt lies in the maximal iriti&al  manifoid

.
Proof of Lemma 2: We may assume that xt is a Cl-curve. Take’I , .j.

a local coordinate system ~1,  . . . , x*  around the,pomt  xo  such  t&tl
,.  ., .i ,‘“J: ‘.
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a/ad, . . . . a/ax", k = dim S, form a local basis for S (cf.
Chevalley [I, p. 92-J).  For
can be expressed by xi

small values of t, say, 0 5 t 5 E, xt
= x’(t),  1 $ i g n,  and its tangent vectors

are given by Xi (dx’/dt)  (a/&r’).  By assumption, we have dxi/dt  = 0
for k + 1 5 i 5 n.‘Thus,  x’(t) = xi(O)  for k + 1 r; i d n so that
xt, 0 s t 5 E, lies in the slice through x0  and hence in W.
The standard continuation argument concludes the proof of

Lemma 2.
We are now in position to complete the proof of Theorem 7.2.

Let a be any element of O,(u).  This means that u and ua can be
joined by a piecewise O-horizontal curve ut,  0 5 t $ 1, in P.
The tangent vector 8,  at each point obviously lies in SU1. By
Lemma 2, the entire curve ut  lies in the maximal integral manifold
W(u)  of S through U. By Emma  1, the entire curve u,  lies in P(u).
In particular, ua  ‘is a point of P(u). Since P(u)  is a subbundle with
structure group a(u),  (I  belongs to Q(u).. QED.

COROLLARY  7.3.
co,  coincide.

TAt  rest&ted  h+onomy  groqs @g(u),  1 $ k 5

Proof. @i(u)  is the connected component of th
Qk(u)  for every k (cf. Theorem 4.2 and its proof). No

identity of

7.3 follows from Theorem 7.2.
, Corollary

QED.
Remark. In the case where P(M, G)  is a real analytic principal

bundle with an analytic connection, we can still  define  the ho-
lonomy group O,(u) by using only piecewise analytic horizontal
curves. The argument used in proving Theorem 7.2 and Corollary
7.3 shows that mu(u)  = @r(u)  and Q&(u)  = Q!(U).

Given a connection I’ in a princrpal  fibre bundle P(M, G),
we shall define the notion of parallel displacement in the associated
fibre bundle E(M,  F, G,  I’) with standard fibre F. For each
w E E,  the btorizontai  subspace  Q, and the vertical subspace  F, of
T,(E) ark defined as follows. The vertical subspace  F, is by
definition the -gent-space  to the fibre of E at w. To define Q,,
we recall that we ‘lrave  ‘the natural projection P x F -+  E =
P x o F. Choose a point If-it,  8) ir P x F which is mapped into w. We
fix this [ E  F,  and consider the mapping P + E which maps v E P
into vt Q E. Then the hor&ntal  subspace  Q, is, by definition, the
image of the horizontal snbspace  Q,  t T,(P) by this mapping
P + E. We see easily that ‘Q,  is independent of .the  choice of
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(u, [) l P x F. We leave to the reader the proof that 7’,(E)  =
F, + Q, (direct sum). A curve in E is horizontal if its tangent
vector is horizontal at each point. Given a curve 7 in M,, a (hori-
zontal). Z$t  T*  of T is a horizontal curve in E such that nB(+)  = 7. ”
Given a curve T - xt, 0 4.  ‘t s 1, and a point w0  such that
rrB,.(~,,)  = x,,,  there is,a unique lift T*  = wt  starting from w,. To
prove the existence of T*, wechoose a point (uO, 5)  in P x F such
that uoE  = wO. Let at be the lift of 7 = xt  starting from uO. Then
w,  = .uJ  is a lift of ,T starting from ur,.  The uniqueness of T*

reduces to the uniqueness of a solution of a system of ordinary
linear differential equations satisfying a given initial condition
just as in the. case of a lift in a principal fibre bundle. A cross
section 0 of E defined on an open subset U of M is called
parallel if the image of T,(M) by a is horizontal for each x E  U, that
is, for any curve 7 ~.x,, 0 5 t h 1, the parallel displacement of
a(xJ  along T gives a(xJ.

PROPOSITION  7.4. Let P(M, G)  be ‘a  principal  jibre bundle and
E(M, G/H, G, P) the associated bundle with standardjibre  G/H, where
His a closed subgroup of G. Let a : M -+ E be n GZOSS  section and Q ( M, H)
the reduced subbundle of P(M, G) corresponding to a (cf. Proposition
5.6  @f Chapter I). Then a connection r in P is reducible to a connection I”
in Q if  and only ;f d is-parallel with respect to I’.

Proof. I-f,-we,  identify E with P/H (cf.  Proposition 5.5 of
Chapter I), ‘then s&J)  ,coinci&s with. the image of Q by the
natural projection ,u:  P,-  E 3 Pi&?;  in other words,, if U.E Q and
x = r(u),  then a(x) = p(u). (cf?  Proposition 5.6 of Chapter I).
Suppose I’ is reducible to a connection I” in Q.  We note that if
5 is the origin (i.e., the coset  H) of G/H, the?  u[  = p(u)  for every
u E  P and hence ifa,,  0 5 t d 1, is horizontal in P, so is ,uu(u,J  in E.
Given a curve xt, 0 d t d 1, in M, choose u,, E  Q with n(u,,)  .+%x0
so that a(xO)  = ,&J.-L e at be the lift to P of x, starting.f&n  u.t
(with respect to I’), so that ,p(uJ is the lift of xt to E start&~from
a(xo).  Since F is reducible to I”, we have ui  E  Q. a@  hence
~(4  F a(4.f or all t.  Conversely, assume that. 4 is p+rallel  (with
respect to F).  Given any curve x1,  0 I t g 1, in Mand  any point
u.  of Q with vr(uo)  = x,,  let ut  be the lift of x;to  P starting from
ug. Since a is parallel, /l(u,)  = a(xJ  and hewe  ut .E  Q for all t.  This
shows that every horizontal vector at u.  6 Q (with respect to I’) is
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tangent to Q. By Proposition 7.2, F is reducible to a connection. ^. in Q.
8. Holonomy theorem

QED.

We first prove the following result of Ambrose and Singer [ 1] by
applying Theorem 7.1.

THEOREM 8.1 .
. . Let P(M,  G) be a principaljbre  bundle, wkere Jf

zs  connected and paracompact.  Let I’ be a connection in P, SI the curvafure
form, o(u)  the kplonomy  group witk rsference  point u 6 P and P(u). the
kolonomy  bundle through u of I’.. Tken,the  Lie algebra of.&(u)  is  equal to
the’subspace  of 0,  Lie algebra of G,‘spanned by-  all elements of ,@k’$orm
S&(X, I’), where v l P(u)
.s’

and X and Y $e.arbitrary  hor&ntal  vectors’,at:.. ._I  ..,.

-

“‘, Proof. By virtue of Theorem 7. I,,‘we  may~assum&.  that  ‘@ti)  =
P,‘i.e.,  a(u)  = G. L te g’  be the subspace  .of’g  spanned b’y all
elements-of the form !Z$(X,  Y), .where  v E  P(u) = P and X and Y
are arbitrary horizontal vectors at v. The su‘bspace g’ is actually
an ideal of g,  .because  Q is a tensorial form of type ad G (cf. $5)
and hence g’ is invariant by ad C;.  We shall prove that g’  = 6. t

At each point v E  p; let S,  be the subspace  of T,>(P) spanned by
the horizontal subspace  Q, and by the subspace  gi  = (A:; 4 El)‘),
where A” is the fundamental vector field on P corresponding to A.

The distribution S has dimension % ‘+ r,  where n = dim ‘II  and
r = dim g’:  We shall prove that S is d’iflerentiable  and involutive.
Let v be an arbitrary poimof  2an-d  U a, coordinate neighborhoocl
OPJ = r(u) E M such that =-‘ru)  is,  isomorphic with Ii  x G. ,Let
XI,  - * * , X,  be differentiable vector fields on CT which are
linearly independent everywhere .on  U and XT, . . . , X;  the
horizontal lifts of Xi,  . . . , X’. Let A,, . . . , ~1, be a basis for q’  and
AT, ***Y A: the corresponding fundamental vector fields.‘ It is
clear that’.Xr;  . . . ‘; Xz,-  A:, . . . ,.A,*  form a local basis for S.
To prove that‘s  is involutive,,  it suffices to verify that the bracket
of any two of these vector  fields belongs to S. This is clear for
[AZ,  AT], since [Ai, A,] 6-g’  and [Ai,  A,]* = [A), )I;]. By the
lemma for Theorem 5.fLs,  [A:,  XT]  is horizontal; actually,
[AT, X,“] = 0 as XT
A = cu([XF,  XT])

is inva,riaat  by R,  for each a c G. Finally, set
E  g,  wh ere 60 is. the connection form of I’. BJ

!$rollary  5.3, A = o([X& Xi*]) = -20)(X:,  X,?)  e g’.
vertical component of [Xr,  X,“J at v z P is equal. to

Since the
.‘I;  c s,,
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[x,‘, XT] belongs to S. This proves our assertion that S is in-
volutive.

Let P, be the maximal integral manifold of S through  a, By
Lemma 2 in the proof of Theorem 7.2, we have PO  = P. There-
fore,

dim g = dim P - n = dim P,,  - n = dim .g’.

This implies .g  = g’. QED .

Next we prove

~“HEOREM  8.2. Let P(M,  G) be a principal jibre bundle, where P
is connected and M is paracompact. If dim M B 2, there exists a con-
nection in Psuch  that all the holonomy bundles P(u), u c P, coincide with P.

Proof . Let u0 be an arbitrary point of P and 9,  . . . , xn  a local
coordinate system with origin x0  = T(Q). Let U and V be neigh-
borhoods of x0  defined by lx”1 < a and lxil < fi  respectively,
where 0 < /? < br.  Taking a sufficiently small, we may assume
that PI’U  = ST- l(U) is isomorphic with the trivial bundle U x G.
We shall  construct a connection I” in P 1 U such that the ho-
lonomy group of the bundle P 1 V coincides with the identity
component of C. We shall then extend F’  to a connection I’ in P
in such a way that I’ coincides with I” on P J r? (cf. Theorem 2.1).

Let A i, . . . , A, be a basis for the Lie algebra g of G. Choose real
numbers ai, . . . ,
letfi(t),  i = 1

a, such that 0 < a1 < as < * * *  < a, < fi  and
, , . . , Y, be differentiable functions in -a - E < t <

a + E such thatfi(0)  = 0 for every i andf*(a,)  = 8,,  (Kronecker’s
symbol). On r-‘(U)  ,= U x C, we can define a connection form
o by requiring that

and that
j=l

t
for i = 2,3,  . . . , n. ‘ ~

(Note that,’ by virtue of the property R,*w  = ad  (a-l)fw),  the
preceding conditions determine the values of w at every point
(x, a) of U x G.) ‘ .

Fixing t, 0 < t < #?,  and ak, 1 5 k _S  1;  for the moment,
consider the rectangle. on the x1x2-plane  in V formed by the line
segments 71  from (0, 0) to (0, a,), 72 frorn’(0,  ak) to (t, a&, TV from
(4 ak)  to (t, 0) and 74 from (t, 0) ~0 (0,O). (Here and in the
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following argument, the x9  to &coordinates of all the points remain
0 and are hence omitted.) In r-‘(V)  = V x G, we determine the
horizontal lift of T = 74 * 71 * 72 * 71  starting from the point
(0, 0; e). The i1 ft T:  of 71  starting from (0, 0; 8) is clearly (0, s;  e),
0 5 s I dam,  since its tangent vectors 8/8x2  are horizontal. The
lift 7; of ~z  starting from the end point (0, a,; e) of T:  is of the
form (s, a,; c,), 0 5 5 5 t, where c,  is a suitable curve with c0  =
e in G. Its tangent vector is of the form (a/&l),,,,,  + i,. By a
similar computation to that for Proposition 3.1, we have

4iw’ha,,  + 4 = ad (cy’)o((a/axl)),,,,:,,  f $1 * E,’

= ad (c;l)  ( i f,(a,)J,)f’c;l  * E, = ad (c;‘)A,  + c;l”  t,.
j-1

Therefore we have ci  * c~’  = -A,, that, is, c,  = exp ( -sAJ  . The
end point of is is hence (t, a,; exp ( - tAk)) . The lift ,Tf.  of 7J
starting from (t, a,; exp (-tA,)) is (t, a, - s;  .exp  ( -tA,)); 0 d
s 5 ak. Finally, the lift T: of 74 starting from the end point (t, 0;
exp ( - tA,))  of T: is (t - s, 0; exp ( -tAJ),  0 5 s ‘9 ‘t, since
8/8x1  is horizontal at the points with x4  = 0. This shows that the
end point of the lift T * of 7 is (0,O; exp ( - tA,J),  proving that
exp ( - tAk)  is an element of the holonomy group-of 7+(V) with
reference point (0,O; e). Since this is the case for every t, we see
that A, is in the Lie algebra of the holonomy group. The result
being valid for any A,, we s,ee  that the holonomy group of the
connection in v-l(V) coincides with the identity component of G.

Let F be a connection in P which coincides with l?’ on n-l(p).
Since the holonomy group @((uo)  of l? obviously contains the
identity component of G, the holonomy bundle P(uo)  of l’ has the
-@me  dimension as P and hence is open in P. Since P is a disjoint
union of hqlpnomy  bundles each of which is open, the connected-
ness .of  P implies that P = P(uo). QED.

COROLLA&V 8.3; Any connected Lie group G can be realized as the
hplonomy group o&a  certuin  connection in a trivial bundle P = M x G,
where M is an arbitrurp;dz$erentiable  mani$old.with  dim M 2 2.

Theorem 8.2 was proved for linear connections by Hano  and
Ozeki [l]  and then in the general case by Nomizu [5],  both by
making use of Theorem 8.1. The above proof which is more
direct is due to E. Ruh (unpublished).
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’ 9. Flut  connections

Let P = M j( G be a trivial principal fibre bundle. For each
a E G, the set M x (a} is a submanifold of P. In particular,
M x {e]  is a subbundle of P, where e is the identity of G. The
canonicalJEnt  connection in P is defined by taking the tangent space
to M x {af at u 4 (x, a) E M x G as the horizontal subspace  at
U. In other words, a connection in Pis the canonical flat connection
if and only if it is reducible to a unique connection in M x {e}.
Let 0 be the canonical l-form on G -(cf.  $4 of Chapter I). Let
f: M x G ---f  G be the natural projection and set

co  =f*e.  ’

It is easy to verify that w is the connection form of the canonical
flat connection in P. The Maurer-Cartan  equation of 0 implies
that the canonical flat connection has zero curvature: !,

‘do  = d(f*B)  =f*(dB)  =f*(-@J,  IYj)
,

= -gf*e,f*e]=  ‘--&IO,  CC)].

A connection in any principal fibre bundle P(M, G) is called
jlat if every point x of M has a neighborhood U su&  that;.the
induced connection in -P  1 I/ 7: n-l(U)  is isoinbrphic  with-1 $he
canonical flat connection in cf  X Gi  More Precisely, here .is, an
isomorphism y: V.-~(U)  4 ur-k G &Inch maps’the  horizontal
subspace at each u 4 n-‘(tl)‘u~~tf~~~~~~~zo~~~s~bspace  at v(u)
of the canonictil  flat: connection in U x G;  ..,.::..  , _ . . . . .#‘I

THEOREM 9.1. A connection‘.:in  P@&  1;)  ‘%j%t  if and only,?fthe
curvatureform vanishes identically. .; a

Proof. The necessity is obvious. Assume that the curvatire
form vanishes identically. For each “point i ‘of M, ;‘let  X!J:ljff  a
simply connected open neighborhood ofx and consider tke’,%xeluiced
‘connection in P 1 U = 7r -l(U). By Theorems‘4.2.’ z&  $3,  the
holonomy group of the induced connection iq b?./#  consists of
the ‘identity only. Applying the Reduction  The&em (Theorem
7. l),  we see that the induced connection in .&I  .v  is isomorphic
with the canonical flat connection in U x ,Gi~:  , QED.

COROLLARY 9.2 . Let I’ be a connection in!P(M,  G) such that the
curvature vanishes identicalb. If M  is paratotipact  and simply connected,

t
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. then P is isomorphic with the trivial bundle M x G and F is isomorphic
with the canonicalfEat  connection in M x G.

We shall study the case where ‘M is not necessarily simply
connected. Let I’ be a flat connection in P(M, G), where M is
connected and paracompact. Let u,, E  P and M* = P(uJ,  the
hol&nomy bundle through u,; M* is a principal fibre bundle over

M whose structure, group is the holonomy group O(Q). Sirre
(D(uJ  is discrete by Theorems 4.2 and 8.1 and since M* is con-
netted,  M* is a covering space of M. Set x0  = V(Q),  x0  e 111.
Every closed curve.pf  M starting from x0  defines, by means of the
parallel* displacement  .along,,it, an element of @(u,,).,  Since the
rgtricted  holonomy group is tnvral  by Theorems 4.2 and 8.1, any
two closed cpryp;s  +t  x0  representing !!n= same element of the first
homotopy,group’ir#f,  x,,)  give r&Zx  to the same element of @((uJ  .
Thus we o&&r  a homomorphism of vr,(M,  x0)  onto @(u,).  Let N
be a normal subgroup ef a)(~,)  and set M’ = M*/N., Then M’ is
a principal fibre buslbli  over M with structure group @(u,)/N.
In particular, .+?’ is a covering space of M. Let P’(M’, G) be the
principal fibr&  i br.mdle  induced from P(M, G) by the covering
projection .w. 4 M-Letfi  P’  -+ .P  be the natural homomorphism
(cf. Proposition’ 5.8 of Chapter I):

PROPOSITION 9.3: There exists a unique connection l?’  in P’(M’,  G)
which is mapped into I’ by the homomorphism f: P’ -+ P. The connection
F’ isjut.  Ifub  is a point of P’ such that f (ub)  = u,,, then the holonomy
group a(&) of r’ with reference point tCb  is isomorphically  mapped onto
N bf.

Proof . The’ first statement ‘is ‘contained in Proposition ,6.2.  By
the same pr~pos/tioq,.;the curv@ure form of F’  vanishes identically
,wd  I? is ,flat-,We  leca,B  ,that,p’:is  the subset of M’ x P defined as
fol~~.,(.~~:Pr~p~~i~o~.5Fg of Chapter I) f

where p : M’.  ‘S q&f:k~  the covering projection. The projection
37’: P’ -+ M’ ‘is @&Jx&~ 11)(x’,  u) = x’ and the homomorphism
f:P’-+P  is given by$( x’, u) = u so that the corresponding
homomorphism ,f;:G 5.  G bf.the  structure groups is the identity
automorphism. To Prove:  that f maps O(ub)  isomorphically onto
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ay, il is thcrcforc  sufficient to prove @(uh)  = N. Write

rt;,  = (A$,  24”)  E P’  c M’  x  P.

Since  /J(.v,:)  --:  n(u,J,  thrrc exists an element a E  Q(Q) such that

x; = Y(U”U),

whrrc  L”. :\I* = P(u,,)  --)  .H’  = P(u,,)/Xi$  the covering projection.
LCt 7 :- uf,  0 I 1, be a horizontal curve in P’ such that
77’ (16,;)  -= v’(II;).  For each  t,  we set

16;  = (xi,  14,)  E P’ c M’ x P.

Then  the cur\‘c  ul, 0 . t .e’  I,  is horizontal in P and hence is
contained in .\I* = P(u,,).  Since ,M(x;)  = I = p 0 V(UJ  and
x;, - -:  v(u,,a),  \ve ha1.e  .$  == v(u,n)  for 0 ..T  t c 1. We have

1’(z41N)  == x; = n’(uL)  = n’(uJ = xl, = Y(l4&
and, consequently,

Z’(Z4,)  = V(U”),

which means  that ~4~  = u,,6  for some  -6 E  N. .This.  shows  that
@(I(,‘,)  c M. Convcrscly, let 6 bc any element of N. Let ut, 0 5 t I=.
1, bc a horizontal curve in P such that u1  = u,6.  Define a horizontal
curve uj, 0 < t .-’  1, in P’ by

4 = (4, 4,

xvhcre  ,t$  = ~(u~n).  Then 26 ; = ubb,  showing that 6 E  @(uh). QED.

10. Locnl,  cd injin.itesinyl  holonomy groups

Let I’ be a connection in a principal fibre bundle P(M,  G),
where  Af is connected and paracompact. For every connected
open subset U of M, let l’,, be the connection in P 1 U = &(‘U)
induced from r.  For each u l T+(U),  we denote by @O(u,  U) and
P(u, U) the restricted-holonomy group with reference point u and
the holonomy bundle through u of the connection I’,;;  respectively.
P(u, I/)  consists of points v of v-l(U)  which can be joined to u by
a horizontal curve in n-l(U).

The local holonomy group  Q*(u)  with reference point u of 1’ is
defined to ‘be the intersection nV(u,  U);;where  U runs through

all connected open neighborhoods of the point x = r(u).  If (!ij
is a sequence ‘of connected open neighborhoods of x such  that

U, 13 Ok+l  and ; CTk  = {x}, then we have obviously (I)O(u,  r7,)  =I
P=l

Q”(u,  U,) 3  - * - 3  @O(U,  U,) 2  l - - . Since, for every open
neighborhood U of x,  there exists an integer k such that l.‘, c 1,;

we have Q*(u)  =: fi  @‘O(u,  U,).  Since each group O”(u,  U,) is a
P-l

connected Lie subgroup of G (Theorem 4.2),  it follows that
dim @“(u,.U,)  is cbnstant for sufficiently large k and hence that
O*(u)  = @O(u,  U,) for such k. The following proposition is now
obvious.

PROPOSITION 10.1. The local holonomy groups haue  the following
properties :

(1) O*(u)  is a connected Lie subgrbup  of G which is contained in the
restricted holonomy group @O(u)  ;

(2) Everypoint  x = n(u) has a connected open neiCghborhood  U such that
a*(u)  = W(u,  V)for any connected open neighborhood V of x contained
in U;

(3) If U is such a neighborhood of x = r(u), /hen Q*(u)  2 Q*(v)
for evey v f P(u, U) ;

(4) For every a E G,  we have @*(ua)  = ad (a-l)  (Q*(u))  ;
(5) For every integer m, the set {n(u) E  .II;  dim Q*(u)  :< ni> is

open.

As to (5),  we remark that dim Q*(u)  is constant on each fibre of
P by (4) and thus can be considered as an integer valtied  function
on M. Then (5) means that this integer valued function is upper
semicontinuous.

THEO,REM 10.2. Let g(u) and g*(u) be the Lie algebras of W(U)

and O*(u)  respectively. Then Q”(u)  is generated by all Q*(v),  v E P(U),
and g(u) &spanned  by all g*(v), v l P(u).

Proof. If v E  P(u),’  then @O(u)  = (P”(c)  13 (D*(v)  and g(u) =
g(v) 1 g*(v). By Theorem 8.1, g(u) is spanned by all elements of
the form Q&X*,  Y*) where v E  P(u) and X* and Y* arc horizontal.
vectors at v. Since Q,(X * , Y*) is contained in the Lie algebra of
@!(u,  V)  for every connected ,open  neighborhood V of n(v),  it is
contained in g*(v). Consequently,* g(u) is spanned by all g*(v)
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where v E  P(u). The first assertion now‘  follows.  from the followingI..  /
lemma.

LEMMA. If the Lie algebra g af d connected .Lie  gSujj G is generated
by a farnib  of subspaces  {mA},  then every  elevent,.of  G can be written as a
product exp X, - exp X, . . * * * exp ~Xb,  where  each Xi is contained

in some rnA.
Proof of Lemma. The set’ H of all elements of G of the above

form is clearly a subgroup which is arcwise,  connected ; indeed,
every element of H can be joined to the identity  by a differennable
curve which lies in H. By the theorem of Freudenthal-Kuranishi-
Yamabe  (proved in Appendix 4),  H is a connected Lie subgroup
of G. Its Lie algebra contains all ml  and thus coincides with g.
Hence, H = G. QED.

THEOREM 10.3. If dim @F(u) is constant on P, then Q”(u)  =
O*(u)  for every  u in P.
PROOF. By (3) of Proposition 10.1, x = rr(u)  has an open

neighborhood U such that Q*(u)  2 O*(v)  for each u m P(u, U).
Since dim @*(a)  = dim Q*(v),  we have Q*(u)  = O*(v).  Bv the
standard continuation argument, we see that,.  d v E  P(u),--

hen

CD*(u)  = O*(v).  By Theorem 10.2, we have * w(!d)  = Q*(u).
QED.

We now define the infinitesimal holonomy group at each point
u 0f.P by means of the curvature form and study its relationship
to the.l&al  holonomy group. We first define a series of subspaces
m,(u) of g by induction on k. Let ma(u)  be the subspace  of g
spanned by all elements of the form 0,(X,  Y), where .X and Y are
horizontal vectors at u. We consider a g-valued function  f on P of
the form

(IA . _ f = Vk.. * wxx,  WY

where Xi  Y, V,, . . . , V, are arbitrary horizontal vector fields on
P. Let m,(u) be the subspace  of g spanned by mk-i(u) and,by
the values at u of all functions f of the form (I,J. We then set g (u)
to be the union of all mk(u),  k = 0, 1, 2, . . . .

PROPOSITION 10.4. The subspace  g’(u) of g  is a subalgebra of g* (u!.
The connected Lie subgroup a’(u) of G generated by g’(u) 1s

called the infinitesimal holonomy group  at u.
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Proof. We show that m,(u) c g*(uJ  by induction on k. The
case k = 0 is obvious. Assume that mk-i(u) c g*(u) for every
point u. It is sufficient to show that, for every horizontal vector
field X and for every function f of the form (I+J,  we have
X,,f  E  g*(u). Let ul, ItI  < E for some E  > 0, be the integral curve
of X with u.  = u. Since vt  is horizontal, we have I*  c q*(u)
by (3).  of Proposition 10.1. Therefore,f  (uJ E  m,..,ju,)  c :I*(&)  c

L EMMA 1 : Let-f be a g-valued function of ppe ad G 011 P. Then
-(I)  ForayvectorjeZdXonP,  wehavev(X).  *f  = --[wll(X),f  (xi],

(X) denotes the vertical component of X.
(2) For any horizontal vector&lds X and Y on P. we hazle

where v.-

ax9  nJ *f  = YxL(K  Y),f(u)l.
(3) If X and Y are vector fields on P which are invariant by all  .R,,

a E G, then Q(X,  Y) and Xf are functions of [up  ad G.
Proof of Lemma 1.

Then
(1) Let rl. = oU(X)  E  g and a, = exp t-4.

v(X),  *f  = AEf  = 1’,ty f [f bat) - f  (41

= I,i~f  [ad (a;*)(f’(u))  -f(u)]

= -r4fy41 = -r%(x~,f(~)l.
(2) By virtue of the structure equation (Theorem 5.2),  we have

2&(X,  Y )  =  2(dw).(X,  I’)

= x&J(y))  - Y,c(~fJ(X))  - ~~J,t([~~,  y])

=  -wu([X,  Y]).

Replacing X by [X, Y] in (l),  we obtain (2).
(3) Since R is of type ad G (cf. $5 of Chapter II), we have

fi,,(R,X,  R,Y)  = ad (a-‘)  (12,(X,  Y)),
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which shows that n(X,  Y) is of type ad G, if X = R,X  and Y =
R,Y.  We have also

WL  = Xuaf = VVulf  = Uf  0 RJ
= ad (a-‘)(X,f)  = ad.(a-l)(Xf),,

iff is of type ad G and X is invariant by R,. This completes the
proof of Lemma 1.

Let Xi  = a/W,  where x1,  . . . , x”  is a local coordinate system. in
a neighborhood U of x = r(u).  Let XT  be the horizontal lift of Xi.
Consider a g-valued function f of the form

(I;r,) f=XZ.. - q(Q(R,  X?));

where i, 1, jl,,  .  . . , j, are taken fre$y  from II  . . . , n.‘C 1
LEMMA 2. ‘ ,  For each, k, m,(L)  {s spanned 6y  mkel(u) and by  the

values at u of btl functions f of the form (II,).
Proof of Lemma  2. The proof is by induction on k.  The case

k = 0 is obvious. Every horizontal vector field in r-‘(U)  is a linear
combination of XT,  .  .  .  , X: with real valued functions as
coefficients. It follows that every function f of the form (Ik)  is a
linear combination of functions of the form (II,), s g k,  with
real valued functions as coefficients, in a neighborhood of u. It is
now clear that, if the assertion holds for k - 1, it holds for k.

i$‘e now prove that g’(u)  is a subalgebra of g by establishing the
relation [m,(u), m,(u)] c n!k+,,Z(u)  for all pairs of integers k and
s.  In view of Lemma -2, it is su,fficient  to prove that, for every func-
tion f of the form (I,) and every function g of the form (II,), the
function [f ,g](u)  = [f(u), g(u)] is a linear combination of
functions of the form (I,), r I k 1.  s + 2, with real valued func-
tions as coefficients. The proof is by induction on 5.

Let s = 0 and let f (u) = fi,,(X, Y), where Xand Y are Kbri-
zontal vector fields.. Since g is of type ad G, we have, by (2) of
Lemma 1,

“[QI(X, yj,  !+)I = v([X  Yl)u  * if.,
On the other hand, we have

u([X,  Y]),,  . g = [x,  Kit,  . g --.  N-K  Yl). . s
= x,,(Yg)  - LVi4  - 4X, Yl)u  . g>
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where h[X, Y] denotes the horizontal component of [X;  Y]. The
functions X(  Yg) and Y(Xg)  are of {he  form (I,,,)  and the function
h( [X, Y])g is of the form (Ik+J.  This proves our assertion for s = 0
and for an arbitrary k.

Suppose now that our assertion holds for s - 1 and every k.
Every function of the form (1J can be written as Xf,  where f is a
function of the form (IS-J and X is a horizontal vector field. Let
g be an arbitrary function of the form (I&).  Then

E&f,  &)l = urf,  91)  - rf (4,  X”‘a
The function [f,  Xg] is a linear, combination of functions of the
form (I,), r 5 k + s + 1, by the inductive assumption. The
function X[f,  g] is a linear combination of functions of the form
(IJ,‘r  I s’+‘k  “f  2, aho  by the inductive dssurhption,‘  Thus, the

is a l&&r  combination of func$ons  -%the  form

5 QED.

PROPOSITION 10.5. The injnitesimal holonom3  groups have the
following properties : ’ h

(1) W(u)  is a connected Lie subgroup of the local  .,holonomy  group
@‘*(u>;

(2) W(ua) = ad (a-‘)(@‘(~))  and g’(ua)  = ad (a-‘)($(tf));
(3) For each.integer  m, the set (r(u) E  M; dim W(u)  I m} is open;
(4j If W(u)  = a*(u)  at a point u, then there exists a connected open

neighborhood U of x = r(u)  such that W(v) = <D*(v)  = W(u)  =
cP*  (u) for every v E P(u, U)  .

Proof . (1) is evident from Proposition 10.4. (2) follows from

LEMMA' 1. For each k, we have mk(ua) = ad (u-l) (m,(u));
Proof of Lemma 1. The proof is by induction on k. The c&e,

k = 0 is a consequence of the fact that 0 is of type ad G. Suppose
the assertion holds for k - 1. By (3) of Lemma 1 for Proposition
10.4, every function of the form (I1J  is of type ad G. Our lemma
now follovirs from Lemma 2 for Proposition 10.4.

(2) means that W(u)  can be considered as a function on M. (3)’
is a consequence of the fact that, if the values’of  a finite number
of functions of the form (i,)  are linearly independent at a point u,
then they are linearly independent at every point of a neighbor-
hcod of u. Note that (3) means that dim Q’(u),  Considered as  a
function on M, is lower semicontinuous. To p&e (4),  assume



Q’(U)  = (I)*(U)  at a point 21. Since dim a’(u) is lower semicon-
tinuous and dim O*(uj  is upper semicontinuous [cf. (5) of
Propos.ition 10.11, the point x = T(U) has a neighborhood Ii  such
that

dim O’(v)  2 dim (P’(U)  and dim’@*(v) Z< dim @p*(u)

for L’ E  r-l(U).

On the other hand, O*(u) 2 O’(u)  for every‘;  E  r-l( I/‘).  Hence,

dim (D*(z))  = dim a’(74  = dim Q*(U)  = dim a’(u)

and, consequently, O*(U)  = Q’(Z) for every 2 E  n-l(I.rj.  Applying
Theorem 10.3 to P 1 li, we see  that @f,o(u,  U) = (D*(U)  and
V(v,  U) = Q*(c).  If 2 6 P(u,  r-j,  then (l)O(u,  U) = iDO(i,,  I’) so
that Q*(U)  .= @*(zl).  l QED.

'rHEORE.Zl  10.6. rf 1c im cl)‘j~,‘s  i.! constant in a neighborhood of u in P,
thm W(u) = a)*(u).

Proof . We first prove the existence of an open neighborhood
lJ of x =- +u)  such that ~‘:II: := !I>‘(“)  for every c c P(u,  U). Let

fi>  * - . ,l* be a finite number of funciions  of the form (II,) such
that f; (U),  . . . ,J,(u)  form a basis of g’(z4).  At r\rery  point u of  a
small neighborhood of u,fi(c),  . . . ? fs( z*)  arc linearly independent
and, by the assumption, they form a basis of g’(uj.  Sincef,,  . . . , fs
are of type ad G,  fi(~~o),  .  . . ,f;(~.‘a)  fbrm a basis of g’(va)  =
ad (~l)(g’(~)).  This means that there exists a neighborhood u of
x := Z$U) such thatfi(ll),  . . . J*(U) form a basis of g’(u) for every
point u Q ,r;l(U).  Now, let v be an arbitrary point of P(u,  c’)  and
let Us, 0 ~2, t 2 1, be a horizontal curbe Tom u to v in r-‘(U)  so
that u = u;  and  v = 14~. We may assume that uf  is differentiable;
the case where U, is piecewise differentiable follows easily. Set
~~~a;eJ;(&),~ i = 1, . . . , J,  and X = zi,. Since X is horizontal,

(6ildt)  f * (LK) (‘1)  ’ Cl’(‘t)> i = l,...,s.

Sinceg,(t),  . . . , g,<(t)  form a basis for 9’(u1),  dgJdt  can be expressed
by

(dg,/dt), = q_,  ;ljj(t)gj(t),

where &(t)  are continuous functions of t. By the lemma for
Proposition 3.1, there exists a unique curve (aij(t))i,i=l,  . . .,$  in
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GL(s; R) such that

daij/dt  = Xi=1  AikU,  and ~z~j(O) = 6ii.

(Note that (Alj(t)) E  gl(s;  R) cofiesponds  to Y, E  T,(G) in the
lemma for Proposition 3.1.) Lets (bij(t)) be the inverse matrix of
(atj(t))  so that

dbijldt  = -X,3-1  bikakj..
Then

Since bij(0) = Bij,  we have

Ejzl  b,,(t)g,(t)  = g,(O).

This means that g’(uJ = g’( u and, in particular, g’(y) = g’(u).)
Taking CT sufficiently small, we may assume that

g*(u)  = Y*(4  = g’(4  = m,(v) for every v E  P(u, U).

By ‘jTheore!m 8.1, the Lie algebra of @O(u,  U) is spanned by all
m,(v),  v E P(u, U). A fortiori, g*(u) is spanned by all g’(u),
v E  P(u,  U). Since--g’(v) = g’(u) for every v E  P(u,  Z;)  as we have
j;s;  ;hown, we may conclude that g*(u) = g’(u) and @*k@;

‘U.

COROLLARY 10.7 . Ifd im CD’(u)  is constant on P, then  @O(u) =
a*(u)  = W(u).

Proof . This follows from Theorems 10.3 and 10.6. QED.

THEOREM 10.8. For a real analytic connection in a real analytic
~~.jk+  jibre bundle P, we have @O(u)  = O*(u)  = W(u)  for every

.
Proof. We may assume that P = P(u) and, in particular, P

is connected. It suffices to show that dim a’(u) is locally constant;
it then follows that dim a’(u) is constant on P and, by Corollary
lO.$y  that @O(u)  = (D*(u)  =.  CD’(u)  for every u c P. Let 9,  . . . , xn
be a real analytic local coordinate system with origin x = n(u).
Let U be a coordinate neighborhood of x given by xi (xi)2 < a2
for some a > 0. We want to show that dim Q’(u)  is constant on
n-l(U).  Let Xi  = a/Jxi  and let X: be the horizontal lift of Xi.
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For any set of numbers (a’,  . . . , an) with Ci  (U~)~ = 1, consider
the vector field x = Ci aiXi on U. Let xt be the ray given by
xi(t)  = a’t and let ut  be the horizontal lift of xt such that u = uO.
We prove that g’(u) = g’(uJ for every t with It]  < a.

Consider all the functionsf  of the form (II,), k 2 0,

f zxj:.. * qwm 49)
defined on +-i(U).  We skt  h(t) = f (uJ. Then the functions h(t)
are analytic functions oft. For each t,, with ]ts]  < a, there exists
6 > 0 such that all the functions h(t) can be expanded in a common
neighborhood It  - t,,]  < 6 in the Taylor series:

h(t)  = x,“4J  $ (t - t,)“h(“yt,)

.h@,)  = z,--,-& (to - tph’yt).

If X* is the horizontal lift of X, then we can write h’(t) = Xu:f,
h”(t) = x:,(x*f) and so on. The fact that there exists such a
6 common -to all h(t) follows from the lemma we prove below.
Now, if It - toI < 8, then all h(“)(t)  belong to g’(ut,). The first
power series shows that g’(uJ  is contained in g’(yJ.  Similarly,
the second power series shows that g’(uJ  is contained in g’(uJ.
This means that g’(uJ = g’(ut,) for It - t,,(  < 6. The standard
continuation argument shows that g’(u,)  = g’(u) for every t with
ItI  < a, proving our theorem.

L EMMA. In a real analytic mantfold,  let xt  be the integral curve of a
real analytic vectorjeld  X such that x0  = x, where X, # 0. For any real

’ analytic function g and for. a jinite number of real analytic  vector fields
Xl,  - * * 3 X,,  consider all the functions of the form

f (4 = (-q *. * * Xi,d (4

h(t) = f  (xt);

where j,, . . . , j,  are taken free&  from 1, 2, . . . , s. Then there exists
6 > 0 such that the functions h(t) can be expanded into power series in a

-common  neighborhood ItI  < 6 asfollows: h(t) = 8,“=o$  h(“‘)(O).
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Proof. Since X, #‘O, we may take a local coordinate system
xl, . . . , xn such that X = a/ax1  and x,  = (t, 0, . . . , 0). in a
neighborhood of x. The preceding expansions of h(t) are nothing
but the expansions bff (x) into power series of x1.  Each Xi  is of
the form Xi  = Z,fir  * a/&i.  Since f and fij  are all real analytic,
they can be expanded into power series of (xl, . . . , x”) in a
common neighborhood ]xi[ < a for some a > 0. Our lemma then
follows from the fact that iff, and fi  are real analytic functions
whit

“h
can be expanded into power series of x1,  .  .  . , xn  in a

neigh ‘orhood [xi]  < a; then the functions f&  and afi/axi  can be
expanded into power series in the same neighborhood. QED.

The results in this section are due to Ozeki [l].

11. Invariant connections

Before we treat general invariant connections, we present an
important special case.

THEOREM 11.1. Let G be a connected ‘Lie group and H a closed sub-
group. of G. Let g and b be the Lie algebras of G and H respectively.

(1) If there exists a subspace  m of g such that g  = IJ + m (direct sum)
and ad (H) m = m, then the t)-component  w of the canonical l-form 6
qf G (cf $4  of Chapter I) with respect to the decomposition g = @ + m
dejnes  a connection in the bundle G(G/H,  k)  which is invariant by the left
translations of G;

(2) Conversely, any connection in G(G/H,  H) invariant by the left
translations of G (ifit  exists) determines such a decomposition g = t,  + m
and is obtainable in the manner described in (1);

(3) The curvature form R of the invariant connection dejned by w in ( 1)
is given by

Q(X,  y> = -Hi  q (b-component  of -*TX,  Y] E g),
where X and Y are arbitrary left invariant vector jelds  on G belonging to
m;

(4) Let g(e) ,be the L ie algebra  of the holonomy group Q(e) with
reference point e (identity element) of the invariant connection dejned in ( 1).
Then g(e) is spanned by all elements of the form [X;  Ylh, X,Y  z m.

Proof. (1) The proof is straightforward and is similar to that of
Proposition 6:4.  Under the identification g m T,(G), the sub-
space m corresponds to the horizontal subspace  at e.
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(2) Let w be a connection form on G(G/H,  H) invariant by the
left translations of G. Let m be the set of left invariant vector field?
on G such that o>(X)  = 0. It is easy to verify that,g  = b + m is
a desired decompositipn.

(3) A left invariant vector field is horizontal if and only if it is
an  element of nt.  Now, (3) follows from Corollary 5.3. ,’

(4) ‘Let g1  be the subspace  of g  spanned by the set {n;(X,  Y) ;
X, YE m):  Let g2  be  the  subspace  of g  spanned  by  the  se t
($2,(X,  .Y) ;  X, Y E m and  u  E G}. By The&em  ’ 8.1, wd have
g1  c g(e) c g,. On the other hand, we have g 1 =  g,iissz,(Y,  Y )  =
S&(X,  Y) for any X, YE m and u E G. Now, (4) follows from (3).

QED.
Remark. (1) can be considered as a particular case of Proposi-

-tion 6.4. Let P = (G/H) x G be the trivial bundle over G/H with
group G. We imbed the bundle G(G/H,  H) into P by the mapping
f defined by

f(u)  = b+)> 43 UEF;
where n:  G + G/H is the natural projektion.  Let v be the form
defining the canonical flat connection (cf. $9) of 9. Its e-corn-
ponent, restricted to the subbundle G(G/H,  H), defines a connec-
tion (Proposition 6.4) and agrees with the form o  in (1).

Going back to the general case, we first prove the’ following
proposition which is basic in many applications.

PROPOSITION 11.2. Let qt be a I-parameter group of automorphisms
of a principalfibre bundle P(A4,  G) and X the vectorjeld  on P induced by
vl.  Let I3  be a connection in P invariant by qt. For an arbitrary point u.
of P, we dejine  curves ut,  xt,  vt  and a, as follows:

ut = Yt(Uo), Xt  = +4,

vt  = the horizontal lift bf xt  such that vO  = uo,

ut = vtat.

Then n,  is the l-parameter subgroup of G generated by A.= w,,(X),
where o is the connection form of F.

Proof. As in the proof of Proposition 3.1, we have

co(&)  =  ( a d  (a~pl))o(tit)  + a;‘&.  .

Since v,  is horizontal, we have w(ti,) = a;‘&. On the oth&r  hand,
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we h a v e  8, =  qt(XIt,) a n d  h e n c e  ~(2~) =  w(X,J  =  A ,  s i n c e
the connection form q  is invariant.by pl. Thus we obtain a,‘ci,  =
A. QED.

Let K be a Lie group  acting on a principal fibre bundle
P(M:  G) as a group of automorphisms. Let u,,  be an arbitrary
point of P which we choose as a reference point. Every element of
K induces a transformation of ,\I  in a natural manner. The set J
of all elements of K which fix the point x0 = n(u,)  of 31 forms a
closed subgroup of K, called the isotropy subgroup of K at x,,. We
define a homomorphism R: J + G 3s  follows. For each j . Z  J,
ju,  is a point in the same fibre as u.  and *hence  is of the form
ju,  = u,a with some a E G. We define %(jj = n.  If j, j’ c J, then

uoKij’i  =. (jj’) u.  = j(uo%(j’))  = (ju,,)%( j’)

= (u,i(j))%(,j’)  = z+(%(,j)%(j’)).

Hence, A(jj’)  = A(j) which shows that 1: J -+ G is a homo-
morphism. It is also easy to check that 1. is diffeyenti,able.  The
induced Lie algebra homotiorphism  i -* g will be also denoted by
the same 1. Note that 1  depends on the choice of u,;‘the  reference
point u.  is chosen once for all and is fixed throughout this section.

PROPOSITION 11.3. Let K be a group of automorphisms of P(.\f,  G)
and. I‘ a ‘connection in P invariant by K. 11,‘e  deJine  a linear rnn/)~ing

c

where A7  is the vectorjeld  on P induced 4))  X. Then

( 1 )  .1(X)  =  i.(X) for Xr  j;
(2) h(ad  (j)(X)) = ad  (n(j)) (A(X)) Jbrj  E J and X E 1,

where ad (j) is the adjoint  representation of J in f and ad (i.(j)) is that
of Gin g.

Note that the geometric meaning of A(J7) is gi\cn  by Proposition
1 1 . 2 .

Proof. (1) We apply Proposition 11.2 to the l-parameter ”
subgroup y,  of K generated by X. If XE j, then the curve xt =
r(~l~(u”)) reduces to a  s ingle point  x0 == VT(U,,).  Hence \VC’ have
am  = uoi.(cp,).  Comparing the tangent vectors of the orbits
pt(u,)  and  uoil(y;,)  a t  uo,  we obtain ;Z(X) = n(X).
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(2) Let X l f and j E  J. We set Y = ad (j)(X). Then Ygenerates
the I-parameter subgroup jv,  j-1 which maps u,, intojq,  j-l(u,)  =
idk&.P))  = j&i-p,u,). It follows that yU’u, = j(Ryj-&,),
Since the connection form w is invariant by j, we have

muo(  0 = ~,o(j(R,j-~Juo)  1 = ~j-~uo(&~j-~Juo)

QED.

PROPOSITION 11.4. With the notation of Proposition 11.3, the
curvature form R of F satisfies the folloving  condition:

2f&(X,  P)  = [A(X), A(Y)] - h([X,  Y]) for X,Y  B f.
Proof. From the structure equation (Theorem 5.2) and

Proposition 3.11 of Chapter I, we obtain

2QM  9) = 2dw(Z 9) +.I4),  4n,l
= &o(F))  1 P(iJ(X)j  - if&r,  81) + [w(X),  ci(Fji.

Since m is invariant by K, we have by (c) of Proposition 3.2 of
Chapter I (cf. also Proposition 3.5 of Chapter I)

&J(P)) - 4x f7) = k4m = 0,
27(oJ(X))  - oJ([F,  81)  = (Lpw)(X)  = 0.

On the other hand, X -+ X being a Lie algebra homomorphism,
we have

= [NW,  NV1  - NV, Yl).
QED.

We say that K actsJibre-transitively on P if, for any two fibres of P,
there is an element of K which maps one fibre into the other,
that is, if the action of K on the base M is transitive. If J is the
isotropy subgroup of K at x,,  = n(uO)  as above, then M,ls the
homogeneous space Kl J.

The following result is due to Wang [l].

THEOREM 11.5. If a connected Lie group K is a Jibre-transitive  auto-
morphism group of a bundle P( ‘$1,  G) and ;f J is the isotropy subgroup of
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K at x0  = I, then there is a‘  1 : 1 correspondence between the set of g-
invariant connections in P and the set of linear mappings A: t -+ g
which satisfies ti two conditions in Proposition 11.3; the correspondence
is given by

NW  = +,(& for X E t,

where 8 is the vector field on P induced by X.
Proof . In view of Proposition 11.3, it is suffkient  to show that,

for every A: f + g satisfying (1) and (2) of Proposition 11.3,
there is a K-invariant connection form o) on P such that A(X) =
wU,(s)  for Xc  f.  Let X* E  T,,(P).  Since K is fibre-transitive, we
can write

uo  = kua = k 0 R,u

k  0 R,X*  =  x,,,  + A&

where k E  K,‘a  E  G, Xc  k and A* is the fundamental vector field
corresponding to A l g. We then set

0(X*.)  = ad (a)(A(X)  + A).

We first prove that- OJ( X*) is independent of the choice of X and
A. Let

xv, + “ l?o = r,,  + R,, w h e r e  YE1 a n d  UEg,

so that x,,O  - p,,O  = &,  - A:,.  From the definition of 1: i - g,
it follows that J(X - Y) = B -~ A. By condition (1) of Proposi-
tion 11.3, we have n(X - Y) = A(X - Y) = A(X) - A(Y).
Hence, A(X) + A = A(Y) + B.

We next prove that  w(X*)  is independent of the choice of k
and a. Let

U O = kua = k,ua, (k,eK a n d  a,t-G),

SO that ‘k,k-‘u,  = u,a;‘a and k,k-’ E  J. We set j = k,k-‘.  Then
A(j) = !a;‘a.  We have

k, 0 Rh,X*  L jk 0 R~~(j-I,X*

= j?  Raj-l,(k  * R,,X*)  =j  c R,Cj-I,(X,,O  + A:,j.
By Proposition 1.7 of Chapter I, we have

j ’ R~cj-l,(~"O) = j(8,01(j-1~)  = ZUo, where 2 = ad (j)(X), i



ad (flJ(A(Z)  -t C) = ad (ar)(A(ad  (j)(X)) -1 ad (I.(j))A)

= ad (&)[ad  (I(j))(R(X)  + A)]

= ad (a) (A(X) + A).

This proves our assertion that w(X*)  depends only on X*.
We now prove that w is a connection form. Let X* E  T,,(P) and

z10 = kua as above. Let b be an arbitrary element of G. We set

Y *  =  R,X*  E T,(P), where v = ub,

so that u,,  = kub(b-la)  = kv(b-la).  We then have

k 0 R,-I,Y*  = k 0 R,-I,R,X* = k 0 R,X”  = (XC!,  $-  A,**)

and hence

o)(R,,X*)  = w(Y*)  = ad (b-%z)(il(X)  + Aj = ad (b-l)(,(X*)j,

which shows that w satisfies condition (b’) of Proposition 1.1.
Now, let A be any element of g and let z+,  = kua. Then

k c R,,(A,*)  = R,  0 k(A:)  = R,(A,*,)  = B& where B = ad (a-‘) (A).

Hence we have
w(Az)  = ad (a)(B) = A,

which shows that o satisfies condition (a’) of Prdposition  1.1.
To prove that o is differentiable, let ur be an arbitrary point of

P and let u,, = k,u,a,. Consider the fibre  bundle K(M,  J),  where
Al  = K/J.  Let 0: U.- K be a local cross section of this bur$le
defined in a neighborhood U of T(u,)  such that u(n(uJ)  = k,. For
each u 6 n-‘(U),  we define k E  K and u.r  G by

k  =  a(+)) and u,, = kua.

Then both k and a depend differentiably on u. We decompose the
vector space f into a direct sum of subspaces: f = j + m. For ,an
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arbitrary X* l T,(P), we set

k o R,(X*)  = x,  + A$ where XE m.

Then both X and A are uniquely determined and depend dif-
ferentiably  o n  X*. Thus 0(X*)  = ad (a)(A(x)  + A) depends
differentiably on X*.

Finally, we prove that o is invariant by K. Let X* f T,(P)  and
u,, = kup. Let k, be  an arbitrary element of K. Then k,rX*  E  TkI,(P)
and uO  = kk,‘(k,u)a.  Hence,

kkrl  o R,(k,X*) =  k  0 R,(X*).

From the construction of w,  we see immediately that o(k,X*)  =
aI(Xi). QED.

In the case where K is fibre-transitive on P, the curvature form
fi, which is a tensorial form of type ad G (cf. $5) and i.~ invariant
by K, is completely determined by the values sZUO(x,  Y), X,Y E f.
Proposition 11.4 expresses S&(X, a) in terms of A. As,, a con-
sequence of Proposition 11.4 and Theorem 11.5, we obtain

COROLLARY 11.6. The K-invariant connection in P de&zed  by h is
fratifandonbifA:f -+ g is a Lie algebra homomorphism.

Proof . A connection is flat if and only if its curvature form
vanishes identically (Theorem 9.1). QED.

THEOREM 11.7. Assume in  Theorem 11.5 that f admits a subspuce
m such that f = i + m (direct sum) and ad (J)(m) = m, where
ad\(J) is the adjoint  representation of J iti  f.  Then

(1) There is a 1 : 1 correspondence between the set of  K-invariant
conrte&ns  in P and the Set of linear mappings A,,,: m --+  g  such that

Mad  (i)(X))  = ad (W)(A,,(X)) forX  E m a n d  j d  J ;

the correspondence is give! via Theorem .l  1.5 by.

A(X)  =
i
A(X) if Xc j,

R,,(X) ifXe  m.

(zj The curvatureform  R of the K-invariant connection dejined by A,,
satisfies the following condition :

2QUO(R,  P) = PM-V,  L(Y)1  - 4,([K  Yl,)  - 4[X,  YIJ
for X, Ye m,
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denote the hdrizontal components of x and p respectively, m,
coincides with ntO(u,).

We need the following lemmas.

LEMMA 1. IfY is a horizontal vector field on P and 8 is the vector
jield on P induced by an element X off, then [x,  9-j  is horizontal.

Proof of Lemma 1. By (c) of Proposition 3.2 of Chapter I
*(cf. also Proposition 3.5 of Chapter I), we have

a4YH  = WP)(Y)  + 4x w
Since o(Y)  = 0 and Law  = 0, tie have o([x,  Y]) = 0.
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where [X, Y],,,  (resp. [X, Y]J denotes the m-component (resp.  j-com-
ponent) ofrX,  Yl E f.

P&of, -Lkt i: f -+ g be a linear mapping satisfying ( 1) and (2)
of Proposition 11.3. Let A, be the restriction of A to m. It is easy
to see that A - A, gives a desired corrtspondence.  The statement
(2) is a consequence of Proposition 11.4. QED.

In Theorem 11.7, the K-invariant connection in p defined by
A, = 0 is called the canonical connection -(with respect  to the
decomposition t = j + m).

Remark. (1) and (3) of Theorem 11.1 follow from Theorem
11.7 if we set P(M,  G) = G(GfH,  H) and K = G; the invariant
connection in Theorem 11.1 is the canonical connection just
defined.

Finally, we determine the Lie algebra of the holonomy group
of a:  K-invariant connixtion.

THEOREM 11.8. With ihe  same assumptions and notation as in
Theorem 11.5, the Lie algebra g(uJ  of the holonomy group a(~+,)  of
the K-invariant connection dejned by A: 1 --+ g is given by

m.  + [A(f),  mol  + CW [A(f),  moll  + * . -,
where m,  is t9te  subspace  of g spanned by

{CA(X),  A(Y)]  - NC&  YI); x,  Ye  f!.

Proof . Since K is fibre-transitivr:  on P, the restricted holonomy
group @O(uo)  coincides .with  the infinitesimal holonomy group
@‘(uo)  by virtue  of Corollary 10.7. We define a series of sub-
spaces mk, k = 0, 1, 2, . . . , of g as follows:

ml  = m.  + [A(f),  mol,  s
m2 = m.  + [A(f),  mol  + bV]i:  P(f),  moJl

and so on. We defined in $10 an increasing sequence of subspaces
m,(u,),  k = 0, 1, 2, . . . , of g. Since.the union of these subspaces
mk(uo)  is the Lie algebra g’(uo)  of the infinitesimal holonomy
group @‘(u,),  it is sufficient to prove that mk = mk(uo)  for
k = 0, 1, 2, . . . .

By Proposition 11.4, the subspace  m,  is’spanned by {fi,,&x,  9) ;
X, Y c f}. Since f&(2,  y) = !&(/&,  ha),  where h,y and hy

LEMMA  2. Let V, W, Y,, . . . , Y,  be arbitrary horizontal vector

jields  on P and let 8 be the vectorjeld  on P induced by an element X of t.
Then

x,,<  y, *: * Yl&W2  W)> E m,(u0)-

Proof of Lemma 2. We ,have

%,(Yr  - - ’ ww  W))

= (Yr)u,(a4  * * * ww  WI) mod mAuoh

since [8,  Y?] is horizontal by Lemma 1 ‘and [x,  Y,l+,(  Yrel  * * *
Y,(!Z!(  V, W))) is in m,(u,).  Repeating this process, we obtain

x,,(r,  * * *w-w  W)H

= Wu,(Ll  * * * um(K 3)) mod m,(u,).

By the same argument as in the proof of Lemma 1, we have

X(cqv,  W)) =  (LRR)(V,  W) + a&K  fq,  W )  + Q(K Emw
Since L&J = 0, we have

uG’)uO(L1 * ** uw(K  W))

= (yJ”o(L1  * ; * YlW[X J% J,fw
+ mJJ:-1  * * * w4~~ [X WIN*

The two terms on the right hand side belong to m,(u,)  as [x,  V]
and [8,  W] are horizontal by Lemma 1. This completes the
proof of Lemma 2.

Let Xi  = a/&i,  where x1,  . . . , x”  is a local coordinate system
in a neighborhood of x0  = n(u,). Let XT  be the horizontal lift of -
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Xi. Let
f=Xp * q(qxt,  x:))

be a function of the form (II?) as defined in $10. If hii?  and v8
denote the horizontal and the vertical components of x respec-
tively, then Lemma 1 for Proposition 10.4 implies

wu40f  = - (UX)“of  + -Qf = ~c%o(8);,f  bJ1  + x4J
Since xuof  E m,(u,)  by Lemma 2 ar$  ~ih&‘;,!J?)  = A(X), we
h a v e

vau,f  = bw%f  0%>1 :mod nt,(u,,).

Assuming that m, = tn,(u,)’  fdr  all r i s,  we shall show that
m, = m,(u,). Since K is fibre-transitive on P, every horizontal
vector at u,, is of the form (hX)+ for some Xc f.  Hence, m,(u,,)  is
spanned by m,-,(q)  and the set of all (hT?),,f,  where X E f and j
is a function of the form (II,-,).  On the other hand, .m, is spanned
by m,-,  = m,-,(u,)  and by [A(f),  ms-J.=  [A(f),.m,-,(v,,)]i.In
other words, m, is spanned by m,-,  = m,-,(u,)  and the s&t  Ofall
[A(X), f (z&J],  where X E  f and f is a function of the form (Us-J.
Our assertion m, = m,(u,)  follows from the congruence (hX),o;fr
DW’),f (41.  mod  ms-&J. QED.

Remark. (4) of Theorem 11.1 is a corollary to Theorem 11.8
(cf. Remark made after the proof of Theorem 11.7).

,.‘Y  *

.;I
,
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CHAPTER III

Linear and Affine C&xnections

? 1.. Connections+in  a rdctor b u n d l e
/ 1. ,.

: 6e.t  F be either,the  real numb&  field,R  or the complex number
field C, F’”  the vector space of all m-tuples of elements of F and
GL(m;  F) the group ofall  m x m non-singular matrices with entries
from F. The group CL(m; F) acts on F”’ on ‘the left in a.natural
manner; if a = (a;)  E  GL(m;  F) and
then at = (Cj  (zjllj,  . . . , Cj aytj)  E  F”.

5 = (El,..,  . ..,,Em)  6 F’“,

Let P(M,  G) be-a principal fibre bundle and p a representation
of G into GL(m;  F). Let E(M,  F”,.G,  P)  be the associated bbndle
with standard fibre F’”  on which G azts through p.  We call E a real
or complex uector  bundle over M according as F = R or F = C.
&&,fibre  T;~(x),  X.E  M, of: E has the structure of a Vector  space
such,  that every u E  P with. T(U),. = s,  considered as a mapping of

~..[“Y,$Jf~  onto 7f E!(X), is a liqear isytiorphism  of F”’ onto nil(x).  Let
LciL’i?,;! :( Q~F  be the set of cross sections 9: hl  - E; it forms a vector space

- u%dTJf:.2( over F (of infinite dimensions. if m 2 1) with addition and scalar
’ 7 multiplication defined byp ._/

We may also consider S as a module over the algebra of F-valued
functions; if I is an F-valued function on M, then

(hp)(x)  = lb(x)  - y(x), q E  s, c i n4.

Let l? be a connection:in  P. We recall how l? defined the notion
of parallel displacement of fibres of E in $7  of Chapter II. If
7 = Xt, a 5 t s b, is a curve in M and T*  = uf is a horizontal

113
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lift of r to P, then, for each’fixed f l F”,  the curve 7’ = u,[  is, by
definition, a horizontal lift of 7 to E.

Let p be a section of E defined  on T = SC,  so that ~~  0 v(xJ  = xt
for all t. Let .$ be the vector tangent to T at x,.  Then, for ,each
fixed t, the covariant derivative V,J.J  of q~  in the direction of (or with
respect to) &  is defined by

where $h:  ril(x,+,)  -+ nsl (x2) denotes the parallel displace-
ment of the fibre 7ri1(xl+J along 7 from xtfh  to q. Thus, Vdtg,  E
IT;’  for every t and defines a cross section of E along T.  The
cross section q~  is parallel, that is, the curve v(q)  in E is horizontal,
if and only if Vft~ = 0 for all t.  The following formulas are evident.
If v and w are cross sectiops of E defined on T = q, then ’

h,(P  -G Y) = viy + v*y.

If I is an F-valued function defined on T,  then

Y#?4  = %) * V*f + (44 ’ 4%).
The last formula follows immediately from

Let X E  T,(M) and p? a cross section of E defined in a neighbor-
hood of x. Then the covariant derivative V,pl  of q~  in the direct&m  of X
is defined as follows. Let T = xf, --E 5 t d E, be a curve such that
X = .2,.  Then set

vxcp  = v*p*
It is easy to see that V:sq~  is independent of the choice of T.  A
cross section p7 of E defined on an open subset U of A4 is parallel
if and only if V se, = C, for all X E  TZ( U) , x Q U.

PROPOSITI?N  1.1. Let X, Y t T,(M) and let Q;:  and y be cross sections
of E dejined  in a neighborhood of x. Then

(1)  v x+rP  = v,pl + v,+J;
(2)  WP + Y)  = VA-v  + VxY;
(3) V7,yp  = 1 * Ti,y~, where A f F;
(4) V,($)  = 1.(x)  . V,p,  + (X1)  . v(x), ihre  1 is Qn F-valued

function dejned in a neighborhood of x.
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Proof . We proved (2) and (4). (3) is obvious. Finally, (1) will
follow immediately from the following alternative definition of
covariant differentiation.

Suppose that a cross section ‘p  of E is defined on an open subset
U of M. As in Example 5.2 of Chapter II, we associate with p an
F”-valued  function f on r-‘(U)  as follows :

Given XE T,(M), let X* E T,(P) be a horizontal lift of X. Sincef
is an Fm-valued function, X*fis  an element of F”’ and u(X*f)  is
an element of the fibre TE’ (x) . We have .

L EMMA. v,g,  = u(X%f). ,
Proof Of hnma,.  Let  7 = Xt, --E 5 t zz E, ,be  a curve such

that X = 5..  Let T* = U; be a horizontal lift of 7 such that .
r.+  -= u so that X* = ~2,.  Then we have

I

x*f =%h! uw -f (43 = 1;1$  Wb(xJ)  - ePw1
and

u(x*f)  = fry  hi [u O %?MX*N  - d41.

In order to prove the lemma, it is sufficient to prove

~Gw)  =‘u o %-xb(~*))~

Set [ = u;l(p)(xJ).  Then u,t  is a horizontal curve in E. Since
Uh~ = PM, 97(x/J is the element of E obtained, by the parallel
displacement of u,#  = u 0 tl;l(~)(x~))  along 7 from x,,  to ?c,,.  This
implies Tg(y(Xh))  = u 0 r~;~(q(x,J)?  thus completing the proof of
the lemma.

Now, (1) of Proposition 1.1 follows from the lemma and the
fact that, if X,Y  E  T,(M) and X*,Y* . E  T,,(P)  are horizontal lifts of
X and Y respectively, then X* -k Y* is a horizontal lift of X + Y.

\oyED.

If 9, is a cross section of E defined on M and X is a vector held
on M, then the covariant derivative yayp  of p in the direction of (or
with respect to) X is defined b)

-f-
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Then, as an immediate consequence of Proposition 1.1, we have

PROPOSITION 1.2. Let X and Y be vectorjelds  on M, v,andy  cross
sections of E on M and 1 an F-valuedfunction on M. Then

, - (1) v x’+pQ)  = vsa,  + v,y;
(2) Y.dg, + Y) = VXY  + %ts
(3) vnyp  = A * v,cp;
(4;  Y&d = A* VXVJ  + (jwpl.

Let X be a vector field on M and XT  the horizontal lift of X,  to
P. Then covariant differentiation V, corresponds to Lie differ-
entiation L,. in the following sense. In Example 5.2 of Chapter
II, we saw that there is a 1 :I correspondence between the set of
cross sections q: M --+ E and the set of F”-valued  functionsfon P
such thatf(ua)  = a-l(f(u)), a E  G (a-’ means p(f-‘)  c GL (m; F)).
The-correspondence is given by f(u) = u-‘(v(~(u))),  u E  P. We
then have

PROPOSITION 1.3. If v: M - E is a cross section andf:  P -+ F”
is the corresponding function, then X*f is the function corresponding to the
cross section V xv.

Proof. This is an immediate consequence of the lemma for
Proposition 1.1. _:  , . , QED.

A Jibre  metric g in a vector bundle E is an assignment, to each
x E M, of an inner product go in the fibre r;‘(x),  which is differ-

. entiable in x in the sense that, if 9 and w are differentiable cross
sections of E, then- g&(v)(x),  y(x)) depends differentiably on x,
When E is a complex vectcr bundle, the inner product is under-
stood to be hermitian:

PROPOSITION 1’.4. If M is paracompact, every vector bundle ~,~zr$
M admits a jibre metric.

Proof. This follows from Theorem 5.7 of Chapter I just as the
existence of a Riemannian metric on a paracompact .manifold.
We shall give here another proof using a partition of unity. Let
{ Ui}ifr be a locally finite open covering of M such that rr;l(  Ui)
is isomorphic with Ui x F”* for each i. Let {si}  be a partition of
unity subordinate to {ui} (cf. Appendix 3). Let hi be a fibre
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metric in E 1 Ui = ngl(  Ui). Set g = Ci  sihi,  that is,
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d El, ZJ  = I;i s,(x)h”(Sl,  Ez) for Zr,5,  E  nil(~), XEM.

Sincelki}  is locally finite and si  vanishes outside pi, g is a well
defined fibre metric. QED.

‘. Givdk a fibre metric g in a vector bundle E(M, Fm,  G, P), we
construct a reduced Subbundle Q(M, H) of P(M, G) .as follows.
In the standard fibre F”  of E, we consider the canonical inner
product ( , ) defined by

(f, r)) = c,  &j for f = (61,.  . . , p>,  11  = (71,.  . . , rlmjh  R”,

(6, y) ~,=  Xi fiqi for 5 = (El, , . . , f”);r  = ($,  . . . , q”) E  C”.

Let’Q  ‘be the set of u; P such that.g(u(f),  u(q))  = (6, 7) for
f,?,r  E  Fm.  Then Q is a clased submanifold of P. It is ‘easy to verify
that Q is -a  reduced subbundle of P whose structure group H 6
given by

H = {a E G; p(a) E O(m)} if F .= R,

*
H = {a E G; p(a).e U(m)} ifF  - C,*-

where p is the representation of G in GL(m; F).
Given a fibre metric g in E, a connection in P is called a metric

connection if the parallel displacement of fibres of E preserves the
fibre metiic  g. More precisely, for every curve T = kt, 0 !Z  t 5 1,
of M, the parallel displacement n;‘(xO)  -+ ‘ITCH  along T is
isometric.

PROPOSITION 1.5.:  Let g .be  ..a jibre  m&c in a vector bundle
E(M, F”,-G,  P) an,d  Q(M,  @),  the reduced subbundle of P(M, G)
defined by g. A connection I’ in P is reducible to a connection I?’  in Q ifand
only. if r is a metric connection.

Proof . Let T = x1,  0 g t d 1, be a curve in M. Let 6,~ E  F’”
and u,, E.Q  with ~(u,,)  = x0.  Let T*  = u1  be the horizontal lift of 7
to P starting,from  u,  so that both T’  = ul(f) and T”  = ut(t,)  are
horizontal lifts oE.7 to E. If I is reducible to a connection I” in Q,
then ut  Q Q for all t. Hence,

d%(fL’%J(d)  = (f, I/) = g(ut(f), u*(v)),
proving  that I’ is a metric connection. Conversely, if I is a metric
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connection, then

s(4(8,  %(V))  = g(%(aY  %blN = (& r).

Hence, ut  E  Q. This means that I is reducible to a connection in
Q by Proposition 7.2 of Chapter II. QED.

Proposition 1.5, together with Theorem 2.1 of Chapter II,
implies that, given a fibre metric g in a vector bundle E over a
paracompact ma ifold K, there is a metric connection in P.

Let E(M,  F”l,  G, P)P b e a vector bundle such that G =
GL(m;  ;F).  Let
m x rn’? matrix

je gl(m;  F), Lie algebra of GL(m; F), be the

%
ch that the entry at the i-th column and ihe

j-th row is 1 and other entries are all zero. Then (E{;  i,j = 1, . . . ,
m} form a basis ‘of the Lie algebra gl(m; F). Let 0~ and Q be the
connection form and the curvature form of a connection P in P.
Set

w = Z:,,jwjE{, R = C,,j Q;E;.

It is easy to verify that the structure equation of the connection
I’ (cf. $5 of Chapter II) CT be expressed by

I dwj  L -C,wi  A f$  $-  Cl:, i,j = 1,. . . , m:“ ,1:.
,

Let g be a fibre metric in 4 and Q the reduced subbundle of P
defined by g. If P is a metric  connection, then the restriction of o
TO Q defines a connection in Q by Proposj@on  6.1 of Chapter II .
and Proposition 1.5. In particular, both i, and S& restricted’to Q,
take their values in the Lie algebra o(m) or u(m) according as

R or F = C. In other words, both ((0;)  and (Q;),  restricted to
are skew-symmetric or skew-hermitian according as F = R or

2. -Linear  connections

,Throughout  this section, we shall denote the bundle of linear
frames L(,‘II)  by P and the general linear group GL(n; R),
n:=dim4i,byG.

The canonical form 0 of P is the R”-valued  l-form on I’  defined
bY

O(X)  = u-‘(7(X)) for XE T,(P),
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where u is considered as a linear mapping of R” onto T,,,,,(M)
(cf. Example 5.2 of Chapter I).

PROPOSWION  2.1. The canonical form 0 of P is a tensorial 1 -form of
ppe (GL(n; R), R”). It corresponds to the identity transformation of the
tangent space T,(M) at each x E M in the sense of Example 5.2 of
Chapter-IX,

Proof. If  X is a vertical vector at u E  P, then r(X)  = 0 and
hence 0(X) = 0. If Xis any vector at u E  P and a is any element of
G = GL(n;  R), then R,X  is a vector at ua 6 P. Hence,

(R,*@(X)  =  0(R,X)  =  (ua)-‘(n(R,X))
= a-‘u-l(7r(X))  = a-‘(e(X)),

,V.hus  proving our first assertion. ‘The ‘second assertion is clear.
QED.

A connection in the bundle of linear’ frames P over M is called
a &ear  connection of M. Given a linear connection P of M, we
associate with each 6 z R” a horizontal vector field B(E) on P as
follows. For each u E  P, (B(Q)U is the unique horizontal vector at
u such that’r((B(E)),)  = u(i).  We call B(t) ‘the standard horizontal
vectorjeld  correspanding  to F. Unlike the fondamental  vector fields,
the standard horizontal vector lieids. depend on the choice of
connections.

PROPOSITION 2.2.. The standard horizontal vector Jialds  have the
following properties :

(1) Zf OisthecanonicalformofP,  thenB(B(Ej)  = 6 for i,Rn;’
(2) R,(B(t))  = B(a-lt)  for a E G and E E R”>
(3) rf  5  # 0, then B( 5)  ‘never vanishes.

_,

Proof. (1) is obvious. (2) follows from the fact that if X is a
horizontal vector at u, then R,(X) is a horizontal vector at ua and
r(R,(X))  = +F>.  To prove (3),  assume that (B(F)),‘  = 0 at some
point u E  P. Then ~(6)  = r((B(t)),)  = 0. Since u.: R? 7 T,,,,,,(M)
is a.linear  isomorphism, E‘  = 0. QED.

Remark. The conditions B(B(5))  = 6 and ~(B(tj)  = 0 (where
w is the connection form) completely determine B(5)  for each
E‘ER”;  .d.

PROPOSITION  2.3. IfA* is the fundamental vectorJield  corresponding
to A c 9  and ;f B(E) is the standard horizontal z!ector  field corresponding
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to [ E  Rn,  then
[A*,  WOI = w$L\ ‘\

where A6  denotes the image of 6 by A E g = gI(n;  R) (Lie algebra of all
n x &matrices)  which acts on R”.

Proof . Let at be the l-parameter subgroup of G generated by
A, a, = exp tA. By Proposition 1.9 of Chapter I and (2) of
Proposition 2.2,

Since .! + (B/t)),  is a linear isomorphism of Rn  onto the horizontal
subspace Q, (cf. (3) of Proposition 2.2),  we have

I,;::  [B(t)  - B(a;-‘[)I  = Bhirni  (E - a;‘[))  = B,(At).
-+

QED.
We define the torsion form 0 of a linear connection I’  by ;

0 = D8 (exterior, covariant clifferen&1,~&%~~~~

By Proposition 5.1 of Chapter II and Proposition 2.1, 0 is a
tensorial P-form on P of type (GL(n; R), R*)  .

THEOREM 2.4 (Structure equations). Let o, 0,  and Q  be the
connection foTtR,  the torsiwa  form and  the curvature. form -of a :lihear
connection r of M. T/&n /LII

1st Structure equation:
d0(x,  Y) = -&(x) i 8(Y) - co(Y)  .,6(x))  + 0(x,  Y),

2nd structure equation :
,

do&I’,  Y) s -$[w(X),  w(Y)].  + Q(X,  Y), ;.

where X, Y E  T,(P) and u E  P.
Proof . The second structure equation was proved in’Theorem

5.2 of Chapter II (see also $1).  The proof of the first structure
equation is similar to that of Theorem 5.2 of,Chapter  II. There
are three cases which have to be verified and the only non-
trivial case is the one where X is vertical and Y is horizontal.
Choose A E  g and [ E  R” such that X = A: and Y = B(t)..
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.Then  0(X,  Y) = 0, o(Y) * 0(X) = 0 and o(X) * 6(Y)  =
w(A*)  - W(5))  = -4, since w(A*)  = A and B(B(t))  = [.  On the
other hand, 2de(X, Y) = A*(e(B([)))  - B(t)(e(A*))  - 0([A*,
B(5)]) = --8([A*,  B(E)]) = -B(B(At))  = -A[  by Proposition
2.3. This proves the first structure equation. QED.

With respect to the natural basis e,, . . . , e, of R”, we write

8 7 pi Fe,, 0 = IZi  We,.

As in $1, with respect to the basis Ej of gI(n;  R), we write

w  =  &jwjEj,  sz =  .Izi,,cpz$

Then the structure equations can be written as

(1) dei  = ---I&  wj A 8’ + O’, i = l , * * *  , n,

(2) dwj = --I& WI  A w; + C$, i, j = 1, . . . , A.

Considering 8 as a vector valued form and w as a matrix valued
form, we also write the structure equations in the following
simplified form : .b

(1’) de = +oh e + 0

(2’) do  = --w A o + R. - :
In the next section, we shall give an interpretation of the .

torsion form and the first structure equation from the viewpoint
of affine connections.

THEOREM  2.5 (Bianchi’s identities),. For a linear connection, we have

1st identity: DO  = R A 8, thut  is,

300(x,  Y, 2) = hz(x,  Y) e(z)  + s2(Y,  2) e(x)  + ~(2,  x)  e(Y),

where X, Y,Z E  T,,(P).

2nd identity:  DSZ  = 0.

Proof. The second identity was proved, in Theorem 5.4 of
Chapter II. The proof of the first identity is similar to that of
Theorem 5.4. If we’apply the exterior differentiation d to the first
structure equation de 5 -w A 8 + 0,  then we obtain

0 = -dw A 8 + W A de + de.
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Denote by hX the horizontal component of X. Then co(hX)  = 0,
0 (W k e(X) and dw(kX,  kY)  = Q(X,  Y). Hence,

DO(X,  Y,  2)  = dO(kX,  kY,  kZ)

= (da)  A O)(kX, kY,  kZ) = (Q A 0)(X, Y, 2).
QED.

LetB,,..., B,  be the standard horizontal vector fields corre-
sponding to the natural basis e,,  . . . , e, of R” and {4*} the funda-
mental vector fields corresponding to the basis (4}  of gI(n;  R). It
is easy to verie  that {Bi, J$*}  and {Oi,  w;}  are dual to each other
in the sense that

oh-(BJ = $,I  @(E{“)  = 0,

w;(BJ  = 0 ,  o&q*)  =  @j,.

P R O P O S I T I O N  2.6 . The  n2  + n vector fields {B,, E{*; i, j,  k =
n} define an absolute parallelism in I’, that is,

itB;fUi  (Ej*)  } form a basis of T (P) for every u c P.
the  n2  +Sn  vectors

Proof. ’ Smce  the dimension” of P is n2 + n, it is sufficient to
prove that the above n2 i- n vectors are linearly independent.
Since A + A$ is\a linear isomorphism of g onto the vertical sub-
space of T,,(P)  (cf. $5  ofchapter  I), {Ei*j  are linearly independent
at every point of P. By (3) of Proposition 2.2, {B$  are linearly
independent at every point ofP.  Since {Bk} are horizontal and {E$*}
are vertical, {Be,  E{*) are linearly independent at every point of P.

Q E D ,

Let T,‘(M) be the tensor bundle “ovqr Al of type (r, sj  (cf.
Example 5.4 of Chapter I). It is a vector bundle with standard
fiber T: (tensor space over R” of type (r, s)) associated with the
bundle P o_f  linear frames. A tensor field k’ of type (r, s) is a cross
section of the tensor bundle r;(M).  In $1, we defined covariant
derivatives of a cross section in a vector bundle in general. As in
$1, we can define covariant derivatives of K in the following three
cases :

(1) VttK, when K is defined along a curve -r  = x,  of M;
(2) V,K, when X E T,(M)  and ,K  is defined in a neighborhood

ofx;
(3) V,K, when X is a vector field on M and K is a tensor field

on M. :.
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For the sake of simplicity, we state the following proposition in
case (3) only, although it is valid in cases (1) and (2) with obvious
c h a n g e s .

P R O P O S I T I O N  2.7 . Let Z(M) be the algebra  of tensor jields  on hf.
Let X and Y be vectorjelds on M. Then  the covariant dtxeetentiation  has

* the  following properties :
(1) v,: 2(M) --f 2(M) is a type preserving derivation;
(2)  vx commutes with every contraction;
(3) V,f = Xf for every function f on M;

(4)  v x+y = VA- + v,;
(5)  V,,K =f  * V,Kfor every function f on M and K E 2(M)  .
Proof. Let 7 = x1,  0: 2 t I 1, be a curve in M. Let T(x,)  be

the tensor algebra over ..T,,(ML  VJ = IT (cf.  §3  of
Chapter I). The parallel .displ,acement  along 7 gives an iso-
morphism of the algebra T(x,) onto the algebra T(xr)  which
preserves type and commutes with every contraction. From the
definition of covariant differentiation given in $1, we obtain
(1) and (2) by an argument similar to the proof of Proposition 3.2
of Chapter I. (3),  (4) and (5) were proved in Proposition 1.2’.

QED.
By the lemma for Proposition 3.3 of Chapter I, the operation of

V, on Z(M) is completely determined by its operation on the I
algebra of functions g(M)  and the module of vector fields
X(M). Since V, f = Xf for every f E  S(M), the operation of V, on
Z(M) is determined by its operation on .x(M).  As an immediate
corollary to Proposition 1.2; we have

P R O P O S I T I O N  2.8 . Zf  X, Y and Z are vectorjelds on M, then
(1) V,(Y  + Z) f V,Y  + v,z;
(21 v x+yz = v,,z -I-  vy,z;

*[3)  V,,Y =y*  VXY  for every f e s(M)  ;
(4) V,(fY) =f*V,Y  + (Xf)Yforever_yfej-J(A;l).
Mie shall  prove later in 97 that any mapping x(M)  x 3(M) +

X(M), denoted by (X, Y) --+  V,Y, satisfying the four conditions
above is actually. the  covariant derivative lvith  respect to a certain
linear connection.

The proof of the ‘following proposition, due to Kostant [l],  is
similar to that of Proposition 3.3 of Chapter I and hence is left to
the reader.
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PROPOSITION 2.9. Let M be a manifold with a linear connection.
Every derivation D (preserving ape  and commuting with contractions) of
the algebra Z(M) of tensorjelds into the tensor algebra T(x) at x P M
can be uniquely decomposed as follows :

D =  Vx+S,

where X E  T,(M) and S is a linear  endomorphism of T,(M).
Observe that, in contrast to Lie differentiation L, with

respect to a vector field, covariant differentiation V x makes sense
when X is a vector at a point of M.

Given a tensor field ‘K of type (r, s).,  the covariant di&rential  VK
of K is a tensor field of type (r, 5 + 1) defined as follows. As in
Proposition 2.11 of Chapter I, we consider a tensor of type (r, s)
at a point x z M as a multilinear mapping of T,(M) x - * - x
T,(M) (s  times product) into To(x)  (space of contravariant tensors
of degree r at x).  We set

( W V , ; . . . , X,; X) = (V,K)(X,,  . . . ,X8), X,X,E  T , ( M ) .

PROPOSITION 2.10. If K is a tensorjeld of ape  (r, s), then

(VKP,,  . . . , X,;  X) = b&W’,,~-.  . , XJ)

- xi=1  K(Xl,  * * * 3 V,Xi,  * * * 2 XJ,
where X,Xi r Z(M).

Proof., This follows from the fact that Vx is a derivation
commuting with every contraction. The proof is similar to that
of Proposition $5 of Chapter I and is left to the reader. QED.

A tensor field K on M, considered as a cross section of a tensor
bundle, is parallel if and only if qxK = 0 for all X E  T,(M) and
x E  M (cf. $1).  Hence we have-

PROPOSITION 2.11. A tensor jeld  K on M is parallel if and only v
VK=O.

The second covariant differential V2K  of a tensor field K of
type (r, s)  is defined to be V(VK), which is,  a tensor field of type
(r,s+2).  Weset

(V2K)(;X;  Y) = (V,(VK))(;X), where X,Y  l T,(M),
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that is, .if we regard K as a multilinear mapping of T,(M) y l - -
-.x  T,(M) (s times product) into T;(x), then /

(V2K)(X1,  . . . ,X,;  X; Y) = (V,(VK))(X,,  . . . , X,; Xl.
L Similarly to Proposition 2.10, we have

PROPOSITION 2.12. For any tensor field K and for any vector jieldr
X and Y, we have

(VaK)(;X;  Y).= V,(V,K)  - V,,K. )

In general, the m-th covariant differential V”K is defined
‘inductivkly  to be V(V+lK.).  We use thenotation (V*K) (;Xr ; .“,  . ;
X,,,-I;  X,,,)  for  (V,,(?“-‘K))(;X,;  . . . ; X,-J.
r

3. Afine connections

.-

A linear connection of>a  manifold M defines, for each curve
T = x1; 0’5  t 5 1, of M, the parallel displacement of the tangent

space T,JM)  onto the tangent space TsI(M) ; these tangent
‘spaces are regarded as vector spaces and the parallel displacement :
is a linear isomorphism between them.’ We sha

I
1 now consider each

tangent space T,(M) as an a&e space, ‘called the tangent
afhne space at x. From the viewpoint of fibre kmdles,  this means
that we enlarge the bundle of linear frames%0 the ,bundle of
affine frames, as we shall ‘now  explain.

Let R” be the vector space of n-tuples  of real numbers as before.
When we regard R” ‘as an affine space, we denote it by A”. I
Similarly, the tangent space of M at 5,  regarded as an af-hne
space, will be denoted by hI(kf)  and will be called he tangunt  ,,
&ze space. The group A(n;  R) of, afhne transformations of An  is

. represented by the group of al1 matrices of the f$m ,
.

a E’ /
_ . .( z =

.j (. 10 1:
where a = (4) 6 GL(n;  R) and 6 = ([*),  t 6 Rn, is a column
vector. The elemeiit  d’maps a -point 7 of A”  into ay + t. We have
the following sequence:

I
0 + Rfl CL_  A(n;  R) -L  GL(n; R)  ----+  1, 2
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where a is an isomorphism of the vector group R” into A(n; R)

which maps 5 E  R” into E A(n; R) (I,  = identity of

GL(n; R)) and j3 is a homomorphism of A(n; R) onto GL(n; R)

E ;l(tz;  R) into a c GL(n; R). The sequence is

exact in the sense  that the kernel of each homomorphism is equal
to the image of the preceding one. It is a splitting-exact sequence
in the sense that there is a homomorphism y: G-I;ln;  R) -+ A(n; R)
such that b 0 y is the identity automorphi?m  of GL(n; R) ; indeed,:
wedefineybyy(a) Q A(n; R), a E  GL(n; R). .The  group

,4(n;  R) is a semidirect product of R” and GL(n;  R), that is, for
eveiy  a”6 A(n; R), there is a unique pair (a, [)  z GL(n;  R) x R”
such that L?  = or(E)  a y(a).

An afine  frame of9  manifold M at x consists of a point p E  A,(M)
and‘ a &ear  frame (X,, . . . , X,) at x; it will .be  denoted by
,(P;‘&,  * : *  , ‘X,),‘Let  ‘0’  be the origin  of R”  and (e,, . . . , e,) the
natural ‘basis for R”. We shall call (0; el, . . . , e,) the -canonical
frame of A”: Every afline  frame (p; X,, . . . , X,) at x can be

iden%&  with an afflne transformation u’:  A” -‘A,(M)  which
Maps (0; e,,  . . .;  e,) into (p;  X,,  . . . , X,),  beiause  (tp;  X,, . . . ,
‘XJ t) fi gives a 1 :I coriespondence’  between the set of &iiie
frames at x and the‘ set of affine transformations if A” &to A,(@.
We denote by A(M)  the set of all a’ffine ffames’  df M and  Gefine
the.  projection +:  A(M) 4 M by setting 7?(c)  = x for every
affine frame z? at x. We shall show that A(M)  is a principal fibre
bundle over M with group A(n;  R] and’ sh%lI call..A(M)  the
bundle of a&e  frames over M. We c&fine an action of A(n;  R). on
A(M)  by (u’,  4 -+ zia”,’  t E  A(n4j and a” E  A(n  ; R), where 1za”  is the
composite of the affine transformations a”: A” -+ An and  z?:  A” -
A,(M).  It can be .proved easily (cf. Example 5.2 of Chapter I)
that A(n;  R) acts freely on A(M)  on the right and that A(M)  is
a principal fibre bundle over M with group A(n;  R).

Let L(:M) be the bundle of linear frames qver M. tirre-
sponding to the homomorphisms /3: A(n;  R) - GL(n<  R)  and
y: GL(n;  R) --f A (n;  R), tie have homomorphisms b: A(M  ) +

L(M) and y: L(M)  --t A(M).  Namely, b: A(MJ  - L(IM)  maps
(P;-G,..*, X,) into (X,,  . . . , X,) and 9: E(M)  -+ A(M)  maps

C
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(Xl, * * - , X,) into (0,;  X,, . . . ,X,),  where o,  E  A,(M)  is the point
corresponding:to  the origin of ?i”.(,M).  In particular, L(M) can be
considered as a subbundle of A(M).  Evidently, p  0 y is the
identity transformdfion  of L(M) .

A generaliied  ajhe connection  of M is a connection in the bundle
A(M)  of affine frames over M. We shall study the relationship
between generalizid affine connections and linear connections.
We denote by R”  the Lie algebrti  of the vector group R”. Corre-
sponding to the splitting exact sequence 0 + R” + A (n;  R) + .
G&(n;-R)  + 1 &g%ups;  wi ha&‘  the following spi&ing  exatt
sequence of Lie ,algebr+:

d -+  R” -+  &n;  k) i gI(n;.R) + d.
Therefore, y,  .‘i i,  / I

ah;  RI = gI(n;  R} + y (semidirect sum):

Let & be &e connection form  of a geheralized affine comiedtion  of
M. Thenay*  is ari a(n;  R)-valued l-form on L(M). Let

be the decomposition corres$mding  to a(n;  R) e gI(n;  R)-  + R”,
so *that  o is a S&Z;  R)-valu+d  l-form on L(M)  and p is an R%
valued l-form on L(M).  ‘By  Proposition..6.4  of Chapter II, 0’
defines a connection  in L(M).  On the other hand, we see easily
that up?  is a tensorial  l-form on L(M)  of type (GL(tr;  R), R”).
(cf. $5 of Chapter II) and he&e  C&r&ponds  to a tensor, field of
type  (1, I)ofMasc xp ained  in. Example  5;2  of Chtipter  II.1

PdOPOSlTION  3.1. Let  (3 be th connecfion  form of a gerier&ed
a$ne  connection  % of M and  let _

y*c3  = w + $, s

wAGTC  co’ is  gI(n;  R)-valued  and  9 L -R%alued.  Let  I’ be the  linear
conlucfion  oJ;  M ,$$k@  Q o ,tnd  l$ X bc tire tensorfield  oJtrpe  (1, ,l) o$
MdcJbud&&:+  *.  ,’

,

(1) Th  e&k.$ondh~ b&w&n  the  set  of ger,wralized  aj&  connectiops
of M and  t&-  set  $$&s  kohsi&ng  of a.  linear  conhection’  if M and  ‘a
tenrorjeld of@@  (l,;i]. o$M&en  by f’  +’ (I’, K) is  1: 1.

(2) The  homomor@ism~‘/k.P(M)  + L(M)-  map f” into  r
§6 ofchpptiLII).  -

($

:.  I.
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Proof.‘ (1) It is sufficient to prove that, given a pair (I’, K),
‘there is f which gives rise to (I’, K). Let a~ be the connection form
‘of P and q the tensorial l-form on c(M)  of type (GL(n;  R), R”)
corresponding to K. Given a vector X E  T,@(M)),  choose
Xc T,(L(M))  and d c A(n; .R) such that u’ = UC? and 8 2 ‘R;(X)
is vertical, There is an element A e a@;,  R) such that ., ’

g *‘&(X)  + &; .Y ‘.

where A* is the funda,men&l vector ~~orresp&&ng  to A.’ We define:. . . ‘. ~
c7,  by

C(8)  = ad (@)(o(X)  + q(X)),  + 2. . “ ’
.

It is straightforward to verify that cz  defines the desired connection
f.

(2) Let Xc T,(A(m).  We set’u  = i(c)  and X’= p(X) so that
x.c  T&(M))i s irice. ;8: A(M) --,  t(M). is. the ,:homomorphism  ;
associated-*&h’ the homomorphism #r”A(n;  R) -c  G&; R) A
A(n; W/W L(M) can be identified with A(M)/R”  and
/?: A(M) -L(M) can be considered as the natural projection
A(M) -‘Jf(M)/R”.  Since X = b(X) = b(X),  there e&t
(r  E R” c A(r;  R} and A c R” .c  h(n; R) such that u’ = ud  sitid
X = &i(X)  $ A,*.  Assume that 8 is horizontalwith  respect :to f
sothat  0 = 6(X). = c@I&(X))-  +‘&(A$) = ad .(&l)(c5(X))  -+ ?I.
Hence, a(X)  = ad (&)(A) anid’&  +-p(X)  =,ad  (d)(A). &tie
both 9 p(X)  and ad (CT) (-A)  ape in R* and o(X)  is in gt(~;,  R) , we &iv& :
4X) =,O; _ This ,proves  that if .$ is horizontal w&r&petit  to P,
then  .B(<Jb  is horiyp$  ,yit$,respyt  to I’. :I r QED*

PROPOSITION 3.2. In Proposition 3.1, let d add  $2  ‘Qe  the amutirre
forms of f and I? respect&&. Thm

I p8 r $z .Tj-  Dq,.,  ” ~ T ‘. .G
. . , 1 ,, ,f , . , -

where ‘D ii t&i-ekterior  c&a;iant  &Sren&i&  with  $&l  & c.  iF.  /I *-
Proof . Let X,Y c T,(L(M)).  To provpl tha’t  :($$)  (X&  2 .’

i2(2>  Y),.  + &.$X,  yjl,  ‘it is’sufficient  to,+o&$&  .t&,~following
two cases: (1) at least orie’of X and Y is vertical,’ (2) both X and Y %
are horizontal with respect to‘ ‘l$;n  the&$  (l),  both sides ’’
vanish. ‘In the case (2),  o(X)  = o( $‘) = b and hence ,&X)‘,  =
y(X) and 6(Y) = q(Y). From the structure equation of ?, we

have
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d&Y,  Y) = --j&z(X),  c(Y)] + n(X,  Y)

= -3b(X),  9ml + qx, Y).
(Here, considering L(M) as a subbundle of A(M), we identified
y(X) with X.) On the other hand, y* dc3  = dw + dv and hence
d&(X, Y) = dw(X,  Y) + dq(X, Y). Since R” is abelian,  [v(X),
q(Y)]  = 0. Hence, dw(X,  Y) + dv(X, Y) = &(X,  Y). Since
both X and Y are horizontal, Dw(X, Y) +‘Dq(X,  Y) = &X, Y).

* QED.

Consider again the structure,equation  of a generalized affine
connection f :

&-j  & -.&jj,  &]  + a. :

By restricting both sides of the eq.uation’  to L(M) and by com-
paring the gI(n;  R)-components  and. the .Rn-components  w e
obtain

dv(X, Y.1  = -t([l+%  dJ’)l  - W’h  dX)l)  + D&T  Y),
d4K Y) = -3b(X), 4Y)l  + f-W, P),’ X,Y  s T,(L(+q).

Just as in 92, we write -

dp,=-o/,q+Dg,  .‘

A generalized affine connection p is called an aJne connection if,
with the notation of Proposition 3.1, the R”-valued  l-form 9 is
the canonical form 6 defined in $2. In other words, f is an
affine connection if the tensor field K corresponding to v is the
field of identity transformations. of tangent spaces of M. As an
immediate consequence of Proposition 3.1, we have ’

The’]  ho&omprphism  /l:  A(M) + L(M) maps
a linear connection I’ of M. Moreover,
between the set of afini cdnnections  f

of M and ‘the  .iet  ‘ox,@epr  @nnptions  r of M.

Traditionally, .the’~:words  -(‘linear connection’? and “affine
connection” have been .used  interchangeably. This is justified by
Theorem 3.3. Although we.shall  not break with this tradition, we
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shall make a logical distinction between a linear connection and
an affine connection whenever necessary; a linear connection of
Al is a connection in L(M) and an affine connection is a con-
nection in A(M).

From Proposition 3.2, we obtain

PROPOSITION 3.4. Let @ and Q be the torsion form and the curvature
form of a linear connection .F of M. Let si be the curvature form-of the
corresponding afine connection. Then .

y*6  =  0  +  R,

where y: L(M) -+ A(M) is the natural injection.

Replacing q by the canonical form 8 in the formulas:

dg,==--o~p,+Dy,  dw=-cc,hw+Q

we rediscover the structure equations of a linear connection proved
in Theorem 2.4.

Let @(u’)  be the holonomy group of an affine connection f of M
with reference point-u’ c A(M). Let Y(u) be the holonomy group
of the corresponding linear connection I’ of M with reference
point u = ,8(zi)  E L(M). We shall call @(ti) the a#ne holonomy
group of l? or l? and Y(u) the linear holonomy group (or homogeneous
holonomy group) of f or I?.  The restricted afine  and linear holonomy
groups @O(;)  and Y”(u are-defined accordingly. From Proposition)
6.1 of Chapter II, we obtain ;” .

PROPOSITION 3.5. The homomorphism p: A(n;,R)  - GL(n;  R)
maps Q(u) onto Y(u) and @o(e) onto Y’?(u). .’

,4+.  Developments

We shall study in.this  section the parallel displacement arising
from an affine connection of a manifold M. Let T = x#,  0 st  t *5  1,
be a curve.in M. The affine parallel displacement along’~  1s an
.&me transformation of the affine tangent space. at so.onto  the
affine tangent space at x1 defined by the given connection in
A(M). It is a special case of the parallelism in an associated
bundle which is, in our case, the afhne tangent bundle whose fibres
are A,(M), x Q M. We shall denote this affie parallelism by +.
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The total space (i.e., the bundle space) of the affine .tangent
bundle over M is naturally homeomorphic  with that of the tangent
(vector) bundle over M; the distinction between the two is That
the affine tangent bundle is associated with A(M) whereas the
tangent (vector) bundle is associated with L(M). A cross section
of the affine tangent bundle is called a pointfield. There is a natural
1: 1 correspondence between the set of point fields and the set of
vector fields.

Let ?i be the affine parallel displacement along the:curve’  T
from xt to x,.  In particular, ?b is the parallel displacement
AZ,(M) -A,(M) along 7 (in the reversed direction) from xt to
x0.  Let p.be  a point field,defined  along 7 so that pFl is an element
of ATt(  M,) for each t. Then #O(pz;)  ‘describes a curve in A, (&I).
We Identify the curve T ,= x1  with the trivial point field along T,
that is, the point field corresponding to the zero-  vector field
along T. Then the development of the curve 7 in M into the affine
tangent space AzO(M)  is the curve +k(x,)  in A,(M).

The following proposition allows us to obtain the development
of a curve by means of the linear parallel displacement, that is,
the parallel displacement defined by the corresponding linear
connection. ,c

PROPOSITION 4.1. Given  a curve T 2 xt,  0 5 t 5  1,  in M, set
Yt  = it,  ivhere  T:  is the  linear parallel displacement along 7 from xt
to x0  and i,  is the vector tangent lo 7 at x~.  Let C,, 0 i t 5  1, be the
curve in AzO(M)  starting from the origin (that is, Co = x0)  such that C,
is parallel (in the’ajhne  &ice  A,(M) in the-usual sense) to Yt  for every t.
Then C,  is the develojment  of 7 into A,@(M):

Proof . Let uqbe  any,point  in L(M) such that n(uo)  = x0  and
u,  the horizontal lift ,of  xt in L(M) with respect to the linear
connection. Let f, be the horizontal lift of xt in A(JI)  with
respect to the affine connection silch  that Zz,  = uo. Since the
homomorphism p: A(M) - L(+U) = A(M)/R”  (cf .  $3) maps
zit into ut, there i+ F curve & in R” c A(n; R) such that zi’, = utz,
and that $ is the identity. As in the proof of Proposition 3.1 of
Chapter II, we shail  find a necessary and sufficient condition for
C&  in order that 8,  be.ho&ktal  with respect to the affrne  connec-
tion. From

g;‘- f,ci, + ?+a”,
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which follows from Leibniz’s formula.as  in the proof of Proposition
3.1 of Chapter II, we obtain

cii(iJ  = ad (Z;‘)(G($))  + &-lb,

= ad (4-i)  (w(&)  + 19(ti;))  + G;‘& = ad (2;‘)  (e(ti,))  + &-li,,

where G and cu  are the connection forms of the affine and the
linear connections respectively. Thus 1,  is, horizontal if and only
if 6J(li,)  h --;i&-l.  Hence,

Yt = 4%)  =  %(%-l(~.tN  =  %(Wt))

=  -u&i&-‘)  =  -+l,(dz,/dt).
On the other hqd,  we have

c,  = +)(xJ = u,(l.i,‘(xJ)  = Uo(q-yU~l(Xt)))  = u,(Z~‘(O)).’

Hence,
dC,/dt  =  -u,(dqdt)  =  Yt.

QED.

COROLLARY  4.2 The development of a curve r = xt,  0 5  t 5  ‘,l,
into AJM)  is a line segment tf and only tf the vectorjetds 1,  along 7 = xt
is parallel.

Proof . In Proposition 4.1, C, is a line segment if and only if Y,
is independent oft. On the other hand, Yt is independent of f if
and only if 1,  is a parallel vector field along 7. Q E D .

5. Cwuaiure  angj  to~ssio~  tensors. *

We have already defined the torsion form 0 and the curvature
form fi of a linear connection. We now define the tors[on  tensorjeld
(or simply, torsion) T and the curvature tensor field (or ‘simply,
curvature) R. We set ,. *

T (X, Y,,:  u(2O(X*,  Y*>) for X,Y E T,(M);  -s-

where u is any point of L(M) with n(u) = x and:.Xz  and,.Y*  are
vectors of L(M) at u with r(X*)  = X arid  r(Y*)  = Y. We
already know-that T(X, Y) isindependent of the choice of u, X*,
and Y* (cf. Example 5:2 of Chapter II); this fact can be easily
verified directly also. Thus, at every point x of M, Tdefines a skew
symmetric bilinear mapping T,(M) k T,(M) -+ T,(M). In
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other words, Tis a tensor field oftype  (1,2)  such that T(X, Y) =
- T(Y, X). We shall call T(X,  Y)  the torsion translation in T,(M)
determined by X and Y. Similarly, we set

R(X, .Y)  2 = u((2Q(X*,  Y*)) (u-‘2) for X,Y,Z  E  T,(M),

where u, j X* and Y*;. are chosen as above.  Then R(X, Y)Z
depends only on X, Y and Z, not on ,u,  X* and ‘Y*.  In t$e above
definition, (2fi(X*,  Y*))(u-‘Z)  denotes the image of u--lZ~  R”
by the linear endomorphism 2Q(X*, Y*}-  c’gI(n;  R) of Rn.
Thus, &(Xi  Y)‘is  an~endomorphism  of T,(a), and is ,&led  the
curvature transformation of T,(M) determined by X and Y. It follows
that R is a tensor field of type (1, 3) ,such  that R (X, Y) =
-R(Y, X). ::.

-
THEOREM 5.1. In terms of coyariant d#erentiation, the torsion T

and the curvature R can be exbressed as follows: J

T (X, Y) = V,Y - \?,X  - [X, Y]
and,

R,(k,  ‘Y);Z  = ~v,;,p,]z,-‘-TjIx,ylz, ,-

where X, Y and.Z  are vectpzjetdson  M. 7
Proof . Let X*, Y* and Z* be the horizontal lifts of X, Y and

Z, respectively. We first prove - .’ _ /’

L&MA . (V,Y),  =.  u(X,*(B(y*))),  where r(u)  = x.
’ Proof $f Lemma. In the lemma for Proposition l.l,we  proved

that (YiyY);  G ufX:f ), hw erefis an R%alued  function defined
by f(u)’ = U-r(YJ.  Hence, f(u) =*$(Y;)  for u c L(M). This
completes the ,pioof  of the lemma. -\

We have therefore :

T&L,  q = fqQr+  (W  >

: I ’ F ~pwyy  T yj3ec~*))  r ec;x*,  &,)‘.-:  : .nt.  I
.,, = (V,iQ’T-.(Vd)‘a  -w>  % ,

since  p([i*,  ‘yij  j, L’ijfi”$j+,+  I ’ :
![.  ~

z. .._,  _
‘2.  To prove the second  equ&ity,  we-set f =f  fl(Z*) ,sd  thacfis  an
R”-valued  function on L(M) of type (GL(n;  R), R”). We have
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then
NV,, V,lZ  - V,X,Y,%

= u(-c(y*f) - Jw”f) -vu*,  Y*l)J-)  = 4(4X”, y*l>uf),
where h (resp. v) denotes the horizontalp(resp.  vertical) component.
Let A be an element of gI(n;  R) such that A: = (u[X*, I’*]),,,
where A* is the fundamental vector field’ corresponding to A.
Then by Corollary 5.3 of Chapter II, we have

zsqx,*;  YZ) = -o.([x*,  Y*]J  = -A. )

On the other hand, if a,‘is  the l-parameter subgroup of GL(n; R)
generated by A, then

A:f = lim A [f (zq) -f(u)]
I-4  t

= iii ; [a,l(f  (4)  -.f(4]. 3

: = -4f (to),
where A( f (u)) denotes the result of the. linear transformation
A: R” -+ R*  applied to f (u)  E R”. Therefore, we have

ux> VYIZ - V[X,Yl zL = 4t4c W)Uf > = ,y(,rJf  (4))
= u(2Q(X$ Y:)(f(u)))  = u(2Q(X$ P:)(u-'2))  ='R(X, Y)Z,

L ~ QED.

PROPOSITION 5.2. Let X,Y,Z,We T,(M) and u E L(M) with
72(u)  = x. Let X*, Y*, Z*  and W* be the standard horizontal uectpr

jielats  on L(M) cowes~onding  to u-l&, u-l Y,  u+&.  and u-l W respec-
tiueb,  so that P(X,*)  = X, 7r(Y:)  = Y, vr(Z:)  E Z-and  n(W,*>  =
W. Then

(V,T)(Y,  Z).A  u(x:(2o(Y*,  z*))) i
and -

!(v&(Y,z))w  = u((x:(2n(~*;z*)))(u-1w)j.
Proof. We shall prove only the first formula. ‘The proof of the

second formula is similar to that of the first., We consider the
torsion T as a cross section of the tensor bundle T:(M) whose
standard fibre is the tensor space T:  of type (1,2)  over R”. Let
f be the T&valued function ‘on L{M) corresponding..  to the
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torsion T as in Example 5.2 of Chapter II SO that, if we set
q = u-1  y and 5 = u-lz,  then

f”(r,~,  5)  z U-‘(T(X,  Z ) )  =  O(Y;,  Z ; ) .

By Proposition 1.3, X;f  corresponds to VxT.  Hence,

u-‘(&T)(Y,  Z))  = (x:f>(%  r;>

‘= x:(fh 0) = x:(2o(Y*,  z*))

thus proving our assertion. QED.

Using  Proposition 5:2, we shall express the.Bianchi’s  identities
(Theorem 2.5) in terms of 7’, ,R and their covarrant  denvatrves.

THEOREM 5.3. L--t  T and .R be #he torsion agd  ths  cumatuw  of a
linear connktion  of M. Then, fir  X,  Y,Z f T=(M),  we have

Bianchi’s 1st identity: .“’ ’

G(R(X,  Y)z) =  @T(T(X,  Y),  ?k +  (V,T)(Y,  Z));

Bianchi’s 2nd identi@:

G((V,R)(Y,  ?I, + R(T(X, y), z)> =.4 ,:
whge  6  denotes th cyclic  sum with respect to X, b Y and Z.

In particular, if T = 0, thm
Bianchi’s 1st identity’: G(R(X,  -F) Z} ~‘0;

.’

Bianchi’s 2nd identity:. . G{( VxR)  (Y, Z)} z.0.
Proof . ‘Let 11  be any point of L(M ) such that T(U). = X. We

lift X to a horizontal vector at u and then extend it to a standard
horizontal vector field  X* on L(M) as in Proposition 5.2.
Similarly, we define Y* and Z* ..We  shall derive the first identity
from

,‘.

0~ 0 (Theorem  2.5). . sr, Do &
\ire have

6(&l A 0)(X:, Y:,  Q)  = :‘&2fi(x:,  Y:)e(zf)}

= G,(u-l(R(X,  Y)Z)}. . . :.
On  the other hand, by  Proposition 3.11 of Chapter I, we have

.sDs(x:, I',*,  z:) =+0(x,*,  Y:, Z:)
+ &&(2o(Y*,  z*)) - 2o([x*, Y*]", z:)}.I



= &((V,T)(Y,  2)).  It is

-wcx*>  y*l”,  2:)’  ‘L-y  T( T(X,  Y), 2)).
We observe first that / ‘:

74x*, y*lu)  = @r&Y*]J) = -U(2&(XZ,  Y,*))

Hence we have
= -+2@(X,*,  Y,*))  = -T (X,  Y).

-2o([x*,,Y*].,  2;)  = -u-y  T(n[x*,  Y*lu, 2))

= u-y T( T(X, Y), Z)),.

We shall derive the second identity from

DQ = 0
W e  h a v e

( T h e o r e m  2 . 5 ) .  ,,

O,A  $DQ(X,*,  Y&  2:)  ‘ I

= qX:(R(Y*,  z*))  - qx*,  Y*];,‘q}.

On the other hand, by’ Propo&n  5.2;‘~;  have *

x$qY*,  ‘b))  = gu-‘((V,R)(Y,  2)). ’
As in the proof of the first ident$y,.  ws  have ., . . _

-R([x*,  Yqu,  2:) = +-y~  (T  (x,  y); !2jji l

The sec.qnd  identity follaws  frcq  t&&  thr$!for&a+ Q E D .
Remark. Theorem 5.3 can.,be prdved fr& the formulas.Jin~

Theorem 5.1 (see, for instance; Nomizu  [7, p. 61.11).  y . i

PROPOSITION 5.4. Let,  B ana!* B’ !be  arbitrao standard horizon&
vectorjelds  on L(M ).  Then we have . ‘I

(1) rf, T .= 0, then [B,  B’] is vertical;
I

(2) If  R.  = 0, then [B,  B’].  is horizontal.
Proof. (1) 0([B,  B’])  = -2de(B,  B’) = -2i(B,  B’) = 0.

Hence, [B, B’] is vertical. (2) w([B;B’])  = -2do(B,  B’-)  =
-2a(h’,  B’)  = 0. Herice, [B,  .B’]  is hoiizontal:  rli:’ I-:-  .’ QED.

Let P(uO)  be the holonomy subbundle  .of .i[&f);-thtiugh  -a
point u.  Q L(M) 1 ,and Y(u,) the &near  holonomy  group with
reference point uo. Let A,, . . . , A, be a’basis of the Lie algebra of

<
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L

Y(uo)  and  A:, .a., A: the corresponding fundamental vector
fields. Let B,, . . . , B,  be the standard horizontal vector fields
corresponding to the basis el, . . . , e, of R”. These vector fields
A: ,...,  Aj,B,  ,..., B,  (originally defined on L(M)), restricted
to P(uo),  define vector fields on P(uo).  Just as in Proposition 2.6,
they define an absolute parallelism on P(uo).  We know that
[AT, AT] is the fundamental vector field corresponding to [Ai, A,]
and’ hence is a linear combination of AT,  . . . , A: with ,constant
coefficients. By Proposition 2.3, [A:,  Bj]  is the standard horizbntal
vector field corresponding to ,Aiej  E  R”. The following proposition
gives some information about [BfI BJ.

~ROPQSITION.~.~. Let P(u,,)  be .the  holoqomy subbundle of L(M)
through uo.  Let 4 an4 B’. be arbitrary .standard  horizpntal  .vector  fields.
Then we have., :

( 1)  If V.T  = 0, then ths horiFonta1 component” of &3,  B’],  coincides
with a standard horizontal vectorjeld  on P(uo). : iJ’  + f j

(2) If OR = Q, then the vertical component of [B, B’], coincides with
the fundamt%tal  vectorjeld A* on P(uo),  which corresponds to a? ileinent
A .of  the Lie algebra of the linear holonomy group Y(uo).

Proof. (I) Let X* be any horizontal vector at u E  L(M ). $3
X = +Y*),  Y = n(B,) and 2 G n(BL).  By Proposition 5.2; ‘he
- i.
have’

X*(20(B,~B’))  = u-‘((V,T)(Y,  2))  = 0.. ‘1%

This means that O(B,  B’) is a constant function (with values in
R”) on P(uo).  Since 8([B,  B’]) =.  -2@(B,  B’j, the horizontal  *
component of [B, B’] coincides ‘on Pfu,,j  with the ‘standard
horizontal vector field corresponding to the element -2@(B,  B’)
of R”.

(2) Again, by Proposition 5.2, VR = 0 implies
 ̂ ,I $*(Q(-B, B’)j=  0. :,

This’  mzans  th$ R(B, B’) -is.  a constant function qn P(uo)  (wi;h
values in the Lie. algebra  1 of yiuo)).  Since m([B,  B ’ ] )  =
-2Q(B,  B’), the vertical component of [B, B’] coincides on
P (uo)  with the fundamental vector field corresponding to the
element -2R(B,  B’) of the Lie algebra of Y”(uo). QED.

z.
It follows that, if VT = 0 and VR = 0, then-the  restriction of

[Bi,  Bjl  to P( u 0) coincides with a linear combination of At,  . . . ,
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A:, B,, - . - , B, with constant coefficients on P(u,,).  Hence we have

COROLLARY 5.6. Let g be the set of all vector fields  X on the
holonomy  bundle P(uO)  such thut e(X) and W(X) are constant functions
on P(uO)  (with values in R” and in.the  Lie algebra of ‘4”  (tl,,),  respective&).
If VT  = Q and VR = 0, then g forms a Lie algebra and dim g =
dim P(uJ.

The vectoffields  A:, . . . , A:, B,,  . . . , B,  defined above form
a basis for g.

6. Geodesics

Acurver=+a<t<b,where--03gaa<bsoo,ofclass
C1  in a manifold M with a linear connection is called a geodesic  if
the vector field X = R, defined along T is parallel along T,  that is,
if V,X exists and equals 0 for all t, where .$ .denotes  the vector
tangent to 7 at xt. In this definition of geodesics, the parametri-
zation of the curve in question is important. . s

PROPOSITION 6.1. Let r be a curve of class Cl in M. Aparametriza-
tion which makes r into a geodesic, rf any, is determined up to an a&e
transformation t -+  s = at + /I, where a # 0 and /I are constants.

Proof. Let xt and ys be two parametrizations  of a curve T
which make T into a geodesic. Then s is a function oft, s = s(t),

d tand ysct) = xt. The vector j, is equal to - 1,.  Since the parallel
ds

displacement along 7 is independent of parametrization (cf.’ $3

of Chapter II), $ must be a constant different from zero. Hence,

s = at + /I, where a # 0. QED.
If T is a geodesic, any parameter t which makes T into a geodesic

is called an afine  parameter. In particular, let x be a point of a
geodesic T and X E TJ-II  ) a vector in the direction of T.  Then
there is a unique affine parameter t for 7,  r = xt, such that x0  = x
and &,  = X. The parameter t is called the afhne parameter for
T determined by (x, X). I .

PROPOSITION 6.2. A curve r of class Cl through x E  M is a geodesic
af and on& ;f its development into, T,(M) is (an open interval of) a
straight line.
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Proof. This is an immediate consequence of Corollary 4.2.
QED.

Another useful interpretation of geodesics is given in terms of
the bundle of linear frames L(M).

PROPOSITION  6.3 . The projection onto M of any integral curve of a
standard horizontal vector field of L(M) is a geodesic and, converse&
every geodesic is obtained in this way.

Proof. Let B be the standard. horizontal vector field on L(M)
which corresponds to an element 5 c R”. Let b,  be an integral
curve of B. We set ht = ~(6,).  Then ir = n(b,)  = 7r(Bb;)  = b,&

c where b&  denotes the image of [ by the linear mapping b,: R” +
TSt(M).  Since b,  is a horizontal lift of xt and 5‘  is independent of
t, b,E is parallel along the curve xt (see $7, Chapter D,,in  particu-
l a r ,  b e f o r e  P r o p o s i t i o n  7 . 4 ) .  ’

Conversely, let x,  ‘be a geodesic’ in M,,defined  in some open
interval containing 0. Let u,,  be any’ point of L(M) such that
7r(uo)  = x0.  We set 5 = u0-‘$,  E  R”. Let u1  be the horizontal lift of
xt through uO. Since xt is a geodesic, we have 2, + ri&. Since ut  is
horizontal and -since t3(ti,)  = u;‘(r(ti,))  = uclit = E, ut  is an
integral curve of the standard horizontal vector field ‘B  correspond-
ing to [. QED.

I As an application of Proposition 6.3, we obtain the following

THEOREM 6.4. For any point x 4 M andfor any vector X Q T=(9),
there is a unique geodesic with the initial. condition (x, X), that rs,  a
unique geodesic xt  such that x0  = x and &,  = X.

Another consequence of Proposition 6.3 is that a geodesic, which
is a curve of class Ct,  is automatically, of class C” (provided that the
l&rear  Connection is ofclass Cm)..  In fact, every standard horizontal
v~c,t.or.field  is of class C” and hence its integral curves are all of
class @‘.  Tbe,projection  onto &f of a curve of class C” in L(M) is
a curve of class  C” in M.

A linear connection  of M is said to be complete if every geodesic
can be extended to a geodesic T = xt defined for - co < t < co,
where t is an affii& parameter. In other words, for any x s;M  and
X E T,(M), the &ode& 7 = xt in Theorem 6.4 with the!  initial
condition (x, X) is defined for all values of t, -co < t < co.
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Immediate from Proposition 6.3 is the following

PROPOSITION 6.5. A linear connection is complete ;f and only
every standard horizontal vector field on L(M) is complete.

tL’e  recall that a vector field on a manifold is said to be complete
if it generates a global-l-parameter group of transformations of the
manifold.

When the linear connection is complete, we can define the
exponential map at each point x c Ai as follows. For each X E Tz(  M),
let 7 = xt  be the geodesic with the initial condition (x, X) .as in
Theorem 6.4. We set

exp X = x1.

Thus we have a mapping of T,(M) into A?. 10r each x. We shall
later (in $8) define the exponential map in the case where the
linear connection is not necessarily complete and discuss its
differentiability and other properties.

7. El+wessions  in local coordinate s@ms

In this section, we shall express a linear connection and related
concepts in terms of local coordinate systems.

Let M be a manifold and U a coordinate neighborhood in &i
with a local coordinate system x1,  . . . , x”. We denote by Xi the
vector field a/ax!, i = 1, . . . , n, defined in Cr. Every linear frame
at a point x of U can be uniquely expressed by’ ,,a

(Ci  Xi(Xi),,  a‘.  e ; ISi  Xi(Xi)z),

where det (X{)  # 0. We take (xi, Xi)  as a local coordinate
system in +-*(  U) c L(M). (cf. Example 5.2 of Chapter I). Let
(I’$.)  be the inverse matrix of (Xj,)  so that Z,,  X{Yf = CjY{Xt  = 8.

We shall express first the canonical form 8 in terms of the loc$I
coordinate system (xi, X’,).  Let e,, . . . , e, be the natural bdis for
R” and set .:

8 = Xi Pe,. ,!

PROPOSITXON  7.1. In terms of the lo&l ceordirqte $stek (xi5  Xi),
the canonical for@  8 = Xi Bit+ can be expressed as follows:

13’  = zj  y;dxj.

Proof.. Let u be a point of L@G)  with coordinates (xi, Xi)  so
that u maps es into Z, X{(X,)., where x = n(u).  If X* c T,(L(M))
and if

1:: -, .
-:

so that  7r(X*)  ,= &2(X,),,  then

d(X*j  = u+, 2(X,),,  = Zij(Yj  1’)  e, ’
QED.

Let-  u be the connection .form  of zi  linear connecti&  I’ of M.
With respect to the basis (Ei>  of gI(n;  R), we write

” #
U)  = ~~,j w:: Ed. : . ”

Let u be the‘cross.section  of L(M) ,over  U which, assigns  to ea:h
x l ‘U the Ii&ear  frame ‘((X1),,  . . . , (X,).).  We set
(.  ._

UIU-&,aY&.  : I!  ‘i, I..,  !

Then wU  is a gl(n; R)-valued l-form defined on ‘d”%e  define  ‘~9
functions J?&,  i, j, k’::s.‘. 1, . . ;%; ‘II,  ‘on U !by

.,  , ,L  i .:..,.-,  ,,’  .;i:. ~.

? .

,:  “0 _“I;~#‘(~&j~~~.  1‘  ‘- I.’  .:’

The& functions I’$ are &lit&  the ckponents  (or ‘6hrijtofil’s
sym’bols)  ‘of the link connetition’  I’ with .re$ect  to.‘th?loeal~
coordinate system x1,  . * ’ , xn. It should be noted that they are not’
the components’ of a tensor *fi,eld.  En fact, these components are
subject to the followings  tra,~formati”on;rule.  .: . ‘s  -

PROPOSITI&  f.2.’
f-jk  bi the

iei’r’b~  iz lineal ion&e&x?  of M: ‘Let ,I’%  an/i’
components ox.%  with respct  to “local coordinate. $&iemi

x!; : :;I , ?n  and’zl;‘.  , . ;,.P,- ~espe6tiveEy.  I% the’ intt?rsectio~  of the : twoi
coo~&at~“&gh’6orhoo’&,  ‘we  h&e ., ; .. , ,‘.

., .,i ,--:.- ,., $f.

Proof. WC jdmive  a the, above formula  &&  Proposition I.4.:0f
Chapter~II..J&t  ‘%’  be the  wordinate  nei&borhood  .where  the
coordinate system 9,.  . L :. , 2t is valid. Let% be thwross  se&q .o&
L(M) over V which assigns to each x E V the linear frame
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(P/W,,  - * -, ( a/aZm),).  We define a mapping yov:  U n r -+
GL(n;  R) by

w = 44 - turn+) for x E  U n V.
Let v be the (left invariant gl(n; R)-valued) canonical l-form on
GL(n; R) defined in. $4 of Chapter-I; this form was denoted by
8 in $4 of Chapter I and in $1 of Chapter II. If (sj) is the natural
coordinate system in GL(n;  R) and if ‘(4)  denotes the inverse
matrix of (sj),  then

y = Zi,j,E  TV  ~~ Ed,

the proof being similar to that of Proposition 7.1,4  It is easy to
verify that

and hence

With our notation, the formula in Proposition 1.4 of Chapter II
can be expressed as follows: . i

my = (ad  I&~)&‘+  Y&Y. ,

By a simple calculation, we see’that  this formula is equivalent to
the transformation rule of our proposition. QED.

Fro&  the components I$ we can rec~nstiuct the c&n&ion
form w.

PRQPOSITION  7.3. Assume t& .pr  each.  local coordinate  ~systi
xl, . . . , xn,  there is given d set of”tions  I’$,  i,,j,  k = 1, . . . , rt,  in
such a way thnt  t&p s&h  the tran.&ma@-rule  of Proposition 7.2.
Then there ‘is  a t&p@  line&r  connection I’ whose components with respect
toxl, . . . , x~ are precisely the given ftitions I?&  Moreover, the connection
form w = z,.,  j iCO’  I? is given in ter& of the Jocal  coordinate sp?teT
(xi, Xi)  by ’ -

9i = Xk Yf(dXj  + &m  l$,X; a&‘$, i?‘j,= 1 ;.  : . . , n .

Proof. It is easy to verify that the’ form o defined by the
above fwmula’defincs  a connection in’ L.(MjI :t&t is, o satisfies
the conditions (a’) and (b’) of Proposition Ll  of Chapter II. The
fact that w is independent of the l&al coordinate system used

._
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follows from the transformation rule of I’;,;  this can be proved by
reversing the process in the proof of Proposition 7.2. The cross
section CT:  U -+ L(M) used above to define ov is given in terms
of the local coordinate systems (xi) and (xi, X3,)  by (k’i) + (xi, 9i,).
Hence o*wj  = &,,I’&  dx”.’  This shows that the components of
the corkection  l? defined by w are exactly the functions I& Q E D :

The components of a linear connection can be expressed also
in terms of covariant derivatives.

PRQPOSITION  7.4. Let x1,  . .., xn be a local coordinate system in M
with.a linear connection I’. Set Xi = a/axi,  i = .I, . . . , n. Then the
components I’&  of r with respect to x1, . . . , xn are given by .

5.  . a VxjXi  = Ei l?jkjXk.

Proof. Let XT  be th,e  horizontal lift of Xi. From Proposition
7.3, it follows that, in termsof  the coordinate system (xi, Xj,),  X*
kg!venby  . . ..,.:

To apply Proposition l.3;.  let 3’  be the R”-valued-  function ‘on
r-l(U)  cz  L(M) which corresponds to Xi. Then :’

-f= I;, Y f e , .

A simple calculation shows that

X,*f  = $,,$;iY:e,. ,‘..; i/
By: Proposition 1;3,  ,XTf  is the .function corresponding to V,,Xi
and -hence _1

VX,xi  = ~, rj”i  X,. 0.
* I

'PROPOSITION 7.5: dssumt?  t h a t  a  mtipping  ,X(M)  x  X ( M )  +
%(M),,$enoted  by (X, Y> - V,Y,  is given so as to satisfy the conditions
(I), (2), (3) and (4) of Proposition 2.8. Then there is a un@ue  linear
con’necfion  l’ .ef M s&that  V,Y is the covariant derivative oj‘  Y in -the
direction of X with respect to I’.

Proof. Leaving the detail to the reader, we shall give here an
outline of the proof. Let x l M. IfX,  X’, Y and Y’ arc vector fields
on A4 and if X = X’ and Y = Y’ in a neighborhood of x,  then
(V,Y),  = (VXY’),. This implies that the given mapping
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wfl x wf) - 3(@  induces a mapping I(U) x 3(U) ---F
X(U) satisfying, the sfme conditions of Proposition 2.8 (where U -
is any open set of M),/  In particular, if U is a coordinate neighbor-
hood with a local
functions l?j, on U

bye

oordinate system 9,  . . . , x”, we define n8
the formula given in Proposition 7.4. Then

these functions sat’sfy  the transformation rule of Proposition 7.2.
By Proposition 7. 3il, they define a linear connection, say, F.  It is
dear that VxY  is the covariant derivative of Yin the direction of
X with respect to l?. QED.

Let 9’ be the components of a vector field Y with respect ro a
local coordinate system 9,  . . . , I, Y = Eci  $(a/&‘).  Let 11:  be
the components of the covariant differential VY so that V,,Y  =
Xi r&Xi,  where Xi  = a/&$. From Propositions 7.4 and 2.8, we
obtain the following formula :

~~j = ?qilaxj + & J&q”.
If X is a vector field with components p, then the components of
V,Y are given by Ej $Jj.

More generally, if K is a tensor field of type (I,  s)  with com-
ponen ts K$ : : : f:, then the components of VK are given by
Kil..  .f,

II..  .J,;k
= aK$  . . .i,31...jiaxk  + I& czq I’$K;;::-$;-“7)

-q=1R?a  ~~eKj$iL,.j#)9

where I takes the place of & and m takes the place ofj,+  The proof
of this formula is the same as the one for a vector field, except that
Proposition 2.7 has to be used in place of Proposition 2.8. If.  X
is a vector field with components Fi, then the components of
V,K are given by

I;, Kj: 1:  :i;&t”.

The covariant derivatives of higher order can be defined
similarly. For a tensor field K with components K$::  12,  v”K
has components K$ : : :I:; EA  . . . ;k;

The components 7& of thetorsion T and the components qir
of the curvature R are defined by

T(X5,  Xk) = Xi  Tip%?,, R(Xk, Xi)Xj  = & l?jktX<.

Then they can be expressed in terms of the components I$ of the
linear connection r as follows.

I
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- PROPOSITION 7.6. We have

qk, = (art/ax*  - arga.q  + zz;,(r;rk  - rgrjm).
Proof. These formulas follow immediately from Theorem 5.1

and Proposition 7.4. QED.

The proof of the following proposition is a straightforward
calculation. -.

PROPOSITION 7.7. (1) Iff  is a function dejined  o,n  M, then

,&’  -Jj;k  = zi T~j~i.

(2) If X is a vector jeld on M with components P, then,

Since n2  + n l-forms t!J”,  tu2’,  i.“j,  k = 1, . . . , R, define an
absolute parallelism (Proposition 2.6))  every differential form on
L(M) can be expressed in terms of these l-forms and functions.
Since the torsion form’@  and the curvature form B are‘tensorial
forms, they can be expressed in terms of n l-forms 0’ and functions.
We define a set of functions q&  and $,  on L(M) by

These functions are related to the components of the torsion T
and the curvature R as follows. Let r~:  U’+ L(M) be the cross
section over U defined at the beginning of this section. Then

u*?+jk  =  Tky o*i& =  Rikp

These formulas follow immediately from Proposition 7.6 and
f r o m

PROPOSITION 7.8. Let xi  = x”(t)  be the equations of a cume
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7 = x,  of class C 2. Then r is a geodesic if  and only ;f

= 0, i = i,. . ., n.

Proof. The components of the vector field it along 7 are
given by dx”/dt.  From ‘the Tormula  for the components of V,Y
given above, we see that, if we set X = it,  then V,X  = 0 is
equivalent to the above equations. QED.

We shall compare two or more linear connections by their
components.

PROPOSITION 7.9. Let r be a linear connection of M with com-
ponents r&. For each fixed t, 0 5  t 5  1, the set of functions I’*$  =
trjk  + (1 - t) I?&  defines a linear connection I’* which has the same
geodesics as r. In particular, I?*$  = &(rj&  + rij)  define a linear
connection with vanishing torsion.

Proof . Our proposition follows immediately from Propositions
7.3, 7.6 and 7.8. Q E D .

b_
In general, given two linear connections ,F with components

I’&  and l?’ with components I”fk,  the set of functions tI’& +
(1 - t)  I”$  define a linear connection for each t,  0 5 t 2 1.
Proposition 718  implies that I’ and I” have’ the same geodesics if
rjk  + rij = r’fk  + r$..

The following proposition follows from Proposition 7.2.

PROPOSITION 7.10. If E’jk  and” l-“ik are the components of linear
connections r and I” respectively, then Sjk  = I”,je  - l?jk  are the com-
ponents of a tenorjield of tyje (1, 2); Conversely, if  rjk are the components
of a linear connection r and S& are the components of a tensor field S of
gpe ( 1, 2)) then I”;,  = I’&  + Sjk  define a linear connection I?‘. In terms
of covariant derivatives, they are related to each other as follows :

V>Y = V,Y + S(X,  Y) for any vectorjelds X and Y on MS ;

where V and V’ are the covariant di$erentiations  with respect to r and:J”
respectively.

8. Normal coordinates

In this section we shall prove the existence of normal coordinate
systems and convex coordinate neighborhoods as well as the
differentiability of the exponential map.
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Let A4 be a manifold with a linear’ cormection 1‘.  Given
X E T,(M ), let T = x1  be the geodesic with the initial condition
(x, X) (cf. Theorem 6.3). We set

exp tX = xt.

As we have seen already in $6, exp tX is defined in some open
interval -&r < t < &a,  where &I  and 8s are positive. If the
connection is complete, the exponential map exp is defined on
the whole of T,(M) ‘for each x E‘M.  In general, exp is defined
only on a subset of’T,(M)  for each x c M.

PROPOSITION 8.1. Identifying each x E &I with the zero vector at x,
we consider M as a submani$ld  of T(M) = U T,(M). Then there

?CM
is a neighborhood N of M,  in T(M) such that the exponential map is
defined  on N. The exponential map N --f  M is dzxerentiable  of class C”,
provided that the connection is of class C”.

Proof. Let x,,  be any point of M and u,, a point of L(M) such
that ?r(uO).  = x0. For each 5 Q R”, we denote by B(E) the corre-
sponding standard .horizontal  vector field bn L(M) (cf. $2).  By.
Proposition 1.5 of+Chapter  I, there exist a neighborhood U* of
~a  and a positive number 6 such that the local l-parameter group
of local ,transformations  exp B(l)  : .q*  + L(M) is defined. for
ItI  <,  b. Given a compact set K of R”, we can choose .U* and 6
for all t E K simultaneously, because B(t)  depends differentiably
on 6. Therefore, there exist a neighborhood U* ‘of u0 and a
neighborhood V of 0 in R” such that exp B(t) : U* + L(M)
is defined for 5 E  V and ItI  5 1. Let U be a neighborhood of x0  in
M and (T  a cross section of L(M) over U such that u(x,,)  = u,, and
u(U)  c U*. Given x E  0,  let N,  be the set of X E  T,(M) such
that o(~)-~d  E  I’  and set: N(x,)  = U N,. Given X l N,, set

zru
5 = a(x)-‘X.  Then n((exp  tB(5))  * u(x))  is the geodesic with the
initial condition (x, X) and’ hence‘1 ,‘. exp X = rr((exp  B(5)) e u(x)).
It is now clear that exp: N(x,)  + M is differentiable of class C”.
Finally, we set # =bv+l  N(x,)  .

0 A
QED.

PROPOSITION 8.2 . ,For every point x E M, there is a neighborhood N,
of x (more precisely,  the zero vector at x) in T,(M) which is mapped
difeomorphically  onto a neighborhood Li,  of x in M by the exponential map.
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Proof. From the definition of the exponential map, it is
evident that the dieerential  of the exponential map at x is non-
singular. By the implicit function theorem, there is a neighbor-
hood N,  of x in T,(M) which has the property stated above.

Q E D .

Given a linear frame ’ u = (Xi,  . . . , X,) at x, the linear iso-
morphism u:W + 2”,(M) defines a coordinate system in T,(M)
in a natural manner’. Therefore, the diffeomorphism exp: N,  -+
U..  defines a local coordinate system in U, in a natural manner.
We call it the normal coordinate ystem  determined by the frame u.

PROPOSITION 8.3.  Let xl,..., X”  be the normal coordinate system
determined by a linear frame u = (Xl,  . . . , X”)  at x f M. Then the
geodesic r = x1 with the initial condition (x, X), where X = xi  aiXi, is
expressed by

xi  = ait , i=l,...,  n.

Converse&,  a local coordinate system 9,  . . . , xn  with the above properg  is
necessarily the normal co&dinate  system determined by u = (Xl,  : . . , Xn) .

Proof . The first assertion is an immediate consequence of the
definition of a normal coqrdinate  system. The second assertion
follows from the fact that a geodesic is ,uniquely  determined by the
initial condition (x, X). QED.

Remark. In the above definition of a normal coordinate
system, we did not specify the neighborhood in which the co-
ordinate system is valid. This is because if x1,  . . . , xn  is the normal
coordinate system valid in a neighborhood U of x and yl, 2”
is the normal coordinate system valid in a neighborhood’ i’df  x
and if the both are determined by the frame u = (Xi, . . . . &I),
then they coincide in a neighborhood of x.

PROPOSITION 8.4.. Given a linear connection r on M, let F$ .be  its
components with res#ect  to a normal coordinate system with origin xo.  Then

rjk  + l?b = 0 at x0.

Consequently, if the torsion of F vanishes, then F$ = 0 at xg’
Proof . Let x1,  . . . , xn  be a normal coordinate system with

origin x0.  For any (al, . . . , an) an,  the curve defined by xi  = a9,
i=l , * * *  , n, is a geodesic and, hence, by Proposition 7.8,
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Zj,*  r$(alt, . . . , ant)aiak = 0. In particular,

I2Zj.k r&  (xo)aiaE = 0.
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Since this holds for every (al, . . . , a”), lY’;e  + FL  = 0 at x0.  If
the torsion vanishes, then I’jk = 0 at x,,  by Proposition 7.6. QED.

COROLLARY 8.5.
Kf’::-i

Let K be a tensor field on M with components
with respect to a normal coordinate system x1,  . . . , x”  with

origin x,,. If the torsion vanishes, then the covariant derivative Kj:  : : : >. k
coincides with the partial derivative aK2 1:  $axR  at x,,. $

I’

Proof. This is immediate from Proposition 8.4 and the
formula for, the covariant differential of K in terms of l?jk given
in $7. QED.

COROLLARY 8.6. Let o be any dz&ential  form on M. rf  the
torsion vanishes, then .’

d o  =  A(h), /

where Vo,is  the couariant  dz&ential  of .o and A is the alternation:defined
in Example 3.2 of Chapter I.

r Proof. Let x,,  be an arbitrary point of M and xi, . . . , x” a
normal coordinate system with origin x,,.  By’ Corollary 8.5,
dw  = A(Vco)  at x0.. QED.
THEOREM 8.7. Let x1,  . . . , x”  be a normal coordinate system with

origin x,,. Let U(x,,; p) be the neighborhoodof x,,  defined by Ei (xi)2  < p2.
Then there is a positive number a such that zf  0 < p < .a, then

(1) ‘U(x,;  p)  is convex in the sense that /&ty  ‘two points  of U(x,,; p)
can be joined by a geodesic which lies in IQ,; p).

(2) Each point of U(
containing U(x,;  p).

xo;‘p)  has a’ ndr%al  coordinate neighborhood

Proof. By Proposition 7.9, we may assume that the linear
connection has no torsion.
!a:.

&,~&a  1, Let S(xo; p) denote,the  sphere deJned by C (xi)2  = p2
Then .there  ea$sts  a iositive number c such that, af 0 < p : c, then any
geodesic whiAAis  tangent to S(xo; .p)  at a point, say y, of S(x,; p) lies
outside S(x,;.  p) in,a neighborhood ofy.

Proof of Lemma 1.. Since the torsion vanishes by our assump-
tion, the components I&of  the linear connection vanish at x0  by
Proposition 8.4. Let xi -T x’(t) be the equations of a geodesic
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which is tangent to S(x,; p) at a point y = (x1(O), . . . , x”(O))
(p will be restricted later). Set

F(t) = xi (d(t))?
Then

0 ” .-
’

Because of the equations of a geodesic given in Proposition 7.8,
we have

Since I’j, vanish at x0,  there exists a positive number c such that
<the  quadratic form with coefficients .(6,, - Xi I’j,xi)  ,is positive
definite in U(x,; c). If 0 < p < c,  then (d”F/dt2)l=o  > 0 asd
hence F(t) > p2 when t & 0 is in a neighborhood of Q. This
completes the proof of the lemma.

L E M M A  2 . Choose a positive number c as in hemma  1. ‘Then there
exists CL  positive number a, < c such that

(1) Any two points of U(x0;  a) can be joined by a geodesic which liesI
in U(x, ; c) ; 3’

(2) Each point of U(x,;  a) has a normal coordinate neighborhood
containing U(x,;  a).

Proof of Lemma 2. We consiper  A4 as a submanifold of k(M)
in a natural manner. Set

v(X)  =.(x,  exp X) for X E  p,(M).

If the connection .is complete, 91 is a mapping of T(M) into
M x M. In gene&,  @ is defined only in a neighborhood of M in
T(M). Since the differential of v at x0  is nonsingular; there exist
a nei,ghborhood  V of x0  in T(M) and a positive number a < c
such that pl: V + U(x,; a) x U(x,; a) is a diffeomorphism. Taking V
and a small, we may assume that exp tX E  ,U(x,,  c)‘  for all X F V
and ) t 1 5 1. To verify condition ( l), let x and y be points of U(x,; a).
Let X = q-‘(x,  1),  X E V. Then the geodesic with the initial
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condition (x, X) joins x and y in U(x,; c). To verify (2),  let
V, = V n T,(M). Since exp: V, - U(x,; a) is a diffeomor-
phism, condition (2) is satisfied.

To complete the proof of Theprem  8.7, let 0 < p < a. Let x
andy be any points of U(x,; .p).  Let xi = x’(t),  0 5  t 5  1, be the’
equations of a geodesic ‘from x toy in U(x,,;  c) (see Lemma 2).
We shall show that this geodesic lies in U(A+,,;  p). Set

F ( t )  =  Ci  (xi(t))2 for 0 I t I 1.

Assume that F(t) 2 p2  for. soee  t (that is, xi(t) lies outside
U(+,; p) for some t). Let to,  0 < to  < 1, be the value for which
F($ attains the maximum. Then

I.

o= dF
( )z 1-t ,,= 2Ei  Xf(tO)  $ 1=1  a

( ) 0

This means that the geodesi?.  2(t)  is tangent to the sphere
S(x,; p,,),  where p: = F(t,,),  at fhe  point x’(to). By .the’choice of
to,  the geodisic  x’(t)  lies inside the sphere S(x,; pJ,  contradicting
Lemma 1. This proves (l)* (2).  MIows from (2) of Lemma 2.

’ Q E D .

The existence of convex neighborhoods is due to J. H. C.
Whitehead [ 11.

9. Linear injinitesimal  holonomy groups ’

Let r be a linear connekon  en a manifold M. For each point
u of L(M), the holonomy group Y(u), the local holonomy
group Y*(U) and the infinitesimal holoilomy  group Y’(U)  are
defined as in $10 of Chapter II. These groups can be realized as
groups of linear transformations of T,(M),  x = w(u), denoted’ by
Y(z),  Y*(X)  and Y’(X) respectively  (cf. $4 of Chapter II).

1
T HEOREM  9.1. The Lie’ alg&a  g(x). of the holonomy group Y(x)

is equal to the subspace  of linear endomor-him  of T,(M) spanned by all
elements of the form (d?) (X;  Y) = 7-l  0 R(TX, TY)  0 T,  where
X, Y E T,.. M) and 7 is the paraUd  di.@acement  along an arbitrav. piece-
wise d@eTentiable  curve T starting fro?n x.

I

J
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Proof. This follows immediately from Theorem 8.1 of Chapter
II and from the relationship between the curvature form Q on
L(M) and the curvature tensor field R (cf. $5 of Chapter III).

QED.

It is easy to reformulate Proposition 10.1, Theorems 10.2 and
10.3 of Chapter II in terms of Y(x) and Y”*(x). WC shall therefore
proceed to the determination of the Lie algebra  of ‘l”‘(x).

THEOREM 9.2. The Lie algebra g’(x)  of the inJinitesima1  holonomy
group ‘P”(x)  is spanned by all linear endomorphisms of T,(h4)  of the
form (G”R)(X,  Y; V,;... ; V,),  where X, Y, V,,. .., Vkc  T,(M)
and0 5  k <.a~.

Proof. The proof is achieved by the following two lemmas.

LEMMA 1. By a tensor field of &pe  11,  (res]).  II,), we mean a tensor
T$i;f  ;pe  (1,;1?;;  the form VI,, * * . y,.,(R(X, Y)) (resp.  (VkR)

where X, Y, V,, . . . , V, are ar$trary  vector

jielis  dk  $1  ‘?hen  ave&  tensor jield o f  !#e  A, (resp.  B,) is a linear

combination (with di$krentiable  functions as coeficients)  of afinite number
of tensorjelds  of type Bi  (resp.  lli),  0 :’ j  ;.’ .k.

Proof of Lemma 1. The proof is by induction on k. The case
k = 0 i.s  tr ivial.  Assume that VI.,_,  * . * C,,,(R(X,  Y)) i s  a  sum
of terms like

f(ViR)(U,  V; W,;. . . ; WJ, 0.5j  5  k  - 1 ,

where f is a function. Then we have

V,h(f(ViR)(u,  V; WI,  * * - ; Wj))

= (V,f)  - (V’R)(U, V; W,;. . . ; Wj)

+ (Vj”R)(U,  V; W,;. . . ; Wj;  V,)

-/-  (V’R)(V& V; W,;. . . ; Wi)

+ (CiR)(U,  V& W,,  . . . ; Wj)

+ q , (VR)(C’, I’; J&; . . . ; V,&;.  . . ; Wj).

This&lows  that every  tensor field of type :I, is a linear combina-
tion of tensor fields of type Bj, 0 . . .j k.
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Assume now that  every  tensor field of type /I,-,  is  a lineal
combination of tensor fields of type ll,,  U i ; k  - 1. We have

(VW)(X,  1’; v,;  . . . ; V,) =m--  ‘i’,.,((““-‘R&I-,  Y; V,;. . . ; Jfk..,))

-~  (Tk- lRj(‘C,.nX,  1’;  V,;. . ; Vk-.l)

-- (-w’R)(X,  T ,.,, 1’; v,;. . . ; v,-..)

- I?$:  (P’Rj(X,  Y; J’,;. . . ; v,g(;.  . . ; V,_.,).

The first term on the right hand side is a linear  combination of
tensor fields of type A j, 0 .‘-  .i : : k. The rcmaininq  terms  on the
right hand side are linear combinations of tensor fi;lds  of type ..l,,
0 sj  :: k -.~ 1.  Th’is complctcs  the proof of Lemma 1.

’ By definition, n’(u)  is sparmed  6y  the values at u  of all. gl(n-.R)-
valued functions of the form (I,),  k  = 0, 1 ,  2 . . (cf. $0 of
Chapter  II). ‘l’hcorcm 9.2 will follow fi-om  Lekima 1 arid- the
following lemma.

LEMMA 2. If X, Y, V,, . . . , Vh-  qe  vector Jields  on hi  anh ;f
x*, y*, k-f,  . . . ) I’;

Fr, * a *

are their horizontal lifis  to L(,14),  the;  we Iraq

LIW(& wjzz
i

q&y*- V:(2Q(X*, Y*)))U 0 U-l (Zj

for Z c T,(M).
Proof of Lemma 2. This follows immediately  from Proposition

1.3 of Chapter III; WC take’R(X,  Y) and 211(X*,  Y*) as v and f
in Proposition 1.3 of Chapter III. QED.

By Theorem 10.8 of Chapter II and Thcorcm  9.2 the restridted
holonomy group ‘PO(x)  of a real analytic Ii:lc%;tr  ‘connection  is
completely determined by the values of all sue-ccssivc  co\,arian
differentials V”‘R,  k = 0, 1, 2, . . . , at the point .I. .Y’

The results in this section were obtained  by Nijcnhuis  [2].
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is easy to verify .that g,  is independent of the choice of a Q G such
that a(o)  = x and that the Riemannian metric g thus obtained is
invariant by G. The homogeneous space G/H  provided with an
invariant Riemannian metric is called a Riemannian homogeneous
space.

Example 1.4. Every compact Lie group G admits a Riemannian
metric which is invariant by both right and left translations. In
fact, the group G x G acts transitively on G by (a, 6)  * x = ad-l,
for (a, 6) c G x G and x e G. The isotropy subgroup of G x G
at the identity e of G is the diagonal D = ((a, a}; a E G}, so that
G = (G x G)/D. By Example 1.3; G admits ,a  Riemannian
metric invariant by G x G, thus proving our assertion. If G is
compact and semisimple, then G admits the following canonical
invariant Riemannian m&c. In ,the Lie algebra  g,  identified  with
the tangent space T,(G), we have the KilIingCartan  form
v(X, Y) = trace (ad X0 ad Y), where X,Y  Q g = Z’,(G). The

.’ form q~  is bilinear, symmetric and invariant by ad. G. When G is
compact and semisimple, q,is  negative definite. We define a .
positive definite inner product g,  in T,(G) by gb(X;  Y) =
-q(X,  Y),  Since (p  is invariant by ad G, g,  is invariant by the
diagonal D. By Example 1.3, we obtain a Riemannian metric on
G invariant by G x G. We discuss this metric in detail in

V o l u m e  I I .
By a Riemannian metric, we, shall always mean a positive

definite symmetric covariant tensor field of degree 2. By an
indejinite Riemannian metric, we shall mean a symmetric covariant
tensor field g of degree 2 which is nondegenerate at each x f M,
that is, g(X, Y) = 0 for all Y t T,(M) implies X = 0.

Example 1.5. An indefinite Riemannian metric on R” with the
coordinate system 9,  . . . , .? can be given by

I qc’=l  (dxp- %I;1  (W2,

CHAPTER IY

Riemaxmian  Connections

1. Riemannian metrics

Let A4 be an n-dimensional paracompact manifold. We know
(cf. Examples 5.5, 5.7 of Chapter I and Proposition 1.4 of
Chapter III). that M admits a Riemannian metric and that there
is a 1: 1 correspondence between the set,of  Riemannian metrics’
on M and the set of reductions of the bundle L(M)  of linear
frames to a bundle O(M).of  orthonormal frames. Every Rie-
mannian  metric g defines a positive definite inner product in each
tangent space TJM);  we write, gz(X, Y) or, simply, g(X, Y)
for X, Y E  T,(M) (cf. Example 3.1 of Chapter I).

Example 1.1. The Euclidean metric g on R” with the natural
coordinate system 9, . . . . X” is defined by

g( a/axi,  a/Z?) = dij (Kronecker’s symbol).

Example  1.2. Let f: N -+ A4 be an immersion of a manifold
N +rto  a Riemannian manifold M with metric g. The induced
Riemannian metric h on N is defined by h(X, Y) = g(f,J,  f*  Y),
X,Y E 7’,(N).

Example 1.3. A homogeneous space G/H,  where G is a Lie
group and H is a compact subgroup, admits an invariant metric.
Let J?  be the linear isotropy group at the origin o (i.e., the point
represented by the coset  H) of G/H; 2 is a group of linear trans-
formations of the tangent space Z’,(G/H),  each induced by an
element of H which leaves the point o fixed. Since His compact,
so is R and there is a positive definite inner product, say go,  in
T,(G/H)  which is invariant by J?.  For each x E  G/H, we take an
element a E  G such that a(o) = x and define an inner product gz
in T,(G/H)  by g,(X,  Y) = go(a-‘X,  a-‘Y),  X,Y  E  T,(G/H).  It

154

where 0 c’ p d n - 1. Another example of an indefinite Rie-
mannian  metric is the carlonical  metric on a noncompact, semisimple
Lie group G defined as,follows. It is known that for such a group
the Killing-Cartan form Q is indefinite and nondegenerate. The
construction in Example 1.4 gives an indefinite Riemannian metric
on G invariant by both right and left translations.
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Let A4 be a manifold with a Riemannian metric or an in-
definite Riemannian metric g. For each x,  the inner product gz
defines a linear isomorphism y of T,(M) onto its dual T:(M)
(space of covectors ‘at x) as follows: To each X E T,(M),  we
assign the covector a E  T,*(M) defined byI

<Y, 4 = g&T  Y) for all YE T,(M).

The inner product g, in Tz(M)  defines an inner product, denoted
also by gz,  in the dual space T,*(M) by means of the isomorphism
*:

sda,  B) = .b(V’(a),  W-V)) for a, fl  E  T:(M).

Let x1,  . . . , I be a local coordinate system in M. The com-
ponents gij  of g with respect to xl, . . . , x” are given by

gij  = s(alaxi,  ap), i,j = 1 , * * *  , n .

The contravariant components gij of g are defined by

ij i,j =  1 ,-**, n .
We have then

g = g(dx’,  dxj),

2, gijg’l”  = s:.

In fact, define vi,  by y(a/ax”)  = Ejlyir  dxj. Then we have

gij = g(a/axi,  a/ad)  = fa/axj,  w(ivad)j  = Wij*
On the other hand, we have

s: = (a/axi, dxk) =g(dxk,  lu(a/axy)  =g(du~,z,~,,  dxj) = z,yr,gjk,

thus proving our assertion.
If ti are the components of a vector or a vector field X with

respect to x1,  . : . , 9, that is, X = Zi E’(a/ax(), then the com-
ponents Ei of the corresponding covector or the corresponding
l-form a = y(X) are related to 5” by.

c?$  = iz*  giQ*, ti = Iz, girl’.

The inner product. g in T,(M) and in T:(M) can be extended
to an inner product, denoted also by g, in the. tensor space ‘I’@)
at x for each type (r, s).  If K and L are tensors at x of type (r,  s)
with components Kh : : : f:  and Lk : ::j: (with respect to x1,  . . . , 4,
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then
$(K, L) = x&k,.  . .gi~,gi”“‘.g~l”,K~::  :~L$‘.‘:&

The isomorphism 1y: T,(M) + T:(M)  can be extended to
tensors. Given a tensor K E q(x)  with components K;;1:: 12,  we
obtain a tensor K’ E T:;:(x)  with components

K’il31:::j;-:;: L  zkgj,&jk:‘f::jf:;l,

or K”  E  T?:(x)  with components

%xample  1.6. Let A and B be skew-symmetric endomorphisms
of the tangent space T,(M), that is,.  tensors at x of type (1, 1)
such that

g(AX, Y) = -g(AY, X) and g(BX, Y) = -g(BY, X)

for X, YE T,(M).
Then the inner product g(A, B) is equal to --trace (AB). In
fact, take a local coordinate system x1,  . . . , x” such that gi,  = 6,,
at x and let aj and 6j  be’ the components of A and B respectively.
Then :,

g(A, B) = I:  g,,gJlajbf = Z a# = --z  ajb{  = -trace  (AB),

since B is skew-symmetric, i.e., bf  = -b{.
On a Riemannian manifold M, the arc length of a differentiable

curve T = x1,  a S t 5 6, of class C1  is defined by
*

L  =
f

og(ft,  it)* dt.
a

In terms Of a lOCal  coordinate system x1,  . . . , x”, L is  given by

bL =
S(a

This definition can be generalized to a piecewise differentiable
curve of class Cr in an obvious manner.

Given a Riemannian metric g on a-connected manifold M, we
define the distance function  d(x,y) on M as follows. The distance
,i(x,~)  between two points x andy is, by definition, the infinimum
of the lengths of all piecewise differentiable curves of class Cl
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j,)ining  x and-r. Then we have

d(x,y) 2 0 ,  d(x,y)  =  d(y, .r),  d(x,y)  t d(J  z) flj? 2)s

We shall see later (in $3) that djx,  ~1)  = 0 only when .X ==J’  and
that the topology defined by the distance function (metric) d is
the same as the manifold topology of M.

2. Riemannian connections

Although the results in this section are valid for manifolds with
indefinite Riemannian metrics, we shall consider (positive
definite) Riemannian metrics only for the sake of simplicity.

Let ;tl  be an n-dimensional Riemannian manifold with metric’
g and O(M) the bundle of orthonormal frames over M. Every
connection in O(M) determines a connection in the bundle L(M)
of linear frames, that is, a linear connection of M by virtue of
Proposition 6.1 of Chapter II. A linear connection of n/i  is called
a metric connection if it is thus determined by a connection in 0 (M).

P ROPOSITION 2 . 1 . A linear connection l? of a Riemannian manifold
M with metric g is a metric connection ;f and only if g is parallel with ,
respect to r.

Proof . Since g is a fibre metric (cf. $1 of Chapter III) in the
tangent bundle T(M), our proposition follows immediately from,,
Proposition 1.5 of Chapter III. QED.

.
Among all possible metric connections, the most important is

the Riemannian connection (sometimes called the Levi-Civita connection)
which is given by the following theorem.

THEOREM 2.2 . Every Riemannian manifold admits a unique metric
connection with vanishing torsion.

We shall present here two proofs, one using the bundle O(M).
and the other using the formalism of covariant differentiation.

Proof (A). Uniqueness. Let 0 .be  the canonical form of L(M)
restricted to O(M).  Let ~0 be the connection form on O(M)
definining a metric connection of M. With respect to the basis
e,, . . . , e, of R” and the basis Ej, i < j,  i,j = 1, . . . , n, of the Lie
algebra o(n), we represent 0 and UJ by n forms O’, i = 1, . . . , n,
and a skew-symmetric matrix of differential forms oi respectively.
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The proof of the following lemma is similar to that of Proposition
2.6 of Chapter III and hence is left to the reader.

LEMMA. The n forms O’,  i = 1,  . . . , n, and the .$n(n - 1) forms
a$,  1 d  j < k $  n, deJne an absolute parallelism on O(M).

Let q be the connection form defining another metric connection
of M. Then v - OJ can be expressed in terms of 0’  and OJ~ by the
lemma. Since y - w annihilates the vertical vectors, we have

p; - o; = ckFjk@,

where the FjL’s  are functions on O(M). Assume that the connec-
tions define5  by UJ and Q, have no torsion. Then, from the first
structure equation of Theorem 2.4 of Chapter III, we obtain

0 = cj  ipj 1:;)  A ej = cj,k  F&  8” A 0’.

This implies that F$ = Fflj.  On the other hand, Fik = -Fi,  since
($)  and (9;) are skew-symmetric. It follows that Fj,  = 0,
proving the uniqueness.

Existence. Let p be an arbitrary metric connection form on
O(M) and. 0 its torsion form on O(M). We write

We shall show that o = (wj)  defines the desired connection. Since
both ( iijk ,+ T&) and ?“:i are skew-symmetric in i and j, so is
T$  Hence.  o is o(n)-valued. Since 0 annihilates the vertical
vectors, so does T = (7;).  It is easy to show that R,*T  = ad (a-‘)  (7)
for every a c O(n). Hence, w is a connection form. Finally, we
verify that the metric connection defined by o has zero torsion.
Since (?$  + p&)  is symmetric in j and k, we have

I

zj 7: A fji = -@i,
and hence

dV = --I;,  qj A  ej + Oi = -cj ,j A p,

proving our assertior?

1’.
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Proof (B) . Existence. Given vector fields X and Y on M, we !

define V x Y by the following equation : ‘ B

2g(V,Y,  2) = X*g(Y,  2) i- cd-z  z> - z d-T  Y)

+ g([X  Y], Z) + g(lZ,  x39  Y) + gv,  K m

which should hold for every vector field 2 on M. It is a straight-
forward verification that the mapping (X, Y) + V,Y, satisfies ’
the four conditions of Proposition 2.8 of Chapter III and hence
determines a linear connection I’ of M by Proposition 7.5 of
Chapter III. The fact that I’ has no torsion followsSfr;mythe
above definition of V,Y and the formula T(X, Y) x -

V,X - [X, Y] given in Theorem 5.1 of Chapter III. To show.  .
that l? is a metric connection, that is, Vg = 0 (cf. Proposltlon  2.1),
it is sufficient to prove

x * g(K  z>  = g(VxY,  Z) + AK VXZ)
for all vector fields X, Y and 2,

by virtue of Proposition 2.10 of Chapter III. But this follows
immediately from the definition of V,Y.

Uniqueness. It is a straightforward verification that if VxY
satisfies V,g  = 0 and VxY  - V7,X  - [X, Y] = 0,

satisfies the equation which defined V,Y.

th;en;t
.

G the  course of the proof, we obtained ‘the following

PROPOSITION 2.3. With respect to the Riemannian connection, we have

2g(bxY,  2) = i*:g(Y,  Z) -i’Y  *g(X,  Z) - z-&F Y)
‘ , c g([X,  Y],  Z) +‘g(V,  49 y> + gv, VG m

for all vytorjields X, Y and Z of M.

COROLLARY  2.4. In terms of a local coordinate system x1,  . . . , x”,

the components I’j, of the Riemannian connection are given by -7.

Proof . Let X = a/W,  Y = a/ax’ and Z = 8/8xk  in Proposi-
tion 2.3 and use Proposition 7.4 of Chapter III.

QED.

.
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Let M and A!’ be Riemannian manifolds with Riemannian
metrics g and g’ respectively. A mapping f: M i M’ is called
isometric at a point x of M if g(X, Y) = g’(  f*X,f* Y) for all
X,Y  E  T,(M). In this case, f* is injective  at x,  because f*X  = 0
implies that g(X, Y) ==  0 for all Y and hence X = 0. A mapping
f which is isometric at every point of M is thus an immersion
which we‘call an isometric immersion. If,  moreover, f is 1: 1, then)
it is called an isometric imbedding of M into M’. If f maps, M 1 : 1
onto M’, then f is caileil  an isometv  yof  M onto M’.

PROPOSITION 2.5. Iff. zs  an isometry of a @emannian manifold M
onto another Riemannian manifold M’,  ‘then the dzjSerentia1  off commutes
with the parallel  displacement. More prekseb, ;f r is a curve from x toy
in M, then the following diagram is commutative:,

T&W  A T,(M) “.
f*

4
f*

1
TZW’) z+ T,.  (AI’),

where x’ = f(x),y’  =_f(y)  and 7’ I-~(T).
Proof. This is, a consequence of the, uniqueness of the

Riemannian connection in Theorem 2.2.. Being a diffeomorphism
between A4 and M’, f defines a 1: 1 correspondence between the
set of vector.fields  on M and. the set of vector fields on M’. From
the Riemannianconnection l” on M’,  we obtain a linear connrc-
tion 1‘ on M by V,Y L f-‘(  P,aY(fj’)),  where X and Y are vector
fields on M. It is easy to verify that I has no torsion and is metric
with respect to g. Thus, I’ is the Riemannian connection of 34. .

This means thatf(V,Y)  = V,*,(fY)  with respect to the Ricman-
nian  connections of M and M’. This implies immediately our
proposition. QF,D.
PROPWTION 2.6. Iff .zs  an isometric immersion of a Riemannian

manifold  M into another Riemannian mamfold M’  and ;fs(M)  is open
In M’,  then the dzxereptial  off commutes with the parallel displacement.

Proof. Since f(M) is ppen  in M’, dim 124 = dim M’.  Since f
is an immersion, every point x of 121 has an open neighborhood CT
such that f(U) is open in M’-  and f:  U --+f(ZT) is a diffeo-
morphism. Thus, f is an isometry of C’ ontof(  C’).  By Proposition
2.5, the differential off commutes with the parallel displacement
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along any curve in I;. Given an arbitrary curve T from x to-y in
M, we can find a finite number of open neighborhoods in M with
the above property which cover 7.  It follows that the differential
off commutes with the parallel displacement along 7. QED.

Remark. It follows immediately that, under the assumption of
Proposition 2.6, every geodesic of M is mapped by f into a
geodesic of M’.

Example 2.1. Let M be a Rier,iannian  manifold with metric g.
Let M*  be a covering manifold of M with projection r’. We can

,_ introduce a Riemannian metTIc  g* on M* in such a way that
p:  M* -+ M is an isometric ‘immersion. Every geodesic of M*
projects on a geodesic of M. Conversely, given a geodesic 7 from
x toy in M and a point .x* of M* with p(x*) = x, there is a
unique curve r* in M* starting from x* such that p(~*) = 7.
Since p is a local isometry, r* is a geodesic of M*. A similar
argument, together with Proposition 2.6, shows that ifp(x*)  = x,
then the restricted linear holonomy group of M* with reference
point x* is isomorphic by p to the restricted linear holonomy group
of iz! with reference point x.

Proposition 2.5 and 2.6 were stated with respect to Riemannian
connections which are special linear connections. Similar state-
ments hold with respect to the corresponding affine connections.
The statement concerning linear holonomy groups in Example
2.1 holds also for afhne holonomy groups.

3. Nol;mul  coodinutes  and con&x  neighborhoods

Let -21 be a Riemannian manifold with metric g. The length of
a vector S,  i.e., g(X, X)$,,  will be denoted by IlXii.

Let 7 = x,  be a geodesic in M. Since the tangent  vectors it are
parallel alang  T and since the parallel displacement is isometric,
the length of x1  is constant along T.  If Ili’lil = 1, then t is called’ the
canonical parameter of the geodesic 7. .

Bv a normal coordinate @em  at x of a Riemannian manrfold  ii,  we
always mean a normal coordinate system x1,  . J . , X*  at x such
that a/8x1,  . . . ,a/+?  form an orthonormal fra’me  it x. However,
.ala9,.  . . , a/@  may not be orthonormal at other points.

Let U be a normal coordinate neighborhood of x with a normal
coordinate system x1,  . . . , xn  at x. We define a cross section (I  of
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o(,M) over U as follows: Let u be the orthonormal frame at x
given by (a/ax’).,  .  . . , (a/ax”)..  By the parallel displacement of
u along the geodesics through x, we attach an orthonormal frame
to every point of U. For the study of Riemannian manifolds, the
cross section 0: U -+ O(M) thus defined is more useful than the
cross section U -+ L(M) given by a/ax’, . . . , a/axn.  Let 8 = (V)
and o = (01)  be the canonical form and the Riemannian connec-
tion form on O(M) respectively. We set

6 = a*8 = (@) and  il, = a*&  = (t$),

where ei and W{  are l-forms on U. To compute these forms
explicitly, we introduce the polar coordinate system (tt,  . . . , p”; t)
bY 2 = pit, i = 1, . . . , n; & (~9~)~  = 1.

Then, ei and ~;i  are linear combinations of dp’,  . . . , dp”  and dt
with functions of p’,  . . . , p”, t as coefhcients.

PROPOSITION 3.1. (1) ei = pi dt + vi,  where vi,  i = 1, . . . , n,
do not involve dt;

(2) ci$’  do not involve dt;
(3) r$ =OandcT,’ 1 = 0 at t = 0 (i.e., at the origin x) ;

(4) d# = .l(d$  + Cjfijpj)  A&  + . . .,

d6; = -Xc, 1 R$,pkyc  A dt + . . . ,

where the dots . +. . indicate terms not involving dt and &,  are the com-
ponents of the curvature tenqrjeld  with respect to the framejeld  a.

Proof. (1) For a fixed direction (pl, . . . , p”), let T = xt  be the
geodesic defined by xi = pit, i = 1, . . . , n. Set ut  = cr(x$  To
prove that e’ - pi dt do not involve dt, it‘is sufficient to prove that
p(x,)  = pi.  From the definition of the canonical form 0,  wehave

-\ @i,)~  + s& = u;‘(iJ.

Since both u,  and xt are parallel along T,  6(x,)  is independent oft.
On the other hand, we have &(x0) = pi and hence ei(x,)  = pi
for all t.

(2) Since ut  is horizontal by the construction of 0,  we have

4(%) = f/&j,) e 0.

This means that of do not involve  dt.
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(3) Given any unit vector X at x (i.e., the point where t = 0),
iet T = x, bc the geodesic with the initial condition ,(x,  X) so
that X - i,.  By (1) and (2), we have vi(&) = 0 and Gi(&,)  = 0.

(4) From the structure equations, WC obtain

d(p”  dt + cp’)  = -Cj  6; A (pj dt + c$)

d$  A -& c,;  .J,  6;  + clj,
where

“I$  = C,,,  -;Rj,,@  A fir  = C,,, @;kL(p” dt + @)  A (p”  dt + q-9)

(cf. $7 of Chapter III)
and hence (4). QED.

In terms of dt and @,  we can cxprcss  the metric tensor g as
follows (cf. the classical expression ds2 = C gij dx’  dx’  for g as
explained in Example 3.1 of Chapter I).

PROPOSITION 3.2. The metric tensor g can be expressed by

ds2 = (dt)R  -t C,  (cp’)‘.

Proof.  Since  O(Xj --  (n(J))i(S)  for every XE T,(M),
y 6 [;,,and  since a(y) is an isomc.tric  mapping of R” onto T,(M),
we haye

g(X,  Y) = xi  rs$qo’(y) for X,Y  z T,(M) and y E  U.

In other words,
ds”  = & (fi)“.

By Proposition 3.1, we have

,a!12  = (dl)”  + Ci  (@)2  + 2 Cipirpi  dt.

Since # = 0 at t. = 0 by Proposition 3.1, we shall prove that
C,pi#  = 0 by shbwing  that Xi pipi is independent of t. Since
xi P~Q;’  does not involve  dt  by Proposition 3.1, it is sufhcient to
show that d&pi@)  does not involve dt. We have, by Proposition
3.1,

where the dots . . * indicate:  terms not involving dt.
From xi (p ‘jz = 1: WC obtain

0 = d(2;,  (pa)z).  = 2 Xi  pi dp’.

; \
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On the other hand, Ci,jpih;;ijpj  = 0,

because ($)  is skew-symmetric. This prolcs  that d(Ciipiq’)  does
not involve ,dt. QED.

From Proposition 3.2, we obtain

PROPOSITION 3.3. Letx’,  . . ., x”  be a normal coordinate system at x.
Then evev  geodesic 7  = xI,  xi = ait  (i = 1, . . . , n), through x is

perpendicular to the sphere S(x;  r) dejined  by Xi (xi)2  = 9.

For each small positive number r, we set

N(x; r) *= the neighborhood of 0 in T,.(M) defined by ]/XII  < r,

lJ(x; r) = the neighborhood of x in M dcfincd  by X,  (xi)*  < r2.

By the very definition of a normal coordinate  system, the expo-
nential map is a diffeomorphism of N(x; r) onto U(x; r).

PROPOSITION 3.4. Let r be a positive number such that

exp: N(x; r) -+ U(x; r)

is a di$omorphism.  Then we have
(1) Ever)tpointy in U( x*  r can bejoined  to x (origin of the coordinate, )

system) by a geodesic bing  in U(x; r) and such a geodesic is unique;
(2) The length of th e eog desic  in (1) is equal to the distance d(x,y);
(3) li(x;  r) is the set of points y l Af  such that d(x,  y) -=z  r.
Proof. Every line in N(x; r) through the origin 0 is mapped

into a geodesic in t’(x; r) through x by the exponential map and
vice versa. Now, (1) follows from the .fact  that cxp: N(x; r)  --) .,
U(x; r) is a diffeomorphism. To prove (2),  let ((I’, . . . , a”; b) be
the coordinates ofy with respect to the polar coo,dinate  system
($l, . . :m. , p”; t)  introduced at the beginning of the section. Let

- x,,  a 5 s 5 p, be any piccewise differential  curve from x to
‘J.  we  shall show that the length of T is greater than or equal to 6.

Let p’ =p”(s),  . . . ,p” = p’(S),  t = t(s), a 5  s 6  /I,

be &c equation of the curve T.  If we denote by L(T) the iength of 7,
then Proposition 3.2 implies the following inequalities:
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We shall now prove (3). Ify is in U(x; r),  then, clearly, d(x,  y) < r.
Conversely, let d(x,y)  < r and let T be a curve from x toy such
that L(T) < r.  Suppose T does not lie in U(x; r).  Let y’ be the
first point on T which belongs to the closure of U(x; r)  but not to
U(X;  r). Then, d(x,y’)  = r by (1) and (2). The length of T from
x toy’ is at least r.  Hence, L(T)  2 r,  which is a contradiction.
Thus -r  lies entirely in U(x; r)  and hence y is in U(x; r). QED.

PROPOSITION 3.5. d(x,y)  is a distance function (i.e., metric) on A4
and d&es the same topology  as the manifold topology  of M.

Proof. As we remarked earlier (cf. the end of $l),  we have

d(x,  y) 2 6,  &y)  =  d(y,  4, d(x,j)  +  d(y,  z) 1 d(x,  2).
From Proposition 3.4, it follows that if x fy,  then d(x,y)  > 0.
Thus d is a metric. The second assertion follows from (3) of
Proposition 3.4. QED.

\ A geodesic joining two points x and y of a Riemannian manifold
M is called minimizing if its length is equal to the distance d(x,  y).
We now proceed to prove the existence of a convex neighborhood
around each point of a Riemannian manifold in the following
form.

THEOREM 3.6. Let x1,  . . . , X”  be a normal coordinate system at x
of a lkemannian manifold M. There exists a positive n&ber  a such that,
$0  -=c  p < a, then

(1) Any two points of U(x; p) can be joined by a unique minimizing
geodesic; and it is the unique geodesic joining the two points and lying in
U(x;  P) ;

(‘2) In U(x; p), the square of the distance d(y,  z)  is a di$krentiabZe
function ofy and z.

Proof . (1) Let a be the positive number given in Theorem 8.7
of Chapter III and‘let 0 < p < a. If_y  and z are points of U(x; p),
they can be joined by a geodesic 7 lying in U(x; p) by the same
theorem. Since U(x; p) is contained in a normal coordiwte
neighborhood of-v (cf. Theorem 8.7 of Chapter III), we see from
Proposition 3.4 that 7 is a unique geodesic joining?  and z and
lying in U(x; p) and that the length of r is equal to the distance,
that is, 7 is minimizing. It is clear that 7 is the UnkpK minimizing
geodesic joining y and z in M.
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(2) Identifying every pointy of M with the zero vector at y, we
consider y as a point of T(h4).  For each y in U(x; p), let NV be
the neighborhood of y in T,(M) such that exp: NV -+ U(x; p)
is a diffeomorphism (cf. (2) of Theorem 8.7 of Chapter III). Set
v= u N,. Then the mapping v--f  U(x; p)  x U(x; p )

lKZ’kGP)
which sends Y . Z  NV into (y, exp Y) is a diffeomorphism (cf.
Proposition 8.1 of Chapter III). If z = exp Y, then d(y,  z) =
((Y/l.  In other words, I/ YII  is the function on V which corresponds
to the distance function d(y,  z) under the diffeomorphism V --f
WC P)  x wf  ; PI. s ince IIY/12  is a differentiable function on
I’, d(y,  z)”  is a differentiable function .on U(x; p) x U(x; p).

QED.
As an application of Theorem 3.6, we,obtain  the following
THEOREM 3.7. Let M be a paracompact dlyerentiable  manifold.

Then every open covering { 17,)  of M has an open reJinement  {Vi} such that
(1) each Vi  has compact closure;
(2) {Vi} is Zocally~ nit e in the sense that every point of M has a neighbor-

hood which meets only aJinite  number of V,‘s;
(3) any nonemptyjnite intersection of J:‘s  is di$eomorphic  with an open

cell of R”.
Proof. By taking an open refinement if necessary, we may

assume that (U,}  is looally  finite and that each $!,  has compact
closure. Let (Ui}  be an open refinement of {U,)  (with the same
index set) such that 0:  c U, for all cn  (cf. Appendix 3). Take any
Riemannian metric on M. For each x E  M, let IV, be a convex
neighborhood ofx (in the sense ofTheorem  3.6) which is contained
in some UL. For each M, let

%I&  = {IV,;  IVZ  n GG is non-empty}.
Since 0: is compact, there is a finite subfamily %, of 2Ba which
covers 0:.  Then the family B = U B3, is a desired open refine-

ment of {UJ. In fact, it is clear From  the construction that %
satisfies (1) and (2). If V,, . . . , V, are members of ‘B  and if x and
y are points of the intersection VI  n * . * n V,, then there is a
unique minimizing geodesic joining x and y in M. Since the
geodesic lies in each Fi, i = 1, . . . , k,  it lies in the intersection
V, n - - f n V,.  It follows that the intersection is diffeomorphic
with an open cell of R”. QED. I

‘i
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Remark. A covering (I’,} satisfying (l),  (2) and (3) is called
a simple covering. Its usefulness lies in the fact that the etch
cohomology of M can be computed by means of a simple  covering
of A4 (cf. Weil  [ 11).

In any metric space Af, a segment is defined  to be a continuous
image x(t) of a closed interval a 2

Il
:I: b such that

4x(h),  x(b)) + Wt2)9  x(h)) = 4x(h),  x&J)

for a 5 t, 5 t, 5 t, g b,

whcrc  d is the distance function. As an application of Theorem
3.6, we have a

PROPOSITION 3.8. Let A4  be a Riemannian manifold with metric
g und  d the distance function dejined  by g. Then ever_v  segment is a geodesic
(as a point set). -

The parametrizatitin  of a segment may not be affmc.
Proof. Let x(t),  u : - t 5 b, bc a segment in.&!.  We first show

that x(t) is a gcodcsic for a r: t 2: a + E  foisome  positive E. Let
U be a convex neighborhood of x(a)  in the sense of Theorem 3.6.
There exists E  > 0 such that x(t) c Ufor  a 2: t I; u + E. Let T be
the minimizing geodesic from X(U)  to x(n + c.).  We shall show
that T and x(t), a :.: t 5’ a $ E, coincide as a point set. Suppose
there is a number  c, a < c < a + E, such that X(C) is not. on T.
Then

Ma),  ~(0 4;  t.))  < d@(a),  X(C))  + 444,  #(a  + e)),

contradicting the fact that x(t), a ;r t L’ n + E, is a segment. This
shows that x(t)  is a geodesic for a r* t .’  CI -t F. By continuing
this argument,  we see that x(t)  is a gcodcsic for n 1 : 6. QED.

Remark. If X, is a continuous curvr such that d(x,,, x,~)  =
It, -- t,l  for all t, and t,, then X, is a geodesic with arc length t as
parameter.

COROL.I.AKY  3.9. Let T = x,, n Hz  t . 6,  be a piecewise dtferen-
linbfe  curz’e  oJcfuss  C’  from x toy such that its Imgth L(r) is equal to
d(a,_lj).  Tlren  7  is II geodesic 0s  n point set. If, moreover, 1/1,(1  is constant
cllot!q  7, then 7 is 0  geodr.ric  including the  pnmmetri2ntion. \

Proof. It suiliccs  to show that 7 is a scgmcnt. Le,t n ../  t, I
2,  ..  t , 6.  Denoting  the points x,,  by xi, i = 1, 2, 3, and the
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arcs into which T is divided  by these  points by T,,  7,,,  7:) and TV
respectively, wc  lla\.c

d(x,  x1)  L(T,),  ~f(x,,  x2)  i,(T2j,  lf(.u,,  x:J L ( 73)  9

d(s,,,-llj  /,(T.,j.

If we did not ha\rc  the cclliality (*\cry~h~.c,  WC:  ~oultl  have

d(x,  x,) + djx,,  xi)  -i /f(x,, x,,) L- d(x,,,-1,)

-’  L(p)  -1.  z4(72)  : L(T:$ :- L(7j)  :=:  L(7) 2: d(S,J),

which is a contradiction. ‘l’hus  \v(‘  ha\.c

d(.u,,  x2)  = L(7,), d(x,,  XJ  = L(T,).

Similarly, ~\‘e  see  that

d(x,,  x3 = L(r,  -t-  7:1).
Finally, we obtain

nix*,  x.J + d(x,, x3)  = d(x,,  ~3).
QED.

Using  Proposition 3.8, we shall show that the distance fknction
dctcrminrs  the Kicmannian  metric.

'rtIEORES1  3.10. I,et .\I  and .\I’  be Riemcmnian  manijolds with
Riemnnniun  n2ftrir.s  g and  g’,  respectively. I.et d and d’ be the distance

jiunctions  of .11  end .\I’  res/)Pctice!y.  IJ f is a mopping  (which is not
assumed to be corrtirruous  or dtJerentiabluj  of zVl  onto AP’  such that
d(x,y)  -: d’(,f’(.Y),,f(j*)) fur nfl  x,g  c j21, then f is a di$eomorphism  of
Al onto AI’ ~ehich  nrt~ps  the tensorjield g into the tensorJield g’.

In particular,  er*erl’  tr;cl/@g  f oj‘ -II  onto itself which preserves d is an
isomety, that  is, preCerrte.r”g.

Proof. Ckarly,J‘is  a homeomorphism.  Let x be an arbitrary
point of .\I ant1 set  x’ = J(X).  For a normal coordinate  nrighbor-
hood li’  of x’ let I; be a normal coordinntc  ncighborhoorl  of x
such thilt,f(  l.-)  c I,“. I”or  anv unit tangent \rcctor  A’ at x,  Ict  T be
a gcotlcsic  in 1. lvith the iriitial  condition (x,  X). Since  7 is a
scgmc’nt  with rcspcct  to d,j‘(T)  is a segment with respect to d’ and
hcncc  is a g:ro&sic in 1.” with oriain  x’. Since  7 = x,~ is param-
etrizcd by the arc length  s a n d  since  d’(  f(xS,),  f(xSL)) =
d(.!,<,, x,?) 1 /.r,  -- sfl, J‘(T)  = f(x,J  is parametrized by the arc
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length s also. Let F(X) be the unit vector tangent tof(~)  at x’.
Thus, F is a mapping of the set of unit tangent vectors at x into
the set of unit tangent vectors .at x’. It can be extended to a
mapping, denoted by the same F,  of T’(M)  into T,(M’)  by
proportion. Sincefhas an inverse which also preserves the distance
functions, it is clear that F is a 1 :I mapping of T,(M)
T,,(  M’) . It is also clear that

onto

foexp,  = exp 2,  0 F and IIF(X)II  = (IXJI for X E  T,(M),
where exp, (resp. exp,.) is the exponential map of a neighborhood
of 0 in r++M) (resp. T,.(M’))  onto U (resp. U’). Both exp, and
exp,. are diffeomorphisms. To prove thatfis a diffeomorphism of
M onto h;l’ which maps g into g’, it is therefore sufficient to show
that F is a linear isometric mapping of T,(M)  onto T,.(M’).

We first prove that g(X, Y) ,= g’(F (X), F(Y)) for all
X, Y c 7’,(M). Since F(cX) = cF(X) for any X E 7’,(M)  and
any constant c, we may assume that both X and Y are unit
vectors. Then both F(X) and F(Y) are unit vectors at x’. Set

cos a = g(X, Y) and cos a’ = g’(F (X), F(Y)).
Let x, andy, be the geodesics with the initial conditions (x, X) and
(x, Y) respectively, both parametrized by their arc length from
x. Set

4.  =f(xJ  and  A =f(r&
Then xi and y: are the geodesics .with  the initial conditions
(x’, F(X)) and (x’, F(Y)), respectively.

LEMMA . sin 4 a = li-i  ix d(x,,yJ  and sin $a’ = lim ;J  d(x:,  yJ. ’
s-o

We ‘shall give the proof of the lemma shortly. Assuming the
lemma for .the moment, we shall complete thhroofofour  theorem.
Since f preserves distance, the lemma implies that

sin $a = sin :a’
and hence /

g(X, Y) = cos a = -1 - 2 sin2  ta
= 1 - 2 sin2 $a’ = cos a’ =.g’(F(X),  F( Y)).

We shall  now prove that F is lineal;;.  We already observed that
F(cX) = cF(X) fbr  any Xr  T,(M)’  and for any constant, c.

Let X,, . . . , X,  be an orthonormal basis for T,(M).  Then
‘Xi  = F(X,),  i = 1,. . . , n, form an orthonormal basis for T,,  (M’)
as we have just proved. Given X and Y in Tz(M), we have

g’(F(X  + Y), X:)  = g(X  + Y,,Xi)  = g(X;Xi)  + g(Y, X,)
= g’(W),  X;) + g’(V),  X:) = g’(F(x)  + F(Y),  x:)

for every i, and hence
F(X  + Y) = F(X) + F(Y). 5

Proof of. Lemma. It is sufficient to prove the first formula.
Let U be a coordinate neighborhood with a normal coordinate
system x1, . . . , xn  at x. Let h be the Riemannian metric in U given
by xi (dx  )i 2 and let 6(y, z) be the distance between y and z with
respect to h.  Supposing that

iij  $ d(x,,  yJ  > sin 1%

we shall obtain a contradiction. (The case where the inequality
is reversed can be treated in a similar manner.) Choose c > 1
such that

ii21 i d(x,,  yJ > c sin +a.
s-o

Taking U small, we, may assume that k h < g < ch  on U in the
sense that

!.  h(Z,  2) < g(Z,  2) < 4 h(Z, 2) for Z E  T,(M) and z z U.
C

From the definition of the distances d and 6, we obtain

; KY, 4 -=I d(y, 4 < c ICY>  4.

Hence we have .

;%,YJ > 2$?- d(x,,yJ  > c sin $a for small s.

On the other hand, h is a Euclidean metric and hence

sin &a.
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This is a contradiction. Hence,

5 h d(x,,JJ  = sin $a.

Similarly, we obtain
1

l&r - d(x,,y,)  = sin f~.
* -4 2 s

QED.
Theorem 3.10 is C~UC to Myers and Stecnrod [1] ; the proof is

adopted from Palais  121.

” 4.  Conzpbctencss

A Riemannian manifold A4 or ri Riemannian metric .g  on .v
is said to be con$iete if the Riemannian connection is complete,
that is, if every geodesic of A4 can be extcnrlccl  for arbitrarily
large values  of its canonical parameter (cf. $6  of Chapter III).
We shall prove the following two imp&ant  theorems.

THEOREM 4.1 . For a connected Riemannian maniJi,ld  A\i,  the follow-
ing conditions are mutually equivalent:

( 1) M is a xomplete  Riemannian man$old;
1

(2) M is a complete metric space with respect to the distance frtnction  d;
(3) Every bounded subset of M (with respect to d) ir rel&e!l,  compact;
(4) For an arbitrary point x of M and for an arbitrq  curvy  C’  in the

tangent space T,(M) ( or more precisely, tile afine tangent sbace  ;l,(.ll))
skirting from the origin, there is a curve r in hl  starting from x which is
developed upon the given curve C.

T H E O R E M  4 . 2 .  /fM is a connected  coniplete Riemannian manzfold,
then any two points .x andy of A4 can be-joined by a minimizing geodesic.

Proof. we  divide the proofs of these  theorems into several
steps.

(i) The implication (i) ---+  (1). Let x,,,  0 . s i I,,  bc a gcodcsic,
where s is the canonical parameter.  WC show that this geodesic
can be extended beyond L. Let Is, ,J  be an infinite scouc’ncc  such
tFiat  s, t L. Then

, ..,

4x,,,,,  xs,,)  .’  Is,  - .r,,I,
so that (x8”}  is a Cauchy  sequence in ,AI  with respect to d and
hence converges to a point, say x. The limit point x is independent
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of the choice of a sequence {s,,}  converging to L. We set xL  = x.
By using a normal coordinate system at x, we can extend the
geodesic for the values of s such that L 5  s 5  L + E for some
& > 0.

(ii) Proof of Theorem 4.2. Let x be any point of M. For each
Y > 0, we set

S(r) = {y c M; d(x,  y) I r}
and

E(i)  = {Y E S(y)  ;Y can be joined to x by a minimizing geodesic}.

We are going to prove that E (r) is compact and coincides with
S(Y) for every Y > 0. ,To  prove the compactness of E(r), let yi,
i= 1,2,..., be a sequence of points of E(r) and, for each i, let
7(  be.a minimizing geodesic from x toyi.  Let Xi  be the unit vector
tangent to 7i  at X. By taking a subsequence if necessary, we may
assume that {Xi}  converges to a unit vector X0  in T,(M).  Since
d(x,  yi) d Y for all i, we may assume, again by taking a subsequence
if necessary, that d(x,y,)  converges to a non-negative number Y,.
Since ri is minimizing, we have

yi  = exp (d(x,Yi)Xi)*
Since M is a complete Riemannian manifold, exp r,,X, is defined.
We set

y.  =  e x p  r,Xo. .

It follows that {yi}  converges to y0 and hence that d(x,y,,) = I,,.
This implies that the geodesic exp .rX,,,  0 .’  s 2 Y,,,  is minimizing
and that y0 is in E(r). This proves the compactness of E(r).

Now’we shall prove that E(r) = S’(r) for $1 r > 0. By the
existence of a normal coordinate-  system an&a  convex neighbor-
hood around x (cf. Theorem 3.61, we know that E(r) = S(r) for
0 < I C E  .for  some E  Y 0. Let r* be the supremum of r,,  > 0
such thpt .E(r) = S(rJ  for r < r,.  To show that r* = 00,  assume

“.’  that r**Y -00.  We first prove that E(r*) = S(r*).  Le! y be a
point ofS(r*) and let {yi}  bc a sequence of points with d(x,  yi) < r*
which converges to y. (The existence of such a sequence {yi}
follows from the fact that x and y can be joined by a curve whose
length is as close to d(x,  y) as we wish.) Then each yi belongs to
some E(Y), where Y < r*, and hence each yi belongs to E(Y*).
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Since E(r*)  is compact, y belongs to E(r*).  Hence S(r*)  =
E(r*).  Next we shall show that S(r) = I for r < r* + 6 for
some  6 > 0, which contradicts the definition of r*.  We need the
following

L EMMA. On a Riemannian manifold M, there exists a positive
continuousfunction  r(z), z E M, such that any two points of S,(r(z)) =

can  be joined by a minimizing geodesic.
For each 2 6 M, let r(z) be’the supremum of

T > 0 such that any two points y and y’ with d(z,y)  I r and
d(z,y’) s r can be joined by a minimizing geodesic. The existence
of a convex neighborhood (cf. Theorem 3.6) implies that ~(2) > 0.
If T(Z)  = co for some point t,  then r(y) = co for every pointy
of M and any positive continuous function on h satisfies the
condition of the lemma. Assume that T(Z)  < 03 for every z E  M.
We shali prove the continuity of r(z) by showing that [r(i) - r(y) 1
5 d(t,y).  Without any loss of generality, we may assume that

Y(Z)  > r(y). If d(z,y)  2 r(z), then obviously Ir(z)  - r(y)/  <
d(y)..  If d(z,y)  < r(z), then SJr’)  = {y’;  d(y,y’) s r’] is con-
tamedmS,(r(z)),  where r’  = T(Z)  - d(z,.y).  Hence r(y) 2 r(z) -
d(z,y), thatis,  Ir(z)  - r(y)1  5 d(z,y),  completing theproofof the
lemma.

Going back to the proof of Theorem 4.2, let T(Z)  be the con-
tinuous function given in the lemma and let 6 be the minimum of

E(Y*). To complete the proof of Theorem
S(r*  + S) = E(r* + S). Lety &S(r*  + 6)

show first that there exists a point y’ in S(r*)
r* and  that d(x,y) = d(x,y’)  +‘d(y’,y). To

this end, for every. positive integer’&  choose a curve TV  from x to

y such that L(TJ  < d(x,  y) j  $,  where L(T~) is the length of TV.

Let yk be the last point on 7k which belongs to E(r*) = S(r*).

Thend(x,qr,)  = r* and d(x,yJ  + d(yk,.y)  d L(7J < d(x,y) + k.

Since E(r*)  is compact, we may assume, by taking a subsequence
if necessary, that (yk} converges to a point, say y’, of &(r*):  We
have d(x,y’) = r* and d(x,y’)  A-  d(y’,  y) = d(x,  y). Let 7’  be a
minimizing geodesic from x toi”. Since d(-y’,y) I 6 5 r(y’), there
is a minimizing geodesic T”  fromy’ toy. Let 7 be the join of T’  and

.
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7”. Then L(T) = L(T’)  + L(T”) = d(x,y’) + d(y’,y) = d(x,y). By
Corollary 3.9, 7 is a geodesic, in fact, a minimizing geodesic from
x toy. Hence y 6 E(r* + 6))  completing the proof of Theorem 4.2.

Remark. To prove that E(r) = S(r)  is compact for every r,  it .is
sufficient to assume that every geodesic issuing from the particular
point x can be extended’infinitely.

(iii) The implication (1) --+ (3) in Theorem 4.1. In (ii) we
proved that (1) implies that E(r) = S(r) is @pact  for every r.
Every bounded subset of M is contained m S(r) for some Y,
regardless of the point x we choose in the proof of (ii).

(iv) The implication (3) -+ (2) is evident.
(v) The implication (4) + (1). Since a geodesic is a curve in

M which is developed upon a straight line (or a segment) in the
tangent space, it is obvious that every geodesic can be extended
i n f i n i t e l y .

(vi) The implication (1) + (4). Let Cit, 0 I t I a, be an
arbitrary curvein  T,(M)  starting from the origin. We know that
there is E  > 0 /such that C,, 0 g t I E, is the development of a
curve xt, 0 5 1 5 E, in M.  Let 6 be the supremum of such E > 0.
We want to SLOW  that b = a. Assume that 6  < a. First we show
that lim x1 in M. Let t, f 6.  Since the development pre-

t-4
serves the a ‘c  length, the length of xt, t, I_  t d t,,  is equal to the
length of 8 t, t, 5 t I t,.  On the other hand, the distance

4x t , x,  ) is less than or equal to the length of xt, t, 5 t $ t,.
Thii  im”plies  that {x~,}  is a Cauchy  sequence in M. Since we know
the;  implication (1) -+ (3) by (iii) and (iv), we see that {xt,>
converged to a point, say y. It is easy to see that lim x t=y.Lett b

Cl  be the curve in T,(M) ( or more precisely, in A,(M)) obtained
by the affine (not linear!) parallel displacement of the curve C,
along the curve xt, 0 5 t 2 b. Then C; is the origin of T,(M).
There exist 6 > 0 and a curve xt, b 4 t 5 b + 6, which is
developed upon Cl, b 5 t g b + 6. Then the curve xt, 0 5 t 2
b + 6,  is developed upon C,, 0 5 t 5 b + 6.  This contradicts the
definition of b. QED.

COROLLARY  4.3. If all geodesics starling from any particular point
x of a connected Riemannian manifold M are in@&@  extendable, then M
is complete.
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Proof. As we remarked at the end of (ii) in the proof of
Theorem 4.2, E(r) = S( )
subset of M is

Y is compact for every r.  Every bounded
contained in S(r)  for some r and hence is relatively

compact. QED.

COROLLARY  4.4.
Proof .

Every  compact Riemannian manifold is complete..

4.1.
This follows from the implication (3) -+ ( 1) in Theorem

., . ..i.i QED.
A Riemannian manifold M is said to be homogeneous if the group

of isometries, i.e., transformations preserving the metric tensor g,
of M is transitive on M. (Cf. Example 1.3 and Theorem 3.4,
Chapter VI.)
THEOREM 4.5 .
Proof.

Every homogeneous Riemannian manifold is complete.
Let x be a point of a homogeneous Riemannian mani-

fold M. There exists T  > 0 such that, for every unit vector Xat x,
the geodesic exp sX  is defined for IsI  $ r (cf. Proposition 8.1 of
Chapter III). Let T = x,,  0 5 s d a, be any geodesic with
canonical parameter s in M. We shall show that T = x, can be
extended to a geodesic defined for 0 I s 5 a + r. Let a, be an
isometry of M which maps x into x,.  Then v-1 maps the unit
vector i.a at x,  into a unit vector X at x: X = pl-l(&).  Since
exp sX  is a geodesic through 5 cp(exp  sX)  is a geodesic through
x,.  We set

Xa t s = v(exp sX) for 0 d s 2 r.
Then T = x,,  0 d s d a + r, is a geodesic. QED.

Theorem 4.5 follows also from the gerieral fact that every
locally compact homogeneous metric space is complete.

THEOREM 4.6 . Let M and M*  be connected Riemannian manifolds
of the same dimension. Let p:  M*  -+ M be an isometric immersion.

(1) If M* is complete, then M*  is a covering space of M with pro-
jection p and M is also co?plete.

(2) Conversely, ;fp:  M* -+ M is a covering projection and ;f M is
complete, then M*  is complete.

Proof. The proof is divided into several steps.
(i) If M* is complete so is M. Let x* E  M* and set x = P(X*).

Let X be any unit vector of M at x and choose a unit vector X* at X*
such that p(X*) = X. Then exp sX  = p(exp sX*)  is the geodesic \
in Al with the initial condition (x, X). Since exp sX* is defined

.
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for all s, -co < s < 03,  so is exp sX.  by Corollary 4.3, M is.
complete. *

(ii) If M* is complete, p maps .U* onto M. Let x* E  M* and
x = p(.y*).  Given a point y of M, let exp sX,  0 2 s 5 a, be a
geod

t
sic from x toy, where X is a unit vector at x. Such a geodesic

exists by Theorem 4.2 since M is complete by (i). Let X*  be the
unit vector of M” at x* such that p(X*)  = X. Sety*  - exp ax*.
Thenp(y*)  = exp aX =y.

(iii) If M*  is complete, then p: M*  -+ M is a covering pro-
jection. For a given x E  M and for each positive number r,  we set

U(x; r) =  { y  E M ;  d(x,y)  <  r}, N(x;  r) =  (X  E 7’,(A4);  IjXll <  r).

Similarly, we set, for x* E  M”,

u(x*  ; r j  =  {y*  c M*;  d(x*,y*)  < r},

N(x* ; r) =  {X”  E T,.(M*);  11X/l  <  r}.

Choose r > 0 such that exp: N(x; 2r) ----t  U(x; 2r) is a diffeo-
morphism. Let {xr,  x,*,  . . . }.  be the set p-‘(x).  For each XT;  we have
the following commutative diagram :

N(x;;  27)  % U(x;;  2r)

- k 1
?,

N(x;  2~)  % U(x; 2r).

It is sufficient to prove the following three statements:
(a) p: U(xT;  r)  + U(x; r)  is a diffeomorphism for every i;

(b) p+(U(x;  r)) = u U(xf;  r);

(c) U(xa ; .r)  n U(xj;; r)  is empty if xf # XT.
Now, (a) follows from the fact that both p: N(xf ; 2r) --f  N(x; 2r)
and exp: N(x; 27) -+ U(x; 2~)  are diffeomorphisms in the above
diagram. To prove (b), let y* up-l(U(x;  r)) and sety = p(y*).
Let exp sY, 0 5 s 5 a, be a minimizing geodesic from y to x,
where Y is a.unit  vector aty. Let Y* be the unit vector aty* such
that p(Y*)  = Y. Then exp sY*, 0 5 s 2 a, is a geodesic in M*
starting from y* such that p(exp sY*)  = exp sY. In particular,
p(exp aY *) = x and hence exp aY* = XT  for some xr.  Evi-
dently,y* l U(x,*; r),  proving that p-l(  U(x; Y)) c U U(xf  ; Y). On
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the other hand, it is obvious that p(U(xt;  r))  c U(x; r)  for every
i and  hence p-‘(  U(x; r))  1 &l U(xt  ; Y) . To prove (c), suppose

y*  E U(xf  ; 7) n U(xj’  ; r).  Thin  xi* E  U($;  2~). Using  the above
diagram, we have shown that p: U(xf;  2r) -+ U(x; 2~)  is a
diffeomorphism. Since p(xf) = p(xT),  we must have  x:  = x7.

(iv) Proof of (2). Assume that p : M*  + M is a covering pro-
jection and that M is complete. Observe first that, given  a curve
xt, 0 5 t s a, in M and given a point x$ in M* such that p($) =
x0,  there is a unique curve x:, 0 5 t g a, in MT such that
p(xf)  = x1  for 0 s t 5 4. Let x* e M* and let X* be any unit
vector at X*. Set X = p(X*).  Since M is complete, the geodesic
exp sXis  defined for -co < s < ao.  From the above observation,
we see that there is a nique curve x,*,  -co  < s < 4,  in M*

/
such that xz = x* an that p(e) = exp sX.  Eyidently,  x: =
exp sX*.  This shows t at M* is complete. QED.

COROLLARY 4.7. Let M and M* be connected manifolds of the
same dimension and let p : M* + M be an immersion. If M*  is compact,
so is M, and p is a covering projection.

Proof . Take any Riemannian metric g on M. It is easy to see
that there is a unique Riemannian metric g* on M* such that p
is an isometric immersion. Since M* is complete by Corollary 4.4,
p is a covering projection by Theorem 4.6 and hence M is
compact. QED.

Example 4.1. A Riemannian manifold is said to be non-pro-
Zongeable if it cannot be isometrically imbedded into another
Riemannian manifold as a proper open submanifold. Theorem
5.6 shows that every complete Riemannian manifold is non-
prolongeable. The converse is not true. For example, let M be the
Euclidean plane with -origin  removed and M* the universai
covering space of A4.  As an open submanifold of the Euclidean
plane, M has a natural Riemannian metric which is obviously not
complete. With respect to the natural Riemannian metric on M*
(cf. Example 2.1),  M* Js not complete by Theorem 4.6. It can be
shown that M* is non-,prolo.ngeable., I

COROLLARY 4.8. l.at  G be a group isometrics of a connected
Riemannian manifold M. If the orbit G(x) point x of M contains an
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open set of M, then the orbit G(x) coincides with M, that is, M is
homogeneous.

Proof . It is easy to see that G(x) is opei in M. Let-M* be a.
connected component of G(x). For any two points.x*  and y* of
M*, there is an3elementf  of G such that/(x*)  =y*.  Sincef  maps
every connected component of G(x) onto a connected component
of’G(x), f (M*) = M*. H ence  M’ is a homogeneous Rieman-
nian manifold isometrically imbedded into M as an open iub-
manifold Hence, M* = M* \ . QED.

PROPOSITION  4.9. Let M be a Riemannian manifold and M* a
submanifold  of M which is loca@  closed in the sense that every $oint  x of
%f  has a neighborhood Usuch  that every connected!omponent  of U 0 M*

, (with respect to the topocogy  of M*) is closed in U. If M  is complete, so
is M*  with respect to the induced metric.

Proof. Let d be, the distance function defined by the Rieman-
nian ‘metric of ti  and d* the ,distance ‘function defined by the
induced Riemannian metric of A@.  Let x,  ‘be a geodesic in M*
and let a, be the supremum of s such that x,  is defined. To show
that a = cc,  assume a < cc. Let s, T  a. Since d(x,,,  x,,)  5
d* (xs,,, X8,)  5 Is,-  - 4,  {x3,> is a Cauchy  sequence in ,2f  and
hence converges to a point, say x, of M. Then x = lim x,. Let U

be. a neighborhood of x in M with, the property stated :n Proposi-
ti./jn. Then x8’,  b g s < a, lies in Ufor some 6. Since the connected
componknt  of M* r\  U containing x,,  b 5  s < a, is closed in I!,
the point XI belongs to M*. Set ,T,  = x. Then .x,,  0 5 s s a, is a
geodesic in’ M*. Using a normal coordinate system at x,,  we see
that this geodesic can be extended to a geodesic x,,  0 ZII  s 2 a $ 6,
for some 6 5 (0. (QED.

5 .  flolonom~~  group

Throughout this section, let M be a connected Riemannian
manifold  with metric g and :Y’(x) the linear or homogeneous
holonomy group of the Riemannian connection with reference
point x E  M (cf. $4 of Chapter II and $3  of Chapter III). Then
M is said to be reducible or irreducible according as Y’(x) is reducible
or irreducible as a linear group acting on T,(M). In this section,
we shall study Y(x) and local structures of a reducible Riemannian
manifold.
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Assuming that Mis reducible, let T: be a non-trivial subspace  of
T,(M) which is invariant by ‘F(x).  Given a pointy B M, let T be a
curve from x toy and TI the image of TL  by the (linear) parallel
displacement  along T.  The subspace  Ti of T,(M) is independent
of the choice of T.  In fact, if ,U  is any other curve from x toy, then
P -r . T is a closed curve at x and the subspace  TL  is invariant by
the parallel displacement along ,zu-’  . T,  that is, p-l . T(  TJ = T;,
and hence T(  Ti) = p( Ti). We thus obtain a distribution T’ which
assigns to each pointy of M the subspace  Ti of T,(M). -

A submanifold N of a Riemannian manifold (or more generally,
a manifold with a linear connection) M is said to be totally
geodesic at a point x of N if, for every X E T,(N), the geodesic
T = f, of M determined by (x, X) lies in N for small values of
the parameter t. If N is totally geodesic at every point of N, it is
called a totally geodesic submanifold  of n/i.

PROPOSITION 5.1. (1) The distribution T’ is di$erentiable  and
involutive;

(2) Let M’ be the maximal integral manifold of T’ through a point of
M. Then M’ is a totally geodesic submanifold  of M. If M is complete,
so is M’ with respect to the induced metric.

Proof. (1) To prove that T’ is differentiable, let y be any
point of ikl and x1,  . . . , x” a normal coordinate system at y,
valid in a neighborhood U ofy. Let X,, . . . , X,  be a basis for T;.
For each i, 1 ~5 i : k, we define a vector field XT in U by

(XF),  = rxi for 2 E  U,

where  7 is the geodesic from y to z given by xj = ait, j =
1 ’ * > n, (a’, . . . , a”) being the coordinates of z. Since the parallel
dtsplaccment  7 depends  differentrably  on (a’, . . . , a=),  we obtain
a difIerentiable  vector field  Xi* in U. It is clear that XT,  . . . , Xz
form a basis of Ti for every point z of U.

1’0 prove that T’ is involutive, it is’sufhcient to prove that if X
and Y arc vector fields belonging to T’,  so are 0,  Y and VrX,
because the Riemannian connection has no torsion and [X, Y ] =
C ,Y  - %,X  (cf. Theorem 5.1 of Chapter III). Let x,  be the

\ integral curve of X starting from an arbitrary pointy. Let of,  be
the parallel displacement along this curve from the point xt to
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the point y = x0.

(V,Y)  = ‘Ii? f

Since Y, and YE, belong to T’ for eve+ t,

.y;.  --+
(T~Y,~  - Y,) belongs to Ti.

be
(2) Let M’ be a maximal integral manifold of T’. Let 7 = xt
a geodesic of M with the initial condition (y, X ),  where

if!&fk$nd  XE TJM’)  = 7$  Since the tangent vectors i’t are
parallel along T, -we  see that & belongs to T& for every t and hence
T lies in M’ (cf. Lemma 2 for Theorem 7.2 of Chapter II). This
proves that M’ is a totally geodesic submanifold of M. From the
following lemma, we may conclude that, if M is complete, so is
M’.

L EMMA. Let .N be a total&  geodesic submanifold  of a Riemannian
manifold M. Every geodesic of N with respect to the induced Riemannian
metric of N is a geodesic in M.

Proof of Lemma. Let x E  N and Xr  T,(N). Let T = xt,
0 d t s a, be the geodesic of M with the initial condition (x, X).
Since N is totally geodesic, T lies in N. It now suffices to show that
T is a geodesic of N with respect to the induced Riemannian
metric of N. Let d and d’ be the distance functions of M and N
respectively. Considering only small values of t, we may assume
that T is a minimizing geodesic from x = x,,  to x, so that d(x,  xJ =
L(T), where L(T) is the arc length of 7.  The arc length of 7

measured by the metric of M is the same as the one measured with
respect to the induced metric of N. From the definition of the
distance functions d and d’, we obtain

d’(x,  x,) >= d(x,  x,) = L(T).

Hence, d’(x,  x,) = L(T). By Corollary 3.9, 7 is a geodesic with
respect to the induced metric of N. QED.

Remark. The lemma is a consequence of the following two
facts which will be proved in Volume II. (1) If M !s  a manifold
with a linear connection whose torsion vanishes and if N is a
totally geodesic submanifold of M, then N has a naturally
induced linear connection such that every geodesic of N is a
geodesic of M; (2) If N is a totally geodesic submanifold of a
Riemannian manifold M, then the naturally induced linear
connection of N is the Riemannian connection with respect to
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the induced metric of N. Note that Proposition 5.1 holds under
the weaker assumption that M is a manifold with a linear connec-
tion whose torsion vanishes.

Let T’ be a distribution defined as before. We now use the fact
that the,  homogeneous holonomy group consists of orthogonal
transformations of T,(M). Let T,” be the orthogonal complement
of Ti in T,(M). Then T,(M) is the direct sum of two subspaces
T’ and T” which are invariant by Y(x). From the subspace  T,”
WE obtain=a  distribution T” just as we obtained T’ from T$  The
distributions T’ and T” are complementary and orthogonal to
each other.at  every point of M.

PROPOSITION 5;2. Let y be any point of M. Let M’  and M” be
the maximal integral manifolds of the distributions T’ and T” defined
above. Then y has an open neighborhood V such that V = V’ x V”,
where V’ (resp. V“)  is an open neighborhood ofy i?  M’ (resp. M”), and
that the Riemannian metric in V is the direct ‘product o the Riemanniani
metrics in V’ and V”.

Proof . We first prove the following

I;EMMA. If T’ and T” are two involutive distributions on a manifold
M which are complementary at every point of M, then, for each pointy of
M, there exists a local coordinate systemxl,  . . . , x”  with origin at y such
that (a/ax’,  . . . , a/ax”)  and ( i3/axk+l,  . . . , a/i3xn)  form local bases for
T’ and T” respectively. In other words,  for any set of constants (cl,  . . . ,

Ck, ck+1 P), the equations xi = ci,  1 $ i 5 k, (resp.  x’ = c9,
k + 1 2;  ‘;  n) define an integral manifold of T”‘(resp.  T’)J.

Proof of Lemma. Since T’ is involutive, there existis  a local
coordinate systemyl,  . . . , yk,  xk+l, . . . , x” with origin y such that

w91,  . . . , a/6’yk)  form a local basis for T’. In other words, the
equations xj  = cj, k + 1 d j 5 n, define an integral manifold of
T’. Similarly, there exists a local coordinate system x1,  . . . , xL,
Zk+l

-*, tn with origin y such that ( a/azk+l,  . . . , a/%?)  form
a Id,‘,1  basis for T”. ln other words, the equations xi  - c’,
1 5 i 5 ki  define an integral manifold of T”. It is easy to see that

xn  is a local coordinate system with the

the local coordinate system x1,  . . . , x” thus
e shall prove Proposition 5.2. Let V be the neighbor-

hood ofy defined by lx’\ < c, 1 I i d n, where c is a sufficiently
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small positive number so that the coordinate system x1,  . . . , x”
gives a homeomorphism of V onto the cube lx”1 < c in R”. Let V’
(resp. V”) be the set ofpoints  in V defined by 191 < c,  1 2 i 5 k,
and xi  = 0, k + 1 5 j 5 n (resp. 9 = 0, 1 5 i s k, nnd
lx’1 < c, k + 1 5 j I n). It is clear that v’ (resp. V”) is an
integral manifold of T’ (resp. T”) through y and is a neighbor-
hood of y in M’ (resp. M”) and that V = V’ x 6’“.  We set
xi = a/ad,  i s * st _ n. To prove that the Riemannian metric of
V is the direct product of those in V’ and V”, we show that
gii = gCxi9  xi) are independent of xk+l, -. . , xn  for 1 I i, j s k
that gij  = g(Xi,  Xi) are. independent of 9,  . . . x6  fork + I 2
i,jrnandthatgi,=g(X,,Xi>  =Oforl  Sidkandk+l  2
j I n. The last assertion is .obvious since Xi, 1 I i s k, belong
to T’  and X,, k + 1 < * I,_ J _ n,  belong to T” and since T’ and
T”  are orthogonal to each  other at every point. We now prove
the first assertion, and the proof of the second assertion is similar.
Let 1 d i 5 k and k + 1 5 m I n. As in the proof of (1) of
Proposition 5.1, we see that VXnXi  belongs to T’ and that
0,+X,  belongs to ‘T”.
[Xi, X,]  = 0, we  have

Since the torsion is zero and since

v,ixm  - v&Xi  = VxfXm  - vzy Xi  - [Xi, X,]  = 0.

Hence, V,#X,,,  A Vx,Xi  = 0. Since g % parallel, we have

= g(V,mXi,  Xj) +-g(Xi,  VAymXj)  = 0, 1 s i, j s k;
thus proving our assertion. QED.
PROPOSITION 5.3. Let T’  and T” be the distributions on M  used in

Proposition 5.2. If M is sirnfib  connected, then the homogeneous  holonomy
group Y(X) is decomposed into the direct product of two normal  subgroups
Y’(X) andX”(x)  such  that Y’(X) is trivial on T,” and that Y”(x) is
trivial on Ti.

Proof. Given,,an  element a z Y(x), let a, (resp. a2)  be the
restriction of a to TL‘ (resp. TI). Let a’ (resp. a”) be the orthogonal

transformation of T,(M) which coincides with a, on T:  (resp.  with
a2  on T,“)  ‘and which is trivial on Tz (resp. TJ. If we take an
orthonormal basis for T,(M)  such that the first k vectors  lie in
TL  and the remaining n - k vectors lie in T:, then these linear
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transformations can be expressed by matrices as follows:

\\*c  shall show that both a’ and a” are elements of’(x).  Let T be a
closed curve at x such that the parallel displacement along T is the
given element a c Y(x). First we consider the special case where T
is a small lasso in the following sense. A closed curve r at x is
called a small lasso if it can,be decomposed into three curves as
follows: 7 f p-1  *u + ,u, where p is a curve from x to a pointy
(so hat  p-1 is a curve from y to x going backward) and ~7  is a
closed curve at y which is small enough to be contained in a
neighborhood V = I;’ x V” ofy given in Proposition 5.2. In this’
special case, we denote by cr’  (resp. a”) the image of (T  by the
natural projection Y ---*  v’ (resp.  V --+.V’).  We set

7’ = /J-l  - U’ * ,,& T*  7 p-1 . (TV  . P

The parallel displacement along 7’ (resp. 7”) is trivial on T,”
(resp.  Ti,.  The parallel displacement along u is the product of
those along u’ and u”. Hence the parallel displacement along T

is the product of those along T’  and 7”. On the other hand, T’
(rrsp. 7”) is trivial on T: (resp. TL). It follows that a’ (resp. a”) IS
the parallel displacement -along T’  (resp. T”), thus proving our
assertion in the’case  where 7 is a small lasso.

Tn  the general case, we decompose T into a product of small
las .os as follows.

L EMMA. If A1  is simply connected, then the parallel displacement

along 7 is the product of the parallel displacements along a finite number of
small lajsos  at x.

Proof of Lemma. This follows from the factorization lemma
(cf. Appendix 7).

It is now clear that both a’ and a” belong to Y(x) in the
general case. We set

yyx)  = Ia’;  u Q Y(X)),  ypj  = {d; u,~ Y(X)>. .

Then Y(x) = Y’(x) x Y”(x). QED.

We now proceed to define a most natural decomposition of
Tz(Al)  and derive its consequences. Let Tg”’  be the set of
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elements in T,(M)  which are left fixed by Y’(x’).  It is the maximal
linear subspacc of r,(Jr)  on which Y’(x) acts tri\%tllv. Let Ti
be the orthogonal complcmcnt  of T:‘)  in 7;(.1/).  It is’in\.ariant
by Y(x) and can be decomposed into a direct sum 7:: ; X;” ,. Tl”
of nlutually  orthogonal, invariant and irreducible subspaccs. Jt’e
shall call T,(.11) = Cf;,,  Tp’
decomposition) of rZ( M) .

a canonical decombosition  (or de Rham
.

THEOREM 5.4. Let M  be a Riemannian manifold, T,(.\)  =
Cf=, Tc’  a canoniral  decomposition of T,(M)  and T”’ the involutive
distribution on ,21 obtained by parallel displacement of Tgj jar each
i = 0,1,.  . . , k. Lety be a point of ,21 and let, for each i = 0, 1, . . . , k,
Mi be the maximal integral manifold of T(l)  through y. Then

(1) The point +y  .hus an open neighborhtiod V such that V = V,  x
v1  k * a..  x V, where each V8,’  is an open neighborhood ofy in %.  and
that the Riemannian metric in V is the direct product of the Riemur&iun
metrics in the V,‘s; _,.

(2) The maximal integral manifold Mo is 1oculJy  Enclidean  in the
sense that every point of A4,  has a neighborhood which is isometric with an
open set of an n,,-dimensional Euclidean space,  where no = dim l\l,;

(3) If dl  is simply  connected, then the homogeneous holonomy group
Y(x) is the’direct  product Y,(x)  x Yi(x)  x . . - x YJx)  of normal
subgroups, where Y,(x) is trivial on TLj’  rf  i # j and is irreducible  on
Tc’foreachi=  l,... , k, and Ye(x)  consists of the identio or&l,

(4)  If A4  is simply connected, then a canonical decomposition T,(U)  =
Cf:~,, Ty’ is unique up to an order.

Proof. (1) This is a generalization of Proposition 5.2.
(2) Since y is an arbitrary point of M, it is sufficient to prove

that V0 is isometric to an open subset of an n,-dimensional
Euclidean space. Since the homogeneous holonomy group of V,,
consists of the identity only, TFr is the direct sum of.n,  I-dimen-
sional subspaces. From the prbofof  Proposition 5.2, it follows that
Vu  is a direct product 6’f l-dimensional submanifolds and that the
Riemannian metric on V,  is the direct product of the Riemannian
metrics on these laimensional  submanifolds. On the other hand,
on any l-dimensional manifold with a local coordinate svstem  x1
every Riemannian metric  is of the form grr,  dx?  dxl:  If xr is
normal coordinate system, then the metric is of the form

z
dxl  dxl

Hence V,  is isometric to an open set of a Euclidean space.
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(3) This is clear from the definition of a canonical decomposition
of T,(M) and from the proof of Proposition 5.3.

(4) First we prove

L EMMA. Let S, be  any  subspace  of T,(M) invariant 6y Y(x).
Then, for each i = 1, . . . , k, either 5, is orthogonal to T$’ or S,
contains T$).

Proof of Lemma. (i) As sume that all vectors of S,  are left
fixed by Yi(x).,‘Then  S,  is orthogonal to T$).  In fact, let X =
Ejjk=o Xj be any element of S,,  where Xj 6 Tg). For an arbitrary
element a, of Y,(x), we have

q(X)  = X0 + Xl  + - *  - + ai + - *  *  + X,

since ai acts trivially on T!!) for j # i. If ui(X) = X, then
ai = Xi. Since this holds for every a, E  Yi(x)  and since Y,(x)
is irreducible in T$‘, we must have Xi  = 0. This shows that X is
orthogonal to T$).

(ii) Assume that ui(X) # .Y  for some ai l Yi(x)  and for some
X E S,.  Let X = Et=,-,  Xi, where Xj E  T$. Since. each Xj,  j # i,
is left fixed by every element of Y $(x),  X - ai = Xi  -
ai # 0 is a vector in T:)  as well as in S,. The subset

{6,(X  - at(X)> ; 65  6 ‘ri(X)I is in Tz) n S, and spans Tz’, since
Yi(x)  is irreducible in Ti).  This implies that Tc)  is contained in
S,, thus proving the lemma.

Going back to the proof of (4),  let T,(M) = CiEo  Sl.j’  be any
other canonical decomposition. First it is clear that TL”’  = Sk’)<
It is therefore sufficient to prove. that each S$),  1 5 j 5 1,
coincides with some T$).  Consider, for ,example,  SL’).  By the lemma,
either it is orthogonal, to T,ci)  for every i L 1 or it contains Tz)

for some i B 1. In the first case, it must be contained in the
orthogonal complement Fz)  of EF=i  Tz) in T,(M). This is
obviously a contradiction. In the second case, the irreducibility of
Sf) implies that Sin actually coincides with Tz’. QED.

The following result is due to Bore1 and Lichnerowicz [l].

THEOREM 5.5. The restricted homogeneous holonomy group  o f  a
Riemannian manifold M is’s  closed subgroup of SO(n), where n = dim  M.

Proof . Since the homogeneous holonomy group of the umversal
covering space of M is isomorphic with the restricted homo-
geneous holonomy group of M (cf. Example 2.1))  we may assume,
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without loss of generality, that M *is simply connected. In vic\v of
(3) of Theorem 5.4, our assertion follows fr:om the foIlowing
result in the theory of Lie groups:

Let G be  a connected Lie subgroup of SO(n) which acts irreducibly  on
. the n-dimensional vector space R”. Then G is closed in SO(n).

-The proof of this result is given in Appendix 5.

-

6. The decomposition theorem qj’&  Rhccnl

Let M be a connected, simply connected and complete
Riemannian manifold. Assuming that M is reducible, let T ( II) =
Ti + TE be a decomposition into subspaces invariant Idy the
linear holonomy group Y(x) ‘and let .T’  and T” be the parslIe
distributions defined by TL  and T”+, respectively, as’in the beginning
of $5. We fix a point o c M and let M’ and M’ be the maximal
integral manifolds of T
Proposition 5.1, both M’

and T” through o, respectively. By

submanifolds of M.
and M” are complete, totally geodesic

The purpose of this section is to prove

THEOREM 6.1. M is isometric to the direct product 31’ x ;\I”.
Proof. For any curve zl, 0 5 t 5 1, in M with z = o we

shall define its projection on M’ to be the curve x (lo.- t :. 1
with x0  = o which is obtained as foIIows. Let C, bet;he  develop:
ment of z, in the affine tangent space T,(,li). (For the sake of
simplicity we identify the affine tangent space with the tangent

(vector) space.) Since To(M) is ‘the direct product of the two
Euclidean spaces Ti and. Tz,  C, may be represented bv a pair
(A,, B,), where A, and B , ‘

t are curves in TL  and Ti respectively
By applying (4) of Theorem 4.1 to M’, we see that there exists a
unique curve xt  in M ’ wli’ h * dlc IS  eve oped upon the curve I InI
view of Proposition 4.1 of Chapter III we may define the -c:‘rve
X,  %S  follows. For each ti let ‘X,  be the result of the parallel  dis-
placement of the T’-component  of ii from z, to o = z. (along  the
curve it).  The curve x,.is,a  curve m-h4  with x0  = o such that the
result of the parallel drsp’lacement’ of i’t along itself to o is’equa]
to X, for each t.

Before proceeding further, we shall indicate the main idea of the
proof. We show that the end point ir of the projection .rt  depends
only on the end point zr of thei curve zt if .I4 is simply connected.
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/’

Thus we obtain a projection p’: h4 - Al’ and, similarly, a pro-
jection p’: .%4  3 izI”.  The mapping p = (P’,  P”) of h4 into &4’ x

AZ/i”  will be shown to be isometric at every point. Theorem 4.6  then
implies that p is a covering projection of ,Zi onto M’ x h4”.  If h is
a homotopy in M from a curve of iz4’  to another curve of iZ4’,  then
P’(h) is a homotopy between the two curves in r2il’. Thus, 1Z4’  is
simply counected. Similarly, M” is simply connected. Thus p is an
isometry of M onto 44’ x M”. The @ail  now follows.

LEMMA 1. * Let T  = tt,  0 5  t d  1, be a curve in 64 z&h z,, =  o
and let a be any number with 0 5  a 5  1. Let -rl  be the curve z,,
0 5  t 5  a, and let r2 be the curve z,, a 2 t I=:  1. Let 7; be the pro-
jection of 72  in the mnximal  integral manifold M’(z,)  of T’ thr.ough  z,.
Then the projection of T = r2 * r1 in .A4’  coincides with the projectron  of
7’ = 7; * 7-l.

‘Proof of Lemma 1. This is obvious from the second definition
of the projection by means of the (linear) ‘parallel displacement of
tangent vectors.

LEMMA  2 . Let z Q M and let. V = I” x V” be an open neighborhood
of z in M, where V’  and V” are open neighborhoods of z in hi’(z)  and
Al“(z)  respectively. For any curve z, with z,, = z in V, the projection of
zt  in M’(z) is given by the natural projection of V onto V’.

Proof of Lemma 2. For the existence of a neighborhood
V = V’ x V”,  see Proposition 5.2. Let,.z,  be given by the pair
(x,,  yt) where xt  (resp.31~).  is a curve in V’ (resp.  V”) wrth  x0  = z

(resp.?‘, = z). Since V = Y’ x V”, the parallel displacement of
the T-component. of i, from z, to z. = z along the curve z, 1s
the same a+  the paraliel  displacement of f, from xt  to x0  = z
along the curve xt. Thus xt  is the projection of the curve z, in
M’(z).

We introduce the following terminologies. A (piecewise
differentiable) curve z1 is called a, T’-curve (resp. T”-curve)+ rf

‘f  belongs to T:,  (resp. T:J  for every f.  Given a (piecewise
differentiable) homotopy z: [0, 1 J x {o, so]  4 M,  whrch  1s de-
&Led by z(;,  S)  = z;, we shall denote by zj’) (resp.  ~1,)  the
curve with parameter t for the fixed value of s (resp. the curve
with parameter s for the fixed value of t). Their tangent vectors
will .be  denoted by iy) and it,,  respectively. For. any pomt

, . z 6 M, let d’ (resp. d”) denote the distance function on the maximal

integral manifold M’(z) of T’ (resp. M”(z) of T”)  through z.
Let U’(z;  r) (resp. U”(z;  r)) denote
(resp. w E  nZV(z))

the set of points W:E Al’(z)
such that d’(z,  z$,  -=c  r (resp. d”(z, w) < r).

LEMMA 3. Let 7’ = x1,  0 5  t 5  1, be a T’-curve.  Then there
exist a number r > 0 and a farnib  of isometries f,, 0 /r  t i 1, of
I.‘“(x,;  r) onto C”(x,;  r) with the following properties:

(1) The di$erential  offt  ta xti  coincides with the parallel displacement
along the curue  #from  x0  to xt;

(2) For @Y  woe  7”  =J+‘,  0  s s 2  so,  in u”(x,;  r) I;it/~y  = x0,
set z; = ft(y).  Then

(a) For any 0 5  t, 5  1 and 0 5  s, 5  so,  the parallel displacement
along the “parallelogram” formed t/a  the curve xl,  0 d  t 5  t,, th
curve zt,!,  0 5  s 5  sl, the inverse of the curve zl(Q,  0 5  t S t,, and
the inverse of the curvle3p,  0 5  s i sr, is trivial;

(b) For any s and t, ij”’  is parallel to xt  along the curre  $,;
(c) For any  s and t, i&
?roof  of Lemma 3.

is parallel to js  along the curve ~1’).

V = V” X  V” as
Let V be a neighborhood of x0  of the form

in Proposition 5.2. Choose a number r > 0
sufficiently small so that x1  E  V’ and U”(xt; r)  c {x1} ‘x v” for
0 5 t :> r.  We define ft byf,(x,,y)  .= (x,,~)  for-r E  U”(x,;  r). It
is clear that the family of isometries f,, 0 I t ::; r, has all the
properties (1) and (2). The family ft can be extended easily for
0 5 t F 1 and for a suitable r > 0 by covering the curve T’  = x1
by a finite number of neighborhoods of the form V = V’ x V”
and using the above argument for each neighborhood.

LEMMA  4 .
0 5  s 5  i,, b

Let 7’ = x,, 0 I t i 1,  be a T-curve and let T”  =y9
e a P-geodesic withy0 = x0,  where s is the arc length:

Then there exists a homotopy z;, 0 i t ‘5 1, 0 5.  s 2  so,  u,ith  the
fobtking  p r o p e r t i e s  : :

(i)  zj??~*  x,  nnd z&,  =y; j
(2). 2;  kaspqberties  (a), (b) and (c) of Lemma 3.
The homotofiy  z; is uniquely determined. In fact, if Y, is the result  of

parallel displacement ‘of’  the initial tangent vector Y. = .$O  of the
geodesic rN  along the curve T’,  then zi  = exp sY,.

Proof of Lemma 4.’ We first prove the uniqueness. By (a) and
(c) and by the fact that ‘7” is a geodesic, it follows that i,i,  is,
parallel to Y, along the curve z&,.  This means that z;()  is a



gcodcsic  i\.ith i n i t i a l  t a n g e n t  vector  Y,. T h u s ,  :; = csp  sIVI,
proving the uniqucncss.

I t  remains  t h e r e f o r e  t o  p r o v e  t h a t  :; = esp  sI’, actuall)
sntisfics conditions (1) and (2).  Condition (1) is  obvious.  To

prnvt’  (2),  lye  m a y  assume  t h a t ’7 is  a difXerentiable  curve SO

tha t  -1; is differentiable in (t, s). Let J;  be the filmily of isometries
as  in Lemma 3. It is obvious that there exists a number B  > 0
such  tha t  z; =f,( _I+)  for 0 .‘T,  t -I 1 and 0 2  s 5  8. Thus, 2;
satisfies condition (2) for 0 CL  t <>  I and 0 .-; s (; 6. Let n  bc the
suprcmum of such 0. In order to prove a = s,,, assume a < so.
First KC:  show that 21” satisfies (2) for 0 5  t 5  1 and 0 :: s 5  n.
Since  2; is differentiable in (t, s), the parallel displacement along
the curve 2:“) is the limit of the parallel displacement along the
cur1.c 2;“’  a s  s t n  (cf. Lemma for Theorem 4.2 of Chapter II).
‘I’hu~  condition (a) is satisfied. We have also ib,  = iii it,  and

A”~  L-=  lim $I).  Combined with the above limit argument, this‘-I 81  II
gi\cs  conditiois  (b) and (c) for 0 s t 5  1 and s = a.

In ordrr to show that z: has property (2) beyond the value a,
we apply Lemma 3 to the T’-curve  T f(1) = .zy) and the Y-geodesic

J”, lvhcre  11 = s - ~1. We see then that the!e  exist a number r > 0
and a homotopy xj’, 0 5  t 5  1, -r 2  u $  r, sat isfying a condi-
tion similar tb  (2),  such  tha t  z$‘) = zp)  and  ZEN;  =p.  Since tii”  ”
is parallel to-f” along the curve u$“)  = zia),  i t  follows that zi =
*p*

t m”forO:lt;<  1 andn.-rsssa+r.Thisprovesthatz’,
satisfies condition (2) for 0 5  t d  1 and 0 (=  s 5  a + r, contra-
dicting the assumption that a < sO.

LEhlMA  5. Keeping the notation of Lemma 4, the projection of the
curre  7’ . 7”-l in M’(y’o) coin&h  with &) = .zi ‘o),  0 5  t 5  1.

Proof of JAemma 5. Since 7’-l  is a T”-cur\.e,  its projection in
A/‘( -1’“~)  is trivial,. that is, reduces to the point ~“0. Conditions (a)
and (b) imply that,  for each t, the parallel displacekent  of i,
along TV  * T ‘-1 to -yxo  is the same as the parallel dishlacement  of
2)“~)  aloQg zjso)  toyso.  This  means  that  7” * $-I pro-Jects  on  T(8,) .

\Ve now c‘ome to the main step for the proof of Theorem 6.1.

LEMMA  6. If two curves TV and, T2  from Q to.  a point z in M are
homotopic  to each other, theu  their projections in M’ = M’(o) have the
same end point.

IV. KIEMANNIAN  CONNECI‘IONS 191

Proof of Lemma 6. Ct’e first remark  that 7., is obtninctl  honl
-rl  b y  a  f i n i t e  succession  o f  s m a l l  dcformatidns.  Hcrc  ;I  snl~ll
deformation of a curve  Z~ means  that, for a ccr:aill  small  ncG$lbor-
hood J’, \~e  replace  :i portion z,,  t,  z- t .: t,,, of the cur\‘c  11.ins  in

. V bv a cur\‘c  I(‘,, f, .-. t : f,, M.ith  w, = 2; and wt.  = zt’, lvinq, Lin J’. AS  a neighborhood  Jr, ICC  shall al,.ayi  take a Gcighb~rl~ootl
of the form t” V” as in Lemma 2.

It suffices therefore to pro1.t:  the following assertion. Let r be
a curve from 0 to zl, p a  curve  f r o m  z1 t o  z., w h i c h  lies i n  a
s m a l l  neighborhood  J’  := J-’ x J ” ’  and  K a  cur;-e  f<om  zz t o  :.
Let v be anotl1c.r (:ur\~e  from z1 to z2 \\rhich lies i n  I*. ‘I’hcn  r11(*
projections of K  - ,u  . T and K  . 18  . 7  i n  .II’  ha1.c  the same  v*I(I
point.

TO  pr-ovr  this,  it’  rn:t)  first reJ&cc  thr curve K by its J)l.Cjt.c.[iOll
in  ,\I’;  - by:-?j  by  Ixrnnla  I .  ‘I‘~IIIG.  ~\~shall  a s s u m e  t h a t  K i s  CL  7”-
c u r v e .  Let  /l  b e  rcprc~scntc~d  !:. ~h(t  p a i r  (ill’, p”)  i n  J’  =. J-’ I  .I’.
By Lemma 2, the projection 0: ,U  in .\f’(z,)  is  EL’.  Lrt j(* I!(>  ,:
?“‘-geodesic in J,-joining  z:, and  the end point of /A’.  ‘I’hc  p;lr,,licl
displaccmcnt of Y-vectors at 2z along p-1  is  the same  as  tllc
parallel displaccmcnt  along ,u-’  * p*, because  p” and I(* ; i\c
the same parallel  displacement for T’-vectors.  By I.emma (3. \\c‘
see that the projection  of K. p in .\I’(,-,)  is the curve  !A’  tollo~\~~l
by the ‘curve K’  obtained by using the homotopy ;I*  construct+sd
from the Y-geodesic ,u*
depends only on p*

a n d  the T-curve  -K.  T h e  homritop!,  zj:
and K and not on y.  Thus if wc~rcplacc  ,U  b>’

Y  in the abo1.e  arqumcnt, ive  see  that  the  projcctitrn  of K - I’ is
equal to v’  followed by K’,  \vherc  v 5 fv’,  v”) :in‘V  I=’ J” ‘\ J“‘.
\it’e now dividr 7  into a finite  nu-mbcrof’&rcs, say, T,, 7?.  . . . , TV-.

such  tha t  rach  T,  lies in a sma.11 neighborhood Vj of the  f;,lm
Vi x V:‘. We sho\v  that the projections of the curves K’  . Jo’  . 7k
and  K’  . v’  * TV  have the same end point in the m;lsimaI  intc.e*.‘11
manifold of T’ through the init ial  point of TV. :\g:iin,  Ict  -,
(T;,  71) in V;-  ‘= Vi x C’;I.and  let T: bc  the  gmtlcsic  in 1;;  jciir;i,,x
the end point of 7k to the end point of 7;.
of K’ * ,!4’  *

As befcrrv.,  the ~K$YII  ~1
TV  is the curve 7:. followed by  the cur\c  obtained bl-  ti~c.

homoiopy \vhic%  is cohstructcd  from th&  T”-geodesic  -: ail’! ~I;I*
T’-curve  2 . ,u’. SimilarIy for the projection o’f K’  . V’ . T1. E;I?-II
homotopy was construcirxl  by  the parallcl  displnc-cmr-,t  of  the
i n i t i a l  t a n g e n t  v e c t o r  Gf the .gSrodcsic  7: aIonS k’ p’  o r  nlony
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K’  * V’. Since ~‘-1  . 1~’ is a curve in F’,  the parallel displacement
along ~‘-r  . ,u” is trivial for T-vectors.  This means that the parallel
displacements of the initial tangent vector of 7: along CL’  and Y’
are the same so that the two homotopies produce the curves pr
and v, starting at the end point of T;  and ending at the same point,
where a curve K~ Star ts  in such a way that K~ * pk * 7; and
Kk ’ Vk * T;  are the projections of K’ . 1”’  . 7k  and K’  + v’ * r3(  rcspec-
tively. We also remark that the parallel displacements of every
T”-vector along ,uk and vk are the same; this indeed follows from
property (a) of the homotopjr  in Lemma 4.

We continue to the next stage of projecting the curves
Kk’ pk. 7;. 7k--1  a n d  Kk - vk * 7; * 7k--1  by the same method. As
a result of the above remark, we have two curves ending at the
same point. Now it is obvious that this process can be continued,
thus completing the proof of Lemma 6.

Now we are in position to complete the proof-of Theorem 6.1.

Lemma 6 allows us to define a mapping p’ of M into M’.
Similarly, we define a mapping p” of M into M”. These mappings
are differentiable. As we indicated before Lemma 1, we have only
to show that the mapping p = (p’,p”)  of M into M’ x M” is
isometric at each point. Let z be any point of 121 and let T be a
curve from o to z. ..For  any tangent vector 2 z 7’,(M), let 2 =
X + Y, where X z Ti and Ye Tf.  By definition of the projection,
it is,  clear. that p’(Z) is the same as the vector obtained by the
parallel displacement of X from z to o along T and then from o to
p’(z) along p’(T).  T.h ere  ore, p’(Z) and X have the same length.f
Similarly, p”( 2) and Y have the same length. It follows that 2 and
p(Z) = (p’(Z),p”(Z))  have the same length, proving”that  p is
isometric at 2. QED.

Combining Theorem 5.4 an*& Theorem 6.1, we obtain the
decomposition theorem of de Rham..

THEOREM 6.2. A connected, simply connected and complete Rieman-
nian manifoti  M is isometric to the direct product M,  x -11,  x * - - ‘<
hfk, where hf,,  is a Euclidean space (possibly of dimension 0) and
hf,, . . . , M, are all simpb connected, complete, irreducible Riemannian
manifolds. Such a decomposition is unique up to an order.
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Theorems 6.1 and 6.2 arc  due to de Rham  [l].  The proof of
Thcorcm 6.1 is new;  it was inspired by the work of Reinhart  [ 11.

Let 1%1  be a connected Riemannian manifold. Fixing a point x
of -41, we denote the affine holonomy group Q(x)  and the linear
holonomv  group ‘F(x) simply by @ and Y, respectively. We know’ /

(cf. Theorem 5.5) that the restricted linear holonomy.group  ‘I’0
is a closed-subgroup of SO(n), where n = dim :hl.  .b is a group of
Euclidean motions of the affine (or rather Euclidean) tangent space
i-‘,(M) . ,’  ,.

We first prove the following result. ~ : 1 .  .
TIjEQREM,.'I.l.  rf+'  'is irredunble,  thert  either )
(1) Q” contains all translations of T;(M). ” ,..

01:

(2) O”jxes  a point of T,(M).
Proof . Let K be the kernel of the homomorphism of Go  onto

‘+“O  ‘(cf. Proposition 3.5 of Chapter’III).  Since !i is a normal
subgroup of CD0 and since every element a of (1)O is of,  the form
a = 6. ii where d E  ‘F” and 5 is a pure translation, Y” normalizes
K, that is, a-‘Ka  = K for every d E  ‘PO. Consider first the case
where K is not discrete. Since Y” is connected,ait  normalizes the
identity component K”  of K. Let V be the orbit of the origin of
T,(,11)  by K”.  It is a non-trivial linear subspace  of ‘J,(,\fJ
invariant by ‘F”; the invariance by ‘F”  is a consequence of the fact
chat Y” normalizes K”.  Since ‘1’O  is irreducible by assumption, WC
have  V = T,(Al). This means that Q” contains all translations of
T’(M).  Consider next the case where K.is  discrete. Since Y’J is
connected, Y” commutes with K elemantwise. Hence, for every
6 z K, t(O)  is invariant by Y” (where 0 denotes the origin of
T,(M)). Since YO’is  irreducible, ((0) = 0 for every t z K. This
means that K consists of the identity element only and hence that
@O  is isomorphic to Y” in a natural manner. In particular, QO
is compact. On the other hand, any compact group of affine
transformations of T,(M) has a fixed point. Although we shall
prove a more general statement in Volume II, we shall give here
a direct proof of this fact. Let f be the mapping from a0 into
T,(M) defined by

f(a)  = 40) for a c CDO.
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Let da be a bi-invariant Haar measure on @O  and define

; X0  =
s

f(u) da.

It is l&y  to verify that X0  is a fixed point of CPO. QED.

We now investigate the second case of Theorem 7.1 (without
assuming the irreducibility of M).

THEOREM 7.2 . Let M  be a connected, simply connected and complete
Riemannian manifld.  If the (restricted) ajine holonomy group @O  at a
point x jixes a point of the Euclidean tangent space T,(M), then M is
isometric to a Euclidean space,

Proof . Assuming that X0  (F  T,(M ) is a point fixed by CDO, let
7 be the geodesic from x to a pointy which is developed upon the
line segment tX,,  0 5 t j 1. We observe that the affine holonomy
group @O(y)  aty fixes the origin of T,,(M). In fact, for any closed
curve ,U at JJ,  the affine parallel displacement along 7-r * ,u  * T
maps X0 into itself, that is, (7-l  * p * 7)X0  = X0.  Hence the
origin of T,(M) given by ~(3’~)  is left fixed by y. This shows that
we may assume that CD0 fixes the origin of T,(M). Since M, is
complete, the exponential mapping T,(M) + M is surjective.
We show that it is 1: 1. Assume that two geodesics 7 and p
issuing from x meet at a pointy # x.  The afBne parallel displace-
mcnt p-1 * T maps the origin 0, of T,(M) into itself and hence
we have

+(o”) - P-w,

where 0, denotes the origin of T,(M).  Since T-‘(0,)  and p-‘(0,)
are the end points of the developments of T and p.  in T,(M)
respectively, these developments which are line segments coincide
with each other. Thus 7 = ,u, contradicting the assumption that
x +.r.  This proves that the exponential mapping T,(M) - M
is 1:l.

Assume that exp, is a diffeomorphism of N(x; r),  = {i 5 T,( M) ;
lix’i] < r) onto C(x; r) = {r E  M; d(x,y) < r}, and let x1,  . f . , x” be
a normal coordinate system on c’(x;  r).

We set X = -Cr,,  xi  (c?/axj) and let p be the corresponding
point field (ef. $4 of Chapter III). We show that p is a parallel
point field. Since a0 fixes the origin of T,(A4),  it is sufficient to
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prove that b is parallel along each geodesic through x. Our
assertion follows therefore from

LEMMA 1. Let r = xt,  0 s t 5  1, be a curve in a Riemannian
manifold h4  and let $ (resp.  9J  denote the afine (resp. linear) parallel
displacement along r from x,  to x,. Then

1

+f,(Y)  = d)(Y)  4 c,, YE  T&W,

.

where C,, 0 5  t I 1, is the development of r = x,  into TJM).
Proof of Lemma 1. Given Y f T,,(M), let p (resp. q) be the

point field along T defined by the affine parallel displacement of
Y (resp. the origin of Tzl(n4))  and let Y* be the vector field along
T defined by the linear parallel displacement of Y. Then p = q +
Y* at each point of 7,  that is, Y* is the vector with initial point q
and end point p at each point of 7.  At the point x0,  this means
precisely ?I(  Y) = -r{,(Y)  + C,.

Going back to the proof of Theorem 7.2, we assert that

-7,x  + v = 0
This follows from

for any vector field I’.

LEMMA  2. Let p be a point jeld  along a curve T  = xt,  0 5  t i 1,
in a Riemannian manifold M and let X be the corresponding Vector  jcld
along r. Then p is a parallel pointJield  ;f and only ;f

C,,X  + it  =  0 for 0 $ t 5  1.

Proof of Lemma 2. From Lemma 1, we obtain

~:+“(P.T,+,)  = 7tlfh(Xt+J + G,hY

where C,,,  (for a fixed t and with parameter h) is the development
of T into T,*(M).  Since ?:‘“(p,,,,)  is independent of h (and
depends only on t) if and only if p is parallel, we have

for 0 2 t 2 1 if and only ifp  is parallel, completing the proof of
Lemma 2.
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Let I’ ;;nd  Z be arbitrary vector fields on Ail. From G,X + Y =
0 and y-,X  + Z -= 0, we obtain (cf. Theorem 5.1 of Chapter III)

md
VayY  =  ‘-CL.? +  [X, Y] =: - Y + [X, Y]

Hence,
v,z =  T,X  +  [X, Z]  = - -  2 f- [X, 21.

X(P(K Z))  = g(~,K Z)  + g(K T’SZ)

= -2g(Y,  Z)  + g([X,  Y],  Z) -t g(Y,  [X, 21).

Let Y =‘  a/&j and Z = 8jaxk  for any tixedj  and k. Then we have

This means that the functions gjk arc invariant by the local l-
parameter group of transformations p’l  generated by X. But vt is
of the form

Thus the ftmctions  g,,  are constant along each geodesic through x.
Hence,

t!f2”,k := glk(.Y)  = (I,, at Fvery point of C’(x; r).

ThiT shows tha t  expl. is an isometric mapping of N(x; r) with
Euclidean metric onto li(x; /I. Let r,, be the supremum of r > 0
such that esp, is a diffeomorphism  of lV(x;  r) onto U(x; r).  Since
the differential (rsp,),  is non-singular at every point of ‘Vjx;  r,J,
csp,  is a cliffcomorphism,  hcncc an isometry,  by the argument above,
of S(x; T,J  on to  U(X; r,J.  If r0 < CC, i t  follows that (esp,),  is
isometric at (‘very point 3’ of the boundary of ,I-(  Y; T,,)  and hence
nonsingular  in a neighborhood of such-y.  Since the boundary of
n-(.1,; r& is compact, we see that there exists 8  > 0 such that exps is a
difli~omorphism  of X(.u;  r0 + E) onto U(x; r0 + F), contradicting the
tlcfinition  of r,,. ‘:‘his shows that rxpr:  is a dif%eomorphism  of T,(A1l)
onto .\1. By choosing a normal coordinate system x1, .  .  . , x” on
the \vhole .\I,  we conclude that gjk = dj,  at every point of AII,
that is, 111  is a Euclidean space. QED.

:Zs a consequence WC  obtain the following corollary due to C-oto

.

and Sasaki  [ 11.
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COROLLARY 7.3 . Let Al  be a connected and complete Riemannian
manifold. If the restricted aj’ine  holonomy group @O(x)  jixes  a point of the
Euclidean tangent space T,(2Fl) for some x E M, then M is locally
Euclidean (that is, every  point of M has a neighborhood which is isometric
to an open subset qf a Euclidean space).

Proof. Apply Theorem 7.2 to the universal covering space of
M. QED.

C O R O L L A R Y  7 . 4 .  I f  M is a complete Riemannian manifold of
dimension > 1 and ;f the restricted linear holonomy group yPO(x)  is
irreducible, then the restricted ajine holonomy group W’(x)  contains all
translations of T,(M).

Proof. Since Y-““(x) is irreducible, A1  is not locally Euclidean.
Our. assertion now follows from Theorem 7.1 and Corollary 7.3.

QED.
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CHAPTER V

Curvature and Space Forms

1. Algebraic prelirninnries

Let V be an n-dimensional real vector space and R: V :< V x
V x V -+ R a quadriiinear mapping with the following three
properties:

(4  Wl, u2,  u3,  u4)  = -Nu,,  vl,  u3,  21~)
(b)  R(u,,  ~2, i3,  4  = -W,,  v2, 1’4,  v3)

(4  WI,  u2, u3, 04) + R(%  us,  u4,  u2i  i- R(Ul,  u,, u2, 03) = 0.

PROPOSITION 1.1. If  R p ossesses the above three properties, then it
possesses also the following fourth proper9  :

(4  W,,  ~2, 7.~3, ~4) = R(v3,  ~4, ~1, ~2).

Proof . We denote by S(v,,  up,  v3, v.,)  the left hand side .of (c).
By a straightforward computation, we obtain .

0 = Gh u2, u3, UP)  - S(7J2,  u3, u4,  %) - S(zr3,  u4,  Vl, u2)

+ +4> Ul, 02, u3)

= W,,  u2,v3,  ~4) - R(u2, ~1;  ~3,  ~4) - WV,,  ~4, ul,vp)

+ R(v4,  ~3, ~1, ~2).
By applying (a) and (b), we see that

2R(v,,  US,  u3,  v4)  - 2R(v,,  v,,  vl,  up)  =  0 .  ”
QED.

PROPOSITION  1.2. I.& R and 2”  be two quadrilinear  mappings with
65e  &beproperties  (a), (b) and (c). rf

4~1, ~2,  a;, 4 = T(vl, vi, ul,u2) fbr all ul,  v,  E V,

then R = T.
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Proof. We may assume that T = 0 ; consider R - T and 0
instead ofR and T. We assume therefore that R(v,,  ~3, vl, u2)  = 0
for all zr, v2 E  V. \Yc  have

0 =  R(v,,  v2  -:- zj4,  vl,  u2  +  c4j

y= R(zjl,  u2,  Do,  u4)  + R(rl,  z’$  iSl,  c2)

= 2R(v,,  vz,  z’~,  v4).
Hence,

(1) WV,,  7.~2,  2’1,  up) = 0 for all z’r,  v2, v4 E  K

From (1) we obtain

0 = R(u,  + ~3, v2, u1 i 03, 4

= R(zl!,, u2, 2’3, ~4)  + R(u3,  ~12,  2’1,  4~

Now, by applying (d) and then (b), we obtain

0 = R(v,,  c2,  c3,  up)  $ R@,,  ~1,  23, u2)

- -  Rjv,,  ~2, ~3, ~4)  - R(v,,  ~4, ~2, 03).-

Hence,

(2) Rh,  u2,  u3,  u4)  = W,,  K,, zj2,  4 for all vr,  z2,  v3, v4  E  V.

Replacing v2, v3, v,  by vD,  zf4,  v2, respectively, we obtain

( 3 )  WV,,  02, ~‘3,  4 = R(z:l,  7~3,  c.1, ~‘2) for all vr,  v2, v3, up  E  17.,,

From (2) and (3),  we obtain

W ul, u2, v3, ~4) L R(v,?  v2, v3, z!,j  -t-  R(v,,  v3, v4,  v2)

+ R(u,,  zi, vz, u3),

where the right hand side vanishes by (c). Hence,

4Vl, u2, u3, u4)  - 0 for all vr,  v2, v3, zj4 E  T’.
QED.

Besides a quadrilincar mapping R, we consider  an inner
,product (i.e., a positive dcfinitc  symmetric bilinear form) on V,
which will be denoted by ( , ).  Let p be a plane, that is, a 2-
dimensional subspace, in T ’ and let v1  and v2 be an orthonormalb’
basis for p. We set I. :
. AI:(/)\  R(zl,,  c2,  vl,  z12).
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As the  notation suggests, K(P) is independent of the choice of an
orthonormal basis for p. In f?%ct,  if WI  and w2  form another
orthonormal basis ofp, then

wl = au, + bvz, wz = -bvl  + au2 (or bv, - au,),

where a and b are real numbers such that a2 + b2 = 1. Using (a)
and (b), we easily obtain R(%, u29 UlY u2)  = R(w,, w*, WI, w2).

PROPOSITION 1.3. Ifvl, v2  is a basis (not necessarily orthonormal)
of a plune p in V, then

R(5)  u2, Ul, 02)

K(P) = G01)  (u2,  u2)  - (Ul,  42

Proof. We obtain the formula making use of the following
orthonormal basis for p:

where a = [(vl, vl)((vl,  vl)(02, u2) - (vl,  b2)2)1'

We set

QED.

R,(v,, v2,  us,  VP) = (%  u2)(%  4 - b29 d(%  4

for ul, u2, v3, v4  E V.

It is a trivial matter to verify that Rl is a quadrilinear mapping
having the properties (aj,  ( b and (c) and that, for any-plane p)
in ?‘, we  have

K,(p)  = Rl(zJl9  u2, Ul,  u2)  = 1, ,

where zjl, cz  is an orthnnorm al basis for p.

PROPOSITION 1 .a. Let .q he a quadrilinear mapping with properties
(3), (b) and  (c).  VA-(P)  = c?r  allPlapes P, then R = CR,.

Proof. By Proposition 1.3, we  have

Rl(v 1, v2, ul, 21~)  = cR,(z'l, u27 ul.l,  v2) for all ul, v2 z V.

Applying Proposition 1.2 to R and cRl, we  conclude R = CR,.
QED.

Let e,, . . . ) ”e be an orthonOrmal basis for V with respect to the
inner product ( , ).  To ea ch quadrilinear mapping R having
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properties (a), (b) and (c), we associate a symmetric bilinear
form S on V as follows:

S(u,,  u2)  = R(e,, ul, e,,  u2)‘ t R(e,, ul, e2,  u2)  t - - .

+ We,, vl, e,,,  c2), ul, p2  E  V.
It can be easily verified that S is independent of.the choice of an
orthonormal basis e,, . . . , P,,. From the definition of S, we obtain

PROPOSITION 1.5. Let v c V be a unit vector and let v, e2,  . . . , e, be
an orthonormai basis for V. Then

qv,  0)  = &q  + * * .* + K(p,),
where pz  is the plarie  spanned 4~  v and e,.

2. Sectional curvature

Let M be an n-dimensional Riemannian manifold with metric
tensor g. Let R(X,  Y) denote the curvature transformation of
T,(M) determined by X, Y 4 T,(M) (cf. .55 of Chapter III).
The Riemannian curvature tensor (Jield)  of M, denoted also by R, is
the tensor field of rovariant degree 4’defined by

R(X,,  472, &, 4) = g(R(X,,  &)X2,  Xl),

Xi E T,(M), i = 1, . . . , 4.

PROPOSITION 2.1. The Riemannian curvature tensor, considered as a
quadrilinear mapping T,(M) x T,(M) x TJM)  x T,(M) + R
at each x E M, possesses properties (a), (b), (c) and hence (d) of tj  1.

Proof. Let u be any point of the bundle O(M) of orthonormal
frames such that r(uj  = x. Let X;,  XT E  Tt(O(Af))  with rr(Xt) =
X3 a n d  rr(.XT)  = X4.  ,From the definition of the. curvature
transformation R(X,,  X,)  given in $5 of Chapter III, we obtain

g(W,, &)X2,  Xl)  = g(uW(~$, -W (~-‘&)I,  X,?
= ((2fqX,*)  .Q) (u-‘-Y,),  u-IX,),

where ( , ) is the natural inner product in R”. Now we see that
property (a) is a consequence of the fact that n(X:,  X:)  E  o(n)
is a skew-symmetric matrix. (b) follows from R(X,,  X4)  =
-R(X,,  X:,). Finally, (c) is a consequence of Rianchi’s first
identity given in Theorem 5.3 of Chapter III. QED.
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For each plane p in the tangent space T,(M),  the sectional
curvature K(p) for p is defined by

K(P) =  R(Xl> X2,  Xl,  XA =  g(R(X1,  X,)X*, Xl),

where Xl,  X,  is an orthonormal basis for p. As we saw in $1,
K(p) is independent of the choice of an orthonormal basis
Xi, X,.  Proposition 1.2 implies that the set of values of K(p) for all
planes p in T,(M)  determines the Riemannian curvature tensor
at x.

If K(p) is a constant for all planes p in T,(M)  and for all
points x E  M, then M is called a space of constant curvature. The
following theorem is due to F. Schur [l].

THEOREM 2.2 . Let M be a connected Riemannian manifold of
dimension 2  3. If the sectional curvature K(p), where p is a plane in
T,(M), depends only on x, then M is a space of constant curvature.

Proof .
follows :

We define  a covariant tensor field R,  of degree 4 as

R,P’>  Z X, Y> = g(W  XkU, Y) - cd3  WY, W,

By Proposition 1.4, we have : W, 2,  X, YE T,(M).
i :*

R  =  kR,, .

where k is a function on M. Since g is parallel, so is R,. Hence,

(V.R)(W  Z>  4 Y) = (W)R,(K  Z, 4 Y)

for any Ur T,(M).
This means that, for any X, Y, 2,  UE T,(M), we have

[(V,R)(K  y)lZ = WkV, Y)X - g(Z,  XP’).

Consider the cyclic sum of the above identity with respect to
(U, X, Y). The left hand side vanished by Bianchi’s second identity
(Theorem 5.3 of Chapter III). Thus we have

0 F (uk)(g(Z>  Y>X  - g(Z  W’)

+ (X4  (s(Z,  u)  Y - s(Z  Y) uj

+ (Yk)(g(Z,  X)u  - g(Z  WV.
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For an arbitrary X, we choose Y, 2 and U in such a way that
X, Y and 2 are mutually orthogonal and that U = 2 with
g(Z,  2) = 1. This is possible since dim M 2 3. Then we obtain

(Xk)Y - (Yk)X = 0. _

Since X and Y are linearly independent, we have Xk = Yk ,= 0.
This shows that k is a constant. QED.

COROLLARY 2.3 . For a space of constant curvature k, we have

NX, Y)  Z = Ug(Z,  x,X  - g(Z,  4  Y).

This was established .&thS>ourse  of proof for Theorem 2.2.
If k is a positive (‘i&p.  negative) constant, M is called a space

of constantpsitive  (resp. negative) curvature.
If R(  &id  gij  are the components of the curvature tensor and

the If?etric  tensor with respect to a local coordinate system (cf.
$7  of Chapter III), then the components Rijkl  of the Riemannian
curvature tensor are given by

Rijkl = zm SimQ

If M is a space of constant curvature with K(P)  = k, then

Rijkl = kkikgjl  - gj1SglJ, Rihl  = k(6;gjl  - gikSf). J

As in $7 of Chapter III, we define a set of function; kj,,  on L(M)
bY

where B = (fij) is the curvature form of the Riemannian connec-
tion. For an arbitrary point u of O(M), we choose a local co-
ordinate system x1,  . . . , x” with origin x = n(u)  such that u is the
frame given by (a/ax’),,  . . . , (6’/axn),.  With respect to this
coordinate q&tern,  we have

gi, = dij at x,
and hence

Rj,,  = Rijkl = k(Sikajl  - d jkSli) at x.

Let o be the local cross section of L(M) given by the field of
linear frames a/&i,.  . . , a/ax”.  As we have shown in $7 of
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Chapter III, \ve have CT*%$.~  = Rj,,.  Hcncc,

.ijkl  = k(d,,b,, - c5js81i) a t  !l,

q = x-01  A 0’ at Il.
Since 21  is an arbitrary point of 0(-U),  we have

PROPOSITION  2.4. u A4 is a space of constant curvature with
secttonal curvature k, then the curvature fornz (2 = (Qj) is given  by

ilj =  kei,A 0’ o n  O(:\l),

where 0  = (0’)  is the canonical form on O(,li).

curvature k. Namely, we prove

’ -THEOREM 3.1. Let (x1,  . . . , x”,  t) be the
R”f-l  and M the kypersurface o~‘R”+l  dejined  by

coordinate system of

W”  + -** + (x”)2  +  rt2 =  r
.

(r : a nonzero  constant).
Let g be the Riemannian  metric of M obtained by .restricting  the following

form to Al:

Thkn
c (dx”))  +  - ; - + (dxn)2  +  r dt2.

(=i]-M . p f t t
(2)

1s a s ace o cons an curvature with sectional curvature I/r.
The group G of linear transformations of R” -1 leauing  the quadratic

f o r m  (xl)” f - - . + (x”)2  + rt2 invariant acts transitively on M as a
group of isometries of AC?.

(3) If r > 0,  then M  is isometric to a sphere of a radius-r!. rfr  < 0
then M consists of two mutually isometric connected manifolds eack 0;
which is d$eomorphic  with R”.

Proof.  First we observe that II4  is a closed submanifold  of
R”+l (cf. Example 1.1 of Chapter I) ; we leave the verification to
the-teader.

We begin  with the proof of (3). If r > 0, then we set xn+l  = r?t.
Then M is given by

(xl)”  + - * * -k (~~tl)~  = r,
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and the metric g is the restriction of (dx’)?  -i . * . L- (do”  ‘I)’ to
M. This means that M is isometric with a sphere  of raclms  rl.  If
Y < 0, then t2  2 1 at every point of .24.  Let .\I’  (rcsp.  .21”)  be rhe
set of points of A4 with t 2 1 (resp. t e;:  - 1). The mappmg
(xl, . . . , x”, t)  4 (y’,  . . . ,y”) defined  by

yi = Xi/t, i= l,...,n,

is a diffeomorphism  of h4’ (and M”)  onto the open subset of R”
given by

Clrl  (Y’)~  + r <  0 .

In fact, the inverse mapping is given by
xi  = yt, i =  l,...,n,

A straightforward computation shows that the metric g is expressed
in terms ofyl,  . . . , y” as follows:

T[(T + zi  (J’)2)(ct  (dyi)2)  - Cci  Y’  h’j21 .
(r  + Xi  (yij2j2

To prove (2),  we first consider G as a group acting on R’+f~l.
Since’ G is a linear group leaving (xl)”  + * . * + (x”)” -t .rt”
invariant, it leaves the form (dx1)2  + - * - + (dx”)2  $ r dt2 In-.
variant. Thus, considered as a group acting on, A4,  G is a- group of
isometries of the Riemannian manifold Al. The transitivity of G
on A4 is a consequence of Witt’s theorem, which may be stated as
follows.

Let Q be a nondegeneraie  quadratic form on a vector space V.
Iff is a linear mapping of a subspace  U of’ I; into V such that
&U(x)) = .QH for all x c U, then f can be extended to a linear -

isomorphism  of V onto itself such that Q(f(x))  = Q(x) for all
x E  V. In ‘particular, if x0 and x1  are elements of V with &(x0)  =

&(x1),  there is a linear isomorphism f of V onto itself which
’leaves Q invariant and which maps x,,  into x1.

For the proof of Witt’s theorem, see, for example, .4rtin
[l,  p. 1211.

Finally, we shall prove (1). Let H be the subgroup of G which
consists of transformations leaving the point o with coordinates
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(0,  * - * , 0, 1) fixed.  IVc define a mapping f:  G 3 O(J1) as
follows. Let u0 E  O(,\f)  bc  the frame at the point o = (0, . . . , 0, 1)
E  M given by (a/W),,,  .  . . , (3ja.~“)~.  Every element n 6 G, being
an isometric transformation of .I!,  maps eac’h orthonormal fi-ame
of -21 into an orthonormal frame. In particular, n(~,\  is an ortllo-
normal frame of ,1f  at the point-a(o). !t’c  define

f(Q)  = &o), n E  G.

LEMMA 1. The mapping f:  G -+ O(.lf)  i s  a n  isomorf&iJm  oJ‘  the
principal jibre bundle G(G/H,  H) onto the bundle ()(.1/‘j  ;,.\f, O,~I ‘:.

Proof of Lemma 1.
(n

If we consider G as a group of‘ \ri  7 1: <
+ 1)-matrices in a natural manner,

isomorphic with O(n) :
then H  i s  nntur;tll\

H =

It is easy to verify that f: G -+ O(‘+i)  cornmules  with the right
translation R, for every a E  H = O(n) :

J-V4  = f’(b)  * Q for b E  G and a 6  H = O(n).

The transitivity of G on M implies that the induced mapping
f: G/H - M is a diffeomorphism and hence that J:: G -+ O(M)
is a bundle isomorphism.

The quadratic form defining A1 is given by the following
(n + 1) x (n + I)-matrix:

Qq O.
( ir

An (n + 1) x (n + I)- matrix a is an element of G if and only if
ta&a  = &,  where ta is the tra:pspose  of a. Let

-3 .*.
XY

i i
a =

‘2 w
,

,‘,
where X4s an n x n-matrix;? and z are elements of R” and 2~’  is
a real number. Then the condition for a to be in G is expressed her

tXX + r - z ‘z = I,, ‘Xy  + T  - zw  = 0, $’ + r * It’?  : r.

V. CITKVATvRE  ASD SPXCF. FORMS 207

It follou*s  that the Lie algebra  of G is formed by the matrices of
the form .

i

A b

1‘c 6

where A is an n Y n-matris  with ‘.i +- -4 = 0 and 0 and t are
elements of R” satisfying ,I,  -r  YC = 0. Let

. . . . . . . . . . .

be the (left invariant) canonical l-form on G,(cf.  $4 of Chapter I).
We have

a, + aj I 0, pi + ry,  = 0, i,j = 1, . . . ) n.

The Maurer-Cartan  equation of G is expressed by

d/9’  = -& c&  A ,4”,

da: 1 -& cc;  A a: - pi  A yj, i,j= l,...,  n.

L EMMA 2. L e t  r3 =  (f?) an to = ((II:) be the canonical form andd
the connection form on O(M). Then

f *oi = /?i and f *co:  = c$, ’ i, j = 1, . . . , n.

Proof of Lemma 2. As we remarked earlier, every element
a . E  G induces a transformation of O(iZI)  ; this transformation
corresponds to the left translation by a in G under the isomorphism
fi  G -+ O(M). From the definition of 8,  we see easily that
8 = (et) is invariant by the transformation induced by each
a E  G. On the other hand, (p) is invariant by the left translation
by each a E  G. To prove f *V = fl’,  it is therefore sufficient to

. show that (f*P)(X*) = pi(x*)  for all X* E  T,(G). Set Xi  =
(a/&~‘)~  so that the frame u,, is given by (X,, . . . , X,). The

composite mapping n ofi G -+ O(bZ)  a n-l maps an element of
T,(G)  (d  tfi  di en i e with the Lie algebra of G) of the form
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into  the vector Xi  6$X,  E  T,(M) where b’,  . . . , 6*  are the
components of 6. Therefore, if I;* E  ‘Ik(G),  then r of  =
Xi  p’(X-  *)A’,  and hence

(f*o*(x*)>  *. . ,f*o’yx*))  = u;‘(n  q-(x*))

= (P(n*),  * * * , p-(x*)),
which proves the first assertion of thq.lemm..  Let g and f~  be the
Lie algt:bras  of G and H, respcctivkly. ‘Let m be the’linear sub-
space of g consisting of matrices of the form

It is easy to verify that m is stable under ad H, that is ad (a)(m) =
m for every a c H. Applying Theorem 11.1 of Chapter II we
see that (3;) dcfincs  a connection in the bundle G(G/H,  H),  Gow
the second asscrtinn  of Lemma 2 follows from the following thred
facts: (1) (p’)  corresponds to (19~)  under the isomorphismf: G +
O(M); (2) tl ’ I’.  .11 \IC  mannian  connection form (0):) is characterized
by the proper1).  that the torsion is zero (Theorem 2.2 of Chapter
IV), that is, do’  = --C, ~5 A Ok; (3) the connection form (~j)
satisfies the  equality: dp  = -Xn ai A pk.

We shall now complete the proof of Theorem 3.1. Lemma 2,
together with

and
dx:  = --Zka~Aaj  --p’~y i

implies

showing that the curvature form of the Riemannian connection is

given by i Oi  A 0’.  By ‘Proposition 2.4, M is a space of constant
,. ..:

curvature with sectional curvature l/y.
QED.

Remark. The group G is actually the group of all ikoriktries  of
M. To see this, let 3(i\l)  be the group of isometrics of M and
define a mapping f:  ,7(i\f) --t O(M) in the same way as we
definedf:  G -+ O(M). Then G c 3(M) andf:  S(M)  -+ O(M)
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is an extension df f:  G -+ 0(-W).  Since  f maps 3(M) 1: 1 into
O(M) and si’ncef(G)  = O(M), we must have G = 3!nl).

In the course of the proof  of Theorem 3.1, we obtamed

THEOR.EM  3.2. (1) Let M be the sphere in R”+l dejined by

(9)”  + . . * + (x*+1)2  = $.

Let g be the restriction of (dx1)2  + * - + + (dx”+1)2  to M. Then, with
respect to this Riemannian metric g, M is.a  space of constant curvature wzth

sectional curvature lla2.
(2) Let M be the open  set in R” dejined by

(xl)” + - - * + (x”)2  < u2:

Then, with respect to the Riemarinian  metric given by

a2[(a2  - ISi fyi)‘)  (C, (!y’)“j  -- (Ci yi &“)2]
(u2’+q  (jq2)2;  .’ ’

M is a space  of constant cu&ure  urith  sectional curvature >- lla2.

The spaces M constructed in The&em 3.>2  are’ ali simply
connected, homogeneous and  hence cdmpl&e’ by Theorem 4.5
of Chapter IV. The space R” with the Euclidean metric (!x’)~  +

. . . + (d$‘)2 gives a simply connected, complete space of
zero curvature.

A Riemannian -manifoib  of constant curvature is said to be
elliptic, hjlperbolic  ;rJEat  (or locally Eucli<ean)  according as the sec-
tional curvature is positive, negative or zero. These,, spaces are
also called  space  forms (cf. Theorem 7.10 of Chapter \i I).

4. Flat afine,  and Riemannian connections

Throughout this section, M will be a connected, paracompact
manifojd  of dimension n.

“L& A(M) be. the bundle of afljpe  frames over %M;  it is 1a
principal fibre ,l$mdle  with structure group G -= A(n;  R) (cf. 43
of Chapter $$I). An a@ne ‘connection of M is said to be fiat it
every point  c#M  has an open neighborhood U and an isomorphism
y:  A(M) --t 0 )<’  G ‘$hich maps’ the horizontal space at each
u E  A(U) into the h&fzontal  space at v(u) of the canonical flat
connection of U x G. A manifold with a flat affine connection is
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said to be local&  a@ne.  A Riemannian manifold isJIat  (or locally
Euclidean) if the Riemannian connection is a flat at&e connection.

THEOREM 4.1. For an a&e connection of M, the foliowing con-
ditions are mutually equivalent:

(1) It is Aat;
”  _

(2) The torsion and the curvature of the corresbonding  linear connection
vanish identically ;

(3) The aJi<e  ?zolonomz  group is discrete.
Pmof. By Theorem 9.1 of Chapter II, an affine connection is

flat if and only if its curvature form fi on A(M)  vanishes identi-
cally. The equivalence of (1) and (2) follows from Proposition 3.4
of Chapter III. The equivalence of (2) and (3) follows from
Theorems 4.2 and 8.1 of Chapter II. ’ QED.

Remark. Similarly, for a .linear  connection of M, the following
conditions are. mutually equivalent:

(1) It is flat, i.e., the connection in L(M) is flat; (2) Its
curvature vanishes identically; (3) The linear (or homogeneous)
holonomy group is discrete.

When we say that th.e  affine holonomy group and the linear
holonomy group are discrete, we mean that they are O-dimen-
sional Lie groups. Later (cf. Theorem 4.2) we shall see that the
affine holonomy group of a complete flat affine connection is
discrete in the affine group A(n; R). But the linear holonomy.group
need not be discrete in GL(n;  R) (cf. Example 4.3).  It&II  be’shown
that the linear holonomy group of a corn
manifold is discrete in O(n) (cf. the proofof  4) ofTheorem  4.2 and
the remark following Theorem 4.2). P

act flat Riemannian

Example 4.1. Let 5i, . . . , tk be linearly independent elements
of R”, k I n. Let C be thesubgroup of R” generated by [i, . . . , tk:

G = {C  mi[i;  mi integers).
The action of G on Rn is properly discontinuous and R” is the
universal covering manifold of R”/C.  The‘  Eu&dean  ,metric
(dx’)2  + + . - + (dx”) 2 of R” is invariant by G and hence induces a
flat Riemannian metric on R”/G:‘ The manifold an/G  with the
Riemannian metric thus defined will be called a Euclidean cylinder.
It is called a Euclidean torus if tr,  . . . , 6, form a basis of R”,  i e

* *,k = n.  Every connected abelian  Lie group with an invariant
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&mannian  metric is a Euclidean cylinder, and if it is, mo$over,
compact, then. it is a Euclidean torus. In fact, the umversal
covering group of such a Lie group is isomorphic with a vector. . .
group R” and its invariant Riemannian metric  1s given  by
(aY)2  + * - * + (dx”)2  by a proper choice of basis in R”. Our. .
assertion is now clear.

The following example shows that a torus can admit a flat affine
connection which is not Riemannian. This  was taken from
Kuiper [l].

Example 4.2. The set G of transformations

(x,y)-+(x+ny+m,y+n),
n,m  = 0, Al, f2,  . . . ,

of R2  with coordinate sytem (x,y)  forms a discrete subgroup of
the group pf affine transformations; it acts properly d.rscontm-
uously oq R2  and the quotient space R2/G is diffeomorphlc  with a
;orus.  The flat affine connection of R2  induces a flat affine con-
nection on R2/G. This flat affine connection of R:/G  1s not
Riemannian. In fact, if it is Riemannian, the induced Rlemanman
metric on the universal covering space R2 must be of the form:
a dx  dx + 26 dx dy + c dy dy, where a, b and c are copstants,
since the metric must be parallel. On the other hand, G 1s not a
group of isometries of R2  with respect to this metric, thus prov-
ing our assertion. 3

Let M be locally affine and choose a linear frame u0 f L(M) t
A(M) . Let M* be the holonomy bundle through u,, of the flat affine
connection and M’ the holonomy bundle through u0 of:  the car-
responding flat linear connection. Then M* (resp. M’) 1s .a prm-
cipal fibre bundle over M whose structure group is the affine
holonomy group (D(uO) (resp. the linear holonomy group Y (a,,)).
Since @(u,,)  and Y(u,)  are discrete, both M* and M’ are covering
manifolds of M. The homomorphism /?: 11(M)  -L(Alt)  defined
in $3 of Chapter III maps M*. 0nto.M  (cf. Proposrtlon  3.5 of
Chapter III). Hence M * is a covering manifold of hf’.

THEOREM 4:2. Let hf be a manifold with a complete, Jat &ine

connection. Let u,,  E L(hl) c A(M).. Let hf*  be the holonomy bundle
through u0  of theflat ajine connection and -11’ the holonomy bundle through
u. of the corresponding Jlat  linear connection. Then
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(1) M*  is the univer Cal  covering space of M and, with respect to the
JEat  afine connection induced on M*,
aJne  space A”.

it is isomorphic to the ordinary

(2) With respect to the flat  afine connection induced on M’, M’  is n
Euclidean glinder,  and the first homotopy group of M’ is isomorphic to
the kernel of the homomorphism @(uO)  -+ Y’(uJ.

(3) If M” is a Euclidean cylinder and is a covering space of M, then it
is a couering  space of M’.

(4) M’ is a Euclidean torus if  and only ;f M is a compact Jat  Rieman-
nian manifold.

Proof. Let

da”  = -Zj  0; ,j ,‘jj, &,,;  = -& w;  A &, i,j = 1 , . . . , n,

be the structure equations on L(M’)  of the flat affine connection
of M’. Let N be the kernel of the homomorphism @(us)  -+ Y(u,).
Since M’ = M*IN,  the affine holonomy group of the fl& affine

‘connection on M’ is naturally isomorphic with N (cf. Proposition
9.3 of Chapter II).  The group N consists of pure translations only
and the linear holonomy group of M’ is trivial. Let CT: M’ -+
L(M’) be a globally defined parallel field of linear frames. Set

@ =b*fji,  6; = a*w!
3’ i,j= I , . . . ,  n . ’

Since g is horizontal, that is, a(M’)  is horizontal, we have G$ = 0.
The structure equations imply that dei ~‘0.  We assert that, for
an arbitrarily chosen point o of M’, there exists a unique abelian
group structure on M’ such that the point o is the identity
element and that the forms e’ are invariant. Our assertion follows
from the following three facts:

(a) O’, . . . , 6%  form a basis for the space of covectors at every
point of M’;

(b) d@  = 0 for i F 1,. . . , n;
.(c)  Let X be a vector .field on M’. such that p(X)  = c’ (ci:

constant) for i = 1, . . . , n. Then X is complete in the sense that
it generates a l-parameter group of global transformations of M’.

The completeness of the connection implies (c) as follows. Let
X* be the horizontal vector field on L(M)  defined by V(X*) =
ci,i=  I , . . . , n. Under the diffeomorphism CT: M’ + a(M’), X
corresponds to X*. Since X* is complete (cf. Proposition 6.5 of
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Chapter III), so is X. Note that (b) implies that the group is
abelian.

It *clear  that t?fil + * * * + 8”&’  is an invariant Riemannian
metric on the abelian  Lie group M’. As we have seen in Example
4.1, M’ is a Euclidean cylinder.

1 LET&A  1. Let R”/G,  G = (l$=i nili;  m, integers}, be a Euclidean
cylinder as dejned  in Example 4.1. Then the, @ne  holonomy group of
R”/G  is a group of translations isomorphic with G.

Proof of Lemma 1. We identify the tangent space T,(R”)  at
each point a E  R” with R* by the following correspondence:

TJR”)  ia C;==, P(i3[W),t,  (P,  . . . , P) E R”.

The linear parallel displacement from 0 6 R”  to a c R”  sends
(11,  . . . , A”) c To(R:)  into the vector with the same components
(Al, . i. ) An) . Z  T,(R”).  The affine parallel displacement from 0 to
a = (a’, . . . ) an) sends (Al, . . . , A”), considered as ah element of
the tangent affine space A,(R”),  into (A1 + a’, . . . , ;I” + an)  E
A,(R”).  Let 7 * =x:,0  G t (,  l,bealinefromOtoYZ~~,mi~icC
and let T = x,,  0 5 t 5 1, be the image of 7* by the projection
R” - R”/G.  Then 7 is a closed curve in Rn/G.  Let

\
Cf=, miEi  = (a!, . . . , an) E R”.

Then the afline  parallel displacement along T yields the translation

I ‘

(A’, . . . , An) -+ (A1 + al, . . . , In +.a%):

This completes the proof of Lemma 1.

Being a covering space of M’, M * is also a Euclidean cylinder.
By Proposition 9.3 of Chapter II, the affine holonomy group of
M* is trivial. By Lemma 1 ,,M* must be the ordinary affine space
A”, proving (1).

Since M’ = M*/N,  the first homotopy group of M’ is iso-
morphic with N. This completes the proof of (2).

Let M” be a covering space of Al. Since h/i* is the universal
covering space of M, we can write M” = M*/H,  w,here  H is a
subgroup of @(t(,,).  The affine holonomy group of M” is H by
Proposition 9.3 of Chapter II. If M” is a Euclidean cylinder, the
affine holonomy group H consists of translations only (cf. Lemma 1)
and hence is contained in the kernel N of the homomorphism
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a(~,-,)  -4 ‘l’(~~,).  Since &i’ = .zI*/N, we  may conclude that M” is a
covering space of M’, thus proving (3).

Suppose ,M’ is a Euclidean torus. It follows that M is compact
and the linear holonomy group @(u,,)  of hl  is a finite group. This
implies that the flat affrne  connection of Al is Riemannian. In
fact, we choose an inner product in TJM),  xc,  = n(+J,  invariant
by the linear holonomy group with reference point x0,  and then we
extend it to a Riemannian metric by parallel displacement. The
flat affine connection of M is the Riemannian connection with
respect to the Riemannian metric thus constructed.

Conversely, suppose M is a compact, connected, flat Rieman-
nian manifold. By virtue of (1))  identifying 31*  with R’“ , we may
write M = R”/G,  where G is a discrete subgroup of the group of
Euclidean motions acting on R”. Let N be. the subgroup of G
consisting of pure translations. In view of (2) and (3) our problem
is to prove that R”/N  is a Euclidean torus. We first prove several
lemmas.

LEMMA  2. Let L4 and B be unitary,  matrices of degree n such that A
commutes with ABA-‘B-l.  If the characteristic roots of B have positive
real parts, then A commutes with B.

Proof of Lemma 2. Since AABA-‘B-2’  = ABA-IB-lA,  we
have ABA-‘B-1  = Bd-‘B-‘A.  Without loss of generality, we may
assume that B is diagonal with diagonal elements b, = cos ,!lk  +
J-1 sin flk,  k = 1, . . . , n. Since A-’ = “A  and B-l  = tB  = i?,
we have

ABt/@  zzz ABA-1B-1 = Brl-‘B-‘/l  = BtJ&j.

Comparing the (i,i)-th entries, we have

S;i;j”=l  ujbj?$hi  = Cyz,  b,@+z{, where A = (a;).

Comparing the imaginary parts, we obtain

I;j”=l  (laj2  + kq12) * sin (pi - pi) = 0 for i = 1, . . . , n.

Wemayalsoassumethat~,=@2=-*~=&,l<&1+r=***=
pp,tPa  -=c***  5 /&.<p1  +n. Since all the bk)s  have positive

real parts, we have-

sin (Bj  - pi) >  0 for i 5 p1  and j > pr.
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Hence we must have
a” = a’ = (I3 2 for i 5 pr and j > pl.

Similarly, we have
0;  = ai = 0 f0r.i  5 PI +pz and  j > p1  + p2.

Continuing this argument we have

‘5 A  =

Al 0

A2

.
.

0 .

B, = bJ,, B, = bp,&.. . . ,

215

where A,, A,, . . . are unitary matrices of degree pl, p2, . . . ,,  and
I,,  12, - *  * are the identity matrices of degree p1,p2, . . . . This
shows clearly that A and B commute.

For any matrix A = (a;) of type (1;‘ Y)  we set

q/ vim  = (&j j@)~.

In other words, y(A)  is the length of A when A is considered as a
vector with rs  components. We have ,1

q(A +B) I y(A) +@),  .’

dAB) 5 d4 : d4.
The latter follows from the inequality of :Schwarz.  If A is an
orthogonal matrix, we have

I .*  q(AB).  =  v(B);  v(CA) =  q(C).

ELery  Euclidean motion of R” is given by
. .,

,x-+Ax -k-p, X<Rn,

where A is.an’oithogonal  matrix (called the rotation part of the
motion) and p is an element of R” (called the translation part of
the motion). This motion will be denoted by (A, p).

LEMMA  3. Given any two-  Euclidean motions (A, p) and (B, q), set

(A,,  Pd = (4 P) (By  q) (A, P)-‘(B,  q)+
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Let I be the identity matrix of degree n. If p(A - I) < a and
q(B - I) < b, then we haue

(1) ~(‘4~  - I) < ‘Jab;
(23 dp,)  < b - p;(P)  + a * dd.
Proof of Lemma 3. We have

A, - Z = ABA-‘B-1 - Z =,  (AB - BA)d-‘B-l
= ((A - Z)(B - I) - (B - I) (A - I))A-‘B-l.

Since A-‘B-l  is an orthogonal matrix, we have

Q~(A,  - I) I_ ?(A’-  I) . q(B -I) + q(B - I) * p(A - f)  < 2ab.

By a simple calculation, we obtain
p1  = A(Z - B)A-‘Jo  + AB(Z - A-l)B-lq. .

By the same reasoning as above, we obtain

@(PA I q(Z  - B) - F(P)  + dZ - “4  * cp(d  .< by@)  + add-
LEMMA 4. With the same notation as in Lemma 3, set

(A,,p,) = (A,~)(A,&-l)(A,~)-‘(A,_,,~,-l~-~?-~  %3,  . . . .
Then, for k = 1, 2, 3, . . . , we have

(lj-q(A,  - I) < 2kakb;
(2) q(pA < V - l)a’-‘b  - q,(P)  + ak - i(q).
Proof of Lemma 4. A simple inductron  using, Lemma 3

establishes the inequalities.

LEMMA 5. Let G be a discrete subgroup of the group of Euclidean
motions oJR”.  Let a < 4 and

G(a) = ((A,p)  l G; v(A - I) < a).

Then any two elements (A,p)  and (B, q) of G(a) commute.
Proof of Lemma 5. By Lemma .4, v(Ak - I) and q(pk)

approach zero as k tends to infinity. Since G is discrete m A(n, R),
there exists an integer k such that Al, = Zandp, = 0. We show that
the characteristic roots al, . . . , a,, of an orthogonal matrix A with
q(A  - I) < + have positive real parts. If U .is a unitary matrix
such that I/AU-l is diagonal, then

&I - I) = c@(A  - Z)U-‘)  = &VAU-’ - I)
= (Ia1  - II2  + * * * + la,  - 1 12)*  < 4,

V. CURVATURE AND SPACE FORMS
2 1 7

which  proves our assertion. By applying Lemma 2 to 4. =
AA,-,A-‘8 k-l,  we see that 11 k-l = I.  Continuing this argum&t,
we obtain Al = I.  Thus -4 and B commute.
Hence,

PI = (1 - 4P  - (1 - A)q,  fi2  = (.‘I  - Q,,
p, = (A -- I)),  = (A - I)?pl,
. . .

p, = (A - I)P~-~  = (A - I)“-yl.

Since pk = 0, we have
(A - I)“-‘p, = 0.

Changing the roles of (.4,  p) and {B,  q) and noting that

we obtain
(4 q)(A, P)V4  d-YA,p)-l  = (I,+,),

(B - Z)‘“-IPi  = 0 . for some integer m.
Since 4 and B commute, there exists a unitary matrix IJsuch that
UA  U-l  and UBU  -1 are both diagonal. Set ’

up= .ii .

rn
Then,  from  (A  - I)“-lp,  =  ( A  - z)y(Z  - ~)p - (1 _ A)~) =
0, we obtain

(ai  - l)k-l{(l  - bi)ri - (1 - n,)s,;  z 0:

Similarly, from
i==l,...,R 3

(B - I)“‘-‘PI  = (B - Z)rN-l((Z  - B)p  - (1 _ /j)q)  = 0,
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we obtain

(bi  - I)“-‘((1  -bJr*  -(l  -a,).$}=O,  a  =  l,...,n.

Hence we have

(1 - b,)r,  - (1 - a&,  = 0, i = 1,. ; . ) n.

In other words, we have

p1 = (I - B)p - (I - A)q = 0,

which completes the proof of Lemma 5.
IW>f)  eG( a ) and  (4 q)  E  G,  then  P,  q)  (A,  P)  (B,  q)-�  l G(a).

Indeed,
fy(BAB-1  - I) = y(BfA  - I)B-1) = fp(A  - I) < a.

This shows that the group generated by G(a) is an invariant sub-
group of G. By Lemma 5, it is moreover abelian  if a < 8.

A subset V of R” is called zi Euclidean subspuce  if there exist an ”

element x0  E  R”  and a vector subspace  S of R” such that V =
{X  + x,; x E  S}. We say that a group G of Euclideatrmotions  of R”
is irreducible if R” is the only Euclidean subspace  invariant by G.

L E M M A  6 .  I f  H is an abelian  normal subgroup of an irreducible
group G of Euclidean motions of R”, then H contains pure translations only.

Proof of Lemma 6. Since H is abelian,  we may assume, by
applying an orthogonal change of basis of R” if necessary, that the
elements (A, p) of H are simultaneously reduced to the following1
form :

A =

A, 0
.

.

4
‘0 L-21

,  P =

b

where I,,--2k  is th:: identity matrix of degree ‘n - Zk,  each pi is a
vector with 2 components and p * is a vector with n - 2k com-
ponents. Moreover, for each i, there exists an element (A, p) of’H
such that Ai is different from the identity matrix I,  so that
Ai - I,  is non-singular. I
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Our task is now to prove that k = 0, i.e., A = I,, for all (A, p) E
H. Assuming k 2 1, we shall derive a contradiction.

For each i, choose (A, p) Q H such that Ai - I,  is non-singular
and define a vector li with 2 components by

We shall show that
(A, - I& = pi.

(Bf - 12)ti  = qi for all (B, q)  l H.

Since  (A,p)  and (B, q) commute, we have

or
AiOi + Pi = BiPd + Qi

Hence we have
(Ai - IJqi  = (Bi - I,)pi.

(B,  - Is>‘*  = (B,  - Ia)(A,  - Is)-‘pi  = (Ai - -Iz)-‘(Bi  - Is)pi

= (Ai - &)-l(A, - Ii)q, = qi,

thus proving our assertion. We define a vector t E  ‘Rn  by
L

We have now

(4, t>  (4  P)  (4,  t1-I.  = (A,,  t)  (A, P)  (In, -t)

where
k (A, & - (A. - In)t),

(4 P) c H,

Pl PI>I >I’ . ”

iif

.

(A-l”)t= ,:. - :

Pk’ Pk

P+ 0)
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By translating the origin of R” to t, we may now assume that the
clemcnts (A, p) of H are of the form

A =

Al 0
.

,I*
0
.

. ‘i i,,P= : *
Ak 0

0 La* ‘P*
Let V be the vector subspace*of  R” consisting of all vectors

whose first 26 components are zero. Then V is invariant by all
elements (A, p) of H. We shall show that V is also invariant by G.
First we observe that I/’  is precisely the set of all vectors which are
left fixed by all A where (A, p) E H. Let (C, r)  E  G. Sinp  H is a
normal subgroup of G, for each (A, p) c If, there exists an element
(B, q)  E  H such that j

(A, P)  G 4 = CC,  W, d-
If v l V, then ACv  = CBv  = CU. Since Cv is left fixed by all A, it
lies in V. Hence C is of the form

/C’  0 \
.c =.

\ 10 C”
where c’ and C” are of degree 2k and R - 2k,  respectively. To
prove that the first 2k components of r are zero, write

Z= .

For each,&  let (A, p) be an element of fl such that Ai - I, is non-
singular. Applying the equality (A, p) (C, Y) = (C, t) (B, q)  to the
zero vector of Rfi and comparing the (2i - I)-th  and Pi-th compo-
nents of the both sides, we.  have

A,tj = yi.
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Since (Ai  - It)  is non-singular, we obtain yi  = 0. Thus ,every
element (C, T)  of G is of the form

C’O  ‘.
C = o c”,  r=( 1

This shows that V is invariant by G, thus contradicting the irre-
ducibility of G. This completes the proof of Lemma 6. ’

L&WA  7. A group G .of J&+&an  m@ons  of R*  is irreducible if
R%/G,  is compact. .T j

Proof of Lemma 7. Assuming that G is not irreducible, let *V
be a proper Euclidean subspace  of R” which is invariant by G.
Let x,,  be any point of V and let L be a line through x0  perpendic-
ular to V. Let xl,  xa, . . . , x,,  . . . be a sequence of points on L
such that ,the distance between x,,  and X~  is equal to m. Let G(xO)
denote the orbit  of G through x,,.  Since G(x,)  is in F’,  the distance
bettieen  G(x,)  and x,  is at least. m and, hence, is equal to m.
Therefore the distance between the im#ges  of x,,  and X, in R”jG a
by the projection R” + R”/G is equ to m. This means that
R”/G  is not compact. f.

We are now in position to compltie  Ic  proof of (4). Let G and
G(a) be as in Lemma 5 and assume jr c +.  Let H be the group
generated by G(a) ; it is an abefian  normal subgroup of G. Assume
that R”/G is compact.  Lemmas 6: and 7 imply that H contains
nothing but pure, translations. On the other. hand, since G is
discrete, G/H is finite by construction of G(a). Hence R”/H  is also
compact and hence is a Euclidean torus. Let N be the subgroup
of G co@sting  of all pure translations of G. Since G(a) contains
N, we -b&e N ;r H. This proves that R”/N  is a Euclidean torus.

Q E D .

Remark. ’ (4) means that the linear holonomy group of a
compact flat Riemannian  manifold M = R”/G is isomorphic to
G/N and hence is finite.

Although u_(2)  and (‘3) are essentially in Auslander-Markus  ”
[ 11, we laihemphasis on affine holonomy groups. (4) was originally ’
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proved  by Bieberbach [ 11. The proof given here was taken from
Frobenius  [I] and Zassenhaus [‘l].,  ,

Esample  4.3. The linear holonomy group of a non-compact flat
Riemannian manifold may not be finite. Indeed,  fix an arbitrary
irrational real number 1.. FOI* each integer m,  we set

cos  Lmn  s i n  Am77

’9(m) = -sin ilm&  cos Amn

0 0

Then we  SC;  G = {(d(mj,p(m)) ; m = 0, &l,  12, . . . }.Jt  is easy I
to see that G is a discrete subgroup of the group of Euclidean
motions of R3 and acts freely  on R3.  The, linear holonomy group
of R3/G is isomorphic to the group {A(m) ; m = 0, f 1, +2,  . . .}.

COROLLARY 4.3. A &n&old  J4 wit+  a&t  a&e connection admit;
a E$jdean  torus 4s  a covering space t$ and on@  ;f h/t is a compact f?aL
Riemannian  m&old.

Proof . Let M” ,be  a Euclidean torus which is .a cover&space
of M...  By (3).  of Theorem  412, M” is a covering space of M’:  Thus,
M’ is a compact, Euclidean cylinder and hence is a Euclideae

. torus. By (3) of Theorem 4.2, M is a compact flat,  memannian  .
manifold. The converse is contained in (4) ofThorem  4-2. QED.

Example 4.4. In Exapple  4.2, set M = Rz/G.‘,Let N be the
subgroup ocG consisting’of trafislatidiis: “ ’

. , , ,
I ^

(x,y)  --+:(x  47  tp,+& rn‘?  O,,jl,  4~2,.  . . .

Then the covering space M’ defined in Theoiem  4.2 is given by
R2/Nin  this.case:*Clearly,  h4’ is Itn ordinary cylinder, that is, the ’
direct product of a circle with a’ line. ’ _.

The determintition  of the P-dimensional complete flak Ridman&,
nian’ manifolds is due to IGlling-[1,2],  Klein [I,,21  and H. :eopf.  ’
[ 11.  We shall present here their results &ith an Endication’of  the
proof.

There are four types of two-dimensional complete flat Rieman-
nian manifolds other than the Euclidean plane.  We give the
fundamental group (the first homotopy group) for each type,
describing its action on the universal covering space R2  in terms of
the Cartesian coordinate system (x,j),

C
\‘. CURVATURE AND SPACE FORMS

(1) Oxdinar_y  r_ldi?lder  (orientablc)
(x,)I)  -+ (x -:- n-1’:,

223

12 = 0, It: 1) &2,  . . . .
(2) Ordinal  torus (orientablr)

(x,  JI) --f (x + ma  + ?7,J’  -” mb)
nz, n = 0, il, $2,. . . ,
n, b: real numbers, b .,;. 0.

(3) ,If “6  ’ b d ‘tl ’ j ‘to US an w1z  z  zn  nl e width or twistedc~~Iin~/er  (non-oricntablcj
(*%JJ)  - (x + n, (-l)y), -

(4) Klein bottle or histed  torus ‘in6-biiiAt:,i,lc’t
(X,  J,) - (X -+  n, (-l)‘;,l  h), ’ ,

n, 111  -=  0, ;‘r  1, &2,  . . ~>
6:  non-zero real number.

Any two-dimensional complete  flat Riemtinnian  manifold .1  is
isometric, up to a constant factor, to one of the above flour  types
gf surfaceS.

The proof goes  roughly as follows. By Theorem 4.2, the
problem reduces to the determination of the discrete groups of
motions acting freely on R”. Let G be such a discrete group. \Ve
first prove that eyery clcmcnt of G \\.hich  prcscrvrs the orientation
of R2  is necessarily a translation. Set z = .x -.-  !)I.
orientation preserving motion of R’  is of the form

Then every

where E  is a complex number of absolute value  1 and w is a
complex number. If ~.k  itcrate  the transformation z -+ EZ -A-.  w r
times, then we obtain the transformation .

z --f &‘Z + (&-I + pi?  .c . . . + 1 )w*
/

We see easily that, if E  + 1, then the point x~/(I  - E) is left fixed
by the transformation z + FZ  - xl,  in contrcldiction  to the
assumption that G acts freely on R2.  Hcncc  F = 1, \\-hich  proves
our assertion. Iffis  an element of G lvhich rc\Tcrscs  the orientation
of R2,  then J”  ‘is an orientation preser\.ing transformation and
hence is a translation; We thus proved that &.cry  clement of G is a
transformation of the type
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24zfw  o r  z+Z+w,  .

. where z is the complex conjugate of z.
It is now easy to conclude

that M must be one of the above four types of surfaces. The
detail is left to the reader.

CHAPTER VI

1. A@ne  mctppings  and afine transfomations

Let M and M’ be &iifoIds  provided with linear connections
I’ and I” respectively. Throughout this section, we  denote  by’
P(M,  G) and P’(M’, G’) the bundles of linear frames’L(.lf)  and
L(n4’) of M and M’, respectively, so that G -=  GL(n;  R) and
G’  = GL(n’;  R), where n = dim hl  and n’ - dim M’.

A differentiable mapping J:  Al - My of class C*  induces a
continuous mapping f: T(M) -+ T( M’), where T(M)  and T(n4’)
are the tangent bundles of M and M’, respectively. We call
f:  M - M’ an afine happing if the induced mapping f: T(M) -+

T(n4’)  maps every horizontal curve into a horizontal curve,
that is, iff maps each parallel vector field along each curve 7 of M
into a parallel vector field along the curve f (7).

PROPOSITION 1.1. An ajne  mapping f f 121  --+  M’ maps evel;y
geodesic of M into a geodesic of M’ (together with its a&e parameter).
Consequent&,  f commutes with the exponential mappings, that is,

fo exp X = exp of (A?), X c  T , ( M ) .

Proof. This is obvious from the definition of an affine mapping.
QED.

Proposition 1.1 implies that an affine mapping is necessarily of
class C” provided that the connections r and F’  are of class C”.

We recall that a vector field X of M is f-related to a vector field X’
of M’ iff(X,)  = A’&,  for all x c M (cf. $1 of Chapter I).

PROPOSITION 1.2.  ,&t/z  M - M’  be an a@ne  mapping. Let X, Y
and Z be vectorjelds on M which are f-related to vectorjelds  X’, Y’ and
‘2’  on M’,  respectively. Then

225
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(1) V,Y isf-related to V,, y’, where V denotes covariant diferentia-

tioi  both in M and M’;
(2) T(X,  Y) is f-related to T’(X’,  T),  where T and T’ are the

torsion tensor fields of M and M’,  respectzvely;
(3) R(X,  Y)Z isf-related  to R’(X’,  Y’)Z’,  where R and R’ are the

curvature tensorjelds  of M and M’, respectively.
Proof . (1) Let xt  be an integral curve of X such that x = x0  and

let 7; be the parallel displacement along this curve from xt to
x = x0. Then (cf. $1, of Chapter III)

(V,Y),  = ynf (TkY,‘  - Y,).

Set xj  = f(x,) and let 7:” be the parallel displacement along this
image curve from xi. to x’ = x0.’ Since f commutes with parallel

displacement, we have

(2) and (3) f 11o ow from (1) and Theorem 5.1 of Chapter III.
QED...

A. diffeomorphism f of M onto itself is called an  afine trunsforma-
tion of M if it is an affine mapping. Any transformation f of M
induces in a natural manner an automorphism f-of  the bundle
P(M,  G) ; f maps a frame u = (Xi,  . . . ; ‘X,,)  at’ x E-Y into the
frame j(u)  = (fX1,  . . . , fX,)  at f(x) l M. Since f 1s an auto-
morphism of the bundle P, it leaves every fundamental vector

field of P invariant.

P R O POSI T I O N  1;3. (1) For every transformation f of M, the induced_ _

automorphism f-of  the bundle P of linear frames leaves the canonicaljorm
0 invariant. Conversely, every jibre-preserving transformation of P leaving
0 invariant is indticed  by a transformation of M.

(2) Iff is an afine transfokation  of M, then the induced automorphism

f-of P leaves both the canonical form 0 and the connection form co invariant.
Concersell!  eve7yJibre-preserving  transformation of P leaving both 8 and (0
inzariani ;s induced by an a#ne transformation of ni.
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Proof. (1) Let X* E T,(P) andsetX=rr(X*)  sothatX~  T,(M),
where x = n(u). Then (cf. 92  of Chapter III)

e(x*)  = u-l(x) and O(fk*)  = f”(u)-l(fX),
where the frames i andf”( u are considered as linear mappings of)
R” onto T,(M)  and T,,,,(M), respectively. It follows from the
definition offthat,  the following diagram is commutative:

I

fiu)

TdW  -j+ Tf(*)  (Ml  *

Hence, u-‘(X)  - flu)-l(  fX), thu s proving that 8 is invariant byf:
Conversely, let F be a fibre-preserving transformation of P

leaving 8 invariant. Let f be the transfor’mation of the base M
induced by F. We prove that f”=  F. We set. J = fzl  0 F. Then J
is a fibre-preserving transformation of P leaving 8 invariant.
Moreover, Jinduces  the identity transformation on the base M.
Therefore, we have I .-

U-‘(X)  = 0(X*)  = e(JX*)  = J(u)-‘(X) for X* Q T,,(P).
This implies that J(u) = U, that isif”  = F(u).

(2) Let f be an affine transformation of M. The automorphism
fof  P maps the connection I’ into a connection, say,f”(I’),  and the
form f**o  is the connection form of fir)  (cf. Proposition 6.1 of
Chapter II). From the definition of an affine transformation, we
see that f-maps, for each u d P, the horizontal subspace  of T,(P)
onto the horizontal subspace of TzU,(P).  This means thatf(I’)  =’
I’ and hence f-*co  = w.

Conversely, let F be a fibre-preserving transformation of P
leaving 8 and w invariant. By (l),  there exists. a transformation f
of M such: that F = fy  Since f-maps  every horizontal curve of P
into a :horizontal  curve of P, the transformation f: T(M) +
T(M) maps every horizontal curve of T(M) into a horizontal
curve of T(M).,lYhis  means thatf:  M -+ M is an affine mapping
thus completing the proof. QED:

Remark. Assume that M is orientable. Then the bundle P’
consists of two principal fibre bundles, say P+(M, Go)  and
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P-(M, GO),  where Go is the connected component of the identity
of G = GL(n; R). Then  any transformation F of Pf  or P-
leaving 0 invariant is fibre-preserving and hence is induced by a
transformation f of the basegYM.  In fact, every vertical vector X*
of P+  or P- is mapped into a vertical vector by F since O(FX*)  =
0(X*)  = 0. Any curve in any fibre of Pf  ot P- is therefore
mapped into a curve.in  a fibre by F. Sin&  the fibres of Pf  or P-
are connected, F is. fibre-preserving.

PROPOSITION 1.4. Let r be a linear connection on M. For a trans-
formation f of M,. the following conditions are mutually equivalent:

(1) f is an a$ne transformation of M;
(2) f**w  = o, where w is the connection form of I’ and f-is the trans-

formation of P induced by f;
(3) f-leaves every standard horizontal vectorjeid  B(E) invariant;
(4) f(V,Z) = U,,.(fZ)  for any vectorjelds  Y and Z on M.
Proof. (i) The equivalence of (1) and (2) is contained in

Proposition 1.3.
(ii) (2) -+ (3). By Proposition 1.3, we have

5 = 8(B@))  = (pep(t))  = e(j-‘B(t)).

*Since o(B(t))  = 0, (2) implies

0  =  c@(E))  = (fl*o)(B([))  =  w.@.‘-B(5)).

This means thatF1.  R(E) = B(E).
(iii) (3) -+ (2). The horizontal subspace  at u is given by the set

of B(t),.  Hence (3) implies that f-maps every horizontal subspace
intd a horizontal subspace. This means thatf(I’)  = I’ and hence
j*,, = 0.

(iv) (1) * (4). -This  follows from Proposition 1.2.
(v) (4) -+ (1). Let Z be a parallel vector ‘field along a curve

7 = x,.  Let Y be the vector field along r tangent to 7, that is,
Y = it.  We extend Yand  Z to vector fields defined on M, which
w%  be denoted by the same letters Y and Z respectively. (4)
implies that fZ is parallel along f (7).  This means thatf  is an,;:;
transformation.

The set of affk  transformations of M, denoted by 9t(M)  or
‘u(  I’), forms a group. The set of all fibre-preserving transformations

VI. TRANSFORMATIONS 229

of P leaving 0 and (~1  invariant, denoted by 91(P),  forms a group
which is canonically isomorphic with ?I(M).  We prove that
B(M)  is a Lie group by establishing that VI(P)  is a Lie group with
respect. to the compact-open topology in P.

THEOREM 1.5. Let r be a linear connection ori  a manifold M with a
jinite number of connected components. Then the group !ll(  A-l) of ajine
tranfforniations  of M is a Lie transformation group with respect to the
compact-open top0100  in P.

Proof. Let 8 = (ei) and rrj  = (u{)  be the canonical form and
the connectioq  form on P. We set

g(X*, Y*) = ISi  eyx*)ei(,y*)  + Cj,, wj(X*)w~(Y*),

“‘:J?,  Y* d T”(P).

Since the n* + g l-forms 8’,  <!J!,  i, j, k = 1, s . .‘,  A, form a’basis  of
the space of covectors at every point u of P -(cf. Proposition 2.6 of
Chapter III), g is a,Riemannian  metric on P which is invariant
by ‘u(P)  by Proposition 1.3. The group of isometries of P is a Lie
transformation group of P with respect to the campact-open
topology by Theorem 4.6 and Corollary 4.9 of Chapter I
(cf., also Theorem, 3.10 of Chapter IV). Since 41(P) is cleariy  a
closed subgroup of the group of isometries of P, a(P)  is also a Lie
transkmation  group of P. QED.

. .
2 .  Injnitesimnl  ct@ne  transformtithns

Throughout this section, .P(#,  b’denotes  the bundle of &car
..fkamcs  over a m$fold  J1,  so. that C z GL(n;  R), where ? =
d i m  .kl. .~

Eycry transformation Q of,:M induces a transformation of p in
ii n,t+j  @anner. C?;respondin$y,  every vector field X on M
induces a vector field  X on Pin, a natural manner. More precisely,
we prove i , .-.:

1

PROPOSIT&:$  1 For each vectc  r jiekd  A’ on .1f,  there exists a
unique vector Jield ‘;? & AP  .ph that

(1) Ar  is invariant by ‘R,  for ecep  a c G;
(2) L,?O = 0; .
(3) x’  is n-related to X, that is, ~(~r”)  = .I&,,  for every u t P.
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Conversely, given a vectorjeld X on P satisfying (1) and (2), there exists
a unique vectorjeld X on M satisfying (3).

We shall call 8 the natural lift  of X.
Proof. Given a vector field X on M and a point x E  M, let “qt

be a local l-parameter group of local transformations generated
by X in a neighborhood U of x. For each t, vt induces a trans-
formation $t of n-l(U)  onto r-‘(v,(U))  in a natural. manner.
Thus we obtain a local l-parameter group of local transformations
&: 71 -l(U) -+ P and hence the induced vector field on P, which
will be denoted by X.  Since gt commutes with R, for every a E  G,
X satisfies (1) (cf. Corollary 1.8 of Chapter 1). Since $t preserves
the form 8, X satisfies (2). Finally, 7~  0 qt = ~J?J~  0 7~  implies (3).

To prove the uniqueness of X, let Xi be another vector field on
P satisfying (l),  (2) and (3). Let qt be a_  local l-parameter group
of local transformations generated by Xi.  Then qt commutes with
every R,, a f G, and preserves the canonical form 8.  By (1) of
Proposition 1.3, it follows that $7t  is induced by a local l-parameter
group of local transformations yt of M. Because of (3),  yt induces

the vector field X on M. Thus vYt =‘T~  and hence qt = gt, which
implies that X = 8,.

Conversely, let X be a vector field on P satisfying (1) and (2).
For each x E  M, choose a point u e Psuch  that n(u)  = x. We’tlien
set X,  = 7r(XJ. S ince X satisfies (l),  X, is independent of the
choice of u and thus we obtain a vector field X which satisfies (3).

. The uniqueness of X is evident;. : <. (. :. QED.

Let F be a linear connection on M. A vector field X on M is
called an intnitesimal a#&  trans$ormation  of M if, for each x c M, a
local 1Lparameter  group of local transformations pt of a neighbor-
hood U of x into M preserves the connection I’, more precisely, if
each q??t:  U ‘+ M is an affine mapping, where U is provided with

the affine connection I’ 1 U which is the restriciion’of I’ to ti.

PROPOSITION  2.2. Let r be a’ linear connection on Ak.  Par a vector
field X on M, the following conditions are mutually equivalent:

(1) X is an injnitesimal a$ne transformation of @;:-
(2) Lgcc,  = 0, where cr)  is the connection form of r’  and X is the

natural lift of X; :

(3) [X, B(l)]  = 0 for  evev  l 6  R”,  ihere  B(6) is the stan$rd
horizontal vectorjeld corresponding to [;
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(4) Lx o v,  - v,  0 L, = Vt~r,rl  for every vector jeld  Y on M.
Proof . Let vt be a local l-parameter group of locai transforma-

tions of M generated by X and let, for each‘t, qt be a local trans-
formation of P induced by pt.

(i) (1) + (2). By Proposition 1.4, $j6 preserves o. Hence we
have (2).

(ii) (2) + (3). For every vector field X,  we have (Proposition
2.1)

0 = Jiwm  = kww)  + w-X  m)~)  = e(cZ  wm,
which means that [X, B(E)] is vertical. If Lgo  = 0, then

0 = &J@(E)))  = (Lpwv)~ + 4Lc W)I) = 4cx mm
,which  means that [X, B(t)] is horizontal..Hence,  [X,  B(5)] = 0.

(iii) (3) -+ (1). If [X,  B(E)]  = 0, then gt leaves B(5) invariant
and thus maps the horizontal subspace  at u into. the horizontal
subspace  at h(y),  whenever $5$(u)  is defined. Therefore PI preserves
the connection, F and X is an infinitesimal affine transformation
of M.. .1,,  _. 1 ‘>.
{ (iv) (1) -+ (4). By Proposition .1.4;  we have I

dVYZ) = V,*YhZ)~ for any vector fields ‘Y and 2 on ‘M.

From the definition of*Lie-differentiation  given in $3  of Chapter I,
we obtain 4

I

L, 0  V,Z  = ‘,;y  f [V,Z  - cpi(VyZ)].

s:We thus verified the formula: - ’
. ’ 2., I ‘.L;  0  $,.K  - V, 0 L,K = ‘V,,,,K, >

‘when K is,a vector field. If K is a function, the above formula is
evidently,.true.  By the lemma.for  Proposition 3.3.of  Chapter ,I,  the
formula holds’for any tensor field K.

(v) (4) -+Xl).::We  fix a point x E  M. We set

. V(t)  =i(&(v,z)), and  Wt)  = (v,&twv
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For each t, both V(t) and W(t) are elements of T,(M).  In.view  of
s Pr.opo&@n  1.4, it is sufficient to prove that V(t)  = W(t).  As in

(iv), we obtain

w)/dt  = %((Lx  o V&q’F;‘,z,),

dW/dt  = v4(V[.l-,Y]Z  i- v,  o LJQ,*,).

From our assumption we obtain N(t)/&  = dW(t)/dt. On the other
hand, we have evidently V(0) = W(0). Hence, V(t) = W(t).

QED.
Let a(M) be the set of infinitesimal affine transformations of

M. Then a(M) farms a subalgebra of the Lie algebra X(M) of
all vector fields on M. In fact, the correspondence X --+ x defined
in Proposition 2.1 is an isomorphism of the Lie algebra X(M) of
vector fields on M into the Lie algebra X(P) of vector fields on P.
Let a(P) be the set ofvector  fields X on P satisfying (1) and (2) of
Proposition 2.1 and also (2) of Proposition 2.2. Since L,,  s,l  =
L, 0 L,.  - L,,  0 L, (cf. Proposition 3.4 of Chapter If,’  a(P)
forms a subalgebra of the Lie algebra X(P). It follows that a(M)
is a subalgebra of X(M) isomorphic with a(P) under
spondence X --+ 8 defined in PFoposition 2.1. d

the corre-

THEOREM  2.3. If M is Q connected manifoold  with an a@ne  connection
I?, the Lie algebra a(M) f ’ ji ‘t0 tn nz  esimal  a&e transformations of M  is of
dimension at most n2  + n, where.n  = dim M. If dim a(M) = n2 + n,
then r is jut,  that is, both the t&ion and the curvature of I’ vanish
identicalb,

Proof. To prove the first statement it is sufficient to shoti that
a(P) is of dimension at most n2  + n, since a(Ai)  is isomorphic with
a(P). Let u bc an arbitrary point of P. The following lemma
implies  ttat  the linear ,mapping  f: a(P) --+ T,,(P  ) defined by
f(J)  = d\,,  is injcctive so that dima 2 dim T,(P) = n2 +,A.

I,EMhfA.  If an elemtnt.J?  -of a(P) vanishes at some Point of P, then it
vanishes identically on P.

Proof of Lcmina.
is im.ariant  by R,,

If $,(  = 0, then xun  = 0 for every a E  G as 8
( c f . Proposition 2.1). Let F be the set of points

x = n(u) c M such that .?,,,  = 0. Then F is closed in M. ‘Since M
is connected, it sufices  to show that F is open. Assume xU = 0.
Let b, be a local l-parameter group  of local transformations
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generated by a standard horizontal vector field B( 5) ic f Feighk-
hood of U. Since [x,  B(t)1  = 0 by Proposition 2.2, X 1s mvarlant
by b,  and hence &,  = 0. In the definition of a normal coordinate
system (cf. $8 bf Chapter III), we saw that the points of the form
4bru)  cover a neighborhood of x = T(U)  when 5 and t vary. This
p;o%  that P; is open.

To prove the second statement, we assume that dim a(M) =
dim a(P) = n2 + n.  &et  u be an arbitraw  point of P. Then the
linear mapping J f (3) = X,, maps a(P) onto T,(P).  In partic-
ular, given any element A E 5,’ there exists a -(unique) element
13 E  a(P) such that & = AZ,  where A* denotes the fundamental
vector field corresponding to R. Let B = B(6) and B’ = B(5’)  b;
the sta,ndard horizontal vector fields corresponding to f and  E ,
respectively. Then

X,(O(B,  B’)) = A;(@(&  B’)). ; .,

W e  coinpute both sides of the equality separately. ’ Froin
LX@  j: LsY(&9  + w A 0) = 0 and from (3) of Proposition 2.2,
we obtain

X(O(B, B’)) = (L,O)  (B,  B’)  + O([X,  B], B’) + O(B,  [X,  B’])  = 0.

To compute the right hand side, we first observe that the exterior
differentiation d ahplied  to the first structure equation yields

0 = -i-J/i  O,f  if+3  + do.
Hence we have

L,.O  = (d 0 ld.  + td. 0 d)O

= lA8 o d 0 = L,.(Q A 0 - OJ  A  0)  =  -tu(A*)  * @

and
(LA.O)(B,  B’) = -A . O(B,  B’).

Therefore,

A*(O(B,  B’)) = -A - O(B,  B’) + @([A*,  B], B’) + O(B,  [A*, B’]).

If we take as A the identity matrix of 9 ‘= gl(n;  R), then, by
Proposition 2.3 of Chapter III, we have - . .’

[A*, B]  = B and [A*, H’] = B’.
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Thus we have

0 = X,(O(B,  B’)) = A:(O(B, I?‘))

= -@,(B, 23’)  + O&3, B’) + @,(I?, B’) = O,(B,  I?‘),

showing that the torsion form vanishes.
Similarly, comparing the both sides of the equality: , ,

X,(!qB,  B’)) = A:(R(B;‘B’))

and letting A equal the identity matrix of g
that the curvature form vanishes identically.

= gI(n;  R), we’  see
QED.

We now prove the following result due to Kobayashi [Z].

THEOREM 2.4. Let I7 be a complete linear connection on M. Then
every infinitesimal a&e transformation X of M is complete, that is,
generates a global l-parameter group of a&ne  transformations of M.

Proof. It suffices to show that every element X of a(P) is
complete under the assumption that M is connected. Let u,, be an
arbitrary point of P and let pt: U --f  P, It]  < 6,  be. a local l-
parameter group of local transformations generated by X (cf.
Proposition 1.5 of Chapter I). We shall prove that F,(U)  is defined
for every u z P and It1  < 6. Then it follows that X is complete.

By Proposition 6.5 of Chapter III, every standard horizontal
vector field B(l) is complete since the connection is complete.
Given any point u of P, there exist standard horizontal vector
fields B(t,), . . . , B(tk) and an element a l G such that

u = (bjl  0 bl”,  o - * - 0  b~u,)a,

where each bf is the l-parameter group of transformations of P
generated by B(ti).  In fact, the existence of normal coordinate
neighborhoods (cf. Proposition 8.2 of Chapter III) and the
connectedness of M imply that the point x = T(U) can be joined
to the point x0  = n(us)  by a finite succession of geodesics. By
Proposition 6.3 of Chapter III, every geodesic is the projection
of an integral curve of a certain standard horizontal vector field.
This means that by taking suitable L3(,t,),  . . . , H/l,),  we obtain a
point v = b:, 0 btz  0 * *  * 0 b,“u,  which lies in the same fibre as U. Then
u = vu  for a smtable  a 6 G, thus proving our assertion. We then
define p?,(u) by-
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The fact that qt(u)  is independent of the choice of bi,, . . . , bi,’  a

and that qt is generated by 8 follows from (1) of Proposition 2.1
and (3) of Proposition 2.2; note that (3) of Proposition 2.2
implies that b, 0 g,(u)  = Qt  0 b,(u) whenever they are both def$ecD.

.

In general, every element of the Lie algebra of the group ‘U(M)
of affine transformations of M gives rise to an element of a(M)
which is complete, and conversely. In other words, the Lie
algebra of 2l(M)  can be identified with the subalgebra of a(M)
consisting of complete vector fields. Theorem 2.4 means that if the
connection is complete, then o(M ) can be considered as the Lie
algebra of a(M)  .

For any vector field X on M, the derivation A, = Lx  - Vx is
induced by a tensor, field of .tyPe  (1, 1) because it is zero on the
function algebra S(M)  (cf. the proof of Proposition 3.3 of
Chapter I). This fact.  may be derived alao from the following

PROPOSITION 2.5. For any vectorjelds  X and Y on M, we have

A,Y = -V’,X  - T(X, Y),

where T is the torsion.
Proof . By Theorem 5.1 of Chapter III, we have

AxY  = LxY  - VxY  = [X, Y] - (VrX  + [X, Y] + 7-(X,  Y))
= -V,X,  - T (X, Y).

QED.

We conclude this section by

PROPOSITION 2.6. (1) A vector field X on M is an injnitesimal

a&c  transformation if and or+  if

V,(k,) = R(X, Y) for every vector jeld  Y on M.

(2) If both X and Y are injkitesimal afine transformations of M, then

A [x,y] = [Ad,1 + WX, Y)>

where R derwtes  the curvature.
Proof . (1) By Theorem 5.1 of Chapter III, we have

w,  Y) = Fbf,  bl L VLLYI = [Lx - 40 bl - %w
= CL,, %I  - %LYI  - [Ax>  VY.].

t
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By Proposition 2.2, X is an infinitesimal affine transformation if
and only if H(X, Y) = -[A,, V,]  for every Y, that is, if and
only if ‘,

.R(X, Y)Z  = V,+l,Z)  - A,(V,Z) = (V,(A,))Z

for all Y and Z.
(2) BY Theorem 5.1 of Chapter III and. Proposition 2.2, we

have

CA,,  41 - ‘A [X,Y] = [Lx - v A-,  & - VYI  - &.I-,,.1  - ys.Y])

+ EV,,  VI-l-- L[,,,.,  f V[S,I.]  = R(X,  Y).
QED.

3. Isometrics rend in.ni.tesimnl  isometrics

Let M be a manifold with a Riemanniarr  metric g and the
corresponding Riemannian connection l’. An isometry of ,&!  is a
transformation of M which leaves the metric g invariant. We
know from Proposition 2.5 of Chapter IV that an isomctry of M
is necessarily an affrne  transformation of .dl  with respect  to I’,

Consider the bundle  O(,U)  of orthonormal frames over A1li
which is a subbundle of the bundle L(,11)  of linear frames over
M. We have

PROPOSITION 3.1. (1) A trans  ormation  f of Ai  is an isometr_y  ;ff
and only ;f the induced transfoormatiq  f of L(M) maps O(M) into
itself;

(2) A jbre-preserving  transformation F of O(M) which leaves the
canonical form 8 on 0 (M) invariant is induced by an isometry of M.

Proof. (1) This follows from the fact that a transformation f
of -41 is an isometry if and only if it maps each orthonormal frame
at an arbitrary point x into an orthonormal frame at f(x).

(2) Letf be the transformation of the base M induced by F. We
set J =j-r  0 F. Then J is a fibre-preserving mapping of O(M)
into L (M ) which preserves 0.  Moreover, J induces the identity
transformation on the base M, Therefore we have

u - ‘ ( X )  =  0(X*)  =  e(JX*)  =  J ( u ) - ‘ ( X ) ,

x*  E T”(O(M)), x  = 7(X*).
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This implies that J(u) = u,  that is, j(u)  = F(u). By (l),  f is an
isometry of M. QED.

A vector field X on M is called  an injinitesimal  isometry (or, a
Killing vector field) if the local l-parameter group of local trans-
formations generated by X in a neighborhood of each point of M
consists of local’isometries. An infinitesimal isometry is necessarily
an infinitesimai.afie  transformation.

PROPOSITION 3.2. For a vec@ij&ld  X on a Riemannian manifold M,
the following coiditions  are mutually equivq~ent  :

(1) X is an injnitesimal isometry;
(2) The natural lift  $  of X to L(M) is tangent to O(M) at every

pointpoint ofO(M);
(3)(3) Lxg  = 0, where g is the metric tenswjieM:$:M;US6
(4) 7-h(4) The  tensorjeld  Ax = Ls - V s of tyj%?  .(J, 1) G skew-symmetric

with respect to g everywhere on M, that is, g(A,y;  Z)  = -g(A,Z, Y)
for qrbitrary’pe@orjFel&  Y and Z.

Proof. (i) To prove the equivalence of (1) and (2),  let &and
$$ ‘bc;  +.l.r$1  ‘be the local I-parameter groups of local transformations
generatedgenerated by X.  and X respectively. If X is an infinitesrmal
isometry,isometry, then qt are local isometries and hence Qt  map O(M)
into  itself.into itself. Thus X is tangent to O(M) at kvery,pdint  of O(M).
Conve;1541y,  II -- --Conversely, if 2 is tangent to O(M) ‘at every point of O(M),
the ipte&al  onme  ojthe integral curve of ‘8 through each point of O(M) is contamed
in 01in O(M) and hence each q1 maps O(M) into itself. This’means,
bv Pbv Prooosition 3.1; that each rjl is a local isometxy and hence X
is’an ir&nitesimal  isometry. / r,i  / ,.I?  . ’

(ii) The- equivalence of (I-)  and (3)~follows  from Corollary 3.7
of Chapter I. .

? ‘(iii) Since V,sg  = 0 for any vector field X, Lsg = 0 is equiva-
lent to A,g  = 0. Since Ax is a derivation of the algebra of tensor
fi$+,  ,ye have

A,&)):=  (ksg)(Y,  Z) + g(4.sK  Z) + gv,  AXZ)
for Y,Z E  F(M).

Since A, maps every function into zero, A,(g(Y,  Z)) k 0.
Hence A,g = 0,if and only if g(A,Y,  Z) + g( Y, A,Z)  - 0 for
all Y and Z, thus proving the equivalence of (3) and (4). QED.



I
238 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

The’set of all infinitesimal isometries of M, denoted by i(M)
forms a Lie algebra. In fact, if X and Y are infinitesimal isometrieH
of M, then

L,,,,,g  = i.;p L,g - L, 0 L,g =  0

by Proposition 3.2. By the same proposition, [X,  Y] is an infini-
tesimal isometry of M.

J
.d

THEOREM 3.3. The Lie algebra i(M) of inJinitesima1  isometries
of a connected Riemannian manzfoold  M is of dimension  at most -@(n  + 1))
where  n = dim M. If dim i(M) = &z(n  + l),  then M is a space of
constant curvature.

Proof. To prove the first assertion, it is sufficient to show that,
for any point u of O(M), the linear mapping X -+ 8,‘  maps’:(M)
1 :I into T,(O(M)). By Proposition 3.2, X,  is certainly an
element of T,‘(O(M)).  If X,  = O,.,then  the proof of Theorem.23
shows that X = O.-We  now prove the second assertion.

let
Let X, X’ be an orthonormal basis of a.plane,p  in T,(M)  and

ti  be a point of O(M) such that ‘v(u)  4 x.  We set E = u-l(x), ’
E’ =  U-‘(X’),  B =  B(t)  a n d  B ’  =  B(5’); w h e r e  B ( 5 )  a n d
B(t’)  are the restrictions to O(a)  of the standard horizontal
vector’ fields corresponding to 6 and [‘,  respectively. From the
definition of the curvature transformationgiven in $5 of Chapter
III we see that the, sectional curvature K(j) (cf. 92 of’chapter  V)
is given by

where ( , ) denotes the natural inner product in R”. To prove that
K(g) is independent of p,  let .Y, Y’ be an orthoaormal  basis of
another plane q in T,(M) and set 17  = u-i(Y) and 7’ = U-l(Y’).
Let a be an element of SO(n)+ch  that a.$ = g-and &’ = q’.  By
Proposition 2.2 of ChaptePIII.,  we have

Q(B(v),,, B(r’),)  2 W(aE),,,  B(at’),)  = Q(Rd-~(4,,), R,-;f%J)
= ad (a)jQ(B,,, B&J)  = a * R(B,,,  Bk)  - a-‘.

Hence the sectional curvature K(q) is given by

0) = t Pwb?)  .a?‘)  th’>  ‘7)
= ((a * 2!A(B,,,  BL,).  aA’)a[‘,  al)

= W(B,,,, B:,M’,  8.
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To prove that K,(p)  = K(q), it is sufficient to show that
Q(a,,,  Bh,) = SZ(B,,  Bi). Given any vertical vector X* c
r,(O(A4))  with n(v) = x,  there exists an element X E  i(M) such
that x7,  = X*  if dim i(M) = bn(n +. 1), since the mapping
X-+X,  maps i(M) onto T,(O(M)). We have

x(Q(B,  B’)) = (L,Rj(B,  B’) + h([X,  B], B’) + SZ(B,  [X, B’])  = 0.

This implies that Q(B,,  Bh)  = n(B,:,  Bh,)  for every a e SO(n).
We thus proved ,that K(p) depends only on the point x. We
prove that K(p) does not depend even on x. Given an_y  vector
Y*.‘e  T,(O(M)),  let Y be an element of i(M) such that Yz, = Y*.
We have again P(Q(&  B’)) = 0. Hence, for.fixed  5 and J’,  the
function ((222(B;  B’))k“  5)is’  constant in a’neighborhood  of u.
This means that K(p), considered ‘as a function on M,“is  locally
constant. Since it is continuous and M is connected, it must be
constant on M. (If dim M 2 3, the fact that K(p) is indepe;t;t
of x follows also from Theorem 2.2 of Chapter V.) I’ .

THEOREM 3.4. ’ (l)‘For a Riemannian manifold M  with’ a j&e
number of connected components, the group 3(M) -of isometries of M  is a
Lie transformation group with respect to the compact-open topology rn  M;

(2) The Lie algebra oJf  3(M)“is naturally isomorphic with the Lie

algebra of all complete kfinitesimal kometries;
(3) The isotropy, subgroup 3,(M)  of 3(M) at an arbitrary point x is

corn&act;  ’
(4) If M is com&Jete,  the Lie algebra of g(k)  is naturally isomorphic

with the Lie algebra i(M) of all injnitesima[  isometries of M;
(5) Zf M  is compact, then the.gr@  3(M) {s-compact.
Proof . (1) ‘ks we indicated in, the proof of Theorem 1.5, this

follows from Theorem-4.6 and, C+-?lary  4.9 of Chapter I and
TheoremA  3.10,of Chapter IV:

(9) Every l-parameter subgroup of 3(hl)  induces an inhnitesi-
ma1  %ometry  X which is complete on’ n/r  and, conversely, every.
complete infinitesimal isometry X generates a l-parameter sub-
group of 3(M).

(3) This follows from Corolliry  4.8 of Chapter I. ”
(4) This follows from (2) and Theorem 2.4.
(5) This follows fi-om  Corollary 4.10 of Chapter I. QED.

Clearly, 3(M) is a closed subgroup of %(.$1).  \tTe  shall see that,
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in many instances, the identity component Y(M) of 3(M)
coincides with the identity component %0(M)  of g(M).  We

first prove a result by Hano  [l].

THEOREM 3.5. If M = &I, x M, x * . * x M, is the de Rham
decomposition of a complete, simply connected Riemannian manifoold  M,
then

‘aO(M)  * WyM,)  2 WyM,)  x  * * ’ x  WyM,),

3”(M)  m 3O(M,) x  Y(M,)  x  * - * X’  Y(M,).

Proof. We need the following two lemmas. -7..
LEMMA 1. Let T,(M) = IZtEo  Pi’  be the canonical decomposition:
(1) If Q l A(M), then p( TL’))  = T$$,  andfor  each i, 1 I i s k

9GT)) = T$$,  for some j, 1 $ j 4 k;
- -,

(2) If ‘9 Q /IO(M), then q( Tz’)
Proof of Lemma 1.

=  T&  f o r  every  i ,  0.~  i  s k .

t
Let T be any loop at x and set T’  = 9(~)

7’  is a loop at 9(x). If we denote by the same letter 7 and 71
rallel  displacements along r and r1 respectively, then-,

p 0 7(X)  = 7’ 0 9(X) for X;1~a  T,(M):

It follows easily that p(T$?)  is invariant elementwise  and every
9( TF)), 1 < i I k, is irreducible by the linear hoionomy  group
Y(~(x)).  Hence, 9( ?y,“‘) c T$L, and, their dimensions being the
same, P’(~P) = Tpctj
tion T

(O) . Thus we obtain the canonical ddcomposi-
p(z) = Zfzo  9( Ti))  which should coincide with the canoni-

cal decomposition Tqcz,  = ZfEQ  Z& up to an ‘order by (4) of
Theorem 5.4 of Chapter IV. This meansprecisely the statement
(1). Let 9t be a, l-parameter subg&qof  ?IIO(M)  and let X be a
non-zero element of T$). Let T = c 7 9,tW  Sinceg(90(X),  -V = ’x
g(X,  X) # 0, we have g(9t(X),  $X) # 0 for ItI  < 6 for some
6 > 0, where T:  denotes the parallel displacement from x0
to xt  ‘along 7.  This means that 9,t(  Tg’)  = TgAz,  for ItI  < 8’ for
some positive number 8’; in fact, if Xi,  ‘. . . , X, is a basis for Tcij
then g(9t(Xj),  $X,)  # 0 for 1 s j. $ I and ItI  < 6’ for so&
positive number 6’  and hence 9JXj) E  Tgizj for ItI  < S’,  which’
implies 9,( Tc))  = T:b’&  for ItI < 8’ because of the linearity of
9t. This concludes the proof of the statement (2),  since %O(M)  is
generated by l-parameter subgroups.

Lemma 1 is due to Nomizu [3].
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L E M M A  2 . Let pt  be an arbitray  transformation of Mi  for ever_y  i,
0 rl  i h  k. Let 9:  be the transformation of M = hl,  x 121,  x - * * x

hf,  dejined  by

d-4  = (~o(xo),~-~l(x~),  . .‘.  , Q?&.J) for x 2 (x0,  x1,  . . . , ~1 6  M.

Then

,

(1) p is an a$‘ine  transformation of M-if  and only ;f every yi is an
a$ne transform&ion of Mi.

, The  proof+  ,trivial.. i ,
-The corresponclence.J90, 9i, * * ; ,9J -+ 9 defined in Lemma

2 maps ‘zl(Mo)  x B(M,)  x * * e x Yt( Mk)  isomorphically into
11(M).  To coriiplete  rhe proof of’ Theorem 3.5, it suffices to
show that, for every 9.6 Cue(M),  there exist transformations
pli:  Mi  ,--f Mi, 0 $ i  s k, such that

~(4  = tplo(xo),  9dxl),  . . . , 9&))~ for x = (x0,  xr, . - . ,xk)  e M.

’We prove that, ifpi:  M -+ Mi denotes the naturalprojection, then
$9(x))  depends only on xi = pi(x). Given in:’  Point. y 7

09  *  . *  23-1, xi,Yi+l,  *  *  *  > yk),  let, for each]  = , , . .,.  .,  z - ,

i + l , . . . , k, 7j = xj(t),  0 5 t $ 1, be a curve from xi toy, in
M,sothatx,(O)  =xjandxj(l)  =yj.LetT  =x(t),‘0  5  t  2  l , b e
the curve from x toy in M defined by

x(t)’  = (X,(t),  Xl(t),  * * * 9  Xi-,(t),  Xi,  Xi+l(t),.*  * * 2  Xk(t))>  0  5  t  6  l.

For each t, the tangent vector i(t)  to 7 at x(t) is in the distribution
T’O’  + . . . +  T(i-1)  +  Ttiffb  ‘+ .  . *  + T(“).ByLemma  1, q-ii(t))

lies also in the same distribution. Hence$,(9(x(t)))  is independent
of t (cf. Lemma 2 for Theorem 7.2 of Chapter Hj.  In particular,
$,(9(x))  = p,(9(y)),  thus proving our ,assertion.  We then define a
transformation 9$:  Mi + Mi  by

9*txi)  = pi(9iX))’
Clearly, we have

9(xj  k (~)~(x~),  9i(x;),  . . . ; ~~(4.
QED.

It is therefore important to study (U(M)  when M is irreducible.
The following result is due to Kobayashi  [4].
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THEOREM 3.6 . If M is a complete, irreducible Riemannian man$old,
then aI(M)  = 3(M) except when M is a I-dimensional Euclidean
space.

Proof . A transformation p of a Riemannian manifold is said
to be homothetic if there’is  a positive constant c such that g(v(X),
v(Y))  = c"g(X,  Y) for all X, YE TJM)  and x E  M. Consider the
Riemannian metric g * defined  by g*(K  Y) = ddXL  v,(Y)>.
From the proof (B) of Theorem 2.2 of Chapter III, we see that
the Riemannian connection defined by g* coincides with the one
defined by g. This means that every homothetic transformation of
a Riemannian  manifold M is an affine transformation of M.

LEMMA 1. IfM is an irreducible Riemannian manifld,  then .every
afine transformation cp of M is homothetic.

Proof of Lemma 1. Since cp  is an affine transformation, the two
Riemannian metrics g and g* (defined above) determine the same
Riemannian connection, say I’. Let Y(x) be the linear holonomy
group of r with reference point x.  Since it is irreducible and leaves
both g ar#  g* invariant, there exists a positive constant c,  such that
g*(X, Y) = cz  .g(X,  Y) for all X, YE T,(M),  that is, g,*  = cz  . gz
(cf. Theorem 1 of Appendix 5). Since both g * and g’ are parallel
tensor fields with respect to I’, c,  is constant..(
LEMMA 2. If A4 is a complete Riemannian mant$old  which is not

local&  Euclidean, then every homothetic transformation v of M is an
isometry.

Prqofof  Lemma 2. Assume that p is a nap-isometric  homothetic
transformation of M. Considering the inverse transformation if
necessary, we may assume that the. cpnstant  c associated with v is
less  than 1. Take, an arbitrary pbint  x of M. if the distance
betw?en  x aud g(x) is less than 6, t,hen the distance betw,een
q,“(x)  and v”+‘(x)  is less th an cm&  It fo!lows  that (e”(x)  ; p =
1,2,..  .} is a Cauchy  sequence and hence.l;converges  to some
point, say x*, since M is complete. It is easy to see that the point
x* is left fixed by q. > ,*.

Let U be a neighborhood of x* such that 0 is compact. Let K*
be a positive number such that Ig(R( Y,, Y,)Y,,  YJI < K*  for
any unit vectors Y, and Y, at y E  C:  where R denotes the
curvature tensor field. Let 2.  E  M and q any,pldne  in T,(M).
Let X,Y  be an orthonormal basis for-  q; Since p is’  an affine

,
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transformation, (3) of Proposition 1.2 implies that

RWX ‘p”Y)  (q”Y)  = y”(R(K  Y) Y).

Hence we have

= +g(R(X,  Y)  Y,  x)  = c2”ff(q).

On the othea  iand,  the distance between x* = v”(x*) and V(Z)
approaches 0 as m tends to infinity. In other wordi,  there exists
an integer m, such that  v”(z)  E  U for every m 1  m,. Since the
lengths of the vectors ~F’X  and rp”Y  are equal to cm,  we have

timK*  2 Ig(R(q+X,  Q?Y)(cJPY),  q~X)j for m 2 m,.

Thus we obtain
CONK*  h IK(q)I for m 2  m,.

Letting m tend to infinity, we have K(q) = 0. This shows that M is
locally Euclidean. QED.

Let X be an infinitesimal affine transformation on a complete
Riemannian manifold M. Using Theorems 3.5 and 3.6, we shall
find a number of sufficient conditions for X to be an infinitesimal
isome&.  Assuming that M is connected, let hi  be the universal
covering manifold with the naturally induced Riemannian metric
.j =p*(g),  where p: fi --+ M is the natural projection. Let w be
the vector field on a induced by X; J?  is p-related to X. Then x is
an infinitesimal affine transformation of a. Clearly, X is an infini-
tesimal isometry of fi if and only if X is an infinitesimal isometry
of M. Let @~  = ‘MO  x M, x * * * x M, be the de Rham decom-
position of the complete simply connected Riemannian manifold
A?. ‘By.  Theorem 3.5,  the Lie algebra a(a)  is isomorphic with

a(M,,j’+  a(M,)  + * * * + a(M,). Let (X,,,  X,, . . . , X,) be the
element of a(MJ + a(M,)  + . + . + a(M,)  corresponding to
X E a(B).  Since X,, . . . , X,  are all infinitesimal isometries by
Theorem 3.6, X is an infinitesimal isometry if and only if X0  is.

COROLLARY 3.7 . If M  is a connected, complete Riemannian manifold
whose restricted linear  holonomy group ‘P(x)  leaves no non-zero vectar  at x
fixed, then x0(M)  = 3O(M). ’

Proof. The linear holonomy group of M is naturally isomorphic
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with the restricted linear holonomy group yO(x)  of A4 (cf. Example
2.1 of Chapter IV).. This means that MJ reduces to a point and
hence X0  = 0 in the above notations. QED.

COROLLARY 3.0. If X is an ininitesimal a&e transformation of a
comfjlete  Riemannian manifold and ;f the length of X is bounded, then X
is a2  injnitesimal  isome@. ’

Proof. We may assume M to be connected. If the length of X
is bounded on M, the length of X0  is also bounded on MO. Let
xl, . * . ) x’  be the Euclidean coordinate system in MO and set

x0 = c~=l~z(a/a~).

Applying the formula (L,”  0 V, - ‘7, 0 LAyO)Z  = V,,r,,rlZ  (cf.
Proposition 2.2) to Y = a/axiJ  and 2 = a/&;‘,  we see that

a2c-z___ z 0.
LIil ax'1 ax;'

This means that X0  is of the form
5-r-5 I (‘::I , a; xp  -t y)  (a/ax=).

It is easy  to see  that length  of X0  is bounded on MO if and only if
a%  =.=  0 fbr  9,  13  = 1, . , . , r.  Thus if X0  is of bounded length, then
X0  is’an infinitesimal  isomctry of nfO. I QED.

Corollary 3.8, obtained  by Hano  [l],  implies the following
result of Yano  1.11  which was originally proved by a completely
different  method.

COROLLARY  3.9. On ,a compact ‘Riemannian marifold M’, we have
W(  Al) =: 3y .\I).

Proof. On a compact manifold M, every vector field is of
bounded  length. By (:orollary  3.8, ever

v
infinitesimal affrne

transformation X is an infinitesimal isometiy. QED.

4. Holonomy  ancl  injinitesiaml  isometrics

Let M be a differentiable manifold with a linear connection
I’. -For an infinitesimal affine transformation X of M, we give a
geometric  interpretation’ of the tensor ‘field A, = L, - V,
introduced in $2.
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r Let x be an arbitrary point of M and let vt be a local l-pa- .
rameter  group of affine transformations generated by X in a
neighborhood 0f.x.  Let T be the orbit xf  = v,(x)  of x. We denote
by T;  the parallel displacement along the curve T from x8  to xt.
For each t, we consider a linear transformation C, = T:. 0 (P)J*  of
T,(M).

*

PROPOSITION 4.1. C, is-  a ZQ&  l-parameter  group of linear trun.+
formations of T,(M) :. Cl+s  ,= C,  0 C,,  and C,  = exp ( -t(A,),).

Proof. Since qt”  maps the portion of T from x0  t@xl  into the
phOn  Of TfrOIn Xt to'&+, and  since’?, is compatible’with parallel
displacement, we have

This ‘proves the first assertion: Thus there is a linear endomor-
phism, say, A of T,(M) such that C, = exp tA. The second
assertion says that A = -(Ax)+.  To prove this, we show that

for Y, E  T,(M).

First, consider the case where X, # 0. Then x has a coordinate
neighborhood with local coordinate system x1,  . . . , jc”  such that
the curve 7 = x1  is given by 9 = t, x2  = * * * = x” = 0 for small
values oft. We may therefore extend Y, to a vector field Y-on JI  in
such a way that TV  = Y$, for small values .of t. Evidently,
(L,Y), = c).  We have

‘I -KsLL = (VSY),  - Ly), = (vsy)z!

.  .
= !iy  f (,‘,Y,,  - Y,) = fiy  f (Th o v,Y, - Y,)

-+

= ~itn~(C,Y,  - YJ.

Second, consider the case where X, = 0. In Lhis  case, T I is a local
l-parameter group of local transformations leaving x fised and the
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parallel displacement TI,  reduces to the identity transformation of
T,(M). Thus (V,Y),  = 0. We have

~(AA!Yz!  = (VxY)z  - WXI’),  = -(&A

= - ii; f (Y;--  ply,)  = lim 1 (C,I’,
t-o t

- YJ.

This completes the proof of,the second assertion. QED.
Remark. Proposition 4.1 is indeed a special’ case of Proposition

11.2.of Chapter II and can be derived from it:

PROPOSITION  4.2. Let N(Y(x))  ‘and N (Y”(x))  *be  the normalizers
of the Linear holonomy group Y(x) and the restricted linear holonomy group
Y”(x) in the group of linear transformations of T,(M). Then C,  is con-
tained in iV(Y(x)) as well as in N(YO(x)).

Proof . Let pt and 7;  be as before. For any loop ,u  at x,  we set
,u; =~q&u)~o th ta ,LJ~  is a loop at xt  = pt(x). We denote by ,u  and
& the parallel displacements along ,u  at&p:,  respectively. Then
cpt  0 p = ,ui 0 pt. We have

c,1O~~c~l=T~oQ)tO~O~;l~~~=To’~~~~P)to~;1”7~=7~O~~o70 I’
This shows that C, 0 ,u  0 C;’ is an element of Y(x). It is in Y!(x) if
p is in YO(x).  (Note that N(Y(x))  c N(YO(x))  since Ye(x) is the
identity component of N(Y(x).) QED.

COROLLARY 4.3 . If X is,an  injnitesimal a&e  transformation of M,
then, at each point x E M, (A,), belongs to the~normalizor  N(g(x))  of
the Lie algebra g(x) of Y( x in the Lie algebra of endomorphisms of)
T&W

We recall that N(g(x)) is by definition the set of linear endo-
morphisms A of T,(M) such that [A, B] E  g(x) for every
B F g(x).

If X is an infinitesimal isometry of a Riemannian manifold M,
then A, is skew-symmetric (cf. Proposition 3.2) and, for each t,
C, is an orthogonal transformation of T,(M). We have then

THEOREM 4.4. Let M be a Riemannian manifld  and g(x) the Lie
algebra of Y(x). If X is an infinitesimal isometry of M, then, for each
x c M, (A,), is in the normalizer  N (g(x)) of g(x)’ in the Lie algebra
E(x) of skew-symmetric linear endomorphisms of T,(M).
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The following theorem is due to Kostant [ 11.

THEOREM 4.5.  If X is an infinitesimal isometry of a compact
Riemannian manifold  M, then, for each x E M, (A,), belongs to the Lie
algebra g(x) of the linear holvnomy grou$  Y(x).

Proof. In the Lie algebra E(x) of skew-symmetric endomor-
phisms of T,(M), we introduce a. positive definite inner product
( , ) .by setting

(A, B) = j -trace (AB) .

Let B(x) be the orthogonal complement of g(x) in E(x) with
respect this inner product. For the given infinitesimal isometry X
of M, we set *i’

A, =s,  +B,,
where S,  c g(x), B, E B(x), x E  M.

L EMMA. The tensor jeld  B,  of type ( 1, 1) is parallel.
Proof, of Lemma. Let T be an arbitrary curve from a .pojnt x

to another pointy. The paralle! displacement, T gives an ‘isomor-
phism of E(x) onto .4(y)  ,which  maps -g(x) onto g(y).  Since the
inner products. in, E(x) and.in  E(T)  arc, presefved  by T,  ~.maps
B(x) onto B(p).  This means  that, for any vector.field,  Y, on M,
V,(S,)  is in e(x)  whereas.V,(BJ  is.in  B(x) at each point x.  E  M.-
On the other hand, the formula V,(A&  = R(X, Y) (cf. Propo-
sition  2.6) implies that  V,,(A,)  belongs ta g(x) at each x E  M (cf.
Theorem, 9.1 of Chapter III). By comparing the g(x)-component
and the B(x)-component of the equality V,(A,) = V,(B,) +
V,(S,),  we see that V,(B,) belongs to --g(x)  also. Hence
V,(B,) = 0, concluding the proof of the lemma.,

We shall show that B, = 0. We set Y = B,X.  By Green’s
theorem (cf. Appendix 6),  we have (assuming that M is orientable
f o r  t h e  m o m e n t ) ,

/ .

s
div Y du  = 0 (dv: the volume element).

w

1 Since div Z!is equal. to the trace of the linear mapping V-+  V,Y
at each point  x, we ,have (Lemma and Proposition 2.5)

div Y = trace (V + V,(B,X)) = trace (V --+  B,(y’,X))
= -trace (B,A,) = -trace’(BXB,)  - trace (B,S,)
= -trace (B,B,) 2 0.
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I.)I
trace (BxB,)  dv = 0,

which implies trace B,B,  = 0 and hence B, =  0. If M ’1s  not
orientable, we lift X to an infinitesimal isometry X* of the two-
fold orientable covering space M* of M. Then B,, = 0 implies
B,=O. Q E D .

As an application of Theorem 4.5, we prove a result of H. C.
Wang [I].

THEOREM 4.6. If M is a compact Riemannian manrfold,  then
( 1) Evev  parallel tensor field K on M is invariant ty the identity

component So(M)  of the group of isometrics  of M;
(2) At each point x,’ the linear isotropy group of 30(M)  is contained in

the linear holonomy group Y(x) . ‘
Proof .

By
(1) Let X be an arbitrary infinitesimal isometry of M.

Proposition 4.1 and Theorem 4.5, the l-parameter group C,
of linear transformations of T,(M)  is contained in Y(x).  When
C, is extendedi&  a l-parameter group of automorphisms of the
tensor algebra over T=(M),  it leaves P invariant. Thus v,,(K,)  =
$K,  = Kz, for every t, where q1  is the l-parameter group of
isometries generated by X. Since P(M)  is connected, it leaves K
i n v a r i a n t .  -5 .‘.  i ;

(2) Let 9 %e  any.element  i$f 30(M)  ,such  that v(x)  = x.  Since
3O(M)  is a compact connected I$e group, there exists a l-param-
eter subgroup vr such that 9 = ql,  for some’ to.  In the proof of
(I), we saw that C, (obtained from d,)  is in Y(x).  On the other
hand, since vt,(x)

\ I

belongs to Y(x).
=-x, T: is also in -k(x).  Hence g,@  = 7: 0 CtO

,
,: Q E D .

,5.  Rick  te&sot  and infinitesimal isometrics

Let M be a manifold with a linear connection r. The Ricci
tensor field S is the covariant tensor field of degree 2 defined as
follows :

f(X,  Y) = trace of the map V + R(V, X) Y of T,(.ZI),
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where X,Y, I’  E  T,(M). If A[ is a Riemannian manifold and if
VI,..., V,,  is an orthonormal basis of T,(.W),  then

S(X$ Y)’ = C;=, g(R( Vj, X) Y,  Vi)
.=  Cy=,  R(V,,  Y ,  Vi, X ) ,  X,Ye T,(JI),

where R in the last equation denotes the Riemannian curvature
tensor (cf. $2 of Chapter V). Property (d) of the Riemannian
curvature tensor (cf. $1 of Chapter V) implies S(X,  Y) =
S(Y, X), that is, S is symmetric.

’ “F~RO;FOSITI~N 5.1.:.  If X is an injnitesimal afine transformation of a
,~Rienuinnian  manifold fl,  then

div (A,Y)  = +(X,  Y) - trace (risA,.-)

for every vector field Y on M. In particular,

div (A,X)  = -S(X,  X) - trace (~~s.+ls).

Proof . By Proposition 2.6, we have R( V, X) A -R(X,  I’) =
L Ve(A,)  for any .vector  field V on M. ‘He&e 6

R(V, X)Y = -(V&I-y))Y  = -+(AsY)  + A-y(V;Y)
i = - G,(A,Y)  - .4,k,  V.

&r proposition follckvs  from the fact that S(X, Y) is’the trace of
I’  + R( V, X) Y and that div (A,Y) is’the trace of V --f  V,.‘(A,Y).

QED.

PROPOSITION_5.~. For an injinitesimat  isometry X of a Riemanr&n
mansfold  M, consider tkjfrnction  f = +g(X, X) an M. Then
- (1) I’j  = g( V,‘A,X) fm  evqy tungent  vector V;

(3)  Vnf:  = g( V, V&,X))  for every vectorJicld V su&,  that
v,v =  0 ; ‘/-.  _.

.@)~&v  (AXX)  Z 0 at any pokzt  where f attains a relative  m&num;
\”  ‘ <

‘!~Q&~v  (AiX)  S 0 at any point where f attains a relative maximum.
P&f. ,Since  ~g  is parallel, we have

Z(g(X  u))i~  v&x,  Y))  = g(V,X  I’) + SC&  f,Y)
for arbitrary vector fields X, Y and 2 on M. Applying this formula
to the case where :X = Y and 2 = V, we obtain

Vf  = Q(V;X,  X) = -g(A,V, X) = g(V, A,X) ’
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by virtue of Proposition 2.5 and the skew-symmetry of A, (cf.
Proposition 3.2). This proves (1). If V is a vector field  such that
v,V  = 0, then

proving (2). To prove (3))  let Vi, . . . , V, be an orthonormal basis
for T,(M).  For each i, let 7i  = x,(r)  be the geodesic with the
initial condition (x, V,) so that Vi = ii (0). We extend each Yi to
a vector field which coincides with $(t)  at x,(t)  for small values of
t. Then we have

d2f(Xi(t))/dt2  = vff= g(v,ivi’i,  A,X)  + g(Vip  vJ7i(AxX))

= P.(i”,,  VVt(AXX))*
I

Since div (4,X)  is thetrace  of-the linear mapping V + V;(>,X),
we have

div (4,X),  = ET==,  (vff)5. ’

Now,(3):follo%s from the fact that, iffattains a relative minimum
(resp. maximum) at x, then  (Vtf)a  2:’ 0 (rep.] s’O).l, QEIji

As an application of these two propositions, we prove the
following, result of Bochner [l].  .

THEOREM 5.3 ; LA M  b e  a  cokzected Riekannian  manifold:whese
Rick  tensorjield S is negative de&ite evuywhere  on M. If the length.of  an
infnitesimdl  isometry X attains a relative maximum at some point ,of  M,
then X vanishes identically on M.

Proof . Assume the length of X attains a relative maximu?.  at
x. By,Proposition .5.2,  we have div (1 !xX)  I 0 at x.  By Proposition
5.1, we obtain --S(X, X) - trace8(A+fX)  5 0, But 8(X,.X) .g  0
by assumption;and  trace (A,A,) 5 O.since As is skew7symmetric.
Thus we have S(X, X) = 0 and A, = 0 at x.  Since S is negative
definite, X =-0  at x.  Since the length of X attains a relative
maximum at x,  X vanishes in a neighborhood X. ,If  u is any point
of C(;Zd)  such that T(U) = x,  then the natural lift x’ of Xvanishes
in a neighborhood of u. As we have seen in the proof of Theorem
3.3, X vanishes identically on M. QED.

-

. .
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COROL.I.ARS  5.4. rf .\I is  n conrpct  Riemnnnian  manifold with
negative deJinite  Ricci tensorjield,  then the group 3( .\li  CIJ  irometrirs  o/̂  .\I
isjnite.

Proof. By l’heorem  5.3, JO(,\l) reduces to the identity; Since
J(M) is compact (cf. Theorem 3.t:;,  it is,.finit.e. (lE;l).

Remark. Corollary 5.1 can be derived from Proposition 5.1 by
means of Green’s theorem  in the following way.

We may assume that M is orientable; otherwise, we have only
to consider the orientable twofold covering space of ,\I.  From
Proposition 5.1 and Green’s theorem, we obtain

r

i
[S(X,  X)  + trace (-4,A,)]  dv = 0.

.u

‘S&e  S(X,  X) 22 0. ’and trace (A,A,)  5 O,, we must, bve
S(X, X) = 0 and trace (A,A,)  = 0 everywhere on ,1f.  Sinc;:‘S’,is
negative definite, ,we  have X .= 0 everywhere ‘on ,.;II.  This proof
gives also

C OROLLARY 5 . 5 .  I f  M is? .a  compact Riemdnn!nn.  manifold  with
vanishing Ricci tensar~jield,  then every injnitesimat?  i;ometr_v  of .\I is  a
parbllel vectorj?eld..~.  -+  1 1,.

Proof . By Proposition 2.5, we have .O  = ASP’  .= --*  Tr.K  for
every vector field V on AI. . QED.

From Corollary 5.5, we obtain the following result  of Ii&-
n e r o w i c z  [l).

.  . .
, COROLLARY  5.6. ’ Ij ,p,  coniected compact homogeneous Ri~rn~nnlqn

man$old~.  M has &ro,<  R&cl-  tensor, /hen  M is a Euclidean”?oru.r.
Proof . By Theorem 5.1 of Chapter III  and Corollary 5.5, we

have
[X,  Y ]  =  V,Y - v,,x==0 ‘-

b
for any infinitesimal. isometries X,Y. Thk  Y(M),  ’is a compact
abelian  group. Since 3O(-a1)  acts effectively on M, the isotrop!
subgroup of 3Q(Jt):.at..every  point -21” reduces to the ibentit)
element. As we have seen in Example 4.11  of Chapter .V, ‘111  is a
E u c l i d e a n  t o r u s . . , (JJ3l.

As another application of Proposition 5.2, we prove
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PROPOSITION 5.7. Let pt  be the l-parameter group of isometrics
generated by an injnitesimal isometry  X of a Riemannian manifold M.
If x is a critical point of the length function g(X,  X)*,  then the orbit
qua  is a geodesic.

Proof. If x is a criticai  point ofg(X,  X)*, it is a critical point of
the function f = $g(X, X) also. By (1) of Proposition 5.2, we
have g( V, A,X)  = 0 for every vector .V  at x. Hence A,X  = 0 at
x,  that is, V,X = 0 at x. Since qt(X,) = Xqltz)  by (1) of Proposi-
tion 1.2, we have V,X  = 0 along the orbit Qua. This shows that
the orbit 4pl(x)  is a-geodesic. QED.

6. Extension of local isomorphisms

Let M be a real analytic manifold with an analytic linear
connection l’. The bundle L(M) of linear frames is an analytic
manifold and the connection form o is analytic. The distribution

! ? which assigns the h&ontal  subspace  Q, to each point u E  L(M)
IS  analytic iti the sense that each point U has a neighvbrhood  and a
local basis for the distribution Q consisting of analytic vector
fields. Th!%  same is true for the distribution on the tangent bundle
T(N) which defines the notion of parallel displacement in the
bundle T(M) (for the notion of horizontal sqbspaces in an
associated fibre bundle, see $7  of Chapter II).

The main object of this section .is to prove the following
theorem.

THEOREM 6.1. Let M be a ~connected,  simply  connected analytic
manifold with an analytic linear connection. Let M’ be an analytic
manifold with a cdmplete  ‘analytic linear connection. Then every  afine
mapping fv  of a connected open subset U of M into M’ can be uniquely
extended to an afine  mapping f of M into 121’.

The p;oof  is preceded by several lemmas. ,,.

LEMMA 1. Let f and g be analytic mappings of a connected analytic
marlifold  M into an anajytic  manifold M’.  Iff andg coincide on a non-empty
open’subset  of M, t&en  they coincide on M. ..:  !_

Proof of Lemma 1. Let x be,any  pointof  M and let x1,  . . . , x”
be an analytic local coordinate system in a neighborhood of x.  Let
'1Y,.-* ,y”  be an analytic local coordinate system in a neighbor-
hood of the point f(x). The mapping f can be expressed by
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I a set of analytic functions h.  j
y’ = f i(X1,  . . ..,  x9),  8. i = 1; . . . , m. :

These functions can ‘be’ &iax&ed  at x into convergent power
series of x1,  . . . , x”. Si@larli  for ‘the mapping g. Let N be the set
of points x c M suchiihat  jr(x)  A g(x) and ‘that the power series
expansions off and g at x coincide. Then N is clearly a closed sub-
set of M. From tht well known properties of power series, it
follows that F is open in M. Since M is connected, N = M. .

. 8
LEMMA: 2. Let S and S’ be anabtio distributions on analytic manifidtls

M dnd  M’. Let f be an analytic mapping of M into M’ Jlcch  that

(*I
or eumy  point x of un  open subset of M. .If M is  cqnnected,  then (*)  is

sutisjed  at every point x of M.
Proof of Lemma 2. Let N be the set of all poipts  x l M &C%

that (*) is satisfied in a neighborhood of x. Then N is clearly a
non-empty open subset of M. Since M is connected, it suffices to
show that Nis closed. Let xI E N and xI + x0.  Let$,  . . . ,y”  be an
analytic local coordinate system in a neighborhood V off (x0).

’ Let Z;, . . . , 2, be-a local basis for the distribution S’  in K From
alay,  . . . , al@*;  choose m - A vector fields, say, Zh+1, -z***r  .m
such that Z,,  . . . , Z,,,  Z,,+1,  . . . , 2, are linearly indeptn&nt  .at
f (x0)  and hence in a neighborhood v’ off (‘x0).  Let U be a con-
nected neighborhood of x0  with an analytic local coordinate
system x1, . . . , x” such that f(U) so  V’  and that?2  has a local
basis X,, . . . , X,  consisting of analytic vector fields defined on U.
Since f is analytic, we have

fKL  = qLf3x)  * 2, i = l , * * *  , k,

wheie.J{(x>  areanaly’tic  functions of x1, . . . . , x”. Since X&E  N and
1~) + x0,  there exists a neighborhood. U, of some xb such @at
U, c W:  and that (*) 4s b&isfleQ:  at every point x of U1. In ,&er
words, f{(x)  = 0 on. U1 for 1 %-:i  d k and h + 1 $ j I m. It
follows that f f = 0 on Ufor  the&same  i and j. This proves that (*)
is satisfied at every point x of U.

I
LEMMA 3. Let M and M” ‘be a%a&ic  manifolds  with analytic

linear connections and f ah  analjtii  happing  of M into A&‘.  If the
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re.hction  off to an open subset U of Al is an afine mapping and ifA4  is
co~ltlPc-~ad,  then f is an afine mapping of Ad  into M’.

hwf  of Lemma 3. Let F be the analytic .mapping  of  the
tan~cnt  bundle T(hf)  into T(M’)  induced by f. By assumption, .
L’ ma ps the horizontal subspkce  at each p@ni  of n-l(u)  into a
horizontal subspace  in T(M’y  (herb,  72  dendtes  the projection of
7’( .\I! onto 1M).  Applying &m&a  2 to the rhapping  &‘,  we see that

.f  is an affine rkappirig  of M’iAto  M’.

I.EXI&  4. Let 2 and IIF be di$erentiable  mariifoldj  -with linear
connect&w and let f and g be a&e  mappings~  of 44 into M’. If f (X) =
g{.Y)  for everll  X E T;(M)  at .some  point x c M and ;f M is connected,
fherr  J and g Eoincide  on M.

Proof of Lemma 4. Let N be the set of all points x E M such
thatJ)(S)  = a(X) for X e T&(M).  Then N is’ clearly a non?empty
closed subset of M  Since f and g commute with the exponential
mappings (Proposition 1 .I), x E.  N iinpiies that a normal co-
ordinate neighborhood of x is in N. Thus N is open. Since M is
connected, we have N = M.

We %re  liow in posit ion to prove Theorem 6.1.., Under the
assumptions,in  Theorem 6.1, let x(t), 0 5  4 I 1, be a curve in M
such t.h;lt  x(O)  .C  lY.  An analytic  continuation off,, alodg  the curve:%(t)
i s ,  /by  definition,  a  f a m i l y  o f  afTine  m a p p i n g s  ft,  ‘0 5  t  :G 1 ,
satisfying the follo+g  conditions:

(is)  For each t,ff  isan  &Fine  mapping of:; nkighborhbod li, pf
the ptint  x.(t) into 121’; I ‘.it

(2) For  each t,  there exists a positive number 6 such that if
Is  - t\ -e 6, then x(s) Q U, and fs coincides with ft in a neighbor-
hood <if x(s) ;

(3)h =fu.
It follows easily from Lemma 4 that an anaIytic  continuation of

f I-. along the curve .x(t) is unique if it exists: We now show tlkat.  it
exists. I,et  f, be the supremum  of t,~  >-0 such that an analytic
continuationf,  exists for 0 5  1 5. ti. Let W be a eontrex.nei&bor-
hood of the point x(t,) as in Theorem 8.7 of Chapter III such that
every  point  of  W has  a normal coordinate neighborhood con-

taining  k1/.  Take t,  such  tha t  t, < t, and  that.x[r,)  e*W.  Let Ti  be
a normal coordinate neighborhood of x(tJ  ,which  contains  W.
S&e  there exists an analytic cqntinuationf,  Of&  for 0 5 t S t,,,’
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we have the affke  ,mappingjti’  of.a  neighborhood x(tJ  into :I!‘.
We extend’ftl  to an, analytic mapping, say 8, of 1’ into Ji’  as
follows. Since the expc$.&a~  mapping gi\-cs  a @lko~orphism
of an open neighbqrhoo$m,K* Qf  the  origin in T,,,,) ($14)  onto, .I,:, each

-,piinty  E Y  determinq.~i~niciue.  element. X E V* c TJ(,,,(.il)  such
thaty = exp X. Set X’ = f,,(X) so that X’is a vector atJ,,;s<&)).
Since M’ is complete, ,exp X’ is well defined  and \YC  set ,yj-j,j  .-z
exp X’. ThG  &&i$si&ti’Q oflf,,  t hus  defi‘ned  commutes with tllc
e g p o n e

T
al” mbppingk  Sinte  ‘the exeonential  m a p p i n g s  a r e

.k$lytic;  p’,iS alsd’anafytic.  By Lktinia  3; 2 is an  affine m;t’pping of
“’  ’ I’int6  ,$I’. We &n easily  define the continuatio$;f,.  beyond 1, b)

using this affine  mapping g. We have thus proved the  exist’ence of
?-“’  an &&tic  coatinuation  ft alo.ng  the whole curve x(t),.  0 3  t ; 1.

To complete the proof ofTYtkorem  6.1, let x bear5 arbitrarily fixed
point of U. For each point?  $f M, let x(t); 0 ‘2 t g 1, be a cur\.e
frorri x tcidy.  The afl%ie ni%@bing  fi, can be &alyti&ll~  continued
‘along the ciir+e  k(t)’ aria  <gives  rik.to  an afl&e  mapping’<?  of a
neighborhood of_y  int@  M’:  We Show, th$t  g(v)  ‘is inclependent  of
the choice of a cdryc  fi%m  x t@:F$r~this,‘it  is‘suficicnt  to otierve

,”
that,if  x[tj  is‘.a  closed cukvk, then thc’nn5lytic  Continuation  ft of
j$ along x(t) g’ ’~2s  risk  to the affinC  maPpingfl  which coincides
tiith  fLJ  in a neighborhood x. Since M  is simpli  connecied,  the
curte  x(t) ‘is homotopic to  zero and our assertjpn  follows readily
from the factorization lemma (cf..,Appendix  7.) and from the
uniqueness of ,an  :analytic  continuation we,  have alrea&.proved.

! It follows that  the, given mapping fK can be extended to an
af%jne  mappingJ:of  21% into .\I’.  Theuniqueness  off follows from

Lemma 4. ., QED.
i COROLLARY 6~2.  1 Let .\I  and .\I’,  be connected and sinzp[y  -connected

wal_vtic  maniflrls  with  complete  anabtic linear conn+ions.  -Th,m evey
aj%e.Qs~morphism  between connected open subsets of .\I and &I,’ can be
uniquely extended to an @ne  isomorphism between  .1J  and ,V’:  ,

1Ve have the corresponding results for analytic Ricmannian
manifolds. The  Ricmannian  Oonnectlkm  of an anali;tic  Riernan-
r.i:~n  mctric,is  an$ytic;  this ti)llo).\~s  frqm Corollary 2. L of Chapter
11.. ,.,

?‘HE~REV  6.3. I.kt  ‘M  a.4 ;.Il! /w  rrnrr!rtic Riema~lnian  maniflds.
If ‘\f is Connected and Sbtt//!l.  Z.il~r’~:, :d NN(f  $’  .\f’  is rompfete,  then ever_y

,
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isometric immersion fv  of a connected open subset U of M into M’ can be
uni,quely  extended to an isometric immersion f of M into M’.

Proof. The proof is quite similar to that of Theorem 6.1.
We indicate only the necessary changes. Lemma 1 can be used
without any change. Lemma 2 was necessary only to derive
Lemma 3. In the present case, we prove the following Lemma 3’
directly.

LEMMA 3’. Let M and M’ be analytic manifolds with analytic
Riemannian metrics g and g’,  rcspectiuely,  and letf  be an analytic  matping
‘of M into M’. If the resti’ction  ‘off to an open subset ,v  af  ~?4  w y
isom&c  immersion and if M .is  qmnected,  th.en  f as an ~rrometra~
immersion of M into M’. ’

. .

Proof of Lemma 3’. Compare g and  f * (g’) . ‘Since t&e;  coincide
on U, the argument similar to the onq us&d  in the prNfc$Lemma
1 shows that they coincide on the whole of M. .

In Lemma 4, we replace “affine  mappings” by ‘,T(isometric
immersions. ” Since an isometric immersion maps every geodesic

NJ into a geodesic and hence commutes with: the exponential
mappings,, the proof of Lemma 4 is still valid.

‘In the rest of the proof of Theorem 6.1, we replace “a&e
mapping” by “isometric immersion.” Then the. proof goes
through without any other change. QED.

Remark. Since ‘an  isometric immersion f: M + M’ is not
necessarily an affine mapping, The&em  6.3 does not follow from
Th&-eni  6:l.  If’ dim M & dim.M’,  then every isometric immersion
f: M + M’ is an affine mapping (cf. Proposition 2.6 of Chapter
IV):  Hence the following  corollary-folloislr  from Corollary 6.2 as
well as from Theorem 6.3.

COROLLARY 6.4. Let M and M’ be connected and simply cotutected,
complete analytic Riemannian manifolds. Then every isome~  betwezn
connected open  ‘subsets of M and M’ can be uniquely ex& to M
isometry between M and M’. .

7. Equivalence problem

i.& M be a manifold with a linear connection. Let x1,  . . . , x”
be a normal coordinate system at a point x,-,  and let U be a nFig%
borhood  of x0  given by Ix”\  < 6, i = k, .’ . . , n. Let u,,  be theimw

-
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frame at the origin x0  given by (a/ax’,  . . . , a/ax”). Wd define a
cross section C: U + L(M) as follows. If x is a point of U with .
coordinates (al, .a.,
parallel

a”),  then ,c(x>  is the frame obtained by the
displacement of uO  alo@  the geodesic given by xi = ta’,

0 S; t d 1. We call (T  the crbss  se&on  adapted to the normal coordinate
system x1,  . . . , xn.

The first objective of this section: .is to prove the following
theorem.

, I

THEOREM 7.1.
‘ii \

Let M and ML be manifolds with linear connections.
Let U (resp.  V) be a normal coo&tate nt&hborhood  of a point x0  c M
(resp.  y. 6 M’) with *

Y’,  *
a normal L;oordinate  system x1,  . . . , x”  (resp.

. . ,y”)  andlet a: U - L(iiQ  (re.$.  a?: V
section adapted to x1,  . . . ,,x” (resp.  yl

- L(M:))  be the cross
, . . . , y”):  A da@omorphism  f of

Uonto V is an a#ne  isomor~his+n ifit  satisjies  thefol&ow&g  two conditions:
(1) f maps the frame a(x) into the frami&(  f(x)) fbr eachpoiit x c U;
(2) f priserves  the torsidh  and ncrvatur&~~tensorjie&  I ’
Proof. Let 19  = (U) and cu = (co;)  be the canonical f&m and

the connedtion  form on L(M) iespectively.  We set ’ ”

* * * n,
l :, . . . , n.

z (1) p = a*Oi = ,C, Aj d#, i = 1,.
(2) ,i”::  = a%$  = Zck.Bjk  dxk, i,j  =

LEMMA 1. For  any (a’,  . . . , a”) + (0
we have

(sj IZ,  Aj(ta)aj  = ai, OSSl,
(4) x:k&(ta)a”  = 0, ostrr,

,**a, 0) with Ia’]  < 6,

i =  l,.;..,n,.
i,j = 1; . . . , n;

where ta stands for (tal,  . . . , tan). , ’ .

Proof of Lemma 1.. For a fixed i = (a<),  consider  the geodesic
x, gw.m.  by x‘=ta*,  OS td 1; i= I , . . . , n. Let ut  = a(xJ,
which-is;the  horizontal lifi of xt starting from uo.  Since the frames
ut  are paraikl  dong  xt, we have
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\Vc set [cf. $7  of Chapter III)
(5) gi  = g*@i  = xj,k .;.Q  Oj  A .fTk ( Fjk = O*qk),

it;)  q = a*q = c,,,  -,5Rj,,d”  A 6” (& = cJ*l&).

LEMMA & For an arbitraribfixed  (a’, . , , , a”), we set

Aj(t) = tdj(ta), &(t)  = tBj,(ta),
1 q&).  = !q.(ta), l?;&(t)  = Rj&z).

Then the functions A:(t) and &(t) satisfy the following system of
ordina?>)  linear dtyerential  equations:

(7)  &f;(t)/&  = l$+  Zz 8,j(t)d  + &,j,L ~,f;,(i)A~(t)&

with the initial conditions:
.

w&a (9)  A;(g) =  0 ,  l&(O) =  0.  ,,; _,,

Proof of Lemma 2. We consider the opepr  set @ of R”-l
defind  .by  Q = ((t, ai, . . . , a”) ; .(ta’l.  < 6 for i = 1, i . . , n>.  IJet
p be the mapping of,  &,  into 1;  defined by :-I

p(t,  a’, . , . ) a’“) = (&I’, .!. . ;tuy.
We set

81  =  p*fj( q = p*(;,j,  5) _-, p*@,  q = p*Qj.,-
., ‘.

From Lemma 1, we obtain ’

(10) ? = Sj $(tn)  dui  + ai  dt,

( 1  I-)  ;j = C, t~;&a)  d&, i:

From (5) and (6), we obtain

Frotn  ( 10) and [ 11); we obtain ; * i. . . ” _’
“a ,:

(1-k) dcL  ==  --Xj 1 (tAj(tej)  - Sj 1 dajLA dt +-  e * . ,

where the dots denqte tlrc te-r+Fls  n@jnvolvFg  dt. ,: ,: _

VI. I’KANSIWKMA’~‘IUIYS

From (lo),  (ll),  (12) and (13),  ‘tie obtain

(16) -xi ;j  A 51 + G*

LJJ

= -~j  [C, tB~(ta)U’  +  ~~ ~~(t~)(tA~(t~))~‘l  da’  A dt + . . ~ )

(17) -xk  3 A q + q!

= -Ek [E,,,  A,‘t~(ta)‘(tA;(tn))a”l:da”  h dt  + ’ . . ,

where the dots dFD,qte.“the  terms ,not  .involkng  dt.  Now (7)
follows from (14),  (16) and the first structure equation..Simi@ly,
(8) follpws-  from (15),  (17)~ and the secmd  structure equation.
Finally, (9) is obvious from the definition of i;(t) and i&(t). This
proves-  Eemma  2, .,

From Lemma 2 and from the uniqueness theorem oRsystems
of prdinary linear ,differential  equations (cf. Appendix,.!,), it
fOllows  that the futrc$ions  A&J)  .&&.(t)  tire  uniquely deter&ed
by p&(t) and i&(t).  On the other han&3he  fun&ons.  I&(t) and
@,,(t)  -are utiiquely  determined by the torsion tensop;Gelds  T
and the curvature tensor fields R and also by the cross sectim.-(for
each fixed (&; . ‘: . :, a”)).:  .Fram s(  1) we’  see  th&  the connec‘tion
form .U.I  is uniquely.  cl$sr@necf  by T, R and CS. ,QE”-

%-  the case afabreal  analytic&near connection, the torsion and
curvatke  tensor fields and their successive FovariaRt  derivatives
at a point determine the connection uniquely. More precisely, we
have

.
’ . I .  :

.J'HIZ,?REM, 7.2. L.@ M and M’ be apalytic  manifolds with analytic
‘&ear  connections. iet  T, R at& 9  (resj: p,  R’ and ‘9’)  ‘be ‘the  to’$&
the curvature and the covariant d&t&t&ion  ofM  (r&p.  M’).  If a linlar
isomorphism F: TCO[&l)  7 T,,(M!  maps the% t&hors  (Vm  T),,  and
( VmR),O  into thlk  tensors (V’m’p)yO  and (v’mR’)y,,  respectively, for

-m =?JJ,...t(,,.  _,then there if .fn  a$;ne  isomorphism f of a neighborhood
0 of x0  or$“u Si$$b@$i  .v”.Zf  yi  such that f (xi)
dij%e&i[  off&i  ‘$3  ‘.I

= ys’ p&  ‘thcit  the
_’  i. .t I,,

.  prog L&-  Tp;  i:.  .  ,  &“,ikil ‘34, be’ a c ilormal  :coordiurate
gysteti’iti  B &igM&%ood  U 6f x0.  Let jJ,  . ; . , y”, 13’1 C $$e:a
normal  coordi&ty$&eti  in $ nelghbo&d  ‘V ofy<!su&  that
qm,,  7 Fpp  h&i  -e I,!*  - *  ? i> ;n- sii0lW  ,riormal coordinate.

.,,i  9.
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system exists and is unique. Letf be the analytic homeomorphism
of U onto I’  defined by

* yi  of  = xi, i=l,..‘, n.

Clearly the differential off at x,,  coincides with F. We shall show

-P that f is an affine isomorphism of U onto K
We use the same notation as in the proof of Theorem 7.1. It

suffices to prove the following five ‘statements. If the normal
coordinate system$$  . . . , x” is fixed, then

(i) YIJ$  ten&rs”(V*T),,  m’=  0, 1,.2,  . . . , determine t-he func-

.,t~$$!?;e!s$s’  ($J&i  , m = 0, 1, 2, . . . , determine the func-
tions &i(t),  0 I t $ 1; ,f’ ’ 1

(iii) The functions
and (5;;

?&{l) and $,(i)  determine  the forms ‘ei
< ,, 4

(iv) The forms 0’ determine the’  cross section a;
(v)’  The cross section o and the forms ~j determine the, connec-

tion form 0.~. ,.
To prove (i) and (ii) we need the following lemma.

/

a
LEMMA  1. Let u,, d $ t I .1,  be h ho&&Z  fzjit  if a curvk’kt,

0 I t 5 1, tu L(M). Let T: be & tmsm spade of gpe !(r, s) ovq .R”.
Given  d’tensor jield  K of  t@e’ (r, s) .alobg xt,’  let if  & the T+alued

functioic’  de&d along  u, b;r , i:  1 * :

K(4)  = ~r’uL(), OltSl,

.” ‘whe;e  ui ,is,  co&de&d  C+ a &neG mopping  of**  onto the tensor’ space
TV, a!  yr  pf  &.q (r, s) . Then  we have .’

.,’  ,@oof  of ‘Lemma 1 -“This is a special case of Proposition I.3 of
Chapter III. The tensor field K and the function i here corre-

, spend  to ,thc  cross section v and the fuqctionf there; Although  v
.in:Proposition  1.3. of Chapter III is defined ,o.~t&  whole of M,

_ the proof goes through when Q is defined,.:onl  g :curve  in M (cf.
; the-krmma  for; Propositioa,l.  1 of Chapter JII&  :>

To prove (i) , we apply Lemma 1 to the torsion T, the geodesic
.ct  given by- x’  = fa’,  i = 1, . z-, n, and the horizontal lift u1  of x,
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with u. = ((a/&l),,,  . . . , (aj8xn)J.  Then Lemma 1 (applied m
times) implies that, for each t,  u;‘(  ( Vt,)m  T) is the element of the
tensor space.Tk  with components’&+  pjk(t)/dt”.  In particular, setting
t = 0, we see that, once the‘ coordinate system .x1,  . . . , x” and

(Q’ , . . . ; an)  are fixed, (dm,f&/dta),_o,  m = ,O, 1,2,  . . . , are all
determined by (VmT),.  (Actually, it is not hard to see that

where  ,T&  I; i.$,,.are the components of V*,T with respect to
Xl, . . . ,A 9’;) Since each f’;*(t)  is an analytic function of t, it is
determined by (VT),, m = 0, 1,2,  . . . . This proves (i). The

’ proof of (ii) is similar.
Lemma 2 for Theorem 7.1 implies that the functions f$(t) and

k&(f) determine the functions 4(t) and &t).  Now (iii) follows
from the formula (1) and (Z).in the proof of Theorem 7.1.

(iv) follows from the following lemma.

LEMMA 2. Let (T  and (T’  be two cross sections of L(M)  over an open
subset U of M. If u*O  = u’*tJ on U, then u = a’.

Proof of Lemma 2. For each X 6 T,(M), where x E  (J,  we
have

(&q(X)  = lY(uX)  = a(x)-++JX))  =,u(x)-1x,

where C(X)  Q L(M) is considered as a linear isomorphism of R”
onto T,(M). Using the same equation for u’,  we obtain

a(x)-‘X = a’(x)-‘X.

Since this holds for every X in T,(M), we obtain u(x)  =--‘(.Y).
Finally, (v) is evident from the definition of (5;. QED.

. .
C&OLLARY  ‘7.3. In Theorem 7.2, ;f M and ,A/’  are, nloreowr,

connected,  &m&y connected analytic manifolds with complete anal_rtic
&ear  cyuztions,,  fhp  there exists a z@ue  a$ine  &morphism f of M o?lto
M’  whose difuential  at x,, coincides wilt?  F.

Proof. This is an immediate consequence of Corollary 6.2 and
T h e o r e m  7 . 2 . QED.

THEORE& 7.4. Let M and M’  be di$erentiable  manifolds with linear
connections. Let T, R and V (resp.  T’, R’  and C’) be the torsion, the

curvature and the covhriant $$retitiation  of  .\?  :--:h. I!‘\. Asume
,



%
2 6 2 FOUNDATIONS OF DIFFERENTIAL GEOMETRY
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VT -=  0,  OR  = 0,  V’ T’ = 0 and V’R’ = 0.  If F is a ‘<inear
isomorphism of, TzO(M)  onto T,,O(M’)  and maps the tensors T;o’  and RX0
at x,, into the tensors TL,  and RbO  aty, respectivily,  then the/e zs  an afine
isomorphismf of a neighborhood U of x,,  onto a neighbor

Y
od V ofyO  such

that f (x,,) = y,, and that the di$erential  off at  x,,  coincides tiith F.
Proof . We follow the notation and the argument in the proof

of Theorem 7.2.,By  Lemma 1 in the proof of Theorem 7.2, the
functions 3&(t)’ and &(t)  are constant functions and hence are
determined by Tz, and RzO  (and the coordinate system x1,  . . . , 2”).
Our theorem now follows from (iii), (iv) and (v) in the proof of
Theorem 7.2. QED.

&ROL,L.~RY  7.5. Let M be a di$erentiable  manifold with a linear
connection such that VT = 0 and VR = 0. Then, for any two points x
andy of &, there exists  an k&e isomorphisin  of a na’ghboihood  of x onto
a neighborhood ofy.

Proof . Let 7 be an arbitrary curve from x toy. Since VT = C
and VR = 0,  the parallel displacement T:  T,(M) + T,(M) maps
the tensors T,  and Rz  at x,&into  the tensors T, and R,  .at  y. By
Theorem 7.4, there exists a local affine isomorphism f such that
f(x) = y and that the differential off at x coincides with T. QED.

Let M be a manifold with a linear connection I’. The connection
I’ is said to be invariant by parallelism if, for arbitrary points x and y
of M and for an arbitrary curve T from x to,y,  there exists a
(unique) local al&e  isomorphism f such that f(x) = y and that
the differential off at x.  coincides with the parallel displacement
r:  T,(M) + T,(M). In the proof of Corollary 7.5, we saw that
if YT = 0 ,and VR = 0, then the connecti?n  is invariant by
parallelism. The converse is also true. Namely, we have

COROLLARY 7.6 . A line& co&e&on  ii  invariant -by parallelism if
andonlyifVT=OandVR  = O .

Proof. Assuming that the connection is invariant by parallel-
is&n,  let T be an arbitrary curve from x toy. Letfbe a local affine
isomorphism such that f (x) = y and that the differential off at x
coincides with the parallel displacement T.  Then f maps T,  and
R,  into T,  and R, respectively. Hence the parallel displacement
7 maps T,  and R, into T, and R,, respectively. This means that T
and R are parallel tensor fields. QED.

VI. -TRANSFORMATIONS 2 6 3

THEOREM 7.7 . Let M be a di$erentiable  manifold with a linear
connection such that VT ‘= 0 and VR = 0. With respect to the atlas
consisting of normal coordinate gstems,  M is an anabtic manifold and the
connectioti  i s  anal_ytic.  I .

Proof. Let x1,  . . . , xn  be a normal coordinate system in an
open set U. We introduce a coordinate system (xf,  X$i,j,k=l
in n-l-l(U)  c L(M) in a natural way as in $7 of Chapter II.I’(cf
Example 5.2 of Chapter I). If we denote by (Ui)  the inverse
matrix of (Xi), then the canonical form and the connection form

, can be expressed as follows (cf. Propositions 7.1 and 7.2 of Chapter
III) :

(18) Oi  = Cj Ul’dxj, i = 1,. . . , n;

(19) w;  = C, Ui(dXj”  + C,,,  r;, Xj”  dxm), i,j = 1 , . . . , n .

The forms ei are analytic with respect to (xi, Xi).  We show that
the forms o~j  are also analytic with respect to (xi; Xi).  Clearly it
is sufficient to show that- the components I’&  of the connection are
analytic in x1,  . 1 . , xn. We use the same notation as in the proof
ofTheorem  7.1. Since the functions ?$(t)  and l&(t) are &nstants
which do nof.depend  on (a’,  . . . , an) by virtue of the assumption
that VT = 0 and VR = 0, Lemma 2 in the proof of Theorem 7.1
implies (cf. Appendix 1) that the functions ;i;‘(t)  and zikl(t)  are
analytic in t and depend analytically on (al, . . . , an).  Hence the
functions 2; and & a’re  analytic in x1,  . . . , 2.  qrom  (1) in the
proof of Theorem 7.1, we see that the cross section 0: U -+ L(M)

i s  g i v e n  b y

”(20) Ui = +j”, i,j = 1 . . , n.

Ii Let-(Cj).be  the,inverse  rnatL;x  of (A)).  From (19) and (20), we
,obtain

~’  ($g*wj  -c ,+ = Sk  A;(&:  + )&  l-&j’  dx$

By con$aring  (21)
obtain

with (2) in the proof of Theorem 7.1, we

(22)  I&F & k~(ac;/axm  + x:1  rf$q.

Transforming (22).  we obtain

(23) lT;,,=  Cj (Xi CfBj,,, - CXj/&“+lj,
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which shows that the components I$  are analytic functions of
xl,  . . . , x”.

Since the n2 + n l-forms 8’ and wi  are analytic with respect to
(xi, X’,)  and define an absolute parallelism (Proposition 2.5 of
Chapter III), the following lemma implies that L(M) is an
analytic manifold with respect to the atlas consisting of the
coordinate system (x’,  Xj) induced from the normal coordinate
systems (xl, . . . , x”) of M.

L EMMA. Let 09,  . . . , O* be 1 -fohns  dejning an absolute parallelism
on a manifold P of dimension m. Let ul,  . . . , um  (resp. 9,  . . . , vm)  be
a local coordinate @em  valid in an open set U (resp.  v).  If the form
01, . . . ) wnl are analytic with respect to both ul,  . . . , urn  and ~9,  . . . , urn,
then the functions

vi  =fi(d,  . . . ) t(m), i=l, * * *  , m,  .

which dejine  the coordinate change are analytic.
Proof of Lemma. We write

09  = Ej a:(u) duj  = B,.b;(v)  da’,

where the functions a;(u) (resP.  b;(v)) are analytic in ul, . . . , u’”
(resp. vl, . . . , Urn).  Let (c:(d))  be the inverse matrix of, (b:(v)).
Then the system offunctions vi =f’(u’,  . . . . , unr),  i = 1, . . . , m, is
a solution of the following system of linear partial differential
equations :

W/W  = C,  ci(v)af(u), i,j=l,...,  n.

Since the functions c:(v)  and af(u) are analytic in vl, . . . , urn  and
111, . . . , urn respectively, the functions f i(ul,  . . . , urn)  are analytic
in u1 >***, urn  (cf. .4ppendix  1). This proves the lemma.

Let xl, . . . , x” and pi, . . . ,p” be two normal coordinate
systems in M. Let (xi, Xi) and (Jo,  Y$ ,be  the local coordinate
systems in L(M) din uced by these normal coordinate systems. By
the lemma just proved, y’, f”* * *  >- are analytic functionsof  xi  and
Xi. Since y’, . . . , y” are clearly *independent of Xi, they are
analytic functions of x1, . . . , x”. This proves the first assertion of
Theorem 7.7. Since we have already proved that the form&w;  are
analytic with respect to (xi, Xi), the connection is analytic. QED.

As an application of Theorem 7.7 we have “ ’

VI. TRANSFORhfATIOi%S 2 6 5

THEOREM 7.8 . In Theorem 7.4, if  ,M and M’  are, moreover,
connected, simply connected and complete then there exists a unique
afine isomorphism f of M onto M’ such that f (x0)  = yyo  and that the’
dixerential  off at x0  coincides with F.

Proof. This is an immediate consequence of Corollary 6.2,
Theorem 7.4, and Theorem 7.7. QED.

COROLLARY 7.9. Let M be a connected, simply,  connected manifold
with a complete linear connection such that V 7’ = 0 and VR = 0. If F
is a linear isomorphism of TJ M) onto TJM)  which maps the tensors
Tz,  and RTO  into Ty,  and RvO, respectiveb,  then there is a unique a&e
transformation f of M such that f (x0)  = y0  and that the di$rential  of
fatx,isF.

In particular, the group %(A!) of ajine transformations of Al is
transitive on M.

Proof. The first assertion is clear. The second assertion
follows from Corollary 7.5 and Theorem 7.8. QED.

In 93  of Chapter V, we constructed, for each real number k, a
connected, simply connected complete Riemannian manifold of
constant curvature k. Any connected, simply connected complete
space of constant curvature k is isometric to the model we con-
strutted.  Namely, we have

THEOREM 7.10. Any two connected, simply connected complete
Riemannian manifolds of constant curvature k are isometric to each other,

Proof. By Corollary 2.3 of Chapter V, for a space of constant
curvature, we have VR = 0. Our assertion now follows from
Theorem 7.8 and from the fact that, if both .\I and M’ have the
same sectional curvature k, then any linear isomorphism
F :  TJM)  -+TJM’)  mapping the metric tensor gz,  at x,,  into
the metric tensor gi, at y,,  necessarily maps the curvature tensor
Rz,  at x0  into the curvature tensor Rio  sty,  (cf. Proposition 1.2 of
Chapter V). QED.
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A P P E N D I X  1

The ‘purpose of  this  appendix is  to s tate the fundamental
theorem on ordinary linear differential equations in the form
needed in the text. The proof will be found in various text books
on differential equations.

For the sake of simplicity, we use the following abbreviated
notation :

3’ =: ( 1’1, . . .._ ,Y”), rl = (Tl’, . . . > 17”),  f = (f’, . . . ,f”),

CI’ = (f/l,  . . . ) y”), s = (9, . . . ) P), x = (xl,...,xm).

Then we have

THEOREM. Let f (t,y,  s) be a family OJ n functions dejined in ItI  < 6
and (y,  sj E  D, where D is an open set in  R”~?‘“. Iff(t,y,  s) is continuous
in t ad dzj?erentiable  of class Cl  in y, then there exists a unique farnib
yl,t,  9,  s) of n Jitnctions  dejned in ItI  < b’  and (q, s) E D’, where
0 . . b’ < d and D’ is an open subset of D, such that

(1) Q (ti  q, s) is di$erentiable  ofclass  Cl  in t and 1;1;
(2)  %(t,  71,  s!/at  =f(t,  7 (4 ‘I, s), s);
(3)  Y(O,  77,s)  = 9.
Iff(t,y.  s) is dz@entiable  of class C”‘,  0 p :- W, in t and of class

C”,  1 .; q 5.1  W, in y and s, then g(t,  ‘1,  s) is di$erentiable  of class Cp+l
in t’ and of class C” in q and s.

Conside,r the system of differential equations :

(+t = f (t,y,  s)

which depend on the parameters s. Then y  = q(t, 7, S)  is called
the solution satisfying the initial condition:

y = q when t = 0.

267
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Consider now a system of partial differential equations:

aypw  =fj(x,y), i=l,..., n;j=l,...,  m.

It follows from the theorem that if the functions fj(x,y)  are
differentiable of class C’,  0.~  r $ .o, then every solution
y = v(x) is differentiable of class Cr+l. This fact is used in the proof
of Theorem 7.7 of Chapter VI.

,

1

.

APPENDIX 2

A connected, locally compuct metric sp&e
is separable

We recall that a topological space M is separable if there exists a
dense subset D which contains at most countably many points. It
is called ZocaUy  @arable  if every point of M has a neighborhood
which is separable. .Note  that, for a metric space, the separability
is equivalent to tjre  second axiom of countability (cf. Kelley
[I,  p. 1201).  The proof of the statement in the title is divided
into the following three lemmas.

LEAfMA.lr A compact metric space is separable.

For the proof, see Kelley [l,  p. 1381.
I ’

LEMMA 2. A locally compact metric space is LocaJy  separable.

This is a trivial consequence of Lemma 1.
The following lemma is due to Sierpinski [ 11.

LEMMA 3. A connected, locally sefirable  metric space  is #arable.
Proof of Lemma3. ‘Let d be the metric of a connected, locally

separable metric space M. For every point X’ c M and every
positive number  r,  let U(x; Y) bi: the Interior of the  sphere of _
center x..$@  radius r,  that is, U(X;  Y) = (3 c M; d(x,  y) -C  Y>.  We
Say that t$vo p&it4  ‘x and y of M are R-related and write xRy,  ;
‘$‘,there;@st  a sep&abfe’  U(x; r)  coritaining  y and .a separable
.ob;-r’)  ‘containing x. Evidently, X& for every x E M.\We  have
also  xRy  if and only ifyRx.

For every subset A of M, we denote by SA the set of points which
are R-related to a point of A: SA .= (y Q M; yR.x  for some x E A}.
Set .!?‘A  = &P-l&  n = .2,3, . . . . If {x>  is the set consisting of a
single point x,  we write Sx  for S(r).  We see easily that y z 5% if
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and only if x E Sty.  ‘CVe  prove the following three statements:
(a) Sx is open for every x E ?tii;
(b) If d  is separable, so is S/1;

m
(c)  Set U(X) = U S”X  for each x E M. Then, for any x,-j’ E .li,

a- 1
eithm  U(x)  n U(y), is empty or U(X) A=  U(T).

Proof of (a). Let y  be a point of Sx. Since XRy,  there exist
posit ive numbers r and  r’ such  tha t  U(.Y;  r) and  u(y;  r’) are
separable and that y  E U(X; r) and x E V(y;  r’). Since d(x,y)  < r’,
there is a positive number rr such that

d(x,y)  < r-1  < r’. -

Let rO be any positive number such that

r. e? r’,  - rl, r, < r - d(x,y),.  r. -c rl - d(x,y).

‘It suffices to show that U(y,  r,J is contained in Sx. If z E Ii(-y;  r,J,
- t h e n  .

d(x,  2) $  d(x,y)  + d(y,  2) -2 d(x,y)  -+ TO’  < m i n  [r,  rr:.

Hence z is in U(X; r) which is separable and x is in U(z; tr). To
prove that c(z; rl) is separable, we shall show  that l_-(z; I~) is
contained in U(y;  r’) which is separable. Let ze,  E I-(z;  rlj so that
d(t,  W)  <  rl.  T h e n

d(y,  w) 12 d(y,  2) + d(t, w) < d(y, 6) + rl < rt,  ,+ rl < r‘.

Hence w E E(y;  r’). This proves’that  zRx  for eve*  2 t U(y;  rO),
that is,, U(y;  r,J .c ^s;c.

,Prdbf  Qf (B). Let 12 be  a  separable  subset  of  ,\f  and  .D  a
countable  dense  subset  of  ..I. I t  suffices to”,provre that  every

.x E S:l  is contained in, a separable sphere’rirhose center is a point of
r,t D and whose radius is a rational number, because there are only

countably many such spheres and the union of these spheres is
separable. Let x E S/f. Then  there isJ  E d  such that XRJ~  and ‘there
is a, separable sphere  [‘(j; r) containing X.  Let or,,  be a ‘pdsitive
rational number such that d(.u,g)  < ru < r. Since D is dense in .-1,
,there  is z E D such that

d(z,p)  < m i n  {rO  - d(x,y),  r -rro}+<.- .

It suffices to show that /7(z;  rO)  contains x and is separable. From*

d(x,  zj : d(x,y)  -r d(y, z )-c r,:

.
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it follows that x E U(z;  rO).  To prove that C’(z;  rO)  is separable, we
show that c(z; rO)  is’ contained in 1r(y;  7) which is separable. If
w E c’(z;  r,,),  then

d(w,y)  2  d(w, z )  + d(z,y)  c r. + d(z,y)  < r,

and hence w E C’(y; r).
Proof of (c). Assume that U(x)  n U(y) is non-empty and let

z E U(x) n U(y). T hen z E S”‘x  and z E S’y for some m and n.
From z E Smx, we obtain x E S*z.  Hence x E S”Z c S”+“y.  This
i m p l i e s  S”x  c Sk+m+ny  f o r  e v e r y  k  a n d  h e n c e  C’(x) c U ( y ) .
Similarly,  we have U(y) c U(x)-, thus proving (6). .

By (a), SA k U SX is open for any subset A of Al. Hence U(x)

is open. for every*?6 M. By (b), S”x  is separable for every n.  Hence
U(x) is separable. Since A4 is connected and since each. U(x) is
open, (c) implies M  = U(x) for every x E M. Hence M is separable,
thus completing the proof of the statement in’the  title.

We are now in position to prove ’
-.

T H E O R E M . For a connected di$Erentiable  manifold M, the following
conditions are mutual@  equivalent :

(1) There exists a Riemannian metric on M;
(2) M  is metrizable;
(3) M sat$es  the second axiom of countabilip;
(4) M is paracompact.
Proof. The implication (1) --f (2) was proved in Proposition

3.5 of Chapter IV. As we stated at the beginning, for a metric
space, the second axiom of countabil i ty is  equivalent to the
separability:The  implication (2) --f (3) is therefore a consequence
of the statement in the title. If (3) holds, then -41 is metrizable by
Urysohn’s  metrization theorem (cf. Kelley [l, p. 1251) and ,
hence,  M is paracompact (cf. Kelley [I, p.  1561).  This  shows
that (3) implies’ (4). The implication (4) + (1) follows from
Propiition  1.4 of Chapter III. ’ 2, QED..

.



APPENDIX 3

Partition of unitj

Let {U& be a locally finite open covering of a differentiable
manifold M, i.e., every point of M has a neighborhood which
intersects only finitely many Ui’s.  A family of differentiable
functions (fi)  on M is called a partition of unity subordinate to the
covering {U,},  if the following conditions are satisfied:

(1) 0 5fi 5 1 on M for every iE I;
(2) The support of each fi, i.e., the closure of the set

Ix E  M;.L(x)  # 01, is contained in the corresponding Ui;
. (3) i-J&)  = -1.

Note that in (31, for each point x B M,‘f,(x)  = 0 except for  a
finite number ofi’s-  so that Eifi(x)  is a finite sum for each SC.

W e  f i r s t  p r o v e

THEOREM 1. Let {Vi} be a locally finite open covering of a para-
compact manafold  M such that each Ui has compact closure Ui.  Then there
exists a partition of unity .(fi)  subordinate to {Vi). .,

Proof. We first prove the following three lemmas. The first
two are valid without the assumption that M is paracompact
whereas the third holds’for any paracompact topological space.

For each point x E M and for each neighborhood U of x,
the:=:  b di$erentiable  function f (of  class Cm)  on M such that (1)
0 5  f d  1 on M; (2) f(x) = 1; and (3) f = 0 outside U. :

Proof of Lemma 1. This can be easily reduced to the case where
M = R”,  x = 0 and U = {(xl, . . . , x”)  ; lx’1  < u}. Then, for each
j,j = 1,. . . , n, we let fj(xj)  be a differentiable function such that
f,(O)  = 1 and thatfj(xj)  = 0 for lxil 2 a. We set f(xl,  . . . , x”) =
fl(xl)  - - ; fn(xn). This proves Lemma 1.

LEMMA 2. For every compact subset K of M and for every neighbor-
hood U of K, there exists a dzjerentiable  function f on M such that (1)
fZOonM;(2)f>O on K; and (3) f = 0 outside U.

272
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Proof of Lemma 2. For each point x of K, letfi  be a different-
iable function on hl  with the property off in Lemma 1. Let I’,
be the neighborhood of x defined by fz > Q. Since K is compact,
there exist a finite number’of  points xi, : .I.  , xk  of K such that
vz, v * ** u Vzk  1 K. Then we set

f =fz,  + - * *  +&Ii,.

This completes the proof of Lemma 2.

LEMMA 3. Let {Ui} be a local&jr&e  open covering of M. Then there
exists a locally jnite  open refinement {Vi} (with. the same index set) of { U,}
such that Vi c Ui for every i.

Proof of Lemma 3. Forieach  point x.2  M, let W, be an open
neighborhood of x such that wz  is contained in some Ui.  Let
{IV:>  be a locally finite refinement of {W,; x E  M}. For each i, let
Vi  be the union of all IV:  whose closures are contained in Ui.
Since {IV:}  is 1ocalIy  finite, we have Vi = lJ l&r;, where the union is
taken over all a such that m:  c Ui.  We thus obtained ‘an open
covering {Vi} with the required property.

We are now in position to complete .the  proof of Theorem 1.
Let {Vi} be as in Lemma 3. For each i,‘let Wi be an open set such
that Vi c Wi  c wi c Ui.  B y Lemma  2, there exists, for each i,
a differentiable function gi  on M such that (1) gi  .r 0 on M;
(2) gi  > 0 on Vi;  and (3) gi  = 0 outside Wi. Since the support of
each gi  contains Vi and is contained in Ui and since {Ui} is locally
finite, the sum g = Zi gi  is defined and differentiable on M. Since
{Vi} is an open covering of M, g > 0 on M. We set, for each i,

.fi = SilS*

Then {fi}  is a partition of unity subordinate to (U,}. QED.
Let f be a function defined on a subset F of a manifold M. We

say that f is differentiable on F if, for each point x f F, there exists
a differentiable functionf,  on an open neighborhood V, of x such
thatf =f,onPn  V,.

THEOREM 2 . Let F be a closed subset of a paracompact manifold M.
Then every  dtxerentiable  function f dejned on F can be extended to a
di$erentiable  function on M.
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Proof . For each x E  F, letfi  be a differentiable function on an
open neighborhood V..  of x such thatf,  = f on F A V,. Let .Ui  be
a locally finite open refinement of the covering of 111 consistmg of
M - F and V,,  x e F. For each i, we define a differentiable
function gi  on Ui as follows. If Ui is contained in some V,,  we
choose such a I’,  and set

gi  = restriction off, to Vi.

If there is no k’, which contains Ui, then we set
gi  = 0.

Let { fi} be a partition of unity subordinate to {UJ. We define
g = &f&&.

Since  (UJ is locally finite, every point of M has a neighborhood in
which xi  fig, is really a finite sum. Thus g is differentiable on M.
It is easy to see that g is an extension off. QED.

In the terminologies of the sheaf theory, Theorem 2 means that
the sheaf of germs of differentiable functions on a paracompact
manifold M is soft (“mou”-  in Codement [ 11).

, J :
i.,

‘, 1, ?

> “i
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APPENDIX 4

On arcwise  connected subgroUps  of a Lie group

Kuranishi  and Yamabe  proved that every arcwise  connected
subgroup of a Lie group ,is B Lie subgroup(see  Yamabe  [I]). We
shall prove here the following weaker theorem, which is sufficient
for our purpose (cf. Theorem 4.2 of Chapter II). This result is
essentially due to Freudenthal [I].
THEOREM Let G be a Lie group and H a subgroup of G such that

every element of H can bejoined  to the identity  e by a piecewise d@erentiabb
curve of class C1 which is contained in H. Then H is a Lie subgroup of G.

Proof . Let S be the set of vectors X E  T,(G) which are tangent \
to differentiable curves of class Ci  contained in H. We identify
T,(G) with the Lie algebra g of G. Then
L EMMA. S is a subalgebra of g.
Proof of Lemma. Given a curve x, in G, we denote by ill, the

vector tangent to the curve at the point x,.  Let r be any real
number and set zt = qt.  Then i, = r 5.  This shows that if
X 6 S, then rX  E  S. Let xt and yt be curves. in G such that x0  =
y.  = e. If we set v, = xtyt, then ir,,  = .?O + j, (cf. Chevalley
[ 1, pp. 120-1221).  This shows that if X, Y E  S,  then X + YES.
There exists a curve w,  such that wtp  = x,ytx;3;’  and we have
&,,  = [&,,j,,]  (cf. Chevalley [l,  pp. 120-1221  or Pontrjagin [l,
p. 2381).  This shows that if X, Y c S, then [X, Y] E  S, thus com-
pleting the proof of the ,lemma.
Since S c T,(G) = g is a subalgebra of g, the distribution

x -+ L,S, x E  G, is involutive (where L, is the left translation by x)
and its maximal integral manifold through e, denoted by K, is
the Lie subgroup of G corresponding to the subalgebra S. We
shall show that H = K.

We first prove that K 2 H. Let a be any point of H and : = xt,
0 5 t s 1, a curve from e to n so that e = x,,  and a = x1.  We claim

375

,
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that the vector it is in L,,S  for all t. In fact, for each fixed t,
L,‘(i,) is the vector tangent to the curve L,‘(T)  at e and hence
lies in S,  thus proving our assertion. Since i, E  L,,s.for  all t and
x,,  = e, the curve x1  lies in the maximal integral mamfold  K of the
distribution x -+ L,S (cf. Lemma  2 for Theorem 7.2 of Chapter

II). Hence a E  K, showing that K 1  H.
To prove that  H 1  K, let e,,  . . . , ek be a basis for s and

1Xt’ *. $,  0 5 t 5 1, be curves in H such that xh  = e and
ib=e,fori=l,..., k.  Consider the mapping f of a neighbor-
hood u of the origin in R” into K defined by f(ti,  . . : , 1,)  =

1x1, - ** Xfk,  (h, - - * 2 tk)  E  U. Since & . . . , $j form a basis for S,
the differential off: U - K at the origin is non-singular, Taking
u sufficiently small, we may assume that f is a diffeomorphism  of
U onto an open  subset f(  U) of K. From the defimtlon  off, we
have f(U)  c H..  This shows that a neighborhood of e in K is
contained in H. Since K is connected, K C.  Hi

QED.

. *

. -
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APPENDIX 5

Irreducible  subgroups of O(n)

We prove the following two theorems.

THEOREM  1. Let G be a subgroup of O(n) which acts irreducibly on
the n-a’imensional real vector space R”.  T&n every symmetric bilinear form
on R”  which is invariant by G is a multiple of the standard inner product

THEOREM  2. . Let G be a connected Lie subgroup of so(n)  which acts
iweducibly  on R”.  Then G is closed in SO(n).

We begin with the following lemmas.

LEMMA 1. Let G be a subgroup of GL(n;  R) which acts iweducibly
on R”.  Let A be a linear transfmmation  of R”  which commu’tes  with every
element of G.‘Then ,

(1) If A is nilpotent, then A = 0.
(2) The minimal pobnomial  of A is irreducible over  R,
(3) Either A F al,,

,
( a : real number, I,, : the identity transformation of

R”),  or A = al,, + b J, where a and b are real numbers, b f  6;  J is a
linear transformation  such that JY  T -I,, and n is even.

Proof . (1) Let. k be the smallest integer such that Ak  = O.,
Assuming .that  k 2 2, we.  derive a contradiction. Let W &
(x c R”; As  = O>.,$,;mce w-is  invariant by G, we have either W =
R”  or &‘a=;  (0). h the first  sa&,jA  F 0.  In the second case, A
is non-singtilarand  A”-‘. = 4:’ * AK = 0.

.  (2) If the minimal  polynomial f (x)  of A is a product jr(x) -f  a(x)
wrth  (.fi,  fi) -=‘li-  tI+zn RF F WI + IV, (direct sum), where
Wi = {⌧ l R”;J(A)x = 01,  Since every element of G commutes
with A and hence with fi(A),  it follows that Wi are both invariant
by G, contradicting the assumption of irreducibility. Thus

277
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f(x) = g(x)“,  where g( x is irreducible. Applying (1) to g(A), we)
see thatf(A)  = g(A)L  = 0 implies g(A) = 0. Thus<  = g.

(3) By (2))  the minimal polynomialf(x)  of A is either  (x - u)
or (x - 0)” +-  b2  with b # 0. In the first case, A = ~1%.  In the
second case, let J = (A - aI,,)/b.  Then J2 = -I,, and A = al,  +
b J. We have (-  1)” = det J2 = (det -y;r)”  > 0 so that n is even.

i

! LEMMAS. Let G be a subgroup of O(n) which acts irreducibly on R”.
Let A, B, . . . be linear trunsfwnutions  ‘of R” which commute with G.

(l)‘lf  A ii symmetric, i.e., (Ax,y)  ‘=  (x, Ay), then A = al,.
(2) If A is skew-symmetric, i.e., (Ax, y) + (x,  Ay) = 0, then A = 0

or A = bJ,  where J2 7 -I, and n = 2m.
(3) I$ ,4  # 0 and B are skew-symmetric and AB = BA, then

B =cA.
P r o o f . (,l) By (3) of Lemma 1, A = a& + bJ, poss’ibly  with
b = 0. If A is symmetric, so is-b J. If b f 0, J is symmetric so that
(Jx, Jxj = (X,$X)  = -( , ), h hx x w ic is a contradiction for x # 0.

(2) Since the eigenvalues  of skew-symmetric A are 0 6r purely
imaginary, the minimal polynomial of A is either x or x2  + b2,
b f 0. In the first case, A = 0. In ‘the second case,  A =‘--bJ
with J2  = -I,.

(3) Let A = bJ  and B = /‘K,  where J” = iY2  = -I,,. We
have JK  = KJ. We show that R” = W,  + M’,  (direct sum),
where. W,  = (K E  R”;  Jx  = Kxj'  and W, = {x  E  R”;  Jx = --Kx).
Clearly, TV1 n W, = (0);  Every x E’R”  is of the f&m -y + z with
y t W, and z E  W,,  as we see by setting y = (x - JKx)/2  and
z = (x + JKx)/2.  W, and ?Y2 are invaiiant  by G,  because J and
K commute with tvery  eleinent  of G. Since G is irreducible, we
have either ‘Mt, = Rn or W, = R”, that is, either K -b-J  or
K = -Ji  This means th?? B = CA  for some c.

Proof of Theorem 1. For any symmetric bilinear form f(x,  y),
there is a synime’tric  linear trarisformation  A such that f(x,;I)  1
(Ax,  yj . Iff is invariant by G, then A commutes with every element
of G. By .( 1) of Lemma 2, d = aIn and henctf(x,  y)’  = a(x,y).

Proof of Theorem 2. We first show that thi: center  3 of the Lie
algebra g of G is at most l-dimensional. Let A + 0 and B f 3. Since
4, B are skew-symmetric linear transformations. which  commute
with every element df G, (3) of Lemma 2 implies that B = CA  for
some c. Thus dim 3 5. 1. If dim 3 = 1, then 3 = (c$,  c real:,  where
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Jis a certain skew-symmetric linear transformation with 52 = -I,.
Now J is representable by a matrix which is a block form, each

block being with respect to a certain orthonormal basis

I of R”. The l-parameter subgroup exp tJ consists of matrices of a

block form, each block being I
cos t -sin t

\ . and hence is iso-
- \sin  tmorphic with the circle group. cos tj’

Since g is the subalgebra of the Lie algebra of all skew-sym-
metric matrices, g has a positive definite inner product (A, B) =
-trace  (AB) whichisinvariant by ad (G). It follows that the orthog-
onal complement I of the center 3 in g with respect to this inner
product is an ideal of g and g = 3 + 5 is the direct sum. If z,
contains a proper ideal, say, sl, then the orthogonal comp4cment
s’  of sL in 5 is an ideal of 5 (in fact of g)  ,and s = s1  + 5’. Thus we
see that 4 is a direct sum of simple ideals: s = s1  + - - - + 5,.  We
have already seen that the connected Lie subgroup generqted  by
3 is closed in SO(n). We nowshow  that the connected Lie subgroup
generated by 5 is closed in so(n).  This will finish the proof of
Theorem 2.

We first remark that Yosida [ 1 J proved the following result.
Every connected semisimple Lie subgroup G of GL(n; C) is closed
in GL(n; C). His proof, based on a theorem of Weyl that any
representation of a semisimple Lie algebra is completely reducible,
also works when we replace GL(n; C) by GL(n;  R). In the case of
a subgroup G of SO(n), we need not use the Weyl theorem. We
now prove the following result by the same method as Yosida’s.

A connected semisimple Lie subgroup G of SO(n) is closed in SO(n).
Proof. Since g is a direct sum of simple ideals gl, . . . , g, of

dimension > 1 and since gi  = [gi, gi] for each i, it follows that
g = [g, g]. Now consider SO(n) and hence its subgroup G as acling
on the complex vector space C” with standard hermitian inner
product which is left invariant by SO(n). Then C” is the direct sum
of complex subspaces V’,,  . . . , V, which are invariant and
irreducible by G. Assuming that G is not closed in SO(n), let G
be its closure: Since G is a connected closed subgroup of SO(n),
it is a Lie subgroup. Let g be its Lie algebra. Obviously, g c 3.
Since ad (C)g  c g,  we have ad (c)g c g, which implies that g is
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an idcal  of ij. Since the Lie algebra of SO(n) has a positive definite
inner product invariant by ad (SO(n)) as WC already noted, it
follows that R is the direct sum of (1  and the orthogonal comljle-
rnent u of 9 in fi. Each summand Vi of C” is also’ invariant by
c and hence by ?j acting on 0. For any .-1 E  g,  denote by Ji  its
action on Vi for each i.~  For any A, B t $1,  we have obviously
trace [-di,  B,] = O.Since :1 + A, is a representation of g on 1: and
since g ==  [g,  91,  we have trace Ai = 0 for every A E  g. Thus the
restrktion  of c1 E  G on each V’i  has determinant 1 (cf. Corollary 1
of Chevafley [I;  p. S]). By continuity, the restriction of a E  6
on each I’, has determinant 1. This means that trace :4? = 0
for every -4 6 (7  and for each i. Now let U c it. Its action B,  on
Vi commutes with the actions of {Ai; A E  $1).  By Schur’s Lemma
(which is an obvious consequence of Lemma 1, (2),  which is
valid for any field instead of R), we have Ui - b,l, where I is
the identity transformation of Vi. Since trace B,  = 0, it follows
that hi  = 0, that is, B, = 0. This being the case for each i, we
have H = 0.  This means that u = (0) and ij =.Q. This proves
that 6 = G, that is, G is closed in so(n).

APPENDIX 6

Green’s theorem

Let M be an oriented n-dimensional differentiable manifold.
An n-form o on M is called a volume element, if w( a/a&  . . . ,
a/&“)  > 0 for each oriented local coordinate system 9,  . . . ,9.
With a fixed  volume element w (which will be also denoted by a

more intui  ’
-w

notation dv),  the integral
s

f dv of any continuous

function f with compact support can b:defined  (cf. Chevalley
[I, pp.. 161-1671%.

For eachvector field X on M with a fixed volume element w,
the dimgence  of&  denoted by div X, is a function on M defined by

(div X)  o = zxo,

where L, is the Lie differentiation in the direction of X,,
GREEN’S THEOREM. Let &f  be  an oknted compact manifold with a

jixed  volume element o = dv. For every vekorjield  x on M,  we  have

s div X dv = 0.
M . .

Proof. Let qt be the ‘l-parameter group of transform+ions
generated by X (cf. Proposition 1.6 of Chapter I). Since we have
(cf. Chevalley [l,  p. 1651)

I 9P w,
M

considered as a function oft, is a constant. By definition

2 8 1 -
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of L,, we have  [$ (~II*w)]~=~=  -Lsn,. Hence

= -
s

L,m = - div X dv.
.u sJf

.

QED.

Remark 1. The above formula is valid for a non-compact
manifold M as long as X has a compact support.

Remark 2. The above formula follows also from Stokes’ formula.
In fact, since ds  = 0, we have Lscu  = d 0 ls  II)  + I-~  0 do)  = d 0 15co.
We then have

l,p,,  =j-$o,  = 0: ,

PROPOSITION. Let M be an oriented manifold with a fixed volume
element 0 = dv. If I?  is an a&e connection with no torsion on M such that
w is parallel with respect to F, then, for every vector field X on M, we have

(div X), = trace of the endomorphism V --t V,X, V 6  T,(M).

Proof. Let A, be the tensor field of type (1, 1) defined by
,4,  = Lx - V, as in $2 of Chapter VI. Let X,, . . . , X,  be a
basis 0: T,(M). Since Vxw = 0 and since Ax,  as a derivation,
maps every function into zero, we have

k&4(&,  * - *  9 ‘X) = (A,o)(X,,  * * *  , Xn)

= A,(OJ(Xl,  * * s y X,)) - Ci  0(X*, e a m p A,Xi,  * s * y Xn)

= -cio(Xl,...,A,Xi,...,X,)

Z.Z -(trace:Ax).o(X,,  . . . , X,).

This shows that
div X = -trace A,.

.’

Our  assertion follows from the formula (cf. Proposition 2.5 of
Chapter VI) :

A,Y = -V,X  - T (X, Y)

and from the assumption that T = 0. QED.
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Remark 3. The formula div X = -trace A, holds without the
assumption T = 0.

Let M be an oriented Riemannian manifold. We define a
natural volume element du  on M. At an arbitrary point x of A$
let X1, . . . , X,, be an orthonormal basis of T,(M) compatible
with the orientation of M.  We define an n-form dv by

d+$,  - . . , X,) = 1. *
It is easy to verify that dv is defined independently of the frame
Xi, *.  ,. . , X,, chosen. In terms of an allowable local coordinate
system x1,  . . . . ,
we  have

xn  and the components g,, of the metric tensor g,

dv=z/Gdxl~dxaA***Adrn,  w h e r e  G=det(g,,).  ,

In fact, let (a/&$).  = Z, CfX,  so that ggj  = Z& CtCt and G =
det (Q2  at x. Since 8/8x’,  . . . , a/ax” and X1, . . . , X,  have the
same orientation, we have det (Cj) = fi  > 0. Hence, at x, we
have

dv(a/axl,‘.  . . ,‘alaxn)  = l?Zil  ,..., i,  E C? . - s C>  dv(X<,,  . . . , X,.)

= det (Cf)  = $%,

where E  is 1 or -1 according as
permutation of ( 1, . . . , n) .

(i 1,  . . . , in) is an even or odd

Since the parallel displacement along any curve T of g maps
every orthonormal frame into an orthonormal frame and preserves
the orientation, the volume element du  is parallel. Thus the
proposition as well as Green’s theorem is ,valid  for the volume
element du  of a Riemannian manifold.
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Factorization lemma

Let A4 be a differentiable manifold. Two continuous curves
x(t) andy(t)  defined on the unit interval Z = [0, l] with x(O)  =
y(0) and x(l)  =y(l) are said to be homotopic to each other if
there exists a continuous. mapping f: (t, S)  6 Z x Z -+f(t,  5) Q A4
such thatf(t, 9) - x(t),f(t,  1)  =y(t>,f(O,  4 = ~(0)  =yP) and
f(b)  = x ( l )  +y(l)for every t and s in Z.‘When  x(t)  andy(t)  are
piecewise differentiable CUIV~S  of &ss  Ck  (briefly, piecewise Ck-
curves), they are piecewise  CL-homo&$ic,  if the mapping. f can be
chosen in su’ch  a way that it is piecewise Ck on Z x Z, that is, for a

certain subdivision Z = $r Ii, f is a differentiable mapping of class

Ck of Zi  x Z, into A4 for each (i, j).

LEMMA. If two piecewise  Ck-curves  x(t) andy(t)  are homotopic to each
other, then they are piecewise Ck-homotopic.

Proof. We .can  take a suitable subdivision Z = i$1Zi so that

f(l, x Z,) is contained in some coordinate neighborhood for each
pair (i, j). By modifying the mapping f in the small squares
Z*  x Z, we can obtain a piecewise Ck-homotopy between ‘x(t)  and
YW

Now  let U be an arbitrary open covering. We shall say that a
closed curve T at a point x is a U-&JO  if it can be decomposed into
three curves 7 = p-1 - u * p, where p is a curve from x to a point
y and (I  is a closed curve aty which is contained in an open set of
lf. Two curves T and T’  are said.to  be equivalent, if T’  can be
obtained from 7 by replacing a finite number of times a portion of
the curve of the form ,u-1  * ,U  by a trivial curve consisting of a
single point or vice versa. With these definitions, we prove

284

APPENDIX 7 285

FACTORIZATION L EMMA. Let 2I be an arbitrary open coking  of M.
(a) Any closed curve which is homotopic to zero is equivalent to a product

of a jnite  number  of II-lmsos.

(b) Zf the curve is moreover piecewise  Ck, then each U-lasso in the
product can be chosen to be of the  form ,u-1  - (I - p, where p is a piecewise
Ck-curve  and Q  is a Ck-curve.

Proof . (a) Let 7 = x(t), 0 I t S 1, so that x = x(O)  = x(l).
Letf be a homotopy Z x I-+ M such that f(t, 0) = x(t),f(t,  1)
= x,f(O, J) =f(L  4 = x for every t and s in 1. We divide the
square Z x Z into ma  equal squares so that the image of each small
square ,by  f lies in some open set of the covering U. For each pair
of integers (i, j), 1 d i, j $ m, let n(i,  j) be the closed curve in the
square Z x Z consisting of line segments joining lattice points in
the following order:

(O,O>  + W/m)  -+ (6 - l>/m,j/m)  -+

(6 - 1)/m,  (j’- 1)/m)  --t (i/m,  (j - 1)/m)  + (i/m&)  -L

(6 - 1)/m&d  -c  (W/m)  + V-4 0).
Geometrically, A(i, j) looks like a lasso. Let T(i,  j) be the image
of A(i, j) by the mapping f. Then T is equivalent to the product of
U-lassos

T(m,  m) ’ ” T(1,  m) ” ’ T(m,  2) - - - 7(1, 2) ’ T(m,  1) - -  -  T(1, 1).

(b) By the preceding lemma, we may assume that the homo-
topy mapping f is piecewise Ck.  By choosing m larger if necessary,
we may also assume that f is Ck  on each of the ma  small squares.
Then each lasso T(i, j) has the required property. QED.

The factorization lemma is taken from Lichnerowicz [2, p. 5 13.



NOTES

Note 1. Connections und holonomy groups

1. Although differential geometry of surfaces in the 3-dimen-
sional Euclidean space goes back to Gauss, the notion of a Rieman-
nian space originates with Riemann’s Habilitationsschrift [l]  in
1854. The Christoffel symbols were introduced by Christoffel [l]
in 1869. Tensor calculus,: founded and developed in a series of
papers by Ricci, was given a systematic account in Levi-Civita and
Ricci [l]  in 1901. Covariant differentiation which’was formally
introduced in this tensor calculus was given a geometric inter-
pretation by Levi-Civita [l]  who introduced in 1917 the notion of
parallel displacement for the surfaces. This discovery led Weyl
cl, 2] and E. Cartan  [ 1, 2,4,,5,  8,9]  to the introduction of affine,
projective’ and conformal connections. Although the approach of
Cartan  is the most’ natural. one and reveals best ‘the geometric
nature of the connections, itwas  not until 1950 that Ehresmann [2]
clarified the general notion of connections from the point of view
of contemporary mathematics. His paper was followed by
Chern [ 1, 21, Ambrose-Singer [ 11, Kobayashi [6],  Nomizu [7],
Lichnerowicz [2] and others.

Ehresmann [2] defined, for the first time, a connection in an
arbitrary fibre bundle as a field of horizontal subspaces and
proved the existence of connections in any bundle. He introduced
also a connection form w and defined the curvature form Q by
means of the structure equation. The definition of s1  given in this
book is due to Ambrose and Singer [l]  who proved also the
structure equation (Theorem 5.2 of Chapter ,II).  Chern [ 1, 21
defined a connection by means of a set of differential forms o, on
U, with values in the Lie algebra of the st.ructure  group, where
(U,}  is an open covering of the base manifold (see Proposition 1.4
of Chapter II).

Ehresmann [2] also defined the notion of a Cartan  connec-
tion, whose examples include affine, projective and conformal
connections. See also Kobayashi [6] and Takizawa [ 11. We have
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given in the text a detailed account of the relationship between
linear and afline  connections.

2. The notion of holonomy group is due, to E. Cartan  [ 1, 61;
The fact that the holonomy group is a Lie group was taken for
granted even for a Riemannian connection until Bore1  and
LichneIowicz  [I]  proved it explicitly.~  The holonomy ,t$eorem
(Theotim  8.1 of Chapter II) of R. Cartan  was rigorously proved
first by-Ambrose-Singer  [ 1 f.  The  proof was simplified. by Nomizu
[7]  and Kobayashi  [6]  by 6&t  proving the. reductios.&eorem
(Th+re,m.  7.1, of Chapter II),;which;.is  essentially due to, ,&tan
and Ehresmaule  Kobayashi  &i$.  showed that Theorem 8.1 ,aS
essentially equivalent. to the .fiisFcowing  fact. For a principal fibre
bundle e(M,  G), co+ier  t$principal  fibre bundle T(P) over
T{M).wth  group T(G), .whm.~:T(  ~) denotes the tangent bundle.
For any connection I’  in?, there&  a naturally induced connection
F(rJ..ia .T(p)~  whot)c  ,h&q~yL  group is T(a)‘,  where Q,  is the
hg+oiiiy  flpup.of.C*  * g’,

:The I;ekuft, of Hano  ancI,Qz+i  [l]  and Non&u  [5].(Theorem’
8.2 of Chapter II) to the e&t that the structure group G of P(M,
G)  caa  be reduced to a subgroup H if and only if there exists a
connecti&  in P whose holonomy group is exactly H means that
the holonomy group by itselfdoes  not give any information other
than thosebbtainable by topological methods, However, combined
with other. conditions (such as a “torsion-@  linear connection”),
the holonomy group is of considerable interest.

3. Chern [9)  defmed  the notion of a Gstructure  on a differenti-
able manifold  M,’ where G is a certain Lie subgroup of GL(n; R)
with n = dim &f. ‘In our terminologies, a G-structure on M is a
reduction of the bundle of linear frames t(M) to the subgroup G.
F o r  G’= O(~),~  a G-structure isnothing  but a Riemannian metric
given on M (see Example 5.7 of Chapter I). For a general theory
of G;structures, see Chein f33, Bernard [l] and Fujimoto [ 11.  We
mention some other special cases.

Weyl (9 and E. Cartan  [SJ  proved the following. I;or  u closed
dsubgr?fi of GL(n; R), n z 3, the following two conditions are

epivutent  :
( 1) G is the group of all matrices which $reserve  a certain non-degenerate

quadmti4form  of any signature:

NOTES 289

(2) For every n-dimensional manifold  M andfor every reduced subbundie
P of L(M) with group G,  there is a unique torsion-free connection in P.

The implication (1) -+ (2) is clear from Theorem 2.2 of
Chapter IV (in which g can be an indefinite Riemannian metric) ;
in fact, if G is such a group, any G-structure on M corresponds to
an indefinite Riemannian metric on M in a similar way to
I&ample  5.7 of Chapter I. The implication (2) -+ (1) is non-
trivial. See also Klingenberg [ 11.

Let G be the subgroup of GL(n; R) consisting of all matrices
which leave the r-dimensional subspace Rc of R” invariant. A G-
@+ucture  ‘on an n-dimensional manifold M is nothing but an Y-
dimensional ‘distribution. Walker [3] proved that an r-dimensional
distribution is parallel with respect to a certain torsion-free linear
connection if and only if the distribution is integrable. See also
Willmore  [I, 21.

Let 0 be GL(n ; C) regarded as a subgroup of GL(2n  ; R) in a
natural manner. A G-structure on a 2ndimensional  manifold M
is nothing but an almost complex ‘structure on M. This structure
will be treated in Volume II.

4. The notions of local and infinitesimal holonomy groups were
introduced systematically by Nijenhuis [2].  The results in $10 of
Chapter II were obtained by him in the case of a linear connection
( $9 of Chapter III). Nijenhuis’ results were generalized by Ozeki
[I]  to the general case as presented in $10 of Chapter II. See also
Nijenhuis [33. Chevalley also obtained Corollary 10.7 of Chapter
II in the case of a linear connection (unpublished) and his result
was used by Nomizu [2]  who discussed invariant linear connec-
tions on homogeneous spaces. His results were generalized by
Wang [l]  as in $11 of Chapter II.

5: Ry  making use of a connection, one can define characteristic
classes of any principal fibre .bundle.  This will be treated in
Volume II. See Chem [2],  I-I.  Cartan  [2, 31. We shall here state
a result of Narasimhan and Ramanan [I] which is closely related
to the notion of a universal bundle (cf. Steenrod  [l,  p; 1011).

T HEOREM. Given a compact Lie group G and a positive integer n,
there exists a principal bundle E( N, G) and a co,;nection  ITO  on E such that
any connection I? in any principal  bundle P(A4,  G), dim M I n, can be
obtained as the inverse image of I’o by a certain homomorphism of P into E
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(that is, w = f *q,, where OJ  and w. are the connection forms of 1‘  and I?,,,
respectively,  see Proposition 6.2 of Chapter II).

The connection F0 is therefore called a universal connection for G
(and n). For example, the canonical connection in a Stiefel mani-
fold with structure group O(k) is universal for O(k). For the
canonical connections in the Stiefel manifolds, see also Kobayashi
[5] who gave an interpretation of the iRiemannian  connections of
manifolds imbedded in Euclidean spaices  (see Volume II).

6. The holonomy groups of linear and Riemannian connections
were studied in detail by Berger [ 11. By a careful examina$ion  of the
curvature tensor,/ he obtained a list of groups which can be
restricted linear lholonomy  groups of irreducible Riemannian
manifolds with non-parallel curvature tensor. His list coincides
with the list of connected orthogonal groups acting transitively on
spheres. Simons [l] proved directly that the linear holonomy
group of an irreducible Riemannian manifold with non-parallel
curvature tensor is~  transitive on the unit sphere in the tangent
space. See Note 7-(symmetric  spaces).

7. The local decomposition of a Riemannian manifold (Proposi-
tion 5.2 of Chapter IV) has been treated by a number of authors.
The global decomposition (Theorem 6.2 of Chapter IV) was
proved by de Rham [l];. the same problem was.also .treated  by
Walker [Z].  A more general situation than the direct product has
been studied by’Reinhart  111,  Nagano.[Z]  and Hermann  [I].

It is worthwhile noting that even the local decomposition is a
strongly metric property. Ozeki gave an exampleof a torsion-free
linear connection with the following property. The linear holo-
nomy group is completely reducible (that is, the tangent space is
the direct sum of invariant irreducible subspaces) but the linear
connection is not a direct product even locally. His example is as
follows: On R2  with coordinates (xl, x2),  take the linear connec-
tion given by the Christoffel symbols F],  (xl, x2&= x2  and other

I’jk = 0. The holonomy group is ((l  i); a >O).

8. The restricted linear holonomy group of an arbitrary
Riemannian manifold is a closed subgroup of the orthogonal
group. Hano  and Ozeki [I] gave an example of a torsion-free
linear connection whose restricted linear holonomy group is not
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closed in the general linear group. The linear holonomy group
of an arbitrary Riemannian manifold is not in general compact,
as Example 4.3 of Chapter V shows. For a compact flat Rieman-
nian manifold, it is compact (Theorem 4.2 of Chapter V).
Recently, Wolf [S]  proved that this is also the case for a compact
locally symmetric Riemannian manifold.

dote 2. Complete ufine wad  Riemunniu~
conrlections

.Hopf  and Rinow [1] proved Theorem 4.1 (the equivalence of
(I), (2) and  (3)),  Th eorem 4.2 and Theorem 4.4 of Chapter IV.
Thearem  4.2 goes back to Hilbert [l]  ; his proof can be also found
in E. Cartan’s  book [8].  In $4 of Chapter IV, we followed the
appendix of de Rham [ 11.  Condition (4) of Theorem 4.1 of
Chapter IV was given as the definition of completeness by
Ehresmann [1, 21.

For a complete affine connection, it does not hold-3 in general
that every pair-of  points can be joined by a geodesic. To construct
counterexamples, consider an affine connection on a connected
Lie group G such that the geodesics emanating from the identity
are precisely the l-parameter groups of G. Such connections will
be studied in Volume II. For our present purpose, it suffices to
consider the affine connection which makes every left invariant
vector field parallel; the existence and the uniqueness of such a
connection is easy to see. Then the question is whether every
element of G is on a l-parameter subgroup. The answer-is yes, if G
is compact (well known) or if G is nilpotent (cf. Matsushima [l]).
For a solvable group G, this is no longer true in general; Saito [ 1]
gave a necessary and sufficient condition in terms of the Lie
algebra of G for the answer to be affirmative when G is a simply
connected solvable group. For some linear real algebraic groups,
this question was studied by Sib.uya  [ 11.  Even for a simple group,
the answer is not affirmative in general. For instance, a direct
computation shows that an elemefit

(ad.-bc=l)

of X(2;  R) lies on some l-parameter subgroup if and only if

4
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either u + d > -2 or a = d = -l  and 6 = c = 0. This means
that, for every element A of $42;  R), either A or .-A (possibly
both) lies on a ‘l-parameter subgroup. Thus the answer to our
question is negative for SL(2; R) and is affirmative for SL(2;  R)
modulo its center.  Smith [ 1] also constructed a Lorentx  metric,
i.e., an indefinite Riemannia n metric, on a 2dimenskmal  mani-
fold such that the (Riemannian) connection is complete, and that
not every pair of points can be connected by a geode&&It  is not
known whether every pair of poin’ts  of a compact, connected mani-
fold with a complete affine connection can be joined by a geodesic.

An affine connection on a compact manifold is not necessarily
complete as the following example of Auslander and. Markus  [1]
shows. Consider the Riemannian connection on the real line R1
defined by the metric aY = 8 d.9,  where x is the natural coordinate
system in R1; it is flat. It is not complete as the length of the
geodesic from x = 0 to x = -co  is equal to 2. ‘fhe ,translation
x + x + 1 is an affine transformation as it sends ‘the metric
8 dxa into e p &a. Thus the real line module  1, i.e., a circle, has a
non-complete flat afiine  connection. This furnishes anon-complete,
compact, homogeneous affineiy connected manifold. An example
of a non-complete affine connection on a simply connected compact
manifold is obtained by defining the above affine connection on
the equator of a sphere and’ extending it on the whole sphere so
that the,equator  is a geodesic.

It is known that every met&able  space admits a complete
uniform structure (compatible with the topology) (Dieudonne.  [I]).
Nom&u  and Ozeki  [I] proved that, given a Riemannian metric g
0n.a manifold it4,  there exists a positive functionfon M such that
f-g is a complete Riemannian metric.

Note 3. Ricci tensor and scalar curvature

Analogous to the theorem of Schur (Theorem 2.2 of Chapter
.V), we have the following classical result.

THEOREM 1. Let M be a connected Riemannian manifold with metric
tensor g and Ricci tensor S. If S = Ag,  where 3,  is a function on M, then 1
is necessarily a,  constant provided that n = dim M 2 3.

Proof. The simplest proof is pr&ahly  by means of the

c
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classical tensor calculus. Let g‘,,  Rd,+,  and Ri, be the components of
the .metric  tensor g, the Riemannian curvature tensor R and the
Ricci tensor S,  respectively, with respect to a local coordinate
system x1, . . . , xR.  Then Bianchi’s second identity (Theorem 5.3 of
Chapter III) is expressed by

&mm + 4.j~ + Rijmw  = 0 . y
Multiplying by g’”  and ggl, summing with respect to i, j, k and 1
and finally using the following formulas

.RlfLIs  -R,,= -&,,t, Q,, gik&  - R,, = &m

we obtain
(n - 2) A;,  = 0.

Hence 1 is a constant. QED:

A Riemannian manifold is called an Einstein manifold if S = Ag,
where J is a constarrf.

The following proposition is due to Schouten and Struik [ 13.’  ’

PROPOSII%ON  2. If M is a 3-dimensional Einsbin  man@d,  th#n  if
is a space of constant cuwature.

Proof . Let p be any plane in T,(M) and let Xi,  Xs,  Xs be an
orthonormsil  basis for T,(M)  such that p is spanned by Xi,  X,.
Let&  be the plane spanned by Xi  and X, (i # j) so thatp,,  = krs.
Then

Wl, Xl)  = mh)  + Wld

w,,  4) = wd  + Qhs)

wd,  X8) = mbl)  + W**),

where K(p,,)  -denotes the sectional curvature determined by the
plane PC,.  Hence we have

y&t  Xl)  + w*  %>  - ws,  4) = MAll)  = 2w.
., 1.

Since ,$&,  XJ .a. 1, we have) K(p),  = &A. q QED.

Remurk.  The above formula implies also that, if 0 < c <
S(X, X) <‘$c for all ‘unit vectors X 6 7’,(M), then K(p) > 0 for
all planes p in T,(M).  Similarly, if 2c < 5+(X4  X) < c c 0 for all
unit vectors X l T,(y),  then K(p) < 0 for all planesp  in T,(M).
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Going back to the general case where n = dim M is arbitrary,
let X,, . . . , X,, be an orthonormal basis for T,(M). Then
SGL  4) + * * * + S(Xm  Xn) is independent of the choice of
orthonormal basis and is called the scalar curvature at x. In terms of
the components Rit  and gij  of S and g, respectively, the scalar
curvature is given by xi,* giiRi,.
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Gr  and G,,  respectively. Since every element T # I of G is bf order
p, we have T(Cy:,,’  Tp)  = zr$  Ty for each y c R”+r.  Since T
has no fixed point on S”,  we have

Note 4. Spaces of constant positive curvature

Let M be an n-dimensional, connected, complete Riemannian
manifold of constant curvature l/a2. Then, by Theorem 3.2 of
Chapter V and Theorem 7.10 of Chapter VI, the universal
covering manifold of M is isometric to the sphere S”  of radius a
in Rn+l given by (x’)”  + * * * -t (x~+~)~  = a2,  that is, M = P/G,
where G is a finite subgroup of O(n  + 1) which acts freely on S”.

In the case where n is even, the determination of these groups G
is extremely simple. Let x(M)  denote the Euler number of M. Then
we have (cf. Hu [l; p. 2771)
%

2 = )p)  = #4) x order of G (if n is even).

Hence, G consists of either the identity I only or Z and another
element A of O(n  + 1) such that A2 = I.  Clearly, the eigen-values
of A are &  1. Since A can not have any fixed point on S”,  the eigen-
values of A are all equal to - 1. Hence, A = -I.  We thus
obtained

THEOREM 1. Every connected, complete Riemannian manifold M of
even dimension n with constant curvature l/a2 is isometric either to the
sphere S” of radius a or to the real projective space S”/{-&I).

The case where n is odd has not been sol??d  completely. The
most general result in this direction is due to Zassenhaus /2].

THEOREM 2. Let G be a Jinite  subgroup of O(n + 1) which  acts
freeb  on s”. Then, any subgroup of G of order pq (where p  mui8,qr are
prime numbers, not necessarily distinct) is cyclic.

Proof . It suffices to prove that if G is order pq,  thenG  is cyclic.
First, consider the case  G is of order pa. Then, G is either cyclic or a

’ direct product of two cyclic groups G,  and G, of order p (cf. Hall
11,  p. 491).  Assuming the latter, let. A and B be generators of

By setting T = A’B and y = x, we obtain

ZT:;  (AiB)‘x  =  0 for x E  R”+l a n d  i=O,l,...p-1,

and hence

0 = Cf’,;l Cj’=;l  (A’B)‘x  = ET:; C;:o’  A’jBjx for x E  Rn+r.

On the other hand, by setting T = A’ and y = Bjx,  we obtain

crz;  A’jBjx  = 0 forxER”+l  a n d  j=l,2  ,...,  p - l .

Hence, we have

0 = C;:; Cf;o’  A”‘Bjx  = Cy:; AOZPx  = fix for x c R”+r,

which is obviously a contradiction. Thus, G must be cyclic.
Second, consider the case where p < q. Then G is either cyclic

or non-abeiian. Assuming that G is non-abelian, let S and A be
elements of order p and q, respectively. Then, we have (cf. Hall
[I>  P. 511)

SAS-’  = At,

where 1 < t < q and tP  = 1 mod q, and every element of G can
be written uniquely as A’S”, where 0 5 i 5  q - 1 and 0 2 k 5
p - 1. For each integer k, define an integer f(k) by f(k) =
1 + t + t2 + *** + P-l.  We then have

(a) f(p)  = .O  mod q;
(b) f(k) ‘=  1 mod Q,  if k = 1 mod p;

Jc) (AiS)P  = A”.“e’P.

Indeed, (a) follows from tP  = 1 mod q, and (c) follows from
SAS-’ f Al.  For eacIi  i;O  5  i I q - 1, let Gi  be the cyclic sub-
group  of G’ge’nePated  by A’S. Since (A’S)” = A”‘@)9  = Z, Gi is
of order p. Henfe  we have either Gi  n Gj  = (I}  or Gi  = G j for
0 5 i, j 5 q - 1. We prove that Ci  n G,  ti  {Z) if i # j, If
G,  = Gj, there exists an.integer  k such that (A(S)&  = AjS. By (c),
we  have Ai .fW,yk.  ‘= Ajsand, hence, Sk  = S. This implies k = 1
mod p and f(k) e 1 mod q. Hence, we have A’S”  = A’S, which
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implies i = j. Let N be the normal subgroup of G generated by f.
Since N is of order q and since Gi  is of order p, we have Gi  n N J=
{I} for each i, 0 5 i I q - 1. By counting the orders of N, G,,

Gp.+  we see that G is a disjoint union of N, G, - ‘(I),
GG:’  I-.  ii}, . . . , G,-, - {I}.  Therefore we have

2I TcN TX  + && TX + * ’ ’ + &,,-, TX = &‘&  TX ‘+ qx
for x c Rn+l.

On the other hand, for every T,  Q N, we have

TO(CT~N TX) = CT&  T,Tx  = XTcN  TX for x E R”+l.

Since G acts freely on S”,  we have XrrN TX = 0. By the same
reasoning, we have zrtCi  TX = 0 for i = 0, 1, . . . , q - 1 and
zz rcO TX = 0. Hence, we have qx = 0 for each x E  R”+l,  which
is obviously a contradiction. QED* ,

Recently, Wolf [l]  classified the homogeneous Riemannian
manifolds of constant curvature l/as. His result may be stated as
follows.

THEOREM 3. Let M = P/G  be a homogeneous Riemannian manifold
of constant curvature l/as.

(1) Zfn +‘l  = 2m (but not divisible b 4): then

P = ((9,  . . . , Z”)  E Cm; lz112  + * * - + IPI  = a2},

and G is a Jnitc  group  of matrices of the form AZ,,,, where 1 B C with
111  = 1 and I,,, is the m x m identity matrix;

(2) If n + 1 = 4m,  then .

S” = {(q’, . . . , q”) l ct”; Iq’lZ + *-. * + lq”l”  = as>

(where- Qis the jeld  of quaternions) , and G is ajnite  group of matrices of
the form pZ,,,, where p E Q with I p(  = 1.

Conversely, $G  is ajnite  group of the type  described in (1) or (2),  then
M = P/G  is homogeneous.

a,’ .
In view of Theorem 1, we do not have to consider the case

where n is even.
,

The reader interested in the classification problem of elliptic
spaces, i.e., spaces of constant positive curvature, is referred to the
following papers: Vincent [l],  Wolf 151; for n = 3, H. Hopf  [l]
and Seifert and Threlfall [ 11.  Milnor [I] partially, generalized
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Theorem 2 to the case vvhere  G is a group of homeomorphisms
acting freely on Sn.  Calabi and Markus  il ] and Wolf [3,  41 studied
1,orent.z  manifolds of constant positive curvature. See also Hel-
gason [I].  For the study of spaces covered by a homogeneous
Biemanman  manifold, see FVolf  [2].

Note 5. Flat Riemannlan manifolds

Let M = R”/G be a compact flat Riemannian manifold, where
G is a discrete subgroup of the group of Euclidean motions of R”.
Let N be the subgroup of G consisting of pure translations. Then

(1) N is an abelian  normal subgroup of G and- is free on n
generators;

-.

(2) N is a maximal abelian  subgroup of G;
(3) G/N is finite;

\

(4)‘,G has no finite subgroup.
Indeed, (1) and (3) have been proved in (4) of Theorem 4.2 of

Chapter V. To prove (?), let H be any abelian  subgroup of G
containing N. Since G/K is also finite by (2),  ‘R”/K  is a compact
flat Riemannian manifold. Since K is an abelian  normal subgroup
of K, K contains nothing but translations by ,Lemma  6 for
Theorem 4.2, of Chapter \7. .Hence,  K = N. Finally, (4) follows
from the fact that G’acts freely on R”. In fact, any finite group of
Euclidean motions has a fixed point (cf. the proof of Theorem 7.1
of Chapter IV) and hence G has no finite subgroup.

Auslander and Kuranishi [I] proved the converse:
Let G be a group with a subgroup N satisfying  the’above  conditions -(l),

(2),  (3) and (4). Then G can be real&d  as a-group  of Euclidean motions
of R”  such that IPIG is a compactflat Riemannian manifold.

Let R/G and R”/G’  be two compact flat Riemannian manifolds.
We say that they are equival’ent, if there exists an affine transforma-
tion v&such  that Q?G~-’  = G’, that is, -if G and ,G’  are conjugate in
the group of affi,ne  transformatrons  of R.‘.  In addition to (4) of
Theorem 4.2 of Chapter V, Bieberbach  [l] obtained the following
results : .’

(a) If G aid  C’  qr+somor-hit  as abstract group, then R”/G  and R”/G’

I
are equitfaknt.

(b) For each n,,?h&  aie,  only~ajinite  number of equivalence classes of
cbrnpactfi7at  Riemannian manifolds  R”/G. *

L,
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We shall sketch here an outline of the proof. We denote by
(A,P) an affine transformation of R’”  with linear part A and
translation part p. Let N be the subgroup of G consisting of pure
translations and let (Z, tl), . . . , (Z,  t,)  be a basis of N, where Z is
the identity matrix and ti 6 R”.  Since (A, p) (I,  ti) (A, p)-1 ,=
(Z,  Ati) E  N for any (A, p) Q G, we can write Ati = C&i a3,tj,
where each u{  is an integer. Let T be an (n x n)-matrix whose
i-th column is given by ti, that is, T = (ti . . . t,). Then (a{)  =
T-‘A  T is unimodular. (A matrix is called unimodular if it is non-
singular and integral together with its inverse.)

To prove (a), let (A’, p’) c G’ be the element  corresponding to
(A, p) c G by the isomorphism G ’ w G. Let N’  be the subgroup of
G’ corresponding to N by rhe  isomorphism G’ w G. Then N’  is
normal and maximal abenan  in G’. Hence N’ is the subgroup of
G’ consisting of pure translations. Let (Z, t{)  correspond to (Z, ti).
Since (A’, p’) (Z, t,!) (A’, p’)-’  = (Z, A’ti), (Z, A’$)  corresponds  to
(Z, &).  Hence we have A’ti  = Cy=,  u$.  In other words, if we set

T’ = (t; . . . t:),  then T-IA’  T’  = T-1 A T. Set

G* = { ( T-IAT,  T-lp  - T’-lp’) ; (A, p) B G}.

Then G*  is a group which contains no pure translations and hence
is finite. Let u l R” be a point left fixed by G*. Then we have

(T,  Tu)-‘(A,p)(T,  7’~)  = (T’,O)-l(A’,~‘)(T,  0)
for all (A, p) E  G.

This compietes  the proof of (a).
To prove (b), it suffices to show that there are only a finite

number of mutually non-isomorphic groups G such that R”/G  are
compact flat Riemannian manifolds. Each G determines a group
extension

0-t N-+G-+K+l,

where the’ finite group K = G/N acts linearly on N when N is
considered as a subgroup of R”. Given such a finite group X, the
set of group extensions 0 -+N-+G-K+1isgivenbyH2(K,N).
Since K is finite and N is finitely generated, H2(K, N) ‘s  finite. As

cwe have seen in the proof of (a), if we identify N with ’ e integral .,
lattice points of R”, then K = G/N is given by unimodular
matrices. Let K and K’ be two finite groups of unimodc!ar  matrices

l of degree n which are conjugate in ’ the group GL(n;  Z) of all
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unimoduhr  matrices so that SKS-1  = K’ for some S E  GL(n;  Z).
The mapping which sends t c N into St E  N is an automorphism of
N. Hence S induces an isomorphism, H2(K, N) = H2(K’,  N), and
ifO-+N-+G’-+K’ - 1 is the element of H2(K’,  N) correspond-
ingtoanelementO+N--+G-K+10fH2(K,N),thenGand
G’  are isomorphic. Thus our problem is reduced to the following
theorem of .Tordan  :

There are &1,  a jnite  number of conjugate classes ofjnite  subgroups of
GL(n; Z).

This theorem of Jordan follows from the theory of Minkowski-
Siegel. Let H, be the space of all real symmetric positive definite
matrices of degree n. Then GL(n;  Z) acts properly discontinuously
on H,  as follows:

x + tSxs for XcH,,  and ScGL(n;  Z). ,
Let R be the subs&  of. H, consisting of reduced matrices in the
sense of’Minkowski.  Denote ‘SXS  by S[X]..  Then

U) s~cuz,wl  = 4;
(ii) The set F defined by F = (S E  GL(n; Z) ; S[R]‘n  R =: non-

empty) is a finite set.
The,first  propetty  of R implies that any finite subgroup K of

GL(n; Z) is conjugate to a subgroup of GL(n; Z) contained in F.
Indeed, let Xi E  H, be a fixed point of K (for instance, set X,,  =
I: ACR *AA). Let S E  GL(n;  Z) be such that S[X,]  E  R. Then
S-‘KS  c F. Since F is finite, there are only a finite number of
conjugate classes of finite subgroups of GL(n;  Z). QED.

As references we mention Minkowski [I], Biebcrbach 123,
Bieberbach and Schur [I] and Siegel [l].

Note that (a) implies that two compact flat Riemannian
manifolds are equivalent if and only if they are homeomorphic
to each other. Although (b) does not hold for non-compact fiat
Riemannian manifolds, there are only a finite number of homeo-
morphism classes of complete flat Rkmannian  manifolds for each
dimension (Bieberbach [3]).

For the classification of 3-dimensional complete flat Riemannian
manifolds, see Hantzche and Wendt [ 1] and Nowacki [ 11.

Most of the results for flat Riemannian manifolds cannot
be generalized to flat affine connections, see, for example,
Auslander [I].
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Note 6. Parallel displacement of curvature

Let M and M’ be Riemannian manifolds and rp:  M + M’ a
diffeomorphism which preserves the curvature tensor fields. In
general, this does not imply the existence of an isometry of M
onto M’. For instance, let M be a compact Riemannian manifold
obtained by attaching a unit hemisphere to each end of the right
circular cylinder S1  x [O; 11, where Si  is the unit circle, and then
smoothing out the corners. Similarly, let M’ be a compact
Riemannian manifold obtained by attaching a unit hemisphere
to each end of the right circular cylinder S1  x [0,2]  and then
smoothing out the corners in the same way. Let pl: M + M’ be a
diffeomorphism which induces an isometry on the attached
hemispheres and their neighborhoods. Since the cylinder parts of
Al and M’ are flat, p preserves the curvature. tensor fields. How-
ever, M and ill’  cannot be isometric with each other.

Ambrose [l]  obtained the following result, which generalizes
Theorem 7.4 of Chapter VI in the Riemannian case.

Let M and M’ be complete, simply connected Riemannian
manifolds, x an arbitrarily fixed point of M and x’  an arbitrarily
fixed point of A/‘.  Letfi  T,(M) -+ T,,(M)  be a fixed orthogonal
transformation. Let 7 be a simply broken geodesic -of  M from x
to a pointy and T’  the corresponding simply broken geodesic of
-11’ from x’ to a point. y’, the correspondence being given by f
through parallel displacement. Let p (resp. p’)  be a plane in T,(M)
(resp. T,.(M’))  and q (resp. q’) the plane in T,,(M) (resp. T,.(M))
obtained from p (resp. p’) by parallel displacement along T (resp.
7’).  Assume that p’ corresponds top byf.  If the sectional curvature

K(q) is equal to the sectional curvature K’(q’)  for all srmply
broken geodesics T and all planes p in T,(M), then there exists
a unique isometry F: M -+ M’ whose differential at x coincides
with f. .

Hicks [I] obtained a similar result in the case of affine
connection; his result generalizes Theorem 7.4 of Chapter VI.

IVote  7. Symmetric spaces

Although the theory of symmetric spaces, in particular,
Riemannian symmetric spaces, will be taken up *in detarl.  m
Volume II, we shall give here its definition and basrc  propertres.
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Let G be a connected Lie group with an involutive auto-
morphism (T  (u”  = 1, u # 1). Let H be a closed subgroup which
lies between the (closed) subgroup of all fixed points of u and its
identity component. We shall then say that G/H  is a symmetric
homogeneous space (defined, by a). Denoting by the same letter
(r the involutive automorphism of the Lie algebra g induced
by u,  we have (t:= m + $ (direct sum),’  where h = {Xc 9;
X” = X}  coincides with the subalgebra corresponding to H and
m  = (X @,  g; X” = ‘--X}.  We have obviously [h,  m] C m and
h, ml = b.

PC

The automorphism a of G also induces an involutive diffco-
morphism a, of G/H such that c*(rx)  = n(x”)  for every x E  G,
where 7r is the.canonical  projection of G onto G/H. The origin
o = -r(e) of G/H is then an-isolated fixed point of a,. We-call  gn
the symmetry around o.

3
.
,

By Theorem 11.1 of Chapter II, the bundle G(G/H,  H) admits
an invariant connection F determined by the subspace  m. We
call this connection the canonical connection in G(G/H,  H).

T HEOREM 1. For a symmetric space G/H, the canonical connection
r in G(G/H,  H)  has the foL1owin.c  broberties:

-1  1

(1) r & invariant by -the  automorphism a of G (which is a bundle
automorphism of G(G/H,  H)) ;

(2) The curvature form is.  given by R(;LJ,  Y) = - (1/2)[X, Y] c h?
where X and Y are arbitrary left invariant vector Jields  belonging
to m;

(3) For any XE  m, let a, = exp tX and let  xt  F n(a,)  = at(o).
The parallel displacement of thejihre H along the curve x,  coincides with
the left translation 4 + a,h,  h E H.

Proof . (1) follows easily from m” = m. (2) is contained in Theo-
rem 11.1 of Chapter II. (3) follows from the fact that a$  for any
fixed h Q His the horizontal lift through h of the curve x1.  QED.

The projection r gives a linear isomorphism of the horizontal
subspace  m at e of F onto the tangent space T,,(G/H)  at the origin
o. Ifh E  H, then ad (h) on m corresponds by this isomorphism to the
linear isotropy h, i.e., the linear transformation of T,(G/H)
induced by the transformation h of G/H  which fixes o.

Now,  denoting G/H by M, we define a mapping f of G into the
bundle of frames L(M) over M as follows. Let a0 be an arbitrarily
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fixed frame X1, . . . , X,, at o, which can be identified with a
certain basis of m. For any a E  G,f(o)  is the frame at u(o)  con-
sisting of the images of -Xi  by the differential of a. In particular,
for h E  H, f(h) = h . u0 = u,, * v(h),  where v(h)  E  GL(n;  R) is the
matrix which represents the, linear transformation of T,(M)
induced by h with respect to the basis u,,.  It is easy to see thatfis a
bundle homomorphism of G into L(M) corresponding to the
homomorphism 91 of Hinto GL(n;  R). If G is effective on G/H (or
equivalently, if H contains no non-trivial invariant subgroup of
G), then f and v are isomorphisms.

By Proposition 6.1, of Chapter II, the canonical connection I’ 1
in G(M, H) induces a connection in L(M), which we shall call
the canonical linear connection on G/H and denote still by F.

THEOREM  2. The canonical linear connection on a symmetric space
G/H  has the following properties :

(1) Y is invariant by G as well as the symmetry u, around o;
(2) The-restricted homogeneous holonomy group of Y at o is contained in

the linear isotropy group I?;
(3) For any XE  m, let a, = exp tX  and ‘.xt  = 7~(uJ  = a,(o). The

parallel displacement of vectors along xt  is the same as‘ the transformation
by a,. In particular, xt  is a geodesic;

(4) The torsion tensorjeld is 0;
(5) Every G-invariant tensorjeld on G/H is parallel with respect to I’.

In particular, the curvature tensorjeld R is parallel, i.e., VR =- 0.
Proof. (l),  (2) and (3) follow from the corresponding prop-

erties in Theorem 1. (4) follows from (1) ; since the torsion tensor
field T is invariant by a,, we have T(X, Y) = (T(XOo,  Y”o))“o  =
- T (  -X, - Y )  =  - T ( X ,  Y ) and hence T(X,  Y) = 0 for any
X and Y in T,(M). Thus T = 0 at o and hence everywhere. (5)
follows from (3). In fact, if K is a G-invariant tensor field, then
0, Zi  = 0 for any X,,  E  T,(M),  since there exists X E  m such that
xt ii (3) has the initial tangent vector X,. QED.

Remark. r is the unique linear connection on G/H which has
property (1). This justifies the name of canonical linear connection.

Let G/H be a symmetric space with compact H. There exists a
G-invariant Riemannian metric on G/H. For any such metric g,
the Riemannian connection coincides with I’. In fact, the metric

tensor field g is parallel with respect to I’ by (5). Since F has zero
torsion, it is the Riemannian connection by the uniqueness
(Theorem 2.2,  Chapter II).

Exampte.  In G = SO(n + I), let (T  be the involutive auto-
morphism A E SO(n  + 1) -t&U-r  E SO(n + 1) where S is the

matrix of the form with identity matrix I,, of degree n.

‘I’&  identity component Ho of the subgroup H of fixed points of

u consists of all matrices of the form
_ _

where B l SO(n) . We

shall write SO(n) for Ho with this understanding. The symmetric
homogeneous space SO(n + l)/.!@=(n)  is naturally diffeomorphic
with the unit sphere S”  in R”+l.  In fact, let e,, e,, . . . , e, be the
standard orthonormal basis in Rn+l. The mapping A 6 SO(n + 1) +
Ae, ES”  induces a diffeomorphism  of SO(n + l)/SO(n)  onto S”.  The
set of vectors Aer, . . . , Ae,  can be considered as an orthonormal
frame at the point Ae,  of S”.  This gives an isomorphism of the
bundle SO(n  +.l) over SO(n  -t- l)/SO(n) onto the bundle of
orthonormal frames over S”.  The canonical linear connection on
SO(n + l)/SO( n coincides with the Riemannian connection of Sn)
with respect to the Riemannian metric of S”’ as imbedded
submanifold of -Rn+i.

A linear connection I’ on a differentiable manifold iz2 is said
to be localb  symmetric at x E  M, if there exists an involutive afine
transformation of an open neighborhood U of x which has x as an
isolated fixed point. This local symmetry at x, if it exists, must be
of the form (xi) --+ (-xi)  with respect to any normal coordinate
system with origin x, since it induces the linear transformation
X * -X in T,(M). We say that r is locally symmetric, if it is locally
symmetric at every point x of M. .

THEOREM 3 . A linear connection r on M is local5 symmetric if  and
on&  if  T = 0 and VR = 0.

Proof. If I’ is locally symmetric, then any tensor field of type
(r,  S)  with odd r + s which is invariant by the local svmmetry at
x is 0 at x.  Hence T = 0 and VR = 0 on hf. The con\(erse  follows
from Theorem 7.4 of Chapter VI. QED,
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' THEOREM 4. Let r be a localb  symmetric linear connection on M. rf
M is connected, simply connected and complete, then the group ‘II(M) of all
afine transformations is transitive on M. Let G = (UO(M).  Then M =
G/H  is a symmetric space for which r is the canonical linear connection.

Proof. The first assertion follows from Corollary 7.9 of Chapter
VI. Let a, be the local symmetry at a point o of M. By Corollary
6.2, a, can be extended to an affine transformation of M onto itself
which is involutive. Define an involutive automorphism of G by
a” = o0 0 a o IT,.  Then H lies between the subgroup of all fixed
elements of (T  and its identity component. QED.

The Riemannian versions of Theorems 3 and 4 are obvious.
The Riemannian symmetric spaces were introduced and studied

extensively by Cartan  [ 71.  For the canonical linear connection on
symmetric G/H, see Nomizu [2] and Kobayabhi [3].  Nomizu [4,6]
proved the converse of (2) of Theorem 2 that if the restricted linear
holonomy group of a complete Riemannian manifold M is
contained in the linear isotropy group at every point, then M is
locally symmetric. Simons [l] has a similar theorem.

Nomizu and Ozeki {3] proved that, for any complete Riemannian
manifold M, the condition VmR = 0 for some m -> 1 implies
VR = 0. (This was known by Lichnerowicz [3, p. 41  when M
is compact.) They remarked later that the assumption of com-
pleteness is not necessary.

Note 8. Linear connections with recurrent
curvature

Let M be an n-dimensional manifold with a linear connection
I’. A non-zero tensor field K of type (r, s) on M is said to be
recurrent’ if there exists a l-form a such that VK = K 8 a. The
following result is due to Wong [ 11.

THEOREM 1. In the notation of $5  of Chapter III, letf:  L(llif)  *
T;(R”)  be the mapping which corresponds to a given tensorjeld  K of OPe
(r, s). Then K is recurrent if  and only if,  for the holonomy bundle P(uo)
through any u. E L(M), there exists a dzjkentiable  function q(u)  Wzth  no
zero on P(uo)  such that

f(u) = v(u)  -f  (uo) for u Q P(u&

As a special case, K is parallel if and only if f (u) is constant on
Wo)  *

-+-

_ .--
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Using this result and the holonomy theorem (Theorem 8.1 of
Chapter II), Wong obtained

THEOREM 2. Let r be a linear ‘connection on M with recurrent
curvature tensor R. Then the Lie algebra of its linear holonomy group Y (u,,)
is spanned by all elements of the form a,,( X, Y) , where 0 is the curvature
form and X and Y are  horizontal vectors at u,,. In particular, we have

dim Y(uJ  I=  &z(n  - l).

& &A application ofTheorem  1, we shall sketch the proof of the
hbwh3

'-'THEOREM 3. For a Riemannian manifold M with recurrent curvature
tensor whose restricted linear holonomy group is irreducible, the curvature
tensor is necessarily parallel provided that dim M 1 3.

Proof. Let R&t be the components of the T;(R”)-vaiued
function on O(M) which corresponds to the curvature tensor field
8. We apply Theorem 1 to R. Since Et,,,k,l  (RjiJ2  is constant on
each fibre of O(M), q+  is constanton each fibre of P(uo). Since Q
never .vanishes on P(uo), it is either always positive or always
negative. Hence 9 itself is constant on each fibre of P(uJ.  Let J
be the function on M defined’ by’ A(X)  = l/v(u),  where x =
n(u)  4 M. Then AR is a parallel tensor field. If we denote by S the
Ricci tensor field, then fS is also parallel. The irreducibility of
M implies that 1s = c - g, where c is a,constant  and g is the metric
tensor (cf. Theorem 1 of Appendix 5). If dim M 2 3 and if the
Ricci tensor S is non&trivial, then ;il is a constant function by
.Theorem 1 of Note 3. Since JR  is parallel and since 1 is a constant,
R is parallel.

Next we shall consider the case where the Ricci tensor 5’
vanishes identically. Let V R = R @ a’and let Rj,, and a,, be the
components of R and a with .respect  to a local coordinate system
xl ,*a*, 1.  By Bianchi’s second identity (Theorem 5.3 of Chapter
III; see also Note 3),  we have_

Multiply by gJm  and sum with respect to j and m. Since the Ricci
tensor vanishes identically, we have Cj,~,~gj”‘Rj~~,~  = Cj,,,gjnlRj,,t  = 0.
Hence,

EjRjktaj  = 0, . where aj = Zn,gjmam.
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‘I’llis ccluation has the following geometric implication. Let x be an
arl)itr;\rily  fisrcl  point of hl  and let X and _I’  be any vectors at x.  If
\VI’  clc*notc  by  I’  the vector at x with components &(x),  then  the
linc’ar  translbrmation  R(X, E’)  : 7’,(A4)  -+ 7’,(.14) maps I’  into the
zero \‘cctor.  On the other hand, by the Holonomy Theorem
(‘l’hcorcm  8.1 of Chapter II) and Theorem 1 of this Note e also
\\‘ong [ l]), the Lie algebra of the linear holonomy grou Y(x)
is spanned  by the set of all endomorphisms of 7’,(A4)  given by
f<(.Y,  1’)  with X,  1’ E  T,(ni).  It follows that I/ is invariant by Y’(x)
and hcncc  is zero by the irreducibility of Y(x). Consequently, VR
vanishes  at x.  Since  x is an arbitrary  point of izf, R is parallel.

QED.

On the other  hand, every non-flat 2-dimensional Riemannian
manifold is of recurrent curvature if the.sectional  curvature does
not vanish anywhere.

COROLLARY. If M is a complete R~emanniart  manifold with recurrent
curvature tensor, then’the  universal covering manzjiild  II? of M is either a
sl*mnretric  space or a direct product of the Euclidean space W-2 and a 2-
dimensional Riemannian manifold.

Proof. Use the decomposition theorem of de Rham (Theorem
6.2 of Chapter IV) and Theorem 3 above together with the
following fact which can be verified easily. Let M and M’ be
manifolds with linear connections and let R and R’ be their curva-
ture tensors, respectively. If the curvature tensor of M x M’ is
recurrent,  then there are only three possibilities: (1) Y7 R = 0 and
y7 R’ = 0; (2) R =.  0 and VR’  # 0; (3) VR # 0 and R’  = 0.
(See also Walker  [I].) QED.

Note 9. The clutomorphism group qf
n geometric structure

Given a differentiable manifold M, the group of all differeniiable
transformations of A4 is a very large group. However, the group  of
difl’erentiable transformations of M leaving a certain geometric
sti-ucture  is often a Lie group. The first result of this nature was
given by H. Cartan  [l]  who proved that the group of all complex
analytic transformations of a bounded domainin  C” is a Lie grotip.
Myers and Steenrod  [I] proved that the group of all isometrics of a
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Riemannian manifold is a Lie group. I~ochnc*r  antI  1 IOIII-
gomcry [ I, 21 pro\,cd  that  the group of all complcs :trl;il~~t;c.  II’.!!IS-
formations of a compact complcs manifold is a con~plcs  1 ,ic !yc,l:j,:
they made use  of a general  theorem  concerning  3 10~111~~  C‘OIIIIJ~IC  I

group of diffi~rcntinblr transformations \vhich  is IOWA  I;IIo\\  II IO  1~.

valid,& the fbrm  of’l’hcorcm  ,4.6,  Chapt(*r  1. ‘1’11~  t1lcoI~*111  t1t.11  I III‘

group ofall  affine transformations ofan  aflincly  connc~I~~cI  Ill;lllill  )I(1
is aLiegroup  ~~asfirst  proved by Nomizu  1 11 untl~~r  tllc.  ;IY~~IIII~)I~OII
Of C@r$eteness,;  this assumption was lalcr  rcnio\-(~1  bv  t 1;111()  (I  I I(  l
Motitioto,[i]..  Kobayashi  (1, 61 prcrvccl  that the. &oul~  01’  Sill
autbmorphisms  o f  a n  ahsolutc  parallrlism  i s  ;I J,i:a  grort~)  I!\

iinbedding it into the manifold. This method  can 1)~  ;rl)l~lit~tl  10  I 11,’
absolute parallelism of the bundle of frames 1,(.\1’1  of ;III  ;I  Ili~t~~l\

connected manifold ,21  (cf. Propositic n 2.6 of CA;iptcr 111  ;,I,;:
Thcorcm 1.5 of Chapter \‘I).

Automorphisms  of a complcs structure and ;I KiillI(.I.i,in
structure will be discussed in 1’olumc II.

A global theory  of Lie transformation groups \V;IS  studic(I  in
Palais [I]. We shall here state one theorem  \\hich  has. ;I c1irc.c.t
bearing on us. Let G be a certain group of difl?rc~nti;tbl~*  trails-
formations acting on a differentiable manifold :I/. Let !I’  bc  thc*,sct
of all vector fields X on ‘11 which gcneratc  a global I-paramcrcr
group of transformations which belong  to the giv1.n  +ul’ (;. I,ct
9 be the Lie subalgebra of the Lie algebra X(&Z) gcnc*r;ttc.d  by  $1’.

T HEOREM. Jf  !I is  finite-dimensiona/, then G nhril.c (I  I,ip  grolij,
stsucture  (such that the mapping G x Al  --, M i s  diffb0/linhle)  end
g 1 9’.  The Lie algeb?a  of G is naturai[~~  isomorphic rc:itfi  $1.

We have the following applications of this result. If c is the
group of all affine transformations (rcsp.  isometric.sj  of’an  afJincly
connected (resp. Riemannian) manifold ill, then $1’  is the set of all
infinitesimal affine transformations (rcsp.  infinitesimal isometrics)
which .are  globally integrable (note that if Al’is  complete,  these
infinitesimal transfor’mations are .always globally integrable bv
Theorem 2.4 of Chapter VI). Hy virtue  of l’hco~cm  2.3  (r&.
Theorem  3.3) of Chapter VI, it follows  that  !I is fillitc-dirnension~l.
B-y .the theorem above, G is ri Lie, group. :

The Lit  algebra i(:\Z) 0 ‘i m 1111 ~5IIIlai  isonncztrics  of‘s I<ic,m:ln-f- 11 * f ‘t a.  ’
nian~~nianifdld  M JV;IS  stl:dictl in.tf~~t;~il  1,~ .\ol’llizu 1 I’L,  $1  la +t &.lI
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point x of M, a certain Lie algebra i(x) is constructed by using-the
curvature tensor field and its covariant differentials. If M is
simply connected and analytic together with the metric, then i(M)
is naturally isomorphic with i(x), where x is an arbitrary point.

Note 10. Groups of isometries and afine  trans-
.formations  with maximum dimensions

In Theorem 3.3 of Chapter VI, we proved that the group s(M)
of isometries of a connected, n-dimensional Riemannian manifold
M is of dimension at most &z(n  + 1) and that if dim 3(M) =
Jp(n  + l),  then M is a space of constant curvature. We shall

outline the proof of the following theorem.

THEOREM 1. Let M be a connected, n-dimensional Riemannian
manijold.  If  dim 3(M)  = $z(n  + l),  then M is isometric to one of
the following spaces of constant curvature:

(a) An n-dimensional Euclidean space R";
(b) An n-dimensional sphere S”;
(c) An n-dimensional real projective space S”/{+I};
(d) An n-dimensional, simpb connected hyperbolic space.
Proof . From the proof of Theorem 3.3 of Chapter VI, we see

that M is homogeneous and hence is complete. The universal
covering space i@ of M is isometric to one of (a), (b)  and. (d)
above (cf. Theorem 7.10 of Chapter VI). Every mfiutewmal
i&&try  ‘x of M induces an infinitesjmal  isometry X of M. Hence,
$$(i + 1) = dim 3(M) $ dim 3(M) ~-&.n(p  + l),  whichrmphes
that every infinitesimal isometry 8 of M IS induced  by an mfim-
tesimal isometry X of M. If a is isometr5  to (a) or (d), then
there exists an infinitesimal isometry x of M which vanishes only
at a single point of ii?. Hence, M is simply connected in case the

curvature is nonpositive. If $f is isometric to a sphere S”  for

any antipodal points x and x ,’ there exists an infinitesimal isometry.
3 of fi  = S”  which vanishes only at x and SC’. This ‘tmphes  that
M = Sn  or M = S”/(  & I>. We see easily that if M is isometric to

the projective space Sn/(  f I], then 3(M) is isomorphic to
O(n  + 1) modulo its center and hence of dimension $n(n  + 1).QED.

In Theorem 2.3’ of Chapter VI, we proved that the group
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B(M)  of affine transformations of a connected, n-dimensional
manifold M with an affine connection is of dimension at most
n2 + n and that if dim a(M) = n2 + n, then the connection is
flat. We prove

THEOREM 2. If dim X(M) = n2  + n, then M is an ordinary ajine
space zvith  the natural flat a&ne  connection.

Proof. Every element of ‘u(M) induces a transformation of
L(M) leaving the canonical form and the connection form
invariant (cf. $1 of Chapter VI). From the fact that a(M) acts
freely: on L(M) and from the assumption that dim g(M)  =
as $ n -= dim L(M), it follows that go(M)  is transitive on each
connected component of L(M). Th’ ’is implies that every standard
horizontal vector field on L(M) is complete* the proof is similar
to that of Theorem 2.4 of Chapter VI. 1; other words the
connection is complete. By Theorem 4.2 of Chapter  V ok by
Theorem 7.8 of Chapter VI, the universal covering space  ~2  of
M is an ordinary affine space. Finally, the fact that fi = M can
be proved in the same way as Theorem 1 above.

QED.
Theorems 2.3

Eisenhart r 111.
and 3.3 are classical (see, for instance

,
Riemanm&-  manifolds and affine connections admitting very

large groups of automorphisms have been studied by Egorov
Wang, Yano and others. The reader will find references on thk
subject in the book of Yano [2].

iVote  11. Conformal transformations of
a Riemannian mun$old  ’

Let M be a Riemannian manifold with metric tensor g A
transformation p of M‘is said to be conformal if p*g = pg,  whe;e.p
is a positive function on A4.  If ’p is a constant function, v is a homo-
thetic  transformation. If p is identically equal to i, p is nothing but
an isometry, An infinitesimal transformation X of M is said to be
conformal if L -vg = ag,  where 0 is i function on M. It is homothetic
if 0 is a constant function, and it is isometric if 0 = 0.  The local
l-Parameter group of local transformations generated by an
infinitesimal transformation X is conformal if and only if X is

iconformal.
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THEOREM 1. The group of confohal  transformations of a connected,
n-dimensional Riemannian manifold M is a Lie transformation group of
dimension at most -$(n  + 1) (n F 2),  Provided n 2  3.

This can be proved along the following line. Tl& integrability
conditions of L,g  = a,0 imply that the Lie algebra of infini-
tesimal conformal transformation X is of dimension at most
i(n + 1) (n i- 2) (cf. for instance, Eisenhart [l,  p. 2851).  By the
theorem of Palais cited in Note ,9,  the group of conformal trans-
formations is a Lit transformation group.

In $3 of Chapter 1’1 we showed that, for almost all Riemannian
manifolds M, the largest connected group ‘?lO(M)  of affine trans-
formations of ,A4 coincides with the largest connected group ,7,(M)
of isometries of ,21.  For the largest connected group (.X0(M)  of
conformal transformations of M, we have the following several
results in the same direction.

'I'IIEOREM  2. Let A4 be a connected n-dimensional Riemannian
manifbld  for which Co(M)  # Y(54). Then,

(1)  If .I1 is compact, there is no harmonic p-form of constant length for
1 .-p -: n (Goldberg and Kobayashi [l]);

(2) If .lf  is compact and homogeneous, then M is isometric to a sphere
provided n 3--  3 (Goldberg and Kobayashi [2]);

(3) If Al is a complete Riemannian manifotd  of dimension n 4  3 with
parallel Ricci tensor, then ,24  is isometric to a sphere (Nagano [ 11)  ;

(.I) 34  cannot be a compact Riemannian mantfold  with constant non-

positirle  scalar curvature (Yano  [2; p. 2791 and Lichnerowicz [3;
p. 1341).

(3) is an improvement of the result of Nagano and Yano [l]  to
the effect that if M is a.complete  Einstein space of dimension
;I 3 for which CO(M)  # 3”(M),  then M is isometric to a sphere.
Nagano [I] made use of a result of Tanaka [l].

On the other hand, it is easy to construct Riemannian manifolds
(other than spheres) for which &O(M)  # DO(A4). Indeed, I@  M
be a Ricmannian manifold-with metric tensor g which admits  a
l-parameter  group of isometries. Let p be a positive functioneon
M which is not invariant by this l-parameter group of isometnes.
Then, with respect to the new metric pg, this group is a lrparameter
‘group of non-isometric, conformal transformations.

To show that dim 6;“(M) = a(n $ l)(a  +2)forasphereMof,
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dimension n, we imbed M into the real projective space of di-
mension n + 1. Let x0,  x1,  . . . , xn+l be a homogeneous coordinate
system of the real projective space P,,+l  of dimension n -i- 1. Let
M be the n-dimensional sphere in R” 1-l defined bv (J*)~ $-
. * . + (JJ”+~)~  = 1. We imbed M into P71+1  by ‘means of
the mapping d,efiiled by

1
*o =-# +Y"+% xl=yl,...,.e =y", Xn+l  =-l&l -y"+l)~

The image of M in P,+l  is given by

(xl)”  + - * * + (Yy - 2x?F+l = 0.

Let h be the Riemannian metric on P,+l  given by

wherep is the natural projection from Rnt2 - (0) onto P,+l.  Then
the imbedding M -+ P,,,, * *IS  isometric. Let G be the group of linear
transformations of Rn+2 leaving the quadratic form (xi)”  + . .  .
+ (x”)2 - 2xOx”+i *invariant. Then G maps the image of M in
P,+l  ontb itself. It is easy to verify that, considered as a transforma-
tion group acting cn M, G is a group of conformal transformations
of dimension &(n + 1)  (n + 2):

The case n = 2 is exceptional in most of the problems concer-
ning conformal transformations for the following reason. Let M be a
complex manifold of complex dimension 1 with a local coordinate
system z = x + ZJJ.  Let g be a Riemannian metric on M which  is
of the form

f(dx2 + &2) =f dz dz,
where f is a positive function on M. Then every complex analytic
transformation of M is conformal.



Sl-XMhRY  O F  B A S I C  NOTATIOSS

We summarize only those basic notations which are used  most
frequently throughout the book.

1. ISi,  C;.j ,.., , etc., stand for the summation taken  o\er  i or
i,j,. . .) where the range of indices is generally clear from the
context.

2. R and C denote the real and complex number fields, rcspec-
tively.

Rn: vector space of n-tuples of real numbers (xi, . . . , x”)
C”: vector space of n-tuples of complex numbers (zl, . . . , 2”)
(x,y)  : standard inner product C, ,u;Y’  in R” (X, xl?’  in C”)
CL@; R) : general linear group acting on R”
gl(n; R) : Lie algebra of G&(n; R)
GL(n;  C) : general linear group acting on C”
gl(n; C) : Lie algebra of CL(n;  C)
O(n) : orthogonal group
o(n): Lie algebra of O(n)
U(n): unitary group
u(n) : Lie algebra of U(n)
TI(  I’) : tensor space of type (r, s)  over a vector space .V
T(V) : tensor algebra over V
A”: space R” regarded as an affine space

. . A(n; R) : group of affine transformations of A” , _
a(n;  R) : Lie algebra of A(n;  R)

3. M denotes an n-dimensional differentiable manifold.
7’,(M)  : tangent space of Al at x
S(M) : algebra of differentiable functions on ,\,A
I(M) : Lie algebra of veltor  fields on ;2f
2(M) : algebra of tensor fields on Al
B(M) : algebra of differential forms on AI
T(M) : tangent bundle of M
L(M) : bundle of linear  frames  of .II

313
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O(M) : bundle of orthonormal frames of M (with~respect  to
a given Riemannian metric)

0 = (Ol): canonical l-form on /,(M)  or O(M)
A(M) : bundle of affrnc frames  of ,21
c(M)  : tensor bundle  of type (T,  s)  of AI
f, : differential of a differentiable mappingf
fan:  the transform of a differential form m by f
k,:  tangent vector of a curve x,,  0 ‘1 t 5  1, at the point xt
L,:  Lie differentiation with respect to a vector field X

4. For a Lie group G, Go denotes the identity component and 9
the Lie algebra of G.

L,: left translation by a E G
R,: right translation by a E G
ad a: inner automorphism by a E G; also adjoint  representa-

tion in g
P(M,  G) : principal fibre bundle over Al with structure group

G
A*: fundamental vector field correspbding to A E g
co  = (mj): connection form
c?  = (szf): curvature form
E(M,  F, G, P) : bundle associated to P(M, G) with fibre  F

5. For an affine (linear) connection I’ on n/r
0  = (@j)  : torsion form
I’jk : Christoffel’s  symbols
Y’(x)  : linear holonomy group at x E M
Q(x)  : aflinc  holonomy group at x E M
C,: covariant differentiation with respect to a vector (field)

R: curvature tensor field (with components Ri,,)
T: torsion ‘tensor field (with components Ti,.)
S: Ricci tensor field (with components Rij)
VI(M) ; group of Al  affinc transformations
a( ,21) : Lir algebra of all infinitesimal affmr transformations
3(AII) : group of all isomriries
i(.‘ll)  : I,ic algebra  of all infinitesimal isometries
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orthonormal, 60

Free action of a group, 42
Frobenius, theorem of, 10
Fundamental vector field, 51

c

.

C

Geodesic, 138, 146
minim&ng,  166
totally, 180

Green’s theorem, 281
G-structure, 288

Holomorphic,  2
Holonomy bundle, 85
Holonomy group, 71, 72

affine, 130
homogeneous, 130
infinitesimal, 96, 151
linear, 130
local, 94, 151
restricted, 71, 72

Holonomy theorem, 89
Homogeneous

Riemannian manifold, 155, 176
space (qubtient space), 43

symmetric, 301
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Integral
mani fo ld ,  1  O

Interior product, 35
Invariant

by parallelism,  262
connection, 81, 103
Riemannian metric, 154

Involutive distribution, 10
Irreducible

group of Euclidean
motions, 218

Riemannian manifold, 179
Isometric, 161

imbedding, 161
immersion, 161

Isometry, 46, 161, 236
infinitesimal, 237 .

Isotropv  ’
group, linear, 154
subgroup, 49

Homomorphism of fibre bundles, 55
Homothetic transformation,

242, 309
infinitesimal, 309

Homotopic, 284
C’-, 284

Horizontal
component, 63
curve, 68, .68
lift, 64, 68, 88
subspace, 63, 87 .
vector, 63

Hyperbolic, 209
Hypersurface, 9

Imbedding, 3, 53
isometric, 161

Immersion, 9
isometric, 161

Indefinite Ricmannian metric, 135
Induced

bundle, 60
connection, 82
Ricmannian metric, 154

Inner product, 24
Integral

curve, 12

Killing-Cartan  form, 155
Killing vector field, 237
Klein bottle, 223

Lasso, 73, 184, 284
I,eibniz’s  formula, 11
Levi-Civita  connection, 158
Lit

algebra, 38
dcrivativc,  29
difftwntiation,  29
group, 38
subgroup, 39
transformntion  group,‘41

I.ift,  64. OR, 88
horizontal, 64,  68, 88
naturA,  23O

I,inr:tr
connection.  11’)
frame, i5
holrinomy  group, 130
isotropy group, 154

Local
I&s  of a distribution, 10
coordinate system, 3
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Locally
affine, 210
Euclidean, 197, 209, 210
symmetric, 303

Lorentz manifold (metric), 292, 297

Manifold, 2, 3
complex analytic, 3
differentiable, 2, 3
oriented, orientable, 3
real analytic, 2
sub-, 9

Maurrr-Cartan, equations of, 41
Metric connection, 117, 158
Mobius band, 223

Natural lift of a vector field, 230
Non-prolongable, 178
Normal coordinate system, 148, 162

1 -parameter
group of transformations, 12
subgroup, 39

Orbit, 12
Orientation, 3
Orthonormal  frame, 60

Paracompact, 58
Parallel

cross section, 88
displacement, 70, 87, 88

affine, 130
tensor field, 124

Partition of unity, 272
Point field, 131
Projection, covering, 50
Properly discontinuous, 43
Pseudogroup  of transformations, 1, 2
Pseudotensorial form, 75

Quotient space, 43, 44

Rank of a mapping, 8
Real projective space, 52
Recurrent

curvature, 305

‘ ‘\
INDEX

Recurrent
tensor, 304

Reduced bundle, 53
R e d u c i b l e

connection,  81, 83
Riemannian manifold, 179
structure group,  53

Reduction
of connection, 81, 83
of structure group, 5.3

Reduction theorem, 83
de Rham decomposition, 185, 192
Ricci tensor (held), 248, 292
Riemarmian

connection, 158
curvature tensor, 201
homogeneous space, 155
manifold, 60, 154

’ metric, 27, 154, 155
canonical invariant, 155
indefinite, 155
induced, 154
invariant, 154

Scalar curvature, 294
Schur,  theorem of, 202
Sectional curvature, 202
Segment, 168
Simple covering, 168
Skew-derivation, 33
Space form, 209
Standard horizontal vector held, 119
Structure

‘constants, 41
equations, 77, 78, 118, 120, 129

group,  50
Subbundle, 53
Submanifold, 9
Symmetric

homogeneous space, 301
locally, 303
Riernannian,  302

Symmetrization, 28
Symmetry, 301

Tangent
affine space, 125

INDEX
1.

+-gent
&ndle,  5 6

Total differential, 6
Totally geodesic, 180
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space, 5
vect*;  4

Tensor.
algebra, &!, 24

56
contrairariant,  bun%,  20

q _ covariant  , 20
.‘f%d,  26
product,  17

space, 20,21
Tcnsorial  form, 75

pseudo-, 75
Torsion

form, 120
of two tensor fields of type (l,l),  38
tensor (field), 132, 145
translation, 132

Torus, 62
Euclidean, 210
twisted, 223

Transformation, 9
Transition functions, 51
Trivial fibre  bundle, 51
Twisted

cylinder, 223
torus, 223

Type
ad G, 77
of tensor, 21

Universal factorization property, 17

Vector,  4
bundle, 113
field, 5

Vertical
component, 63
subspace, 63, 87
vector, 63

Volume element, 281


