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PREFACE

Differential gesmetry has a long histery as a field of mathematics
and yet its rigorous foundation in‘the realm of contemporary
mathematics is relatively new. We have written this book, the
first of thetwawolumes of the Faundativns of Differential GEOMEL I'Y,
with the intention oOf prowdmg a: systmuc introduction to
differential ‘geometry which will' also sérve ‘as a reference book.

Our primary concern was to make it self-contained as much as
possible and to give complete proofs of all standard results in the
foundation. We hope that: this' purposé has been ‘achieved with
the following arrangements. In chapter | we have given a brief
survey ‘of differentiable manifolds, ‘Lie grotips and fibre bundles.
The readers who-are unfamiliar with théin may learn thi subjects
from the books “of Chevalley, Montgome Zippin,  Pontrjagin,
and Steenrod, listed in the Bibliography, wiich are our standard
references in Chapter 1. We have also included a concise account
of tensor- algebras and tensot fields. the eentral theme of which
is the notion eof Herivation of the algebra of tensor fields. In the
Appendices, We have given some ‘results from topology, Lie group
theory and othirs which we fieed in the miain text. With these
preparations, the main text of the book is self-contained.

Chapter |1 -centains the connection theory of Ehresmann and
its later development. Results in this chapter are applied to
linear and affire connections in Chapter 11l and to Riemannian
connections in Chapter |V. Maniy basic results on normal
coordinates, convex neighborhoods, distance, completeness and
holonomy groups are’ préved here completely, including the de
Rham decomposition theorem for Riemannian manifolds. '

In Chapter V, -we introduce the sectiona curvature of’ a
Riemannian manifold and the spaces of constant curvature. A
more complete treatment of properties Of Riemannian manifolds
involving sectional ‘édrvatute depends on ‘calculus Of variations
and will be given # Vohnm Il. We discuss flat’ affine and
Riemannian connectioas m tail.-

In Chapter VI, we first di transformations and infinitesmal
transformations which praervc a given linear connection or 3

Riemannian metric. We include here various results concerning

R},S}Q tensor, h_olonomy and infinitesimal isometries. We then’
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PREFACE
trea.t the ewtension Of local, transformations and the so-called
equivaleng,” problem for affine and Riemannian connections,

The resulyg in this chapter are closdly related to differential
geometry {Qf ~homogeneous spaces (m particulary, Symmetric
spaces) whiph ‘are planned for VolumeI1.

In all the chapters, we have tried& familiarize the readers
with varioyg techniques of computations which &€ currently in

Cont ent s

Xi
use in differential geometry. These . (1) classical tensor Interdependence of the Chapters andthe Sections
calculus with indices ; (2) exterior differentig} calculus of E, Cartas; CuaPTER |
and (3) formalism of cgvariant differentiati which is the - - .
newest among the threé;- ,.@;We have also m:gﬁgﬁ{@ we €€ fit., _ . D|ffrent|able Man ',TLOIdS !
the methods of using . suitable bundle or working directly in 1. Differentiable manifolds - - - - =% ° 17
the base space. T 2. Tensor algebras o %
The Notes include spme -histprical facts and supplementary 3. Tensor fields 38
results Pertinent t0 the main,content of the present, volume. The 3. Lie groups 0
Bibliography at the end,gentains: only those books and papers 5. Fibre bundles
* which we quote throughout the.book. ¢ . = Crpeter
Theqy;r:s,epropolsi. 'Qqsgﬁgdiibmkﬁiw are numbered fﬁr each Tbeory of Connections 3
section. or exampie, in hapter. 5ay, Chapter |1, Theorem . . - )
31 is in Sgction 3 ?I;,;he iszf?tilgam; gwrgpitevl\‘/ i1 be referred L. Connections in a principal fibre bundle o7
to simply as Theorem_3.1, For.qu OiaﬁOﬂi&#ubsequent chapters, 2. Existence and extension of <.:on.nec't|~on.s 68
U e 10 Thegrem &1 of Ghugtar . 2 Hotonomy roups n
Ve originally planneg to write pne volu hich would include : > , 75
the content of Zhg presgrs}t _vﬁgmc;?g; ;eﬁ:r;ﬂﬁe following topics: ) S Curva_ture form and _structgre equat on. 79
submanifolds; variations of  the length megral; differential g f;- '\é';zp'r;gs Ofthc"””ec“ons 83
geometry of complex and Kahlerimanifolds; gifferential geometry = i 8 H k;'r? 'r?qn theorrem 89
of homogeneous spaces; symmetric spaces;.characteristic Classes. 9' FIO omy - theorem R
The considerations of time;and space have made it desirable to. - Fla connections 94
dividc the book in two volumes. The?topfés mentioned above will - 10. Local and‘ infinitesmal holono.my.grc_)up§ 103
therefore be included in Volume 1. 1. Invariant *connections
In concluding the preface, we shauld like, to thank Professor CHAPTER |11
L. Bers, who invited. us to undertgke this project, and Inter- Linear and Affine Connections .
science Publishers, a divisien of John Wiley and ‘Sons, for their . . i
patience and kind coapyration. We re greatly indebted tp Dr. - Sonnections n & vector bundle 118
A. J. Lohwater, Dr. H. Qzeki, Messrs,A. Howard and E. Ruh for 3. Affine connection 7 125
their kind help which regulted in many improvements of both the 4' Developments L 130
content and the presentation, We alsd acknowledge- the grants of 5 Curvature and torsion tensors 132
the Nationdl Science Foundation which supported part of the work e
included in this book., i o ( 7. Expressions in local coordinate systems SR
SuosHicHL KOmAvASHI vii

Karsumt Nomr zu
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. {rﬂlﬂ'erentlable Ny

w‘ereng,aﬁle man;ﬁ)lds ‘ ;

A pseudogroup qf l?dmﬂ;fnd'tfom on'a topologlchl Space S iSa set
I of transformations satisfying the followidg axioms:

(1) Each fe I} is.a. homeomarphism ef an open. set (caled the
doman of f) of § onto another :open Set (called the range off) of

.Q

2 If fe T, then the restrlctlon off to an arbitrary open subset
of the domaln off is in T';
(3) Let U= UU wher& each U, is an open set of S. A homeo-

morphism f of U'onto an .open set of S belongs to ['if the re strlc-
tion off to Uis in I' for cvery, iz,

(4)FFor every open set U of S the ldentlty transformation Of U
isin

6) Iffe I' thenf! ¢ Iy

«{6) I fel'is a homeomorphlsm of U onto V"dﬂd)f elisa
homeomorphism of {/" onto V' and if, ¥ < U’ is non-empty,
then. ;he homeomorphism ' » f of f“(V n U/)»o.nto f(vnt)
is.in[ RS
We give.a few examples of pseudogroups WhiCh are used in this
book. 1eet Ry bothe spaccofu- tuples of real numbers (a2, x2 |
with'the wsualtopology. A mapping / of an open set of R mtg
Rm 15 Sald'-rw,» sbﬂ of Cl@’s C T = I 2 -, on of f is con-
tinuoudy r times éifﬁacntlable By class C" we mean that fiis
continuous. By classiC#;ae  mean _that f is real analytic. - The
pseudogroup ¥ (R™) -of tsgrigformatiops of class C7 of R” -is the -get of-
homeororphisms .f of ;ani ppensset -0f-R? ONtO: an- open St of R»
such that both f and: f‘l are Qf ﬁ»k‘&s cr, OhViOUSI 1’6R"> 18 @
pseudogroup of transformations ‘of R If r < s, then Is(RY) is a
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subpseudogroup of I*(R"). If we consider only those fe I'"(R")
whose Jacobians are postive everywhere,. we obtan a sub-
pseudogroup of " I"(R"), This subpseudogroup, denoted by
Te(R), is called, the pseudogroup of origtation-pressroigg transforma-
tions of class C* of R”. Let C" be 'thie §face of n-tuple él'eomplex
numbers with the usua topology The pseudogroup of holp :
(i.e, complex anaytic) s of G can, be similarl
defined and will be denotet om%‘) We shall 1dcnt1fy C* with
R, when necessary, by mapping (2}, . . . , z") e C*into (x3, .

oy, ) e RP where 2 = + z_yi . Under this 1clent1ﬁ- .

cation, I‘(C") is a subpseudogr p of I"(R”‘) for any 7,
An atlas of a topologheals ﬁ%%:: ‘M compatible ‘with amudo-

group [ is a family ﬂf pairs (U, ), called charts, $ud\ At
(a) Each ,1§a,x;open,'§etofMandUUf._M oo

(b) Each ¢; s homeémorphmm of U onto an open set of S,

J(c) Whenever ‘U; m: U, is non-empty, the mapping @; © @} of
P(U; A U, onto ¢;( U; 0 U)) is an element of T

:3A complete atlas of M:-¢ompatible with P is an atlas of M com-
patlble with T' which is not contained ih any @er atlas of M
competible with T, Every atlas of M’ eomp#giBle with I’ is con-
tained in a unique complete atlas of M, tible with I'. In
fact, given an atlas A ={(U,, .)} o M companble with T, let
Abe the family of all pairs (U, g) such, that @isa homcomorphxam
of an open set U of M onto an open set of § and that

g0 97 (U N U) - o UN T)
is an element of I' whenever J A U; is non-empty Then 4is the
complete atlas containing A.
If I is a subpseudogroup of I’, then an ‘atlas of M compatible
with I iz compatible with T.
A differentiable manifold of class C* is a Hausdorff space with a

fixed complete *atlas compatible with I*(R"). The integer # is’

caled the dimension of the manifold. Any atlas of-a Hausdorff

space compatible with I*(R"), enlarged to a complete atlasy

defines a ditferentiable structure of classC*. Since I'"(R") > *(R*)
for r < s; a differentiable structure of'glass C*-defines uniquely a
differentiable structure of class €', A differentiable manifold of
cliss € is also caled a real analytic manifold. (Througheut the book
we shall ‘mostly consider dlfferent|able manlfolds of clﬁss ¢=. By
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a differentiable manifold or, g Iy, manifold, we shal mean a
“differentiable manifold of class €=.) A complex (analytic) manifold of
complex dimension n is a Ha‘“ ,‘rﬁ‘ space with a fixed complete
atlas compatible with T'(C).’ | ariented  Cifferentiable  manifold

by

of class ‘C""1s a Hausdorff space.:‘ th a fixed complete atlas com-
patible with A5(R%). An oneuﬁed differentiable structure of class
CT gives rise to a differentigble structure of class .C* uniquely.

Not every differentiable strlicture ofd ¢ (v is thus obtamed if
it is obtained from an oriented one.. 1s called orientable. An

orientable manifold of class C* admits .

if it is connect&L Lcavrng thc prooi' ot; fhls
we shall only mdiqltc how o rezerse. the onm of .an oriented
tanifold. If afamily gham (U‘, @,) d&es anoriented manifold,

‘then the, fami,Iy of gharts (U » ;) defines the manifold with the
rcversed oqcntauon where v, is the’ composmon of ¢, with the
transformation (1, x2, ..., #%) — (—a%, #%, . x*) of R®. Since

I(C%) < Ty(R™), every complex manifold is oriented as a ma& -
fold of class €,

For any structure under consideration (eg., differentiable.
structure of class C*), an allowable chart is a chart which belongs
to the fixed complete atlas defintng the structure. From now on,
by a chart we shall mean an allowable chart. Given an allowable
chart (U, ;) of. an n-dimensiond manifold M of class Cr, the
system of functions ¥ @, . . ., X" o @, defined on U, is caled a
local coordinate system in -U;. We say then that U, is a coordinate neigh-
borhood. For every point ¢ of M; it is possible to find a chart { U, ¢,)
such that np;(p) 13 the origin of R" and g.is a homeomorph|sm of
U, onto ‘an"open set of R~ defined by |5} < a, , .., jx"] <a for
some posmvc number a. U, is then caled a cubic neighborhood of p.

. In a natural manner R*is an’ onented manifold of class (r for
any 7; & chart c0n51sts of an elementfof I';(R") and the domain
off. ermlarly, C*% a comiplex manifold. Any open subset N of a
manifold M ofclass C' isa manifold of class C* inanatura manner;
achart of N is given by (U,; n Al‘, y,) where (U, ¢,) is a chart of
M and y, is the restbcwn of g: 10 (I; ON. Snmlarly, for complex
manifolds. +

Given two manifold? ai:ﬁ M of class ¢r, a' mapping
St M M issad to be differentiable of class C¥, & <1, if, for
every chart (U, ¢,) of M and every chart (V,, g,) of M’ such that

two orientations
1}, t to the reader,
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AU) <1, the mﬂp’ping vy o f o gt of @ Uy)into y)J(V)
dlfferentlable of Class Cr If , " isaloca coordmate system
inl,and #,.".,v" is a local coordinate system " m , then f
may be’ cxprcsqed by a set of differengiable functions’ of class C*:

ﬂl ,.fl(ul __’u) v:rb_fr:z/u‘ -;1&").} "

By a’ differentiable mappzng or 51mply, a mai)bmg, we shall mean a
mapping of class C*.,A differentiable functlon of, class C* on M is
a mapping of classC* of Adinto R. The dcﬁnmon Of 2 /zolomorphlc
(or complex ana{ytzc) mappmg OI‘ functlon 15 sunllar _

By ad ﬁerentzable citrve Of class C* in M, 'we shall med’ig a Qlﬁ%rcntx-
able mapping of ‘class C* of a closed interyal {4, 5] of R into M
namely, the restriction of a differentiable mapping of class C* 91
an open interval containing [a, #] into A{. We shal now define a
tangent vector {or simply a pector) 4t a point p. of M. Let F(#) be the
algebra of differentiable functlons of class C! defined in aneighbor-
Hood of p. Let %(7) be a curve of class €1, a =t <8, such that

#(to) = p. The vector tangent to the curve x Q,atﬁ 15 & mapping
X F() SR defined by Lo

o XF = ()0,

In other words,. Xf ig the cfenvatm of £ in' the direction ‘of the
cltrve x(£Vht 1= ly. Thex*ccfnr X satisfies the following conditions’:

(l) X is a linear m‘xppmg,! of F(p) into R;

(2) X(Jg) = (Xf)e(p) ﬂ/))(’@ . forfg< &(#)-

The set of mappings X of "§( p) m,‘ ll satxs{ymg the precedmg
two conditions forms a real vector space. We shall show that the

set of vectors at p is a vector subspace of dimension n, where  is
the dimension'of M. Let u',.. ., " be'a local coordinate systemn

in a_coordinate nelghborhood L of p. For each j, a[au’ , is a
mapping of &(p) into K. which satisfies conditions (I) and (2)

above. We shdl show that the sct “of vectors a p is the, vector

space with basis (a[aul po '8/811”)" Gxgcn any curve x(f)

with p = x(t,), let ' = x(8), 7 - 1, 0 be its equations in

terms of the local coordinate system !, . . . , 4% Then,

(df(x(t) ), JEJM@J wwmm*a

T N INREAS ()f Bastt Notation

< Forthe summation lmmlm

Y e
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which 5roves that every vector @ p is alinear combination o:
(9/auty ,, . .., (8/0u") . Conversely, given @ lincnr combination
T Ei(d)on’) (omldu thc cur\cdeﬁned by

w o= w{ p) - &’t J = 1, , 72.
Then the vector tangent to ilm curve a t - 0is X &(o/dw),

To prove the linear 1n(1cpcr;dcncc of (9/dut) . (d]ou"),
assume X &(0/du’), - . Thén™

0 = X & au‘/&u.-)y‘TS"' fork- 1,...,n

This completes thd pro()f of gur assertion. The set of tangent
vectors at f, denoted by T,,(A1) or 7', is called the tangent space of
AM a p: The n-tuple of numbﬁrs £ 5 & will be called the com-
ponents of the-vector T &'(afoa’), with respect to the local coordi-
nate system w1, . .. ., u”,

Remark. It is known that if a manifold Af is of class ¢, then
T,,(M) coincides with the space of X: §(p) — R satisfving condi-
tions (1) and (2) above, where F(p) now denotes the algebra of all

* functions around p, From now ¢n we shall consider mainly
man|folds of dass (% and mappings of class C*.

* Arvector field X on a manifold M is an assignment of a \e(:tm X,
to cach point g of M. If/is a diffcrentiable function on A, then
AXf'is a function on Af defined by (XF) (p) = X, f. Avector ﬁcld X
is called differentiable it Xfis diffc‘rvnti:lbl(' for vycrv differentiable
function f.In terms of a local coordinate svstem !, . . ., u* a
vector ficld X may be expressed by X X &(d/du), wh(‘r(t & are
functions defined in the coordinate neighborhood, called the
components Of Y With respectto «!', . . ., »* Y is differentidble if
and only if its components & are differentiable w

Let X(AM) be the set of al differentiable vector ficlds on M, It
is" a’ real vector space undeér the natural addition and scalar
multlphcatlon If X and I’ are in 1:( A6, define the bracket
[X, YT as'a mapping from the fili ¢ of functions on \l into jtselfl

by
[X, Y]f = X(Yf) vy,

We shall show that (X I] is a vector field, In tepmns of a local
coordinate system #¥ , .". , u", we write

X=~%WWM~mewwm¢

3
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Then

[X, Y1f = E,,(&*(0n'[06") — n*(D&(0u*))(2f]0us).
This means that [X Y]isa vcetot«ﬁeld whose components with
respect to#?, . . ., 4" are given by Ty(&(n’[0u*) — n*(28 o)),
J=1..0 W|th respect to this bracket operation, (M) is 2

Lie dgebra over the red number figfd (of mﬁmtc dimensions).
In particular, , we have Jacobi’s ider

(X, ¥1, 2] + 1Y, 23, X1 + 2y
for X, Y, Z ¢ E(M)

We may aso regard X(M) as a module ovcmh:e anebra (M) of
differentiable functions on M as follows. |ff is a function and X
is a vector field on M, then T X IS avector field on M defined by
(fX), = f(£)X, for p e M. Then

/X, gY] = falX, Y]+ f(Xe) ¥ — g(¥))X
fid <S(M), XY XM).

For a point p of M, the dual vector space T,*(M) of the tangent
space “T, (M) is caled the space of covectors- at p. An assignment of
a covector at each point # is caled a l-form (d; ﬁerentzal form of
degree 1). For each function f on M, the total di fferential (df), of f
a p is defined by

<(4’f)m X) = xf

where ( , ) denotes the value of the first entry on the second
entry as a linear functiona on T,(M). If #},..., &*is a loca
coordinate system in a neighborhood ofp, then the total dlﬁ'eren-
tials (du'),, . . ., (du™), Form a basis for To{M). In fact, " they
form the dual basis of the basis (3/3uY), , {0/ 24, for T,(M).
In a neighborhood ofp, every I-form w can be umqucly written ay

w= 2, f;dd,

“

for X € T,(M),

where f, are functions defined in the neighborhood of p and are
called the components of w with respect to 4, . . , , 4" The 1-form
w is caled differentiable i f; are differentiable (this condition is
independent of the choice of a local coordinate system). We shall
only consider differentiable 1 -forms.

o

I. DIFFERENTIABLE MANIFOLDS 7

A |-form @ can be defined also as an g(M)-linear mapping of

the S(M)-module S(M) into ¥(M). The two definitions are
related by (cf. Proposition 3.1)

(@(X)), = (@, X)) Xe ¥M), peM.

Let AT*(M) be the exterior agebra over T,*(M). An r-form o
is an assgnment of an element of degree r in A T,*(M) to each
point g of M. In terms of alocal coordinate system ut, ..., u*, @
can he expressed uniquely as

<t,f1 X, dur A, "'Adui'

The rform . is * called differentiable if the companaats Jip s,
are a&differentiable. By an r-form we shall mean a differéntiable
r-form. An r-form @ can be defined also as a skew-symmetric
r-linear :mapping over F(M) of X(M) x X(M) x . + . x Z(M)
(r times) into. F(M). The two definitions are related as follows.

w = zr, <ig< -

Ifoy,...,w, ael-formsand X,, ..., X, are vector fields, then
(wlA'nAw)(X,,. coy X)) is Ur! times  the determinant of the

matrix (@,(X}))541,.. |y Of dcgrce r.

We denote by ‘D" = W(M) the totality of (differentiable) r-
forms on M for each r = 0, 1, ., n. Then :DO(M) F(M).
Each D7(M) is a rea vector space and can be aso considered as
an F(M)-module: for f ¢ F(M) and w € D(M), fw is an r-form
defined by (fw), =f{p)w,, pe M. Weset H = DM) =
Zr.oD"(M). With respect to the exterior product, D(M) forms an
dgebra over the red @umber field. Exterior differentiation d can
be characterized as follows: )

(1) d is an R-linear mapping of ®(M) into itself such that
d(@f) c br+1

(2) For afunction f € DO, df is the totd differential;

3 Iffw e dareI)’ then

doAn)=doAr+ (1) A dn;
(4) d* =
In-terms of alocal coordinate system, if o = Z, _. . <, ﬂ dun
‘. A du', then dp = T i< i, 4/’,1.,-'/\(1141'. dur, *
It will be later necessary to consider dlfferentlal‘f ‘forms with
values in an arbitrary vector space. Let ¥ be an m-dimensional
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real vector space. A V-valued r-form @ on M is an assignment to
each point p ¢ M a skew-symmetric r-linear mapping of
T,,(M) v oo X T, (M) (r times) into V. If we take'a basis ¢, . . . ,
., for V, we can write o uniquely as @ = X7.jw’se, where
(u’ are usual r-forms on, M. w is dﬁ"erentzable by definition, if
w’ are al differentiable. The exterior derivative dw is defined to
be 2., dw’ €, which is a V-valued: (r + 1)-form. ia
leen a mappingf of a manifpld M into another manifold M'
the differential at p off is,the linear mapping. f, of T,(M) into
T, »(M') defied as follows. For each X « T,(M),.choose a curve
x(f) in A such that X is the vector tangent to x(t) at p = x(f,).
Then f,(X) is the vector tangent to the curve f(x(t)) at f(p) =
flx(ty)). 1t follows immediately that if ¢ is a function differentiable
‘in « neighborhood off(p), then (f.(X))g = X(g -f). When it is
necessary to Specify the point p, we write (f,),. When there is no
danger of confusion, we may simply write f instead off,. The
transpose of (f,), is a linear mapping of 77, (M’) inio T*(M
For any r-form o’ on M’, we define an r-form f *' on M by

(o) Xy o) X)= o' (s oSk,
Xl) tee ! Xr € T;)(M)'

'The exterior differentiation d commutes with f *: d(f *o') =
S (don').

A mapping f of M into M’ is said to be of rank r at p ¢ M if the
dimension of f*( T,(M)) is r.If the rank of f at p is equd lo
wodim M, (f), s anCC[i\C and dim M & dim M. If the rank

of fat pis equal {0 7’ = 0im M, (f,), is surjective and. dim M
dlm M. By the |mpI|C|t function theorem, we have

ProposiTioN 1.1.  Let T be g mapping of M into A" and p a point

of M.
Q) If (f,), s injective, there exist a local coordinate system u', .. . u"
in a neighborhood U Of p nnd g local coordinate system o', . v“ ina

neighborhood of f(p) such that

i

o (flg))  wl(g) forgenr and i=1, ... . n 0

IN particular, f is a komesmorphism of U onto f (U).

o
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(2) 1F (f,) »is surjective, there exist a local coordinnte system u, . .., u®
in a neighborhood {/ of p and a local coordinate system ot,. .., " Of
f(p) such that
v(flg) = (g forqeUandi =1,...,n.

In particular, the mapping f: U/ — M’ is open.

BYIf (fy) » is a linear isomorphism of T,( M) onto Ty (M'),
then f defines a homeomorphism of a nezgflb(}f/w()(j' {/ ofp onto a neighbor-
hood ¥ off(p) and its tnwerse f 11V — U is also di ﬂerentzable

For the proof;: sce ,Chevalley[ I, pp. 79-80]. -

A mappmg f of ‘M into M’ is called an immersion if {f,), is
‘injective for every point g of M. We say then that M is immerscd
in M’ by f or that -M is an immersed. submanifold of M’. When
an immersion. f is injective, it IS called.an lmbeddmgof M into M.
We say then that ‘M (or the image f (M)) is.an imbedded submanifold
(or, smply, a submanifold) of M'. A submanifold may or-may not
be .a closed subset of, A’. The. togplogy of a submanifold is |n
general ﬁmx than the relative topology induced from M.

g‘pﬁn subsg? M Qf a manifold M’, considered as a submamfold of

{’in a natural manner, is: caﬂcd an open submanifold of M'.

Example 1.1, Let f be a function defined on a manifold M",
Let M be the set of points p & M’ such thatf(p) = 0. IE(df), + 0
at every point p of M, then it is possible to introduce the structure
of a manifold in M so that .M is a closed submanifold of M’
called the /z)permrjace defined by the equation £ = 0. More generally
let- M be the. set.of common zeros of fynctions.f,y. . . »f; ‘defined
on M’ If the dlmensmn say k, of.the subspace of T*(A{ spanned
by (dfilos .. vy (dfy) pis. independent of p & M, then M is a closed
submanifold of M’ of dimension dim M’ — k.

“A tfzﬁwmorp}mﬂt of a- manifold Af oitb another manifold Misa
homeortiorphi¥m ¢ such that‘b&fh p and ¢! are differentiable."A
diffeomorphisnt ofM- ontoitself is called a- differentiable thans-
formation (or, simply,, & transformation) of 39. A transformation @
of M. induces an auto}norphu}m ¢* of the agebra (M) of
differential foxms on M- and,.ig particular, an automorphism of
the algebra. | ‘fy(M of funcuon&on' M:

i

( *f)(p ‘F(/X f€ i ( U\ o Peﬁ[ e
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It induces aso an automm'phmn ¢, Of the Lie dgebra T(M) of
vector fields b
(cp,,,X), (‘l’w

o(9) =p  Xe x(M).
They. are related by '

" #*{(peX)f) = X(¢%f) for K X(M) and fe ifr(M)

Although any mapping ¢ of Minto M’ carriesa differentia} fpgm
@’ 0N M’ into a diffe. ential form ¢*(w’) on. M, ¢.does not send a
vector fidld on M into a vector field on M’ in. genera We say that
avector field X on M is p-related'to a vector fild X on M*:if
(Pa)pX, = Xgpyforall p« M.If Xand Y ae g-related to X! dndy
respectively, then [X,Y]is g-related to [X', P"]. de M»: 8

A distribution S of dimension r on a manifdd Mt 4
ment to each point p of M an r-dimensional subspate S, 6f F: (M)
It is called differtntible if evety point p -has'a’ nelgﬁborh
and r differeritiable ¥ector feldson ., say, Xy, U, X, whi ch
form abasis of 8, at every q'¢ U-The Set X, . IScallc&’

local basis for the distribution S in U.'A vector,ﬁethlssald 4

bdongto S if X, « S, for all'p ¢ M. Finally, § i calléd involutive If
[X, Y] belongs 10 S whenever two vector fields ¥ and Y bdang to
S. By a distribution we shdl adways mean a differenticble dis-
tribution.

A connected submanifold- N of M is called an intagral manifold o'
the distribution § if f, ( T,(N)) & §, Wzl p ¢ N, where £ is the
imbedding of N into M. I there is. 0 dtheg mtegral ranifold of
§ which “contains N, ¥ is called'a maximad' iirtegrct manifold of'S.
The classical theorem of Frobenius' can be ‘formulated as foIIows

PROPOSITION 1.2. Let S ¢ an mlubvz di:mbutwn ona mangfald '
M. Through w point p € M, there passes a unique maximal integral
manifold N(p) of S. Any integral “manifold through p is an. apen -
manifold of N(p e

For the proof, see Chevalley [ 1, P 94]. We also state xr

Proposrrion 1.3, Let S be an involutioe’ distri atiol of
M. Let W be a submanifold of M whose connected com .
integral manifolds of S. Let T be a differentiable mapping of a manifold N

|. DIFFERENTIABLE MANIFOLDS 11

into M M[;TAMAM)_.W If W_satisfies the second ‘axiom of count-
whility, hen 1 is differentiable as a mapping of N into W,

For the proof; s¢¢ Chevaley [1, p. 95, Proposition 1]. Re-
place analyticity fhere. by dlfferentlebmty throughout and
observe that i néedl niot: be connected since the differentiability
of f is ,a loca matter.

“We now define the product of two manifolds M and N of
dimension m and #, respectively. If M is defined by an ales A =
{(Uy, @)} and, N i defined by an atlas B = {( V, y,)}, then the
natura d utinble structure on the topologicaspace M x N
IS deﬁned,s a&ml’as {U: x Vi 9; X 95)}, where ¢ X'y U, x

V, - R"‘ﬂ = R" X R# is ddfined in ;a natural manner.. -Note,
that this ‘atlas is not complete evenif A and B are complete. For
every point (g, QOfM A thc;ﬁmg‘mt space T, (M % N)
can , be identified, with, the dircct sum T (M) + + T,(N)in a
naturdl manner; Namely, for K¢ Ty(M) and Y ¢ T,(N), choose
curves x(t) and #(¢) such that & is tangent to x(£) at p = x(t,) and
Y istangent to y(i) a ¢ = y(fy). Then (X, ¥) e T,(M) + T ,(N)
is identified wia the vector Z a Ty, (M x N) which is tangent
to the cuve al) = (x(8),5(1) at (p @) = (x(te)s)(t). Let
Xc Tip (M x:Nibe tie vector tangent to&e curve (x(t), ¢) in
M x N a (g, o). Smilaly, let ¥ ¢ T, (M x N) be the vector
tangent to:the curve {p, »{t)) in M x N a (p, d). In other words,
X isthe image of X by the mapping M — M X N'which sends

p € M into (¢, q) and ¥ is the image of ¥-by the mapping
N - M x N which sends ¢’ e ¥ into (p,4'). Then'Z =X + ¥,
becanse, for any function f ot M XN, Zf = (df(x(¢), y(t))’/‘dt),,,o
iS, by the chainrule, equalto .

(#‘(t(t).J(t.))/dt)c-., + (df(x(t,) y(t))/dt) gy = xf YRS
Morc gcnerally3 m m

Proposiion T ; .
product mantfold M %X N inte anothey mamfo?d V. The differential ¢,
at (p; q) e M x N can be expressed a:ﬁllows IfZe Tipa(M x N)
comspmd:to (X, YyeT, (M) + T(N), i

Pa(Z) = pra(X) + Pre(T)s
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where g M-V (md quzz N 5 V are defined by

e(p) = 9 (', q) ) for if e M «and ¢3(q¢") = @(p, ¢) _wfor,:A q ¢ N. i

Proof. . From the definitions of X, 7, ¢,, and g, it follows that
ol X) = 014lX) A ¢4(F) = gu(Y). Hence, p5(Z) = g(X) +
‘7"*()) = (X)) + qua(Y). QED.

Note that if ¥ = M “x Nidnd ¢ i fhe identity transformation,”
then the preceding propositighreduces to the formula’Z = ¥ + ¥,

Let X be a vector field on a manifold M. A curve x(t) ig:M is
called an inlegral’ cutve of X if, for every paraniéterw%ﬂuc t';,*13 \?‘ﬁe
vector X 1,y 1S tangent to’ the cutvek(t) at’k(t,). ‘For any point p
of M, there is a unique integral curve x(t) -of X, defined for
It] < & for some & > @), such lhat[),, = x(0). In faet, Ietuly . .. @?
be a loca coordinate system in a neighborhood &‘of /)(, and, let
X = ¥ £(9/ou)in U. Then'an mecgral euw%fuﬁXls a solution of
the iollowmgr System of ordinary dxﬂ“erchhﬁ} ﬂ;u’anons

Au_ ‘%’h‘-r

wwaaw mx;

[T

j f:ail'ﬁas,w; meooo @

Our. asscmon followsfmm the fundammaﬁt:"w
ordmary differeritial etjuajigns {Ske Approdi:
A A-parameter] gioup. 'of :(differeptiable) q{gnqﬁmatwm ‘of. M ’i%ua

mapping of R¥x M into M ({,q&)mll;m Mk %(p) e M, whichl

satisfies the followiing ¢ondittons i o 5 bas (v - TS ST

(1) For each t e R, g p > @i phis a mmfoﬂmdt;oit of M‘

(2)-For all t,s ¢ R and p e M, o, (p ) =)y ot
Each l-parameter group of transformations g; indueein advector:
field X as follows. For.every point p ¢ M, X, is the vector tangent
to the curve x(t) = qn(,b)', called the brbit ofp, at = gl ()~ The
orbit ¢,(p) is an integral curve of X starting at p. A local 1- [}atametq:f
group “of local tmnsfarmatzons can be defined it the san‘f%;f3 why,"
except that, ¢.(p) is defined only.for £in a ngWhom}nf 0 ,and
#in an open set of M.. More prcusdy, lc an open. lateryal
(*e, &) and U an; open SEt. qf M. A loch i-parametcg graup of,

local transformations deﬁnecf Dn I, % U is a mappmg ofjl\.y?( U

into M which satisfies the foﬂow‘mg conditions:
(1) For each t e I, q,: p — <p,(p) isa dlﬂ"eomorphlsm ‘of U onto

the open set ¢ ({7 of M;

» foi"a‘systcms*of’

r
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(I ts,t 450 I and if p, ¢ (p) € U, then

Peis(p) = lg4(p)).

As in the case of a I-parémeter group of transformations, ¢,
induces a vector field X defined on V. We now prove the converse.

PrRoOPOSTION 1.5. Let Y be a vector ﬁeld on a manifold M. For each
point p, of M, there exist a neighborhood U of p,, a positive number &
and a local I-parameter group of local transformations g,: UM,
t ¢ 1,, which induces the given X.

We shdl say that X generates a local |-parameter group of
local transformations ¢, in a neighborhood of p,. If there exists
a (global) I|-parameter group of transformations of A which
induces X, then We say that X is complete. If ¢ (p) is defined on
I, x M for some ¢, then X is complete.

Proof. Letau!,...,u" be a loca coordinate system in a
neighborhood W of p, such ‘that u'(p,) = . . . = u"(p,) = 0.
Let X = X &'ty . . ., u*)(9/ou’) in W. Consider the following
system of ordinary linear differential equations : -

dfifdt = &), . L "0) = 1,8

with unknoivn functions o . . ,f*(¢). By the fundamental
theorem for systems of ordlnary differential equations (see
Appendix 1), thére exists a unique set of functions fi(t;u) ..,
S*(t; u), defined for w = (u, . . ., w®) with |y7| -< §; anh’ for
l¢f < €&, which form a solution of the differential equation for
each fixed 4 and satisfy the initia conditions:

; Fi0; 0 = o

Set @,(u)=-(f3(t; u)y . . . w) for < e and yin gy -
{u; |u'] < &}.-If |t},-|s} and r + s| are &l less than ¢, and both
u-and §(u)” dfedf-U,; then the functions g'(f) = f(t 4 s; u) are
easily seen to bera’sdlution of the differential equation for the
initial  conditions g{O) = fi(s; u). By the uniqueness of the
solution, we have g/(¢) = f¥(¢; @,(u)). This proves that g, (1 (1)) =
¥, (u). Since ¢, is thi identity transformation of 17,; there exist
4 >-0and ¢ > ( such that, for U = {u; Ju'| < 8}, ¢, (U) < U, if
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lt| < e. Hence, ¢_,(p, (1)) = @,(0_,()) = g,(u) = u for every
u ¢ U and |t] < e. This proves that @, is @ diffeomorphism Of I/
for 14 < e Thus, ¢, is a loca |-parameter group of loca trans-
formations defined on 7, x U, From the construction of @y it is
obvious that ¢, induces the given véctor field X in U. ‘QED.

Remark. |n the course of the preceding proof, we showed also
that if two local I-parameter groups of lecal transformations g,
and y,deéfined on 7, x U induce the same vector field on U, they
coincide on U.

Prorosrrion 1.6.  On a compact manifold M, every vector field X is
complete.

Proof. For each point p ¢ M, let U(p) be a neighborhood of p
and &(p) a- positive number such that the vector field X generates
a loca |-parameter group of loca transformations ¢, ‘on
I, X U(p). Since M is compact, the open covering {U(p) ; p € M}
has a finite subcovering {U(g);i =1,.. ., k). Let’ & =
min {e(p,), . . ., &(p)}. It is clear that @,(p) is-defined on 7, x M
and, hence, on R x AM.- f QED.

In what follows, we shall not give explicitly the domain of
definition for a given vector field X and the corresponding local
|-parameter group of local transformations ¢,. Each formula.is
valid whenever it makes sense, and it is easy to specify, if necessary,
the domain of definition for vector. fields or transformations
involved.

Prercsiion 1.7.  Let ¢ be a transformation of M. If -a vector field
X generates a local I-parameter group of local tramsformations ®., then the
vector field @, X generates ¢ o @, o 7L, .

Proof. It isclear that ¢ o ¢, ¢ ¢~ is a local |-parameter group
of local transformations. To show that it induces the vector
field @, X, let p be an arbigeary point of M and ¢ = ¢7(p).
Since g, induces X, the vétor X, ¢ T,(M) is tangent tosthe curve
x(t) = @,(g) at 4 = x(0). It follows that the vector |

(PeX), = ea(X) € T,(M)
is tangent to the curve Y(t) = ¢ o ,(g) = ¢ o ¢, o o™ (&)s QED.

Coraary 1.8. A vector field X is invariant 3y @, that is,
oxX = X, if and only if @ commutes with g,
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We now_give a geometric interpretation of the bracket [X, Y]
of two vector fields.

Prrcsiay 1.9, Let X and Y be gector fields on M. If X generates’
a local I-parameter group of local transformations ¢p,, then

.
[X, ¥] =lim 7 (7 = (p)4Y].
More precisely,
.1
(X, Yl, = IL“(:'{ ¥, — (@)« Y),], peM.

The limit on the right hand side is taken with respect to the
natural topology of the tangent vector space T,(M). We first
prove two lemmas.

Lewa 1. Iff (g p) isa funetion on 1, x Ms where 1, is an open
interval ( —e, ¢), sucr(1 tﬁi f(0,p) = 0Jorall peM, then there exists a
function g(t, p) en I, x M such that f{,$) =t + g(t, p). Moreover,
£(0, p) =f'(Q, p), where £ = of[¢, for p € .

Proof. It is sufficient to define %

85 9) =J:f'(tr pds. QED.

LeMMA 2. Let X generate @,. For any function fon M, there exists a
function g,(p) .= g(t, p) Sich that.f o gy =T 44+ g, and gy = Xf on M.
The function g{¢, p) is defined, for each fixed p ¢ M, in |t| < ¢
for some ¢,
Proof. Consider f(t, #) = flgl#}} — f(p) and apply Lemma
1. Then fop, =f + &g, We have

i /(9#) ~ £0) =mg J0up) = im 80) = 2l
QED.

Proof of Proposmon 1.9. Given a function f on M, teke a
function g, such. thatfo g, =f +t+ g and g = Xf (Lemma 2).
Set p(t) = ¢~ (p). Then .

(@aD)af = (Y(F° @) aer = (X)po + 1 * (Y& 0
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and

hm [I — (zp,)*Y],,f = hm [(Yf — (¥f) ) ‘hm(Ygt)mn

:,(Yf - Yngo = EX1Y]1lfs
proving our assertion. QED.

CoroLLARY 1.10. With the same i;ol'at'it;h:: as in Proposition 1.9
we have more generally

(1) oK. ] = 13m - [(9),¥ = (7200 7]

for any value ofs.
Proof.  For a fixed value of s, consider the vector field ((ps) 7
and apply Proposmon J9 Then we have ‘

m@”m=gﬁm&-4%*@mn

= hm% [((p«)*y ((ps-H)*Y]"

{0

since ¢, © @, = Py, ON the other hand, (g,) ,X = X by Corollary
1.8. Since (g,) 4 preserves the bracket, we obtain_,

_ = [X, (p,) Y]
(9)[X, Y] = [X, (9) 4 Y] QED.

Remark. The conclusion of Corollary 1.10 can be written as

(@(g ) V) ), =~ () o [X, V1.

Cororrary 1,11, Suppose X and Y generate local 1-parameter
groups ¢, and g, respectively. Then @, o y, = y, o ¢, for every s and
if and only if [X, Y] = 0.

Proof. If g, o, = p, > ¢, for every s and t, Y is invariant by
every ¢, by Corollary 1.8. By Proposition 19, [X, j - 0.
Conversely, if [X, Y] = 0, then d((p,)xY)/dt = O for every ¢ by
Corollary 1 .10 (sec Remark, above). Therefore, (<p,)*Y S a con-

stantvector at each point p so that Y is invariant by. every ¢,. le
Corollary 1.8, every y, commutes with every ¢, QED.

-
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2. Tensor algebras

We fix a ground field F which will be the real number field R
or the complex number field C in our applications. All vector
spaces we consider arc finite dimensional over F unless otherwise
stated. We define the tensor product [/ & V of two vector spaces U
and V as follows. Let M(U, V) be the vector space which has the
set [/ x V as a basis, i.e., the free vector space generated by the
pairs (u, v) where u « U and v € V. Let N be the vector subspace of
M( U, V) spanned by elements of the form

(u + u” U) - (lt, U) - (u” (/'), ‘(u: v .+ U’) - (u; U) ~ _(u,.v'),
(ru, v) — r(u,v), (u, 1) = (%, v),

where uu e U, vt eVandreF. We set U® V= MU, V)/N
For every par (u, ») considered as an element of M( U, V), its
image by the natural projection M( U, V) — U ® V will be
denoted by u @ v. Define the canonical bilinear mapping ¢ of U/ x V
into U ® V by

L a o, )= u®p  for (u,v) e Ux V.

Let- W be a vector space and v : U x V —» W a bilinear
mapping. We say that the couple (W, y) hasthe universal factoriza-
tion property for-U x V if for every vector space $ and every bilinear

mapping f: U x V— S there exists a unique linear mapping
g: W — S such that f = goy.

Froposition2.1.  The couple (U @ V. ¢) has the universal
factorization property for U x V, If a couple-( W, ) has the universal
factorization proper& for U x V, then (U® V, q)) and (W, y) are

isomorphic. in tire sense that there exists a linear isomorphism o: U @V —»
W such that y = g o ¢

Proof. Let § be any vector space and f: U X V - § any
bilinear mapping..Since U. X V is a basis for M(U, V), we can
extend f to a \mlqueaih.gl ar mapping f : M( U, V) - §. Since f
is bilinear, f ! vanishes on’ ."Therefore ,f ' induces a linear mapping
g U ® V —S. Obviousvy, f = g © ¢. The uniqueness of such a
mapping g follows from the fact that @{ U x V) spans I/ ® V. Let
( W, y) be g couple havifig:the universal factorization property

for U x V. By the universal factorization property of (U ® V, )
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(resp. of ( W, ¥)), there exists a unique linear mapping o: U & ¥V~
W (resp. 7: W— U ® V) such that ¢y = 0> ¢ (resp. ¢ =7 © 9).
Hence, tp =rcoopandy = oo royp, Usmgthcuniqueness of g
in the definition of the universal factorization pfoperty, we
conclude that 7o ¢ and ¢ o 7 are the identity wansformations Of
UXV and W respectively. QED.

”xoposmonz 2. There is a unique isomorphism of U @ V onto
V®lemksmdru®vmtov®uforallucUandvsV

Proof. Let f: U X V—+V® U be the bilinear mapping
defined by f (U, vy = v ® u By Proposition 1.1, there is a unique

linear mapping g: U ® V— ¥V ® U such that gz ®2) =0 D u..

Similarly, there is a unique linear mapping g VeU-U®V
such that g’(v ® ¥) =¥ ® v. Evidently, g'ogand g o g’ are the
identity transformations of U ® V and V ® U respectively.
Hence, g is the desired isomorphism. QED
The proofs of the following two propositions are similar and
hence omitted. i

Precsiian 2.3, If we regard the ground field F as a I-dimensional
vector space over F, there is a unique isomorphism oF ® U onto U which
sends 7@ uintoru for all r ¢ F andu ¢ U. Smilarly, for U ® F and U.

ProposiTioN 24. There is & unique isomorphism of (U@ V) @ W
onto U® (VR W) whwhsmds(u@v)@wmtou@(v@w) Sor
allueU, veVandweW

Therefore, Stis meaning@ te write U % V® W Given vector
spaces Uy, . . ., Uy, the tensor pr’oduct +®@ U, can be
defined mductlvely Let: p; Uy x — l"/'1 R QU
be the multilinear mapping w!nch semfs (uyy . . ., )lnto
4; ® @ u,. Then, as in “Proposition 2.1, the couple zUl ®
. ® U, ¢) Ccan be charact:enzed by the ymversal factonz’agén

property for Uy X *+: X Uy’ s

Proposition 2.2 can be also generalized. For any pe!'mu*f“3 n
mof(l,..., k), there is a unigue isomorphism of U, ® - * @
onto me ® -+ ® U, which sends 4, ®-- ®u, 'fnto
Uy @ * +* @ e

ProrosiTioN 2.4.1. Ginmklarmappmg.r f, U, » V,.J = 1 2,
thereis a unique linear mapping f: Uy @ U, — V, @ V5 such that
Sl ® u) = f1(8y) @ fo(uy) for all u, € U, and u; € Uy
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Proof. Consider the bilinear mapping U, X U, -V, ® V;
which sends (43, %) into fy(u;) ®fi(4s) and apply Proposition 2.1.
QED.

The generalization of Proposition 2.4.1 to the case with more
than two mappings is obvious. The mapping f just given will be
denoted by f, ®fe

ProposiTion 25. if Uy + U, denotes the direct sum of U, and U,
then’

(L +U) @V=U,RV+U,®V.

UQV+V)=UQ@V,+UQV,

Proof. Let #;: Uy — U, + U, and iy: U, — U, + U, be the
injections. Let py: U, + U, Ul and p,, U, + U, — U, be the
projections. Then p, o i, and gy i, arethe identity transformatlons
of U; and U, respectively. Both b iy and p, o iy are the zero
mappings. By Proposition 2.4.1, ¢, and the identity transformation
of V induce a linear mapping l} U,V — (Uy + Uz) ® V.
Similarly, &, fy, and f, are defined. It follows that biof, and
By * 1y are the identity transformations of U; ® V and U/, ® V
respectively and g ¢ #; and $, ¢4, are the zero mappings. This
proves the first lsomorphlsm The proof for the second is similar.

QED.

Similarly,

By the induction, we tham

(U1+"'+Uk)wk k«U,@V-{- +U QV.

ProrosiTioN 2.6. Ifu" Lo ,uﬁuabausfor Uandvl, coa,0,IS
a basis for V, then {u; @ vy3i=1,...,m;j=1,,,.,n} isabasis
forU@V Inpartzcular,de@V dlmdemV

t; .Let U, e the 1-dimensional subspace of U spanned by

u, and’ ¥, the 1-dimensional subspace of VV spanned by y,, By
Proposmon 2.,5%;i »
’ U@V z”U‘®V,.,
By Proposmon 23, &ch U, ® V, is a I-dimensional vector space
spanned by u; @ v;. ! QED.

For a vector space U, we denote by U* the dual vector space of

U. Forye I/ and u* U* {1, u*) denotes the value of the linear
functional 4* on g,
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PrROPOsITION 2 7 Let L(‘U*,‘V) be the space of /inear mappings of
U* into V. They there is a unique isomorphism g of U @ V onto
LU* V) such thegy' -
(g(u 3 y))u* _ u, u*w for a‘l‘l(u e U,veVandu*¢ U*.

Proof. Coansider the bilinear mapping.f: [/ x V — L({ U*, V)
defined by (f(u, v))u* = (4, u*)v and apply Proposition 2.1.
Then there is a unique linear mapping, g: U ® V.— L(U*, V)
such that (g(y ® 2))u* = {u, u*)v. To" prove that' g is an iso-

morphism, let u;, . . ., u, be a basis for U, u}, . . ., u* ‘the
dual basis for {/* and z,, . . . , V», abasisfor V. We shdl show that
{glu;®v));i=1,...,myj=1,..., n}islinearly independent.

IfY a,;6(u;, ® v;) = 0 where a;; ¢ F, then
0 = (& ayg(u; ® v)))uf = Z a0,

and, hence, all g;, vanish._Since dim U ® Vv = dim L(I/%, ),
g is an- isomorphism of U () V onto L(U*, V). QED.".

‘ProposiTiON 2.8. Given " tuio vector spaces U and V, therk is @
unique isomorphism g of U* ® V* onto (U ® V)* such that L.

(g(w* ® v*)){u @ ). = {u, w*)y, v*) - )
for dlluel, w¥ e %, eV, v% ¢ V*..
4 -y PRESRI T £ el e

Proof. Apply Proposition 2.1 -to the bilinear mapping
f U XV > (U@ )+ defined by (S i) @ 1) =
(u, u*){v, v*). To prove that g isian isomorphism, take bases for
U, V, U*, and p* and proceed asin the PFPOf of Propositio?? EZD7

We now define various tensor-spates’ over a fixed vector space
V. For a positive integer’r, we dallcalfl TP =V @ V(r
times tensor product) the conlrabariant ténsor space of jdqvmf %, An
element “of T will be called a ‘contravariant tensor &f * degree y. If
r = 1, T1 is nothing. but V. By convention, We agree that “Als
the ground field F itsdf. Similarly, T, = V* @ «+: ® V* (s times
tensor product) is called the covariant tensor space of degree s andiits
elements covariant tensors of degree s. ‘Then T, = V* andyisby

convention, T, = F. " T
We shdl give the exp'ressxons for these tensors with respect to a

basis of , Lete,, . . ., ta b€ abasisfor Vandel, ... e "#0€ dual
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basis for V*. By Proposition 2.6, {6, @ " ®e;l i, . .,
i, = n}is a basis for T,. Every contravariant tensor X of degree r
can be expressed uniquely as a linear combination

' K=2 ... T;*»l,-':"""',e,-l®"'®€i-;
where K - - = are the components of K with respect to the basis
€y, ..., e, Of V. Similarly, every covariant tensor L of degree s

can t{; expressed uniquely as a linear combination
L =3 L, 00 -,

where L; ,, ;: are the components of L.
For a change of basis of V, the components of tensors are subject
to the following transformations. L€t ¢;, . . . ¢, andé,,. .., ¢, be

two bases of V' related by a linear transformation
G =%, 4le, i=1,...,n
The corresponding ‘change Of the dual bases in V* is given by

5122,8\}8’, i:l,»-.,n,
where B = (B!) isthe inverse matrix of the matrix A = (4} so
that
3, AB] = &,
If K is a contravariant tensor of degree r, its components K+« . #
and K-+ - '+ with respect to {e;} and {¢,} respectively are related
by

1

Similarly, the components of a covariant tensor L of degree s m-e
related*by- . ’

: Ty T
B e U e BT S L i A )
The verificatipnrof these formulas is left to the reader
We define the” (mdixedy, tensor space of type (r, s), or tensor space of
contravariant degree t ‘a‘nd, mqar{apt dvegree S, as__:thev_tensof product
T=TQOT, V@ iQVaV* g .. qyx (Vrlimes
P*: s times). In particylag, Tp = T, T, = T, and T} = F. An
clement of T is caled a tensar.gf type (r, s), Or tensor of contravariant
degree r and covariant degree s. In terms of abasise,, . .
., ¢,of Vand
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the dual basis e, . . . , ¢* of V*, every tensor K of type (r, s) can
be expressed uniquely as

=2 i 560 Q8 ®5Q . @6,
where ](‘l ;' are called the components of K with respect to the
basisey, ..., ¢, For & change of basis &, = Z; 4le,, we, have the
following transformations o{cpmpqnqpts

22 Ks',..,- s, ) A'ﬁ"”‘A"B”" B’”‘Kfn‘l'”kﬁ

Set T ="E3.J,0 ‘that an -element of T is of thegform
L. -oK;, where Kj o T are zero except for a finite number of
them. We shall now make T into an associative algebra over F by
defining the product of two tensors K ¢ T} and L «T? as follows.
From the universa factorization property of the tensor prod-
uct, it follows that there exists a unique bilinear mappi ng of T} x
T? into T:+2 which sends (v,@-. R, ®... Rk
w1®--~®w ut® - @up)eT, T"mtov1®"-®
5, W @ ®u, ®”f®"'®vf®wx ® - ®wteTi
The image of (K, L) ¢ T; x T2 by this bilinear mapping will be
denoted by K @ L. In terms of components, if K is given by
K. ‘r and L isgiven by L%, then

( K ® L) z,,,, —_ Ki; i'L'rn }rn

Jet10 2 Jate

We now define the notion of contraction. Let 7,5 = 1. To each
ordered pair of integers (,j) suchthat 1 £i<rand1 < j <5,
we associate a linear mapping, caled the contraction and denoted
byC, of T} into T;-} which maps #, ® * - - @, @ sf ® -+ Q}
into

<U‘, l);>1)1®"'®v‘_l®v‘+l®"'®vf

QR Qo @, ® B,

where o, ,...,0,&V and ot ,..., 9 € V* The uniqueness and
the existence of C follow from the universal factorization property
of the tensor product. In terms of components, the contraction C
maps a tensor K e T} with components K‘l ,; into a ‘tensor
CK € T;-] whose components are glven by

(CRp g = 2 Kpohidns
where the superscript k appears at the :-th position and the sub-
script k appears a the j-th postion.
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We shal now interpret tensors as multilinear mappings.

PropositioNn 29. T, is isomorphic, in a natural way, to the vector
space of all r-linear mappings of V x .« x Vinto F.

Prersiion 2. 10, T is isomotphic, in a natural way, to the vector
space Of all r-linear mappings of V* x -+ x V*into F.

Proof. We prove only Proposition 29. By generdizing
Proposition 2.8, we see that T, = V* ® '+ + ® V* is the dua
vector space of Tr= V® . . + ® V. On the other hand, it
follows from the universal factorization property of the tensor
product that the space of linear mappings ‘'of Tr' =V ® ... @ V
into F is isomorphic to the space Of r-linear niappings of V X i

x VintoF. ( QED.

Following the interpretation in Proposition 2.9, we consider a
tensor ‘K ¢ T, asanrlmearmappmg VX+++xV = F and
write K(z,, ..., v)eFfora, ..., oeV.

Prepcsi N 2.11. T} is isomorphic, in a natural way, to the vector
space of all r-linear mappings of V x +++* X V into V.

Proof.  T! is, by definition, V @ T, which is canonicaly iso-
morphic with T, ® V by Proposition 2.2. By Proposition 2.7,
T, ® V is isomorphic to the space of linear mappings of the dua
space of T,, that is T7, into V. Again, by the universal factorization
property of the tensor product, the space of linear mappings of T
into V can be identified with the space of r-linear mappings of

V X ssx Vinto V. QED.
With this interpretation, any tensor K of type (1, r) is an r-linear
mapping of V x .« x Vinto V which maps (v, . . ., 7,) i
K(vxg-,--, ) V. If e),... ¢, is a basis for V, then K =
LK. ;6®Q@® .« ® ¢ corresponds to an r-linear mapping
otV x ** X Vinto V such that K{e;, .. ., ¢,)= Z, K} . ;¢

Similar interpretation Can be made for tensofs of type (r,s)in
genera, but we shall not go into it.

Example 2.1. Ifv &¥ and v* € V¥, then v ® v* is a tensor of
type (1, 1). The contraetion C: T} — = maps Vv ® o* into (z, v*).
In generd, atensor X of type (1, 1) can be regarded as a linear
endomorphism of V and&e contraction CK of K is then the trace
of the corresponding endomiorphism. In fact, if e, . ., isa
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basis for ¥ and K has components K! with respect to this basis,
then the cndomorphism corresponding to K sends ¢; into ¥, K' N
Clearly, the trace of K and the contraction CK of K are both
equal to ¥, K.

Example 2.2. An inner product g on a real vector g ace Vis a
covariant tensor of degree 2 which satisfies (1) g(v, vy 2 0 and
g(v,v) = 0 if and only if p= 0 (positive def|n|te) and (2)

g, u) = g, v) (symmetric).

Let T(U) and T(V) bethe tensor algebras over vector spaces
U and V. If A4 is a linear isomorphism of. I onto V, then its
transpose A* is a linear isomorphism of V* onto {/* and A*-! is a
linear isomorphism of U* onto V*, By Proposition 2.4, we obtain
alinear isomorphism 4 ® A*1: U ® U* - V ® V*. In'generd,
we obtain a linear isomorphism of T( U) onto T(V) which maps
T;(U) onto T’( V). This isomorphism, called the extension of A and
denoted by the same letter A, is the unique algebra isomorphism
T(U) — T(V) which extends A: U — V; the, uniquéness: follows
from the fact that T(U) is generated by F, U/ and [J*. It is also
easy to see that the extension of A commutes with xvery: contrac-
tion C.

K

Proposirion 2 . 1 ZThere is a natural 1: 1 correspondence between
the linear isomorphisms of a wédctor space [/ onto another vector space V and
the algehra isomorphisms of T(U) onto T(V) which preserve {ype and
commule with_ contractions,

In particular, the group of automorphisms of V¥ is isomorphic, in a natural
way, with the group of automorphisms of the tensor algebra T( V) which
pressere type and commule with conlractions.

Prool. 'The only thing which has to be proved now is that
every algebra isomorphism, say £ of T(U) onto T( J’) is induced
from an isomorphism . of [” onto V, provided that ¥ preserves
tvpe and commutes with contractions. Since f is type-preserving,
it HIPS T, " -- 1. isomorphicaly onto T}( V) = V. Detiote the
rest ric tion of f to { " by . 1. Since f maps every element of the field
F T, intoiself and commuteswith every COHththfl C, we
have, fov all w e U and «* ¢ U7¥, B

it = fufir = CUfi D fi*) = C(flw ® u¥)
= fIClu (3 w*)) =l u®) = (4, u%).
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Hence, fu* = A*-lu* The extension of 4 and [ agreeson F, U
and U*. Since the tensor algebra T(U) is generated by F, U' and
U*, £ coincides with the extension of .1, QED.

Let T be the tensor algebra gver a vector space I. A lincar
endomorphism D of T is called a derivation if it satisfies the following
conditions : .

(@ D is type-preserving, i.e, D maps T: into itself;

(b) DK ®L)= DK ®L + K ¢ DL for al tensors A and L;

() D commutes with every contraction C.

The set of derivations of T forms a vector space. It forms a Lie
algebra if we set [D, D']= DD’ D’D for derivations [) and [)".
Similarly, the set of linear endomorphisms of } forms a l.ic
agebra, Since a derivation D maps Ty = ¥ into itself by (a), it
induces an endomorphism, say B, of I.

ProposiTION 2.13.  The Lie algebra of deripations of T( ) i 150~
morphic with the Lie algebra of endomorphisms of V. The isomorphism is
given by assigning to each derivation ifs restriction to V.

Proof. It is clear that D — B is a Lie algebra homomor phism.
From (b) it follows easily that 1) maps every clement of F ito O.
Hence, for # ¢ V and #* ¢ V* we have

0 = D(&, v*)) = D(Clv ®v*)) = C(D(v & v*))
=C(De v* +v 0 Dv*) = D, v*) 4 o, Di*

Since Dv = Bv, Dv* =  B** where B* is thd transpose ol 5.
Since T is generated by F, 7 and I'*, D) is uniquely determined its
restriction to F, V and V*. It follows that /) » 3 is injective,
Conversely, given an endomorphism B of T, we define Da 0
for a e F, Dv o= Befor v ¢ V and Do* -= —-B¥:% for % ¢ [7* ;md,
then, extend D to a derivation of T bv (b). The cxistence of D
follows from the uhiversal factorization property of the tensor
product. - ¢+ . QED.

"

Example 2.3.  Let, K.be atensor of type (L 1) and consider it
as an cndomorphism of V. Then the automorphism of T( I}
induced by an automocphism A of I maps the tensor KA into lh(,
tensor .1A.1 . On the other hand, the derivation of T{ 1™ induced
by an endombrphism B of V' maps K into [B, K]: Bk = KB.
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o3 Tenmr fields

Let T, = T,(M) be the tangent space to a manifold M at a
point ¥ and T(x) the tensor algebra over T,: T(x) = X Ti(x),
where Tj(x) is the tensor space’of type (r, 5) over F,. A tensor field
qf twpe (r, s) on a subset N of M- is an assignment of a tensor
K, € Ti(x) to each point x of ¥, In a coordinate neighborhood &/
with aloca coordinate system x?, . .., x» wetake X, = 9/dx,
i =1,...,n, as a ‘basis for each tangent space T',, x ¢ U, and
o' =dx',{ = 1,. .. %, ds the dual basis, of 7T*. A tensor field K
of type:(r, s) defined on U is then expressed by

‘K :EK&---’}X‘ ® - ®X ®wjl©" C® bk,
where K- -5+ are functions on U, caIIed t.he components of K with
respect to the local coordinate system «%, . . ., . We say that A

isof class C* if its components K1+ r arefunctlons of class (*; of
course, it has to be verified that this notion is independent of a
local coordinate system. This is easily, done by means of the
formula (2.1) where the matrix (A) is to be replaced by the
Jacobian matrix between two local coordinate systems. From now
on, we shal mean by atensor field that of class (;* unless otherwisc
stated.

In section 5, we shal interpret a tensor field as a differentiable
cross section of a certain fibre bundle over M. We shdl give here
another interpréetation of tensor fields of type (0, r) and (1, 7)
from the viewpoint of Propositions 2.9 and 2.11. Let & be the
algebra of functions (of class C”) on M and X the ssmodule of
vector fields on M.

PROPOSI TION 3.1 Atensor field K of iype (0, 1) (resp. type (1, 7)
on M can be considered as an r-linear mapping of X x -+ x X into
& (resp. X) such that

K(leI’H'sf;'Xr) f f;' ( e .,X)
for f, e Fand X, e X

Conversely, any such mapping can be considered as a tensor ﬁela' of type
(0, 7) (resp. type (1, 7)).

Proof.  Given a tensor field K of type (O, r) (resp. type (1, 7)),
K, is an r-linear mapping of T, x * + ' x T, into R (resp. 7%)

A

MATO000303
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by proposition 2.9 (resp, Proposition 2. ] 1) and hence (X, . . . , X;)
- (K(Xy, 0., X)), = K((X)),, . . ., (X)) isan r-linear map-
ping of Xx ++. x ¥ into & (resp. ¥) satisfying the preceding
condition. Conversely, let K: ¥ x .. x ¥ = § (resp. X) be an
r-linear mapping over §. The essential point of the proof is- to
show that the value of the function (resp. the vector:field)
K(X,,,.. X, a a point x depends only on the-vaues of X,
a x. This will imply that K induces an r-linear mapping of.
TM) x ... x T,(M) into R (resp. T,(M)) for ‘each x We
first observe that the mapping K can be localized. Namely, we
have

Lemwa. If X, = Y, inaneighborhood U/ of x fori = 1, , .., 7,
thin we have

KXy, ..., X)=K(I,..., Y)inU.

Proof of Lemma. It is sufficient to show that if X, = 0in U,

then K(X,,.. ., X,)=0in [, For anyy e U, let fbe a differenti-
able function on M such that f{y) = 0 and f = | outside U.
Then X, = fX, and K(&,, . . . ,.&,) =f K(X,, . .., X,), which

vanishes atp. This proves the lemma.

To complete the proof of Proposition 3.1, it is sufficient to
show that if X, vanishes at a point x, so does K(Xy, . .., &,).
Letx!,. .., x* be a coordinate system around x so that X, =
Z, /4 (9/9x%). We may take vector fields ¥, and differentiable func-
tions g? on M such that g’ = fiand ¥, = (d/ox")for{ =1,...,n
in some neighborhood U of . Then X, = I, g'¥, in U. By the
lemma, K(X},...,X,)=Z, g+ K(Y, X,,. .., &) inU. Since
&) =filx)y=0fori=1,...;nK(X,...,X,)vanishesat x,

QED.

Example 3.1. A (posmvc definite) Riemannian metric on M is a
covariant tensor field'g of degree’2 which satisfies (1) 2(X, X) 20
for dl X ¢ %, and g(X, X) = 0 if and only if X = 0 and (2)

&Y, X) = g(X,Y) for all X, YE X. In other words, g assigns an
inner product in each tangent space T (M) x ¢ M (cf. Example
2.2). In terms of a local coordinate system #%, . . . , x* the com-
ponents of g are given. by g, = g( 9/ox, a/axj) It has been
customary to write 452 = X g, dx’ dx’ for g.
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Example 3.2, A differential form ¢ of degree r is nothing but a
covariant tensor fiel of degreer which is skew-symmetric ;

,‘?(Xﬂu» Cony Nl = LCIRDI0 CP Xr) 3

where 7 is an arbitrarv permutation of (1, 2, . . ., r)and «(#)is
its sign. For any covariant tensor K @ x Or anv covariant tensor
field A on Af, we define the alternation A as follows:

e X) == Eoe(m) KXy s

!

(AKY(X

where the summation istaken over dl permutations 7 of (1, 2, .. .,
7). Itiscasy to verify that . 1K is skew-symmetric for any A and that
A is skc\\'-symmc[ric if and only if 4K = K. If mand o' are
differential forms of degree rand s respectively, then @ . . ' is
a covariant tensor field of degree r - s and o /A\‘_H(_v‘;”‘m:: RICCENLEE

Example 3.3, The symmetrization S €an be defined as follows. ‘If
K is, a covariant tensor, or tensor ficld of degree r, then

(SKY(Xy, ..., X)) = % SOK(X e Xon)-

For any K, SK is symmeuric and Sk = K if and only if K is
Y mmetr lC

We now proceed to define the notion of Lie differentiation.
Let T:() be the set of tensor ficlds of type (r, s) defined on Af
and set T(M) = X% (T(M). Then I(M) is an algcbra over
the real number fidd R, the multiplication 9 bting clcfined
pointise, i.c., if KL ¢ T(M) then (K & L), = K, & L, for al
x ¢ M If ¢ is atransformation ‘of 1}, its differentia ¢, gives a
lincar isomorphism of ‘the tangent space 7, -, () onto the
tangent space T',(Af). By Proposition 2.12, this linear isomorphism
can be extended to an isomorphism of the tensor algebra T(¢72(x))
onto the tensor algebra T(x), which we dcnote by ¢. Given a
tensor field X, we define a tensor field 2K by ,

(7K), = #(K, 1), xe M.

In this way, every transformation ¢ of 1/ mduces an agebra

automorphism of (Af) which preserves type and ‘commutes with
contractions.

Let ¥ be a vector field on .\l and ¢, a local l1-parameter group

of local transformations generated by X (cf. Proposition 1.5). We
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shall define the Lie derivative L K OF atensor field K with respect to a
vector field X asfollows. For

¢, is a global |-parameter group of transformations of AM; the
reader will have no difficulty in modifying the definition When X

is not complete. Tor each ¢, &, is an automorphism of the agebra
I(M). For any tensor field K on M we set

(LK), = lim L [K, + (2K).].
The mapping Ly of T(Af)into itself which sends K into L (K is
called the Lie’ differentiation with respect to X, 'We have

Prorposition 3.2. Lie differentiation L with }é&pect to a vector

JSeld X satisfies the following conditions:

(8@ L is aderivation of Z(M), that is, it is linear and m{zfﬁes
Ly K ®K') = (LxK)® K"+ K @ (LyK')

for al K, K' ¢ZT(M);
(b) Ly is type-preserving: L (TI(M)) < IL(M);
(c) Ly commutes with every contraction of a tensor ﬁeld

(d) Ly T =X/ for every function f;
(e) L_ Y [X, Y] fof every vector field Y.

Proof. It is clear that L islinear. I,ét ¢, be a locd I-param-
eter group of local transformations generated by X. Then

1 .
LyK @K) <lim2[K © 1<' — 2K © K')]

— lim KoK - (7K @ (247)]

{0

t—0

o =M K@K - (2K 0K
(2K © K (2K) (K]

(I,m:, K — () o &

.

Im (k) 2 (K - (A0
— (LyK) @K' + K % (L K").
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Since ¢ preserves type and commuites-with contractions, so does
L. Iff is a function on MM, then TN

(xf)E) = tim 5 L) — sl ] = —tim 1 ; [floits) — 9]
! Hin

If we observe that (pt‘ =08 a 10C_a] I-parameta' gfou}ﬂof local

transformations generated by - X, weseethat L/ = — (-~ X)f =

Xf. Findly (e) is a restatement of Proposition 1.9. QED.

By aderivation of I(M), we shall mean a mapping of I (M) into
itself which satisfies conditions (.a), (b) and (cj of Proposition 3.2.

Let S be a tensor field of type (1, 1). For each x ¢ 3, S, is a
linear endomorphism of the tangent space 7,(M). By Proposition
2.13, §, can be uniquely extended to a derivation of the tensor
algebra T(x) over T,(M). For every tensor field K, define SK by
(8K); = $,K,, x ¢ M. Then § is a derivation of Z(M). We have

Proposrrion 3:3. Every derivation D of Z(M) can be decomposed
uniquely as follows:

D:Lx+S,

where X is g vector field and § is a tensor field of type (‘1, 1).

Proof. Since D |s type-preservmg it maps (y(M) into itself and
stisies D( fg) = ; for fg € §(M). It follows that
there is a vector fleld X such that = Xf for every fe§M).
Clearly, D ~ Ly is a derivation of zZ(M) which is zero on F(M).
We shall show that any derivation D which is zero on (M) is
induced by a tensor field of type (1, 1). For any vector field Y,
DY is avector field and, for any function £,D(f Y)=Df - ¥ +
S+ DY =f: DY since Df =0 by assumption. By Proposition 3.1,
there is a unique tensor field § of type (1, 1) such that DY = SY
for every vector field Y. To show that D eaincides with the detiva-
tion induced by S; it is sufficient to prove the following

LEMMA.  Twa derivations D, "and D, of T(M) coincide ¥ they
coincide on (M) and ¥(M).

Proof. We first observe that a derivation D can be locaized,
that is, if a tensor field K vanishes on an open set U, then DK
vanishes on U, In fact, for each x ¢ U, letf be a function such that
f@ =0 and f=1 outside U. Then K = f + K and hence
DK:= Df 'K 4 f+DK. Since K and f vanish at x, so does DK.
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It follows that if two tensor fields, K and K’ coincide on an open
set U, then DK and DK’ coincide on .

Set D = D, — D,. Our problem is now to prove that if a
derivation D i S zero on F(M) and ¥(M),then it is zero on T(M).
Let K be a tensor field of type (r, s) and x an arbitrary point of .
To show that DK vanishes at x, let J bc a coordinate neighborhood
of x with alocal coordinate system x!, . . ., x" and let

K o 2 K'-""I:'X. Q<} L. ; ‘X'i, “)), (‘ . Q w)u

where X, = g/ax’ and ' = dx’. We may extend Kj::::7r, X, and
w’ to M and assume that the equality holds in a smaller nelghbor-
hood ‘U of x. Since D can be localized, it suffices to show that

D(KjyiiX, ® - © X, Do @ @oP) = 0.

But this will follow at once if we show that I)m = 0 for every
I-form o on M. Let Y be any vector field and ¢: T;(M) -» F(M)
the obvious contraction so that C(Y & o) = m(Y) is a function
(cf. Example 2.1). Then we have

0= D(C(Y & Uj)) =C(D{Y & (l)))
= C(DY ®w) + AY ® Dw) = C(Y & Dw)=(Doj(¥).
Since this holds for evéry vector field Y, wc have Doy =o. QED.

The set of al derivations of T(A) forms a Lie algebra over R
(of infinite dimensions) with respect to the natural addition and
multiplication and the bracket operation defined by [D, D']K =:
D(D'K) — D'(DK). From Proposition 2.13, it follows that the
set of al tensor fields § of type (1, 1) forms a subalgebra of the Lic
agebra of derivations of I (Af). In the proof of Proposition 3.3,
we showed that a derivation of I{.) is induced by a tensor field
of type( 1, 1) ifand only ifitis zcro on & (). It follows immediately
that if D is.a derivation of I (M) and S is a tensor field of type
(1,.1), then [DS] is zero on (M) and, hence, is induced by a
tensor field of type (1, ). In other words, ke set OF tensor fields of
type (1,1) is an ideal of the Lie algebra of derivations oj’ (A7), On the
other hand, the set OF Lie differentiations L, X € X(M), forms a
subalgebra of the Lie algghra of derivations of T(M). This follows from
the followé&g.
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PRecsimion  3.4. For any veclor fields X and Y, we have

Lig,yy = [Lx; Ly].
Proof. By virtue of Lemma above, it is suff|C|ent to show that

[L x, L] has the same effect as Liy, y; on F(M) and: %(M} For
fe Qy(M) we have

(Ly, Lylf = XYf-YXf=[X, Y f = L[x 11f
For Z e%(M) we have
U Ly1Z = [, 1Y, Z]] = [, [X, Z]] = [[%, 7], 21>
by the Jacobi identity. QED.

PRrosiiov 3.5, Let K be a tensor field of ¢ype (1, r) which we
inderpret as in Proposition 3.1. For any vector field X, we have then

(LxK)(Yy oo vy Yr>:[X K(Yy, .. Yr)]

~ 3 K(Yy, . W [XY] .0 L)
« Proof. We have
K(Yy.... Y)= C(Y,® . QY, ®K),
where C, . . ., C, are obvious contractions. Using conditions (a)

and (c) of Proposition 3.2, we have, for any derivation D of

(AN, -
DIK(Yy..., X)) = (DK)(Y .-, X))
“‘{"E»K(Y“'.-.,DY”.,., r)

If D = Ly, then (¢) of Proposition 3.2 implies Proposmo?g 5.

Generdizing Corollary 1.10, we obtain

PRerosiTon 3.6.  Let ¢, be a local I-parameter group of 10“‘1 ’m’”‘
formations generated &y a vector Jield X. For any tensor field K, wt have

e(LxK) = —(d(gK)[dt),.
Proof. By definition,

LK = hm [K -~ ¢, K}

t—0

1
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Replacing K by #,K, we obtan

o R B .
Lx(2K) = lm-[3K~g K= —(d7K)[d)

Cot-0

Our probtetn is therefore to prove that ¢,(LK) = L\(%K)
ie., LyKe= gz '"Ly» g(K) for dl tensor fields K. It is a
straightforward verificatlon to see that &, '» Ly ¢ &, is a derivation
of 3 (M). By Lemma in the proof of Proposition 3.3, it is sufficient
to prove that L and ¢, '+ L2 ¢, coincide on (M) and X(M).
We already noted in the proof of Corollary. 1.10 that they coincide
on (). The fact that they caincide on §(M) follows -from the
foIIowmg formulas (cf. §1,- Chapter 1) : ‘

¥ (9, X)) = X(¢*f),
¢ = o*f,
which hold for any transformation ¢ of Af and from (p ), X = X
(cf. Corollary 1.8). , QED.

CoroLLARrY 3.7.
only if LyK:0.

Let D7(M) be the pac e of differential forms of degree r defined
on M, i.e, skew-sv inmetric covariant tensor fields of degree 7,
With respect to the exterior product, D(M) = X* , D'(M)
forms an algebra ove® R. A derivation (resp. skew-derivation) of
D(M) is a linear mapping 0 of D(M) into itself which satisfies

Atensor field K is invariant by ¢, for every t if and

D(wro s ) =Done LoAaDe  forw, o e D(M)
(I‘.CSP- = Do Ao —l—( - - 1)’(1)’\ Do’ for we D(M), 0 € "‘Q(‘M)).

A derivation or, a skew-derivation D-of D(}M) is said to be of-
deqree Icnf‘lt maps D7(M) into D**(M) for every r, The exterior
differentiation” dis’ a skew-derivation of degree 1. As a general
result on derlva’uons and skew-derivations of D(M), we have

PROPOSITION 38, Aa) & D and D" arv derivations of degree k and
k' respectively, then [D, D is a derivation of degree k - k.
. (b) If D is a derivation: ¢f degree k and D’ is .a skew-derivation of

degree ', then [D, D] is a&w-derivation of degree k — k.
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(c) If D and D’ are .skew-derivations of degree k and k’ respectively,
ten DD+ D4D s a derivation of degree k + K.

(d) A derivation or a skew-derivation is completely determined by its
“feet on DU(M) = F(M) and W(M).

Proof. The verification of (a), (b), and (c) is straightforward.

The proof of (d) is similar to that of Lemma for Proposition 3.3.
QED.

PRrorosiTion 3.9.  For. every “vector field X, L | is a derivation of
degree 0 of D(M) which commutes with thé exterior differentiation d.
Condietsely, “every derjvation of degree 0 of D(M) which éemmutes with d
is equal to Ly for some vector field X,

Proof.  Observe first that L . commutes ‘with the alternation A
defined in Example 3.2. This follows immediately from the
following formula :

(Lyo) (¥, ... ¥)= XYy, ..., 1)
- T 0l,.. JXT] ... ),

whose proof is the same as that of Proposition 3.5, Hence,
Ly (D(M)) € D(M) and, for any w, o' ¢ D(M), we have

LiwAao; =Ly(Ad(o ® o)) = A(L (o ®'w'))
= A(L yo 0" + A{o 2 Lyo')
w Lyw No' 4 o A Lyol
AN

To prove that L y commutes:with ¢, we first observe that, for any
wransformation ¢ of M, ¢ = (¢7)*w and, hence, & commutes
with d. Let ¢, be alocal | -parameter group of local transformations
generated by X. From Z,de = d{Zm) and the definition of
Ly it follows that L (dw, = d(Lyo) for every w o D(M).
Conversely, let J) be a derivation of degree 0 of D(M) which
commutes with ¢, Since D maps-D°(M) == F(M) into itself, D is
a derivation of ¥(1f) and there is a vector, field X such that
Df = Xf for every fe §{.M). S&t D'. = D — Lx.Then )’ is a
derivation of (M) such that D'f = 0 for every £ ¢ §(M). By
vittae of {d) of Proposition 3.8, in order to prove D’ = 0, it is
sufficient to prove D'o = ( for evéry I-form e Just as in Lemma
for Proposition 3-3, 1)’ can be localized andiit is sufficient to show
that D'w = 0 when o is of the form fdgwhere f,g ¢ F(M) (because

g
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w is locally of the form ¥ f; dx¢ with respect to a local coordinate
system #,. .., 1"). L&t & = fdg. From D’f = 0 and D’'(dg) =
d(D’g) = 0, we obtain

D'(w)= (D'f)dg + f+ D'(dg) = 0.
QED.

For each vector field X, we'define a skew-derivation ¢y, called
the interior Product with respect to X, of degree ~ 1 of (M) such
that

@ty f= Oforevery f ¢ D(M) ;

(0) tyo = w(X) for every w ¢ DYM). ‘

By (d) of Proposition 3.8, such a skew-derivation is unique if it
exists. To prove its existence, we consider, for each r, the con-
traction C: I (M) — I?_,(M) associated with the pair (1, 1).
Consider every r-form « as an element of ¥?(Af) and define
tx0 = C(X ® w). In other words,

(x) (Y, o Y )= r XY, ..., Y.)  for¥,eX(M).

The verification that «, thus defined is a skew-derivation of D(M)
is left. to the reader; iy(w A ) = tx0 A o' + (— )0 a 130,
where o ¢ D"(M) and w’ ¢ D*(M), follows easily from the following
formula:

(CO A(u') (YD Y2>- .o ’Yr-f~s>

}

’ 1 \ '. r '
= ——=2X(j;K) o(¥;, ... F))o' (Y, .., T},

(r +3)! T T
—— “‘where the summation is taken over al possible partitions: of
(1, ..., "+ syinto (g, . . . ;_j,) and (k, ..., k) and'e(j; k) staqu
for the sign’ of the permutation (1, . . ., 7+ 8) = (1, - - - 1)

ki k)
Since (Gw)(Yy, . . .
0, wehavei \. -

g . & o= 0,

As relations among 4, L., and ., we have

y YT-—2) = 7’(7 - I) "(.U(X, X, Yl’ LRI} Yf..—2> =

Proposition 3.10, .(a) Ly = do x + tx ° dfor every sector field
K. (B)[Ly, syl =y yy Jor any vector fields X and Y.

Proof. By (c) of Proposition 3.8, d st xtexodisad ivation
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of degrec 0. It commutes with d because 42 = (., By Proposition
3.9, it is equal to the Lie differéntiation with respect to some
vector field. To prove that it is actualy equal to Ly, we have only
to show that Lyf = (d oty + ¢y » d)f for every function /. But
this is obvious since Ly f= Xf and (d » | y + ¢ y o d)f = ¢ (df) =
(df) (X) = Xf. To prove the second assertion (b), obscrve first
that [Ly, ;] is a skew-derivation of degree -1 and that both
[Lx, tvland y y) ae zero on F(M). By (d) of Proposition 3.8,
it is sufficient to show that they have the same effect on every
|-form ®. As we noted in the proof of Proposition 3.9, we have
(Lyo) (Y) = X(o(Y)) = o([X, Y]) which can be proved in the
same way as Proposition 3.5. Hence,

Ly plo = bx(@®) = (L) = Xo(¥)) - (Lyo)()

= of[X,Y]) =y o
QED.

As an application of Proposition 3.10 we shall prove
Precsi v 3.11.  If wis an r-formy then
(dw) (XD! Xla L Xr)
I« iv - «
= r + 11‘-1::.0 ( ‘1) A,(CU(Xo, Py /\", ey XT’))

+ 1 Sosicier( =) Ho([X, X, X, .. X, X, LX),
r+1

where the syrﬁol ~ means that the term is omitted. (The cases r = 1and 2
are particularly useful) If o is a |-form, then
(dw)(X, ¥) = H{X(o(Y)) = ¥Y(o(X)) — o([X, Y])}, ;
X, YeX(M).
If ¢ is a 2-form, then g
(d)(X, Y, Z) = Y X(0(Y, Z)) + Y(w(Z, X)) + Z(o(4X, 1))
~o([X, 1. Z) oY, Z], X) - o([Z, X], Y)},
; XY, Z « ¥{AM).

Proof. The proof is by ‘induction on r. If 7y = 0, th¢n o is a

function and di(Xo) == Xy, which shows that the.formula above ™~

Iy

§

M
]
1
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is true for v = 0. Assume that the formula is true for r - 1.
Let « be an r-form and, to simplifv the notation, set X == X|. By
{(a; ~of Proposition 3.10,
(r + 1) dolX, % . .., A Uy doi (Xy,...,X,)
([,.\4(07‘. (X, . v X)) (d o) (Xh o X
As we noted in the proof of Proposition 3.9,

(Lyo)(X,, ... .. Voo XX, ., X))
SX (X, [N XL X,

i
Since ¢ ywm is an (r — l)-fo'rih, we have, by induction assumption,

((1 /,\'“’)(Xla feey Xr):;}::‘l ——-1)"‘1'

‘ x X;(tyo (X, . . X,..., AV
El‘ ij‘j-;r(—l)l:jj(l‘\'q))([X";Xf]’ Xl) ] Xis ey 1?)‘9 ey x(r)

1
-
z'; N (=1 XX, Xy K, X))
1
7

I jor (=1
o((Xe XL XX, o, XX, X
Our Proposition follows immediately from these three formulas.
QLD.

“Remark. Yormulas in Proposition 3.11 are valid also for
vector-space valued forms.

Various derivations allow us to construct new tensor fields from
a given-tensor field. We shall conclude this scction by giving
another way- of constructing new tensor fields.

Propostiiox 3.12. Let A and B tensor fields of tpe (1,17, Set
S(X, Y) = [1X, BY) o [BX, AY] - AB|X, Y] - BA[X, Y]
—A[X, BY] - A[BX, Y] - B|X, Y] - B[.AX, Y],
XY e X(M)

Je
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Then the mapping S: X(M) x (M) — X( M) is a tensor field of type
(1, 2) and $(X, Y) = —=S(¥, X)..

Proof. By a straightforward calculation, we see that § is a
bilinear mapping of the S(M)-module X(M) X X(M) into the
B(M)-module X(M) . By Proposition 3.1, 5 is a tensor field of
type (1, 2). The veriﬁcatipn of $(X,Y) = —S5(Y, X) is easy.

QED.

We cal § the torsion of 4 and B. The construction of § was
discovered by Xijenhuis [ 1].

4. Lie groups

A Lie group G is a group which is at the same time a differentiable
manifold such that the group operation (a, b) e GX G -» ab1e G
is a differentiable mapping of G x G into G. Since G is localy
connected, the connected component of the identity, denoted by

G2, is an open subgroup of G. G° is generated by any neighborhood.

of the identity e. In particular, it is the sum of at most countably
many compact sets and satisfies the second axiom of countability.
It follows that (; satisfies the second axiom of countability if and
only if the factor group G/G° consists of at most countably many
elements. ‘

We denote by I, (resp. R,) the left (resp. right) trandation of
G by an dement 4 ¢ (; L,x == ax (resp. R,x = xa) for every x ¢ G.
For a ¢ G, ad «a is the inner automorphism of (G defined by
(ad a)x = axa ! for every x € G.

A vector field X on  iscaled left invariant (resp. right invariant)
if it is invariant by dl left trandations L,, (resp. right translations
Ry, a e G. A left or right invariant vector field is always differenti-
able. We define the Lie algebra ¢ of G to be the set of all left
invariant vector {ields on G with the usua addition, scalar multi-
plication and bracket operation. As a vector space, 4 is isomorphic
with the tangent space T,(G) a the identity, the isomorphism
heing given by the mapping which sends X € g into X,, ‘the value
of X at e. Thus gis a Lie subalgebra of dimension 7 (z = dim G)
of the Lie algebra of v ector fields X(G).

twery A ¢ g gonerates a (global) 1-parameter TOUp of trans-
formations of G. Indced, if ¢, isalocal 1-parameter group o local:

<
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transformations generated by A and. g, is defined for | < ¢,
then g,a can be defined for |t] < ¢ for every a ¢ G and is equa to
L.(pe) as ¢, commutes with every L, by Corollary 1.8. Since ¢,a
is defined for | < & for every a ¢ G, @, is defined for |t] < oo for

‘every a ¢ G. Set a, = pe. Then g, = aa, for Al #5¢ R We cal

a, the I-parameter subgroup of G generated by A. Another characteriza-
tion of a is that it is a unique curve in G such that its tangent
vector g, a a, is equa to L, 4, and that 4, = e. In other words, it is
a unique solution of the differential equation ¢, = A, with
initiadl condition a = e. Denote a, = ¢, by exp A. It follows that
exp t4 = a for al ¢ The mapping A — exp A of g into G is
called the exponential mapping.

Example 4.1. GL(n; R) and gl(n; R). Let GL(n; R) be the
group of al rea n x n non-singular matrices A = (a}) (the matrix
whose i-th row and j-th column entry is 4;) ; the multiplication is
given by

(4B)i = =p_, aibt for A = (¢) and B = ().

J

GL(n; R) can be considered as an open subset and, hence, as an
open submanifold of R™. With respect to this differentiable
structure, GL(n; R) is a Lie group. Its identity component
consists of matrices of positive determinant. The set gi(n; R) of
dl n x n real matrices ‘Forms an n2-dimensional Lie algebra with
bracket operation defined by [A, B] == AR - B4, It is known
that the Lie algebra of GL(z; R) can be identified with gl(z; R)
and the exponentid mapping gl(n; R) » GL(z; R) coincides
with the usual exponential mapping cxp 4 = X7, A%k !

Example 4.2. O(n) and o(n). The group O(n) of al n < n
orthogonal matrices is a compact Lic group. Its identity com-
ponent, consisting of elements of determinant 1, is denoted by
SO(n). The Lie agebra o(n) of al skew-symmetric N n matrices
can be identified with the Lie algebra of ()(x) and the exponential
mapping o(n) —>:Q(n) is the usual one. The dimension of O(n) is
equa to n(n — 1)/2.

By a Lie subgroup of a.Lie group G, we shall mean a subgroup H
which is at the same time a submanifold of G such that H itself is
a Lie group with respect to this differentiable structure. A left
invariant vector field on /{ is determined by its value at ¢ and this
tangent vector at ¢ ol /4 determines a Jeft invariant vector field on
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G. It fallows that the T ;. algebra h of H can be identified with a
siBalgebra of g. Conyersely, every subalgebra b of g is the Lie
algebra of a unique connected Lie subgroup H of . This is
proved roughly as follows. To each point x of G, we assign the
space of a]l A, deb. Then this is an involutive distribution and
the maximal” mtcgnl submanifold through e of this distribution is
the desired group H (cf. Chevalley [1 ; p. 109, Theorem 1]). ‘

Thus there is a 1 :1 correspondence between connected Lie
subgroups of G and Lie subagebras of the Lic agebra g, We
make a few remarks about nonconnected Lic subgroups. Let g
be an arbitrary subgroup of a Lic group (. By providing # with
the discrete topology, we may regard # as a O-dimensond Lie
subgroup of ¢. This dso means that a subgroup # of ( can be
regarded as a Lic subgroup of ¢ possibly in many different ways
(that is, with respect to different difleréntiable structures). To
remedy this situation, we impose the condition that HIH®, where Ho is
the identity component of H with respect to ity oiwn topology, is countable, or in
other words, H satisfies the second axiom of countabulity. | A subgroup, with
a discrete topology, of G is a Lie subgroup only 11 it is countable.)
Under this condition, we have the uniqueness of Lie subgroup
structure in the following, sense. Let H be a subgroup of 3 Lie
group G. Assume that H has two differéntiable structures, denoted
by H, and H,, so that it is a Lie subgroup of (. If both H, and H,
satisfy the ‘second axiom of countability, the identity mapping of
H onto itself is a diffeomorphism of H, ‘onto #f,: Consider the
identity mapping f; H, — H,. Since the identity component of
H, is a maxima integral submanifold of the distribution defined
by the Lie algebra of H,, f: H, — H, is differentiable by Proposi-
tion 1.3. Similary /~': H, — H, is differentiable.

Every automorphism ¢ of a Lie group G induces an auto-
morphism ¢, of its Lie agebra g; in fact, if 4 ¢ g, ¢, isagan a
left invariant vector field and ¢,[d, B] = [¢.d, ¢4B] for
A,B € g. In particular, for every a ¢ G, ad a which maps x into
axa~' induces an automorphisni of g, denoted also by ad 4. The
representation « — ad a of G is called the adjoint representation of G
in g. For every a ¢ G and 4 ¢ g, we have (ad a}.d = (H,, 1) 44,
because axa—' = IR .x = R,1Lax ad dis left invariant. Let
AB ¢ g and ¢, the |-parameter group of transformations of G
generated by .. Set g, = exp td = ¢,(e). Then ¢ (x) = xa, for
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x ¢ G. By Proposmon 1.9, we have

[B, 4] = hm - [(q*,) — B] = hm [(R,,‘}“‘,‘B B]

= hm [ad (

-0}

)8 — B].

It follows that if H is an invariant Lie subgroup of (i, its Lie
agebra b is an ided of 9 that is, A egand B e bimply [B, d] e b.
Conversely, the connected Lie subgroup H generated by an ided
b of g is an invariant subgroup of G.

A differential form  on G is called left invariant if (L,) *o = o
for every a ¢ G. The vector space ¢* formed by al left invariant
I-forms is the, dual space of the Lie algebra g: if 4 ¢ g and o€ g*,
then the function w(A) is constant on G. If w is ,a left invariant
form, then so is dw, because the exterior differentiation commutes
with ¢*. From Proposition 3.11 we obtain the equation of Afaurer-
Cartan:

do(d; B) = —}o([4, B]

The canonical 1-form § on G is the left invariant - \alued I-form
unlquely determlned by

, OA) =A forAeg.
Let E,, ..., E, be abasis for g and set
9= %_, 0E,
Then 6, . . ., 6" form a basis for the space of left invariant real
[-forms on G. We set '

for weg* and A, Be ge

[E,, Ek] -1 jI.Fn
where the ¢i’s are called the structure constants of g with respect
to the basis El, .. .E,. 1t can be easily verified that the cquatinn
of Maurer-Cartan is glven by:
dot = kG'AO" i=1...,r

We now conmdeﬁilc transformatlon groups. We say that a Lic
group Gisa Lie tmnsformatton group on a manifold Af or that G acts
(differentiably) on M jf the following conditions are satisfied :

(1) Every dement a of G induces a transformation of 3,
denoted by x — xqa where x € M;
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(2) (&, x) « GX M — xa ¢ M is adifferentiable mapping;

(3) x(ab) = (xa)b for &l a,b ¢ G and * ¢ M.

We also write:R,x for xa and say that G acts on M on the right. If
we write ax and assume (ab)x = a(bx) instead of (3), we say that
G acts on M on the left and we use the notation Lx for ax also.
Note that R, = R, R, and L,, = L, o L,. From (3) and from
the fact that each R, or I, is one-to-one on A/, it follows that R,
and L, are the identity transformation of M.

We say' that G acts effectively (resp. freely) on M if R x = x fir
dl x ¢ M (resp. for some x ¢ ) implies that a = e.

If G acts on M on the right, we assign to each element Ae g a
vector fiedld A* on A as follows. The action of the I|-parameter
subgroup a, = exp {4 on A4 induces a vector field on M, which
will be denoted by A* (cf. $1).

Prrcsian 4.1, Let a Lie group G act on M. on the right. The
mappmg a g — X(M) which sends A into A* is a Lie algebra homo-
morphism. If G acts effectively on M, then a is an tsomorphism of g into
X(M). If G acts freely on M, then, for each non-zero A € g, a(A) never
vanishes on M.

Proof. First we observe that a can be defined also in the
following manner. For, every x ¢ M, let o, be the mapping
a¢G — xa¢ M. Then. (¢,),4, = (04),. It follows that a is a
linear mapping of g into X(M). To prove that ¢ commutes with
the bracket, let 4,8 o« 6, A* = od, B¥* = gB and a, == exp (4.
By Proposition 1.9, wc have

[A* B¥] —hm [B* 'R",‘B*}“

From the fact that R, - a,, (¢) = - xa;"\ca, for ¢ € G, we obtain
(denoting the differential of @ mapping by the same letter)

(R B*), = Ry, = 0B, —a;(ad (a7 B.)
and hence: ‘ “

[4*, B*] ~hm [azBc a (ad,( H e)]

‘7 ' 20; (hm [B ——ad (afl)B])

-4

= 0, [A, B],.) = ‘(U[ff, B] x9

T
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by virtue of the formula for [A, B]in g in terms of ad G. We have
thus proved that a is a homomorphism of the Lie algebra g into
the Lie ‘algebra X(M). Suppose that ¢4 = O everywhere on M.
This means that the l-parameter group of transformations R,
is trivial, that is, R, is the identity transformation of M for every
t. If G is effective on M, this implies that a, = e for every ¢ and
hence A = 0. To prove the last assertion of our proposition,
assume ¢4 vanishes a some point x of M. Then R,, leaves x fixed
for every t. If G acts freely on M, this implies that a, = e for every
t and hence A = 0. QED.

Although we defined a Lie group as a group which is a differenti-
able manifold such that the group operation (a, b) — ab! is
differentisble, we may replace differentiability by rea anayticity
without loss of generality for the following reason. The exponen-
tial mapping is one-to-one,.near the origin of g, that is, there is an
open neighborhood N of 0 in g such that exp is a diffeomorphism
of N onto an open neighborhood U/ of e in G {cf. Chevalley- [ 1;
p. 1181 or Pontrjagin [1; §39]). Consider the atlas of G which
consists of charts, (Ua, ¢,), ae G, where ¢,: Uz — N is the inverse,
mapping of R, » exp: N. —» Us. (Here, Uz means R(U) and N is
considered as an open set of R” by an identification of g with R*%,)
With respect to this atlas, G is a read andytic manifold and the
group operation (a, b) — gb~! is red anaytic (cf. Pontrjagin
[ 1 p. 257]). We shall need later the following

ProrcSITion 4.2.  Let G be a Lie group and H a closed subgroup of
G. Then the quotient space G/H admits a structure of real analytic manifold.
in such a way that the action of G on G/H is real ‘analytic, that is, the
mapping G x G/H — G/H which maps (a, 6H) into abH is real
analytic. In particular, the projection G —» G/H is real analytic.

For the proof, see Chevalley [1; pp. 109- 11].

There' i¥another important class of quotient spa&es‘ Let G be an
abstract group actlng on a topological space M on the right as a
group of homeomerphisms. The action of G is called properly dis-
continuous if it satisfies the’ foIIowmg conditions:

(1) If two pomts x‘aﬂd % of M are not congruent modulo ¢
(i.e, Ryx# xMfor evcry aeG), then x and ¥ have neighborhoods

¥ and’ U ;mpecnvcly sucii that R(U) n U* 18 empty for al
_'aeC

o
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(2, Vor cach v € G, the isotropy group G, = {a ¢ G; R x = 4} is

finite; cy

(3) Each x ¢ .M has 4 neighborhagd [ stable by G, such that

U N R,(U)is enpty for every a ¢ fpot contained iN G,
Condition { 1, implies that the quotient space /G is Hausdorft.

If the action of G is free, then gondition (2) is automatically

satisfied..

Proposrmion +3. Let G be a properly discontinuous group of
differentiable (resp. real analytic) transformations acting freely on a
differentiable (resp. real analytic) manifold M. Then the quotient space
M|G has a structure of differentiable (resp. real analytic) manifold such
that the projection 7: M — M|G is differentiable (resp. real analytic).

Proof’. Condition (3) implies that everv point of M/G has a
neighborhood Vsuch that 7 is a homeomorphism of each tonnected
component of 7! V) ento 1. Let U be a connected component
of #=}( V). Choosing ¥ sufficiently small, we may assume that'there
is an admissible chart (I'; ¢), where ¢ @ U/ - R, for the manifold
M. Introduce a differentiable (resp. real analytic) structure in
M|G by taking (I', ), where y is the composite of 71 V7 - U
and ¢, as an admissible chart. The verification of details is lcft:to
the reader. QED.

Remark. A complex anadytic analogue of, Proposition 43 can
be proved in the same way. g

To give useful criteria for properly discontinuous groups, we
define a weaker notion of discontinuous groups. The action of an
abstract group ¢ on a topological space M is called discontinuous if,
for every x ¢ A and-every sequence of elements {a,} of (4 (where
a, arc al mutualy distinct), the sequence {R(,nx} does not con-
verge to a point in M.

Prorosition 4:+.  Erery discontinuous group G of isomelries. of a
metric space M- is properly discontinuous .

Proof. Qbserve f&t that, for each x ¢ .M, the orbit 3G =
{R.x; a¢G)is closed in M. Given a point x’ outside the orbit. xG,
let 7 be a positive number such that 2r is less than the distance
between ' and the orbit 16, Let I/ and {7 be ghe.open spheres of
radius r and centers ¥ and ' respectively. Then R (U') N Ulis
empty for all a ¢ G, thus proving condition (1 ). Clondition (2)

=

I. DIFFERENTIABLE MANIFOLDS 45

is always satisfied by a discontinuous action. To prove (3), for
each y ¢ M, let r be a positive number such that 2r is less than the
distance between x and the closed set xG — {x}. It suffices to take
the open sphere of radius r and center x as [/, QED.

Let G be a topological group and H a closed subgroup of G,
Then G, hence, any subgroup of G acts on the quofient space G/H
on the left.

Proposition +.5. Let  be a topological group and H « compact
subgroup of . Then the action of every discrete subgroup D of G on G/H
(on the left) is &continuous.

Proof.,, Assuming that the action of D is not discontinuous,
let x and y be points of G/H and {d,} a sequence of distinct elements -
of [) such that 4 x converges toy. Let p: &G — G/H be the projection
and write x = p(a) and y = p(b) where g b ¢ G. Let V be a
neighborhood of the identity e of G such that s¥VF-11-15-1
contains no element of [) other than e. Since p(6V) is a neighbor-
hood of y, there is an integer N such that d,x € p(6V) for al n > N.
Hence, daH = p=*(dx) < p-Y(p(bV)) = 6VH for n = N. For
cach n > A, there exist v, ¢ }" and #, € H such that d,a = buv,hk,.
Since H is compact, we may assume (by taking a subscquence if
necéssary) that A,, converges to an element # ¢ H and hence
h, = wh for n > N, where u, € I’. We have therefore d =
bvu,hat for n > N. Consequently, dd7Visin pVIV 1 ' if
1,7 > N. 'This means d, = d, if ;;; ~ N, contradicting our assump-
tion. QED.

In applying the theory of Lie transformation groups to differcn-
tiai geometry, it is important to show that a certain given group
of differentiable transformations of a manifold can be made into
a Lie transformation group by introducing a suitable differentiable
structure in it. For the proof of the following theorem, we refer the
reader to Montgomery-Zippin [ 1, p. 208 and p. 212].

THEOREM 4.6 Let G be a locally compact ¢ffective transformation
group of a contucted manifold Af of class C* 1 <K = g, and let each

transformation of & be of class C'. Then G'is a Lie group and the mapping
G x M- M is of elass C-

We shall prove the following result, essentially dur to van
Dantzig and van cicr Wacerden | 1].
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Tecrem  4.7. The group G of isometries of a connected, Jocally com-
pact metric space M is locally comgpast with respect to the compact-open
topology.

Proof. We recal that the ‘compact-open topology of G is
defined as follows. For any finite number of pairs (X,, U,) of
compact subsets K; and open subsets U, of M, let W=W(K,,. .1 .,
K;U,...,U,) = {<peG<p(K e U fori=1,...,s. Then
the sets W of this form are taken as a base for the open sets of G.
Since M is regular and localy ¢ompact, the group multiplication
G x G — G and the group-action & x M —» M are' continuous
(cf. Steenrod [1; p. 19}). The continuity of the mapping G — G
which sends ¢ into ¢~ will> ‘be proved using the assumption
in Theorem 4.7, athough it follows from a weaker ‘assumption
(cf. Arens [ 1]).

Every connected, locally compact metric space satisfies the
second axiom of countability (see Appendix 2). Since M is locdly
compact and satisfies the second axiom of countability, G satisfies
the second axiom of countability. This justifies the use of sequences
in proving the local compactness of G (cf. Kelley [1; p. 138]).
The proof is divided into several lemmas.

Lewa 1. Let a ¢ M and let ¢ > 0 be such that Ufa; ¢ =
{x e M; d(a,x) < & has compact closure (where d is the distance).
Denote by ¥, the open neighborhood Ula; €/4) of a. Let @, be a thuence
of isometries such that. @,(b) converges for some point beV, Then there
exist a compact set K and an integer ¥ such that (p,,( vyck for every
n> N.

Proof. Choose N such that n > N 1mphes d((pn(b) «(8) <
/4. If x ¢ V, and n > N, then we have

d((pn(x)! (]?N(d)) s d((pn( ) n( ) + d((p‘n(b)i ‘Pt\"(b))
: + dlpx(b), py(a))
= d(x, b) + d(ga(b), px(b)) + d(b, ) <&

using the fact that ¢, and @), are isometries. This means that
@a( V,)is contained in U(py(a) ; ©). But Ulpy(a); &) = on(Ua; £))
since ¢, is an isometry. Thus the closure-X of Ulpy(a); &) =
¢(Ula; E)) is compact and ¢,(V,) € K for o > N.

Lewn 2. In the notation of Lemma 1, @5S¥me again that .(b)

-
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converges for some b e ¥,. Then there is a subsequence P, of ¢, such that
@, (%) converges for each xell. -

Proof. Let {b} bea countable ‘Set-which is dense in V. (Such
a {b} exists since M is separable) By Lemma 1, there is an N
such that ¢, ( ¥,)isin X for n > N. In particular, ¢,(b,)isin K.
Choose a subsequence @y, such that ¢, .(b,) converges. From
this subsequence, we choose a subsequence @, ; such that @, ;(b,)
converges, and so on. The diagonal sequence g, .( b,) converges
for every n =1,2,.... To prove that ¢, ,(x) converges for
every x ¢ V,, we change the notation and may assume that ¢, (4;)
converges for each ¢ = 1,2, .. .. Letx ¢V and 6 > 0. Choose
b, such that d(x, b;) < 8/4. There is an N, such that d(g,(5,),
Pu(b)) < 8/4 for nm > N,. Then we have

d(pa(x), pmlr)) = d(%(x) Palb)) + d(@a(bs)s @m(by))
+ d(%(be), P (%))

= 2d(x bi) + dg.(bs), palbi)) <

Thus g,(x) is'a Cauchy sequence. On the other hand, Lemma 1
says that ¢,(x) is in a compact set K for dl n > N. Thus ¢,(x)
converges.

Lema 3. Let g, be a sequence of isometries such, that ¢,(a) con-
verges for some point a ¢ M. Then there is a subsequence P, such that
@,,(%) convergesfor each x ¢ M. (The coonectedness-of Mis essentially
used here)

Proof. For each x ¢ M, let ¥, = U(x; e/4) such that U(x; ¢)
has compact closure (this ¢ may vary--from point to point, but we
choose ane such ¢ for each x) . We define a chain as a finite sequence
of open sets ¥, such that (1) .each V; is of the form ¥_ for some

7{2) ¥, contains a; (3) ¥; and Vht1 have a common point. We
asserf"t!&t every point y of M isin the last term of some chain. In
fact, it is casy to“see that the set of such paints y is open and
closed. M being connected, the set coincides with M.

This being sald’éhbosc a countable set {b,} which is dense in M.
For by, let V3, Va,- 2#5 Vs be a chain with 6, ¢ ¥,. By assumption
@,(a) converges. By Liemma 2, we may choose a subsequence
(which we may still denote by ¢, by changing the notation) such
that @,(x) converges for each ¥ ¢ V. Since ¥, n ¥, is non-empty,

Lemma 2 allows us to choose a subsequence which converges for
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each x € V,, and so on. Thus the origina sequeneg, g, has a sub-
sequence ¢z Such that g, ;(4;) converges. From this, subsequence,
we may further choose a subsequence ¢, such that g, .(b,)
converges. As in the proof of Lemma 2, we obtain, the diagonal
subsequence ¢, , such that ¢y :(6,) converges for each s, Denote
this diagonal subsequence by ®,, by changing the notation. Thus
@.(b,) converges for each 6,.

We now want to show that @,(x) converges for each’ x ¢ M. In
V., there is some #; so that there exist an N and a compact set K
such that ¢,(V,) < K for n > N by Lemma 1. Proceeding as in
the second half of the proof for Lemma 2, we can prove that ¢, {¥}
isa Cauchy sequence. Since ¢,(x) ¢ K for n > N, we' conclude
that ¢,(x) converges.

Lema 4. Assume that ¢, 15 a sequence of isometries such that ¢, (x)
converges for each x ¢ M. Define p(x) = }Hg @.(¥) for each x. Then
@ is an isometry. . »

Proof. CIearIy, d(e(x), ¢(»)} = d(x,») for any xy ¢ M. For
any a ¢ M, let a' = p(a). From d(g; ! o p(a), ) = d(¢(a), ¢,(a)),
it follows that @, () converges to a. By Lemma 3, there is a
subsequence ¢, such that @y, 1(») converges for every y ¢ M.
Define a mapping v by v(») = lim ¢, 1(y). Then y preserves

distance, that is, d{y(x), y(»)) = d(x, ) for any %y ¢ M. From
d(y(g(x), x) = d(lim 9 (p(x), x) = Jim d(g;}(p(x)) %)

ke
= Jlim d(p(x), g,,(x)) = d(@(x), o(0) = O,

it follows that y(@(x)) = x for each x« M. This means that ¢ maps
M onto M. Since y preserves distance and maps M onto M, p!
exists and is obvioudy equal to ¢. Thus ¢ is an isometry.

Lema 5. Let <pn be a sequence of isometries and @ an isometry. If
@ ,(x) converges to ¢(x) for every x e M, then the convergence is uniform
on every compact subset K of M. it

Proof. Let 6 > O be given. For each point a ¢ X, chO,OSC an
integer N, such that n > N, implies d(p,(a), g(a)) <.8/4. Let
W, = Ula; 6/4). Then br any x ¢« W, and n > N, W€ have

d(@,(%), y(x)) = d(g.(x), ,(a)) + d(%(f);i}r(éﬁ + d(g(a), ¢(x))
< 2(x,a) +04 <8 -

—
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Now K can be covered by'a finite number of 11 ’s, say 1V, -
W ,i=1,...,s. It fOH(I\\S that if - max; | 1V, ), then

d(q, (%), (I( )) <4 for cach x e A.

Lemva 6. If ¢, (x) converges to ¢ (x) as in Lemma 3, then P (x)
converges to ¢ '(x) for every x e M.
Proof.  For any x € M, let y = ¢~*(x). Then

d(g, (), 7 (1) = dgH (), = dlr(5), 9.,(9) 0.

We shall now complete the proofof Theorem 4.7. First, observe
that ¢, —» ¢ With respect to the compact-open topology is equiva-
lent to the uniform convergence of ¢, to ¢ on every compact sub-
set of M. If ¢, —» ¢ in G. (with rcspect to the compact-open
topology),. then Lemma 6 implies that (p,, (x) — ¢~ '(x) for ever)
x'e M, and the convergence is uniform ‘on every compact subset
by Lemma 5. Thus ¢! — ¢! in G. This means that the mapping
G — G which maps ¢ into ¢~! is continuous.

To prove that G is localy compact, let a ¢ M and U an open
neighborhood of a with compact closure. We shall show that the
neighborhood W = W(a; U) = {p ¢ G; @(a) ¢ U} of the identity
of G has compact closure. Let ¢, be a sequence of elementsin W.
Since ¢,(a) is contained in the compact set U, closuré of U, we
can choose, by Lemma 3, a subsequence ¢, such that ¢, (1)
converges for every x ¢ M. The mapping ¢ defined by ¢(x) =
lim ¢, (x) is an isometry of M by Lemma 4. By Lemma 5,
Py = @ uniformly on every compact subset of A, that is, ¢, -> ¢
in G, proving that W has compact closure. QED

CoroLLARY  4.8.  Under the assumption of Theorem 4.7, the iso-
tropy subgroup G, = {p € G; ¢(a) = a} of G at a is compact for every
ae M.

- Proof.. Let ¢, be a sequence of dements of G,. Since ¢ ,,(a.) = a
for every n, there is a subsequence ¢, which converges to an
eement ¢ of»G by Lemmas 3, 4, and 5. QED.

CORALLARY 49 If Al is a locally compact metric space with a
finite number of contiected components, the group G of isometries 0j° M is
locally compact with respect to the compact-open topology.

Proof. Decompose’ M into its connected components Af,,
M = Ui, M, Choose a point a, in cach M, and an open
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neighborhood U; of a in M, with compact closure. Then

W(als C e, as;Ulﬂ L, Us) """“{¢€ G; W(a‘)eU‘for 1=1,.,., -f}
is a neighborhood of the identity of* G with compact closure,
Q ED

CoroLLarY  4.10. If M is compact in addition to the assumphibn of
Corollary 4.9, then G is compact.

Proof. LetG* ={peG; ¢(M,)=M,fori=1,...., s} Then
G* is a subgroup of G of finite index. In the proof of Corollary
49, let U; = M, Then G* is compact. Hence, G is comoaé:t.'

5. Fibre bundles

Let M be a manifold and G a Lie group. A (differentiable)
principal fibre bundle over M with group G consists of a manifold’ P
and an action of G on P satisfying the following conditions:

(1) G acts freely on P on the right; (4, a) e P X .G —ua =
Ry P, T

(2) M is the quotient space of P by the equivalence relation
induced by G, M = P/G, and the canonical projection =: P — M
is differentiable ;

(3) Pis localy trivial, that is, every point ¥ of M has a neighbor-
hood U such that #1( U) is isomorphic with I/ x G in the sense
that there is a diffeomorphism ¥ : #}(U) - U x G._ Zsjuch that

u) = (X(U), p(u)) where @ is a mapping of #}(U) into G
1sya(ti)sfyi ng p(ua) ¢ (p(w)a forallu e X (U) and a ¢ G.

A principa fibre bundle will be denoted by P(M, G, ),
P(M, Gy ,or simply P. We cal P the total spacz or.the bundle space,
M the base space, G the structure group and = the projection. For each
x ¢ M, 7=1(x) is a closed submanifold of P, called the fibre over *-
If 4 isapoint of =~*(x), then =~1() is the set of points ua, a « Gy
and is “called the fibre through u. Every fibre is diﬂ'como_l‘_ s
o G. ' e

Given a Lie group G and a manifold M, G acts t‘rwm
P = M x G on the right as follows. For €ach b¢ ng "'“m?fl)s
(, 9) ¢ M x G into (x, ab) e M x G. The Principal fibre bundle
P(M, G) thus obtained is caled trivial, R

From local triviality of P( M, G) we see thgg;,*fz W is a sub-
manifold of M then =~(W) (W, G) isa principal fibre bundle.

-
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We cal it the Portion of P over W or the restriction of P to W and
denote it by P | W.

Given a principal fibre bundle P( M, G), the action of G on P
induces a homomorphism g of the Lie algebra g of G into the Lie
algebra X(P) of vector fields on P by Proposition 4.1. For each
A €8, A* = a(4)is caled the fundamental vector field corresponding
to A. Since the actioﬂ‘*éésf“(: sends each fibre into itself, A* is
tangent to the fibr¢’ at eachu ¢ P. As G acts fredy on P, A*
never vanishes on*P(if' 4 = 0) by Proposition 4. |. The dimension
of each fibre being equal to that of g, the mapping A — (A%, of
g into, T, (P} 'is 2 linear isomorphism of g onto the tangent space
at u of the fibre through u. We prove

Prorosimav 5.1 et A* be the fundamental vector field corre-
sponding to A’e 9. For each a € G, (R,),A* is the fundamental vector
field corresponding to (ad (a7'))4 € g.

Proof. Since A* s induced by the I-parameter group of
transformations X, where a, = exp t4, the vector field (R,),4*
is induced by the I-parameter group of transformations

RR R+ = Ry, by Proposition 1.7. Our assertion follows
from the fact that a—lga is the |-parameter group. generated

by (ad (¢71))4 ¢ g. QED.

The concept of fundamental vector fields will prove to be
useful in the theory of connections.

In order to relate our intrinsic definition of a principal.fibre
bundle to the definition and the construction by means of an
open covering, we need the concept of transition functions. By
(3) for a prlnqlpal fibre bundle P(M, G), it is possible to choose
an open covering {U,} of M, each 7~1(U,) provided” with a dif-
feomorphism u — (1i(u), ,(u)) of #~1({f,) onto U, x G such that
Pa(48) = (9a(w)a. If w e (U, N U}, then gy(ua)(p,(ua))~* =
%(“) (%(“)’)'1, ‘which shows that g,(%) (. («)) ! depends only on
w(u) not on y. We can define 2 m ping y;,: U, N U‘; — G by
Ypu(m(4)) = @p(4)(9a(4)) . The family of mappings y,, are called
transition functions of the bundle P(M, G) corresponding to ‘the
open covering {U,} of,;\l It is easy to verify that

|
(*) 'pya(x)’ = 'Pyﬂ(x) '%“(x) . ﬁ)r X € Ua N Uﬁ N Uy'
Conversely, we have - :

e~
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PropostrioN 5.9.  Let M beamanifold, {{,} an open corering OF A4
anti G a Lie group. Guen a mapping v U, N Uy - G Sfor every non-
empt y U, n U, in such a way that the relations (*) © are sgtisfied, we
can construct a (differentiable) principal fibre bundle P(M, G) with
transition functions . Ca

Proof. ~ We first observe that the relations (*) imply y,. (%) %= ¢
for every x € U, and ¥.,(X)¥s(x) = e for cvery x¢e U, N U,, Let.
X, = U, x G for each index « and let X = |J,X, he the topo-
logical sum of X, ; each clement of X is atriple (%, x, @) where ’is
some index, x ¢ I/, and a ¢ G. Since each X, ‘is a differentiable
manifold and X is a digoint union of X,, X is a differentiable
manifold in a natural way. We introduce an eg(giyalence relation
pin X as follows. We say that (% % ) € {o} X &, is equivalent to
(A 0 b) e (P} % Xy if and only if x=yelU, nU,and b =
Yiu(*)a. We remark that («, x, @) and («,.%, b) are equivdent if
and only if x = y and a = 5. Let P be the quotient space of X by
this equivalence relation p. We first show that G acts freelyen p
on the right and that P/G = M. By definition, each ¢ ¢ G maps
the p-equivalence class of (cc, #, @) into the p-equivalence class of
(X, x,ac) . It is easy to see that this definition is independent of the
choice of representative (a, x, @ and that G acts freely on P on

the right. The projection 7. P — M maps, by definition, the
p-equivalence class of (a, x, a) into x; the definition of = is inde-

pendent of the choice of repre%ntative (a, X, a). For u,v ¢ ,P,
m(u) = =(v) if and only if v = uc for some ¢ ¢ G. In fact, let
(a, ¥; a) and (B, b) be reprcsentaﬂve&f@ u ‘and, v respectively.
If v = uc for some c ¢ G, then y = x and’ hence 7(s) = =(u).
Conversdly, if m(u) = x =y = n(t) ¢ U, N Up, then v = u
where ¢ = a7'y,,(x) 716 ¢ G. In order to make P into a differenti-
able manifold, we first note that, by the natura mapping

X > P = XIp, exh X, = U, X G is mapped 1. 1 onto 7~ { Ua)ig

We introduce a differentiable structure in P by requiring }ha"
=3(U,) is an open submanifold of P and tha the magg%nz
X —» P induces a diffeomorphism of X, =, X G Ont(i'ﬂ'U) o
This is possible since every point of P is contained in 1'( 2 o.r
some ¢ and the identification of (a, x, a) with (B, & ¥s(*)a) is
made by means of differentiable mappings. It i €asy t0 check that

the action of G on P is differentiable and P(M, G» @) is a differenti-
able principal fibre bundle. Finally, the transition functions of P
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corresponding to the covering {U,} are precisely the given y,, if
we define y,: = UU), - I x G by y,(u) = (x a) where
u e 7-(U) isthe p-equivalence class of (&, X, a) . o QED

A homomorphism f of a principa fibre bundle P’(Af’, G') into
another principa fibre bundle P(M, G) consists of a mapping
f: P’ -P and a homomorphismf”: G’ — G such thatf'(v'¢’) =
f(u)f“(a)for allu’ e P’ and & ¢ G'. For the sake of simplicity, we
shall denote f' and f” by the same letter £. Every homomorphism
f: P’ -» P maps each fibre of P’ into a fibre of # and hence
induces a mapping of A’ into M, which will'be aso denoted byf.
A homomorphism f: P'(M’, G’) _, p( M, G) ‘is caled tin imbedding
or injection if' f: P’ — P is an imbedding and if f: ¢’ — G is a
monomorphism. ¥ f: P° . P s an imbedding, then the induced
mapping f: A —» M is aso an imbedding: By identifying 2’ with
S(P), G with f(G") and M’ with f(M"); we say that P’(M’, G) is
a subbundle of P(M, G). If, moreover, M’ == M and the induced
mapping f: M’ — M is the identity transformation of A,
f: (M, G') > P(M, G) s cdled a reduction of the structure
group G of P(i, G) to G'. The subbundle P'(A, G’) . cled a
reduced bundle. Given P(A{, G) and a Lie subgroup G’ of ff We Say
that the structure group G is reducible to G’ if there is a reduced
bundle P'(M, G’). Note that we' do not require in general that
G’ is a closed subgroup of G. This generdity is needed in the
theory of connections.

ProposiTion  9.3.  The gtructure group G of a principal fibre bundle
P(M, G) is reducible to a Lie subgroup G’ if and only if there’is an gpen
covering {U,} of M with a set of transition” funictions ,, Which take their
values in G'.

Proof.  Suppose first that the structure group G is reducible to

G' and. let P'(M, G') be 5- reduced bundle. Consider P’ as a
submanifold of £.. L& {U.} be an open covering of M such that
each #»'-4(U},). (@: the projection of P’ onto M) is provided with
an isomorphism: ¥ —>:(w'(u), @,(u)) Of ='-1(L)\ . onto U, x G'.
The corresponding transition functions take their vaues in G'.
Now, for the same’ covering {U,}, we define an isomorphism of
#=1( U,) (n: the projection of Ponto M) onfall, .. < :
9. as follows. Every v ¢ 7~} U,) may be represented b|¥| %éer%}n
= ua for some u € »'~1({/,) and ¢ ¢ G and we set @,(2) = ¢, (u)a.
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It is easy to see that ¢,(v) is independent of the choice of represen-
tation vV = ua. We see then that v — (7(?), @.(?)) is anisomorphism
of #=}( U,) onto U, x G. The corresponding transition functions
Woa(%) = @p(2) (9.(v)) 7 = @p(u) (gi(u))? take their:values in G'.
Conversely, assume that there is a covering {U,} of M with a
set of transition functions ,, al taking vaues in a Lie subgroup
G of G. For U, n Uy # ¢, ¥p is a differentiable mapping of
U, 0 Usinto a'Lle group G such that wg(U, 0 Uy) € G'. The
crucia point is that Vsa is a differentiable mappmg of U, n Uﬁ nto-
G’ with respect to, the differentiable. structure of G’., Thlsfollows
from Proposition 1.3 ; note that a Lie subgroup satisfies the
second axiom of countability by definition, cf. $4. By Proposition

5.2, we can construct ‘a principa fibre bundle P'{M, G’) from
{U,} and {wﬁa} Finally, we imbed P’ into P as follows. Let

for 7Y U,) — = YU,) be the composite of the following three
mappings:

7N U) > U, XG > U, XG = = (U,).

It |seasy to see thatf, = fon= (U, N Uﬁ) and that the ma\t%BEg
f: P — P thusdefined by { £} isan injection. :

Let P(M, G) be ® rincipak fibre bundle and F a manifold on
which G acts on the left: (a, )er F — af ¢ F. We shal
construct a fibre bundle E(M, F, G, P) associated with P with
standard fibre F. On the product manlfold P X F, we let G act on
the right as follows; an element a ¢ G maps (u, &) ¢ P x F into

(uu, g-1§) ¢ P x F. The quotient space of P x F by this grou,o
action is denoted by E = P x o F. A differentiable structure will

be introduced in E later and at this moment E is only a set. The
tipping P x F— M which maps (v, &) into =(#) induces a
mapping mp, Caled the projection, of E onto M. For each x € M;
the set »5'(x) is called the fibre of E over x. Every pomt x.of M
has a naghborhood U such that #~*(U) is isomorphic to & X G.
|dent|fy|ng =3 U) with U x G, we see that the acqon of G on
7~Y(U) x F on the right is given by ,

(%, a, ) (x ab, b_lf) for (x, a, £) ‘U' XGXF and beG.

It follows that the isomorphism =(U) & U X G induces an
isomorphism =z( U) ~ U X F. We can therefore introduce a

ot

s v
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differentiable structire in E by. the requirement that ng'( U) is
an open submanifold of E WhICh is dlﬂ‘eomogphm with [ x F
under the isom hlsm g (U) . & U >/F he projection my is
then a dxﬁercnd% le mapping of E onto M;«We cdl E or more
precisely E(M, F,\G, P) the&e bundie over the base M, vith (standard)

. Jibre F ana’ (structure)’ group G, which is asm(:zated w:t/z the pnmpal ¥

_ﬁbn bundle P

Prorcsimian 54. Let P(M, G) bea principal ﬁbn’ buna’le mdF 2
manifold on which G acts' on" the left. Let E(M, F, G, P) be the fibre

bundle associated with P. For each y ¢ P and each £ e I, denote by ué the.
image of (u, &) ¢ P X F py the natural projection P X F — E. Them
each u e Pisa mapping of F ente F, = mg'(x) where ¢ = = (u) and

(ua)é = u(al) forueP, aeG, EeF.

The proof is trivial and is left to the reader.”

By an isomorphism of a fibre F, = mg (%), x ¢ M, onto another
fibre F,, y € M, we mean a d|ffeomorph|sm which can be repre-
sented: in the ‘form,. 7 o 4=, where 4 € 7 1(x)ahd o ¢ ,,—1(” are
considered as mappings of F onto F, and F respectlvely In
particular, an automorphism of the fibre F, a mapping of the
form. » o 4~ with u,p ¢ #~1(x). En this case; u.= ua for some g G
so that any automorphlsm of K, can be expressed in the form
ue a o y-! where g is an arbltrarlly fixed pomt of n"l(x The
group of automorphisms of F, is hence isomorphic with the
structure group G. o

Example 5.1. G(G/H, H) : Let G be a Lie group and H a
closed subgroup of G. We let H act on & on the right .as follows.

. Every a € H maps u ¢ G into ua.. We _then, obtain a differentiable
-principal fibre bundle %G/H H) over the base manifold G/H
with :structure group

the iocal triviality follows from the
existence. of a local cross section., It is proved in Chevalley [ 1; &
p. 110] that if 7 is. the projection of G onto G/H and e is the
identity of G, them;here is a mapping v of a neighborhood of
m(e) in G/H inta.G,3uch that » o is the identity transformation
of the neighborhood. $ee aso Steenrod [ 1; pp. 28-33].

Example 5.2. Bundle of -linear frames: Let M be a manifold of

?dlmnnsmn n. A linear frame y-at apoint x « M is an ordered basis

» X, of the tangent space T,(M). Let L(M) be the set of
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al linear frames u at al points of M and let = be the mapping of’
L(M) onto M which maps a linear. frame u a x into x. The general
linear group GL(n; R) acts on L(MY on the. right as follows. If
*a={aq)eGL(n; Ryand u= (X, . .., X,).is alinear frame & =,
then ua is. by definition, the linear frame (¥,; ..., Y,) at x defined
by ¥; = X, &éX;,. It is clear that GL(n; R) acts freely“on L(M)
and 7 (u) = =(v) if and only if v = uafor some a ¢ GL(n; R). Now
in order to introduce a differehtiable structure in -L{f), let
(xl, .- ., »") be aloca coordinate system in a coordinate neighbor-
hood U in M. Every frame u a x ¢ U can be expressed uniguely
in the form u = (X,, . . ., X,)with X, = X, X¥(9/dx*), where
(X*) is a non-singular matrix. This shows that »-1(U) isin 1. 1
correspondence with U x GL(n; R). We can make L(M) into a
differentiable manifold by taking («) and (X¥) as a local coordi-
nate system in #~}(U). It is now easy to verify that L(M)(M,
GL(n; R)) is a principa fibre bundle. We cal L(M) the bundle of
linear frames guer M. In view of Proposition 5.4, a linear frame u
a x ¢ M can be defined as a non-singular linear mapping of
R"” onto T,(M). The two definitions are related to each other as
, follows. Let ey, . . ., e, be the natura basis for R*: ¢, = (1,0, . . .,
0),...,¢, = ((},,.’. .,0,1). Alinear frame u = (X;,..., X,) a
x can be given as a linear mapping u: R* — T,(M) such that
ue, = X, for i =.1,..., n. The action of GL(n; R) on L(M) can
be accordingly interpreted as follows. Consider 4 = (a}) ¢ GL(n; R)
as a linear transformation of R* which maps ¢; into Z; aj;. Then
ua: R* - T,(M) is the composite of the following two mappings:

R 2> R* 25 T (M).

Example 53. Tangent bundle: Let GL(rn;R) act on R* as above
The tangent bundle T(M) over M is the bundle associated with L(M)
with standard fibre’ R®. It can be easily shown that the fibre of
T(M) over x ¢ M may be considered as T,(M).

Example 54. Tensor bundles: Let T’ be the tensor space of type
(Y, s) over the vector space R" as defined in §2ffhé group
GL{n: R) can be regarded as a group of linear transformations of
the space T by Proposition 2.12. With this st‘a‘ri&a'rdif.ibrc T, we
obtain the tensor bundle 77(M) of type (Y, s) over Mwhich is agsociated
with L(M). It is easy to see that the fibre of Tj(M) over x¢ M
may be considered as the tensor space'over T(M) of type (r, 3).
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Returning to the general case, let P(M, G) be @ principal fibre
bundle and Ha closed subgroup of ¢.Ina nater 1 way, ( acts on
the quotient space G/H on the left. Let E(M, G/H, G, P) bc the
associated bundle with standard fibre G/H. On the other hand,
being a subgroup of G, H acts on P nn the right. Let P/H be the
guotient space of P by this action of H. Then we have

ProposiTioN 55 The bundle E = P X ¢ (G/H) associated with P
with standard fibre G/H can be identified with P/H as follows. An
element of E represented by (u, a&,) € P X G/H is mapped into the element
of P/H hpresentéd by ua e P, where g ¢ G and £ is the origin of G/H, i.e.,
the. coset H. X v .

Consequently, P(E, H) is a principal fibre bundle over the base E = P/H
with structure group H. The projection P —» E maps « e P nfo “50 ek,
where y is considered as a mapping of the standard fibre G/H into 4 fibre of
E .

Proof.  The proof is straightforward, except the local triviality
of the bundle P(E, H): This follows from loca trividity c.'
E(M, G/H, G, P) and G(G/H, H) as follows. Let U be an open
set of M such that z3'(U) ~ U x G/H and let ¥ be an open set
of G/H such that p-(V) ~ V x H, where p: G — GJH is the
projection. Let W be the open set of #;'(U) < E which corre-
sponds to U x ¥ under the identification =z*(U) ~ U x GJH.
If u: P — E = P/H is the projection, then u~}(W) ~ W x H.

QED.

A cross section of a bunde E(M, K, G P) is a mapping o: M — E
such that = o ¢ is the identity transformation of M. For P(M, G)
itself, a cross section’'g: M = P exists if and only if P is the trivia
bundle M x G (cf. Steenrod [1; p. 36]). More generaly, we have

Prccsi TN 5.6.  The structure group G of P(M, G) is reducible to
a closed subgraup H.if and only if the associated bundle EM, G/H, G, P)
admits a cross.seghon & M —E = P/H.

Proof. Suppeose G s reducible to a closed subgroup H and let
Q(M, H) be a redyced: bundle with injection f: Q — P. Let
uP > E = P/H be the_ projection. If ¥ and v are in the same
fibre of Q, then v =y#"for some a ¢ H and hence u( f(v)) =
#(f(4)a) = u( f(4)). This theans that u o f is constant on each
fibre of Q and induces a mapping ¢: M —» E, o(x) =.u(f ()
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where * = 7( f(u)). It is clear that ¢ is a section of E. Conversely,
given a cross section ¢: M —» E; let Q be the set of points, y ¢ P
such that u(u) = o((u}): In other words, Q is the inverse image
of aM) by the projection u: P —E = P/H. For every x e« M,
there is U e Q such that ={u) = x because pu~'(ofx)) is non- empty
Given u and v in the same fibre of P, if 4 ¢ Q then v ¢ Q when and
only when ¢ = ua for some ac H This follows from the, fact that
p(u) = u(v) if and only if o = ua for some. a ¢ H. ‘It is now easy
to verify that Q is a closed submanifold of P and that Q is a
principal fibre bundle Q(M, H) imbedded in P(M, G). ~ QED.

Remark. The correspondence between the sections ¢: M —
E = P/H and the submanifolds Q is 1 :1,

We shall now consider the question of extending a cross section
defined on a subset of the base.manifold. A mappingfof a subset
A of a manifold M into -another manifold is called differentiable on
A if for each point x ¢ A, there is a differentiable mapping f, of an
open neighborhood U, of x in M into M’ such that f, = f on
U, n Alff istherestriction of a differentiable mapping ‘of an
open set W containing A into M, then S is cleariy differentiable
on A. ‘Given afibre bundle E(M, F, G, P) and a subset A of M, by
a cross section on A we mean a differentiable mapping o of A into
E such that g o ¢ is the identity transformation of A.

Theorem 5.7. Let EMM, F, G, P) be .@ fibre bundle ‘such that .the
base manifold M is paracompact and the fibre F is diffeomorphic with ¢
Euclidean spate R™, Let A be a closed subset (possibly empty) .¢f M.
Then every cross section o: A — E defined on A can be extended #0-a cross
section dejned on M. In the particular case where A is empty, there eX|sts a
cross section of E defined on M.

Proof. By the very definition of a paracompact space, WCI‘Y
open covering of M has a locally finite open refinement. Since’ M
is normal, every locally finite open covering {U;} of M’ﬁﬂ an open
refinement {V;} such that 7, & U for al i (sce Apk dix 3).

LemMa 1. Adifferentiable ﬁmvtzon defined on a, cloud,set of R" can
be extended to a differentiable function on R*. (cf Appendlx 3)

LEMMA 2. Ever_, point of M has a neighborhood U such that ever_y'

section of E dejned on a closed subset contained in U can be extended £ U.
Proof. Given a point of M, it suffices to take a coordinate
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neighborhood [ such that »z( U) is trivid: #z(U) ~ U x F.

Since F is diffegmorphic with R, a section on U can be identified
with a set of s fanctions f;, .. ,fm defined on U. By Lemma 1,
these funcy fi be extended to U.

Using Lemma 2 we shall prove Theorem 57. Let {U};, be
a locdly finitk open covering of M such that each U, has the
property stated in Lemma 2. Let {V,} be an open refinement of

{U} su&:h th Py U, for al ie I For each subset J of the index

7, Lethethesetofpam;(f, J)where J c I

and ¢ xs @secno; of E defined on §; such that 1.5000 AN S,
The' set-T i¢ nons#mpty ; take' U, Which méets' 4" and extend the
restriction’ofato A A P, to a sectlon on P,, which is’ pbss1blc by
the property possessed by U,. Introduce an order in T as follows:
(«, J) < (", JNif J' < J"and ' = " on Sy Let (7, J) be
a_maximal element (by using Zorn's Lemma). Assume J # [
andlet 7 ¢ I J.Onthe closed set (AU S_,) N ¥, contained in
U,, we have a well defined section ¢;: 0,= ¢ on A n P, and
o, =7ron§; NnP,.Extend o, to a section r, on P, which is
possble by the property possessed by U Let J'= J v {i} ad

" be the section on §; defined by 7" = 7 on §, and 7' = 7, on
V Then (7, J) < . J’), which contradicts the maximality of
(7, J). Hence, I = J and = is the desired section. QED.

The proof given here was taken from Godement [1, p. 15 1].

Example 5.5. Let L(M) be the bundle of linear frames over an
n-dimensional manifold M. The ‘homogeneous space GL(n ; R) |/
G(n) is known to be diffeomorphic with a Euclidean space of
dnmemnon dn(n + 1) by an, argument similar to Chevolley
[I, “p.16]. The fibre bundle E = L(M)/O(n) with fibre

GL(n R)/O( n), associated with L(M), admits a cross section if M

mparacompact {by. Theorem 5.7). By Proposition 5.6, we see that
the structure group:of L(M) can be reduced. to the orthogonal
group O(n), provided that M is paracompact.

Example 5.6. More generdly, let P(M, G) be a principa fibre
bundle over a paraconipact manifold M with group_ G ‘which is a
connected- Lie group:.It. i known that G is diffeororphic With a
«direct product of any of ifs maximal compact subgroups H and a
Euclidean space (cf. lwasawa [ 1]). By the same reasoning as
above, the structure group G can be reduced to H,
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Example 5.7. Let L(M) be the bundle of linear frames over a
manifold A4 of dimension n. Let (, ) be the natural inner product
in R* for whiche; = (1,0, ..,, ®,...,¢,=(0,:..,0,1) are
orthonormal and which is invariant by O(n) by the very definition
of O(n). We shal show ‘that each reduction of the structure
group GL(7; R) to O(n) gives rise to’a Riemannian metric gon M.
Let Q(M, O(n)) be a reduced subbundle of L(M). When v e
regard each # ¢ L(M) as a linear isomorphism of R" onto T,(M)
where x = #(u); each u ¢ Q defines an inner- product g in T,(M)

gX,Y) = (X, u'Y) for X,Y e T (M).

The invariance of (, ) by. O(s) implies that g(X, Y) is independent
of the choice of u ¢ Q. Conversaly, if M is given a Riemannian
metric g, let Q be the subset of L(M) consisting of linear frames
u= (Xy,..., X, which araorthonormal with respect to g, If we
regard # ¢ L(M) as a linear isomorphism of R" onto T,(M), then
u belongs to Q if and only if (& &)= g(ué, u¢’) for dl & & ¢ R
It is easy to verify that Q forms a reduced subbundle of L(M) over
M with structure group O(s). The bundle Q will be called the
bundle of erthonormal frames over M and will be denoted by, O(M).
An_ element, of O(M) is an orthonormal frame. The result here
combined with Examolg 5.5 implies that every paracompact manifold
M admits @ Riemannign metric. We shal ‘sce later that every
Riemannian manifold is ‘a metric space and hence paracompact.
To introduce the notion7of induced bundle, we:prove

ProposiTion 58, Given ‘a, principal fibre bundle P(M, G) and a
mapping f of a manifold N into M, there is a unique (of course, unicque #p
to an isomorphism) principaljbre bundle Q( N, &) with a homomorphism
f. Q — P which induces f: N — M and which corresponds to the gdentzé}'

automorphism of G.

The bundie Q(¥, G)is cdled the bundle induced by ffrmP{M, G)
or simply the induced bundle; it is sometimes denoted by f~*P.

Proof.” In the direct product N x P, consider the g heet Q
consisting of (y, u) ¢ N x P such that f( ) == n(u). The group G
acts on Q by (y, uj — (9, u)a = (y, ua) for {mu)eQ andaeG.
It is easy to see that G acts freely on Q and‘that Q isa principal
fibre bundle over N with group G and *with: Projection mo given
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9
by 7o (y, u) =y. Let Q' be another principa fibre bundle over ¥
with group G and f’: Q" —P a homomorphism which induces
f* N = M and which corresponds to, the identity automorphism of
G. Then it is easy to show that the mapping of Q' onto Q defined
by u" — (wg(u'), f'(u')), u’ € Q, is an isomorphism of the bundle
Q onto Q which induces the identity transformation of ~ and
which corresponds to the identity automorphism of G. QED.

We recall here some results on covering spaces which-will be
used later. Given a connected, locally arcwise connected topo-
logical space M, a connected space E is caled a covering, space over
M with projectignp: E — M if every point » of M has a connected
open neighborhood. [ such.that each connected component of
p}(U) sopen in E and .is mapped homeomorphically onto U
by p. Two covering spaces p: E - M and p' : EE — M are
isomorphic if there exists a homeomorphism f: E — E’ such that
poF = . A covering space p: E — M isa universal covering space
if E issimply connected. If M is a manifold, every covering space
has a. (unique) structure of manifold such that p is differentiable.
From now on we shall only consider, covering manifolds.

Prrosiian - 5.9. (1) Given a connected manifold M, there is a
unique (unique up toan isomorphism) universal covering manifold, which
will be denoted by Af.

(2) The universal covering manifold A7 is a principaljore bundle over Af
with group =,(M) and projection p: A/ — M, where =, (M) is the first
homotopy group of M. .

(3) The isomorphism classes of the corering spaces over Mareinal:l
correspondence with the conjugate classes of the subgroups of =, (A ). The
gorrespondence isL given as follows. To each subgroup H of 771(M)a we
associate E = M/H. Then th, covering manifold E corresponding to H is
a fibre bundle over M with fibre m (M) [H “associated with the principal

Sibre bundle M(M, = (M)). If H is a normal subgroup of =,(M),
E= MZ,F[’is a principaljbre bundle with group =, (M) /H and is called
a regular covering manifold of M.

For the proof, see Steenrod [ 1, pp. 67-7 1Jor Hu [ 1, pp. 89-97].
_The action of #,(M)/H on a regular covering manifold E =
M/H is properly discontinuous. Conversely, if E is a connected
manifold and G is a properly discontinuous group of transforma
tions acting freely on E, then E is a regular covering manifold of
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M = E/G as follows immediately from the condition (3) in the
definition of properly discontinuous agtion in §4.

“Example 5.8. Consider R* as an n-dimensional vector space .

and let &,, ... ,%, be any, basis of R®. Let G be the subgroup. of
R" generated by Eu o oo nbay @ = {Z m £ m integers). The
action of G on Rr1s properly.digcontinuoys and R? is.the universal
covering mamfold of RY/G. 'ﬁ;: quogent manifold R*/G is called

iy,

an n-dimensiona m«us , ;
Example 59. Let §* be 1 t‘spikre in R+ with center at

the origin: §». a{(xl, - x"*’-) ¢ R Z,(x) = 1). Let- G be

the group consisting of’ the identity transformation of $™ and the

transformation of;$™ whieli maps («%, . « ., ™) into. (—#%, - -

). Then $%n2: 3; 4s-the universal covering manifold. of

o

projective.space. O

¢

i $*G is caled the n-dimensional rec!

CHAPTER 11

,, Theory of Come&ions

'

1. Connections in a principal fibre bundle

Let P(M, G) be a principal fibre bundle over ‘a manifold M !
with group G. For each 4 « P, let T,(P) be the tangent space of P
at u'and G, the subspace of T (P) consisting of vectors tangent to
the fibre through u. A connection I' in P isan assxgnment 0£ a
subspace @, of T,,(P) to each # ¢ P such that a

@ T (P)= G, + @, (direct sum) £

(b) ‘Qua = (R )*Q“ for every % e.P and a ¢ G, where R is thc
transformation of P indugéd: -by ae G R4 = ua; "

Condition (b) means that the distribution » — @, is invariant
h*y G. Wecall G, the vertical subspace and. Q,, the horizontal subspace
of T (P) A vector Xc T,(P) is caled vertical (resp. horizontal) if it
he&m « (resp. Q). By (@), every-vector Xe T,(P) can be
unlquely wrltten as

X-Y+2z wherey"""f‘fand ZeQu

We Zall Y (r%p )the vertical (resp. ﬁmzontal) component of X an&

denote ‘it by’ 2X (resp. AX). Condition ‘(c) means, by dcﬁmtron,

o

"“ (C) Qu dependS dlﬁ'eren ly on a‘ ¥ o J;

that if X is'a -differentiable vector field on P so are 0¥ and AX.. -

(It can be eaﬁ]yfvenﬁed that this is equivalent to saying thm the,,
distribution « — @Q,, is differentiable.)

Given a connecdbn I’ in P, we define, a I-form w on wath

values in the Lie algebra g of G as follows. In $5 of Chap& |, we
showed that every A e g induces a vector field A* on P, called the
fundamental vector field corresponding to A, and that A — (4%),
is a linear isomorphism ofig omto G, for exch y ¢ P. For each
XeT,(P), we Uefine, w(f) to be the unique A « g such that

63
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(A*),, is equal to the vertica component of X. T¥is clear that
w(X) = 0 if ail only if X is horizontal. The form ¢ is caled the
connection form of the given gonnection I'.

Prercsi o 1.1, The connection form e of a connection satisfies the
following conditions :

@) &(A*) =% for every A € 0;

(0) (R)*w = & (aNw, that is, w((R,),X)= ad (a71) o(X)
for every a « G and every vectorjeld X on P, where ad denotes the adjoint
representation of G’z ang.

Conversely, | gwen a g-va[ued lform w on P satisfying conditions (a')
and (b'), there is a unique connection I" in P whose connection jorm is w.

Proof. Let w be the connection form of a connection. The
condition (@) follows immediately from the definition of w. Since
every vector field of P can be decomposed into a horizontal vector
fidd and a vertical vector field, it is sufficient to verify (b’) in the
foliowing two speC|aJ cases. (1) X is horizontal and (2} X is
vertical. If X is horizontal, so is (R,),X for every a e G by the
condition (b) for a ‘connection. Thus both w((R,)4X) and
ad (a-1) * w(X) vanish: In the case when X is vertical, we may
further assume that X is a fundamental vector field A*. Then
(R,) +X is the fundamental vector field corresponding to ad (a-1) A
by Proposition 5.1 of Chapter I. Thus we have

(R20) (X) = 0,,((R)4X) = ad (a4 = ad (a ) {w, (X
Conversaly, given a form’ o satisfying (al) and (b’), we define
Q. = (Xc T,(P); w(X) = O}.

The verification that ¢ — Q,, defines a connection whose con-
nection form is w is easy and is left to the reader. QED.

. The projection 7: P —» M induces a linear mapping : T (P)
—"T,(M) for each u ¢ P, where x = #(u). When a_connection is
~given, 7 maps the horizontal’ subspace @, isomoriyhically onto

T.(M).

The horizontal lift (or simply, the f&ft) of a vector f|eId X
on M is a unique vector field X* on P which is herizontal and
which projects onto X, that is, #(X}) = X, for every u ¢ P.
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Prrosi iy 1.2, Given a connection in P and a vectorjeld X on M,
there is a unique horizontal /ift X* of X. The lift X* is invariant by R,
for every a € G. Conversely, every horizontal vectorjeld X* on P invariant
by G is the /ift of a vector-field X on M3

Proof.  The existence and uniqueness of X* is clear from the
fact that # gives a linear isomorphism of, @, onto T,,,(M). To
prove that X* is differentiable if X is differentiable, we take a
neighborhood Jof any given point x of M such that »—}(U) ~
U x G. Using this isomorphism, we first obtain a differentiable
vector field Y on #~*(U) such that #Y = X. Then X* is the hori-
zontal component of Y and hence is differentiable. The invariance
of X* by G .s.clear from the invariance of the horizontal sub-
spaces by G/Finally, let X* be a horizonta vector field on P
invariant by G. For every x € M, take .a point ¥ ¢ P such that
#=(u) = x and define X, = «(X}).. The vector X, is independent
of the choice of u such that =(«) = x, since if ' = ua, then

n(X}) = w(R,+ X¥) = =(X2). It is obvious that X* is then the
lift of the vector field X. QED.

Prercsimian 1.3, Let X* and Y* be thehorizontal lifts of X and Y
respectively.  Then.

(1) X* 4+ Y* is the horizontal [ift of X +Y;

(2) For every function fon M, f* + X* is the horizontal [ift of fX where
S *isthe function on P defined by f* = f om;

(3) The horizontal component of [X*, Y*] is the horizontal &t of
[X, Y].

Proof.  The first two assertions are trivial: As for the third, we
have

w(A[X*, Y*]) = =([X*, ¥*]) = [X, Y].
' QED.

Let x%, . .. , #* be a local coordinate system in a coordinate
neighborheed ¥ in M. Let X} be the horizontal lift in #-2(y/) of
the vector field X, = ¢/9x"in Ufor each i. Then x*, . . ., X form
alocal basis for. the distribution 1 — Q,in W—I(U)

We shall now cxprcss a connection form w on P by a family. of
forms. each definied in an open subset of the base manifold M.
Let {U,} be an open covering of M with a family of isomorphisms

7 }U,) - U, x G and the corresponding family of transition
functlons Yot U, N Uy = G. For each a, let o,: U, = P be the



66 FOUNDATI ONS COF DI FFERENTI AL GEOVETRY

cross section on U, defined by o,(x) = 93 (%, ), x ¢ Ua,' where e
is the identity of C. Let § be the (left invarfant g-valued) canonical
I-form’ on G defined in §4 of Chapter I*(p. 41):.

For each non-empty U, n U, define & g«valued I-form -

Bap on Ua N Up by »
Bap g"tp:ﬁo,

For each a, define a g-vaued I-form w, on U, by

g

P " i Vot

w, = orw. '
Precsiion 1.4, The forms 6,5and wq are subject o the conditions s
wp = 2d (97') 0, + 0 on YN Up.

. b

Conversely, for every family Of a-valued Y-forms {w,} each dejined on U,

and satisfying the preceding conditions, there 1s a unique connection form o

on P which gives rise to {ew,} in the descrived manner. .
Proof. If U, N Us is non-empty, as(x) = 0,(*)p.s(x) for all

x ¢ U, N U,,. Denote the differentials of a,, a5 and y,, by the

same letters. Then for every vector X e T,( U, ™ Uj), the vector

0s(X) € T,(P),w re u = os(x), i8 the image of (U,(X), ps(X)) €

T.(P) + T,G), where ' = o,() and a = ¥,5(¥), under the
mapping P x G — P. By Propatition 1.4 (Leibniz’s formula)
of Chaptér'l, we have '

05(X) = 0o X)pop(%) + aulRypap(X),

where a,(X)y,s(x) means R (o, (X)) and a,(*)y.s(X) is the image
of p.4(X) by the differential of o,(x), 0,(x) being considered as a
mapping of G into P which maps b ¢ G into a,(x) b. Taking the

i 3diies of @ on both sides of the, équality, we obtain,

A X‘). = ad (Pos(%) 0y X) + O5(X). s

“Indeed, if A € g is theleft irivariant vector field on G which is
equal to p4(X) at a = pu(*) so that: 8(wes(X)) = 4, then
04{x)pa5(X) - is the valye, of the fundamental vector field A* at
U= g,(%)yes(x) and. hence w{o,(x)p,(X)) = A: .

The converse cani be verified, by following back the process.of
wbtaining {w,} from . QED.
»

R
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2. Existence and extension of connections

Let P(M, G) be a principa fibre bundle and A a subset of M.
We say that a congeetion is defined; over A if, at every point u ¢ P
with =(u) ¢ A, a subspace @; of T,(P) is given in such a way that
conditions (a) and (b) for connection (see §1) are satisfied and @,
depends differentiably on u in the following sense. For every point
x € A, there exist an ogen neighborhood [J and a connection in -
P|U =#»YU) such that the horizontal subspace at every
u e =3(4) is the given space Q,. '

Trecrem 2.1, Let P(M, G) be a principal fibre bundle and A a
closed subset Of M (A may be empty). If Mis paracompact, every connec-
tion dejined over A can be extended to a connection in P. In particular, P
admits a connection 3 M s paracompact.

" Proof. The proof is a replica of that of Theorem 5.7 in Chap-
ter I

Lemva 1 4 differentiable function defined on a closed subset of R

, . an be always extended t0 a differentiable funstion on R {cf. Appendix 3).

Lewn 2. Epery point Of M has a neighborhood {J such that every
connection defined on @ closed subset contained in I/ can be extended to a
connection dejined gper U.

Proof. Given a point of M, it suffices to take a coordinate
neighborhood U such that #=1( U) is trivial: #=}(U) ~ U x G.
On the trivial bundle U x G, a connection form « is completely
determined by its behavior at the points of U x {e} (e the
identity of G) because -of the property Rj(w) = ad (¢7%)w.
Furthermore, if o: U — U x G is the natura cross section, that
is, o(x) = (x, €) for x ¢ U, then @ is completely determined by the
g-vaued I-form o*w on U. Indeed, every vector X ¢ Ty, ( U x G)
can. be written uniquely in the form

I Xz Y+ Z’
where Y. js tang& to. U x {g ‘and Z is vertical so that Y =
0y (m4X). Hence we-have

o(X) = oEx(EeX)) + o(ZM (o) (7, X) + A,
where A is a uniqué: element of g such that the corresponding
fundamental vector field A* is equal.to Z at o(x). Since A depends

~

L
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only on Z, not on the connection,  is completely determined by
o*w. The equation above shows that, conversely, every g-
valued |-form on U determines uniquely a connection form on
U x G. Thus Lemma 2 is reduced to the extension problem for
g-valued |-forms on U. If {A} is a basis for g, then ¢ = X w'd,
where each @’ is a usua I-form. Thus it is sufficient to consider
the extension problem of usual I-forms on U. Let #1,. .., x"be a
local coordinate system in U.. '}Ifhen“éi/ery I-form on [ is of the
form 2 f; dx' where each f; isa function on U. Thus our problem
is reduced to the extension problem of functions on [/, Lemma 2
now follows from Lemma 1.

By means of Lemma 2, Theorem 2.1 can be proved exactly in
tlie same way as Theorem 5.7 of Chapter |. Let {U};; be a
locally finite open covering of M such that each U, has' the
property stated in Lemma 2. Lt {V;} be an open refinement of
{U} such that 7, < U, For each subset J of I set §;= U7T..

¢ ¢ ied-
Let 7 be the set of pairs (7, J)where J < I and 7 is a connection
d&n&over '§, which coincides with the given connection over
A N 8. Introduce ah order in T as follows: (', J') < (+", J")
if J/’< J"and 7 = " on §,. Le (v, J) be a maxima element of
T. Then J = ] as in the proof of Theorem. 5.7 of Chapter | and
7 IS a desired connection. QED.

Remark. It is possible to prove Theorem 2.1 using Lemma 2
and a partition of unity {f;} subordinate. to {V,} (cf. Appendix 3).
Let w, be 'a connection form on =~( U,) which extends the given
connection over A N 7, Then w= X, g,w; is a desired con-
nection form on P, where each g, is the function on P defined by
gi=Jfiom

3. Parallelism

Given a connection T in a principa fibre bundle P(M, G), we
shall define the concept of paralel displacement offibres aong any
given curve 7 in the base manifold /.

Let = x, a =t = b, bea piecewise differentiable curve of .

class (! in M. A horizontal [if! or sin1pl}" @ iftof 7 is"a horizontal
Curve ;% = u, g - < b0,in P such that #(x,) = x,for e =t <4,

Here a horizontal curve in P means a piecewise differentiable _

curve Of class (! whose-tangent vectors are al horizontd.
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The notion of lift of a curve corresponds to the notion of lift of a
vector field, Inceed, if X* is the lift ofh vector field Xon A{, then
the integral curve of X* through a point #, ¢ P is a lift of the
integral curve of X through the point v, = =(y,) ¢ M. We now
prove ' ;

ProrosiToN 3.1, Let 7 =x,0 <¢< 1, bea curve of class Ct
in M. For an arbitrary point ay of P wbith m(uy) = X,, there exists ¢
unique#ft v* = u, of 7 which starts froi u,.

Proof. . By local trividity of-the biindle, there is a curie v, of
class C'in P such that v, = y; and my)= x, for 0° <t 1. A
lift of =, if it éxists, must’ be of the form u, = .4, Where ¢, is a

_curve in the structure group G Such that ¢, = e. We shall now look
for a curve a, ‘in G which makes.u, = v,a, a horizontal curve. Just
as in the proof of Proposition 1.4, we apply Leibniz's formula
(Proposition’ 1.4 of Chapter I) to the mapping P x G —» P which
maps (v, @) into, va and obtain

Uy = 0a, + va,
where each dotted italic letter denotes ithe tangent vector at that
-point (‘e.g., #, isthe vector tangent to the curve % = u, at the
point u,). Let w be the connection form of I’. Then; as in the proof
of Proposition 1.4, we have’
w(t,) = ad{g, Yw(s,) * ¢ 'd,

where ¢;'4, is now a curve in the Lie agebra g = TB((,’) of G.
The curve'u, is horizontal if and only ifd,a, 'z —w(g,) for every ¢,
The construction Of u, is thus reduced to the following

LewmA.  Let G be a Lie group and g its Lie' dlgebra identificd with

T(G) Let Y,0 <t <1, ge a continuous curve tn° T,G). Then there

Jor0 st =1,

Remark. In the case where ¥, =A for dl ¢ the curve & is
nothing but the 1-pafametcr subgroup of G generated bv 4. Our
differentid eqiation d4;7" = ¥, is hence a gcneral&iatién of the
differkntial equatioti for I-parameter subgroups.

Proof of Lemma W€ may assume that ¥, is defined and
continuous for al ¢, —e0 < ¢t.< . We define a vector ficld X on

exists in G g unique curve @, of class €' such that a, = and 4,0, = ¥,

#
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G x R s follows. The'value of X at (g, #) ¢ G x R s by defini-
tion, eqidl to (Y4, (¢/d2),)-¢ T,(B) X T,(R), where z is the
natural coordinate system in R. It is clear-that the intcgfal curve
of X starting from (e, 0) is of the form (a,, #) and-a, is the desired
curve in G. The only thing we have o verify is thatg, is defined
for adl 4,0 5§ ¢ < L Let 9, 4 exp tX be & local I-parameter
group of local transformations of G. X. R generated bv X. For
each (¢, §) ¢ G x R, there is a positive number 8, such that

@i(¢; 1) is defined for |r = §.< 8, and [#}. <4, (Proposition 1.5 of
Chapter 1)., ‘Since the subset {g} x [0, 1] ofG x Riis compars,

we may choose 4 > 0 such that, for' ‘each 7 [0, 1], g fe, 7} is

- defined for [t} < é (cf. Proof of Proposition L6"of Chapter I). .

Choose sg, §y, - - -, sy Such that 0 = 5y < 83 < b . . & gu =

ang :
$; = 5,y < 6 for every i. Then ¢,(e, 0) = (a, t)mﬂcﬁmd’fm !

0=tsS 51 @y 51) = (b, 4+ 5))isdefinedfor0 = ¢ 58 ~ 5,

where b6, = ¥,,,, ad we define a,= b, ,a, for 5, £ ¢ £ 53"

.5 Pulls S1-1) = (0> S-1 + U) is defined for 0 5 4 = 5, — 534,
where ¢,5! = Y4, , and we define g, = Cimay By thus

completing the construction of a, 0 g ¢t g 1. QED,

Now using Proposition 8.1, we define the paralldt digtacement
of fibres as follows. Let + =%, 0 < ¢t < 1, be a differentiable
curve of class C* on M. Let u, be an arbitrary point of P with
m(uy) = x,. The unique iRt 7* of % through u, has the end point
u, such that m{uy) = #,. By Varying m, in the fibre a—i(x,), we
obtain a mapping of the fibre #~1(x,) onto the fibre »~1(x,) which
maps u, into ;. We denote this mapping by the same letter 7 and
call it the parallel displacement along the curve r. The ‘fact that

K5 n"l(xﬁ’}?;g}.rl(xl) is actually an isomorphism comes from the
following -~ . '

Prerosmion 3.2. Tire parallel displacement along amy . curve 7

commutes with the action of G on R; 7o R, =R,z for evary a ¢ G.
Proof. This follows from the fact that every horizontal curve

is mapped into a horizontal curve by R,. ¥ QED.

The pardld displacement aong any plelesc differentiable
curve-of class G can be. defined in an obvious manner. It should
be remarked that the parale displacement aong a curve = is

o

~evident.

“{k-will be fixed throughout $4).
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independent of a specific parametrization #, ssed in the following
sense. Consider ‘two parametrized eurves x, ¢ =t = b, and -y,
¢ < 5 = d, in M. The paraliel displacement along x, and the one
along y, coincide if there is a homeomorphism ¢ of phe: interval
[a, b] onto [¢, 4] such. that (1) g(a) = ¢ and ¢(b) =1, (2) bqth
@ and ¢! are differentiable ‘of class C! except at a finite number

 of parameteg-values, and (3) oy = %, forall £, a < ¢ =6

If s thepurvh to o % £ 2 b, we denote by the curve 7,
a =t sdydefined by y, = %44 The following proposition 1s

“PROPOSITION 3.3, (a) If 7 i a piecewise differentiable curve of class
Ct % M, then ¥8parallel displacement along =1 is the inverse of the
parallel digplacemert along . o

() If % is a'curve from x toy jn M.and p is a curve fromy to zin M,
the parallgl displacement along the composite curve u ' 7 is the composite of

the parallel displacements v and j..

4. Holonomy groups |
"..gg_i: g the notion of parallel displacement, we nbyv éeﬁrié the
liglonomy group of a given connection T in ja_prmcxpal ﬁbrc
bindle P(M, G). For the sake of simplicity we shall mean by a
custe a piccewise differentiable carve of class €%, 1 = k < o

1" For cach point # of M we denote by, C(x) the loop space at x,

“that is, the set of all closed curves starting and ending at x. If =
. .and p are elements of C(x), the composite curve u - T (= foIIowed
" by p) is also_an element of 'C(x). As 'we proved in §3, for each

- 0.2 Clx), the parallel displacement along = is an isomorphism of
~ ‘ithe fibre w¥#) oito itself, The set'of all such isomorpbisms of

“nY(x) onto itsélf forms a group by virtue of Proposition 3.3. This
. group is called &He, Aolonomy group of T with reference point x. Let

C°(x) be the subset. pf C(¥) consisting of loops which are homotopic
to zero. The subgreup of the holonomy group consisting of the

- pardlel displacements arising from al = ¢ C%(x) is caled the

restricted holonomy group of I’ with reference point x. The holonomy
group and the restricted holonomy group of I'" with reference
point * will be denoted by ®(x) and ®°(x) respectively.
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It is convenient to realize these groups as subgroups of the ,
structure group G in the following way. Let u be an arbitrarily
fixed point of the fibre =~*(x). Each 7 €« C(x) determines an element,
say, a, of G such that 7(u) = ua. If a loop s € C(x) determines
b ¢ G, then the composite u + = determines ba because (u - 7)(u) =
p(ua) = (p(u))a = uba by virtue of, Proposition 3.2. The set of
elements a ¢« G determined by dl  « C(x) forms a subgroup of G
by Proposition 3.3. This subgroup,.denoted by ®(x), is caled the
holonemy group OF T with reference point #'e¢ P. The restricted holonomy
group @°(u) of I' with reference point « can' be defined accordingly.
Note that @) is a group of isomorphis' ms of the fibre '#=1(x) onto
itself and @(u) isa subgroup of G. It is.clear that there is a unique
isomorphism of ®(x) onto ®(u) which makes the following
diagram commutative :

: C(x) -
KN
CO(x) - O(u).

" Another way of defining ®(x) is the following: When two points
u and v of P cap be joined by a horizontal curve, we write y ~& v.
This is clearly an equivalence relation. Thin ®(x) is equal to the set
of a¢ G such that u ~ uu. Using, the fact that ¥ ~ v impliesua ~ vu
forany u, vePandace G, it is easy to verify once more that this
subset of G forms a subgroup of G.

" PrOPOSITION 4.1. (@ Ifv =ua,aeG,then ®(v) = ad(a~)(D(u)),
that is, the hglonomy groups @(v) and ®(u )are conjugate inf_G'. Similarly,
D(v) = ad (a71)(D(u))-

(b) If two points u and v of P can be ]omed bya horlzontal carve, then
®(u) = ®(v) and P(u) = P(2).

Proof. (@) Let be ®u) 50 that &'~ ub. Then ua ~ (ub)a so that
V ~ (Vu-l) bg = va~tha. Thus ad (a7) (b) ¢ d(v). It follows casily
that ®(z) = ad, (a~) (O(u)). The proof for () = ad (a~)(P(u))
is smilar.

(b) The relation ¥ ~ v implies ub ~ gb for every b e G. Since-the
reation ~ is trangitive,, u ~ ub if and only if v ~ vb, :that 1s,

b e®(x) if and only if b ¢ ®(v). To prove O(u) = DOz, fet u* be
a horizontal curve in P from u to v. If b e ®°(x), thent there is a
horizontal curve 7* in P from x to ub such that'#ke curvé m(*) in
M is a loop at ﬁ'( ) homotopic to zero. Then the composite

JIERS

k4
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(Ryu*) + T u*~1is ahorizontal curve in P from v to g4 and its
projection into M is a loop a (») homotbpic to zero. Thus
b € @°(z). Similarly, if b e ®%(v), then b ¢ O°(u). QED.

If M is connected, then for every pair of points z and v of P,
there is an element a ¢ G such’that y ~» ua. It follows from Propo-
sition 4.1 that if M is conpected, the hol onomy groups ®(«), u € P,
are al conjugate to each ether in G and hence isomorphic with
each other.

The rest of this section is devoted to the proof of the fact that
the holonomy group is a Lie group.

THEOREM 4.2. Let P(M, G) be a principal fibre bundle whose base
‘manifold M is connected and puracompact. Let ®(u)and ®°(u), u e P, be
the holonomy group and the restricted holonomy group of a connection I' with
reference point u, Then

(@) ®°(x)is a connected Lie subgroup ¢f G;

(b) ®°(u) is a normal subgroup of ®(u)and ®(u){®®(x) is countable.

By virtue of:this theorem, ¢(u) is a Lie subgroup of G whose
identity component is 0‘(

+ Proof. We shal she at every element of ®°u) can be
joined to the identity elemént by a piecewise differentiable curve
of class G* in G which lies in ®°(u). By the theorem in Appendix 4,
it follows then that 9°(u) is a connected Lie subgroup of G.

Let a « ®°(u) be obtained: by the parallel displacement along a
piecewise differentiable loop = of class C* which.is homotopic to O.
By the factorization lemma (Appendix 7), 7 is (equivalent to) a
product of small lassos of the form ="y -.ry, where 7, is a
piecewise differentiable curve of class C* from x = =(u) to a point,
say,y, and u is a differentiable loop aty which lies in a coordinate

_neighborhood of y. -It is suﬂiment to show that the element of
®¥u) defined by each lassa 777! « g -7y .can bejoined to the identity
elemetit; ‘This element is; obviously equal to the element of §O( v)
defined by thelogp.u, where.v is the point obtained by the parallel
displacement of w.along 7. It is therefore sufficient to show that
the element b ¢ @), &fined by the differentiable loop u can be
joined to the identity element in ®°(y) by a differentiable’ cufve
of G which liesin ®°(v).

Let x1, ... ;4" be a logal coordinate system with origin at y

"
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and let u be defined by » = #*(f),i=1,..., n.Setfi(,s)= s +
(lv-s)x‘()fol-,.-l , nand05t351 Then f (¢, s) =
(St 8)ye . fm {, ) is a differentiable mapping of class C* of
I'x I'into M (where .1 = [0, 17) such thatf (% 0) is the curve u
and f (t, 1) isthe trivial curve y. For each fixed s, let b(s) be the

element of ®°(») obtained from. the: loop f (t, 5,0 < ¢t £ 1, so

that b(0) = b and &(1)*= identity. The fact that b(s) is of class C*
in s (as-a mapping of I into G) follows from the following

LemMa. Let f: T X 1 — M be a differentiable mg, cgpmgofckmc* f

and uy(s), 0 S s < 1, a differentiable curve of class'C* in P-such that

" ar(ug(s)) =S (0, 5). For cach Jixed s, let uy(s)be the-potnt of P obtadhed
by the ~parallel dzsplacemmt of ug(s) along the curve f (t, J‘), ‘where |
0 St <1 andsis fixed. Then thecurve uy(s), 0 €5 < 1, is dzfmnh-
able of class: C*, .

Proof of Lemma. Let F: [ x I— P be a differentiable
mapping of class C* such that (F(t, s)) = f (t, s) forall (4 s) e I x
| and that F (0, s) = uy(s): The existence of such an F follows
from local triviality of the bundle P. Set #,(s) = F (t, s). In the
proof of Proposition 3.1, we saw that, for each fixed s, there is a
curve a,(s), 0 =t <1, inG such that ay(s) = ¢ and that the
curve v (s)ais), 0 = t <" 1, is horizontal. Set u,(s) = ,(s)a,(s). To

p prove that u,(s), 0 £ s's: 1, is a’ dlfferent|able carve of class -
C*, it is sufficient to show that éy(s); 0= 5 X1, isa differentiable
curve of ¢ldss'C* in G.'Let ¢ be' the dennection form of F. Set
Y, (S) = —a(t4{s)), whcre ﬂ,(;ﬁ*n the vectsr tangent to the curve
described by ,(s), O £tg lgwhcns 15 fiked. Then as in the

proof oﬁ’Proposmon3l a,(s) i¥' a solution’ of the equation
G()ay(s)™ = ¥y(s): As in the prebf of the lemma for Proposition
3.1, we deﬁne for eachfixed s, avector field X(s) on G x R so that

(a ,(s), #) is ‘the integral«curve of the wector field X(s) through the -
point (e, 0) ¢ G x K. The differentiability of a,(s) imsfollows fbm *

the fact thet each solution of an ordinary linear’ difererittal
equation with parameter s is differentiable in.s & magy tkesd¥ fhe
equation is (cf. Appendix- 1). This cbmpletes the' pmbf of the
lenima and hence the proof of (a) of Theorem'#:2: 5 »
‘We now prove (b) If 7and p are two< loops atx and if u is
. homotopic to zero, the composite ¢ curve’r s i+ =t is Womotopic
fo zero. -This implies that ®°(4) is a“nornial ‘subgroup of B(u).

AN
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Let -, (M) be the first homotopy group of M with reference point
x. We define a homomorphism f: 7,(M) — ®(u)/®(u) as follows.
For each element « of 7,(M), let 7 be a continuous loop at x which
represents a. We may cover 7 by a finite number of coordinate
neighborhoods, modify = within each neighborhood and obtain a
piecewise differentiable loop 7, of class Cta x WhICh is homotopic
to 7. If 7, and =, are two such loops, then 7y + 73! is homotopic to
zero and defines an element of ®(u). Thus, =, and 7, define the
same element of ®(u)/®°(u), which is denoted by f (a). Clearly, f
is a homomorphism of (M) onto ®fu)/®°(u). Since M is con-
nected and paracompact, it satisfies the second axiom of count-
b111ty (Appendix 3). It follows easily that a,(M) is countable.
o%ftice, (u)/P(x) is also countable. QED.

Rémark.: 1n §3, we defined the parallc’! @placement along any
piecéwise differentiable’ curve’ of class ‘€% In this section, we
defined the holonomy group ®(x) using piecewise differentiable
curves of class C* If we denote’ by ®,(u) the holonomy group thus
obtained from piecewise differentiable curves of class C*, then ‘we
have obviously ®,(x) 2 Qy(u)’ > ++ + 2 @, (u). We shal prove

later in $7 that these holonomy groups coincide.

5. Curvature form and structure eq*ation

Let P(M, G) be a principa fibre bundle and p.a representation
of G on a finite dimensional vector space ¥; p(a) is a linear
transformation of V for each ¢ «G and p(ab) = p(a)p(h) for
a,b € G. A pseudotensorial form of degree r on. P- of type (p, V) isa V-
valued r-form 9 on P such that

L3
h
P
y ot
ks

: R‘,w",o(‘1 ? fora eG.

Such a form g iscalled a ﬂ)mnalfofm if it 1s\homzontal in the sense
that @(Xy, s %, X;)=s 0 whenever a least one of. the tangent
vectors X; of & is vertica, i.e. tangent to a fibre.

Example 5.1. If'p, is the trivial representation of G on V, that
iS, pola) is the identity -transformation of V for each a ¢ G, then a
tensorial form bf degvee r.of type (py, V) is nothing but a form ¢

on P which can be cﬁresscd as ¢ = w*p,, where @y, ¥ a V-vaued
r-form on the base Hea
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Example 5.2. Let p be a representation of G on V and E the
bundle associated with P with standard fibre V on which G acts
through p. A tensoria form ¢ of degree r of type (p, V) can be
regarded as an assignment to each x ¢ M a multilinear skew-
symmetric mapping ¢, of T,(M) x + «x T (M) (r times)
into the vector space =z {x) which is the fibre of £ over x. Namely,
we define

Bo(Xy i, XY= wlp(XE, XD, X, € T:(M)

where y is any point of P with 77( ) = x and X* is anyvector at y
such that =(X¥) = X, for each i. p(X¥, ..., X})is then" an
element of the standard fibre V and u i a linear mapping of ¥
onto mz*(x) so that u(p(X¥, '+, X¥))is an element of mg'(x). It
can be easily verified that this edement is, independent of the
choice of u and X}. Conversely, given a skew-symmetric multi-
lineer mapping @,: T.(M) x .« + X T, (M) — =z(x) for. each
x ¢ M, .a tensoria] form ¢ of degree r of type (p, V) on P can be
defined, by

PXL .. ., XD = u G (n(XD), . ., m(XD)), X eT.(P),

where x = =(u). In particular, a tensorial O-form of type (p, V),
that is, a function f: P — V such thatf (ua) = p{a71)f (u), can be
identified with a cross section M — E.
A few specia cases of Example 5.2 will be used in Chapter, III.
Let T' be a connection in P(M, G). Let G, and @, be the
vertical and the horizontal Subspaces of T,(P), respectively. Let
h: T,(P) - @, be the projection.

PrOPOSITION 51 I ¢ is a pseudotensorial r-form on P of type
(Pa ) then

() Tke form gh defined by ((ph)(X o X)) = kX, ... kX)),
Xy e Ti{P), is a tensorial form of type (p, ¥) ;

(b) dp is a pseudotensorial {r + 1)+form of type (p, V);

() The (r + 1)=form Dg deﬂued by Dg = (dcp)h is atemonalform of
tpe (p, V).

Proof, From R, ¢ h == ho R e € G, 1tffollows that @k is a
pseudotensorial form of type (p, ) It is evxdcﬁt shat

(‘Ph)(Xb L] r) = 0
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if one of X,’s is vertical., (b) follows from R¥ed =d cR¥,a e G.
(c) follows from (&) and (b). QED.

The form D¢ = (dg)k is called the exterior covariant derivative of

and D is called exterior covariant differentiation.

If p isthe adjoint representation of G in the Lie algebra g, a
(pseudo) tensorial form of type (p, g) is said to be of ¢pe ad G. The
connection form% is a pseudotensorial |-form of type ad G. By
Proposition 5.1, Do is a tensorid P-form of type ad G and is
cdled the curvature form of w,

THEOREM 52 (Structure equation). Let @ be a connection form and
Q its curvature form. Then

do(X, Y) ='—:}:[w(X oY)] + Q(X, Y)
b Jor XY ¢ T(P), ueP.

Proof.  Every vector of P is asum of a vertical vector and a.
horigontal vector. Since both sides of the above equality ‘are
bilinear and skew-symmetric in X and Y, it is sufficient to verify
the. equality in the following three special. cases.

(1) Xand Y are honzontall In this case, w(X) = o(Y) =0 and
the equality reduces to the definition of Q.

(2) X and Y are vertical. Let X'= A* and Y = B* at u, where
A,B ¢ g. Here ,A* and B* are the fundamental vector fields corre-
sponding to A and B respectively. By Proposition 3.11 of Chapter
I, we have l \

2dw(4*, B*) = A*(w(B¥)) — B*(w(4*%) — o([4*, B*])
= -[A Bl 3 ~[w(4¥), o(B*)],
since w(4*) = A, o(B*) = B 'and [4* B*] = [A B]* On the
other hand, Q(4*, B*) = 0.

(3) Xis horizontal and Y is vertical. We extend X to a horizontal
vector field on P, which will be also denoted by X. Let Y = A*
at u,‘whm}ﬁ €g. Since the right hand side of the equality vanishes,
it is suffidient:td show that dw(X, A*) = 0, By Proposition 3.11 of
Chapter I, we have

2do(X, A*) = X((4¥) — 4*(0(X)) - ol[X, A%)
- ““w(fX, A*]).
Now it is sufficient to prove the following



-
. 78 FOUNDATIONS OF DIFFERENTIAL" GEOMETRY

Lemva. If A*is the fundamental vector field corresponding to an
«element A ¢ g and X is a horizontal vector field, then [X, A% is horizontal.
* . Proof of Lemma  The fundamental vector field A* is induced

by R,, where a, is the |-parameter subgroup of G generated by
A € g By Proposition 1.9 of Chapter I, we have

[X, A%] = lim ] [R,(X) - X].

If Xis horizontal, so is R‘,‘(X). Thus [X, A*] is horizonta: QED.

CoroLLARY 5.3. If both X and Y are horiwntal vector fields on’ P,
t h e n oo

o([X, Y]) = —2Q(X Y).

Proof.  Apply Proposition’ 13 of Chapter | to the left hand ;tdc
of the, structure equation just proved. ° Q_ED

The structure equation (often called “the structure equation qf
E. Cartan”) is sometimes written, for the sake of simplicity, s
follows : .

dw = —-%[w, w] + Q

Let e, . . ., ¢ bea basis fo,r the Lie dgebra g and ¢ ,,% i, y Jo ! k=
1 , 1, the structure constants of g wrth respect to ’u sy e,.,

that |s
[es, &)= E, Sty k= 1 1,

Let w = I, o, and Q = I, Qe,. Then thc structure equatron
can be expressed as followw‘ K

dw——';'zjkcjkijwk'F Q' i\=1,...,r.9 !

Theorem 5.4 (Bianchi’s identity). DQ = 0. Vi
Proof. By the definition of D, it suffices,, to proyé - that
dQ(X, Y, Z) = 0 whenever X, Y,and Z are dll horizontal ¥ectors.
We apply the exterior differentiation-d to the strut:turc équation,
Then
0= B’ = —35 &, do’ A o *+ 42 cw’ A'dwi‘, + a5,

Since w*(X) = 0 whenever X is horizontdl, we haye

dQ(X, Y, Z) = 0
whenever X, Y, and Z aedl horizontal. QED.

e

‘r.ql_—
+ N

]

I
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Proposl Tion  5.5. Let w be a connection form and g a tensorial 1-
form of type ad G. Then

Do(X, Y) = dp(&X, ¥) + ${p(X), o(T)] + Ha(X), ¢(Y)]
Jor X,Ye Ty(P), ue

Proof. Asin the proof of Theorem 5.2, it suffices to consider
the three special cases. The ‘only non-trivial ca.se is the case where
X is vertical and Y is horizontal. Let X = A% at 4, where A € g.
We extend Y to a horizontal vector field on P, denoted aso by 'Y,
which is invariant by R,, a € C. (We first extcnd the vector wY to
a vector field on M and then lift it to a horizbtital vector field on

P) Then. [A* Y] = 0,. As A* is vertical, Dp(4*, ¥Y) = 0. we
. shall show that the right ‘hand’ side, of the equality ‘vanishes. By
Proposition 3.11 of Chapter |, we have *

dp(d%, Y) = §(4*(@(1)) — r(wrd*»-- #([4*, 7)) = 14*(9(D)),
so that it- suffices to- show A*(p(¥)) + [w(4*), @(¥)] =0 or

A* (@p(N)y = —[4 p(T)]. If a, dcmotes the I- I-parameter subgroup
of ‘ Gv gencrated by A - then

A‘(V(Yﬁ*hm;[%.(y) %(Y)] hm [(Rzr’)u(Y) %(Y)]

_'[As ‘Pu(y)]’

L alﬁh Iad(at—l)(‘pu(y)) VM(Y)]

L&nce Y‘xs mvanant by R.,

K Mappmgs of conneitions

In §5 of Chapter I, we considered certa,m -mappings of one
principa fibre'bundle into -another such as a homomorphism, an
mjccnon, and a bundl€ map.. We oW study the effects of these
' v_;on oonndctnms. TR

s 1&61 Let f (M, G') - p (M G) be a homo-

" mpﬁnm with the foﬂe{pondmg homomorphism f G’ — G such that the

induced mapping [ ‘M’ = M is a diffeomorphisin’ of M’ onto M. Let
IMbea connemon n }" ) w the connection _form and Q' the curvature form
Qf T, Then

(a There is a umqﬂe wunectzon Tin P such’ that the horlzontal sub-

spaces of 1" are mapped m!aflwnzontal sub.rpam of 1" b} f
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(b) If @ and S2 are the connection form and the curvature form of T
respectively, ~ then f *& = f 0’ and f*Q =f Q" where ¥ + ' or
f +Q"means the g -valuedform on P’ defined by (/- @ )(X') = f(w’ (X'))
or (f-Q)Y(X',Y ) =f (Q'(X’,Y")), where f on the right hgnd side is '
the homomorphlsm g’ — g induced by f: G’ — G. .

() Ifuw e P andu=f (u)e€P, tlmzf G’ — G maps m’(g’) onto
®(u) and (D"{u) onto ®(u), where ®(u) and D°(u) (resp, ﬂr(u) and
®°(u")) are the holonomy group and th restricted holonomy group of T
(resp. T') with reference point u (resp. '),

Proof. (a)” Given a point u ¢ P, choose & € P’ aid #e G such
‘-that u = f (#')a. We define the horizontal subspace @, of T,(P)
by Q.= R, f (¢,), where @,. is the horizontal subspacc of
T, (P with r&cpect to I”. We shall show that @ is independent
of the choice of ' and a. If u=f (V') 4,. wherey’ e P’ and b ¢ G,
then ' = u'c’ for some ¢ o G'. If wesetc =f (¢), thenu =
f (V)b =f (u'c’)b =f (u')chand hencea = cb. Wehave R, f () =

Ry o f (Que) = Ryof *Ro(Qu) = Ry o R, of (@) = Ryof (Q),
which proves our assertion. We shaJl show that the distribution
u — @, isaconnectionin P. If u=f (u)a then ub=f (u)ab and
Qu = Ry of (@)= R, R, o (Q,) = Ry(Q.), thus proving the
invariance of the distribution by G. We shal now prove T,,(P) =
Q. + G,, where G, is the tangent space to the fibre at u. By local
trividity of P, it is sufficient to prove that the projection 7: P — M
“induces a linear isomorphism =: @, —"T.(M). where x = 7r(u)
We may assume that u = f (u’) since-the distribution U — Q
invariant by G. In the Comrquta}t%v_c diagram

0. 10,
I l
TM) Ls T 000),

the mappings #': @, — T, (M ) and fi T,(M') — T(M are
linear isomorphisms and hence thé remamln_g two_mappings
must be aso linear isomorphisms. The umquencss of“%‘3 is evident
from its construction.

(b) The equality f*@ = f . ¢’ can be rewritten as follows:

o(fX) =flo' (X))  for X' e Tu(Py, u ¢P.
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It is sufficient to'verify the above equality in the two special cases:
(1 X ishorizontal, and (2) X’ is vertical, Since fipsp maps
every horizontal vector into a liorizontal vector, both sides of the,
equality ‘vanish if X’ is horizontal. If X' is vertical, X’ = A’ a U,
where 4'¢g’. Set 4= (A’) e g.Since f (u'a’) = f (u')f (@) for
every & ¢ G', we have f (X') = A* at f (u'). Thus

o fX) = o(d*) = A=T(A) =1 (@(Ad*)=f (@ X))

From f %@ = f « o, we obtain d(f *w) = d(f - ') and f *do =
fo a’w’ By the structure equation *(Theorem 5.2):
,—%f*([w w]) +f*9—,—%f([w o) [,
we have .
—3[f*o, f*w] +/*Q= = f o fre] +f QL
This implies that f ¥Q = f + Q', _
(c) Let Tbealoopat = 7w(u). Set v =~ )sbthat 7 is a
loop at x' = ='(u ) Let 7'* be the horizontal lift. of " starting

from i Thenf (7"*)isthe horlzontal lift of 7 starting from u. The
statement (c)'is now evident. QED.

In the situation ‘as in Proposition 6.1, wé say that f ‘maps the
connection 1" into the connection I'. In particular, in the case
where P'(M’, G’) is a reduced subbundle of P(AM, G) with in-
jection f so-that- M’ = M and f: M’ — M isthe identity trans-
forniation, we say that the connection”I' in P is reducible to the
connection I” in P’. An autumorphism f of the bundle P(M, G) is
cdled an automorphism of a connectionI" in P if it mapsT into I, and
in this case, T' is said to be invariant by f.

PROPOSITION 6.2. Lgt f: P'(M'; G') — P(M,G) be a homo-
mbrphism’ suck that the comspondmg lzomomorp}zzsm f:G’ — G maps G’
isomorphically onto G. Let ["bé a connection in P, o the connection form
and Q the cirvature form of I'; Then

(@) There is a unique connection I in P’ such that the horizontal sub-
spaces Of 1” are mapped into\horizontal subspaces of I" by f.
(b) If ' and Q' are the connection form and the curvature form af T

respectively, then f *g =1 . @' andf *Q =1f . Q’,

(c)Ifu'e Prandu= T (u') € P, then the isomorphism f: G’ — G
maps @(u’) into d(u) and ®°(x) into QO(u).



82 FOUNDATI ONS oF DI FFERENTI AL GROMETRY

Proof.  We define I” by defining its connection form ¢, Set
w' = f-1:f*o, where f-1: g — g"is the inverse of the isomorphism
f: g —»gmducedfromf G —+G. Let X' eT, (P)anda G

and set X = fX’ and a = f (al),. Then we have

W' (ReX') = fH{a(f (ReX'))) = fY(w(R,X))
= f(ad (a)(«(X))) = ad (") (fH (X))
= ad (") {w(X").
Let A" ¢ g and set A = f(4'). Let A* and A’* denote the funda-
mental vector fields corresponding to A and A’ respectively. Then

we have W' (4%) = fYod%) =f-(A) =

This proves that the form ' defines a connection (Proposition 1.1).
The verification of other statements is similar to the proof of
Proposition 6.1 and is left to the reader. QED.

In the sSituation as in Proposition 6.2, we say that 1" is induced
by f from I’. Iff is abundle map, that is, G =G and f: G - G is-
the identity automorphism, then o’ = f*¢g, In particular, given a
bundle P(M, G) and a mapping f: M’ = M, every connection
in P induces a connection. in the induced bundle f-1P,

. For any principal fibre bundles P (M, G) and Q (M, H),
P x Qis aprincipalfibre bundleover M X Mwithgroup G x H.
Let P+ Q be the restriction of P x Q to the diagona AM of
M x M. Since AM and M are diffeomorphic with each other in
a natural way, we consider P 4 .Q as a principa fibre bundle
over M with group G x H, The restriction of the projection P x
Q — P to P + Q, denoted by fp, is a homomorphism with the
corresponding natural homomorphism f,: G x H — G. S;xm-
larly, for fo: P +Q = Qand fu: G x H— H.

Propesi TIoN 6.3.  Let I'p and T'g be connections in P(M G) and
Q( M, H) respectively. Then N

(a) There is a unique connection T' in P + Q such that the homo-
motphisms fp: P + Q — P and f: P+Q-+Qm¢p;1‘utoI‘Pand
'y respectively.

(0) If 0, wp and @y are the connection form.r Mﬂ QP, and (24 are
the curvature forms of I, I'p, and Fo mpemve b, b

0 =fpop +fiwg, Q=S 3Qp +f §Q.
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(c) Let ue P,veQ,and (u,v) € F+Q. Then the holonomy group
O(u, v) of I’ (resp. the restricted holomomy group ®°(u, v) of I') is a .

.subgroup q’ O(u) x D(v) (resp. () X D°(v)). The homomorphism

"fa: G X H «» G (resp. fyg: G x H — H) maps ®(u, v) onte D(u)
(resp. onto ®(z)) and P°(u; v) onto ®y) (resp. onto D°(2)), where
O(u)and D°(u) (resp. ®(v) and D(Vpre the holonomy group and the
restricted holonomy group of 'y, (resp. I' o).

The proof is similar to those of Propositions 6.1 and.6.2 and is
left to the reader.

ProPOSITION 6:4. Let Q(M, H) be- a subbundle of P(M, G),
where H is a Lie-subgroup of G. Assume that the Lie algebra g of G admits
a subspace m such that g = m + b (direct sum).and ad (H)(m) = in,
where b is the Lie algebra of H. For every connection form e in P, the b-

component @' of w restricted to Q is a connection form iz Q \
Proof. Let A ¢} and A* the fundamental vector field corre-
sponding to A. Then «'(4*) is the b-component of w(A4*) =4,
Hence, w’(A*) = A. Let ¢ be the m-component of w restricted to

Q LetXe T,(Q)andaeH. Then
oRX) = o'(RX) + p(RX),

ad (a7Y) (0(X)) = ad (a~Y) (' (X)) + ad (&%) (@(X)) -
The left-hand sides of the preceding two equalities coincide.
Compan ng the &components of the, right hand-sides; we obtain
o'(R,X) = ad {87! (@'(X)). Observe.that we used the fact that
ad (a’l)(q)( () is in m. QED.

Remark. The connection -defined” by e in P is reducible to a
connection in the subbundle @ if and only if the restriction of w
to Q is b-valued. Under the assumption in Proposition 6.4, this
means @' = &'on Q :

yz,“,(j R B

‘i 7“( Reduction theorem

Unless otherwise, sta_ted, a curve will mean a piecewise differ-
entiable curve of class C". The holonomy group @ () will be
denoted by ®(x,). - S

We first establish ~ + i7"

THEcRem 7.1 (Reduction’ theorem). Let P(M, G) be a principal

Jibre.pundle with a connection I, where M is connected and paracompact.
Let uy be an arbitrary point of P. Denote by P(u,) the set of points in P
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which can be joined to u, by a horizontal cuzye, Then
(1) P(uy) is a reduced bundle with structure group D(up).
(2) The connection I is reducible to a connection in P ().
Proof. ( 1) We first prove ., ..

Lewa 1. -Let Q be asubset of P(M G) and H a Lie subgroup of
G. Assume: (1) the projection. =z P s M-maps @ onto M; (2)" Q is
stable by H,ie., R,(Q)= Qforéacha ¢ H: (3) zfuv € Q and w(u) =
7(v), then there is an element a & H suck that v = yg *and (4) every point
x of M has a neighborhood [/ and a cross sectiono: U — P such that
a(U) < Q. Then Q(M; H) is a reduced subbundle of P(M, G).

Proof of ‘Lemma 1. For each U e »YU), let x = m(u and
a ¢ G the element determined by # = a{x)a. Define an isomorphism
y: w7 U) - U x -G by setting y(u) = (x, ). It is easy-to see that
pymaps Q N 1r—1(U) 1:lonto U x H. Introduce a differentiable
structure in Q in such a way that y:.Q N #»}U) - U x H
becomes a diffeomorphism; using Proposition 1.3 of Chapter |
as in the praof of Proposition 5.3 of Chapter |, we see that Q
becomes = differentiable manifold. It is.now evident that Q is a
principal fibre bundle-over M with group H and that Q is a
subbundle of P.

Geing back to the proof of the, first assertl on of Theorem 7.1; we
see that, M being paracompact, the holonomy group (D(uo) is alie
subgroup of G- (Theorem 4.2) and that the subset P(u,) and the
group ®(u,) satisfy conditions (1), (2), and (3) of Lemma 1 (cf.
the- second definition of ®(u,) given before Proposition 4.1 and
also Proposition 4.1 (b) ) . To verify condition (4) of Lemma 1, let
xl, ..., x" be alocal coordinate system around x such that x is
the origin (0, . . ., 0) with respect to this coordinate system. Let
U be a cubical neighborhood of x defined by {x7] < 4. Given any
pointy ¢ U, let 7, be the segment from x tog with respect to the.,?
coordinate system #%,.. ., x*, Fix apoint u ¢ Q such that 7 (&) == -
Let o(y) be the point of P obtained by the parallel displacement
of y dong 7,. Then o : U — Pis a cross section such that a(U) cQ.
Now (1) of “Theorem 7.1 follows from Temma l.

(2) This is an immediate consequence of the followxmg

Lema 2. Let @(M, H) be /subbundle of P(M;'®) and T a
connection in P. If, for every u @, the horizontal subispace of T, (P) is
tangent to Q, then I is reducible to a connectign in Q.
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+ Proof of Lemma 2. We define a connection 1” in Q as follows.
The horizontal subspace of T,(Q), u € Q, with respect to I” is by
definition the horizontal subspace of T, (P) with respect to I'. It is
obvious that T is reducible to T, QED.

We shall cal P(u) the-kolonomy bundle through . It is evident . .
that P(u) = P(v) if and only if u and v can be joined by a hori-
zontal curve. Since the rela jon- introduced in §4 (u ~ v if u and
v can be joined by a horizontal curve) is an equivalence relation,
we have, for every pair of points # and v of P, either P(u) = P(v)
or P(u) n P(v) = empty. In other words, P is decomposed into
the digoint union of the holonomy bundles. Since every a e G maps
each horizontal curve, into ‘a horizontal curve, R,(P(u)) = P(ua)
and R,:"P(u) — P(ua) is an isomorphism with the corresponding
1somorPhlsm ad (a*l) O(u) — CD(ua) of the structure groups. It is
easy to see that, given any u and v, ‘there is an element a ¢ G such
that P(y) = P(ua). Thus the holonomy bundles P(u), u ¢ P, are
al isomorphic with each other.

Using Theorem 7.1, we prove that the holonomy groups @,(u),
1 £ k' = co, coincide as was pointed out in Remark of $4.
This result is due to Nomizu and Ozeki [2]. '

Treorem 7.2, All the holonomy groups @,(x), 1 < k < o,
coincide. . .
Proof. It. is sufficient to show that @®,(z) = ®_(u). We
denote @ (x) by ®(u) and the holonomy bundle, through u by
P(u). We know by Theorem 7.1 that P(u) is a subbundle of P with
®(u) as its structure group. Define a distribution § on P by setting

S, = T (P(u)) dor ueP. :
Since the holonomy bundles have the same dimension, say k, § is
ak-dimensional distribution. We first prove

Lewa 1. (1) §is differentiable and involutive. '

(2) For .eack u e P, P(u) is the maximal integral mamfold of §
through u

Proof of Lemma 1.'(! | We set

S—S'+S ueP, !

where S, is horizontal and ~§ 4« .verticd. The distribution S is
dlfferentlable by the very definition of a connection. To prove the
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differentiability of S, it suffices to show that of S”. For each u ¢ P,
let 7 be a neighborhood of x = n(u) with a cross section'o: U —
P(u) sach that ¢(x) = 4. (Such a cross sectlon wss constructed in
the proof of The&em 7.1 Let Ay, .., 4 béa basis of the Lie.
algebra g(u) of d(x). We shall define vector fields Ay ..., 4 on
#~1( U} which form ‘a basis of §" at every ‘point of # l(U) Let
v e #~}(E]). Then there is-a unique a ¢ G such that v = o(n(2))a.
Since ad (¢71): ®(u). - ®{v) is-an isomorphism, ad (a71) (A,), i =
ly..., r,are clements of g(v) and form: # basis f‘or g(v) We set
L), = (3d( AN i=k oo
where (ad (a-‘) (4,))* is the-fundamental vector field. on P corrg-.
snondxng to ad (a-1)(4;) cg(v) = g; 1 = 1,
.see that 4j;. .., 4, are-differentizble and form a basis of S on
). e

For each pomt 4, P(u) is an integra manifold of S, since for.
every v € P{u), we have Ti(P(4)) = T.(P(v)) = §,. This, .implies
that § is involutive. '

(2) Let W{u)be the maximd integrd ‘manifold of§ through u
(cf. Proposition. 1;2~of Chapter ). Then P(u) is an gpen submani-
fold of W(u). We'prove that Pu) = W(u). Let v Be an arbitrary
point of W(u}and let w(®), 0 < ¢ < 1, be a curve in W(u)
such that u(Q} == # and a(}) = v. Let ¢ be the supremum
oft,, such that 0 < < foimplies 4(f) ¢ P(u). Since P(u ) is open in
W(i), ¢, is positive;, We show that u(ty) lies in P(u); since P(u) is
open'in W(u), this will imppy ‘that ¢, = 1, proving that u( 1) = v
lies in P{u). The pomtsu(ti Is in P(u( u) and P(u(ty)) is open’ n

W(u(t,)). There cxlsts g $5°0, ‘suchthat ¢, — & <t < b+ ¢
implies u(f) ¢ Pu(t,) ) Fett Be any value such that £, — € < t < ¢,
By definition of #,5we have u(t) ¢ P(u). On the other hand,
u(t) € P(u(ty)). Thismplies that P(u) = P(u(t,)) so that u(t,) « P(¥)
, a we wanted to show. ‘We have thereby proved that P(u) is
actually the maximal integra manifold of S through u.

LEMMA 2. wé be an involutive, C®-distribation on a C*~manifold.
Suppose x,, 0. Sag.= 1, is @ precewise Cl-curve whose tang* veclors #,
belrmg 10 S. T fthe entire  cune x, lies in the maximal mtegfal manifold

Wof S throug the point x.

Proof of Lemma 2. We may assume that x, isa CI -curve. Take’
. around the point o such that.

alocal coordinate system x1, .
i .

.., rltiseasy to
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8/oxl, .... 0/ox*, k = dim S, form a local basis for S (cf.
Chevalley [I, p. 92]). For smdl vauesof t, say, 0 <t < ¢, #;
can be expressed by #* = x(#), 1 £ i <a, and its tangent vectors
are given by X, (dx'/dt) (9]0x%). By assumption, we have dx'/dt =
fork +1<i snThus,x(t) x(0)for k +1 5i Snsothat
x, 0 £ 1 < ¢ lies in the dlice through x, and hence in W,
The standard continuation argument concludes the proof of
Lemma 2.

We are now in position to complete the proof of Theorem 7.2.
Let a be any element of ®,(u). This means that #% and ua can be
joined by a piecewise O-horizontal curve u,, 0 < ¢ £ 1, in P.
The tangent vector # a each point obviousy lies in §,. By
Lemma 2, the entire curve 4, lies in the maxima integral manifold
Wi{u) of S through u. By Temma 1, the entire curve u, liesin P(u).
In particular, ua is a point of P(u). Since P(x) is a subbundle with
structure group ®(u), a belongs to V(w). QED.

coroLLARY 7.3. The restricted holonomj groups Y ), 1s k<
0, coincide.

Proof ®Y(u) is the connected component of th, identity of
®,(u) for every k (cf. Theorem 4.2 and its proof). No,i Corollary
7.3 follows from Theorem 7.2. ; QED.

Remark. In the case where P(M G) is a red andytic principal
bundle with an anaytic connection, we can still define the ho-
lonomy group ®,(u) by using only piecewise analytic horizontal
curves. The argument used in proving Theorem 7.2 and Corollary
7.3 shows that @, (u) = ®,(u) and Dg(u) = OY(u).

Given a connection I’ in a prmcxpal fibre bundle P(M G),
we shall define the notion of parallel displacement in the associated
fibre bundle E(M, F, G, P) with standard fibre F. For each
W e E, the horizontal subspace Q,, and the vertical subspace F,, Of
T (E) ark defined as follows. The vertical subspace F, is by
definition the $angent space to the fibre of £ at w. To define Q,,
we recall that we have ‘the natural projection P X F — E =
P X 4 F. Choose apoint (& &) € P x F which is mapped into w. We
fix this & ¢ F and consider the mapping P — E which mapsv ¢ P
into v¢ € E. Then the horizontal subspace Q,, is, by definition, the
image of the horizontal subspace @, < T,(P) by this mapping
P — E. we see easly that Qp is independent of the choice of
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(u, &) « P x F. We leave to the reader the proof that T,(E) =

F, + @, (direct sum). A curve in E is horizontal if its tangent

vector is horizontal at each point. Given a curve + in M, a (hori-

zontal). [ift +* of 7 is a horizontal curve in E such that zg(r*) = 7.

Given a curve T = %, 0 £t = 1, and a point w, such that

m(w,) = Xy, there is.a unique lift +* = w, starting from w,. To
prove the existence of r*, we choose a point (u,, &) in P x F such
that u,& = wy. Let u, be the lift of 7 = x, starting from #,. Then
w, = u,f is alift of 7 starting from w,. The uniqueness of 7*
reduces to the uniqueness of a solution of a system of ordinary
linear differential equations satisfying a given initia condition
just as in the. case of a lift in a principa fibre bundle. A cross
section ¢ of E defined on an open subset U of M is caled

parallel if the image of T,(M) by ais horizontal for each x ¢ U, that
is, for any curve 7 =4, 0 £ ¢« = 1, the paralel displacement of
o(xe) dong T gives a(x,).

ProposiTIoN 7.4. Let P(M, G)be a principal fibre bundle and
E(M, G/H, G, P) the associated bundle with standard fibre G/H, where
His a closed subgroup of G. Let a: M — E be @ cross section and Q (M, H)
the reduced subbundle of P(M, G) corresponding to a (cf. Proposition
5.6 gf Chapter I). Then a connection I in P is reducible to a connection 1”
in Q if and only if & is-parallel with respect to T,

Proof. I we, identify E with P/H {(cf: Proposition 55 of
Chapter 1), then g(M) coincides with. the image of € by the
natural prOJectlon u: P.— E = P[H; in other words,, if ue Q and
x = m(u), then a(x) = u(w). (ef. Proposition 5.6 of Chapter I).
Suppose I’ is reducible to a connection 1I” in Q. We note that if
¢ is the origin (i.e, the coset H) of G/H, then ué = u(u) for every
u ¢ P and hence ifu,, 0 <t < 1, is horizontal in P, so is u(x) in E.
Given acurve 1, 0 = { < 1, in M, choose u, ¢ Q with 7(uy) =%,
so that o(xy) = m(u,)..Letu, be the lift to P of x, starting,fx_gm 1,
(with respect to 1'), so that .u(x,) is the lift of x, to E startingfrom

o(%,). Since T' is reducible to 1", we have u, ¢ @ and hence
u(u,) = o(x,) foor dl ¢. Conversely, assume that. ¢ is paxallel (with
raspect to I'). Given any curve %, 0 ¢ < 1, in Mand any point
uy of Q with w(uy) = %y, let u, be the lift of x,:to P starting from
uy. Since a is parale, u(u,) = o(x,) and hence u, € Q for al t. This
shows that every horizontal vector at 4 € Q (with respect to I') is

[l THEORY OF CONNECTI ONS 89

tangent to Q. By Proposition 7.2, I' is reducible to a connection
in Q. QED.
8. Holonemy theorem

We first prove the following result of Ambrose and Singer [ 1] by
applying Theorem 7.1.

Theorem  8.1.  Let P(M, G) be a principal fibre bundle, wkere 1
" i connected and paracompact. Let " be a connection in P, {) the curvature
form, @(u) the holonomy group witk reference point u ¢ P and P(u). the
/zolonom_y bundle through & of T, Then the Lie algebra qf<I>( ) is equal to
the subspace of g, Lie algebra of G, spamlgd by all elements of the form
Q L(X,Y), where v e P(u), and XandY are arbztmry /zorzzontal vectars at
" Proof. By virtue of Theorem 7. 1, we may assume. that P'(u) =
P ie., ®(u) = G. Let g’ be the subspacc of ‘g spanned by 4l
eIement&of the form Q,(X, Y), where v ¢ P(u) =P and X and Y
are arbitrary horizontal vectors at v. The su‘'bspace g’ is actudly
an ided of q, because Q is a tensorial form of type ad G (cf §5)
and hence g’ is invariant by ad G. We shall prove that g = g.
At each point v ¢ P, let S, bethe subspace of T >(P) spanned by
the horizontal subspace @, and by the subspace ¢; = {A}; 4 € g7,
where A” is the fundamental vector field on P correspondmg to A
The digtribution § has dimension ‘4 '+ r, where n = dim A and
r = dim ¢': We shal prove that S is differentiable and involutive.
Let v be an arbitrary point of Pand I} a, coordinate neighborhood
of y = n(v) ¢ M such that w"l(U) is isomorphic with [/ x G. Let
Xy, 00, X, be differentiable vector fields on {7 which are
linearly independent everywhere on [ and X¥ . . ., X* the
horizontal liftsof Xy, ..., X, Let A, ..., A, be abasisfor ¢’ and
A, ..., A} the corresponding fundamental vector fields.! It is
clear that X%, ... S X%, AY,.. ., 4* form a local basis for S.
To prove that S is invelutive, it suffices to verify that the bracket
of any two of these ector fields belongs to S. This is clear for
A*], since {4, A] €g’ and [4,, A]* = [A), A¥]. By the
Iemma for Theorem 35. 2 [4¥, X?¥] is horlzontal actually,
[A X*]|=0as X}is mv,aman; by R, for each a ¢ G. Finally, set
= ‘U([)f X¥]) e ghw ere w |s the connectlon form of I'. By
Coronafy 53, A= o ([XY, X)) = —20(XF X} e g Smce the
vertical component of [X¥, ,{’*J a vePis equal o A*¢S,,
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[X¥, X}] belongs to S. This proves our assertion that § is in-
volutive.

Let P, be the maxima integra manifold of § through «. By
Lemma 2 in the proof of Theorem 7.2, we have P, = P. There-
fore, ' ' . .

dmg=dmP —n=dm P, - n =dm g,
This implies g = g¢’. QED.

Next we prove

THEOREM 8.2.  Let P(M, G) be a principal fibre bundle, where P
is connected and M is paracompact. If dim M 272, there exists a con-

nection in P suck that all the holonomy bundles P(u), u ¢ P, coincide with P.
Proof. Let u, be an arbitrary point of P and #%, . . ., x* a local
coordinate system with origin %, = ={4,). Let U and V be neigh-
borhoods of x, defined by |x'| < a and |x'] < f respectively,
where 0 < # < & Taking a sufficiently small, we may assume
that P|U = #~Y(U) is isomorphic with the trivia bundle U x G.
We shall construct a connection 1” in P { U such that the ho-
lonomy group of the bundle P | V coincides with the identity
component of C. We shall then extend T" to a connection I’ in P
in such a way that I’ coincides with I” on P | V (cf. Theorem 2.1).
Let Ay, ..., A beabasisfor the Lie algebra g of G. Choose real
numbers a,, . .., a suchthat 0 < @; < as <+++ < a < f and
letf,(t), i=1,,.., r, bedifferentiable functionsin -a — e < t <
a+ g such that f;(0) = O for every i and f;(«,) = ,; (Kronecker's
symbol). On = }(U) = U x C, we can define a connection form

w by requiring that

w(z e)(a/ axl = i (xz
and that -

,
w(z,ei(a/axi) =0 for i= 2, 3, o, N N
(Note that, by virtue of the property R*»w = ad (a){w), the
preceding conditions determine the values of @ a every point
(x,a) of U x G) oL
Fixing . 0 < + < 8, and o, 1 < k& £ r, for the moment,
consider the rectangle. on the x!x-plane in V formed by the line
segments 7, from (0, 0) to (0, &), T, from (0, a,) tO (t, ), 73 from
(t @) to « 0) and 7, from « 0) to (0,0), (Here and in the
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following argument, the x® to &coordinates of al the points remain
0 and are hence omitted.) In #=}(¥) = V x G, we determine the
horizontal lift of 7 = #; + 74 + 7, + 7, starting from the point
(0, 0; €). The lift =¥ of =, starting from (0, 0; ¢) is clearly (0, s; ¢),
0 £ 5 £ «, Since its tangent vectors d[dx* are horizontal The
lift 7§ of =, starting from the end point (O, a,; €) of +} is of the
form (s, a; c), 0 gs st whereg, is a suitable curve with ¢y =

e in G. Its tangent vector is of the form (0/0x*)(,qy + ¢, By a
similar computation to that for Proposition 3.1, we have

W((9)0xY) gy + &) = ad (67" ((8/05)) o) + 67
=ad (¢ Y ( Zf,(ak)A)-{-c”l ¢, = ad( “l)A + ¢ -1, <&y

Therefore we have ¢, « ¢, = -A,, that, is, ¢, = exp ( —54%). The
end point of 7% is hence « a,; exp ( = tAy)) . The lift T3 of 74
starting from . a,; exp {—t4y))is « w = 55 exp (—t44)), 0 <
s £ o, Findly, the lift 7§ of 7, starting from the end point (t, 0;
exp (= td,)) of r¥is « = s, 0; exp ( —t4,)),0 £ 55, since
0/0x! is horizontal at the points with x2 = 0. This shows that the
end point of the lift =+ of 7is (0, 0; exp ( — t4,)), proving that
exp ( ~ td,) is an element of the holonomy group-of #~*(¥) with
reference point (0, 0; €). Since this is the case for every  we see
that A, is in the Lie agebra of the holonomy group. The result
being valid for any A, we see that the holonomy group of the
connection in #=~}(¥) coincides with the identity component of G.
Let T' be a connection in P which coincides with T on #=1(¥).
Since the holonomy group ®(u,) of ' obviously contains the
identity component of G, the holonomy bundle P(u,) of I' has the
same dimension as P and hence is open in P. Since P is a digoint
union of helonomy bundles each of which is open, the connected-
ness .of. P impliesthat P = Ply,). ED.

COROLLARY 8.3 Any connected Lie group G can be realized as the
hplonomy group q[ea certain connection in a trivial bundle P = M x G,
where M is an arbitrary:differentiable manifold with dim M 2 2.

Theorem 8.2 was proved for linear connections by Hano and
Ozcki [1] and then in the genera case by Nomizu [5], both by
making use of Theorem 8.1. The above proof which is more
direct is due to E. Ruh (unpublished).
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9. Flat connections

Lee P = M x G be a trivid principal fibre bundle. For each
a ¢ G, the set M x {«} is a submanifold of P. In particular,
M X {e} is a subbundle of P, where ¢ is the identity of G. The
canonical flat connection in P is defined by taking the tangent space
to M X {af at u = (X, @ € M x G as the horizontal subspace a
u. In other words, a connection in Pis the canonical flat connection
if and only if it is reducible to a unique connection in M x {e}.
Let 6 be the canonical I|-form on G (cf. §4 of Chapter I). Let
f: M X G — G be the natura projection and set

o) = f*0.

It is easy to verify that w is the connection form of the canonical
flat connection in P. The Maurer-Cartan equation of 6§ implies
that the canonical flat connection has zero curvature:

‘do = d(f*0) =/f*(db) = f*(—3[6, 6])
= =4 /*6, f*0]= —}o, «].

A connection in any principal fibre bundle P(M; G) is called
flat if every point x of M has a neighborhood U ‘suckr that;the
induced connection in ‘P | U = =~X(U) is isomorphic with-1 the
canonical flat connection in & X G; More Precisely, here is an
isomorphism y: r}( ) = Uix G which- maps the horizontal
subspace a each y ¢ #~}(U)’ uporf “the ’honzohtal subspace a y(u)
of the canonical ﬂat connectlon inl xG;. ..

THoed 9.1 A connection in P(M, G) is ﬂat if and only zf the
curvatureform vanishes |dent|cally

Proof. The necessity is obvious. Assume that the curvatare
form vanishes identically. For each “point ¥ ‘of M, let U'b€ a
simply connected open neighborhood of x and consider theéinduced
‘connection in P | U = 7r-1(U). By Theorems'4.2’ and 8.1, the
holonomy group of the induced connection in PJ.&/ consists of
the ‘identity only. Applying the Reduttion The&em (Theorem
7. 1), we see that the induced connection in . P U is isomorphic
with the canonical flat connection in U/ X G,-. QED.

CoroLLARY  9.2. Let I’ be a connection »z"n.fP(M, G) such that the
curvature vanishes identically. |1f M is pararompact and simply connected,
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then P is isomorphic with the trivial bundle M x G and I' is isomorphic
with the canonical flat connection in M x G.

We shall study the case where .M is not necessarily simply
connected. Let I’ be a flat connection in P(M, G), where M is
connected and paracompact. Let u, ¢ P and M* = P(u,), the
holénomy bundle through u,; M* is a principa fibre bundle over

M whose structure, group is the holonomy group @(u,). Sirce
®(u,) is discrete by Theorems 4.2 and 8.1 and since AM* is con-
nected, M* is a covering space of M. Set x, = m(u,), %, € M.
Every closed curve of M starting from x; defines, by means of the
parllei* displacement along. it, an element of ®(u,). Since the
restricted holonomy group s trivial® by Theorems 4.2 and 8.1, any
two closed curyes at x, representl ng * ‘e same element of the first
homotopy.group 7y{M, x,) give rise, to the same element of ®(u,) .
Thus we obtain' a homomorphism of (M, x,) onto ®(u,). Let N
be a normal subgroup of ®(z,) and set M’ = M*/N. Then M’ is
a principa fibre bundle over M with structure group ®(u)/N.
In particular, M’ is a covering space of M. Let P'(M’, G) be the
principal fibre ' bundle induced from P(M, G) by the covering
projection ‘M’-~> ‘M.Letf: P' -» P be the natural homomorphism
(cf. Proposition’ 5.8 of Chapter I):

Prrosi Tian  9.3:  There exists a unique connection I in P’'(M’, G)
which is mapped into I’ by the homomorphism f: P’ -» P. The connection
I is flat. If ug is a point of P’ such that f (ug) = g, then the holonomy
group ®(ug) of [ with reference point %g is tsomorphically mapped onto
N f.

Proof. The' first statement ‘is ‘contained in Proposition 6.2, By
the same proposition, the cyrvature form of I' vanishes identically
and IV is flat, We recall that P’ is the subset of M’ x P defined as
follows (cf Preposmon 5.8 of Chapter 1) ¢

% \ 4 (.

*P‘ (—* { % u) € M' X Py p(x') = ”(“)}’

wherc T M’ = M xsnthe cavcrmg pl’OjeCtIOI’] The projection
a'i P - M’ ‘is givenitby #'(x', u) = X’ and the homomorphism
S PP - P is given by f(x’, u) = u so that the corresponding
homomorphism f:-G <+ G of-the structure groups is the identity
automorphism. To prove. that f maps @®(ug) isomorphicaly dnto
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N, il is thercfore suflicient to prove ®(uy) = N. Write
wy = (x4, uy) € P < M’ x P.
Since p{x)) = m(u,), there exists an element a ¢ ®(y,) such that
xy = v(uga),

where »: M* = P(uy) - M’ = P(u,)/N1is the covering projection.
Let 7 = u, 0 ¢ 1, be a horizontal curve in P’ such that
7' (u}) == '(uy). For cach ¢, we set

u = (v, u)eP <M x P

Then the curve u, O . ¢ < 1, is horizontal in P and hence is
contained in }[* = P(u,). Since u(x}) = =(u) = p o v(u) and
xy - = v(uea), we have x = r{uq) for 0 2 ¢ <7 1. We have

v(uga) = xy = 7' () = ='(ug) = x;, = v(upa)

and, consequently,

v(uy) = (),

which means that u; = ub for some b ¢ N. This shows that
®(uy) < N, Converscly, let 6 bc any element of N. Let u,, 0 <t <
1, bc a horizontal curve in P such that u, = u,b. Define a horizontal
curve u;, 0 <t 1,in P* by

u'l = (X;, ul);

‘vhere % = »(u,a). Then u) = ugh, showing that 6 ¢ ®(ug). QED.

10. Local and infinitesimal holonomy groups

Let I' be a connection in a principa fibre bundle P(M, G),
where A is connected and paracompact. For every connected
open subset I/ of M, let I';- be the connection in P | U = »=¥{U)
induced from T. For each u « #~1(U), we denote by ®°(u, U) and
P(u, U) the restricted-holonomy group with reference point u and
the holonomy bundle through # of the connection I';;, respectively.
P(u, U) consists of points v of z=1( /) which can be joined to u by
a horizonta curve in #~1(U).

The local holonomy greup ®*(u) with reference point % of I' is
defined to ‘be the intersection (Y&, U), where U runs through
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al connected open neighborhoods of the point x = a(u). If {{7,]
is a sequence ‘of connected open neighborhoods of x such that

U, > U,y and N U, = {x}, then we have obviously ®u, {'}) 2
k=1

%, U,) >+ D @, U) > ... Since, for every open
neighborhood U of «x, there exists an integer k such that [/, < U,

we have ®*(u) =,;Fﬂ ®°(u, U,). Since each group @°(u, U,) is a

connected Lie subgroup of G (Theorem 4.2) it follows that
dim @%u, U,) is constant for sufficiently large k and hence that
O*(u) = ®°u, U,) for such k. The following proposition is now
obvious.

PrercsiTian 10.1.  The local holonomy groups fave the following
properties

(1) ®*(u)is a connected Lie subgroup of G which is contained in the
restricted holonomy group ®°(x) ;

(2) Every point x = m(u) has a connected open neighborhood U such that
O*(u) = ®%u, V) for ay connected open neighborhood V of x contained
in U;

(3) If U is such a neighborhood of x = (u), then ®*(u) 2 O*(v)
for every v ¢ P(u, U) ;

(4) For every a ¢ G, we have O*(ua) = ad (a7?) (®*(u)) ;

(5) For every integer m, the set {n(u) ¢ Af; dim ®*(u) = m} is
open.

Asto (5), we remark that dim ®*(x) is constant on each fibre of
P by (4) and thus can be considered as an integer valied function
on M. Then (5) means that this integer valued function is upper
semicontinuous.

Tueorem 10.2. Let g(u) and g*(u) be the Lie algebras of 0 (u)
and Q*(u) respectively. Then ®O(xu) is generated by all O* (1), v € P(U),
and g(u) isyspanned by all g*(v), v e P(u).

Proof. If v e P(u), then @) = OO(z) > D*(y) and gu) =
g(v) = g*(v). By Theorem 8.1, g(u) is spanned by all elements of
the form Q,(X*, Y*) where v € P(u) and X* and Y* arc horizontal.
vectors at v. Since Q,(X*, Y*) is contained in the Lie agebra of
(v, V) for every connected open neighborhood |7 of =(z), it is
contained in g*(v). Consequently,* g(u) is spanned by al g*(v)

-
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where v ¢ P(u). The first assertion n0w follows-

from the following
lemma.

LEmMva.  If the Lie algebra g of a connected Lie group G is generated
by a family of subspaces {m,}, then every element-of G can be written as a
product exp X, - exp X, . . -+ &XP X,, where each X, is contained
in some ;.

Proof of Lemma. Theset’ H of all elements of G of the above
form is clearly a subgroup which is arcwise, connected ; indeed,
every element of H can be joined to the identity by a differentiable
curve which lies in H, By the theorem of Freudenthal-Kuranishi-
Yamabe (proved in Appendix 4), H is a connected Lie subgroup

of G. Its Lie algebra contains al m; and thus coincides WiE}E%
Hence, H = G. '

Trecrem 10.3. If dim ®¥(u) is constant on P, then ®%(u) =
@* (u) for every y in P.

Prooe. By (3) of Proposition 10.1, x = =(u) has an open
neighborhood U such that ®*(u) > ®*(v) for each v 1 P(u, U).
Since dim ®*(u) = dim ®*(z), we have ®*(x) = ¢*(v). Bv the.
standard continuation argument, we see thaty if v ¢ P(u),
O*(u) = ®*(v). By Theorem 10.2, we have ®%{x) = @6[(:13.

We now define the infinitesmal holonomy group at each point
u of.P by means of the curvature form and study its relationship
to the'local holonomy group. We first define a series of subspaces
m,(u) of ¢ by induction on k. Let my(x) be the subspace of g
spanned by all elements of the form Q,(X, Y), where X and Y are

horizontal vectors at u. We consider a g-valued function f on P of
the form

(L) = Ve Vi(Q4, 7)),

“

where X, Y, V,, ..., V, ae abitrary horizontal vector fields on

P. Let m,(u) be the subspace of g spanned by m;_;{#) andby
thé values at u of all functions f of the form (I;). We then set g (u)
to be the union of al m,(u), k=01, 2, . ...

Prercsi Ton 10.4.  The subspace g’(u) of g is a subalgebra of g* (u)

The connected Lie subgroup @'(x) of G generated by g’(u) 15
called the infinitesimal holonomy group at u.
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Proof. We show that m,(U) = g#(45 by induction on k. The
case k = 0 is obvious. Assume tha% m,_,(u) < g*(u) for every
point u. It is sufficient to show that, for every horizontal vector
fild X and for every function f of the form (/,_,), we have
X.f € g*(u). Let y,, |f| < ¢ for some ¢ > O, be the integral curve

of X with u, == u. Since U, ’is‘ horizontal, we have q*(u,) < g*(u)
by (3) of Proposition 10.1. Therefore, f (1) € My {1;) < g*(u,) <

g*(u). On the other hand, X, f = lim —lt- [f(u) — f(u)] so that
. ;! Ty {0
X./fis in g*(u)..Consequently, g'(u) is contained in g* ()

To prove that g'(«) is a subalgebra of g, we need the following
two lemmas.

L EMMA

1: Let-f be a g-valued function of type ad (; on P. Then
(1) For any vector field X on P, we have v(X),, - f = —[w,(X), f (4)],
where v (X} dénotes ttie vertical component of X.

(2) For any horizontal vector fields X and Y on P. we fgpe

Z”([X: Y]u) 'fZQ[Qu(‘YJY)’f(u)]'

(3) If X and Y are vector fields on P which are invariant by af] R,,
a ¢ G, then Q(X, Y) and Xf are functions of #ip¢ ad G.
hProof of Lemma 1. (1) Let 4= w,(X)e¢gand a = exp 4.
Then

e 1
o &), f=4%f= ]'l:i(r]l;[f(“at) -t ()]

- lim% lad (a7Y)( fTw) -F(W)]

t—0
= =4,/ W] = —lwX),f @]
(2) By virtue of the structure equation (Theorem 5.2), we have
2Q,(X,Y) = 2(dw) (X, 1)

= X, (o(Y)) - Y (o(X)) - o, ([X, ¥])
= —wu([X’ YD

Replacing X by [X, Y] in (1), we obtain (2).

(3) Since Q is of type ad G (cf. $5 of Chapter I), we have

QO (RAX, R.Y) = ad (o) (Q,(4, 7)),
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which shows that Q(X, Y) isof typead G, if X = R X and Y =
R,Y. We have aso

(X Vua = Xuaf = (RX)f = X,(f o R,)
= ad (@)(X.f) = ad (&) (Xf)w

iff is of type ad G and X is invariant by R,. This completes the
proof of Lemma 1.

Let X; = 9/0x', where #1, . . ., *" isaloca coordinate system. in
a neighborhood UJ of x = w(u). Let X* be the horizonta lift of X,
Consider a g-valued function f of the form

(1) f=X5 - XAQXE XE)),
where i, 1, jy, . . .. Jx € taken freely from1, ..., n.

Lemm 2. * For each, k, m,(u) is spanned by m,_,(u) and &y the
values at u of // functions f of the form (I1,).

Proof of Lemma 2. The proof is by induction on k. The case
k = 0 is obvious. Every horizontal vector field in ==*(U) is a linear
combination of X¥, . . ., &% with real valued functions as
coefficients. It follows that every function f of the form (I,) is a
linear combination of functions of the form (I1,), 5 £ &, with
real valued functions as coefficients, in a neighborhood of u. It is
now clear that, if the assertion holds for & — 1, it holds for 4.

We now prove that g'(u) is a subalgebra of g by establishing the
relation [m,(u), m,(U)] € m,.q(u) for &l pairs of integers £ and
s. In view of Lemma -2, it is sufficient to prove that, for every func-
tion f of the form (I,) and every function g of the form (Il,), the
function [f ¢](u) = [f(U), g(u)] is a linear combination of
functions of the form (I,), r £ k + s + 2, with real valued func-
tions as coefficients. The proof is by induction on s.

Let s =0and let f(u) = Q,(X, Y), where Xand Y are Hori-
zontal vector fields.. Since g is of type ad G, we have, by (2) of
Lemma 1,

AQ (X, 1), g = (X, Y]),

On the other hand, we have
U([X, Y])'u . g = [X) Y]u g h([X’ Y:])u . 8
= X, (Yg) - Y.(Xg) - K([X, Y]). . ¢

I, THECRY CF QOONNECTI ONS 99

where A[X, Y] denotes the horizontal component of [X, Y]. The
functions X( Yg) and ¥(Xg) are of the form (,,,) and the function

k( [X, Y])g is of the form (I,,). This proves our assertion for s = 0

and for an arbitrary k.

Suppose now that our assertion holds for s = 1 and every ¢,
Every function of the form (Z,) can be written as Xf, where f is a
function of the form (Z,_;) and X is a horizonta vector field. Let
g be an arbitrary function of the form (ZI). Then

[(X.f, gw)] = XA[f, &) =[S (u), X.g].

The function [ f; Xq] is a linear, combination of functions of the
form (1), r £ k + s + 1, by the inductive assumption. The
function X[ f, d] is a linear combination of functions of the form
(L), r=s+k +2 also by the inductive #ssumption. Thus, the
fyfiction [X7, g] is a lingar combination of funcﬁons af the form

), r<s+k +\2 . \ QED.
ProposiTion 10.5. The infinitesimal holonomy groups have the
following properties : \

(1) ®'(u) is a connected Lie subgroup Of the local -holonomy group
O*(u);

@) 9/ = 0 ({0 (w) 0 glan) < @ (001510

(3) For each:integer m, the set {m(u) ¢ M; dim @'(u) = m} is open;

(4] 1f @'(u) = ®*(u) at a point u, then there exists a connected open
neighborhood U of x = m(u) such that ®'(v) = O*(v) = ®'(4) =
®* (u) for every v e P(u,U).

Proof. (1) is evident from Proposition 10.4. (2) follows from

Lemw’ 1. For each k, we have m,(ua)= ad (a=) (m,(u)); .

Proof of Lemma 1. The proof is by induction on k. The case
k = 0 is a consequence of the fact that Q is of type ad ;. Suppose
the assertion holds for k -~ 1. By (3) of Lemma 1 for Proposition
10.4, every function of the form (/1) is of type ad G. Our lemma
now follows from Lemma 2 for Proposition 10.4.

(2) means that ¢’(x) can be considered as a function on M. (3)’
is a consegquence of the fact that, if the values of a finite number
of functions of the form (/) are linearly independent at a point y,
then they are linearly independent at every point of a nelgthr-
heod of u. Note that (3) means that dim ®’(x), considered as a
function on A4, is lower semicontinuous. To preve (4), assume
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O'(4) = O*(u) a a point u. Since dim @'(x) is lower semicon-
tinuous and dim ®*(u) is upper semicontinuous [cf. (5) of
Proposition 10.11, the point x = =(u) nas @ neighborhood [/ such
that

dm @'(v) = dim @'(x) and dim'@*(v) = dim O*(y)
for v e m1(U)).
On the other hand, ®*(z) > ®'(3) for every v ¢ ~1( U}. Hence,
dim ®*(1) = dim O'(z) = dim ©*() = dim &'()

and, consequently, ®*(v) = ®’(z) for every ¢ ¢ = 1(U). Applying
Theorem 10.3 to P | U/, we see that ®°(u, U) = &*(u) and
Dy, U) = &*(z). If v € Plu, U), then ®%u, U) = 0z, I’) so
that ®*(u) = ©*(v). o QED.

TueoreM 10.6. If dim &'(z) /s constant in a neighborhood of « in P,
then @ (1) = ©*(u).

Proof. We first prove the existence of an open neighborhood
U of x = #(u) such that g"Gu) = q'(v) for every v ¢ P(u, U). Let
fv o+ -, f, be afinite number of {un«:uons of the form (I1,) such
that f(u),. .., J{u) form a basis of g'(u}. At every point v of a
small neighborhood of u, f,(z), . . ., f,( v) @c linearly independent
and, by the assumption, they form a basis of §'(z).Since f3,. . ., f,
are of type ad G’ fl(pa>, . ,fl(l‘d) form a basis of g’(va) =
ad (@) (g'(v)). This means that there exists a neighborhood U of
x = =(u) such that f,(v), . . ., f,(¢v) form a basis of g'(u) for every
point » ¢ #~1(U). Now, let v be an arbitrary point of P(u, U) and
let u,, 0 = ¢t < 1, be a horizonta curve from u to v in ==}(U) so
that U = », and V = ;. We may assume that #, is differentiable;
the case where u, is piecewise differentiable follows easily. Set
g:(t) = f(u), =1, ., &, and X = u,. Since X is horizontal,

we have |
(deldt) = (Xf) (u) eq’(ur), 1 =100,
Since g,(2), . . ., g (f)forma baS'SforQ (u,), dg,/dt can be expressed
by
(dg/dt), = vq 1 ( )g ( ),

where A4,,(t) are continuous functlons of t By the lemma for
Proposition 3.1, there exists a unique curve (a;;(t));;-1, . . .5 in
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GL(s; R) such that
dagldt = X3y Ay énd a;;(0) = 6,

(Note that (4,(t)) € gl(s; R) corresponds to Y, ¢ T,(G) in the
lemma for Proposition 3.1.) Let (4,,(¢)) be the inverse matrix of

(a:5(t)) so that db;ldt = =T _; by
Then

d db,; dg
dt( ' =1 bug) Ej=1( it )g, + Zio 1bu.(dtk)

db
=3 ( Pyt 3. bikAk,-)g,- —o.
Since b,;(0) = §;;, we have
Zj bi(0)g5(8) = 9,0).

This means that g'(,) = g¢'()and, in particular, g'(y) = g'(u).
Taking UV sufficiently small, we may assume that

g*(u) D g*(v) D ¢'(v) @ my(v)  for every v e P(u, U).

By Theorem 8.1, the Lie agebra of ®°(x, U) is spanned by all
my(v), v ¢ P(u, U). A fortiori, g*(u) is spanned by all g (u),
Vv ¢ P(u, U). Since--g’'(v) = g'(u) for every v ¢ P(u, U) as we have
just shown, we may conclude that g*(u) = g'(u) and &*(u) =
D' (u). QED.

CoroLLARY  10.7. If dim @'(4) is constant on P, then ®°(u) =
O*(u) = O'(u).
Proof. This follows from Theorems 10.3 and 10.6. QED.

Trecrem 10.8. For a real analytic connection in a real analytic
principal jibre bundle P, we have @®%(u)= ®*(u) = @'(u) for every
uelP.

Proof. We may assume that P = P(u) and, in particular, P
is connected. It suffices to show that dim @’(y) is localy constant;
it then follows that dim ®’(u) is constant on P and, by Corollary
10.§/ that ®O(u) = ®*(u) = ®'(u) for every u ¢ P. Let &1, . . ., x"
be a red analytic local coordinate system with origin ¥ = n(u).
Let U be a coordinate neighborhood of x given by X, (x)2 < a?
for some a > 0. We want to show that dim @’(x) is constant on

HU). Let X, = 9/0x* and let X} be the horizontal lift of X
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For any set of numbers (a, . . ., a") with X; (a*)? = 1, consider
the vector field X = %, a‘X; on U. Let x, be the ray given by
xi(t) = a't and let y, be the horizontal lift of x, such that y = u,
We prove that g’(u) = g'(#,) for every t with |t < a

Consider al the functions f of the form (I1,), £ = O,

f =Xz xp0x3 x1)

defined on #~1(U). We set h(t) = f (4,). Then the functions h(t)
are analytic functions oft. For each f, with |} < a, there exists
d > 0 such that al the functions h(t) can be expanded in a common
neighborhood |t — £,| < 4 in the Taylor series:

1
M) = ey o (0= 1) "B ()

1
h(to) = Zeo oy (fo = ()"H(E).

If X* is the horizontal lift of X, then we can write h'(t) = X3 f,
h”(t)=X%(X*f) and so on. The fact that there exists such a
¢ common to al h(t) follows from the lemma we prove below.
Now, if |t — %l < 8, then dl A™(t) belong to g'(,). The first
power series shows that g'(u,) is contained in g'(x,). Similarly,
the second power series shows that g'(x, ) is contained in ¢'(u,).
This means that g'(u,) = g'(u,) for |t — &] < 4. The standard
continuation argument shows that g'(x,) = g'(u) for every ¢ with
|t] < a proving our theorem.

Lemva. In a real analytic manifold, let x, be the integral curve of a
real analytic vector field X such that x, = x, where X, # 0. For any real
“analytic function g and for. a jinite number of real analytic vector fields

Xy, v vy X, consider all the functions of the form

f )= Xy X8 (%)
Rty = 1 (x);

where 7y, . .., jaretaken freelyfrom 1, 2, ..., s. Then there exists
6 > 0 such that the functions h(t) can be expanded into power series in a

m

t
_common neighborhood |¢| < & asfollows: h(t) = Z’O:=°n7 ht™(0).
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Proof. Since X, #'0, we may take a local coordinate system
#,...,%" such that X = gfgxt and x, = ¢ O, ..., 0) ina
neighborhood of x. The preceding expansions of h(t) are nothing
but the expansions of f (x) into power series of #!, Each X; is of
the form X, = Z, f;,+ 9/dxl. Since f and f;; are al red analytic,
they can be expanded into power series of (!, . . ., x") ina
common neighborhood |xi] < ¢ for some a > 0. Our lemma then
follows from the fact that if f; and f; are real anaytic functions
whick can be expanded into power series of x*, . . ., x"ina
neighborhood [x'| < g, then the functions f;f, and df,/dx’ can be
expanded into power series in the same neighborhood. QED.

The results in this section are due to Ozeki [1].

11. Invariant connections

Before we treat general invariant connections, we present an
important special case.

Treorem 11.1.  Let G be a connected ‘Lie group and H a closed sub-
group. of G. Let g and } be the Lie algebras of G and H respectively.

(1) If there exists a subspace m of g such that g =} + m (direct sum)
and ad (H) m = m, then the h-component w of the canonical I-form §
of G (¢f. §4 of Chapter I) with respect to the decomposition g = § 4 m
défines a connection in the bundle G(G/H, H) which is invariant by the left
translations of G;

(2) Conversely, any connection in G(G/H, H) invariant by the left
translations of G (¢f i¢ exists) determines such a decomposition g = h+4+ m
and is obtainable in the manner described in (1);

(3) The curvature form Q of the invariant connection defined by @ in ( 1)
is given by ]

QX, )= —3[X, Y] (b-component of —%[X, Y] ¢ g),
where X and Y are arbitrary left invariant vector fields on G belonging to
m;

(4) Letg(e) be the Lic algebra of the holonomy group ®(e) with
reference point e (identity element) of the invariant connection defined in ( 1).
Then g(e) is spanned by all elements of the form [ X, Y];, X,Y ¢ m.

Proof. (1) The proof is straightforward and is similar to that of
Proposition 6.4. Under the identification g a T.G), the sub-
space m corresponds to the horizontal subspace a €.
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(2) Let @ be a connection form on G(G/H, H) invariant by the
left translations of G. Let m be the set of left invariant vector fields
on G such that o(X) = 0. It is easy to verify thatg =§ + m is
a desired decomposition.
~ (3) A left invariant vector field is horizontal if and only if it is
an gement of m. Now, (3) follows from Corollary 5.3.

(4) ‘Let g, be the subspace of g spanned by the set {Q,(X, Y) ;
X, YE m}. Let g, be the subspace of g spanned by the set
{Q,X,7); X,Y em and u ¢ G}. By Theorem 8.1, we have
g; < g(e) < g,. On the other hand, we have g, = g,asQ,(&X, Y) =
Q,(X, Y) for any X, YEm and u ¢ G. Now, (4) follows from (3).

QED.

Remark. (1) can be considered as a particular case of Proposi-
tion 64. Let P = (G/H) x G be the trivid bundle over G/H with
group G. We imbed the bundle G(G/H, H) into P by the mapping
f defined by

f(u) = (W(u)’ u)’ ue_G; ’
where 7. G — G/H is the natural proje’étion. Let @ be the form
defining the canonical flat connection (cf. §9) of P. Its h-com-
ponent, restricted to the subbundle G(G/H, H), defines a connec-
tion (Proposition 6.4) and agrees with the form @ in (1).

Going back to the general case, we first prove the following
proposition which is basic in many applications.

ProrosiTion  11.2.  Let g, be a I-parameter group of automorphisms
of a principal fibre bundle P(M, G) and X the vector field on P induced by
@,. Let T' be a connection in P invariant by ¢,. For an arbitrary point &,
of P, we define curves u,, x,, v, and a, as follows:

U = (pt(uo): X = ”(ut):
v, = the horizontal lift of x, such that z,= u,,
u, = 0,4,

Then a, is the |-parameter subgroup of G generated by 4 = @, (X),
where @ is the connection form of T',
Proof. As in the proof of Proposition 3.1, we have

w(u,) = (ad (at_l))a)(z),) + ,at-ldt- .

Since g, is horizontal, we have w(i,) = 4;%d,. On the other hand,

—
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we have 4, = ¢(X, ) and hence w(i,) = w(X, )= A, since
the connection form g is invariantby ¢, Thus we obtain ¢, 4, =
A. QED.

Let K be a Lie greup acting on a principal fibre bundle
P(M, G) as a group of automorphisms. Let #, be an arbitrary
point of P which we choose as a reference point. Every element of
K induces a transformation of \/ in a natural manner. The set J
of al elements of K which fix the point x, = 7(u,) of M forms a
closed subgroup of K, called the isotropy subgroup of K at x, We
define a homomorphism 4:J — G as follows. For each j ¢ J,
Juy is a point in the same fibre as #, and .hence is of the form
Jity = uga with some a ¢ G. We define 2(;) = q. If j, j ¢ J, then

u2(77°) = (1) )ue = jugh(J)) = (Juo) 2(}')

= (wiUNA) = w22
Hence, A(sj") = A(j}A(J'), which shows that Z: J —» G is a homo-
morphism. It is also easy to check that / is differentiable. The
induced Lie algebra homomorphism j — g will be also denoted by

the same 2. Note that } depends on the choice of u,; the reference
point u is chosen once for all and is fixed throughout this section.

Proposi Tion  11.3.  Let K be a group of automorphisms of P(.1/, G)
and. " a ‘connection in P invariant by K. [¥¢ define a linear mapping

Art—gby AX) =0, (8), Xet,
where X is the vector field on P induced 4y X. Then
(1) A(X) = A(X)  for Xej;
(2 Aad (N(X)) = ad (n()) (A(X)) forjedand X «f,

where ad (j) is the adjoint representation of Jin tand ad (i.(j)) is that
of Gin g.

Note that the geometric meaning of A (X"} is given by Proposition
11.2.

Proof. (1) We apply Proposition 11.2 to the |-parameter -
subgroup ¢, of K generated by X. If Xe j, then the curve x, =
7(¢,(4y)) reduces to a single point x, = 7(u,). Hence we have
¢, (uy) = upi(p,). Comparing the tangent vectors of the orbits
@, () and upi(q,) at uy, we obtain A(X) = 2(X).
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(2 Let X o fandj e J. Weset Y = ad (j)(X). Then Ygenerates
the I-parameter subgroup je, ;- which maps u, into J0: T Huo) =

Jeeud(5Y) = j(Rygaypaig). It follows that ¥, = (R X,.)-

Since the connection form e is invariant by j, we have
wuo( Y) = wuo(j(Rl(j“)Xuo) ) = wj"uo(Rl(j‘l)Xuo)
= ad (4(j))(@,,(&£.,) = ad (A(/))(A(X)).
QED.

Prercsiian 11.4. With the notation of Proposition 11.3, the
curvature form Q of T satisfies the following condition:

20,,(X, T) = [A(X), AY)] = A([X, Y])  for X,Y ¢t

Proof. From the structure equation (Theorem 5.2) and
Proposition 3.11 of Chapter |, we obtain

20(X, ) = 2o(X, ¥) + [0(X), (7]

= R((F)) - Pw(X)) - o([X, 7)) + [0(X), o(D)].

Since o is invariant by K, we have by (c) of Proposition 3.2 of
Chapter | (cf. aso Proposition 3.5 of Chapter 1)

X(o(D) - (X, T]) = (Lyw)(¥) = 0,
F((X)) - o((T, X)) = (Lyw)(X) = 0.

On the other hand, X — X being a Lie agebra homomorphism,

we have
wu,,([X, 7]) = A(LX, YD)

Thus we obtain

20,.(X, 7) = [0,(%), 0,y ()] — A(LX, Y))
= [A(X), A(Y)] = A(X, T]).
QED.

We say that K acts fibre-transitively on P if, for any two fibres of P,
there is an element of K which maps one fibre into the other,
that is, if the action of K on the base M is transitive. If J is the
isotropy subgroup of K at x, = () as above, then M.is the
homogeneous space K| J.

The following result is due to Wang [1].

Tiecrew 11.5. If a connected Lie group K is a fibre-transitive auto-
morphism group of a bundle P( M, G) and if J is the isotropy subgroup of
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K at %o = m(ty), then thereis @ 1 : 1 correspondence between the set of K-
invariant connections in P and the set of linear mappings A: § — g

which satisfies ke two conditions in Proposition 11.3; the correspondence
is given by
AX) = wuo(X) for Xef,

where X is the vector field on P induced by &.

Proof. In view of Proposition 11.3, it is sufficient to show that,
for every A: t — g satisfying (1) and (2) of Proposition 11.3,
there is a K-invariant connection form w on P such that A(X) =

o, (X) for Xet Let X* ¢ T,(P). Since K is fibre-transitive, we
can write

ug = kua =k o Ru
k o RX*= X, + A4

g3

where k ¢ K, a ¢ G, Xe k and A* is the fundamental vector field
corresponding to A e g. We then set

o(X¥) = ad (@) (AX) + A),

We first prove that- o( X*) is independent of the choice of X and
A. Let

X, +Ar =T, + B, where Yet and Beg,

so that X, - ¥, = B* — A%. From the definition of 4:i — g,
it follows that A(X — Y3 = B -- A. By condition (1) of Proposi-
tion 11.3, we have A(X — Y) = A(X - Y) = AX) — A(Y).
Hence, A(X) + A = A(Y) + B.

We next prove that w(X*) is independent of the choice of k
and a. Let

Ug = kua = klual (klfK an d alEG)’

SO that kk—'uy = uga;'a and kik~' ¢ ). We set j = k k-1 Then
A{j) = ‘a7 'a. We have

kl 0 ROIX* )=Jk s RBA(]“‘)X*
= jo Rygoylk o RX*) = j o Ry(X,, + A2).
By Proposition 1.7 of Chapter |, we have
Jo Ryn(X,) = JEugin) = Z, where Z = ad ()(X),
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By Proposition 5.1 of Chapter I, we have
] R’(J‘l)(Auu) = Ri.(j ‘)(]4:) R,{(} 1y 7:10 = R/(j“”l)Auol(]) C*°>
where € = ad (2(;))(). Hence we have

ad (a,)(A(Z) + C) - ( )( ( (J(X)) +ad (A(j))4)
ad (al [ad (AN(AX ) + A)]

=ad (a) (AX) + A).
This proves our assertion that «(X*) depends only on X*,

We now prove that @ is a connection form. Let X* ¢ T, (P) and
= kua as above. Let 5 be an arbitrary element of G. We set

Y* = RX* T, (P), wherev = ub,
so that u, = kub(b='a) = ku(b~'a). We then have
Koo Ry, 8=k o R RX* =k o RX*= (X, 4 4%)
and hence
(R X¥) = o(Y*)= ad (ba)(A(X) + Aj = ad (b)) (w(X*)),

which shows that « satisfies condition (b’) of Proposition 1.1.
Now, let A be any element of g and let u; = kua. Then

ke R(4¥)= R, o k(4%)= R,(Az)= Bf, where B=ad(a™) (A).

Hence we have
w(4}¥) = ad (@(B) = A,

which shows that  satisfies condition (a) of Prdposition 1.1.

To prove that o is differentiable, let », be an arbitrary point of
P and let 4, = kyu,a,. Consider the fihie bundle K(M, J), where
M = K/J. Let ¢: U.— K be alocal cross section of this bundle
defined in a neighborhood U/ of #(x,) such that o(m(u,)) = k. For
each u ¢ 7~1(U), we define k ¢ K and ae (G by

k = o(n(u)) and g, = kua.

Then both k and a depend differentiably on u. We decompose the
vector space t into a direct sum of subspaces: f =+ m. For .an
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arbitrary X* o T,(P), we set
koR(X*) =X, + 4%, where X e .

Then both X and A are uniquely determined and depend dif-
ferentiably on X*. Thus o(X*) = ad (a)(A(X) + A) depends
differentiably on X*.

Finally, we prove that o is invariant by K. Let X* ¢ T,(P) and
#, = kup. Let £, be an arbitrary element of K. Then k. X* ¢ T, . (P)
and u, = kki'(kyu)a. Hence,

KkT' o R (K, X*) = k o R(X*).

From the construction of ®, we see immediately that w(k;X TE)
(X*) QED.
In the case where K is fibre-transitive on P, the curvature form
Q, which is a tensoria form of type ad G (cf. $5) and is invariant
by K, is completely determined by the vaues €, (X Y), XY ¢t
Proposition 11.4 expresses Q, ()? ¥) in terms of A. As, a con-
sequence of Proposition 11.4 and Theorem 11.5, we obtain

CoroLLARY 11.6.  The K-invariant connection in P defined by A is
flat if and only if A: t — g is a Lie algebra homomorphism.

Proof. A connection is flat if and only if its curvature form
vanishes identically (Theorem 9.1). QED.

Trecrem  11.7.  Assume gz Theorem 11.5 that f admits a subspace
m such that ¥ = j 4+ m (direct sum) and ad (J)(m) = m, where
ad\(J) is the adjoint representation of J in f. Then

(1) Thereisa 1 : 1 correspondence between the set ¢f K-invariant
connectigns in P and the Set of linear mappings A,,,: m = ¢ such that

An(ad (X)) = ad (A())(An(X))  forXem and je);
the correspondence is givem via Theorem 115 by
AX) if Xei,
T RL(X) if Xem.

(2) The curvature form Q of the K-invariant connection dejined by A,
satisfies the following  condition

20,,(%, 7) = [AX), Au(1)] = AL(LX, Y]a) - lgg{,XY]iI), -
’ €
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where [X, Y], (resp. [X, Y];) denotes the m-component (resp. j-com-
ponent) of JX, Y] e f.

Proof. Let A:f - g be alinear mapping satisfying ( 1) and (2)
of Proposition 11.3. Let A, be the restriction of A to m. It is easy
to seethat A — A, gives a desired correspondence. The statement
(2) is a consequence of Proposition 11.4. QED.

In Theorem 11.7, the K-invariant connection in P defined by
A, = 0 is cdled the canonical connection {with respect to the
decomposition ¥ = j + m).

Remark. (1) and (3) of Theorem 11.1 follow from Theorem
11.7 if we set P(M, G) = G(G[H, H) and K = G; the invariant
connection in Theorem 11.1 is the canonical connection just
defined.

Finaly, we determine the Lie algebra of the holonomy group
of a K-invariant connection.

Teorem  11.8. With fhe same assumptions and notation as in
Theorem 11.5, the Lie algebra g(u,) Of the holonomy group @(u,) of
the K-invariant connection defined by A: ¥ — g is given by

my + [A(R), mo] + [A(Y), [A(t), mo]] + . -,
where Ty is the subspace Of ¢ spanned by
{[AX), A(T)] - A([X, 1]); X, Ve ).

Proof. Since K is fibre-transitive on P, the restricted holonomy
group ®(x,) coincides with the infinitesima holonomy group
@’(u,) by virtue of Corollary 10.7. We define a series of sub-
spaces m,, k=0, 1, 2, ..., of g asfollows:

m1 = mo + [A(f)s mo]: »
my = my + [A(f), mol + [A(Ef, [A(D), m,)]

and so on. We defined in §10 an increasing sequence of subspaces
m(uy), k=0,1,2,..., of g. Since.the union of these subspaces
m,(u,) is the Lie algebra g¢'(u,) of the infinitesma holonomy
group P'(uy), it is sufficient to prove that m, = wy(u,) for
k=0,1,2,....

By Proposition 11.4, the subspace m, is spanned by {Q, (X, ) ;
X, Y ¢ f}. Since Q, (X, ¥) = Q,(hX, ¥), where 4X and k¥
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denote the hdrizontal components of X and ¥ respectively, m,
coincides with m(u,).
We need the following lemmas.

Lemva 1. If Y is a horizontal vector field on P and 8 is the vector

field on P induced by an element X off, then [X, ¥]is horizontal.
Proof of Lemma 1. By (c) of Proposition 3.2 of Chapter |

(cf. also Proposition 3.5 of Chapter 1), we have
K((Y)) = (Lyo)(Y) + o([X, YD)
Since w(Y) =0 and Lgw =0, we have o([&, Y] = o.

LEMMA 2. Let V, W, Y, ..., Y, be arbitrary horizontal vector
fields on P and let X be the vector field on P induced by an element X of .
Then R (T, VQ, W))) € m,(up).

Proof of Lemma 2. We have

X (Y, Yy(Q(V, W)

= (¥,), (XY, Y(QV, W)  mod m,(u);
since [X, ¥,] is horizontal by Lemma 1 ‘and [X, V], ( ¥,., " "
Y(Q( ¥, W))) isin m,(4,). Repeating this process, we obtain

2 (T, TQ, W) |
= (Yr)u,,(yr—l o Y E(QV, W) mod m,(up).
By the same argument as in the proof of Lemma 1, we have
RQV, W) = (LiQ)(V, W)+ QUE V], w) + QU [(ZW]).
Since LgQ =0, we have
(Y uo(Yroy + e Y, X(Q(V, W)))
(Y)uy(Yrmn -+ Ya(Q(LE, VD, W)
+ (¥,) (Yo o QWS [, WD),

The two terms on the right hand side belong to m,(x,) as [X, ¥]
and [X, W] are horizontal by Lemma 1. This completes the
proof of Lemma 2.

Let X, = 9/0x', where x!, . . ., »" is a loca coordinate system
in a neighborhood of x, = m(u,). Lt X¥ be the horizonta lift of
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Xi- La
f=X5 0 XRQxy X))
be a function of the form (II,) as defined in §10. If AX and X

denote the horizontal and the vertical components of X respec-
tively, then Lemma 1 for Proposition 10.4 impIi&s

(hZ)uof = = 0B)f + Xif = [0, (X],S W)] + & f.
Since X, f € m,(,) by Lemma 2 and Smcc , (X) A(X), we
have

(hX),f =[A(X),f ()]  mod m, (%),

Assuming that m, = m,(4) for dl r < 5, we shall show that
m, = m,(u). Since K is fibre-transitive on P, every horizontal
vector at u, is of the form (lzX) for some Xc f. Hence, m(,) is
spanned by m,_,(x,) and the set of all (hX),, f, where X ¢ f and j
is a function of the form (ZI,_;). On the other hand, -m, is spanned
by m,_y = m,_, (uo) and by [A(D), ms J = [A(D), m,_, (“0] In
other words, m, is spanned by m,_; = m,_ 1 () and the set of all
[AX), T (u0)1, where X ¢ £ and f is a function of the form (II,_,).
Our assertion m, = m,(u,) follows from the congruence (£X), f=
[A(X), f (u9)] mod m,_y{ug). QED.

Remark. (4) of Theorem 11.1 is a corollary to Theorem 11.8
(cf. Remark made after the proof of Theorem 11.7).

ut
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CHAPTER 111

Linear and Affine Connections

. 1.” Connections'in a vector bundle

+ Let F be either,the real number field R or the complex number
field C, F™ the vector space of al m-tuples of elements of F and
GL(m; F) the group ofall m x m non-singular matrices with entries
from F. The group GL(m; F) acts on F* on ‘the left in anatural
manner; if a = (¢) ¢ GL(m; F) and §= (&,.. 5 &) ¢ F7,
then at = (£,4/8, ..., Z,a'¢) e F.

Let P(M, G) be-a principa fibre bundle and p a representation
of G into GL(m; F). Let E(M, F",.G, P) be the associated bundle
with standard fibre F™ on which G acts through p. We cal E a rea
or complex pector bundle over A according as F = R or F = C.
Each fibre 73'(x), x« M, of: E has the structure of a vector space
such that every 4 ¢ P with. #(x), = %, considered as a mapping of
K™ onto 7' (x), is a linear isomorphism of F" onto =z'(x). Let

-7y »19 be the set of cross sections ¢: M — E; it forms a vector space
H{G

‘over F (of infinite dimensions. if m = 1) with addition and scalar
muItlpllcamlon defined by

} M'{(q’ "k— W(x) = (p(x + W(x Py EVS: x"'M)
(29)(x) = Ag(x)), geS,2eF, " xel.

We mayalso édnéider N as a module over the algebra of F—Val ued
functions; if 1 is an F-valued function on A, then

(Ap)(x) = Ax) y(X),  @e€S, (e M.

Let " be a connectiondin P. We recall how TI' defined the notion
of paralel displacement of fibres of E in §7 of Chapter II. If
T=X,astghisacuvein M and +* = y, is a horizontal

113
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lift of = to P, then, for each’fixed ¢ « F™, the curve +' = u,£ is, by
definition, a horizontal lift of = to E,

Let ¢ be a section of E defined on 7 = x, SO that mg o ¢(x,) = %,
for all ¢ Let %, be the vector tangent to 7 at #,. Then, for -each
fixed t, the covariant derivative V, ¢ of ¢ in the direction of (or with
respect to) #, is defined by

Vi —hm ["" Mo(x,0) — @(x)],

where 4 nzl(x,,,) — wz'(x,) denotes the pardle displace-
ment of the fibre =3(x,,,) dong 7 from x,,, to x,. Thus, V,p €
nz'(x,) for every { and defines a cross section of E adong 7. The
cross section ¢ is parald, that is, the curve ¢(x,) in E is horizontal,

if and only if V, @ = 0 for al ¢. The following formulas are evident.

If ¢ and y are cross sectigns of E defined on 7 = x,, then

Vt,(‘l’ + y) = Vr,‘P + Vt,'l’-
If 2 is an F-vaued function defined on 7, then
Vi(2g) = Mx)  Vaog + (24) - olx).
The last formula follows immediately from

T;+h(;~(xt ) 9(x) = ;*(xtjuh) : 7':+_'h(¢’(xt+h))~
Let X ¢ T,(M) and ¢ a cross section of E defined in a neighbor-
hood of x. Then the covariant derivative V yg of g in the direction of X
is defined as follows. Let = x,, —e <t = ¢, be a curve such that
X = . Then set
Vyp = Vf(,‘P'

It is easy to see that V ¢ is independent of the choice of -, A
cross section ¢ of E defined on an open subset U of A4 is parallel
ifandonly if V. yep=0fordl X e T,(U),x eU.

ProrosiTion 1.1, Let X, Y € T,(M) and let ¢ and ¢ be cross sections
Of E defined in a neighborhood of x. Then

(1) Vxire = Vip + Vyp;

(2) Vx(p + v) = Vyp + Vyp;

(3) Vixp =1 Vyp,where 1 ¢ F;

(4) Vx(Ap) = A(x) . Vyp + (XA). ¢(x), where 4 5 an F-valued
function defined in a neighborhood of x.
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Proof. We proved (2) and (4). (3) is obvious. Finaly, (1) will
follow immediately from the following dternative definition of
covariant  differentiation.

Suppose that a cross section g of E is defined on an open subset
U of M. As in Example 5.2 of Chapter Il, we associate with ¢ an
Fm-valued function ¥ on #~1(U) as follows :

S@) = v p(n(v))), ven(U).
Given X e T,(M), let X* ¢ T,(P) be a horizontal lift of X. Sincef

is an Fm-valued function, X*fls an element of ¥ and u(X*f ) is
an lement of the fibre #z! (x) . We have

Lemva. Vyp = u(X*f

Proof o Lemma. Let 1= x, —¢ <tZ¢ bea curve such
that X = #,. Let 7* =u, be a horizontal lift of r such that
4, = u S0 that X* = 4,. Then we have

X8f = lim 2 L) -f (9] = Bim 7 (15 (p () = w-2(p(e)

and
u(X*f) = lim AGED Ho()) — @(x)].

h—0
In order to prove the lemma, it is sufficient to prove

7o(p(x)) = u 0wy ((x,).
Set £ = u;'(p(x,)). Then 4 is a horizontal curve in E. Since
w,¢ = ¢(x,), ¢(x,) is the element of E obtained, by the paralle
displacement of uy& = wue u;(p(x,)) aong = from x,to x,. This
implies 7h(p(x,)) = o uyYp(x,)), thus completing the proof of
the lemma
Now, (1) of Proposition 1.1 follows from the lemma and the
fact that, if X,¥ ¢ T,(M) and X*,Y* ¢ T,(P) are horizontal lifts of
X and Y respectively, then X* -+ Y* is a horizontal lift of X + Y.
QED.

If ¢ isa cross section of E defined on M and X is a vector hdd
on M, then the covariant derivative ¥ y¢ of ¢ in the direction of (or
with respect to) X is defined by

(Van)l) = V.
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Then, as an immediate consequence of Proposition 1.1, we have

Prerosi oy 1.2, Let X and Y be veclor fields on M, ¢-and v cross
sections of E on M and A an F-valuedfunction on M. Then
(1) Vxire = Vo + Vypy

(2) Vx(p+ )= Vxp + Vyp;

(3) Vixe = 1 Vyp;

(4, Vxlig) = 1-Vyp + (Xi)p.

Let X be a vector field on M and X* the horizonta lift of X to
P. Then covariant differentiation V5 corresponds to Lie differ-
entistion Ly, in the following sense. In Example 5.2 of Chapter
I, we saw that there is a 1 :1 correspondence between the set of
cross sections ¢: M — E and the set of F™-valued functionsfon P
such that f(ua) = a*( f(u)), a € G (a~! means p(a~?) ¢ GL (m; F)).
The-correspondence is given by f(u) = »(g(=(u))), u ¢ P. We
then have

Precsiian 1.3, If ¢: M ~» E is a cross section and f: P — F™
is the corresponding function, then X*f is the function corresponding to the
cross section Vo xo.

Proof. This is an immediate consequence of the lemma for
Proposition 1.1. ) , . , QED.

A fibre metric g in a vector bundle E is an assignment, to each
x ¢ M, of an inner product g, in the fibre 75*(x), which is differ-
entiable in x in the sense that, if ¢ and ¢ are differentiable cross
sections of E, then- g.(¢(x), w(x)) depends differentiably on x.
When E is a complex vecter bundle, the inner product is under-
stood to be hermitian:

gz(ED Ez) ='gz(32: E'l) for 51532 € WE‘l(x)'

Proposi Tion 1.4, If M is paracompact, every vector bundle E qver
M admits a jibre metric. o

Proof.  This follows from Theorem 5.7 of Chapter | just as the
existence of a Riemannian metric on a paracompact ‘manifold.
We shall give here another proof using a partition of unity. Let
{ U}ic1 be alocdlly finite open covering of M such that ='( U,)
is isomorphic with U; x F™ for each i. Let {s;} be a partition of
unity subordinate to {U;} (cf. Appendix 3). Let 4 be a fibre
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metric in E | U; = 7w5*( U}). Set g = I, s,k that is,
8(Ep By) = X; s,(n)ki(E,, By for E E,emp'(x), xeM.

Since7{U,-} is locally finite and 5; vanishes outside [/;, g is a well
defined fibre metric. QED.

Givén a fibre metric g in a vector bundle E(M, F™, G, P), we
construct a reduced Subbundle Q(M, H) of P(M, G) as follows.
In the standard fibre F»= of E, we consider the canonical inner
product ( , ) defined by

(& m=Z, &nifor &= (&..., &), n=(n..., 7") e R",
(&) =X, &7 foré=(&,, .., &p=(n ..., 4" eC".
Let @ ‘be the set of ue P such that g(u(&), u(n)) = (& n) for
&7 ¢« Fm, Then Q is a closed submanifold of P. It is ‘easy to verify
that Q is a reduced subbundle of P whose structure group H i3
given by

H ={a ¢ G; p(@) ¢ O(m)} if F =R,

H ={a ¢ G; p(a).e U(m)} if F = G,

)

where p is the representation of G in GL(m; F).

Given a fibre metric g in E, a connection in P is caled a metric
connection if the paralel displacement of fibres of E preserves the
fibre mefric g- More precisely, for every curve r = x, 0 €t <1,
of M, the parale displacement =;'(x,) — =z'(x,) dong 7 is
isometric.

Prrsimon 1.5, Let g be ..a fibre m&c in a vector bundle
E(M, F,-G, P) and Q(M, H) the reduced subbundle of P(M, G)
defined by g. A connection I' in P is reducible to a connection I'" in Q if and
only. ¢f I' is a metric connection.

Proof. Lett=1x,0 <t <1 beacurvein M. Let &5 ¢ F™
and uy e @ with m(uy) = x,. Let +* = u, be the horizonta lift of =
to P starting from 4, so that both ' = 4,(&) and " = u,(y) are
horizonta lifts of = to E. If T' is reducible to a connection 1” in @,
then #, ¢ Q for al ¢ Hence,

g(ue(8)us(m)) = (&, ) = g(u, (&), u,(n)),

proving that I’ is a metric connection. Conversely, if I" is a metric
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connection, then

&(u, (&), u(n)) = glug(§), uo(m)) = (&, m).

Hence, 4, € Q. This means that I' is reducible to a connection in
Q by Proposition 7.2 of Chapter II. QED.

Proposition 1.5, together with Theorem 2.1 of Chapter II,
implies that, given a fibre metric g in a vector bundle £ over a
paracompact mahifold K, there is a metric connection in P.

Let E(M F"' 6, P) be a vector bundle such that G =
GL(m; JF). L 1€ gl(m; F), Lie agebra of GL(m; F), be the
m X m matrlx ch that the entry at the i-th column and the
J-th row is 1 andl-other entries are al zero. Then {Ei;7, ;7 =1, ...,
m} form a basis ‘of the Lie agebra gl(m; F). Let » and Q be the
connection form and the curvature form of a connection I' in P.
Set

w= X 0E, Q=3 QF.

It is easy to verify that the structure equation of the connection
I" (cf. $5 of Chapter I1) Cafn be expressed by

il

dof = —T,0f A 0f + Q0,7 =1...,m

Let g be a fibre metric in ’E and Q the reduced subbundle of P
defined by g. If T is a metric connection, then the restriction of o

to Q defines a connection in Q by Proposition 6.1 of Chapter II .

and Proposition 1.5. In particular, both @ and Q, restricted’'to Q,
take their values in the Lie algebra o(m) or u(m) according as
F/= R or F = C. In other words, both (w!) and (£), restricted to
@, are skew-symmetric or skew-hermitian according as F = R or
F = C‘r

2. Linear connections

Throughout this section, we shall denote the bundle of linear
frames L(M) by P and the genera linear group GL( n; R),
n'=dim M, by G.

The canonical form 0 of P isthe Rr-valued I-form on P defined
by

0(X) = ui(=(X))  for XeT.(P),
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where y is considered as a linear mapping of R onto T,.,(M)
(cf. Example 5.2 of Chapter I).

PropositioN2. 1. The canonical form @ of P is a tensorial 1 -form of
type (GL(n; R), R”). It corresponds to the identity transformation of the
tangent space T,(M) at each x ¢ M in the sense of Example 5.2 of
Chapter'H.

Proof. "M X is a vertical vector a u ¢ P, then =(X) = 0 and
hence 0(X) = 0. If Xis any vector a u ¢ P and a is any element of
G = GL(n; R), then R, X is a vector a ua ¢ P. Hence,

(R¥0)(X) = ORX) = (ua)Y(m(RX))
= a“lu“l(w(X)) pusad a‘l(O(X)),
thus proving our first assertion. ‘The ‘second assertion is clear.
QED.

A connection in the bundle of linear’ frames P over M is cdled
a {imear connection of M. Given a linear connection I' of Af, we
associate with each ¢ ¢ R* a horizontal vector field B(&) on P as
follows. For each u ¢ P, (B(&)), is the unique horizontal vector at
u such that n((B(£)),) = u(&). We cal B(£)*the standard horizontal
vector field corresponding to &. Unlike the fundamental vector fields,
the standard horizontal vector fields. depend on the choice of
connections.

ProposiTion 2.2.. The standard horizontal vector fields have the
following properties : .

(1) If 0 is the canonical form of P, then O(B(&)) = & for £ e R*;

() R,(B(&))= B(a~¢) for a € G and { ¢ R”;

(3) 4f &£ #0, then B( §) ‘never vanishes.

Proof. (1) is obvious. (2) follows from the fact that if X is a
horizontal vector at u, then R,(X) is a horizontal vector a ua and
7(R,(X)) = =(X). To prove (3), assume that (B(£)), = 0 a some
point 4 ¢ P. Then u(&) = #((B(£)),) = 0. Since u: R% — T,,,,,,(M)
is a, linear isomorphism, & = 0. ' QED.

Remark.  The conditions 6(B(¢)) = ¢ and m(B(&)) = 0 (where
o is the connection form) completely determine B(¢) for each
EeR%

ProposiTion2. 3. If A* is the fundamental wvector field corresponding
to A egand jf B(&)is the standard horizontal vector field corresponding
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to & e R", then
[4*, B(&)] = B(4¢), N

where A& denotes the image of £ by A ¢ g = gl(n; R) (Lie algebra of all
N X 1t matrices) which acts on R,

Proof. Let a, be the |-parameter subgroup of G generated by
A, a, = exp t4. By Proposition 1.9 of Chapter | and (2) of
Proposition 2.2,

[4%, B(O)) = lim 1 [B(2) — Ry (B(E)] = lim - (B(8) — Ba"8)

Since ¢ — (B(£)), is alinear isomorphism of R* onto the horizontal
subspace @, (cf. (3) of Proposition 2.2), we have

lll’l’ltl [B(f) - B(at—lg)] = B(llmil- (5 — a‘_lg)) = B(Af)

t—0
QED.
We define the torsion form @ of a linear connection T by

®= DO (exterior, covariant differential of§).

By Proposition 5.1 of Chapter Il and Proposition 2.1, 0 is a
tensorial P-form on P of type (GL(n; R), R*) .

Theorem 2.4 (Structure equations). Let w, @, and Q be the
connection form, the torsion form and the curvature. form of a ‘linear
connection I' of M. Then

1st Structure equa’;ion: ,
d6(X, Y) = —}Hw(X) - 6(Y) — o(Y) -6(X)) + O(X, Y),

2nd structure equation :
do(X, Y) = —}{o(X), o(Y)] + QX, Y),

where X, Y ¢ T,(P) and u ¢ P.

Proof. The second structure equation was proved in Theorem
5.2 of Chapter Il (see also §1). The proof of the first structure
equation is similar to that of Theorem 5.2 of Chapter Il. There
are three cases which have to be verified and the only non-
trivial case is the one where X is vertica and Y is horizontal.
Choose A ¢ gand & ¢ R* such that X = 4% and Y = B(4),.
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Then (X, Y) = 0, o(Y)  6(X) = 0 and o(X) « 6(¥) =

w(A*) + 8(B(&)) = AE, since w(4*) = A and 6(B(£)) = £, On the
other hand, 246(X, Y) = A*(6(B(£))) — B(£)(6(4*)) — 6([4*,
B(&)]) = —6([4*, B(&)]) = —6(B(4¢)) = —AE by Proposition
2.3. This proves the first structure equation. QED.
With respect to the natural basis e, . . ., ¢, of R", we write
6 =3, 0% 0= 3,0k,
As in $1, with respect to the basis Ef of gl(n; R), we write
w = 21,1ijg, Q = Zl,JQ;EZ'

Then the structure equations can be written as
(l) d9'=—-zja);/\ej+ @i, izl,uoc,n,
(2) doi= —Z; i A of + Q, i,j=1,... A

Considering @ as a vector valued form and » as a matrix valued
form, we aso write the structure equations in the following
simplified form :

(1) de=—-wAf +0
) do= —o A0+ Q

In the next section, we shall give an interpretation of the .
torsion form and the first structure equation from the viewpoint
of affine connections.

h

oy

Treorew 2.5 (Bianchi’s identities), For a linear connection, we have
1st identity: DO = Q A 8, that is,
3DO(X, Y, Z)= QX, Y) 6(Z) + Q(Y, Z) 6(X) + Q(Z, X)8(Y),
where X, Y,Z ¢ T, (P).
2nd identity: D) = 0.

Proof. The second identity was proved, in Theorem 5.4 of
Chapter 1I. The proof of the first identity is similar to that of
Theorem 5.4. If we apply the exterior differentiation d to the first
structure equation df = —w A 8 + O, then we obtain

0 = -dw AG-}—WAd@"‘d@
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Denote by 4X the horizontal component of X. Then w(hX) = O,
6(hX) = &X) and dw(kX, hY) = Q(X,Y). Hence,
DO(X, ¥, Z) = dO(hX, kY, hZ)
= (do A 0)(RX, hY, RZ) = (Q AO)(X, Y, Z).

QED.
Let By, ..., B, be the standard horizontal vector fields corre-
sponding to the natural basis ¢y, . . . , ¢, of R" and {EJ*} the funda-

mental vector fields corresponding to the basis {Ei} of gl(n; R). It
is easy to verify that {B,, E}*} and {0, f} are dual to each other
in the sense that '
64(B,) = of OEP) = o,
WH(B) =0 . Wf(EF) = o]

ProposiTion 2.6.  The n2 4+ n vector fields {B, Ei*;i, j,k =
1, ..., n}define an absolute parallelism in I, that is, the n* + n vectors
{(Bi)us (E*) }.form a basis of T (P) for every u ¢ P.

Proof. Since the dimension” of P is #® + n, it is sufficient to
prove that the above »* -- n vectors are linearly independent.
Since A - A¥ is ‘a linear isomorphism of g onto the vertical sub-
space of T,(P ) (cf. §5 of Chapter I), {E/*} are linearly independent
a every pomt of P. By (3) of Proposition 2.2, {B,} are linearly
independent at every point of P. Since {B,} are horizontal and {E*}
are vertical, {B,, Ei*} are linearly independent at every poQintEoT3 P.

Let 77(M) be the tensor bundle -over M of type (r, s) (cf.
Example 5.4 of Chapter 1). It is a vector bundle with standard
fiber T; (tensor space over R of {ype (r, s)) associated with the
bundle P of linear frames. A tensor field K of type (r, s) is a cross
section of the tensor bundle 7%(M). In $1, we defined covariant
derivatives of a cross section in a vector bundle in generd. As in
$1, we can define covariant derivatives of K in the following three
GBS :

(1) V.. K, when K is defined along a curve ¢ = x, of M;

(2) VK, when X ¢ T,(M)and K is defined in a neighborhood
ofx;

(3) V4K, when X is a vector f|eld on M and K is a tensor field
on M.
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For the sake of simplicity, we state the following proposition in
case (3) only, athough it is valid in cases (1) and (2) with obvious
changes.

ProposiTion 2.7. Let Z(M) be the aigebra of tensor fields on M.
Let X and Y be vectorjelds on M. Then the covariant differentiation has

"the following properties :

(1) v,: T(M)— 2(M) is a type preserving derivation;

(2) Vx commutes with every contraction;

() Vg f = Xf for every function f on M;

(4) Vxip = Vi + Vyp;

{3) VixK = f + VxK for every function fon M and K e T (M

Proof. Let7=x,0 ¢ =<1 beacurvein M. Let T(x,) be
the tensor agebra over 7, (M), T(x) = ZTj(x) (cf §3 of
Chapter 1). The paralé d1splacement adong r gives an iso-
morphism of the agebra T(x,) onto the agebra T{x,) which
preserves type and commutes with every contraction. From the
definition of covariant differentiation given in §l, we obtain
(1) and (2) by an argument similar to the proof of Proposition 3.2
of Chapter 1. (3), (4) and (5) were proved in Proposition 1.2,

QED.

By the lemma for Proposition 3.3 of Chapter I, the operation of
Vy on Z(M) is completely determined by its operation on the
agebra of functions F(M) and the module of vector fields
X(M). Since V . f = Xf for every f ¢ (M), the operation of v, on
Z(M) is determined by its operation on -¥(AM). As an immediate
corollary to Proposition 1.2; we have

Proposition 2.8. [f X, Y and Z are vector fields on M, then

(1) Vx(¥Y + Z2) = V¥V + V4 Z;

(2) VxivZ - VyZ 4+ Vy Z;

B) V,xY =F- ViV for everyfe F(M),

@ Vx(fY) =S VxY + (Xf)Y for every fe F(M).

We shal prove later in §7 that any mapping X(M) x 3(M) -
X(M), denoted by (X, Y) — VY, satisfying the four conditions
above is actually. the covariant derivative with respect to a certain
linear connection.’

The proof of the ‘following proposition, due to Kostant [1], is
similar to that of Proposition 3.3 of Chapter | and hence is left to
the reader.
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Prrosiion 2.9.  Let M be a manifold with a linear connection.
Every derivation D (preserving type and commuting with contractions) of
the algebra Z(M) of tensor fields into the tensor algebra T(x) at x € M
can be uniquely decomposed as- follows »

D = Vx+Ss

where X ¢ T,(M) and S is a lnear endomorphism of T,(M).

Observe that, in contrast to Lie differentiation Lx with
respect to a vector field, covariant differentiation V y makes sense
when X is a vector at a point of M. ‘

Given atensor field K of type (r, s), the covariant differential VK
of K is atensor field of type (r, s + 1) defined as follows. As in
Proposition 2.11 of Chapter I, we consider a tensor of type (r, s)
a a point x ¢ M as a multilinear mapping of T,(M) x «+ * X
T.(M) (s times product) into Tj(x) (space of contravariant tensors
of degree r at x). We set

(WV .. X5 X) = (VxK)(Xy . .., X)), XXie T.(M).
Prorcsi v 2.10. IF Kiis a tensor field of type (r, s), then
(VKN (X, . X5 X) = Vx(K(Xy,. o X))
""'zg=1K(X1,"" Y iy a)’

where X, X; e X(M).

Proof., This follows from the fact that Vx is a derivation
commuting with every contraction. The proof is similar to that
of Proposition 3.5 of Chapter | and is left to the reader. QED.

A tensor field K on M, considered as a cross section of a tensor
bundle, is pardlel if and only if V4K =0 for al X ¢ T,(M) and
x ¢ M (cf. §1). Hence we have

Prros o 2.11. A tensor field K on M is parallel if and only if
VK = 0.

The second covariant differentiad V2K of a tensor field K of
type (r, s) is defined to be V(VK), which 1s a tensor field of type

(rys + 2). We set
(VZKY(;X; Y) = (Vp(VK))(;X), where X,Y o T (M),
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that is, if we regard K as a multilinear mapping of T,(M) xz/
X T,(M) (s times product) into T§(x), then

(VEK)(Xy, ., Xy X Y) = (Ve (VE)(Xy, L, X5 X).
~ Similarly to Proposition 2.10, we have

Prorosi Tiav 212, For any tensor field K and for any vector fields
X and Y, we have

(VIK)(;X; ¥) = Vp(VxK) = VoK.

In general, the m-th covariant differentill V™K is defined
‘inductively to be V(V7-1K), We use thenotation (V#K) (;X ; v . ;
X 13 Xm) for (Vx (V*71K)) (X555 Xnea)-

3. Affine connections

A linear connection of a manifold M defines, for each curve
T = xt', 0=t <1 of M, the parale displacement of the tangent
space T,,(M) onto the tangent space T, (M) ; these tangent
‘spaces are regarded as vector spaces and the parale displacement
is a linear isomorphism between them.” We shall now consider each
tangent space T,(M) as an affine space, “caled the tangent
affine space at x. From the viewpoint of fibre fbundles, this means
that we enlarge the bundle of linear frames®o the bundle of
affine frames, as we shall npw explain.

Let R” be the vector space of n-tuples of real numbers as before.
When we regard R* ‘as an affine space, we denote it by A”. ;
Similarly, the tangent space of M a %, regarded as an affine
space, will be denoted by 4,(M) and will be caled he tangent .
affine space. The group A(n; R) of, affine transformations of A# is

. represented by the group of all matrices of the fqrm

. /,
i= ,
o o)

where a = (4f) ¢ GL(n, R) and ¢ = (&), &£ « R* is a column
vector. The element & maps a -point 5 of 4* into an + ¢ We have
the following sequence:

0 — R* Z» A(n; R) 2> GL(M; R) —» 1,
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where a« is an isomorphism of the vector group R* into 4(z; R)
which maps ¢ « R* ino (§* |} ¢ Aln; R (1, = identity of
GL(n; R)) and $ is a homomorphism of A{n; R) onto GL(n; R)
which maps (8 f) ¢ JA(n; R) into a ¢ GL(n; R). The sequence is

(Xp o0, X,)into (o,; &), . . . ,X,), where o, ¢ 4,(M) is the point
corresponding to the origin of 7,(M). In particular, L(M) can be
considered as a subbundle of 4(M). Evidently, oy is the
identity transformation of L(M) .

A generalized affine connection of M is a connection in the bundle
A(M) of affine frames over M. We shall study the relationship
between generalizid affine connections and linear connections.
We denote by R® the Lie algebra of the vector group R, Corre-
sponding to the splitting exact sequence 0 - R* — 4 (n; R) —
GL(n;R) — 1 of groups, we have the following splitting exact
sequence of Lie algebras:

0 »R*— a(n; R) — gl(n; R) — 0.
Therefore, 1 !

a(n; R) = gl(»; R) + R” (semldlrect sum):

exact in the sense that the kernel of each homomorphism is equa
to the image of the preceding one. It is a splitting-exact sequence
in the sense that there is @ homomorphismy: GL(n; R) — A(n; R)

such that f# < y is the identity automorphism of GL(n; R) ; indeed,

we define y by y(a) = (8 (1)) € A(n; R), a ¢ GL(n; R). The group

A(n; R) is a semidirect product of R* and GL(n; R), that is, for
every de A(n; R), there is a unique pair (a, &) ¢ GL(n; R) x R*
such that & = «(¢) « y{a).

An affine frame of.a manifold M at x consists of apoint p ¢ 4,(M) Let & be the connection form of a geheralized affine connection of

and' a linear frame (X,, . . ., X,) @ X it will "be denoted by . R)-valued I-f L(M). Let

(p; Xy ..., X,). Let ¢ bethe origin of R" and (e, . . . , &) the M Theny Glsan q(n )-valued |-form on L( ) ¢ _

natural bassfor R*. We shdl cal (o; el, ..., &) the -canonical , y*w =w+¢ |

frame of A" Every afline frame (p; X,, . .., &,)a x can be be the decompasition corresnondmg to a(n; R) = gl(n; R);+ R*,

identified with an affine transformation ii: A" —A,(M) which
maps (0; ¢,, . . ., &) into (p; Xy, . ..,Xn) because (%,X Ceey
X)) & @ gives a 1:] correspondence between the set of affifie
frames at x and the' set of affine transformations of 4" &to A (M).
We denote by A(M) the set of al affine frames of M and (}eﬁne
the ~ projection #: A(M) - M by setting #(2) = x for every
affine frame # at x. We shall show that A(M) is a principal fibre
bundle over M with group A(n; R) and’ shall call . A(M) the
bundle of gffine frames over M. We c&fine an action of A(n; R). on
A(M) by (i, &) — fd, i€ A(M) and @ € A(n R), where §d is the
composite of the affine transformations &’: A" — A7 and @: A* —
A,(M). It can be -proved easily (cf. Example 5.2 of Chapter I)
that A(n; R) acts freely on A(M) on the right and that A(M) is
a principal fibre bundle over M with group 4(zn; R).

Let L(M) be the bundle of linear frames over M. Corre-
sponding to the homomorphisms f: A(n; R) — GL(n; R) and
y: GL(n; R) — 4 (n; R), we have homomorphisms f: 4(M ) —
L(M) and y: L(M) -~ A(M). Namely, B: A(M, - L(M) maps
(p; Xy ooy Xy)into (X, ..., X,) and y: K(M) — A(M) maps

so ithat w is a gl(n; R)-valued I-form on L(M) and ¢ is an R*

valued I-form on L( ). ‘By Proposition..6.4 of Chapter Il, g-
defines a connection in L(M). On the other hand, we see easily

that g is a tensorial I-form on L(M) of type (GL(s; R), R*)

(cf. §5 of Chapter 11) and hence corresponds to a tensor, field of
type (1, 1) of M as explained in. Example 5.2 of Chapter I1.

PROPOSITION 3.1.  Let & be the connection form of a gemeralized
affine connection T of M and let -

y*w =@ "I" ¢’ 3

where o is gl(n; R)-valued and ¢ is Rrvalued. Let T be the linear
connection of M defined éj w and let K be the tensor field of type (1, 1) of |
M defined by 3. Thin

(1) The t:omspondeme between the set of generalized aﬁm connections
of M and the set of Pairs. conmtmg of g linear connection of M and a
tensor field of tpe (1,1) of M given by I' = (I", K) s 1 1.

(2) The homomorphism” B: A(M) — L(M) maps [ into T' (if.
§6 of Chapter II). . ‘

[
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Proof. (1) It is sufficient to prove that, given a pair (I’, K),
‘there is [* which givesrise to (I, K). Let @ be the connection form
‘of T and ¢ the tensorial I-form on L(M) of type (GL(n; R), R")
corresponding to K. Given a vector X ¢ Ty(4(M)), choose
Xc T, (L(M)) and & ¢ A(n; .R) such that & = ug and 8 — Ry(X)
is vertical, There is an element A ¢ a(n; R) such that

X =R * 4

where A* isthe fundgl’pcn@l vector correspoudmg to A.” We define
@ by o o ‘

&(X) = ad () (0(X) + p(X)) + 4.

Itis strajghtforwérd to verify that @ defines the desired connection

(2) Let X e Ty(A(M)). We setu = B(#) and X = (%) so that

Xe T,(L(M)). since: B: A(M) — t(M). is. the .-homomorphism :

associated-*&h’ the homomorphism ##'4(n; R) — GL(n; R) =
A(n; R)/R", L(M) can be identified with 4(M)/R" and
g: A(M) -L(M) can be considered as the natural projection
A(M) —A(M)R* Since X = B(X) = B(X), there exist
g ¢ R < A(n; R) and A ¢ R® < ‘a(n} R) such that & = ud aiid

X = R,(X) + A*. Assumethat X is horizontal:with respect to [!
sothat 0 = &(X) = G(Ry(X)): + (4% = ad () (@(X)) + 4.
Hence, #(X) = ad (&)(A) and w(X) +¢(X) =ad (d)(A). Since

both ¢ (X) and ad (a) (4) are in R and w(X) isin gl(n; R) , we have .

w(X) =:0: . This proves that if & is horizontal with réspect to T,
then f(X) is horizontal with respect to T, . QED.

prorosiTion  3.2.  In Proposition 3.1, let £ ard Q be the curvature
forms of I* and T respect&&. Then

} ?*Q = Q + D.‘P,-.~ tt i " “

1
7

where ‘D is the-exterior covariant differentiation with respect

Proof. Let XY ¢ T,(L(M)). To proyg;tq&g,igee*ﬁl_.<ﬁ?.-}§’ )=

Q(X, Y) + Dg(X, Y), ‘it is. sufficient to_consider the, following

two cases: (1) & least one of X and Y is vertical,. (2) both X and Y

are horizonta with respect to' T, In the case (1), both sides

vanish. ‘In the case (2), w(X) = w( ¥) = §"and hence q‘:{(,}’r) =
@(X) and &(Y) = ¢(¥). From the structure equation of T, we
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have
da(X, Y) = —Ha(X), c(V)] + (X, Y)

(Here, considering L(M) as a subbundle of A(M), we identified

y(X) with X.) On the other hand, y* d&é = dw + dep and hence

d&(X, Y) = dw(X, Y) + dp(X, Y). Since R* is abelian, [¢(X),

o(Y)] = 0. Hence, do(X, Y) + dp(X, Y) = @(X, Y). Since

both X and Y are horizontal, Da(X, Y) 4+ De(X, Y) = (X, Y).
' QED.

Consider again the structure equation of a generdlized affine
connection I : ,
i = —3a, @] + Q.
By restricting both sides of the eqﬂuation to L(M) and by com-
paring the gl(r; R)-components and. the R"-components we
obtain

dp(X, Y = —}([0(X), ¢(¥)] = [o(¥), 9(X)]) + Do(X, 7),
do(X, Y) = —Ho(X), o(Y)] + QX, Y), XY T, (L(M)).
Just as in §2, we write ~
dp = —wAgp+ Dy
do = —w Ao + Q.

A generalized affine connection I' is called an affine connection if,
with the notation of Proposition 3.1, the R -valued |-form ¢ is
the canonical form 6§ defined in §2. In other words, [ is an
affine connection if the tensor field K corresponding to ¢ is the
field of identity transformations. of tangent spaces of M. As an
immediate consequence of Proposition 3.1, we have '

“.'TifEQR;M 3.3.  The . homomorphism B: A(M) — L(M) maps
every affine connection I of M into a linear connection T of Af. Moreover,
[ — T gives a'1: 1 correspondence between the set of affinz connections I*
of M and ‘the set of linear connections T of M.

Traditionally, the swords ‘linear connection’? and “affine
connection” have been used interchangeably. This is justified by
Theorem 3.3. Although we shall not break with this tradition, we
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shal make a logica distinction between a linear connection and
an affine connection whenever necessary; a linear connection of
M is a connection in L(M) and an affine connection is a con-

nection in A(M).

From Proposition 3.2, we obtain

PRcPosi TI ON 3.4. Let@® and Q be the torsion form and the curvature
form of a linear connection T of M. Let { be the curvature form-of the
corresponding  @ffine  connection.  Then

y*Q =0+ Q,
where y: L{M) - A(M) is the natural injection.
Replacing ¢ by the canonical form 6 in the formulas:
dp = —wA@ + Dy, do=—-0Arow+Q,

we rediscover the structure equations of a linear connection proved
in Theorem 2.4.

Let ®(i) be the holonomy group of an affine connection I of M
with reference point-u’ ¢ A(M). Let ¥'(u) be the holonomy group
of the corresponding linear connection I’ of M with reference
point u = B(i) € L(M). We shal cdl ®(a) the affine holonomy
group of I' or I and Y (u) the linear holonomy group (or homogeneous
holonomy group) of f* or T, The restricted ézjﬁne and linear holonomy
groups (i) and yo(u) are-defined accordingly. From Proposition
6.1 of Chapter I, we obtain

Prercsi oy 3.5.  The homomorphism f: A(n R) - GL(n R)
maps (i) onto Y(u) and ®°(a) onto Y'2(u). -

4. Developments

We shall study in-this section the parallel displacement arising
from an affine connection of a manifold M. Let 7= %, 0 £ t £1,
be a curvein M. The &fine parale displacement along T 188 an
affine transformation of the affine tangent space. at %g.0nto the
affine tangent space a x, defined by the given connection in
AM). It is a specid case of the paralelism in an associated
bundle which is, in our case, the affine tangent bundle whose fibres
ae A(M), x ¢ M. We shall denote this affine pardlelism by #.
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The total space (i.e., the bundle space) of the affine .tangent
bundle over M is naturally homeomorphic with that of the tangent
(vector) bundle over M; the distinction between the two is that
the affine tangent bundle is associated with A(M) whereas the
tangent (vector) bundle is associated with L(M). A cross section
of the affine tangent bundle is called a point field, There is a natural
1. 1 correspondence between the set of point fields and the set of
vector fields.

Let # be the affine paralel displacement along the.curve r
from x, to x,. In paticular, 7 is the paralel displacement

A4, (M) -A(M) dong = (in the reversed direction) from #, to
%,. Let p.be a point field defined along + so that bz, is an element
of 4, ( M) for each & Then 7j(p,) ‘describes a curve in A, (M).
We Identlfy the curve 1 = z, with the trivial point field along 7,
that is, the point field corresponding to the zero vector fleld
along 7. Then the development of the curve 7 in M into the affine
tangent space 4, (M) is the curve #(x,) in A(M).

The foIIowmg proposmon allows us to obtain the development
of a curve by means of the linear paralel displacement, that is,
the parale displacement defined by the corresponding linear
connection.

Prrosiion 4.1, Given a curve 7 = x,,0 <t < 1,in M, set
Y, = 14(%,), where 7, is the linear parallel displacement along 7 from x,
to x, and #, is the vector tangent lo  at x,. Let C,, 0 £t < 1, be the
curve in 4, (M) starting from the origin (that is, Cy = x) such that C,
is parallel ('” the affine space A,(M) in the-usual sense) to Y, for every t.
Then C, is the development of 7 into A, (M).

Proof Let u, be any pomt in L(M) such that #(x,) = %, and
u, the horizontal lift of x, in L(M) with respect to the linear
connection. Let # be the horizontal lift of x, in A(1f) with
respect to the affine connection such that 4, = u, Since the
homomorphlsm B: AM) — L(AM)= A(M)/R* (cf. §3) maps
i, into u,, there is a curve &, in R* < A(n; R) 'such that %, = u,g,
and that g is the Tdentity. As in the proof of Proposition 3.1 of
Chapter II we shafl find a necessary and sufficient condition for
d, in order that i, be vhorxzontal with respect to the affine connec-
tion. From

& A ~
U, = wa, + ua,
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which follows from Leibniz's formulaas in the proof of Proposition
3.1 of Chapter Il, we obtain

a(d) = ad @)a@) * ad
= ad (a7 (wfi) + 0(4)) + 47, = a0 (&7 (0(2)) + 27,

where @ and @ are the connection forms of the affine and the
linear connections respectively. Thus 4, is, horizonta if and only
if 6(z,) = —4&,47. Hence,

Y, = 7(%,) = u(u7 (%)) = up(0(2y))

= —uy(@a;) = —uy(da,/dt).
On the other hand, we have

C,= #(x) = (@ (xy)) = uo(dfl(utnl(xt))) - uﬂ(df_l(o))“
Hence,
dC/jdt = —uy(da,jdt) = ¥,
QED.

CoroLLArRY 4.2 The development of a curve 7= %, 0 <t < :l,
into 4,, (M) is aline segment if and only if the vector fields %, along = = ¥,
is parallel.

Proof. In Proposition 4.1, C, is a line segment if and only if ¥,
is independent oft. On the other hand, Y, is independent of ¢ if

and only if %, is a paralel vector field along 7. QED.

5. Curvature and torsion tensors.

We have aready defined the torsion form © and the curvature
form Q of a linear connection. We now define the torsion tensor field
(or simply, torsion) T and the curvature tensor field (or ‘simply,
curvature) R. We set

T (X, Y).= uO(X*, ¥*))  for X.Y ¢ T,{M), "

where u is any point of L(M) with n(u) = x and X* and_ Y* are
vectors of L(M) at u with =(X*) = X and =(¥*) = Y. We
aready know-that T(X, Y) isindependent of the choice of u, X*,
and Y* (cf. Example 5.2 of Chapter II); this fact can be easily
verified directly also. Thus, at every point x of M, Tdefines a skew
symmetric bilinear mapping T,(M) X T,(M) = T,(M). In

;

5

K]
oo,

}
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other words, Tis a tensor field of type (1, 2) such that T(X, Y) =
= T(Y, X). We shdl call T(X, Y) the torsion translation in T,(M)
determined by X and Y. Similarly, we set

RX, Y) Z = u((2Q(X*, YY) (#7'2)  for X,Y,Z e T,(M),

where u, + X* and Y* are chosen as above. Then R(X, Y)Z
depends only on X, Y and Z, not on u, X* and 'Y*, In the above
definition, (2Q(X*, Y*))(u~1Z) denotes the image of 4-1Ze¢ R*
by the linear endomorphism 2Q(X*, Y*) eg!( R) of R~
Thus, R(X; ¥) is an endomerphism of T,(M) and is called the
curvature transformation of 7°,(M) determined by X and Y. It follows
that R is a tensor field of type (1, 3) such that R (X, Y) =

-R(Y, X).

-

TreoRem 5.1, In terms of coyariant differentiation, the torsion T
and the curvature R can be exprgma’ as follows: .,

T (X, Y) = ViV = VX - [X, 1]
and’ A A
R(X, Y) = [VX’ VY]Z V{X Y]Z

where X, Y and-Z are vector fields-on M.
Proof. Let X*, Y* and Z* be the horizontal I|fts of X,Y and
Z, respectlvely We first prove - : -

LEmua. (VxY), = u(X2(0(Y*))), where =(u) = x.
Proof of Lenma In the lemma for Proposition 1.1,-we proved

that (V5 ¥), =ufX*f ), wherefis an R-valued function defined
by fluf = ui(¥,). Hence, f(U) =6(¥*) for u ¢ L(M). This
completes the -proof of the lemma. .

We have therefore
T(Xa, Xo) =4(20(XE, YY)
N u(X*(B(Y*J — Y2(6(X*)) — B([X*, y*])
S = Vel (e, IR Y], |
since m([X*, Y*]) 1%, Y].,,‘ ‘

% To prove the segond equality, we-set f = 8(Z*) so that fis an
R*-valued function on L(M) of type (GL(n; R), R*). We have



134 FOUNDATIONs OF DIFFERENTIAL  GEOMETRY

then

([Vx, VY]Z - V[X.Y]Z)z
= u(X5(Y*f) = YHX*) — (X, T*])uf) = w((o[X*, T*])uS);
where 4 (resp. v) denotes the horizontale(resp. vertical) component.
Let A be an element of gl(n; R) such that A¥ = (s[X*, Y*]),,
where A* is the fundamental vector field' corresponding to A.
Then by Corollary 5.3 of Chapter Il, we have

XL, I = —o(X%, Y¥]) = —A

On the other hand, if a,is the |-parameter subgroup of GL(n; R
generated by A, then

A f < lim 2 [f (ua) ()]
-0 ¢

= tim ;67 (1) ~/ @]
= 4 (@),

where A(f (U)) denotes the result of the. linear transformation
A: R" — R” goplied to f (4) € R" Therefore, we have

(Vx> V¥1Z = VigriZ)e = u((o[X*, Y*])Sf ) = u{=4{f ()

= u2Q(X2, Y2)(f @)= s2Q(X2, Y3)12) =R(X, V)Z.
QED.

ProposiTionD. 2. Let X, Y,Z,We T (M) and U ¢ L(M with
w{u) = x. Let X*, ¥*, Z* and W* be the standard horizgntal vector
fields on L(M) corres[aondzng to u'X, y1 ¥, y1Z. and ¥ "w respec-
tively, so that w(X3) = X, n(Y2) = Y, n(Z}) = Z and z(W}) =
W. Then

(VxT)(Y, Z) = u(X3(26(Y*, Z%)))
and . ; .
((VxR)(Y, Z)W = u((X3(2Q(Y*, Z¥)) ("W).

Proof.  We shall prove only the first formula. ‘ The proof of the
second formula is similar to that of the first., We consider the
torsion T as a cross section of the tensor bundle T:(M) whose
standard fibre is the tensor space T% of type {1, 2) over R Let
f be the T&valued function on L{M) corresponding.. to ;the
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torsion T as in Example 5.2 of Chapter Il so that, if we set
n=u1Y and { = y-1Z, then

Sfuln, §) =Y (T(X, 2)) = O(Y, z;).
By Proposition 1.3, X;f corresponds to V xT. Hence,
(VT 2) = (X2 0
=X:(f(n, §) = X3(20(Y*, Z%))
thus proving our assertion. QED.

Using Proposition 5.2, we shall express the Bianchi’s identities
(Theorem 2.5) in terms of T, R and their covariant derivatives.
Theorem 5. 3. Let T and .R be #he torsion and the curvature.. of q

linear connection Of M. Then, for X, Y,Z € T,(M), we have
Bianchi’s 1st identity:

SR, Y)Z} = S(T(T(X, Y), Zy + (VxT)Y, Z)};
Bianchi's 2nd identity :
S{(VxR)(Y> Z) + R(T (X, Y), Z2)} =0,

where @ denotes the gyclic sum with respect to X, - Y and Z.

In particular, if T =0, then

Bianchi's 1st identity: S{R(X, ¥) Z} =0;

Bianchi's 2nd identity:. . &{(VxR) (Y, Z)} = 0.

Proof. ‘Let y be any point of L(M ) such that w(x) = x We
lift X to a horizontal vector at u and then extend it to a standard
horizontal  vector ﬁeld X* on L(M) as in Proposition 5.2.
S|m||ar|y we def|ne Y and z* ~We shall derive the first Idmtlty
from

‘ DO = QA 6 (Theorem2, 5).
We have

6(Q A 6)(X3 Y5 Z8) = SRO(X2, Y3)0(ZH)}
= S R(X, Y)2)}. .. )
On the other hand, by Proposition 3.11 of Chapter I, we have

GDG(X:’ Y:s Z:) =\6d®(X:3 Y:: Zy)

= S(X2(20(Y*, Z%)) — 20([X*, Y*., Z%).
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By Praposmon52 X*(2®(Y* Z4) = w (Vi T)(Y, Z)). It is

‘therefore sufficient to prove that

—2@([X* Y*],, Z}) = u“‘( I(T(X, V), Z)).

V& observe first that /
n([X*, Y*¥],) = u(0[X%, ¥+],)) = ~u(2d6( X}, Y3))
= —u(QG(X:, Y:)) =-T (X’ Y)-

Hence we have

—20([X*, Y*],, Zf) = —uY( T(z[X* Y¥],, Z))
=uwy T( T(X,Y), Z)).
We shall derive the second identity from

DQ =0 (Theorem 2.5).

We have
0= 3DQ(X* Y}, Z* ¢ |

= S{XI(Q(Y*, Z2%)) - Q([X*, Y*1,,Z3)).
On the other hand, by Proposition 5.2, we have

KEQT*, Z%) = JY(VoRY(Y,  2)).
As in the proof of the first 1dent1<ty, we have ., N
—Q([X*, Y*],, Z}) = %u'l(R (X Y), )).
The second identity follows from these three formulas QED

Remark. Theorem 5.3 can-be proved from the formulas :in’
Theorem 5.1 (see, for instance; Nomizu [7, p. 611]).

Prerasiion 5.4, [et B gnge B be arbitrary standard horizontal
vector ﬁelds on L(M ). Then we have

1) If T =0, then [B, B] is vertical;
() If R =0, then [B, B']- is horizontal.
Proof. (1) 0([3 B')) = —240(B, B') = _2@(3 B) =
Hence, [B, B'] is vertical. (2) o([B, B = ~de(3 B’)
—2Q(B, B') = 0. Hence, [B, B'] is horizontal: QED

Let P(u,) be the holonomy subbundle ‘of -L{M): through a
point u, € L(M) and ‘F(uo) the hnear holonomy group W'th
reference point «,. Let A,, . .. A, be a basis of the Lie agebra of

€

r
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¥ (uo) and 4%, ..., A¥ the corresponding fundamental vector
fields. Let B,,. .., B, be the standard horizontal vector fields
corresponding to the basis ¢,, . . . , ¢, of R". These vector fields

A¥, ..., A* B4, ..., B, (origindly defined on L(M)), restricted
to P(u,), define vector fields on P(u,). Just as in Proposition 2.6,

they define an absolute paraldism on P(x,). We know that
[4F, 4F] is the fundamental vector field corresponding to [4,, A)]

and’ hence is a linear combination of Af, ..., A¥ with constant
coefficients. By Proposition 2.3, [4¥, B,] is the standard horizontal
vector field corresponding to ‘4., ¢ R* The following proposition
gives some information about [Bq B].

EROPQSITION15-5- Let P(u,) be the holonomy subbundle of L(M)
through u,. Let B and B'. be arbitrary standard horizontal .vector fields.
Then we have.,

(L) If V.T =0, then the hon;ontal component” of {B B] comudas
W|th a standard horizontal ector field on P(uy). :

2) If VR = 0, then the vertical component of [B, B'], coincides with
the fundammtal vectorjeld A* on P(u,), which corresponds to an élement

A ‘of the Lie algebra of the linear holonomy group W'(u,).

Proof.  (I) Let X* be any horizontal vector at 4 ¢ L(M ). S€t
X = #(X*),Y= =(B,) ad Z = =(B,). By Proposition 5.2, ‘we
have

X*(20(B, B)) = u"((VT)(Y, Z)) =
This means that O(B, B’) is a constant function (W|th values in
R") on P(u,). Since §([B, B']) = —20(B, B'), the horizontal -
component of [B, B’] coincides ‘on Pfx,) with the ‘standard

horizontal vector field corresponding to the element —20(B, B')
of R™,

(2) Again, by Proposition 5.2, VR = 0 impli&s

, ‘ X*(Q‘(B B)
This means that Q(B, B') is a constant function on P(u,) (With
values in the Lie algebra of W{y;)). Since w([B, B']) =

—2Q(B, B), the vertica component of [B, B’] coincides on
P (1) with the fundamental vector field corresponding to the
element —2€Q(B, B') of the Lie agebra of ¥(u). QED.

It follows that, if VT = 0 and VR = 0, then the restriction of
[B,, B,] to P(u,) coincides with a linear combination of 4f, . . .
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A}, By, ..., B, with constant coefficients on P(x,), Hence we have

GOROLLARY 5.6. Let g be the set of all vector Seelds X on the
holonomy bundle P(uy) such that 6{X) and w(X) are constant functions
on P(u,) (with values in R™ and in the Lie algebra of W' (), respectively).
If VI'= 0and VR =0, then g forms a Lie algebra and dim ¢ =
dim P(uy).

The vectorfields 4f, . . ., 4%, B,, . ..
a basis for g.

, B, defined above form

6. Geodesics

Acurve 7 =x,a <t <b, where —0 < a < b < o0, of class
C' in a manifold M with a linear connection is called a geodeszc if
the vector field X = %, defined along 7 is pardle dong 7, that is,
if VX exists and equals O for al t, where #, denotes the vector

tangent t0 r a x,. In this definition of geodesics, the parametri-
zation of the curve in question is important. .

PROPOSITION 6.1. Let 7 be a curve of class Gt in M. A parametriza-
tion which makes 7 into a geodesic, ¢f any, is determined up to an affine
transformation t — s = at + §, where a # 0 and g are constants.

Proof. Let x, and y, be two parametrizations of a curve
which make 7 into a geodesic. Then s is a function oft, s = s(t),

and Jyy = % The vector j, is equa to i;—t #,. Since the parallel

displacement along r is independent of parametrization (cf. $3
of Chapter II), p must be a constant different from zero. Hence,

s=at + §, Where a #0. QED.

If 7isageodesic, any parameter t which makes 7 into a geodesic
is caled an gaffine parameter. In particular, let x be a point of a
geodesic 7 and X ¢ T,(1 ) a vector in the direction of . Then
there is a unique affine parameter t for 7, v = #,, such that x, = «x
and %, = X. The parameter t is caled the affine parameter for
7 determined by (x, X).

PROPOSITION 6.2. A curve 7 of class G through % € M &5 a geodesic
if and only if its development into, T,(M) is (an open interval of) a
straight  line.

+
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Proof. This is an immediate consequence of Corollary 4.2.
QED.

Another useful interpretation of geodesics is given in terms of
the bundle of linear frames L(M).

ProposiTion 6.3. The projection onto M of any integral curve of a
standard horizontal vector field of L(M) is a geodesic and, converse&
every geodesic is obtained in this way.

Proof. Let B be the standard. horizontal vector field on L(M)
which corresponds to an element § « R" Let b, be an integral
curve of B. We set x, = =(b,). Then #, = m(b,) = n(B,) = 4,4,
where §,¢ denotes the image of & by the linear mapping b, R* —
T,(M). Since b, is a horizontal lift of x, and ¢ is independent of

.£ is pardlel dong the curve x, (see $7, Chapter II, in particu-
lar, before Proposition 7.4). -

Conversely, let #, ‘be a geodesic’ in M defined in some open
interval containing 0. Let u, be any’ point of L(M) such that
m(ug) = X We set & = ug'%, ¢ R Let u, be the horizonta lift of
x, through u,. Since #, is a geodesic, we have #, = u£. Since u, is
horizontal and -since 6(i,) = u '(m(d,)) = w7 %, = & u, is an
integral curve of the standard horizontal vector field B correspond-
ing to &. QED.

As an application of Proposition 6.3, we obtain the following

THEOREM 6.4. For any point x ¢ M and for any vector X €T, (M)
there is a unique geodesic with the initial. condition (x, X), that 5, a
unique geodesic x, such that x, = ¥ and %, = X.

Another consequence of Proposition 6.3 is that a geodesic, which
is a curve of class €, is automatically, of class G (provided that the
hncar Connection is of class C*).. In fact, every standard horizontal
vector field is of class ¢® and hence its integral curves are al of
class C*. The projection onto M of acurve of class C® in L(M) is
a curve of class C® in M.

A lingar connection of M is said to be complete if every| geodesic
can be'?tended to a geodesic 7 = ¥, defined for — co < < co,
where

X ¢ T,(M), the gcodcsxc 7 = x, in Theorgn 6.4 with khe initid

is an affine parameter. In other w %(‘js for any .F‘Mand
condition (x, X) is defined for al values of -COo < < co.
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Immediate from Proposition 6.3 is the following

Prerosiian 6.5. 4 linear connection is complete ¢/ and only
every standard horizontal vector field on L(M) is complete.

We recall that a vector field on a manifold is said to be complete
if it generates a global-I-parameter group of transformations of the
manifold.

When the linear connection is complete, we can define the
exponential map at each point X ¢ M as follows. For each X ¢ 7, ( M),
let 7 = x, be the geodesic with the initial condition (x, X) -as In
Theorem 6.4. We set

exp X = x;.

Thus we have a mapping of T,(M) into M lar each x. We shall
later (in $8) define the exponential map in the case where the
linear connection is not necessarily complete and discuss its
differentiability and other properties.

7. Expressions in local coordinate systems

In this section, we shall express a linear connection and related
concepts in terms of local coordinate systems.

Let A be a manifold and [/ a coordinate neighborhood in A
with a local coordinate system #!, . . ., x". We denote by X; the
vector field d/oxé, i= 1, ..., n, defined in U. Every linear frame
at a point x of U can be uniquely expressed by’

(Zi X11<Xz)x) S ; Zi X;L(Xt)z)’
where det (X)) # 0. We take (x', X{) as a local coordinate
system in #=}( U) < L(M). (cf. Example 5.2 of Chapter I). Let
(Y?%) be the inverse matrix of (X}) so that X, XiY* = T,YiX¥ = &.

We shall express first the canonical form 6 in terms of the local
coordinate system (x%, Xi). Let e, . . ., e, be the natural bdis for
R and set !

8 = I, O,

Prorosition 7.1 In terms of the local coordingte system (x'; Xi),
the canonical form 6 = X, 6%, can be expressed as follows:

6 = X, Yids'.
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Proof.. Let u be a point of L{M) with coordinates (i, X1) so
that u maps ¢; into E, X{(X,),, where x = w{u). If X* ¢ T,(L(M))

and if
o X*—-Z Al(a)

so that »(X*) = X, (X)), th
B(X*) = ui(Z, M(X,),) = Z,(¥i V) er

Fik e (a;g), .

QED.

Let @ bé thé connection form of 4 linear connection I’ of M.
With respect to the basis {E}} of gl(n; R), we write

w::Z-. 'Ej

Let ¢ be the cross section of L(M) over U which, assigns to each
x ® ‘U the linear frame '((X,) v (X,)2). We st

I
wy =%, : o Y

Then w; isa gl(n; R)-valued I-form defined on U. We define #*
functions T4, 4, j, k= 1, . . sy n, on. U by

w\i 3 "‘ : ”;'w-'} #l wU Eh Eljk(I‘;k dxj),Ek < P

These functions Ii, are called the components (or C/trzstmﬁzls
symbols) ‘of the lisigar connéction I' with respect to-'the local
coordinate system x1, . ,, , x™. It should be noted that they are not’
the components’ of a tensor -field. En fact, these components are
subject to the following) transformation rule, : . -

PROPOSITION 7.2. Let' T be 4 linear connection of M: ‘Let I‘g‘l and
{1, be the components of P with respect to “local coordinate. systems

L X and B, . @) respectively. Ih the zntersectzon of the: two
coordinate nezghborlzoody we have
' o oxkox . O oR
e = iy e
pr z i a:c‘Sf af” o A 2707 oxt

Proof. W; ,dcnvc the above formula from Proposition L4 .of
Chapter-II..Let ¥V be the coordinate neighborhood where the
coordinate system & . , . , &% isvalid. Let'é be the cross section of:
L(M) over ¥ which assigns to each x ¢ V the linear frame
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((9/0x%),y .o ., ( 8/07™),). We define a mapping yyy: U NV —
GL(n; R) by
(%) = o(x) + pyy(*) forxelU n V.

Let ¢ be the (left invariant gl{n; R)-valued) canonical |-form on
GL(n; R) defined in. $4 of Chapter-1; this form was denoted by
f in $4 of Chapter | and in §1 of Chapter II. If (s}) is the natural
coordinate system in GL(r; R) and if ‘() denotes the inverse
matrix of (sf), then

EDI d:’ E%,

the proof being similar to that of Proposition 7.1, It is easy to
verify that o

yoy = (0x'[0%)
and hence :

. . 0% [Ox' axr* 0% -)
Coet ox” = Ry 2 Y )
Yovy = Za,ﬁ(zi % d(axﬂ))E Z,,,(E., o axf’ax"d B

With our nbtation, the formula in Proposition 1.4 of Chapter I
can be expressed as follows:

oy = (ad (pgi))wg + vire. :
By a simple calculation, we see that this formula is equivalent to
the transformation rule of our proposition. QED.

Froth the components T} we can reconstruct the connection
form .

Provrosirion 7.3. Assume thaty . for each local coordinate <system
xl, ..., x" there is given a set of functions T, 4,5,k=1, ..., min
such a way that thgy satigfy the trangformation-rule of Proposition 7.2.
Then there s a unique linegr connection I' whose components with respect
to x1, . x" are precisely the given fum;tzons 1";‘E Moreover, ¢he connection
Jorm o = It Fiis given in ferms of the local coordinate system
(xi, X) by

wj = I, Yi(dX" + Zim Pf,,,X' dx™), =15

Proof. It is easy to verify that the’ form e defined by the

above formula defines a connection in- L{M), that 13, ¢ satisfies

the conditions (a’) and (b’) of Proposition .1 of Chapter 11. The
fact that @ is independent of the loéal coordinate system used
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follows from the transformation rule of I'i; this can be proved by
reversing the process in the proof of Proposition 7.2. The cross
section ¢: [/ — L(M) used above to define ey is given in terms
of the local coordinate systems (x) and (&7, X3) by (x%) = (x¢, 6%).
Henme, a*mf = E Ti. dx™ This shows that the components of
the connection I' defined by  are exactly the functionsI%,. QED:

The components of a linear connection can be expressed also
in terms of covariant derivatives.

PropositTioN 7.4. Let x%,. .., 2" be a local coordinate system in M
with.a linear connection I". Set X; = 0/d«%,i=1,. .., n. Then the
components I'};, of I* with respect to &, . . ., ¥ are given by

¢ Vx X = 5 T4X,

Proof. Let X¥ be the horizontal [ift of X,. From Proposition
7.3, it follows that, in terms-of the coordmate system (¥, X3), X*

jsgivenby . .
XF = (a/ax’) — Zz - FJkX"(a/BX’

To apply Proposition 1.3,  let f be the R"-valucd function on
7-Y(U) = L(M) which corr%ponds to X,. Then g

f=Z.Yfe,.

A simple caculation shows that
) X = Ll /

By Proposition 1.3, X¥f isthe -function corresponding to V ij,-
and -hence ’
VX, =2, Th X '

o ) QED.

"PROPCBI TION 7.5: Assumé that a mapping X(M) x X(M) —
(M), denoted by (X, ¥y — V¥, is given so as to satisfy the conditions
(), (2), (3) and (4) of Proposition 2.8. Then there is a unigue linear
connection I' of M such that V Y is the covariant derivative of Y in -the
direction of X with respect to I'.

Proof.  Leaving the detail to the reader, we shal give here an
outline of the proof. Let x ¢ M. It X, X', Y and Y’ arc vector fields
on Mand if X=X and Y =Y’ in a neighborhood of x, then
(VyY), = (VxY'),. This implies that the given mapping
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(M) x ¥(M) - %(M) induces a mapping I(U) x 3(U) —

X(V) satisfying, the same conditions of Proposition 2.8 (where U -

is any open set of M )f'ln particular, if U is a coordinate neighbor-
hood with a local'coordinate system x%, ..., x* we define n8
functions T, oti U by the formula given in Proposmon 7.4. Then
these functions  sat sfy the transformation rule of Proposition 7.2.
By Proposition 7.3, they define a linear connection, say, TI'. It is
dear that VY is the covariant derivative of Yin the direction of
X with respect to T'. QED.

Let %* be the components of a vector field ¥ with respect m a
local coordinate system #%, . .., I, Y = E, 5*(9/0x%). Let 7}, be
the components of the covanant dlfferentlal VY so that Vg Y =

7.X,, where X, = 8/dx*. From Propositions 7.4 and 2.8, we
obtain the foIIowing formula :

7= on'fox’ + I, That.

If X is a vector field with components &%, then the components of
VY are given by Z; 5,&.

More generally, if K is a tensor field of type (r, s) with com-
ponen tsKix '+ ¥, then the components of VK are given by

Ku lc _aKf'l /ax" + Zaml (z FHK"I'“’]-;""’)
- Zﬂ—l(zm rk] Kl

where [ takes the place of i, and m takes the place of j. The proof
of this formula is the same as the one for a vector field, except that
Proposition 2.7 has to be used in place of Proposition 2.8. If X
is a vector field with components ¢ then the components of
VK ae given by .
Iy Ko irad™

The covariant derivatives of higher order can be defined
smilarly. For a tensor field K with components K‘l. ", A% ¢
has components Kjt: h ko

The components of thetorsuon T and the components R},
of the curvature R are deflned by

T(X, X,) =2, ThX, R(X, X)X, = I, RjuX..

Then they can be expressed in terms of the components ,':,, of the
linear connection I' as follows.

1 I
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Prrsmoy 7.6. V@ have

= Ty — Ty
Ry, = (OT}/ox* — aI‘k/ax’) + Z,(T5Thm = TPTG).
Proof, These formulas follow immediately from Theorem 5.1
and Proposition 7.4. QED.
The proof of the following proposition is a straightforward
calculation. .

Presi iy 7.7. (1) If f isafunction defined on M, then
Swi = Fiu = Z, T fue
2) If X is a vector fiedd on M with components &%, then,
Ep — = I, Rj,kt{j/ + I, Tj

Since 72 + n I-forms 6, wi, 1,7, k = 1, ., 1, define an
absolute paralelism (Proposition 2.6), every differentidl form on
L(M) can be expressed in terms of these |-forms and functions.
Since the torsion form ® and the curvature form Q are'tensorial
forms, they can be expressed in terms of n I-forms §% and functions.

We define a set of functions 7%, and IN{]‘T,‘, on L(M) by

O =3, 4THo'A 0%, Th = — l;j"
Qj = Zk,t%R;'kze A B, ﬁ;:kl = —Ii;:m»
These functions are related to the components of the torsion T

and the curvature R as follows. Let ¢: U — L(M) be the cross
section over U defined at the beginning of this section. Then

® i = iR = i
<3 ‘J'k - Tfk” a R}H - R]H'

These formulas follow immediately from Proposition 7.6 and

from .
o* df = X, a*w} Ao*0 + o*0",

o* dwj = —Z, 6*w} A o*wf + o*Q,
o*6' = dx‘ and o*w} = I, T}, dx*.

Prorosl Tion 7.8. Let x* = x'(¢) be the equations of a curve
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7 = x, of class C2 Then 7 is a geodesic if and only if
d2xt o odx? dx®
— . — =
e T Sy gy = 0
Proof. The components of the vector field %, along r are
given by dx'/dt. From ‘the formula for the components of V¥
given above, we see that, if we set X = #,, then VxX =0 is
equivalent to the above equations. QED.

i=i...,nNn

We shal compare two or more linear connections by their
components.

ProrosiTion 7.9. Let I' be a linear connection of M with com-
ponents T. For each fixed t, 0 <t < 1, the set of functions I'*}, =
tF’k + (@1 -1 I" defines a Imear connectlon I’* which has the same
geodesics as T\, In particular, T*}, = 4(T% + T};) define a linear
connection ~ with ~ vanishing  torsion.

Proof. OQur proposition follows immediately from Propositions
7.3, 7.6 and 7.8. Q ED.

In general, given two linear connections T' with components
[, and I' with components I}, the set of functions (T, +
(1 — ) T"%, define a linear connection for each 4 0 < ¢ < 1,
Proposition 718 implies that I’ and I” have the same geodesics if
I+ Ty =T% + I,

The following proposition follows from Proposition 7.2.

prorosimion 7.10. If Fi, and” TVi, are the components of linear
connections I" and I”” respectively, then S ,,, — I'; are the com-
ponents of a tenorjield of type (1, 2). Conversely if T kare the components
of a linear connection T and 87, are the components of a tensor field § of
Ype (1, 2), then F']k = ’:k + S}k define a linear connection 1?‘. In terms
of covariant derivatives, they are related to each other as follows :

VY =V Y + §(X, Y) for any pector fields X and Y on M,
where V and V' are the covariant differentiations with respect to I" and: T
respectively.

8. Normal coordinates

In this section we shall prove the existence of normal coordinate
systems and convex coordinate neighborhoods as well as the
differentiability of the exponentiad map.
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Let M be a manifold with a linear cqnncction I'. Given
X e T,(M ), let = x, be the geodesic with the initid condition
(X, X) (cf. Theorem 6.3). We set

exp tX = %,
As we have seeﬂtalready in $6, exp tX is defined in some open
interval —e; < < &, Where ¢, and &, are postive. If the
connection is complete, the exponential map exp is defined on
the whole of T,(M) ‘for each x ¢ M. In genera, exp is defined
only on a subset of 7,(M) for each x ¢ M.

proposiTion  8.1.  ldentifying each x ¢ M with the zero vector at X,
we consider M as a submanifold of T(M) = Lﬁ T,(M). Then there

€
is a neighborhood N of M in T(A) such tha:': the exponential map is
defined on N. The exponential map N — M is differentiable of class C”,
provided that the connection is of class C”.

Proof. Let X, be any point of M and %, a point of L(M) such
that =(up) = x4 For each ¢ ¢ R*, we denote by B(¢) the corre-
sponding standard horizontal vector field én L(M) (cf. §2). By
Proposition 1.5 of.Chapter |, there exist a neighborhood U#* of
u, and a positive number 6 such that the local |-parameter group
of loca .transformations exp tB(§) : -U* — L(M) is defined. for
|| = 6. Given a compact set K of R*, we can choose .U* and ¢
for all ¢ ¢ K simultaneously, because B(&) depends differentiably
on ¢ Therefore, there exist a neighborhood U* ‘of u, and a
neighborhood ¥ of 0 in R* such that exp tB(&) : U*¥ — L(M)
is defined for & ¢ ¥ and |£| < 1. Let U be a neighborhood of x, in
M and ¢ a cross section of L(M) over U such that o(x,) = %, and
o(U) c U*. Given x ¢ U, let N, be the set of X ¢ T,(M) such
that o(x)"*X ¢ V and set N(xy) = U N Given X ¢ N,, set

= ¢(x)~'X. Then =((exp tB(¢)) a(x)) is the geodesic with the
|n|t|al cond|t|on (x, X) and’ hence

exp X = w((exp B(£)) " o(x)).
It is now clear that exp: N(x,) = M is differentiable of class C”.
Finaly, wesat N = UJ N(x,). QED.

f‘no M
PROPOSITION 8.2. For every point x ¢ M, there is a neighborhood N,
of x (more preczsely, the zero vector at X) in T,(M) which is mapped
diffeomorphically onto a neighborhood U, of x in M by the exponential map.
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Proof. From the definition of the exponentia map, it is
evident that the differential of the exponentiad map at ¥ is non-
singular. By the implicit function theorem, there is a neighbor-
hood N, of x in T,(M) which has the property stated above.

QED.

Given a linear frame ' u = (X, . X,) a x, the linear iso-
morphism u: R* - T,(M) defines a coordinate system in T,(M)
in a natura manner’. Therefore, the diffeomorphism exp: N, —
U, defines a local coordinate system in U, in a natural manner.
We cal it the normal coordinate system determined by the frame u.

Prorosi TioNn  8.3. Let xl,..., ™ be the normal coordinate system
determined by a linear frame u = (X% ..., X®) at x € M. Then the
geodesic 7 = ¥, with the initial condition (x, X), where X = X, a’X, is
expressed by

=4t i=1...,n

Conversely, a local coordinate system %, ..., %" with the above property is
necessarily the normal codrdinate system determined by = (X4,. .., &").
Proof. The first assertion is an immediate consequence of the
definition of a norma coqrdinate system. The second assertion
follows from the fact that a geodesic is uniquely determined by the
initial condition (x, X). QED.

Remark. In the above definition of a normal coordinate
system, we did not specify the neighborhood in which the co-
ordinate system is valid. This is because if x%, ..., " is the normal
coordinate system valid in a neighborhood U of x and )%, .., J
is the norma coordinate system vaid in a neighborhood’ V of x
and if the both are determined by the frame u = (X}, - - - - Xa)s
then they coincide in a neighborhood of x.

Prorosi Tion 8.4.. Given a linear connection I' on M, let T be its
components with respect to a normal coordinate system with origin xg. Then

Ptk+r1=0 atxo.

Consequently, if the torsion of [ vanishes, then I"k =0 at Xy

Proof. Letxl,...,x* be a normal coordlnate system with
origin x,. For any (a*, a") «R", the curve defined by x* = a*,
t=1,,,,n is a geodesc and, hence, by Proposition 7.8,
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%, Th(al, ..., at)@a* = 0. In paticular,
Zjp Ty (o)a'a* = 0.
Since this holds for every (a!, ..., a”), I+ T}; = 0 a x, If

the torsion vanishes, then ;ﬁk =0at x, by Proposmon 7.6.  QED.

CoroLLARY  8.5. Let K be a tensor field on M with components
K‘l .}: with respect to a normal coordinate system 1, ..., x" With
orlgln xo. If the torsion vanishes, then the covariant derivative K‘l e Kk
coincides with the partial derivative 9Kj1:::5/0x* at x,. ¥

Proof. This is immediate from Proposmon 84 and the
formula for, the covariant differentia of K in terms of I“,, given

in $7. QED.
CoroLLARY 8.6. Let o be any differential form on M. If the

torsion  vanishes, then
= A(Vw),

where Ve is the covariant differential Of .w and A is the alternation'defined

in Example 3.2 of Chapter I.

" Proof. Let x, be an arbitrary point of M and x%, ..., 2" a

normal coordinate system with origin x,. By’ Corollary 8.5,
do = A(Vow) a x, QED.

TheoRem 8.7. Let #1, .. ., x® be a normal coordinate system with
origin x,. Let U(x,; p) be the neighborhoodof x, defined by E, (x9)2 < p2,
Then there is a positive number a such that if 0 < p < g, then

(1) Ulxy; p) is convex in the sense that (Zny ‘two points of U(xy; p)
can be joined by a geodesic which lies in U(z,; p).

(2) Each point of Uf(xy; p) has @’ ndrmal coordinate neighborhood
containing U(x,; p).

Proof. By Proposition 7.9, we may assume that the linear
connectlon has no torsion.

LEMMA L Let S(xo; p) denote the sphere defined by ¥, (x')2 = p2
Then .there, exists a positive number ¢ such that, if 0 < p < ¢, then any
geodesic whick 1s tangent to S{(%o; p) at a point, say y, of S(x,; p) lies
outside S(%o5 p) in.a neighborhood of .

Proof of Lemma 1. Since the torsion vanishes by our assump-
tion, the components I‘J‘Zhof the linear connection vanish at x, by
Proposition 8.4. Let &' 5= x'(t) be the eguations of a geodesic
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which is tangent to $(xy; p) a a point y = (x*(0), . . ., %*(0))
(p will be restricted later). Set

F(t) = Z; (x*()%
Then

F(0) = p%,
aF L i ix_l) —
(EZ-);=0~ 22 (0)( dth-o 0,

Fa i dzx?')
m?m((z) 0 ZE)

Because of the equations of a geodesic given in Proposition 7.8,

we have
. dx? dx")
Ji=0

¢PFy i 9% 4x
(W)z:o: j"‘((é”‘ = I T dt dt

Since T vanish a x,, there exists a positive number ¢ such that
the quadratic form with coefficients (3,, — £, Ti#¥") is positive
definite in U(xe; €). If 0 < p < ¢, then (d®F/dt?),_, > O and
hence F(t) > p* when ¢ # O is in a neighborhood of 0. This
completes the proof of the lemma

Lemma 2. Choosea positive number c as in Eemma 1. ‘Then there
exists & positive number a, < ¢ such that
(1) Any two points of U(*e; @) can be joined by a geodesic which lies
in U(xg;cC) 5 .
(2) Each point of U(xe; @) has a normal coordinate neighborhood
containing U(x,; ). , ,
Proof of Lemma 2. We consider A4 as a submanifold of T(M)
in a natural manner. Set

o(X) =(x, exp X)  for X e T,(M).

If the connection is complete, ¢ is a mapping of T(M) into
M x M. In general,  is defined only in a neighborhood of M in
T(M). Since the differential of ¢ at x, is nonsingular; there exist
a neighborhood V of x, in T(M) and a positive number a < ¢
such that ¢: V — U(X,; @) X U(%,; a) is a diffeomorphism. Taking ¥
and a small, we may assume that exp ¢X € U(x,; ¢ for al X ¢ V
and | {| = 1. To verify condition (1), let x and y be points of U(xy; a).
Let X = ¢7Yx, #), X € V. Then the geodesic with the initial
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condition (x, X) joins x and y in U(x,; ). To verify (2), let
V, = V n T,(M). Since exp: V, -» U(x,; a) is a diffeomor-
phism, condition ¢2) is satisfied.

To complete the proof of Theorem 8.7, let 0 < p < a Let x
andy be any points of U(x,; p). Let x* = x¥(#),0 <t < 1, be the
equations of a geodesic ‘from x toy in U(x,; €) (see Lemma 2).
We shall show that this geodesic lies in U(x,; p). Set

F(t) = I, (¢*(¢))2 for0 i< 1.

Assume that F(t) = p? for. some ¢ (that is, x(¢) lies outside
Ulx,; p) for some ¢). Let ¢, 0 < ¢, < 1, be the value for which
F(t) attains the maximum. Then

I

_ dF) _ ; dx")
O o (gt-lt=to—.. 22‘ * (to 7{ 1=l|).

This means that the geodesic #'(f) is tangent to the sphere
S(xo; po), Where pZ = F(t,), at the point x*(¢,). By the:choice of
ty, the geodesic x'(¢) liesingde the sphere S(xy; po), contradicting
Lemma 1. This proves (1). (2)- follows from (2) of Lemma 2.

"QED.

The existence of convex neighborhoods is due to J. H. C.
Whitehead [ 1].

9. Linear infinitesimal holonomy groups '

Let T be a linear connection on a manifold M. For each point
u of L(M), the holonomy group Y(u), the loca holonomy
group ¥*(u) and the infinitesma holonomy group ‘¥'(u) are
defined as in $10 of Chapter 1. These groups can be realized as
groups of linear transformations of T,(#), x = w(u), denoted’ by
¥(x), ¥*(x) and Y’(x) respectively (cf. § of Chapter II).

Theorem 9.1.  The Lie® algebga g(x). of the holonomy group ¥ (x)
is equal to the subspace of linear endomorplkisms of T,(M) spanned by all
elements of the form (7R) (X; Y) = =1 o R(+X, 7¥) o =, where
X, Y € T,( M) and 7 is the parallel displacement along an arbitrary piece-
wise dyfferentiable curve 7 starting Jrom x.
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Proof. This follows immediately from Theorem 8.1 of Chapter
Il and from the relationship between the curvature form €2 on
L(M) and the curvature tensor field R (cf. $5 of ChaptanB.

It is easy to reformulate Proposition 10.1, Theorems 10.2 and
10.3 of Chapter Il in terms of Y(x) and Y"*(x). We shall therefore
proceed to the determination of the Lie algebra of W'(x).

Theorem 9.2, The Lie algebra g’(x) of the infinitesimal holonomy

group ‘t”(x) is spanned by all linear endomorphisms of T,(M) of the
form (VER)(X, Y; V,....; Vi), where X, Y, V,. .., Vre T,(M)
and0 = k < o0,

Proof. The proof is achieved by the following two lemmas.

Lemw 1. By atensor field of type A, (resp. B,), we mean a tensor

field of pype (1,1) of the form Vy - ¥, (R(X YY) (resp. (VER)
X, Y5 015 .. V;,\,\ where X, Y.V, ... 'V are arbitrary vector

Sields on M. Then every tensor field of type A, (resp. B,) is a linear
combination (with differentiable functions as coefficients) of a finite number

of tensor fields of type B, (resp. 4,), 0~ j -~ k.
Proof of Lemma 1. The proof is By induction on k. The case

k =0 is trivial. Assume that V,, . +Vy (R(X,Y)) is a sum
of terms like

FIVRU,v: Wys. . ;s Wy), 0575k —1,
where f is a function. Then we have

Vv (AVR)U, Vi Wy, s W)

= (V) (VR)(U, v; Wy5.. .0 W)
+(VUIRYU, v; W, . .; WiV
+ VIRV U, v, Wos . W)
+ (VRYU, NV, V; Wy, .. .0 W)

I (VR T WLV W W),

This:shows that every tensor field of type A, is a linear combina-
tion of tensor ficlds of type B, 0. . j k.
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Assume now that every tensor field of type B, is a lincar
combination of tensor ficlds of type A, 0 7 : £ —~ 1. We have

(VER)(X, 15 V5 1) = Ve (V'R Y5 Va5 V)
~ (VRN X N T V)
~ (VEIRYY, Uy, Drve 5 Ve)
— XEL(VRIRYX, Y Vi Ve Vs V).

‘ i3
The first term on the right hand side is a lincar combination of
tensor fields of type A ;,0 ~ j: ~ k. The remaining terms on the
right hand side are linear combinations of tensor ficlds of type .l
0 =;:’k 1. This completes the proof of Lemma 1.

By definition, g'(x) is spanned by the values at u of all 9l(n; R)-
valued functions of the form (1,), £ =0, 1, 2,.. of .n of
Chapter 11). ‘I"hcorcm 9.2 will follow from Lemmag and: th(‘
following lemma,

Lewa 2. If X Y,V, ..., V, arevector fieldson M anh zf
XA T VE 0 FVE are their horlzontal lifts to L(M), t/zen we /zaag
(Ve Vi (R(X, Y))) Z

=uo (VE- - VFHQUX*, T*))), e u! (Zj

for Z ¢ ‘Tz(ﬂf).

Proof of Lemma 2. This follows immediately from Proposition
1.3 of Chapter 11I; wc take R(X, Y) and 2Q(X* Y*) as ¢ and f
in Proposition 1.3 of Chapter III. QED.

By Theorem 10.8 of Chapter Il and Theorem 9.2 the. rastrinted
holonomy group 'W(x) of a real analytic lincar corncction iS
completely determined by the values of al successive covarian
differentials VR, k = 0, 1, 2, . . ., at the point y, l,,tf

The results in this section were obtained by Nijenhuis [2].




CHAPTER IV

Riemannian Connections

1. Riemannian metrics

Let A4 be an n-dimensiona paracompact manifold. We know
(cf. Examples 5.5, 5.7 of Chapter | and Proposition 1.4 of
Chapter 111). that M admits a Riemannian metric and that there
is a 1: 1 correspondence between the set-of Riemannian metrics
on M and the set of reductions of the bundle L{M) of linear
frames to a bundle O(M)<of orthonormal frames. Every Rie-
mannian metric g defines a positive definite inner product in each
tangent space T4(M); we write, g, (X, Y) or, smply, g(X, Y)
for X,Y ¢ T,(M) (cf. Example 3.1 of Chapter I).

Example 1.1. The Euclidean metric g on R® with the natural
coordinate system x%, . ... " is defined by

o( 8/@x’, 9]ox’) = §;;, (Kronecker's symbol).

Exam;ble 12. L F: N- A4 be an immerson of a manifold
N into a Riemannian manifold M with metric g. The induced
Riemannian metric k on N is defined by A(X, Y) = g( fxX, fe Y),
XY € T,(N).

Example 1.3. A homogeneous space G[H, where G is a Lie
group and H is a compact subgroup, admits an invariant metric.
Let H be the linear isotropy group at_the origin o (i.e, the point
represented by the coset H) of G/H; H is a group of linear trans-
formations of the tangent space T,(G/H), each induced by an
element of H which leaves the point o fixed. Since His compact,
so is H and there is a positive definite inner product, say &os IN

T,(G/H) which is invariant by H. For each % ¢ G/H, we take an
element a ¢ G such that a(0) = x and define an inner product g.
in T,(G/H) by g.(X, Y) = g(a7'X, a7'Y), XY ¢« T,(GIH). It
154
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is easy to verify that g, is independent of the choice of a ¢ G such
that a(o) = x and that the Riemannian metric g thus obtained is
invariant by G. The homogeneous space G/H provided with an
invariant Riemannian metric is caled a Riemannian homogeneous
space.

Example 14. Every compact Lie group G admits a Riemannian
metric which is invariant by both right and left trandations. In
fact, the group G x G acts transitively on G by (a, ) + x = axb~),
for (a, 6) ¢ G X G and x ¢ G. The isotropy subgroup of G x G
at the identity e of G is the diagond D = ((a, a}; a € G}, so that
G = (G x G)/D. By Example 1.3; G admits a Riemannian
metric invariant by G x G, thus proving our assertion. If G is
compact and semisimple, then G admits the following canonical
invariant Riemannian metric. In the Liealgebra g, identified with
the tangent space T,(G), we have the Killing-Cartan form
(X, Y) = trace (ad X+ ad Y), where X,Y eg=2,G). The
“ form @ is bilinear, symmetric and invariant by ad. G. When G is
compact and semisimple, @ _is negative definite. We define a .
positive definite inner product g, in T,(G) by g(X, Y) =
—@(X, Y¥). Since ¢ is invariant by ad G, g, is invariant by the
diagond D. By Example 1.3, we obtain a Riemannian metric on
G invariant by G x G. We discuss this metric in detail in

Volume 1II.

By a Riemannian metric, we, shall aways mean a positive
definite symmetric covariant tensor field of degree 2. By an
indgjinite Riemannian metric, we shall mean a symmetric covariant
tensor field g of degree 2 which is nondegenerate at each x ¢ M,
that is, g(X, Y) = 0 for al Y ¢ T,(M) implies X = 0.

Example 15. An indefinite Riemannian metric on R* with the
coordinate system x, . . ., x* can be given by

X1 (dx)? — Zjyy, (49))

where 0 < p<n — 1. Another example of an indefinite Rie-
mannian Metric is the ¢amonical metric on a noncompact, semismple
Lie group G defined as-follows. It is known that for such a group
the Killing-Cartan form ¢ is indefinite and nondegenerate. The
construction in Example 1.4 gives an indefinite Riemannian metric
on G invariant by both right and left trandations.
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Let M be a manifold with a Riemannian metric or an in-
definite Riemannian metric g. For each x, the inner product £,
defines a linear isomorphism y of T,(M) onto its dual T*(M)
(space of covectors ‘at x) as follows: To each X ¢ T,({M), we
assign the’ covector a ¢ T,*(M) defined by

¥, a) = g,(X,Y) foradl YE T,(M).

The inner product g, in T,(M) defines an inner product, denoted
aso by g,, in the dua space T,*(M) by means of the isomorphism

-

Ll B) = L), p7(p)  fora e T:(M).

Let x1, . . ., 2™ be a local coordinate system in M. The com-
ponents g,; of g with respect to x%, . . ., x™ are given by

g = g@fosh, 9fox?),  Lj=1,....0

The contravariant components g* of g ae defined hy
g = gldrt, def),  Hj=1,...,0
We have then
ZJ g™ = &.
In fact, define y,, by ¢(0/0x") = Z;v,; dx’. Then we have
8y = £(0[0x', 8]axt) = (20w, v(3/2x) = iy
On the other hand, we have
o = (9fox?, dxk)zg(dx",zp(ajaxi)) = g(dx*, 2, v,y dx’)=X,vy,,8%,

thus proving our assertion.

If & are the components of a vector or a vector field X with
respect to &%, . . ., *" that is, X = I, £(9/dx*), then the com-

ponents &, of the corresponding covector or the corresponding
I-form a = y(X) are related to &¢ by.

£ = I, g, &=, sk’

The inner product. g in T,(M) and in T:(M) can be extended
to an inner product, denoted also by g, in the. tensor space Tj(x)
at « for each type (r, s). I K and L are tensors at % of type (r 5)
with components K'! 7 and Lh ¥ * (with respect to x1, . "),
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then ) '
8K L)=Z gy, Big gt gk pLh ol
The isomorphism y: T,(M) — T*(M) can be extended to
tensors. Given a tensor K ¢ T’% wnﬁ components K’t 'v we
obtain a tensor K’ ¢ T;;}(x) with components o
Kot = oGy
or K" ¢ T5*1(x) with components
K/n, ;::: — gilet, 1?‘_11
Example 1.6. Let A and B be skew-symmetric endomorphisms
of the tangent space T,(M), that is, tensors at x of type (1, 1)
such that

g(4X, Y) = -9(AY, X} and g(BX, Y) = -g(BY, X)

for X, YE T,(M).
Then the inner product g(A, B) is equa to --trace (AB)
fact, take alocal coordinate system 1, . . ., x® such that g, = 6“
a x and let af and & be' the components of A and B respectively.
Then

g(A, B) = = g,,,g”a'b" = Z dibi = —Z ajb} = —trace (AB),

since B is skew-symmetric, i.e., b;. = -bg.',
On a Riemannian manifold M, the arc length of a differentiable
curve T = x,a =t £ b, of class C! is defined by

b ‘
L :L g%, £ dt.

In terms Of a local coordinate system %, . . ., #", L is given by

b dxt dei\b
L = il
L(zi,igd T dt)dt'

This definition can be generalized to a piecewise differentiable
curve of class € in an obvious manner.

Given a Riemannian metric g on aconnected manifold M, we
define the distance function d(x,») on M as follows. The distance
d(x, y) between two points x andy is, by definition, the infinimum
of the lengths of all piecewise differentiable curves of class Ct
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Joining x and-r. Then we have
d(x,3) 20, d(x3) = d(, %), dx2) + d(» 1) dx, z).
We shall see later (in §3) that d(x, y) = 0 only when v =3 and

that the topology defined by the distance function (metric) d is
the same as the manifold topology of M.

2. Riemannian connections

Although the results in this section are valid for manifolds with

indefinite Riemannian metrics, we shall consider (positive |

definite) Riemannian metrics only for the sake of simplicity.

Let M be an n-dimensiond Riemannian manifold with metric’
g and O(M) the bundle of orthonormal frames over M. Every
connection in O(M) determines a connection in the bundle L(M)
of linear frames, that is, a linear connection of M by virtue of
Proposition 6.1 of Chapter Il. A linear connection of Af is caled
a metric connection if it is thus determined by a connection in 0 (M).

PROPOSI TI ON 2.1. A linear connection I' of a Riemannian manifold
M with metric g is a metric connection {f and only if g is parallel with ,
respect to I'.

Proof. Since g is a fibre metric (cf. §1 of Chapter Il1) in the
tangent bundle T(M), our proposition follows immediately from,,
Proposition 1.5 of Chapter Il1. QED.

Among al possible metric connections, the most important is
the Riemannian connection (sometimes called the Levi-Civita connection)
which is given by the following theorem.

THeorRem 2.2. Every Riemannian manifold admits a unique metric
connection ~ with  vanishing  torsion.

We shall present here two proofs, one using the bundle O(M).
and the other using the formalism of covariant differentiation.

Proof (A). Uniqueness. L€t 6 ‘be the canonical form of L(M)
restricced to O(M). Let w be the connection form on O(M)
definining a metric connection of M. With respect to the basis
€. .., €, ofR"andthebassE’|<],lj 1, ..., n of the Lie
agebra o(n), we represent § and @ by n forms 9’, i=1,...,n
and a skew-symmetric matrix of differential forms o' respectively.
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The proof of the following lemma is similar to that of Proposition
2.6 of Chapter Il and hence is left to the reader.

Lema. Then forms 64 i=1,...,n, and the {n(n — 1) forms
w], 1 £ J <k =n, define an absolute parallelism on O(M).

Let ¢ be the connection form defining another metric connection
of M. Then ¢ — o can be expressed in terms of 6¢ and ] by the
lemma. Since ¢ — w annihilates the vertical vectors, we have

g} - o} = I, Fi.0%,

where the Fi’s are functions on O(M). Assume that the connec-
tions defined by @ and ¢ have no torsion. Then, from the first
structure equatlon of Theorem 2.4 of Chapter I1I, we obtain

1’

0= J.((pj—wJ)/\G’::Ej'k Fiy 0% A 6,

This implies that Fj, = Fj;. On the other hand, Fi = —F); since
(w)) and (¢}) are skew-symmetric. It follows that Fj, = 0,
proving the uniqueness.

Existence. Let ¢ be an arbitrary metric connection form on
O(M) and. @ its torsion form on O(M). We write

O =4, Tho'a 0%, Ti = —Ti,

and set
” =Z; 2(T'x + Tu + TL) 0%
and
w; = %' + 'r'

We shall show that w = (f) defines the deﬂred connection. Since
both ( %, + 7%,) and T% are skew-symmetric in i and j, 0 is
5 Hencce w IS o(n)- valued. Since 6 annihilates the vertlcal
vectors, so does r = (7i). It is easy to show that R}r = ad (a7?) (‘r
for every a ¢ O(n). Hence, » is a connection form. FinaIIy, we
verify that the metric connection defined by « has zero torsion.
Since (T% + T4,) is symmetric in j and k, we have

L, A0 = —0,
and hence '
dbf = —Z, gy A B + O = —I, i A B,

proving our assertiof®
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Proof (B) . Existence. Given vector fields X and Y on M, we
defineV x Y by the following equation :
9g(VxY, Z) = X-g(Y, Z) + Y- g(X, Z) — Z - ¢(X, Y)
+ 8(IX, Y), Z) + g([Z, X], ¥) + ¢(X, [Z, Y]),

which should hold for every vector field Z on M. It is a straight-

forward verification that the mapping (X, Y) = Vx1, satisfies '
the four conditions of Proposition 2.8 of Chapter IIl and hence
determines a linear connection I' of M by Proposition 7.5 of
Chapter I1l. The fact that I’ has no torsion follows from the
above definition of VxY and the formula T(X, Y) = VXY —
VyX = [X, Y] given in Theorem 5.1 of Chapter Ill. To show
that T is a metric connection, that is, Vg = 0 (cf. Proposition 2.1),
it is sufficient to prove

X ! g(Y, Z) = g(VXY’ Z) + g(Y’ sz)
for all vector fidds X; Y and Z,

by virtue of Proposition 2.10 of Chapter Ill. But this follows

immediately from the definition of V
Uniqueness. It is a straightforward‘r

satisfies Vgg = 0 and VxY ~ 'Y
satisfies the equation which defined V xY.

In the. course of the proof, we obtained ‘the following
2.3 With respect to the Riemannian connection, we have

Y.
P . i V-—Y
ver|f|cat|0]n ‘__-thgt 'thc Lot

) Y i)
QED.

ProPos| TI ON
28(VxY, Z) = X-g(Y, 2) +'Y -g(X, Z) —~ Z- g(X, Y)
-+ ¢([X, 1), 2) +6(1Z, X}, Y) + g(X, [Z, Y])

for all vector fields X, Y and Z of M.
COROLLARY 24 Interms of a local coordinate system #%, ..., x",

the components I‘;:,c of the Riemannian connection are given by

1(9g  %8n _ .a;g.’_')
g Tl =_§('5;1' T 3 k)

Proof. Let X = 9/dx', Y = 9/8x* and Z = 9dx* in Pr%)gg

tion 2.3 and use Proposition 7.4 of Chapter III.
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Lea M and M’ be Riemannian manifolds with Riemannian
metrics g and g’ respectively. A mapping f: M - M’ is caled
isometric at a point x of M if g(X,Y) = J( f X, f, Y) for dl
X,Y ¢ T,(M). In this case, fy IS injective a x, because f,X = 0
implies that g(X, Y) == O for adl Y and hence X = 0. A mapping
f which is isometric at every point of M is thus an immersion
which we'call an isometric immersion. If, moreover, f is 1: 1, then)
it is called an isometric imbedding of Minto M. If f maps, M1:1
onto M’, then f is called an isometry of M onto M".

PReosiTioN 2.5, If fis an isometry of a Riemannian manifold M
onto another Riemannian manifold A7, ‘then the dgﬁn’ntial off commutes

with the paralfel displacement. More prebisel)), if 7 is a curve from x toy
in M, then the following diagram is commutative:,

T (M) <> T,(M) "
| a
T,(M) s T, (M),
where X’ = f(x), y" = f(y) and 7" = f(7).

Proof. This is, a consequence of the, uniqueness of the
Riemannian connection in Theorem 2.2.. Being a diffeomorphism
between M and M’, f defines a 1: I correspondence between the
set of vector. fields on M and. the set of vector fields on Af’, From
the Riemannianconnec'gion I on M’, we obtain a linear connec-
tionT on M by VY = f1(V,(fF)), where X and Y are vector
fields on M. It is easy to verify that T' has no torsion and is metric
with respect to g. Thus, [ is the Riemannian connection of Af,

This means that (V. . Y) = V,y(f¥) with respect to the Rieman-
nian connections of M and M’. This implies immediately our

proposition. QED

Proposition 2.6. If f 45 an isometric immersion of a Riemannian
manifold M into another Riemannian manifold M’ and if /(M) is open
m M, then the differential off commutes with the parallel displacement.

Proof.  Since f(M) is open in M’, dm Af == dim Af’. Since f
is an immersion, every point x of Af has an open neighborhood [’
such _that f(U) is open in M anq U »»[(l,;’) isa diffco.
morphism. Thus, f is an isometry of ’ onto f( L’). By Proposition
2.5, the differential off commutes with the parallel displacement




162 FOUNDATIONS OF Dl rrerenmiAL GEOVETRY

along any curve in U/. Given an arbitrary curve r from x to-y in
M, we can find a finite number of open neighborhoods in M with
the above property which cover 7, It follows that the differential
off commutes with the paralel displacement along . QED.

Remark. It follows immediately that, under the assumption of
Proposition 2.6, every geodesic of M is mapped by f into a
geodesic of M’,

Example 2.1. Let M be a Rieriannian manifold with metric g.
Let M* be a covering manifold of M with projection ,. We can
. introduce a Riemannian metric g* on M* in such a way that
p: M* — M is an isometric ‘immersion. Every geodesic of M*
projects on a geodesic of M. Conversely, given a geodesic 7 from
x toy in M and a point ‘x* of M* with p(x*) = x, there is a
unique curve 7* in M* starting from x* such that p(*) = r.
Since p is a loca isometry, 7* is a geodesic of M* A smilar
argument, together with Proposition 2.6, shows that if p(x*) = x,
then the restricted linear holonomy group of M* with reference
point x* is isomorphic by p to the restricted linear holonomy group
of M with reference point x.

Proposition 2.5 and 2.6 were stated with respect to Riemannian
connections which are specia linear connections. Similar state-
ments hold with respect to the corresponding affine connections.
The statement concerning linear holonomy groups in Example
2.1 holds also for affine holonomy groups.

3. Normal coordinates and convex neighborhoods

Let M be a Riemannian manifold with metric g. The length of
avector X, i.e, g(X, X)! will be denoted by |.X}.

Let 7 == x, be a geodesic in M. Since the tangent vectors %, are
pardld along r and since the parallel displacement is isometric,
the length of #, is constant along . If £, =1, then ¢ is called’ the
canonical parameter of the geodesic .

Bv a normal coordinate system at x of a Riemannian manifold M we
always mean a normal coordinate system x!,. , ., 2" a x such
that g/ox1, . ,8/0x form an orthonormal framc at x. However,
9]oxt, . a/ax" may not be orthonorma at other points.

Let U be a normal coordinate neighborhood of x with anormal
coordinate system x%, . . ., x* & X. We define a cross section ¢ of
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O(M) over U as follows: Let u be the orthonorma frame at x
given by (9/0x%),, . .., (9/0x"),. By the paralel displacement of
# along the geodesics through x, we attach an orthonormal frame
to every point of . For the study of Riemannian manifolds, the
cross section ¢: 7 - O(M) thus defined is more useful than the
cross section U — L(M) given by 9/dx%, . . ., 8[ox™ Let § = (9
and » = (wj) be the canonical form and the Riemannian connec-
tion form on O(M) respectively. We set

§ =0*0=(0) and @ = o*0 = (@f),

where #* and @} are |-forms on U, To compute these forms

explicitly, we introduce the polar coordinate system (%, . . ., ¢"; )
by ¥=pt, i=1,...,n I, (= L
Then, §* and ®] are linear combinations of dp', . . ., dp" and dt
with functions of Y, ..., p" ¢ as coefficients.

Prrcsi oy 3.1, (1) 6= pidt+ ¢, where g', 1= 1, ..., n

do not involve dt;
(2) @f do not involve dt;
(3) ¢ =0and @} =0 at ¢t = 0 (i.e., at the origin x) ;

(4) dpt = —(dp' + ;@i p)) Adt + ¢,
dis; = — %, | Riyprot adt + .. .,
where the dots . - . indicate terms not involving dt and Rjiu are the com-
ponents of the curvature fensr field with respect to the frame field g.
Proof. (1) For a fixed direction (%, . . ., p"), let r = x, be the
geodesic defined by £ = pit,i=1,..., n. Set u, = o(x). TO

prove that 6 — p* dt do not involve dt, it‘is sufficient to prove that
() = p*. From the definition of the canonical form 6, we have

O, = 0(%) = u7'(%).
Since both u, and #, are paralel aong =, (%)) is independent  oft.
On the other hand, we have §(x) = p* and hence 6i(%,) = p
for dl ¢
(2) Since u, is horizontal by the construction of ¢, we have
oj(#) = wi(t,) = 0.
This means that @] do not involve dt.
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(3) Given any unit vector X at x (i.e., the point where { = 0),
iet 7 = x, bc the geodesic with the initia condition (x, X) so
that X = #,. By (1) and (2), we have ¢(i,) = 0 and &3(%,) = O.

(4) From the structure equations, wc obtain

d(pidt + ¢f) = —Z; @} A (p dt + ¢)
dist = —Z, &) A af + Q)
where
Q= 2y, 4R0* A 01 = T, JR(P* dt + %) A (pdt + ¢!)
(cf. $7 of Chapter I1I)
and hence (4). QED.

In terms of dt and ¢*, we can cxpress the metric tensor g as
follows (cf. the classical expression ds2= X g;; dx! dx’ for g as
explained in Example 3.1 of Chapter 1).

PRoeosiTian 3.2.  The metric tensor g can be expressed by
dst = () + X, (o)
Proof. Since 6(X) -- (a(3))2(X) for every Xe T,(M),

y ¢ U, and since ¢( y) is an isometric mapping of R" onto 7,(M),
we have

gX, Y) =2, 61(X)0'(Y) for X,Y ¢ T(M) and y e U.

In other words, _
dst = X, (0.
By Proposition 3.1, we have
A = (d)? 4 3, ()2 + 2 B, g’
Since ¢! = 0 a ¢t = 0 by Proposition 3.1, we shal prove that
T, p'¢' = 0 by showing that X, p¢’ is independent of . Since
I, pipi does not involve d¢ by Proposition 3.1, it is suflicient to
show that 4(Z, p'ep’) does not involve dt. We have, by Proposition
3.1, "
A pg) = —Sopldp ¢ T ) At
where the dots . .+ indicate terms not involving dt.
From ; (p )2 = 1, wcC obtain _
0= d(xi (P =2%; ¢ dp'.
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On the other hand, S, Py = 0,
because () is skew-symmetric. This proves that d(X; pie’) does
not involve dt. QED.

From Proposition 3.2, we obtain

Prrcsiian 3.3 Letxl, ..., x" be a normal coordinate system at x.
Then ¢very geodesic 7= %, x' = a't (i =1, ..., n), through x is
perpendicular to the sphere S(x; r) defined by X, (x7)% = r*.

For each small positive number r, we set
N(x; = the neighborhood of O in T.(M) defined by |X| < 7,
U(x; r) = the neighborhood of x in M defined by X, (x)? < 12

By the very definition of a normal coordinatc system, the expo-
nential map is a diffeomorphism of N(x; r) onto U/(x; r).

PrercsiTion 3.4, Let r be a positive number such that
exp: N(x; r) = U(x; 1)

is a diffeomorphism. Then we have

(1) Every point y in U{x; r)can be joined to x (origin of the coordinate
system) by a geodesic [ying in U(x;7) and such a geodesic is unique;

(2) The length of the geodesic in (1) is equal to the distance d(x, y);

(3) U(x;r)is the set of points'y e Af such that d(x,y) <r.

Proof.  Every line in N(x; r) through the origin O is mapped
into a geodesic in U(x; r) through x by the exponential map and
vice versa. Now, (1) follows from the fact that cxp: N(x; 7) —
U(x; r) is a diffeomorphism. To prove (2), let (0", . . . , a”;b) be
the coordinates ofy with respect to the polar coc.dinate system
{pY . . ~, p"; ¢) introduced a the beginning of the section. Let
T =x,a %< f, beany piccewise differential curve from x to

" . We shall show that the length of 7 is greater than or equal to J.

L =), = ) =t a5 s 5 B,

be &m equation of the curve 7. If we denote by L(T) the iength of 7,
then Proposition 3.2 implies the following inequalities:

L{x) \fﬁ d

ds

~h
ds = ‘ dt == b,
Jo
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We shall now prove (3). Ify isin U(x; r), then, clearly, d(x, y) <.
Conversdly, let d(x, y) < r and let 7 be a curve from x toy such
that L(T) < r. Suppose 7 does not lie in U(x; r). Let »' be the
first point on = which belongs to the closure of U(x; r) but not to
U(x; r). Then, d(x,») = r by (1) and (2). The length of r from
x toy’ is a least r, Hence, L(r) = r, which is a contradiction.
Thus 7 lies entirely in U(x; 7) and hence y is in U(x; r). QED.

PRrosiTion  3.5.  d(x, y) is a distance function (i.e., metric) on A4
and defines the same fopology as the manifold topology of M.
Proof. As we remarked earlier (cf. the end of §l), we have

dx, )z 0, dxy) = d(p #), dwy) + d 2) = d, 2).
From Proposition 3.4, it follows that if x = y, then d(x, y) > 0.

Thus d is a metric. The second assertion follows from (3) of
Proposition 3.4. QED.

A geodesic joining two points x and y of a Riemannian manifold
M is caled minimizing if its length is equal to the distance d(x, y).
We now proceed to prove the existence of a convex neighborhood
around each point of a Riemannian manifold in the following
form.

THEOREM 36. Let #%,. .., x" be a normal coordinate system at x
of a Riemannian manifold M. There exists a positive number a such that,
F0 <p < a, then

(1) Any two points of U(x; p) can be joined by a unique minimizing
geodesic; and it is the unique geodesic joining the two points and lying in
Ulx; p) 5

(‘2) In U(x; p), the square of the distance d( y, z)is a differentiable
function ofy and z,

Proof. (1) Let a be the positive number given in Theorem 8.7
of Chapter 11l and'let 0 < p < a. Ify and z are points of U(x; p),
they can be joined by a geodesic 7 lying in U(x; p) by the same
theorem. Since U(x; p) is contained in a normal coordinate
neighborhood of y (cf. Theorem 8.7 of Chapter 1Il), we see from
Proposition 3.4 that 7 is a unique geodesic joining y and z and
lying in U(x; p) and that the length of 7 is equal to the distance,
that is, 7 is minimizing. It is clear that r isthe unique minimizing
geodesic joining y and z in M.
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(2) Identifying every pointy of M with the zero vector at y, we
consider y as a point of 7(M). For each y in U(x;p), let N, be
the neighborhood of y in T,M) such that exp: N, — U(x; p)
is a diffeomorphism (cf. (2) of Theorem 8.7 of Chapter I1I). Set
v= LLJ N, Then the mapping V— U(x;p) x Ulx; p)

el'(z;

Whicrl{ s(erf()js Y ¢ N, into (y, exp Y) is a diffeomorphism (cf.
Proposition 8.1 of Chapter 1Il). If z = exp Y, then d(y, z) =
| Y}. In other words, | Y| is the function on ¥ which corresponds
to the distance function d( y, z) under the diffeomorphism V' —
Ulx; p) x U(x 5 p). Since [Y)? is a differentiable function on
V, d(y, z)® is a differentiable function on U(x; p) x U(x; p).

QED.

As an application of Theorem 3.6, we.obtain the following

Theorem 3.7. Let M be a paracompact differentiable manifold.
Then every open covering { U,} of M has an open refinement { ¥} such that

(1) each ¥, has compact closure;

(2) {V,}is locally finite in the sense that every point of M has a neighbor-
hood which meets only a finite number of Vs ;

(3) any nonempty finite intersection of V;’s is diffeomorphic with an open
cdl of R™,

Proof. By taking an open refinement if necessary, we may
assume that {U,} is loeally finite and that each [/, has compact
closure. Let {U,} be an open refinement of {U,} (with the same
index set) such that U, < U, for al « (cf. Appendix 3). Take any
Riemannian metric on M. For each x ¢ M, let W, be a convex
neighborhood ofx (in the sense of Theorem 3.6) which is contained
in some U,. For each q, let

W, = {W,; W, n U, is non-empty}.
Since U} is compact, there is a finite subfamily '8, of %8, which
covers ﬁ;. Then the family 8§ = | B, is a desired open refine-

ment of {U,. In fact, it is clear from the construction that B
satisfies (1) and (2). If Vy,..., V, ae members of B and if x and
y are points of the intersection Vin .  nV, then there is a
unique minimizing geodesic joining x and y in M. Since the
geodesic liesineach V,, i =1, ..., £, it liesin the intersection

¥, n+»n V.. It follows that the intersection is diffeomorphic
with an open cell of R”. QED.

'Y
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Remark. A covering {V;} satisfying (1), (2) and (3) is caled
a simple covering. Its usefulness lies in the fact that the Cech
cohomology of M can be computed by means of a simple covering
of A4 (cf. Weil [ 1]).

In any metric space Af, a segment is defined to be a continuous
image x(t) of a closed interval a =< ¢z7 & such that

d(x(tl): x((z)) "IT“ d(x<t2)3 x("s)) = d(x(tl)y x(tll))
forazt, St <ty £,

where d is the distance function. As an application of Theorem
3.6, we have :

Prorcsi Tion 3.8. Let M be a Riemannian manifold with metric
g and d the distance function defined by 9. Then every segment is a geodesic
(as a point set). :

The parametrization of a segment may not be affine.

Proof.  Let x(t), a: "¢ = b, bc a segment in-M. We first show
that x(t) is a gcodcsic for a = ¢ == a + ¢ for some positive &. Let
U be a convex neighborhood of x(a) in the sense of Theorem 3.6.
There exists ¢ > 0 such that x(¢) e Ufora =t - a+ e Let 7 be
the minimizing geodesic from x(a) to x(a + ¢). We shal show
that ~ and x(t), a: . { = a + ¢ coincide as a point set. Suppose
there is @ number €, @ < € < a + ¢, such that x(c) is not. on =,
Then

d(x(a), x(a + ¢)) < d(x(a), x(0)) + d(x(c), x(a + )),

contradicting the fact that x(t), a== ¢ =7 @ + ¢, is a segment. This
shows that x(¢) is a geodesic for a " { -~ a + ¢ By continuing
this argument, we see that x(t) is a gcodcsic for ¢ ¢: 5. QED.

Remark. If , is a continuous curve such that 4(x,, x,) =
¢, -- t,] foral ¢, and ¢, then x, is @ gcodesic with arc length { as
parameter.

CoroLLArYy 39. Let 7 =X, a - t . b, be a piecewise differen-
liable curze of class C* from x toy such that its length L(r) is equal to
d{x, 7). Then is a geodesic as a point set. Jf, moreover, [|£,| is constant
along 7, then 7is a geodesic including the parametrization. \

Proof. It suflices to show that ris a scgment. Let o -~ f, =
ty "ty b. Denoting the points x, by x, i =1, 2 3, and the

V. RIEMANNIAN CONNECTIONS 169

arcs into which 7 is divided by these points by r,, 7, 7, and 7,
respectively, we have

d(x, x1) L(7)), d(x, %) L(7,), d(x, x L{my),
d(xg,v) L7y
If we did not have the equality everviwwhere, we would have
dix, %)) + d(x;, x) 4 dlxs, %) = d{xy, )
(7)) A L{my) L) 4 L{ry) = L(7) == d{x,)),
which is a contradiction. 'Thus we have
d(x;, %) = L{m), d(xs x5) = L(7s).

Similarly, we sce that

(/(xla Xy) = I‘(Tz Ty
Finaly, we obtain
d(xh xz) + d(x‘.b x!!) = d(xb xﬂ)‘
QED.

Using Proposition 3.8, we shall show that the distance function
determines the Riemannian metric.

ThHeorEM 3.10.  Let M and M’ be Riemannian manijolds with
Riemannian metrics ¢ and 8, respectively. Let d and d’ be the distance
Sunctions of M and M’ respectively. If T is a mapping (which is not
assumed to be continuous or differentiable) OF M onto M’ such that
d(x, 3) = d'(f(x), f(3)) fur all x,y € M, then fis a diffeomorphism of
M onto A’ which maps the tensor freld g into the tensor field g’

In particular, every mapping [ 0j* M onto itself which preserves d is an
isomelry, that is, preserves g.

Proof.  Clearly, f'is @ homecomorphism. Let x be an arbitrary
point of \I and set ' = f(x). For anormal coordinate neighbor-
hood U’ of x’ let [ be anorma coordinate neighborhood of x
such that f{ ') < [”. For any unit tangent vector X at x, let  be
a geodesic in U7 with the initial condition (x, X). Since 7 is a
scgment with respect to d, f() is a segment with respect to d’ and
hence is a geodesic in 1. with origin X', Since 7 = x, is param-
ctrized by the arc length s an d since d'( fx,), flx,)) =
d(x,, x,) = Iss - sil, fl7) = f{x,) is parametrized by the arc
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length 5 also. Let F(X) be the unit vector tangent to f(r) at x'.
Thus, F' is a mapping of the set of unit tangent vectors at x into
the set of unit tangent vectors .at x’. It can be extended to a
mapping, denoted by the same F, of T,(M) into T, (M’) by
proportion. Sincefhas an inverse which also preserves the distance
functions, it is clear that F is a I :1 mapping of T.(M) gnio
T,.(M).Itisalso clear that

Seexp, = exp . ¢ F and |F(X)| = X} for X € T (M),
where exp, (resp. exp,.) is the exponential map of a neighborhood
of 0in TKM) (resp. T,(M")) onto U- (resp. U’). Both exp, and
exp,. are diffeomorphisms. To prove thatfis a diffeomorphism of
M onto M’ which maps g into ¢, it is therefore sufficient to show
that F is a linear isometric mapping of T,(Af) onto T,.(M").

We first prove that g(X, Y) .= g'(F (X), F(Y)) for dll
X, Y ¢ T ,(M). Since F(cX) = ¢F(X) for any X ¢ T,(M) and
any constant ¢, we may assume that both X and Y are unit
vectors. Then both F(X) and F(Y) are unit vectors at x'. Set

cosa= g(&X,Y) and cosa = g'(F (X), F(Y)).
Let x, andy, be the geodesics with the initia conditions (x, X) and
(X, Y) respectively, both parametrized by their arc length from
X. Set , ,
% =f(x) and y, =/(,).

Then %, and jy, are the geodesics with the initid conditions
(X', F(X)) and (x’, F(Y)), respectively.

.1 . 1 :
LEMMA. sin § a = lim = d(x,, y,) and sin {a’' = lim = d(x;, y)).
- 10 28 5-02$ !

We ‘shall give the proof of the lemma shortly. Assuming the
lemma for the moment, we shall complete théproofofour theorem.
Since f preserves distance, the lemma implies that

sin $o = sin Lo
and hence
g(X,Y)=cosa=-1-2sin?}a
=1—2gn%}a’ = cosa =g (F(X),F(Y)).

We shaﬁ now prove that F is linear, We aready observed that

F(cX) = ¢F(X) for any Xe T, (M) and for any constant, c.
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Let X,,...,X, be an orthonormal basis for 7,.(M). Then
X;=FX),i=1...,0 form an orthonormal basis for 7, (M’)

as we have just proved. Given X and Y in T,(M), we have
gFX +Y), X))= gX+ T,X)= g(X, X)) + &Y, X))
= g(F(X), X)) + ¢(F(Y), X)) = g'(F(X) + F(Y), X))
for every i, and hence
F(X +Y) = F(X) + F(Y).

Proof of. Lemma. It is sufficient to prove the first formula

Let [/ be a coordinate neighborhood with a normal coordinate
system x1, ..., x" a X. Let k be the Riemannian metric in U given
by I, (dx') and let 8(y, z) be the distance between J and z with
respect to A. Supposing that

g fim 1 d(x,, ¥,) > sin §a,
2s

8—0

we shall obtain a contradiction. (The case where the inequality
is reversed can be treated in a similar manner.) Choose ¢ > 1
such that 1 _

131_%1 7 d(xy, y,)> ¢ sin o

1
Taking {7 small, we, may assume that - & < g < ¢k on U in the
sense that ¢

! MZ,Z) < g(Z,Z)< ¢ h(Z,Z) forZe T,M) and z € U.
4
From the definition of the distances d and 4, we obtain

1
=805 2) < d(3, 2) < ¢ 8(3, 2.
Hence we have
c 1 .
- — d(x,,9,)>¢C sin iy for small s.
5 0(x02) > oo dx0) 2
On the other hand, % is a Euclidean metric and hence

%Ea(xnys) = §in %a'
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This is a contradiction. Hence,

— 1 ; ,
Iim % d(x,,9,) = sin 1a.

s§-»0
Similarly, we obtain

|
lim = d(x,,y,) = sin }a.
lim 75 dl*2.) = Sin bu

QED.

Theorem 3.10 is duc to Myers and Steenrod [1] ; the proof is
adopted from Palais [2].

4. Completeness

A Riemannian manifold A4 or 4 Riemannian metric g on M
is said to be complete if the Riemannian connection is complete,
that is, if every geodesic of M can be extended for arbitrarily
large values of its canonical parameter (cf. §6 of Chapter Il1).
We shall prove the following two important theorems.

Theorem 4.1.  For a connected Riemannian manifold M, the follow-
ing conditions are mutually equivalent:

(1) Miis a complete Riemannian manifold ;

(2) M iis a complete metric space with respect to the distance function d;

(3) Every bounded subset of M (with respect to d) /s re/dliz!e[)' compact;

(4) For an arbitrary point x of M and for an arbitrary curve C in the
tangent space T,(M) (or more precisely, the affine tangent space A ()
skirting from the origin, there 5 a curve 7 in Af starting from x which is
developed upon the given curve C.

THEOREM 4.2. If Mis a connected coniplete Riemannian manifold,
then any two points x andy of A4 can be-joined by a minimizing geodesic.

Proof. We divide the proofs of these theorems into several
steps. '

(i) The implication (i) -» (1). Let x,, 0. s < L, bc a geodesic,
where s is the canonical paramecter. We show that this geodesic
can be extended beyond L. Let {s,} be an infinite scquence such
that 5, + L. Then A, %) I = 5]
so that {x,} is a Cauchy sequence in Af with respect to d and
hence converges to a point, say X. The limit point x is independent
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of the choice of a sequence {s,} converging to L. We set x; = x.
By using a norma coordinate system at x, we can extend the
geodesic for the values of s such that L = s =L 4 & for some
¢ > 0.

(ii) Proof of Theorem 4.2. Let x be any point of M. For each
r > 0, we set

S(r) = {y eM; dxy) <1}

and

E(r) = {y ¢ S(r) ;y can be joined to x by a minimizing geodesic}.

We are going to prove that E (r) is compact and coincides with
S(y) for every r > 0. To prove the compactness of E(r), let ¥
t=1,2,..., be asequence of points of E(r) and, for each i, let
7; be.a minimizing geodesic from x to.y,. Let X, be the unit vector
tangent to 7, a x. By taking a subsequence if necessary, we may
assume that {X;} converges to a unit vector X, in 7,(M). Since
d(x, y;) = rfordl i, we may assume, again by taking a subsegquence
if necessary, that d(x, y;) converges to a non-negative number r,.
Since r; is minimizing, we have

i = exp (d(x, ;) X)).

Since M is a complete Riemannian manifold, exp 7,X, is defined.
We set
o= e x p 1.

It follows that {y,} converges to J, and hence that d(x,,) = 7,.
This implies that the geodesic exp $Xy, 0 <~ 5 < 7y, iS Minimizing
and that y, is in E(r). This proves the compactness of E(r).
Now'we shall prove that E(r) = S'(r) for all 7 > 0. By the
existence of a norma coordinate system and'a convex neighbor-
hood around x (cf. Theorem 3.6), we know that E(r) = S(r) for
0 <r < ¢ for some ¢ > 0. Let r* be the supremum of 7, > 0

_such thpt "E(r) = §(r) for 7 < r,. To show that r* = oo, assume
© that r*x% 0. We first prove that E(r*) = §(r*). Let y be a

point of S(r*) and let { ,} bc a sequence of points with d(x, y,) < ™
which converges to y. (The existence of such a sequence {,}
follows from the fact that x and y can be joined by a curve whose
length is as close to d(x, y) as we wish.) Then each y, belongs to
some E(Y), where r < r*, and hence each y; belongs to E(r*).



174 FOUNDATI ONS OF DI FFERENTIAL  GEQVETRY

Since E(r*) is compact, y belongs to E(r*). Hence S(r*) =
E(r*). Next we shall show that S(r) = E(r) for r < r* + ¢ for
some § > 0, which contradicts the definition of r*, We need the
following

LEMVMA.  On a Riemannian manifold M, there exists a positive
continuous function r(z), z € M, such that any two points Of §,(r(z)) =
{» € M; d(2,5) < r(2)} can be joined by a minimizing geodesic.

‘Proof of Lemma. For each z € M, let r(z) be the supremum of
r > 0 such that any two points y and y’ with a’(? ) = rand
d(z,y’) £ r can be joined by a minimizing geodesic. fie’ existence
of a convex neighborhood (cf. Theorem 3.6) implies that 7(z) > 0.
If r(z) = oo for some point z, then r(y) = co for every pointy
of M and any positive continuous function on Af satisfies the
condition of the lemma. Assume that r(z) < o for every z ¢ M,
We shali prove the continuity of r(z) by showing that |r(z) — r(y) |
< d(z,y). Without any loss of generdity, we may assume that
r(z) > r(y). If d(z,5) = r(2), then obvioudy |r(z) = 7(¥)| <
d(z,5). 1f d(z,5) < r(z), then §,(r') = {y’; d(y.y") =7} is con-
tainedin S,(r(z)), where ' = 7(z) = d(z, »). Hence r(y) = r(z) —
dzy), thatis, |r(z) — 7(»)] < d(z,»), completing theproofof the
lemma

Going back to the proof of Theorem 4.2, let r(z) be the con-
tinuous function given in the lemma and let § be the minimum of
7(z) on the compact set E(r*). To complete the proof of Theorem
4.2, we shall show that S(r* + 8) = E(r* + S). Léty €S(r* + 8)
but ¢ §(r*).\We show first that there exists a point'y’ in S§(r*)

such that d(x, ) =r* and that d(xy) = d(x,") +dyy). To
this end, for every. positive integer £, choose a curve , from x to

1

y such that L(r,) < d(x,y) + 7 where L(r,) is the length of r,,
-

Let y, be the last point on 7, which belongs to E(r*) = S(r*).

Thend(x,3,) = r* and d(x,3,) + d(3,0) € L7 < d(x,)) + 7

Since E(r*) is compact, we may assume, by taking a subsequence
if necessary, that { y,} converges to a point, say y’, of E(r*). We
have d(xy’) = r* and d(x,y’) + d(y,y) = d(x,y). Let 7" be a
minimizing geodesic from x toy’. Since d(y',») < 6 < 1(y), there
is a minimizing geodesic =" fromy’ toy. Let 7 be the join of =" and
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7. Then L(T) = L(7) + L(=") = d(xy’) + d(y'y) = d(xy). By
Corollary 3.9, T is a geodesic, in fact, a minimizing geodesic from
X toy. Hence y ¢ E(r* 4 4), completing the proof of Theorem 4.2.

Remark. To prove that E(r) = S§(r) is compact for every r, it is
sufficient to assume that every geodesic issuing from the particular
point x can be extended infinitely.

(iii) The implication (1) — (3) in Theorem 4.1. In (ii) we
proved that (1) implies that E(r) = S(r) is compact for every .
Every bounded subset of M is contained i S{t) for some 7,
regardless of the point x we choose in the proof of (ii).

(iv) The implication (3) — (2% is evident. o _

(v) The implication (4) — (1). Since a geodesic is a curve in
M which is developed upon a straight line (or a segment) in the
tangent space, it is obvious that every geodesic can be extended
infinitely. ,

(vi) The implication (1) = (4). Let €, 0 <t = a be an
arbitrary curvein 7,(M) starting from the origin. We know that
there is ¢ > O /such that C,, 0 £ ¢ £ &, is the development of a
curve x, 0 <1 < ¢ in M. Let b be the supremum of such ¢ > 0.
We want to show that b = a. Assume that § < a. First we show
that ””1,, x, (’75dsts in M. Let ¢, 4 6. Since the development pre-

14

serves the @ 'Ng length, the length of x,, ¢, =t < ¢, is equa to the
length of €, t, = ¢t = t,. On the other hand, the distance
d(x,,, %,,) is less than or equal to the length of x,, ¢, =t < .
This implies that {x, } is a Cauchy sequence in M. Since we know
the! implication (1) — (3) by (iii) and (iv), we see that {x,}
converged to a point, say y. It is easy to see that lim, x¢ =J. Let

C; be the curve in T,(M) (or more precisely, in A,(M)) obtained
by the affine (not linear!) paralel displacement of the curve C,
aong the curve %, 0 < ¢ = b. Then C, is the origin of T,(M).

There exist 6 > 0 and a curve x,, b < ¢t £ b + 8, which is
developed upon G;, b <t < b + 4. Then the curve x, 0 < ¢ <

b + 4, is developed upon C,, 0 £t < b 4 4. This contradicts_the
definition of &. QED.

CoroLprARY 43 If all geodesics starling from any particular point
x of a connected Riemannian manifold M are infinitely extendable, then M
is  complete.
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Proof. As we remarked a the end of (ii) in the proof of
Theorem 4.2, E(r) = $(r)is compact for every r. Every bounded
subset of M is contained in §(r) for some r and hence is relatively
compact. QED.

CoroLLARY 4.4, Every compact Riemannian manifold is complete..
Proof. This follows from the implication (3) — ( 1) in Theorem

4.1, N QED.

A Riemannian manifold M is said to be homogeneous if the group
of isometries, i.e., transformations preserving the metric tensor g,
of M is transtive on M. (Cf. Example 1.3 and Theorem 3.4,
Chapter VI1.)

THEOREM 4.5. Every homogeneous Riemannian  manifold is  complete.

Proof. Let x be a point of a homogeneous Riemannian mani-
fold M. There exists r > O such that, for every unit vector Xat x,
the geodesic exp sX is defined for |s| < r (cf. Proposition 8.1 of
Chapter 1II). Let 7 = x,, 0 = 5 £ a be any geodesic with
canonical parameter s in M. We shall show that 7 = x, can be
extended to a geodesic defined for 0 < 5y < a+ 7 Let ¢ be an
isometry of M which maps x into x,, Then ¢~ maps the unit
vector %, a x, into a unit vector X a x: X = ¢~(#,). Since
exp sX is a geodesic through x, p(exp sX) is a geodesic through
x,. We set

%ars = p(exp sX) for0O s

Then 7= x,0 = 5 = a+ r,is a geodesic. QED.

Theorem 4.5 follows aso from the general fact that every
locally compact homogeneous metric space is complete.

THeorReM 4.6. Let M and Af* be connected Riemannian manifolds
of the same dimension. Let p: M* — M be an isometric immersion.

(1) If M*is complete, then AM* is a covering space of M with pro-
jection p and M is also complete.

(2) Conversely, if p: M* — M is a covering projection and ¢f M is
complete, then A* is complete.

Proof.  The proof is divided into severa steps.

(i) If M*is complete so is M. Let x* ¢ M* and set x = p(x*).
Let X be any unit vector of M at x and choose a unit vector X* at x*
such that p(X*) = X. Then exp sX = p(exp sX*) is the geodesic
in A with the initial condition (x, X). Since exp sX* is defined
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for al s, -co < 5§ < o, s0 is exp sX. By Corollary 4.3, M is.
compl ete.

(i) If M* is complete, p maps M* onto M. Let x* ¢ AM* and
x = p(x*). Given apoint y of M, letexp sX,0 = s = a, be a
geodessic from x toy, where X is a unit vector at x. Such a geodesic
exists by Theorem 4.2 since M is complete by (i). Let X* be the
unit vector of M*® at x* such that p(X*) = X. Set y* = exp aX*.
Then p(y*) = exp aX =.

(iii) If M#* is complete, then p: M* — M is a covering pro-
jection. For a given x ¢ M and for each positive number 7, we set

Ux;r)={y eM; d(x,3) < 1}, N(x; 1) = {X « T,(M); Xl < 7}.
Similarly, we set, for x* ¢ M*,

Ul rj = {0* e M5 d(x*, %) <1},

N(x*;1) = {X* e T.(M*); | X < 1.
Choose r > 0 such that exp: N(x; 2r) — U(x; 2r) is a diffeo-

morphism. Let {xf, x}, . . . } bethe set p~1(x). For each ¥, we have
the following commutative diagram :

N(x¥; 2) = U(xt; 2n)

l B
N(x; 2r) 25 Ulx; 2n).

It is sufficient to prove the following three statements:

(@ p: U(x¥; 1) - U(x; r) is a diffeomorphism for every ¢;

(b) p7(Ulx; 7)) = U Ulxts 1);

(c) U(x¥; 1) nUlx}; 7) is empty if xF # x¥
Now, (&) follows from the fact that both p: N(xt; 2r) — N(x; 2r)
and exp: N(x; 2r) - U(x; 2r) are diffeomorphisms in the above
diagram. To prove (b), let y* €p~}(U(x; 1)) and sety = p{o*)-
Let exp s¥,0 £ 5 £ a be a minimizing geodesic from y to x,
where Y is a-unit vector aty. Let Y* be the unit vector aty* such
that p(¥Y*) = Y. Then exp s¥*,0 < 5 < a, is a geodesic in M*
starting from y* such that p(exp s¥*) = exp sY. In particular,
p(exp aY *) = x and hence exp aY* = x} for some xf. Evi-
dently,y* o U(x*; 1), proving that p=2( U(x; 7)) < U U(¥5 7). On
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the other hand, it is obvious that p(U(x¥; 7)) < U(x; r) for every
1 and hence p=Y( U{x; r)) > J Uz} ; 1) . To prove (c), suppose

y* e Ulx¥ ; 7 n Uz} ; r). Then x* ¢ U(x}; 27). Using the above
diagram, we have shown that p: U(x}; 2r) - Ulx; 2r) is a
diffeomorphism. Since p(x}) = p(x}), we must have x} = .
(iv) Proof of (2). Assume that p: M* — M is a covering pro-
jection and that M is complete. Observe first that, given a curve
%, 0 =t < ain M and given apoint ¥ in M* such that ) =
Xy, there is a unique curve x¥, 0 = { < a, in M* such that
p(a¥) = x,for 0 £t < 4 Let x¥ ¢ M* and let X* be any unit
vector at X*. Set X = p(X*). Since M is complete, the geodesic
exp sXis defined for ~eo/< § < o. From the above observation,
we see that there is a pique curve x¥, —o < § < o, In M*
such that x¥ = «* and that p(x?) = exp sX. Eyidently, #} =
exp sX*. This shows hat M* is complete. QED.

Coratary 4.7. Let M and M* be connected manifolds of the
same dimension and let p: M* — M be an immersion. If Af* is compact,
S0 is M, and p is a covering projection.

Proof. Take any Riemannian metric g on M. It is easy to see
that there is a unique Riemannian metric g on M* such that p
is an isometric immersion. Since M* is complete by Corollary 4.4,
p is a covering projection by Theorem 4.6 and hence M is
compact. QED.

Example 4.1. A Riemannian manifold is said to be non-pro-
Zongeable if it cannot be isometricaly imbedded into another
Riemannian manifold as a proper open submanifold. Theorem
5.6 shows that every complete Riemannian manifold is non-
prolongeable. The converse is not true. For example, let M be the
Euclidean plane with .origin removed and M* the universal
covering space of M. As an open submanifold of the Euclidean
plane, M has a naturad Riemannian metric which is obviously not
complete. With respect to the natural Riemannian metric on M*
(cf. Example 2.1), M* js not complete by Theorem 4.6. It can be
shown that M* is non-prolongeable.

CorallARY 4.8. let G be a group gf isometrics of a connected
Riemannian manifold M. If the orbit G(x) of ‘apoint x of M contains an
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open set of M, then the orbit G(x) coincides with M, that is, M is
homogeneous. 3

Proof. It is easy to see that G(x) is open in M. Let-M* be a
connected component of G(x). For any two points-z* and y* of
M*, there is an-element f of G such that f(x*) = y*. Since f maps
every connected component of G(x) onto a connected component
of G(x), T (M*) = M*. Hence M* is a homogeneous Rieman-
nian manifold isometrically imbedded into M as an open sub-
manifold , Hence, “M* = M. QED.

PropPosITION 4.9. Let M be a Riemannian manifold and M* a
submanifold of M which is locally closed in the sense that every ‘goint x of
M has a neighborhood U such that every connected component of U N M*
(with respect to the fopology of M*) is closed in U. If M is complete, so
is M* with respect to the induced metric.

Proof. Let d be, the distance function defined by the Rieman-
nian ‘metric of M and 4* the distance ‘function defined by the
induced Riemannian metric of M®*. Let x, ‘be a geodesic in M*
and let a, be the supremum of s such that x, is defined. To show
that a = oo, assume a < cc. Let s, 1 a Since d(x,, %, )
d*(x,,%,) < Isy = s,l, {x} is a Cauchy sequence in 3 and
hence converges to a point, say x, of M. Then x = lim x,. Let U

a
be, a neighborhood of x in M with, the property stated in Proposi-
tion. Then x,, b < s < a lies in Ufor some 4. Since the connected
componént of M* N [/ containing x,, b < 5 <a, isclosed in U,
the point » belongs to M*, Set x, = x. Then x,0 < s < g, is a
geodesic i’ M*, Using a normal coordinate system at x,, we see
that this geodesic can be extended to a geodesic x,, 0 = s =.a + 6,
for some 4 > 0. QED.

5. Holonomy groups

Throughout this section, let M be a connected Riemannian
manifold with metric g and ¥(x) the linear or homogeneous
holonomy group of the Riemannian connection with reference
point x ¢ M (cf. § of Chapter Il and §3 of Chapter I11). Then
M is said to be reducible or irreducible according as ¥/x) is reducible
or irreducible as a linear group acting on T,(M). In this section,
we shall study ¥'(x) and local structures of a reducible Riemannian
manifold.
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Assuming that Mis reducible, let 7, be a non-trivial subspace of
T,(M) which is invariant by ¥'(x). Given a pointy ¢« M, let + be a
curve from x toy and T, the image of T, by the (linear) parallel
displacement dong 7. The subspace T, of T,(M) is independent
of the choice of . In fact, if p is any other curve from x toy, then
p~!. 1isaclosed curve at x and the subspace T, is invariant by
the paralel displacement dong u=. =, that is, pt. 7( T,) = Ty,
and hence 7( T;) = u( T;). We thus obtain a distribution T’ which
assigns to each pointy of M the subspace T, of T,(M). ’

A submanifold N of a Riemannian manifold (or more generaly,
a manifold with a linear connection) M is said to be totaly
geodesic at a point x of N if, for every X ¢ T,(N), the geodesic
7 = x,0f M determined by (x, X) lies in N for small values of
the parameter « If N is totally geodesic a every point of N, it is
cdled a totally geodesic submanifold of M,

Precsimav 5.1. (1) The distribution T' is differentiable and
involutive;

(2) Let M be the maximal integral manifold of T' through a point of
M. Then M is a totally geodesic submanifold of M, I M is complete,
so is M with respect to the induced metric.

Proof. (1) To prove that T’ is differentiable, let » be any
point of M and !, . . . , " a norma coordinate system at j,
valid in a neighborhood U/ ofy. Let X,, . . ., X, be a basis for 7.
For each i, 1 =i = k, we define a vector field X* in U by

(XY, = X, for ze U,

where 7 is the geodesic from y to z given by x' = aft, j =
ly...,n,(al,. .. @) being the coordinates of z. Since the paralel
displacement 7 depends differentiably on (&, . . ., 4*), we obtain
a differentiable vector ficld X*in U. It is clear that XF¥, ..., X
form a basis of T, for every point z of U.

To prove that T’ is involutive, it 1s sufficient to prove that if X
and Y arc vector fields belonging to 77, so are Vyx Y and VX,
because the Riemannian connection has no torsion and [X, Y ] =
V Y — ¥V, X (cf. Theorem 5.1 of Chapter IIl). Let x, be the
integral curve of X starting from an arbitrary pointy. Let 7§ be
the parald displacement along this curve from the point %, to
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the point y = %,. Since ¥, and ¥, belong to T' for every ¢,
: .1 ’
(ViY) = hrr; ] (w6Y., — ¥,) belongs to 7.

-l

rid R
(2) Let M’ be a maximal integra manifold of T'. Let 7 = x,

be a geodesic of M with the initia condition (y, X ), where

geMmd Xe T,(M') = T, Since the tangent vectors %, are

parellel dong r, we see that #, belongs to T, for every ¢ and hence
7 liesin M’ (cf. Lemma 2 for Theorem 7.2 of Chapter 11). This
proves that M’ is a totally geodesic submanifold of M. From the
following lemma, we may conclude that, if M is complete, sO is
M.

Lemva. Let N be a totally geodesic submanifold of a Riemannian
manifold M. Every geodesic of N with respect to the induced Riemannian
metric of N is a geodesic in M.

Proof of Lemma Let x ¢ N and Xe T,(N). Let r = x,,
0 =t < a, be the geodesic of M with the initial condition (x, X).
Since N is totaly geodesic, 7 liesin N. It now suffices to show that
7 is a geodesic of N with respect to the induced Riemannian
metric of N. Let d and d' be the distance functions of M and N
respectively. Considering only small values of +, we may assume
that ris a minimizing geodesic from x = x, to x, so that d(x, x,) =
L(T), where L(T) is the arc length of +. The arc length of r
measured by the metric of M is the same as the one measured with
respect to the induced metric of N. From the definition of the
distance functions d and d’, we obtain

d'(x, X,) = d{x, X,) = .

Hence, d'(x, x,) = L(1). By Corollary 3.9, r is a geodesic with
respect to the induced metric of N. QED.

Remark. The lemma is a consequence of the following two
facts which will be proved in Volume II. (1) If M {5 a manifold
with a linear connection whose torsion vanishes and if N is a
totally geodesic submanifold of M, then N has a naturaly
induced linear connection such that every geodesic of N is a
geodesic of M; (2) If N is a totally geodesic submanifold of a
Riemannian manifold M, then the naturally induced linear
connection of N is the Riemannian connection with respect to
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the induced metric of N, Note that Proposition 5.1 holds under
the weaker assumption that M is a manifold with a linear connec-
tion whose torsion vanishes.

Let T" be a distribution defined as before. We now use the fact
that the- homogeneous holonomy group consists of orthogonal
transformations of T,M). Let 7, be the orthogonal complement
of T, in T,(M). Then T,(M) is the direct sum of two subspaces
T, and. T, which are invariant by Y(x). From the subspace T,
we obtain a distribution 7 just as we obtained T’ from T;. The
distributions 7° and 7" are complementary and orthogonal to
each other-at every point of M.

Prccsi v 5.2, Lety be any point of M. Let M’ and M” be
the maximal integral manifolds of the distributions 7" and T” defined
above. Then y has an open neighborhood V such that V = V' x V”~,
where ¥ (resp. "} is an open neighborhood ofy in M’ {resp. M"), and
that the Riemannian metric in V is the direct ‘product ¢ the Riemannian
metrics in V' and V”.

Proof. We first prove the following

Temma. If T and T are two involutive distributions on a manifold
M which are complementary at every point of M, then, for each pointy of
M, there exists a local coordinate system %%, ..., x" with origin at y such
that (9/0x?, ..., 0/9x*) and ( 9/dx**%, ..., 0/0x") form local bases for
T and T'" respectively. In other words, for any set of constants (¢?, . . . ,
¢k ¢kl ..., ¢"), the equations x* = ¢!, 1 £ 1 £k (resp. ' = ¢,
k + 1 < j <n) define an integral manifold of 7" (resp. T").

Proof of Lemma. Since T° is involutive, there exists a local
coordinate system 3%, . . ., y¥,#%*%, . #" With origin y such that
(9/dy', ... @/dy*) form aloca basis for T'. In other words, the
equations %' = ¢/, k + 1 < j < n, define an integral manifold of
T'. Similarly, there exists a local coordinate system %, . . ., %,
Z¥1, ..., 2" with origin y such that ( /dz+*, . . ., 8/dz") form
a local basis for T”. In other words, the equations x* = C’,

l1i< k+ define an integral manifold of T”. It is easy to see that
Xy, X X 3" IS a local coordinate system with the
desired prl)pcrty.

Making| use of the local coordinate system #*, . . ., " thus
obtained, we shall prove Proposition 5.2. Let V be the neighbor-
hood ofy defined by {x’] < ¢, 1 £ < n, where ¢ is a sufficiently
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small positive number so that the coordinate system xt, . . ., %"
gives a homeomorphism of V onto the cube |x%] < ¢ in R". Let V’
(resp. V") be the set of points in V defined by [xi| < ¢, 1 =i <Kk,
and =0, k+1gj<n(ep »¥=01 i<k g
x| <c, k+1 £ j < n)ltisclear that V' (resp. V”) is an
integral manifold of T (resp. T") through y and is a neighbor-
hood of y in M' (resp. M”) and that V = V' x V", We set
X, = 9/0x', ] <1< n To prove tha the Riemannian metric of
V is the direct product of those in V' and V”, we show that
gi; = &X,, X;) are independent of x*+1 ..., x"for 1 < i, j < ku,
that g, = g(X,; X,) are. independent of xi..., . v fork + 1<
5, < nandthatg,, = g(X, X,) =0for] =i Zkandk +1=
j’= n. The last assertion is ~o’bvious since X,, 1 <1 < k, belong
to 7" and X;, k + 1 £ y<_n belong to T" and since T’ and
T" are orthogonal to each other at every point. We now prove
the first assertion, and the proof of the second assertion is similar.
Letl <i<kadk+ 1=<mg<n Asin the proof of (1) of
Proposition 5.1, we see that Vy X; belongs to T' and that

Vx X, belongs to "T". Since the torsion is zero and since
[X;, X,] =0, we have

VX, = Ve X, = Vi X, - Ve X ~[X, X,]=0.
Hence, Vx X,, = VXMX,. = 0. Since g is pardld, we have
XM(gii) = VX,,,(g(Xb X))
= g(Vy X, X)) +8(X,, Vx X,) =0, 1< i,j £k

thus proving our assertion. QED.

PrerosiiaN 5.3. Let T and T be the distributions on Af used in
Proposition 5.2. If M is simply connected, then the homogeneous holonomy
group ¥'(x) is decomposed into the direct product of two normal subgroups
voo and W(x) such that ¥'(x) is trivial on 77 and that ¥ (%) is
trivial on 77,

Proof. Given an element a ¢ Y(x), let a (resp. ay) be the
restriction of ato T, (resp. T,). Let a’ (resp. &') be the orthogonal
transformation of T,(M) which coincides with a, on T, (resp. with
ay on T;) ‘and which is trivid on T, (resp. 7). If we take an
orthonormal basis for T,(M) such that the first k vectors lie in
T, and the remaining » — k vectors lie in 7, then these linear
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transformations can be expressed by matrices as follows:

al‘ 0 ' al 0 " ”(1 :)J
— . L , a = .
‘ (O , az)’ “ 7o 1) 0

We shall show that both ¢’ and ¢* are elements of W(x). Let 7 be a
closed curve at x such that the parallel displacement along 7 is the
given element a € Y (x). First we consider the specia case where T
is a smdl lasso in the following sense. A closed curve r at X 18

caled a small lasso if it can,be decomposed into three curves as
follows: 7 = u=* » ¢ * 4 Where g is a curve from x to a pointy

(so that u-1is a curve from J to x going backward) and o is a
closed curve a y which is small enough to be contained in a
neighborhood ¥ = ¥* x V" ofy given in Proposition 5.2. In this
specia case, we denote by ¢ (resp. @) the image of ¢ by the
natural projection ¥ - V' (resp. V — V"), We set
leﬂ-l'(f"y, T”:”-l'()'”'ﬂ.
The pardlel displacement aong ' (resp. ") is trivid on T,
(resp. T,). The pardlel displacement aong ¢ is the product of
those along ¢’ and ¢”. Hence the paralel displacement aong 7

is the product of those along +' and +”. On the other hand, +’
(resp. 7") is trivid on T} (resp. T7). It follows that & (resp. &’) Is
the pardlel displacement -along ' (resp. 7"), thus proving our
assertion in the case where 7 is a small lasso.

"n the general case, we decompose = into a product of small
las .os & follows

Lemva. If M is simply connected, then the parallel displacement

along 7 is the product of the parallel displacements along a finite number of

small [dssos at X. _ .
Proof of Lemma This follows from the factorization lemma

(cf. Appendix 7).
It is now clear that both @ and & belong to ¥{*) in the
general case. We set

¥(x) = a5 a e Px)) ¥(x) = (¢'; ae ¥(x).
Then Y(X) = Y'(X) X Y"(X).

We now proceed to define a most natural decomposition of
T, (M) and derive its consequences. Let T be the set of

QED.
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elements in 7,(M) which are Ieft fixed by ‘1'(x). It is the maximal
linear subspacc of 7,(Af) on which ‘'(x) acts trivially. Let 77,
be the orthogona complement of 7797 in 7°,(.M). It is invariant
by Y(x) and can be decomposed into a direct sum 77 == Xf (0
of n.utually orthogonal, invariant and irreducible subspaccs! We
shall call T,(.\M)= Zf, T a canonical decomposition (OF de Rham
decomposition) of 7,( M) .

THEoRem 5.4. Let A be a Riemannian manifold, 7T,(M) =
o TV a canonirgl decomposition of 7,(Af) and 7' the involutive
distribution on Af obtained by parallel displacement of 7% for each
i=0,1,.. .,k Lety be a point of Af and let, foreachi=0, 1, ..., K,
M, be the maximal integral manifold of 7% through y. Then

(1) The point 'y has an open neighborhtiod V such that V = ¥ x
V, x ¢+ x V, where each ¥, is an open neighborhood ofy in “A4; and
that the Riemannian metric in V is the direct product of the Riemannian
metrics in the V’s ; T

(2) The maximal integral manifold A, is locally Euclidean in the
sense that every point of M, has a neighborhood which is isometric with an
open set of an n,,-dimensional Euclidean space, where no = dim 3, ;

(3) If M is simply connected, then the homogeneous holonomy group
Y(x) is the direct product Wy(x) x W¥i(x) x . . +x ¥(x) of normal
subgroups, where Y,(x) is trivial on T9 if i £ jand is irreducible on
T for eachi = 1,... k and Wo(x) consists of the identity on{y}

(4) If M is simply connected, then' @' canonical decomposition 77, M) =
¥, T is unique up to an order.

Proof. (1) This is a generalization of Proposition 5.2.

(2) Since y is an arbitrary point of M, it is sufficient to prove
that V, is isometric to an open subset of an n,-dimensiona
Euclidean space. Since the homogeneous holonomy group of V
condists of the identity only, T3 is the direct sum of 5, I-dimen-
sional subspaces. From the proofof Proposition 5.2, it follows that
V, is a direct product &f I-dimensional submanifolds and that the
Riemannian metric on ¥, is the direct product of the Riemannian
metrics on these 1-dimensional submanifolds. On the other hand,

on any Il-dimensional manifold with a local coordinate syster !
every Riemannian mettic is of the form g, dxt del If xlis
normal coordinate system, then the metric is of the form il a’x“
Hence V, is isometric to an open set of a Euclidean space.
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(3) This is clear from the definition of a canonical decomposition
of T,(M) and from the proof of Proposition 5.3.
(4) First we prove

Lemva. Let S, be any subspace of T,(M) invariant by Y(x).
Then, for each i = 1, . - - , K, either §_ is orthogonal to T’ or S,
contains 79,

Proof of Lemma (i) Assume that al vectors of §, are left
fixed by ¥,(x)."Then S, is orthogonal to T\. In fact, let X =
Tt X, be any element of §,, where X, ¢ TY. For an arbitrary
element a, of ¥,(x), we have

a(X)= Xy + Xy+ v oot a(X)+ o+ Xy

since a; acts trividly on TW for j # i. If a(X) = X, then
a,(X;) = X,. Since this holds for every a, ¢ ¥;(x) and since Y,(x)
is irreducible in T, we must have X; = 0. This shows that X is
orthogonal to T,

(ii) Assume that a,(X) # X for some 4, « ¥;(x) and for some
X €8, Let X = Z¥_, X, where X; ¢ TY. Since. each X, j # |,
is left fixed by every dement of ¥ ,(x), X — a,»(X%: X, —
a(X) = 0 is a vector in T as well as in §, 1he subset
(6,(X ~ a,(X)) ; bye Fu(x)} isIn TP 0§, and spans T3, since
W,(x) is irreducible in . This implies that T¢ is contained in
S,, thus proving the lemma

Going back to the proof of (4), let T, (M) = Zi_, SY be any
other canonical decomposition. First it is clear that T = $§O.
It is therefore sufficient to prove. that each SY, 1 £ j £ [,
coincides with some T%. Consider, for _cxar_nglc, SO, By the lemma,
either it is orthogonal, to Tg) for every ¢ = 1 or it contains T3
for some i 2 1. In the first case, it must be contained in the
orthogonal  complement 1% of Ei., TP in T,(M). This is
obviously a contradiction. In the second case, the irreducibigt%Dof
S implies that $ actually coincides with T§. ‘

The following result is due to Borel and Lichnerowicz [1].

Treorem 5.5. The restricted homogeneous holonomy group of a
Riemannian manifold M 75 g closed subgroup of SO(n), where n = dim

Proof.  Since the homogeneous holonomy group of the universal
covering space of M is isomorphic with the restricted homo-
geneous holonomy group of M (cf. Example 2.1), we may assume,

IV. RIEMANNIAN  CONNECTI ONS 187
without loss of generdity, that M o gm ly connected. In view of
(3) of Theorem 5.4, our assertion follows from the following
result in the theory of Lie groups:

Let G be a connected Lie subgroup of SO(n) which acts irreducibly on

. the n-dimensional vector space R™ Then G is closed in SO(n).

The proof of this result is given in Appendix 5.

6. The decomposition theorem of de Rham

Le¢ M be a connected, simply connected and complete
Riemannian manifold. Assuming that M is reducible, let T (,1/) =
T, + T be a decomposition into subspaces invariant by the
linear holonomy group ¥(x) ‘and let T and T be the parallel
distributions defined by 77, and 7' fi s the beainni
of §5. We fix a point o ¢ M and’ &N g/n%llyA}x§ X tcﬁe i
integral - manifolds of T g 7" through o, respectively. By

Proposition 5.1, both M' 5ng M are complete, totally geodesic
submanifolds of M.

The purpose of this section is to prove

THEOREM 6.1. M is isometric to the direct product 31 x Af”,
Proof. For any curve 2,0 = t = 1, in M with z,= o,we
shal define its projection on M’ to be the curve x, n,— t - |
with x, = 0 which is obtained as follows. Let (, be the develop:
ment of 2z, in the affine tangent space 7,(Af). (For the sake of
simplicity we identify the affine tangent space with the tangent
(vector) space.) Since T,(M) is ‘the direct product of the two
Euclidean spaces T, and 77, C, may be represented bv a pair
(A, B,), where A, and B, ge curves in T and T” respectively
By applying (4) of Theorem 4.1 to M, we See that there exists a
unique curve x, in M " whir N @ye 1oned upon the curve: in
view of Proposition 4.1 of Chapter Il 'we may define the curve
x, ‘as follows. For each ¢, let ' X, be the result of the parallc] dis-
placement of the 7"-component Of Z; from z,10 0 = 2, (along the
curve Z,). The curve #, is a curve in-A{’ with x, = 0 such that the
result of the parallel displacement Of # @ong itsdf to 4 s’ equal
to X, for each t.
Before proceeding further, we shall indicate the main idea of the
proof. We show that the end point ¥; of the projection «, depends

only on the end point z, of the cyrve 7, if Af is simply connected.
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Thus we obtain a projection p': M — M’ and, smilarly, a pro-
jection p”: M — M". The mapping p = (p', p") of M into M’ x
M" will be shown to be isometric at every point. Theorem 4.6 then
implies that p is a covering projection of M onto M’ x M". If } is
a homotopy in M from a curve of A{' to another curve of M’, then
P'(h) is a homotopy between the two curves in M’. Thus, M’ is
simply counected. Similarly, M" is simply connected. Thus p is an
isometry of M onto AL’ x M”. The detail now follows.

Lemvua 1. " Let 7= 2,0 <t = 1, be a curve in 64 with zy = o
and let a be any number with 0 < a < 1. Let =, be the curve z,
0 £t <a,and let 74 be the curve z,a =t & 1. Let 75 be the pro-
jection of 7, in the maximal integral manifold M'(z,) of T" througkh z,.
Then the projection of 7= 75+ 71 in A:/[’ coincides with the projection of
7" = T.’_, YT,

‘Proof oflLemma 1. This is obvious from the second definition
of the projection by means of the (linear) ‘parallel displacement of
tangent vectors.

Lemwa 2. LetzeMandlet. V =}’ x V” be an open neighborhood
of zin M, where ¥’ and V" are open neighborhoods of z in M’(z) and
M"(z) respectively. For any curve z, With zg = z in V, the projection of
z,in M’(z) is given by the natural projection of V onto V'

Proof of Lemma 2. For the existence of a neighborhood
V = V' x V”, see Proposition 5.2. Let..z, be given by the pair
(x4, »,) Where x, (resp. ;) is acurve in V' (resp. V) with x5 = 2
(resp. ¥y = 2). Since V = ¥’ x V~, the paralel displacement of
the T-component. of 2, from z,to z, = z aong the curve z, 1s
the same as the paraliel displacement of %, from x,to %, = z
a|ong the éurve X4 Thus X, is the prOj&tion of the curve Z, in
M’(2).

We introduce the following terminologies. A (piecewise
differentiable) curve z, is called a, T'-curve (resp. T”-curve)+ if

 belongs to T, (resp. Tj) for every i Given a (piecewise
differentiable) homotopy z: [0, 1 ] x [U, s3] — M. which 15 dé&-
&Led by z(t, 5) = z;, we shal “denote ?)y Z" (resp. z,) the
curve with parameter t for the fixed value of § (resp. the curve
with parameter 5 for the fixed value of t). Their tangent vectors
will .be denoted by z* and Z#,, respectively. For. any point
.Z ¢ M, let d’ (resp. ") denote the distance function on the maximal’
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integral manifold M’(z) of T” (resp. M”(z) of T") through z.
Let U'(z; 1) (resp. U’(z; 1)) denote the set of points w:e M'(2)
(resp. w e M"(2)) such that d'(z, w), < r (resp. d"(z, w) < ).

Lemma 3. Let ' = x, 0 < t < 1, be a T’-curre. Then there
exist a number r > 0 and a family of isometries f, 0 < t < 1, of
U"(xy; r)onto U"(x,; r) with the following properties:

(1) The differential of f,dx, coincides with the parallel displacement
along the curve 7* from x, to x,,

(2) For any curve 7 = 3%, 0 < 5 = 5o, in U (%05 1) with 30 = x,,
set z; = f,( ). Then

(@ Forany 0 < ¢ <1 and 0 £ 5, < 55, the parallel displacement
along the “parallelogram” formed 4y the curve x, 0 = t < ¢, th
curve 2, 0 < 5 £ 5y, the inverse of the curve zl(ﬁ)’ 0 <ts={,and
the inverse of the curve 3%, 0 =< 5 < s,, is trivial;

(b) For any sand t, z* is parallel to #,along the curce k4

(c) For any 5 and t, 2, is parallel to y* along the curve z{”.

Proof of Lemma 3. Let V' be a neighborhood of x, of the form
V = V" x V" & in Proposition 5.2. Choose a number 7 > 0
sufficiently small so that x, ¢ V' and U"(x,; 1) < {x,} ‘x " for
0 £t r. We define f, by fi(xg, ) = (x,,3) for-r € U"(x,; 1). It
is clear that the family of isometries f,, 0 < { == r, has al the
properties (1) and (2). The family f, can be extended easily for
0 £t <1 and for asuitable r > 0 by covering the curve +' = ¥,
by a finite number of neighborhoods of the form V = V' x Vv”
and using the above argument for each neighborhood.

Lemma 4. Let 7'= x,0 =t <1, bea T-curve and let 7”7 = »*
5§ % 5, be a P-geodesic wit}zjo = Xy, Where g is the arc length:
Then there exists a homotopy 2z, 0 <t <1, 0 < ¢ = 5, with the
Sollowing properties : '

(1) 2% = x,nnd zf, =55

(2) z; has properties (a), (b) and (c) of Lemma 3.

The homatopy z; is uniquely determined. In fact, if ¥, is the resuft of
parallel displacement “¢f - the initial tangent vector Y, = 9 of the
geodesic 7" along the curve 7', then z; = exp sY,.

Proof of Lemma 4.” We first prove the uniqueness. By (a) and
(c) and by the fact that "=" is a geodesic, it follows that 2% is,

P

padlel to Y, along the curve zj,. This means that 25 is a
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geodesic with initial tangent vector Y,. Thus, = = exp sT,,
proving the uniqueness.
It remains therefore to prove that - = exp s¥, actually
sntisfics conditions (1) and (2). Condition (1) is obvious. To
rove (2), we may assume that 7' is a differentiable curve so
that z; is differentiable in (t, ). Let f, be the filmily of isometries
as in Lemma 3. It is obvious that there exists a number § > 0
such that z7 =f,( ») for 0 == t==1 and 0 = s = 8 Thus, Z
satisfies condition (2) for O <. ¢ == 'and 0 = s < 6. Let a bc the
suprcmum of such o. In order to prove a = s, assume a < $.
First we show that z; satisfies (2) for 0 =t= 1 and 0 = s = Q.
Since z; is differentiable in ¢ s), the parallel displacement along
the curve (" is the limit of the paralel displacement along the
curve =¥ as s } ¢ (cf. Lemma for Theorem 4.2 of Chapter I1).
Thus condition (a) is satisfied. We have aso Zf, = liTm Zy and
sla

I~

0 = lim Y Combined with the above limit argument, this
sta

gives conditions (b) and (c) for 0 <15 1 and s = a.

In ordrr to show that z; has property (22 beyond the value a,
we apply Lemma 3 to the T"-curve 7@ = 2z and the Y-geodesic
3, where u = 5 — a, We see then that there exist a number 7 > 0
and a homotopy uy, 0Lt 1, —r L u = r, satisfying a condi-

tion similar to (2), such that w{® = 2 and w} = ' Since W -

is pardlel to j* along the curve w{” = z% it follows that z; =
w, “for0:.t=1land a—r < s = a+ r. This proves that z;
satisfies condition (2) for 0 <t 1 and 0 £ 5§ < a + 7, contra-
dicting the assumption that a < s,

LeEmmA 5. Keeping the notation of Lemma 4, the projection of the
curve v, 7"~Lin M'(y%) coincides with 700 = AW 0 St <L

Proof of .emma 5. Since r"~lis a T"-curve, its projection in
M'( %) is trivia,. that is, reduces to the point y*. Conditions ()
and (b) imply that, for each t, the parallel displacement of #,
along 7"+ 7/-1 to y% is the same as the parallel displacement of
200 along 2" to y'. This means that 7" . 7/-} projects on 7°-

We now come to the main step for the proof of Theorem 6.1.

Lemma 6. If two curves -, and, 7, from e # a point z in M are
homotopic to each other, then their projections in M' = M’(0) have the
same end point.
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Proof of Lemma 6. We first remark that 7. is obtained from
r, by a finite succession of small deformations. Here a small
deformation of a curve z, means that, for a ceriain small neighbor-
hood 1", we replace a portion =, t, <t - £, of the curve Iving in

-V bvacurve w, £y wot- fy, with wy =z, and g, =z, Iving

in V. As a neighborhood F, we shall alwaysl take a neighborhood
of the fom ' J” as in Lemma 2.

It affics therefore to prove the following assertion. Let + be
a curve from 0 t0 -, x4 a curve from z, to z, which liesin a
small neighborhood I" = [ < J"" and x @ curve from z, to _,
Let v be another curve from =z, t0 =y which liesi n T, Then the
projections of x + w. rand «. v . 7§ n A have the same end’
point.

To prove this, we may first replace thr curve g by its projection
n 3M'{23) by Lemma |. Thus we shall assume that x is 4 7"
curve. Let ¢ be represented b the pair (p, u”)in 7z 77010
By Lemma 2, the projection ¢! s in M'(z,)is u". Let u* be
T"-geodesic in I joining =, and the end point of .. The par.licl
displaccment of Y-vectors at z, along p—!is the same as the
parallel displacement along '~ p*, because u” and w* ;..
the same parallel displacement for 7'-vectors. BY Lemma 5. we
see that the projection of «* uin M’(z,) is the curve u' tollowed
by the ‘curve «' obtained by using the homotopy :' constructed
from the Y-geodesic u* and the T"-curve -«. The homotopy 7
depends only on x* and « and not on 4. Thus if we replace u by
v in the above arqumcnt, we se¢ that the projection of « ., js
equal to » followed by «', where v = (¥, V") sin ¥V =} }7".
We now dividr rinto a finitc numberofarcs, say, T, To. . . ., 7,
such that each =, lies in a small neighborhood I’; of the form
Vi x¥V!. We show that the projections of the curves «' . « . 7,
and «' . » 7, have the same end point in the maximal integral
manifold of T’ through the initial point of r,. Aguin, let -
(71 70) in Vi =V, x Vi-and let 7 be the geodesic in F, joining
the end point of 7, to the end point of 7i. As befyre, the projection
of k" p' 1, isthe curve 7, followed by the curve obtained by the
homoiopy which is cofistructed from the T”-geodesic =¥ an! e
T'-curve ' . 4. Similarly for the projection of «". »'. r,. Fach
homotopy was constructed by the parallel displacemert of the
initial tangent vector of the geodesic 7} along %' u” or along
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k' +¥'. Since v'-1 . y'is a curve in V', the paralel displacement
dong »'-t . y' istrivid for T"-vectors. This means that the paralel
displacements of the initial tangent vector of 7} aong u’ and »’
are the same so that the two homotopies produce the curves pu,
and v, starting at the end point of 7, and ending at the same point,
where a curve x; stars in such a way that kg ' 7. and
Ky ' v 7, are the projections of « . p'. 7, and «+»" 7, respec-
tively. We dso remark that the paralel displacements of every
T”-vector along p; and v, are the same; this indeed follows from
property (a) of the homotopy in Lemma 4.

We continue to the next stage of projecting the curves
Ki® My 7’k “Te_q AN d Ky ' Vg nr;: vy, by the same method. As
a result of the above remark, we have two curves ending at the
same point. Now it is obvious that this process can be continued,
thus completing the proof of Lemma 6.

Now we are in position to complete the proof-of Theorem 6.1.

Lemma 6 alows us to define a mapping p' of M into M.
Similarly, we define a mapping p" of M into M”. These mappings
are differentiable. As we indicated before Lemma 1, we have only
to show that the mapping p = (p’,p") of M into M’ x M" is
isometric at each point. Let z be any point of M and let T be a
curve from o to z. .For any tangent vector Z ¢ T,(M), let Z =
X -+ Y,where X ¢ T; and Y T,. By definition of the projection,
it is. clear. that p’(Z) is the same as the vector obtained by the
parallel  displacement of X from z to o dong r and then from o to
p'(z) dong p'(r). Therefore, p’(Z) and X have the same length.
Similarly, p"( Z) and Y have the same length. It follows that Z and
p2) = (p'(Z), p"(Z)) have the same length, proving that é is
isometric at z. QED.

Combining Theorem 5.4 ar?d Theorem 6.1, we obtain the
decomposition theorem of de Rham.-

Tecrem 6.2, A connected, simply connected and complete Rieman-
nian manifolll M is isometric to the direct product My > Myx e %
M,, where M, is a Euclidean space (possibly of dimension 0) and
M,, ..., M,areall simply connected, complete, irreducible Riemannian
manifolds. Such a decomposition is unique up to an order.
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Theorems 6.1 and 6.2 arc due to de Rham [1]. The proof of
Theorem 6.1 is new; it was inspired by the work of Reinhart [ 1].

7. Affine holonom_y groups

Let A1 be a connected Riemannian manifold. Fixing a point x
of Af, we denote the affine holonomy group ®(x) and the linear
holonomy group ‘F(x) simply by ® and ¥, respectively. We know’
(cf. Theorem 5.5) that the restricted linear holonomy.group ¥?°
is a closed-subgroup of SO(n), where n = dim AL, @ is a group of
Euclidean motions of the affine (or rather Euclidean) tangent space
i-,(M) . o

We first prove the following result.

THEOREM, 7.1, If WYrreducible, then either

(1) @° contains all translations of T;(M).
or

(2) ®O fixes a point of T,(M).

Proof. Let K be the kernel of the homomorphism of ¢.% onto
Y0 ‘(cf. Proposition 3.5 of ChapterIII). Since X is a normal
subgroup of ®° and since every dement a of ¢ is of the form
A= & dawhere d ¢ 'F®and ¢ is a pure trandation, ¥ normalizes
K, that is, §-1Kg@ = K for every & ¢ W9 Consider first the case
where K is not discrete. Since Y9 is connected, it normalizes the
identity component K° of K. Let V' be the orbit of the origin of
T, (M) by KO It is a non-trivial linear subspace of 7 (A}
invariant by ¥°; the invariance by ¥* is a consequence of the fact
chat ¥* normalizes K° Since 1 is irreducible by assumption, wc
have V = T,(Af). This means that ®°® contains all trandations of
T,(M). Consider next the case where K'is discrete. Since ¥ is
connected, ¥° commutes with K elemantwise. Hence, for every
& ¢ K, £0) is invariant by ¥ (where O denotes the origin of
T,(M)). Since ¥?'is irreducible, £(0) = O for every ¢ ¢ K. This
means that K consists of the identity element only and hence that
@9 is isomorphic to ¥ in a natura manner. In particular, ®°
is compact. On the other hand, any compact group of affine
transformations of T,(M) has a fixed point. Although we shal
prove a more genera statement in Volume I, we shal give here
a direct proof of this fact. Lct T be the mapping from ®° into
T,(M) defined by

fla) = a(0) for a ¢ @9,



194 FOUNDATI ONS OF DI FFERENTI AL GEQOVETRY

Let da be a bi-invariant Haar measure on @°® and define

X, = f f(u) da.

Itis f'as\y to verify that X, is a fixed point of o, QED.

We now investigate the second case of Theorem 7.1 (without
assuming the irreducibility of A).

THeoREm 7.2. Let M be a connected, simply connected and complete
Riemannian manifold. If the (restricted) affine holonomy group ®° at a
point X fixes a point of the Euclidean tangent space T,(M), then M is
isometric to a Euclidean space,

Proof. Assuming that X, € T,(M ) is a point fixed by @9, let
r be the geodesic from x to a pointy which is developed upon the
line segment ¢X,, 0 < ¢ < 1. We observe that the affine holonomy
group @9 y) aty fixes the origin of T,(M). In fact, for any closed
curve u a y, the affine parallel displacement along 7 « p « =
maps X, into itsef, that is, (== » u - 7)X, = X,. Hence the
origin of T,(M) given by 7(X,) is left fixed by p. This shows that
we may assume that ¢° fixes the origin of T,(M). Since M is
complete, the exponential mapping T,M) — M is surjective.
We show that it is 1: 1. Assume that two geodesics = and pu
issuing from x meet at a pointy # x, The affine pardlel displace-
ment !+ + maps the origin 0, of T,(M) into itself and hence

we have .
T—I(OV) = :“-1(01/):

where 0, denotes the origin of T, (M). Since +-(0,) and x~1(0,)
are the end points of the developments of r and u in T,(M)
respectively, these developments which are line segments coincide
with each other. Thus r = y, contradicting the assumption that
X #y. This proves that the exponentid mapping T,(M) — M
isl:1.

Assume that exp, is a diffeomorphism of N(x;r) = {X eT,(M);
1X| < rionto U(x;r) = {y e M;id(xy) <}, and let 2%, . ,., x" be
a norma coordinate system on U(x; 7).

Weset X = -3, «f (a/ax") and let p be the corresponding
point field (cf. §4 of Chapter Il1). We show that # is a parale
point field. Since @° fixes the origin of T,(A), it is sufficient to
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prove that s is paralel aong each geodesic through x. Our
assertion follows therefore from

Lemn 1. Letr=1%,0 =<t < 1, be a curve in a Riemannian
manifold M and let 7 (resp. ) denote the affine (resp. linear) parallel
displacement along r from x, to x,. Then

#(Y) = (YY) + C, Ve T (M),

where ,, 0 <t < 1, is the development of 7 = %, into T, (M),

Proof of Lemma 1. Given Y ¢ T,(M), let p (resp q) be the
point field aong 7 defined by the affine paralel displacement of
Y (resp. the origin of T, (A)) and let Y* be the vector field aong
7 defined by the linear pardlel displacement of Y. Then p = q +
Y* at each point of =, that is, }'* is the vector with initial point ¢
and end point p a each point of 7. At the point x, this means
precisely 74( Y) = 74(Y) + C,.

Going back to the proof of Theorem 7.2, we assert that

V,X+V =0 forany vector field V.

This follows from

LEMMA 2. Let p be a point field along a curve 7= %,,0 <! <1,
in a Riemannian manifold M and let X be the corresponding vector field
along 7. Then p is a parallel point field if and only if

V,,IX-}—:&,:O for0 =t = 1
Proof of Lemma 2. From Lemma 1, we obtain

M., = MK + G

where C,, (for a fixed t and with parameter h) is the development
of 7 into T,(M). Since #**(p, ) is independent of h (and
depends only on t/) if and only if p is parald, we have

1
0 = lim- [1'”"( X,,) — &,] +1lim;
h—~0 h—0) h
=V, X + %,

for 0 =t = 1if and only if p is parallel, completing the proof of
Lemma 2.

(‘th
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Let I' and Z be arbitrary vector fields on M. From V, X + VY =
Oand V,X +Z = 0, we obtain (cf. Theorem 5.1 of Chapter III)

VY

VX 4 [X, Y] =~ Y +[X, Y]
ind

VyZ= VX +[X,Z]=-- Z+1X,2]

Hence,
X(g(Y, Z))= g(VyY, Z) + g(¥, Vi2)
= —2(Y, Z) + ¢([&, Y], Z) + g(¥, [X, Z]).
Let ¥ = d/0x’ and Z = a}axk for any fixed j and k. Then we have

X g = —2g; + &ix + & = 0.

This means that the functions g;. arc invariant by the local |-
parameter group of transformations ¢/, generated by X, But ¢, is
of the form

” g (Xt oo, xt) = (el L e ).

Thus the functions g, are constant along each geodesic through y,
Hence, .
2 = gu(x) = (I, at every point of [(x; 7).

This shows that exp, is an isometric mapping of N{x; r) with
Euclidean metric onto U/(x; +;. Let r, be the supremum of r > O
such that esp, is a diffeomorphism of N(x; r) onto U(x; r). Since
the differential (exp,), is non-singular at every point of N(x; r,),
exp, is a diffcomorphism, hence an isometry, by the argument above,
of N(x; r,) onto U{x; r,). If 1, < oo, it follows that (exp,), is
isometric a cvery point » of the boundary of \( ¢; r,) and hence
nonsingular in a neighborhood of such y. Since the boundary of
N{x; 7,) is compact, we see that there exists ¢ > 0 such that exp, is a
diffcomorphism of N(x;r, + ¢ onto U(x; r, + ¢), contradicting the
defmition of r,. "This shows that exp, is a diffeomorphism of T, (.}1)

onto . By choosing a normal coordinate system !, . . . x" on
the whole 1, we conclude that g, = 4,, a every point of 1,
that is, A{ is a Euclidean space. QED.

As a consequence we obtain the following corollary due to Goto
and Sasaki [ 1].
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CoroLLARY 7.3. Let Af be a connected and complete Riemannian
manifold. I the restricted affine holonomy group ®°(x) fixes a point of the
Euclidean tangent space T,(M) for some x ¢ M, then M is locally
Euclidean (that is, ¢“¢™Y point of M has a neighborhood which is isometric
to an open subset ¢of a Euclidean space).

Proof. Apply Theorem 7.2 to the universal covering space o
M. QED.

COROLLARY T7.4. If M is a complete Riemannian manifold of
dimension > 1 and if the restricted linear holonomy group ¥°(x) is
irreducible, then the restricted affine holonomy group ®°(x) contains all

translations of T,(M).
Proof. Since ¥°(x) is irreducible, M is not locally Euclidean.

Our. assertion now follows from Theorem 7.1 and Corollary 7.3.
E



CHAPTER V

Curvature and Space Forms

1. Algebraic preliminaries

Let V be an n-dimensional real vector space and R:V xV x
V x ¥V - R a quadriiinear mapping with the following three
properties:

(a) R(I)l, Uy Z{3: 1’4) = -R(v% Uyy Y3 1’4)
(b) R(vy, 225 23 1y) = —R(v, 1y, 1'4,‘ 7)
(C) R(Ul’ Uy Uy 04) + R(vl’ U3, Uyy Ua) T R(”D Uy Vg 03) = O

Prrosiian 1.1, If R possesses the above three properties, then it
possesses also the following fourth property :

(d) R(vy, vy, vsy 1) = R(va, vy, vy, 04)-

Proof. We denote by §(v;, v,, 03, 7;) the I€ft hand side of (c).
By a straightforward computation, we obtain

0 = S(v1, va, 03, 1) = S(vy, 03, Uy v;) ~ S(vg, 1y, 3, V3)
+ S(vg, vy, 04, vg)
= R(vy, v, U3, 04) - R(”z, 01; vg, UA) - R(v3, Uy U1, Ug)

+ R(ZJ,‘, 113, vl’ 02)'
By applying () and (b), we see that

2R(vy, vg, vg, vy) — 2R(vqy 04, vy, 05) = 0 . ~
QED.

ProprosiTion 1.2. Let R and T be two quadrilinear mappings with
the above properties (a), (b) and (c). If

R(v,, Yy a;, vg) = T(vy, v, vy, 0,) Jor all vy, v €V,
then R = T.
198
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Proof. We may assume that T = 0 ; consider R —= T and O
instead of R and T. We assume therefore that R(vy, vy, v, 05) = 0
for dl vy, v, ¢ V. We have

0= R(vl: Ug Vg Uy Uy ZV4>
= R(-vh Vo, Uy v4> + R(llla Uy Uy, Uy)

= r‘)'R(vl’ vz’ U1y U4).
Hence,

(1) R(vy, vy, vy, 0) = 0 foral oy, vy0 T
From (1) we obtain
0 = R(v, + s, vy, V1 + 3, 0y)
= R(vy, vy, vay 25) = R{vg, vy, 1y, Uy
Now, by applying (d) and then (b), we obtain
0= R(vy, va vs 1g) + R(1y, vy, 3, 23)

— R(vy, 05, 03, 8)) — R(vy, Vs Ta, U3).
Hence,

Q) R(vy, vy, v3, 03) = R(v1, vy, 0y, v) foral v, vy, v3,05¢ V.
Replacing vy, vy, 25 by v3, 74, s, respectively, we obtain
(3) R(vy, 0y Uy, 0s) = R(vy, 0y, 20y zy)  FO ?“ Iy, Uy, Vs Uy €,
From (2) and (3), we obtain
3R(vy, vy, 3, 1g) + R(vy, vy, Vg 4] + R(vy, v3, 1y, vy)
+ R(vls Uy Vo 03),

where the right hand side vanishes by (c). Hence,

R(Ul’ Ugy Y3 ) = o for all U1y Ugs Usy Uy € V.
QED.

Besides a quadrilincar mapping R, we consider an inner

_product (i.e, a positive definitc symmetric bilinear form) on V,

which will be denoted by {, ). Let p be a plane, that is, a 2-
dimensional subspace, in J” and let z; and v, be an orthonormal ¢
basis for p. Weset - -
K{pV Rz, v vy, vy).
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As the notation suggests, K(p) is independent of the choice of an
orthonormal basis for p. In fact if w, and w, form another

orthonormal basis ofp, then

w; = av, + bo,, ws = —bv, + avy (or bv, — au,),
where 4 and  are real numbers such that a® + 62 = 1. Using (a)
and (b), we easily obtain R(Vs Vg U1 Va) = R(wy, wy, wy, w,).
If”v vy IS @ basis (not necessarily orthonormal)

Prerosi oy 1. 3.

of a plane pin V, then
R(vl; Vo vly Uz)

K(P) = (0, 1) (09 va) — (01, 1g)?

Proof. We obtain the formula making use of the following
orthonormal basis for p:

@ v:} Lk %[(vl’ v1)v2 — (vy, 25)24]
1 Y1
where a = [(,, v,)((1y, 03) (22 72 = (21, 22)*)] QED.

We set
Ry(0y, vgy 03, ) = (0> 93) (0 20) = (g, v3) (24, %)

for vy, vy, U, 0y € V.

It is a trivid matter to verify tha &, is a quadrilinear mapping

having the properties (a), (b)and (c) and that, for any-plane p

in ¥, we have

—

Ki(p) = Ry(V1 Vo U1y 72) = 1,

where v, 1, is an orthonormal basisfor p.
proPosITION | .4.  Lef X he a quadrilinear mapping with properties
(a), (b) and (c). If K(p) = ¢ for all planes p then R = cR,.
Proof. By Proposition 1.3, w¢ nave
R(Ul’ vz’ v]’ 1’2) _ CRI(UI’ 02, L‘l, U2) fOI’ a” Ul, vz € V
Applying Proposition 1.2 to R and Ry, we conclude R = (R,
QED.

Letey, . .- )e, be an orthonormal basis for VV with respect to the
inner product ( , ). To each quadrilinear mapping R having
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properties (a), (b) and (c), we associate a symmetric bilinear
form § on V as follows:

$(v1, v2) = Rley, 01, €1, 00) + Reg, vy, €5, 05) +
+ R(.em 1)1, €ns ”2): Up Uy € V

It can be easily verified that § is independent of the choice of an
orthonormal basis e, . . ., ¢,. From the definition of S, we obtain

Prerosiman 1.5, Let v eV bea unit vector and let v, e, . . ., ¢, be
an orthonormai basis for V. Then

S(v, 1) = K(pa) + 0+ + K(pa),
where p, is the plarie spanned 4y v and e;.

2. Sectional curvature

Let M be an n-dimensional Riemannian manifold with metric
tensor g. Let R(X, Y) denote the curvature transformation of
T,(M) determined by X, Y ¢ T,(M) (cf. §5 of Chapter IIl).
The Riemannian curvature tensor ( field) of M, denoted also by R, is
the tensor field of rovariant degree 4 defined by

R(X,, X,, X, X)) - g(R(X;, XX, X)),
X, eT(M),i=1,...,A4

Prercsi v 2.1, The Riemannian curvature tensor, considered as a
quadrilinear mapping T,(M) x T,(M) x T, (M)x T,(M) - R
at each x ¢ M, possesses properties (&), (b), (c) and hence (d) of § 1.

Proof. Let u be any point of the bundle O(M) of orthonormal
frames such that =(u) = x. Let X¥, Xf ¢ Tp(O(M)) with 7(X}) =
X; and #(X}) = X,. From the definition of the curvature
transformation R(X,, X,) given in $5 of Chapter 1ll, we obtan

g(R(Xy, X)X, X)) = g(u[2Q(XF, X¥) (v71X,)], X))
= ((2Q(X3, X)) (™X,), u1Xy),
where (, ) is the natural inner product in R”. Now we see that
property (a) is a consequence of the fact that Q(X¥ X¥) ¢ o(n)
is a skew-symmetric matrix. (b) follows from R(X, X,) =
—R(X,, X,). Findly, (c) is a consequence of Rianchi’s first
identity given in Theorem 5.3 of Chapter IlI. QED.
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For each plane p in the tangent space T,(M), the sectional

curvature K(p) for p is defined by
K(p) = R(X,, Xy, Xy, Xy) = g(R(X,, X)X, X)),

where X,, X, is an orthonormal basis for p. As we saw in $1,
K(p) is independent of the choice of an orthonorma basis
X,, X,. Proposition 1.2 implies that the set of values of K(p) for dll
planes p in T,(M) determines the Riemannian curvature tensor
at X.

If K(p) is a constant for al planes p in T (M) and for all

points X ¢ M, then M is caled a space of constant curvature. The
following theorem is due to F. Schur [1].

THEOREM 2.2. Let M be a connected Riemannian manifold Of
dimension = 3. If the sectional curvature K(p), where p is a plane in
T,(M), depends only on x, then M is a space of constant curvature.

Proof. We define a covariant tensor field R, of degree 4 as
follows :

RI(W’ Zs Xs Y) = g(W’ X)g(zs Y) - g(Z, X)g(Y’ W)’

W, 4, X, Y e T,(M).
By Proposition 1.4, we have P

R = le’
where k is a function on M. Since g is pardlel, so is R,. Hence,
(VuR)(W, Za X, Y) = (VUk)Rl(Ws Z, X, Y)

for any Ue T,(M).
This means that, for any X, Y, Z, Ue T,(M), we have

[(VoR)(X, V)]Z = (UK)(¢(Z, Y)X - 2(2Z, X)Y).

Consider the cyclic sum of the above identity with respect to
(U, X, Y). The left hand side vanished by Bianchi’s second identity
(Theorem 5.3 of Chapter I1l). Thus we have

0 =(Uk)(e(Z, V)X — &(Z, X)Y)
+ (Xk) (g(Z,U) Y - 4(Z,Y) U)
+ (YB)(g(Z, X)U = g(Z, U)X).
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For an arbitrary X, we choose ¥, Z and U in such a way that
X, Y and Z ae mutually orthogona and that U = Z with
g(Z, Z) = 1. This is possible since dim M = 3. Then we obtain

(XK)Y = (YK)X = 0.

Since X and Y are linearly independent, we have Xk = Yk = 0.
This shows that k is a constant. QED.

CoroLLARY 2.3. For aspace of constant curvature k, we have
RX,Y)Z =k(g(Z, )X - g(Z,X) 7).

This was established _in-thé course of proof for Theorem 2.2.

If k is a positive {fesp. negative) constant, M is called a space
of constant pesitive (resp. negative) curvature.

If «Bjahd g;; are the components of the curvature tensor and
the tietric tensor with respect to a local coordinate system (cf.
§7 of Chapter Il1), then the components R, of the Riemannian
curvature tensor are given by

Rij = Ly EimBihr
If M is a space of constant curvature with K(p) = k, then
R = k(g ~ gjkgli)s R;:kt = k(0pgs — g:d)- )

As in $7 of Chapter 111, we define a set of function; iij?,,, on L(M)
by ( -
Qi = 5, 3R, 0 A 01,

where Q = (Q}) is the curvature form of the Riemannian connec-
tion. For an arbitrary point ¥ of O(M), we choose a local co-
ordinate system x%, . . . , ™ with origin x = m(u) such that u is the
frame given by (8/0xY),, . . . , (9/0x™).. With respect to this
coordinate system, we have
8 = (5,», a x,
and hence
Ry = Rij = k(0;bj0 = 0 j10r) @ x

Let ¢ be the local cross section of L(M) given by the field of
linear frames g/dx,. . . , 0/0x". As we have shown in $7 of
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Chapter 111, we have a*ie}“ = Ri.. Hence,

:RJI‘.H = k<‘5tk5u ~ 050, a t 1,
Q=k'AD .y
Since y is an arbitrary point of O(Af), we have

Proposirion 2.4. If M s a space of constant curvature with

secttonal Curvature K, then the curvature form Q = () is given by

Qf = k6in 6 on O(M),
where 0 = (()') is the canonical form on O(1f).

3. Spaces of constant

In this section, we'shall construct, for each const

connected, complete space of constant cu

rvature wit
curvature k. Namely, we prove _

ThEOREM 3.1. Let (x1, . . .
R"+1 and M the kypersurface of R"+1 defined by

(¥)2 4+ o g (x")2+ 1% = 1 (r :a nonzero constant).
Let g be the Riemannian metric of M obtained BY restricting the following
form to Af:
’ (dxt)? + oo 4 (™2 + 7 dit,
Then ¢
(1) M 15 a s e ofcons antcurvature with sectional curvature 1/r,
(2) The group G of lingar transformations of R ! leqving the quadratic

form (x1)* — . 4 ("2 + r2 invariant acts transitively on M as a

group of isometries of A,

(3) f r >0, then M is isometric to a sphere of aradius-r!. [fr < 0.,
then M consists of two mutually isometric connected manifolds ggch of
which is diffeomorphic with R,

Proof. First we observe that M is a closed submanifold of
Rn+1 (cf. Example 1.1 of Chapter 1) ; we leave the verification to
the-teader.

We begin with the proof of (3). If r > 0, then we set y7+1 = rif,
Then M is given by

(xl)z + _}_ (xﬂf—l)2 — r’

» &, 1) be the coordinate system of
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and the metric g is the restriction of (dx')* +. «. - (dx" "1)* to
M. This means that M is isometric with a sphere of radius 7. If
r <0, then 2 2 1 at every point of M. Let M’ (resp. M") be the
set of points of M with t > 1 (resp. | £ — 1). The mapping
(4 ..., 2" ) > (... ,)") defined by

ji: xi/t’ llzl,,...,ﬂ,

is a diffeomorphism of M’ (and A{") onto the open subset of R*
given by _
(O 4r<o,

In fact, the inverse mapping is given by
xi:yit’ | = 1,...,”,

(=57
t= )

A straightforward computation shows that the metric g is expressed
in termsof 3!, ..., »" as follows:

A + 5 (0))E (@) — (E 0 &)
o+ 00

To prove (2), we first consider G as a group acting on R*1.
Since G is a linear group leaving ()% + » . « + ("% -~ r2
invariant, it leaves the form (dx})% + « v+ 4 (dx™)® + 7 4f* n-
variant. Thus, considered as a group acting on, M, G is a- group of
isometries of the Riemannian manifold A4, The transtivity of G
on M is a consequence of Witt's theorem, which may be stated as
follows. .

Let Q be a nondegenerate quadratic form on a vector space V.
Iff is a linear mapping of a subspace U of’ V' into ¥ such that
Q(f(x)) = Q(x) fordl x e U, then f can be extended to a linear
isomorphism of ¥ onto itself such that Q(f(x)) = Q(x) for all
x ¢ V. In ‘particular, if x, ad x, are elements of V with Q(x,) =

Q(x,), there is a linear isomorphism ¥ of V onto itself which
leaves Q invariant and which maps x, into x,.

For the proof of Witt's theorem, see, for example, Artin
[1, p. 121].

Finaly, we shall prove (1). Let H be the subgroup of G which
consists of transformations leaving the point o with coordinates
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(0,...,0, 1) fixed. We define a mapping f: G — O(M) &
follows. Let u; ¢ O(.M) be the frame at the point o = (0, . . ., 0, 1)
€ M given by (9/0x"),, . . ., (9[gx"),. Every element a ¢ G, being
an isometric transformation of Af, Maps each orthonormal frame
of M into an orthonormal frame. In particular, a(x,) is an ortho-
norma frame of A at the point-a(0). We define

fla) = a(uy)y  aeG.

Lewn 1. The mapping f: G . O(M)is an isomorphism of the
principal fibre bundle G(G/H, H) onto the ‘bundle O(3/V( A, On .

Proof of Lemma 1. |f we consider G as a group of* (- 1) <

(n + 1)-matrices in a naturd MaNer, (hep H i s naturalls

isomorphic with O(n) :

. (O(n) '0).
0 1

It is easy to verify that f/: G _, O(M) commutes With the right
trandation R, for every a ¢ H = O(n) !
Slba)= f(b) +a  for beGand aeH = O(n).

The trangitivity of G on M implies that the induced mapping
f. G/H — M is a diffeomorphism and hence that f: G — O(M)
is a bundle isomorphism.

The quadratic form defining Af is given by the following
(n+ 1) x (n + 1)-matrix:

L0
Q=(O r).

An (n + 1) x (N + 1)-matrix a is an dement of G if and only if
taQa = @, where gz is the transpose of a Let

L) KB
X
a= d
e 3)
where X-is an » X n-matrix;? and z are elements of R"\ and wx is
a rea number. Then the condition for ato be in G is expressed hy
XX +rz'z2=1, Xp+rrz2w=0 Yy 4+, 2.,
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It follows that the Lie algebra of G is formed by the matrices of

the form .
A b)
‘c (),1

where 4 is an n x p-matrix with 4 + 4 =0and b and ¢ are
elements of R" satisfying 4 —rc = 0. Let

1. 1 1
251 Ly l8

n " n
31 Xy ﬁ
Ya---Va O

be the (left invariant) canonica I-form on G (cf. §4 of Chapter I).
We have

a}+a?30’ﬂi+f)}i:0, i,j:l,...,n.

The Maurer-Cartan equation of G is expressed by
dpt = _Ek OL}; A ﬂk,
did = —Z, 0 Ao w B A Y, L7=1,...,n
Lemva 2. Let 0 = (99 andto = (i) be the canonical form and
the connection form on O(M). Then

f*oi____ﬂi an‘a’f*w;:aj.,‘i,j: 1,...,n.

Proof of Lemma 2. As we remarked earlier, every element
a ¢ G induces a transformation of O(Af) ; this transformation
corresponds to the left trangation by ain G under the isomorphism
fi G —» O(M). From the definition of 8, we see easly that
6 = (0°) is invariant by the_ transformation induced by each
a ¢ G. On the other hand, (g IS invariant by the left tr_arjslatlon
by each a ¢ G. To prove f *§i = f§, it iS therefore sufficient to
. show that (f*6)(X*) = Bi(X*) for adl X* ¢ T,(G). S¢ X, =
(8/dx'), so that the frame u, is given by (X,, ..., <0 The
composite mapping « o f: G — O(M) - M maps an element of
T,(G) tidntified with the Lie agebra of G) of the form

e o
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into the vector L, 6'X, ¢ T,(M), B
components of 6. Therefore, if X* \E/vf}e;r(%)’ then "o 0’?(%9) tQ.e
%, p'(X *)X, and hence

(SHOX"), oo 20 (X)) = w5 o f (X))

= (BYX*), ., (X)),
which proves the first assertion of the lemma. Let g and }j be the
Lie algebras of G and H, respectively, ‘Let m be the'linear sub-
space of g consisting of matrices of the form

0 &

(*c 0)'
It is easy to verify that m is stable under ad H, that is ad (a)(m) =
m for every a ¢ H. Applying Theorem 11.1 of Chapter L we
see that («]) defines @ connection in the bundle G(G/H, H). Now
the second assertinn of Lemma 2 follows from the following thred
facts: (1) (f’) corresponds to (6°) under the isomorphismf: G —
O(M); (2) the Ric mannian connection form (wf) is characterized
by the property that the torsion is zero (Theorem 2.2 of Chapter
IV), that is, d0' = =X, wp A 0%; (3) the connection form ()
sdtisfies the equaity: dp = —X, of A B~

We shall now complete the proof of Theorem 3.1. Lemma 2,

together with . _ ‘
o d; = ~Zpap Aok — fiAy,
implies Btmi=0

dof = —%, i A o +;ﬂ“/\ﬂ’,
showing that the curvature form of the Riemannian connection is
given by ! 0 A 07, By ‘Proposition 2.4, M is a space of constant
curvature rwith sectional curvature 1/, " QED.

Remark. The group G is actually the group of all isomeétries of
M. To see this, let I(Af) be the group of 1sometries of M and
define a mapping f: JI(AM) — O(M) in the same way as we
defined f: G - O(M). Then G < 3(M) and f: (M) — O(M)
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is an extension Of f G — 0(Al). S_iﬂCC f maps 3(M) 1: 1 into
O(M) and since f(G) = O(M), we must have G = J(A).
In the course of the prouf of Theorem 3.1, we obtamed
TueoreM 3.2. (1) Let M be the sphere in R"+! dejined by
(x1)% + ..o+ (xm1)2 = g2,

Let g be the restriction of (dx')2+ .. + (dx"*')% to M. Then, with
respect to this Riemannian metric g, M 5.6 space of constant curveture with

sectional curvature 1 /a2,
(2) Let M be the open set in R™ dejined by
(x1)2 + oo 4 (7)< b

Then, with respect to the Riemannian metric given by
(e - =, YY) (@YY - (B ) B)*]
@-Z UM
M is a space of constant curvature twith sectional curvature .— l [az.

The spaces M constructed IN The&em 3.2 are’ all smply
connected, homogeneous and hence compléte by Theorem 4.5
of Chapter IV. The space R* with the Euclidean metric (dx")* +

-+ (dx™? gives a simply connected, complete space of
zero curvature. ,

A Riemannian -‘mani'folh of constant curvature is said to be
elliptic, hyperbolic or flat (or locally Euclidean) according as the sec-
tional curvature is positive, negative or zero. These, spaces are
aso called space forms (cf. Theorem 7.10 of Chapter V 1).

4. Flat affine and Riemannian connections

Throughout this section, M will be a connected, paracompact
anifold of dimension n.

Lét A(M) be. the bundle of affine frames over M; it is a
principal fibre bundle with structure group G = A(n; R) (cf. §3
of Chapter III). An affine ‘connection of M is said to be flat it
every point of M has an ooen neighborhood I and an isomorphism
v:AM) = U X G which maps the horizontal space at each
u ¢ A(U) into the horizontal space at y(u) of the canonical flat
connection of U x G. A manifold with a flat affine connection is
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said to be locally affine. A Riemannian manifold is flaz (or locally
Euclidean) if the Riemannian connection is a flat affine connection.

THEOREM 4.1. For an affine connection of M, the foliowing con-
ditions are mutually equivalent:

(1) Itisflat;

(2) The torsion and the curvature of the corresponding linear connection
vanish - identically ;

(3) The affine holonomy group is discrete.

Proof., By Theorem 9.1 of Chapter_Il, an affine connection is
flat if and only if its curvature form Q on A(M) vanishes identi-

cally. The equivalence of (1) and (2) follows from Proposition 3.4
of Chapter Ill. The equivalence of (2) and (3) follows from

Theorems 4.2 and 8.1 of Chapter II. QED.

Remark. Similarly, for a linear connection of M, the following
conditions are. mutualy equivaent:

(1) 1t is flat, i.e, the connection in L(M) is flat; (2) Its
curvature vanishes identically; (3) The linear (or homogeneous)
holonomy group is discrete.

When we say that the affine holonomy group and the linear
holonomy group are discrete, we mean that they are O-dimen-
sional Lie groups. Later (cf. Theorem 4.2) we shall see that the
affine holonomy group of a complete flat affine connection is
discrete in the affine group 4(n; R). But the linear holoxiomy.group
need not be discrete in GL(n; R) (cf. Example 4.3). It will b€ shown
that the linear holonomy group of & ¢ornyact flat Riemannian
manifold is discrete in O(n) (cf. the proof of @) of Theorem 4.2 and
the remark following Theorem 4.2).

Example4.1l. Let &, ... &, be linearly independent elements
of R* k < n. Let G be thesubgroup of R generated by &,, . . . , &,:

G = {Z m,,; m, integers).

The action of G on R is properly discontinuoiis.and. .R* is the
universal covering manifold of R*/G. The Euclidean metric
(dx')? 4+« + (dx”) ¥ of R” isinvariant by G and hence induces a
fla Riemannian metric on R”/G. The manifold R"/G with the
Riemannian metric thus defined will be called a Euclidean cylinder.
It is called a Euclidean torus if £,,. .., & form abasis of R, i e

k = n Every connected abelian Lie group with an invariant’
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Riemannian metric is a Euclidean cylinder, and if it is, moreover,
compact, then. it is a Euclidean torus. In fact, the universal’
covering group of such a Lie group is isomorphic with a vector
group R* and its invariant Riemannian metric 1s given by
(dx)2+ 00t (dx*)? by a proper choice of basis in R". Our
assertion is now clear.

The following example shows that a torus can admit a flat affine
connection which is not Riemannian. This was taken from
Kuiper [1].

Example 4.2. The set G of transformations

(x,9) > (x +np +m,y + n),
nm=0, +1,+2,. ..,

of R? with coordinate sytem (x,) forms a discrete subgroup of
the group of affine transformations; it acts properly discontin-
uously an R? and the quotient space R?/G is diffeomorphic with a
torus. The flat affine connection of R? induces a flat affine con-
nection on R?/G. This flat affine connection of R*G 15 not
Riemannian. In fact, if it is Riemannian, the induced Riemannian
metric on the universal covering space R? must be of the form:
a dx dx 4+ 26 dx dy 4 c dy dy, where a, b and ¢ are constants,
since the metric must be paralel. On the other hand, G is not a
group of isometries of R? with respect to this metric, thus prov-
ing our assertion. 1
Let M be locdly affine and choose a linear frame u, ¢ L(M) <
A(M) . Let M* be the holonomy bundle through %, of the flat affine
connection and A’ the holonomy bundle through u, of the cor-
responding flat linear connection. Then M* (resp. M’)'is .a prin-
cipal fibre bundle over M whose structure group is the affine
holonomy group ®(u) (resp. the linear holonomy group ¥ (a,.)).
Since ®(u,) and W(u,) are discrete, both M* and A’ are covering
manifolds of M. The homomorphism g: A(M) —L(M) defined
in $3 of Chapter 11l maps M* onto-M’ (cf. Proposition 3.5 of

Chapter 111). Hence M* is a covering manifold of M'.

Tueorem 4.9. Let Af be a manifold with a complete, flat affine
connection. Let uy € L(M) < A(M).. Let M* be the holonomy bundle
through uy of  the flat }z/‘?me connection and 1f" the holonomy bundle through
u, Of the corresponding 4t |inear connection. Then
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(1) A*is the univer <al covering space of M and, with respect to the
flat affine connection induced on Af*, it is isomorphic to the ordinary
affine space A”.

(2) With respect to the flat affine connection induced on M’, M"is a
Euclidean ¢ylinder, and the first homotopy group of M’ is isomorphic to
the kernel of the homomorphism @ (ug) ~ ¥ (u,).

3) If A1”is a Euclidean cylinder and is a covering space of M, then it
is a covering space of M.

(4) M’ is a Euclidean torus if and only if M is a compact flat Rieman-
nian manifold.

Proof. Let

d0' = =Z; o} A 0, do} = —%, o} Awf, Lj=1,...,n

be the structure equations on L(M’) of the flat affine connection
of M. Let N be the kernel of the homomorphism ®(u,) — ¥(u,).
Since M’ = M*|N, the affine holonomy group of the fldt affine
‘connection on M’ is naturaly isomorphic with N (cf. Proposition
9.3 of Chapter IT). The group N consists of pure translations only
and the linear holonomy group of M’ is trivid. Let ¢: M’ —
L(M") be a globdly defined parallel field of linear frames. Set
6 = o*0i, (I); = o*o, hj=l....,n’

Since ¢ is horizontal, that is, ¢(M’) is horizontal, we have w = 0.
The structure equations imply that 46 = 0. We assert that for
an arbitrarily chosen point o of M’, there exists a unique abelian
group structure on M’ such that the point o is the identity
element and that the forms § are invariant. Our assertion follows
from the following three facts:

(@ 6, ..., 6" form a basis for the space of covectors at every
point of M’;

(b) a’0l—0for|-1

{c) Let X be a vector ﬁeld on M’ such that 6'(X)= ¢ (c*:
constant) for i =1, ..., n. Then X is complete in the sense that
it generates a I—parameter group of globa transformations of M'.

The completeness of the connection implies (c) as follows. Let
X* be the horizontal vector field on L(M’) defined by 67(X*) =
= 1,..., n. Under the diffeomorphism o: M’ — o(M’), X
corresponds to X*. Since X* is complete (cf. Proposition 6.5 of
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Chapter 111), so is X. Note that (b) implies that the group is
abelian. o _

It igclear that 616! + - -+ + 0"9" is an invariant Riemannian
metric on the abelian Lie group M’. As we have seen in Example
4.1, M’ is a Euclidean cylinder.

LeMma 1. Let R7/G, G = {Z¥_y mé;; m, integers}, be a Euclidean
cylinder as defined in Example 4.1.  Then the: affine holonomy group of
R"/G is a group of translations isomorphic with G.

Proof of Lemma 1. We identify the tangent space T,(R") at
each point a ¢ R" with R* by the following correspondence:

T,(R™ > P A{(0[0x") g (A, ..., A" e R”.

The linear paralel displacement from 0 ¢ R* to a ¢ R" sends
(A%, ..., A"} € To(Rr) into the vector with the same components
(A, . oo, A") € T,(R*). The effine paralel displacement from 0 to
a =(a,...,a")sends (4, ..., A*), considered as an element of
the tangent affine space 4,(R"), into (At + 4, ..., A" + a") ¢
A (R, Let 7* = x;‘, 0<¢{<l,bealinefrom0toZ¥_mé; eG
and let 1 = 1,0 = ¢ < 1, bethe image of 7* by the projection
R" - R"/G. Then = is a closed curve in R*/G. Let

S mé& =@, ..., a)eR”.
Then the affine parald displacement dong 7 yields the trandation
(... ) (a2 ta).

This completes the proof of Lemma 1.

Being a covering space of M’, M * is also a Euclidean cylinder.
By Proposition 9.3 of Chapter Il, the affine holonomy group of
M* is trividl. By Lemma 1 ; M* must be the ordinary affine space
A", proving (1).

Since M’ = M*/N, the first homotopy group of M’ is iso-
morphic with N. This completes the proof of (2).

Let M” be a covering space of Af. Since M* is the universal
covering space of M, we can write M" = M*/H, where H is a
subgroup of @(u,). The affine holonomy group of M” is H by
Proposition 9.3 of Chapter Il. If M” is a Euclidean cylinder, the
affine holonomy group H consists of translations only (cf. Lemma 1)
and hence is contained in the kernel N of the homomorphism
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O (ug) - ¥'(uy). Since M' = M*/N, we may conclude that M” is a
covering space of 41’, thus proving (3).

Suppose M’ is a Euclidean torus. It follows that M is compact
and the linear holonomy group ®{x,) of A is a finite group. This
implies that the flat affine connection of Af is Riemannian. In
fact, we choose an inner product in 7., (M), xy = (), invariant
by the linear holonomy group with reference point x,, and then we
extend it to a Riemannian metric by parallel displacement. The
fla affine connection of M is the Riemannian connection with
respect to the Riemannian metric thus constructed.

Conversely, suppose M is a compact, connected, flat Rieman-
nian manifold. By virtue of (1), identifying Af* with R* we may
write A = R*/G, where G is a discrete subgroup of the group of
Euclidean motions acting on R», Let N be the subgroup of G
consisting of pure translations. In view of (2) and (3) our problem
is to prove that R*/N is a Euclidean torus. We first prove several
lemmas.

LEMMA 2. Let 4 and B be unitary matrices of degree n such that A
commutes with 4BA-1B-1. Jf the characteristic roots of B have positive
real parts, then A commutes with B.

Proof of Lemma 2. Since AABA-*B-! = ABA-'B-'4, we
have ABA-1B-1 = BA-1B-14. Without loss of generality, we may
assume that B is diagonal with diagonal elements &, = cos f, +
Jlsn g, k=1,...,n Snce A’ -‘JandBl-'B-B
we have _

AB'AB = ABA'B-! = BA'B-14 = B'ABA.
Comparing the (i,i)-th entries, we have
r, dbalh, = X} balbal, where A= (g).

Comparing the imaginary parts, we obtain

52y (a2 + jal?) vSn (B, =) =0 fori=1,..., n
Wevmayalsoassumethatﬂ1 Bo="'=8, <Bpy1='""=
Boyip, <"+ < P, <py +m Snce dl the b,,s ave positive

real parts, we have

nB,-p8)>0 foric<p andj> p,.
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Hence we must have
g=al =0 foris p,and j> p,.
Similarly, we have

a4 =d = fori < py+p. and j > py + po
Continuing this argument we have
4, 0 B, 0
4= AZ , B= 'Bz ’
0 0
B1 = bIIb Bz= bp,ﬂlz,.- ey
where A,, A,, . . . are unitary matrices of degree py, p,, . . ., and
I, I,,, .. are the identity matrices of degree py, s, . . . . This

shows clearly that A and B commute.
For any matrix A = (4f) of type (r, 5) we set

oA = (g 147)%
In other words, ¢(4) is the length of A when A is considered as a
vector with 7s components. We have

p(4d +B) £ ¢(d) + ¢(B),
(4B) < ¢(4) : ¢(B).

The latter follows from the inequality of ‘Schwarz. If A is an
orthogonal matrix, we have

< @(4B). = ¢(B), p(C4) = ¢(C).
Every Euclidean motion of R is given by
o x—>4x +p, xeR,

where A is an orthogonal matrix (caled the rotation part of the
motion) and p is an element of R* (caled the trandation part of
the motion). This motion will be denoted by (A, p).

Lemma 3. Given any fwo Euclidean motions (A, p) and (B, q), set
(Ay p1)= (4, p) (Byq) (4, p)71(B, )




216 FQUNDaTIONS OF DI FFERENTI AL GEQVETRY

Let | be the identity matrix of degree n. If (4 — 1) < a and
g(B — 1) < b, then we haue
(1) ¢(d, = 1) < 2ab;

(2 g(py) <br¢p)+ar <P(‘1)
Proof of Lemma 3. We have

A —Z =ABA-B-1 —Z = (AB — BA)A"'B!
=(A=-2)B =1 =B ~I)(A ~1)4BL
Since A-1B-1is an orthogonal matrix, we have
oAy =) sgd—1). oB D)+ g(B=1)- p(d 1) < 220,
By a simple caculation, we obtain
by, = A(I = BYA™'p + AB(Z — 47Y)Bq.
By the same reasoning as above, we obtain
(0 < oI — B) - olp) + o — 4) - 9(g) < bp(p) + ap(q)

Lema 4. With the same notation as in Lemma 3, set

(A, 5) = (4, ) Asess pr) (A D) A Y K 29 3,
Then, fork=1, 2, 3, ..., we have

(1) (4 = I) < 2%a*b;

(2) @(pe) < (2% ~ D)a* % - ¢(p) + a* - 9(g).

Proof of Lemma 4. A simple 1nduct10n using, Lemma 3
establishes the inequalities.

Lema 5. Let G be a discrete subgroup of the group of Euclidean
motions of R™. Let a < % and

G(@) = {(4,p) « G ¢4 ~I) < a).

Then any two elements (4, p) and (B, q) of G(a) commute.
Proof of Lemma 5. By Lemma 4, ¢(4, — I) and o(pe)
approach zero as k tends to infinity. Since G is discrete 1n A(n, R),

there exists an integer k such that 4, = Zand ﬁ = 0. We show thgath
the characteristic roots a, - - - » &, Of an orthogonal matrix A wit

¢(4 — I) < } have positive rea parts. If U is a unitary matrix
such that UAU! is diagonal, then

pd = 1) = g(U(d — DU = p(UAU™ - I)
={lay ~ 124+ + g, = 1)< §
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which proves our assertion. By applying Lemma 2 to 4. =

A4, 1414, _,, we see that / I :
’ = [. Continuing this
we obtain 4, = 1. Thus A4 &nd 5" commute 2 argument,

Hence,

v sd g —

b= - B)p—~ (1 - A)‘]: p2 = (4 - 1)]’1,
bs = ("1 - 1)102 =(A - I>2P1,

= (A =Dy = A~ Dy,
Since p, = 0, we have
(A = I)k-14. = 0.
Changing the roles of (4, p) and (B, q) and noting that

(B, 9)(4, p)(B, 9)71(4, p)1 = (I, —py),

we obtain
(B — I)m=1p, = 0 . for some integer m,

Since 4 and B commute, there exists a unitary matrix {7 gsuch that
U4 U-1and UBU * ge poth diagonal. Set

/a, 0 ; e 0
UAU- = | , UBU’I. =
0 g, 0 s,
1 Sy
up= , Ug =
Ty s

n

Then, from (4 = I)*1p, = (A — D* (] =~ BYp w (] —
0. e obtain( )1y = ( )1(( b~ (I ~ d)q)
(a; — 1)*1{(1 ~ byr,~ (1 - a;)s;) =0

o oi=1,...,n
Similarly, from

(B~ D"y = (B~ D)"Y = Blp ~ (I ~ A)q) = 0

-
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we obtain
(b; ~ )mY(1 —b)r, —(1 —a)s}=0,a = 1,...,n
Hence we have
(1 —b)r; =1 =a)s;=0, t=1...,n
In other words, we have
pr=(~B)p = (I =4)g=0,

which completes the proof of Lemma 5.

If (4, p) € G(a) and (B, q) € G, then (B, q) (4, p) (B, ¢)™! o+ G(a).

Indeed,
@(BAB™ — |) = ¢(B4 - I)B) = (4 — 1) < a

This shows that the group generated by G(a) is an invariant sub-
group of G. By Lemma 5, it is moreover abelian if a <

A subset V of R" is called a Euclidean subspace if there exist an
element x, ¢ R™ and a vector subspace § of R" such that vV =
{x 4 %5 x € S}. We say that a group G of Euclidean motions of R”
is irreducible if R* is the only Euclidean subspace invariant by G.

Lemma 6. |f H isan agbelian normal subgroup of an irreducible
group G of Euclidean motions of R=, then H contains pure translations only.

Proof of Lemma 6. Since H is abelian, we may assume, by
applying an orthogonal change of basis of R" if necessary, that the
elements (A, p) of H are simultaneously reduced to the following
form :

4, 0 21
\ . A cos a; sin oci)
A = , P = . )M i (—sin %; €OS s
4y L T
O In—Zk P* L

where I,_,, is the identity matrix of degree 'n — 2k, each #; is a
vector with 2 components and p* is a vector with n — 2k com-
ponents. Moreover, for each i, there exists an element (A, p) of H
such that A4, is different from the identity matrix I, so that
A, — I, is non-singular.
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Our task is now to prove that £ =0, i.e, A=1, foral (A, p)e¢
H. Assuming k = 1, we shall derive a contradiction.

For each t, choose (A, p) € H such that 4, — I, is non-singular
and define a vector ¢; with 2 components by

A, ~ L)t. = p..
We shall show that (i = L)t = 4,

(B: — Ity =g, fordl (B, g)e H.
Since (4, p) and (B, ¢) commute, we have

Agi+ pi= Bp, + g
(4; = L)g; = (B — L)p,.

or

Hence we have
(Bi = 12)ti = (Bz - Iz)(Ai - 12)—4?1 = (A, - 12)‘1(3‘- - Iz)ﬁi
= (4 = L)™(4, - L)g; = g,
thus proving our assertion. We define a vector t ¢ R» by

[
51

We have now

(Lns 8) (4, 9) (Lny )Y = (L, £) (A, B) (Ly —2)
— (A p—(A =10,

where (4, p) € A,
y 2 0
D 0
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By trandating the origin of R"to ¢, we may now assume that the
clements (A, p) of H are of the form

4, 0 0

A= . ) ] P = .
4, 0
0‘ In-—2k ep*

Let ¥ be the vector subspace-of R consisting of all vectors
whose first 2k components are zero. Then V is invariant by all
elements (A, p) of H. We shall show that V is also invariant by G.
First we observe that ¥ is precisely the set of all vectors which are
left fixed by al A where (A, p) eH. Let (C, r) ¢ G. Singe H is a
normal subgroup of G, for each (A, p) c H, there exists an element
(B, g) € H such that

A, §)(C, 1) = (. 7)(B, q).

If v e V,then ACy = CBy = Cv. Since Cv is left fixed by al A, it
liesin V. Hence C is of the form

C/’O)
‘—iOC”

where ¢’ and C" are of degree 2k and n — 2k, respectively. To
prove that the first 2k components of r are zero, write

41

Ty
T*

For each't, let (A, p) be an element of H such that A; -~ I, is non-

singular. Applying the equdity (A, p) (C, 1) = (C, 1) (B, ¢) to the
zero vector of R* and comparing the (2i = 1)-th and Pi-th compo-

nents of the both sides, we- have

Apr, = 14
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Since (4; — I,) is non-singular, we obtain r; = 0. Thus every
element (C, r) of G is of the form

¢ o )
= 0 C"‘)’ r =

This shows that V is invariant by G, thus contradicting the |rre-
ducibility of G. This completes the proof of Lemma 6.

Lemma 7. A group G of Euclidean motions Of R is irreducible if
R*/G is compact. 1

Proof of Lemma 7. Assuming that G is not irreducible, let ¥
be a proper Euclidean subspace of R" which is invariant by G.
Let x, be any point of ¥ and let L be a line through x, perpendic-
ular to V. Let xy, xy, . . ., %, ... be asequence of points on L
such that the distance between x, and x,, isequa to m. Let G(x,)
denote the orblt of G through x,. Since G(xo) isin ¥, the distance
between G(x,) and x,, is a least. m and, hence, is equa to m.
Therefore the distance between the images of x, and x,, in R*/G
by the projection R* — R*/G is c’7/L\ to m. This means that
R*/G is not compact.

We are now in position to complete thc proof of (4). Let G and
G(a) be as in Lemma 5 and assume ‘e < }. Let H be the group
generated by G(a) ; it is an abelian normal subgroup of G. Assume
that R*/G is compact. Lemmas 6 and 7 imply that H contains
nothing but pure, transations. On the other. hand, since G is
discrete, G/H is finite by construction of G(a). Hence R"/H is aso
compact and hence is a Euclidean torus. Let N be the subgroup
of G copsisting of al pure trandations of G. Since G(a) contains
N, we ‘have N = H. This proves that R*/N is a Euclidean torus.

0

r*/ .

Q E D

Remark. ‘ (4) means that the linear holonomy group of a
compact flat Riemannian manifold M = R*/G is isomorphic to
G/N and hence is finite.

Although (1), (2) and (3) are essentidly in Auslander-Markus
[ 1], we laihemphasis on affine holonomy groups. (4) was originaly
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proved by Bieberbach [ 1]. The proof given here was taken from
Frobenius [I] and Zassenhaus [1]. ,

Example 4.3. The linear holonomy group of a nhon-compact flat
Riemannian manifold may not be finite. Indeed, fix an arbitrary
irrational real number 2. For each integer m, we set

cos Amm sin jmn 0 0
Am) =| -sin Amni cos Amm O}, p(m)={0].
0 0 1 m

Then we sct G = {(A(m), p(m));m =0, +1,+2,. .. }ltiseasy
to see that G is a discrete subgroup of the group of Euclidean
motions of R? and acts freely on R3, The, linear holonomy group
of R3/G isisomorphic to the group {A(m) ym=0, £ 1, +2,. . .h

coRoLLARY  4.3. A manifold M with a fiat affine connection admits
a Euclidean torus as a covering space ¢ and only if M is a compact flat.
Riemannian manifold.

Proof. Let M” be a Euclidean torus which is .a cover&space
of M. By (3) of Theorem 4.2, M” is a covering space of M. Thus,
M’ is a compact, Euclidean cylinder and hence is a Euclidean
torus. By (3) of Theorem 4.2, M is a compact flat Riemannian
manifold. The converse is contained in (4) of Theorem 4.2,

Example 4.4. In Example 4.2, set M :”RZ/G.‘"'LCE N be the
subgroup of G consisting’of translations: ’
(%, ) > (x + m3), m=0,£1,£2. .

Then the covering space M’ defined in Theorem 4.2 is given by

R?/Nin this-case:*Clearly, M’ is an ordinary cylinder, that is, the |

direct product of a circle with a' line o
The determination of the P-dimensional complete flat Rieéman+

nian’ manifolds is due to Killing-[1,2], Klein [1,2] and H. Hopf

[ 1]. We shall present here their results with an indication‘of the
proof.

There are four types of two-dimensional complete flat Rieman-
nian manifolds other than the Euclidean plane. We give the
fundamental group (the first homotopy group) for each type,
describing its action on the universal covering space R? in terms of
the Cartesian coordinate system (x, y).
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(1) Ordinary cylinder {orientable)
(%) = (x + n),
n=0,-+1] 2
(2) Ordinary torus (orientable)
(¥ 2) — (Y - ma-+ny o+ mb)
m,n=0, +1, $2,. . .,
a, b: real numbers, 4 . 0.
(3) M iiis'ah dnthi nfie'Width or twisted cylinder (non-orientablc}
(5, 0) = (x +n, (=1)"), ’
n=0 41 29....
(4) Klein bottle or fzi5ted torus (non-orientable’
(x, _y) — (x -+ n, (—1)'{)‘ bm), l
nyom =0 51,2 ..
b: non-zero real number.

Any two-dimensional completc flat Riemannian manifold 3 is
isometric, up to a constant factor, to one of the ahgve four types
of surfaces,

The proof goes roughly as follows. By Theorem 4.2, the
problem reduces to the determination of the discrete groups of
motions acting freely on R2 Let G be such a discrete group. We
first prove that every clement of G which prescrvrs the orientation
of_ R2 is necessa_rlly a t_ranslatlorl. _Set z =t~ iy. Then every
orientation preserving motion of R? is of the form

g

Z ez oW,

where ¢ is a complex number of absolute value 1 and w is a
complex number. If wé iterate the transformation z — gz -+ W 7
times, then we obtain the transformation

7>z 4+ (87-—1 -+ el -+ 1 )uv.

We see easily that, if e # 1, then the point w/(1 ~ ¢) is left fixed

by the transformation z — ez ~ w, iNn contradiction to the
assumption that G acts freely on R2, Hence ¢ = 1, which pProves

our assertion. If fis an element of ¢ which reverses the Orientation
of R? then f2? ‘is an orientation preservipe transformation and
hence is a trandation; We thus proved that cvery clement of G is a
transformation of the type
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z+2+Wo r z—>Z+Ww,

) ) It is now easy to conclude
. where z is the complex conjugate of 2.

that M must be one of the above four types of surfaces. The

CHAPTER VI
detal is left to the reader.

Transformations

1. Affine mappings and affine transformations

Let M and M’ be nianifolds provided with linear connections
I” and 1" respectively. Throughout this section, we denote by’
P(M, G) and P'(M', G') the bundles of linear frames L(}M) and
L(M’) of M and M’, respectively, so that ¢ = GL(»; R) and
G' = GL(n'; R), where n = dim AM and »' = dim }f’,

A differentiable mapping f: M — Af" of class (;! induces a
continuous mapping f: T(M) — T°( M’), where T (M) and T(M")
are the tangent bundles of M and AM’, respectively. We cdl
S+ M - M’ an affine mapping if the induced mapping f: T(M) —
T(M’) maps every horizontal curve into a horizontal curve,
that is, iff maps each parale vector field along each curve r of M
into a parallel vector field aong the curve f ().

Prercsiman 1.1 An affine mapping ¥ @ M - M’ maps every
geodesic of M into a geodesic of M’ (together with its affine parameter).
Consequently, f commutes with the exponential mappings, that is,

feexpX=expof (X), Xc T,(M).
Proof.  This is obvious from the definition of an affine mapping.

QED.
Proposition 1.1 implies that an affine mapping is necessarily of
class (7= provided that the connections T' and I are of class C".
We recall that a vector fiedld X of M isf-related to a vector field X’
of M if f(X,) = Xf,, for dl x € M (cf. §1 of Chapter I).

4

ProposiTion 1.2, Let f1 M — M’ be an affine mapping. Let X, Y
and Z be vectorjelds on M which are f-related to vector fields X, ¥ and
Z’ on M’, respectively. Then

225
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(1) VY isfrelated to V , ¥'s Where V denotes covariant differentia-

tion both in M and M’;

(2) T(X, Y) is f-related to T'(X’, Y'), where T and 7" are the
torsion tensor fields of M and M, respectively ;

3) R(X, Y)Z is f-related to R'(X’, Y')Z’, where R and R’ are the
curvature fensor fields of M and M’, respectively.

Proof. (1) Let x, be an integral curve of X such that x = %, and
let =, be the paralel displacement along this curve from x, to
X = x4 Then (cf. §1 of Chapter Il1)

1
(ViY), = lim; (10Yq, = 1),

t—0
Set x, = ;) and let 7! be the dld displacement aong this
imaget curvfe(xffgom m toT()’(, =, Since f commutes with parald
displacement, we have

TP = lim s [FAT) ~SE)]

= 1imtl (7 Yy, — Yo) = (V¥ )

t—0

(2) and (3) f 210w from (1) and Theorem 5.1 of Chapter I&ED.,'

A. diffeomorphism f of M onto itself is called an affine transforma-
tion of M if it is an affine mapping. Any transformation f of M
induces in a natura manner an automorphism f of the bundle
P(M,G); f mapsaframeu = (X;, ..., X,) &' x « M into the

W) = (fXy . . ., e M. S 18 -
T’:]?:)r:];hléilu)of (t{:e lbundle F',f,‘ Xlrt) ?[ee]:\gg e\/gr/ly anﬁga%mgll a\}letgtor
field of P invariant.

ProrOSITIon 1,3, (1) FOF every transformation f of M, the induced

automorphism f()f the bundle P of linear frames leaves the canonical form
6 invariant.  Conversely, every jibre-preserving transformation of P leaving
f invariant is induced by a transformation of M. . .

(2) Iff is an affine transformation of M, then th¢ induced automorphism
f-of P leaves both the canonical form § and the connection form w invariant.
Conversely pyery fibre-preserving transformation of P leaving both 6 and @
invariant {5 induced by an affine transformation of A{.
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Proof. (1) Let X* ¢ T,(P) andset X = =(X*) sothat Xe T,(M),
where x = n(u). Then (cf. §2 of Chapter I1I)

6(X*) = u=(X) and 6(fx*) = f(u)"(fX),
where the frames 4 and f{y) are considered as linear mappings of

R* onto T,(M) and Tj,,(M), respectively. It follows from the
definition of f that- the following diagram is commutative:

Tx(M) —f_). Jz) (M) .
Hence, u~1(X) = f(u)~'( fX), thysproving thet § is invariant by f.
Conversely, let F be a fibre-preserving transformation of P
leaving 6 invariant. Let f be the transformation Of the base M
induced by F. We prove that f=F. We set J = f~1o F. Then J
is a fibre-preserving transformation of P leaving 6 invariant.
Moreover, J induces the identity transformation on the base M.
Therefore, we have

wi(X)= 6(X*) = 6(JX*) = JW)X) for x* ¢ T.(P).
This implies that J(U) = a, that is, f{u) = F(u).

(2) Let f be an affine transformation of M. The automorphism
fof p maps the connection I’ into a conpection, say, f(I‘), and the
form f* is the connection form of f(I") (cf. Proposition 6.1 of
Chapter 11). From the definition of an affine transformation, we
see that f-maps, for each u ¢ P, the horizontal subspace of T,(P)
onto the horizonta subspace of T, (P). This means that f(T) =
I’ and hence f*w = W.

Conversely, let F be a fibre-preserving transformation of P
leaving § and w invariant. By (1), there exists. a transformation f
of M such: that F = f Since f maps every horizontal curve of P
into a thorizontal curve of P, the transformation f: T(M) —
T(M) maps every horizontal curve of T(M) into a horizonta
curve of T(M). This means that f: M — M is an affine mapping
thus completing the proof. QED:

Remark. Assume that M is orientable. Then the bundle P’
consists of two principal fibre bundles, say P+(M, G*) and
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P-(M, (%, where (¥ is the connected component of the identity
of G = GL(n; R). Then any transformation F of P+ or P-
leaving 8 invariant is fibre-preserving and hence is induced by a
transformation T of the base”M. In fact, every vertical vector X*

of P+ or P-is mapped into a vertical vector by F since (FX*) =
0(X*) = 0. Any curve in any fibre of P+ or P- is therefore
mapped into a curve in a fibre by F. Since the fibres of P+ or P-
are connected, F is. fibre-preserving.

PRcPosI TI ON 1.4. Let T be a linear connection on M. For a trans-
formation f of M, the following conditions are mutually equivalent:

(1) fisan affine transformation of M;

2 f*m = @, where e is the connection form of I’ and f-is the trans-
formation of P induced by f;

(3) f-leaves every standard horizontal vector field B(€) invariant;

@) f(V4-2Z) =V, (fZ) forany vector fields Y and Z on M.

Proof. (i) The equivalence of (1) and (2) is contained in
Proposition 1.3.

(i) (2) -+ (3). By Proposition 1.3, we have

£ = B(BE) = (f*0)(B) = 6(/B(&))-
Since w(B(¢)) = 0, (2) implies

0 = a(BE) = (/*w) (B()
This means that f~1- R(E) = B(E).

(iii) (3) ~» (2). The horizontal subspace at u is given by the set
of B(£),. Hence (3) implies that f-maps every horizontal subspace
i~ntd a horizontal subspace. This means that f(I‘) = I’ and hence
fro = w.

(iv) (1) — (4). This follows from Proposition 1.2.

(V) (4) - (1). Let Z be a paralel vector ‘field aong a curve
r = x,. Let Y be the vector field along = tangent to r, that is,
Y, = %. We extend } and Z to vector fields defined on M, which
will be denoted by the same letters Y and Z respectively. (4)
implies that fZ is parallel dong f (). This means that f is an affine
transformation. QED.

The set of affine transformations of M, denoted by A(M) or
A( I'), forms a group. The set of al fibre-preserving transformations

o(f1- B(§)).
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of P leaving 6 and « invariant, denoted by A(P), forms a group
which is canonically isomorphic with 91(Af). We prove that
U(M) is a Lie group by establishing that 9((P)is a Lie group with
respect. to the compact-open topology in P.

Theorem 1.5.  Let I' be a linear connection on a manifold M with a
Jinite number of connected components. Then the group A( A1) of affine
transformations of M is a Lie transformation group with respect to the
compact-open fapology in P.

Proof. Let 6 = (0) and w = (wf) be the canonica form and
the connection form on P. We set

g(X*, Y*) = Z, 6°(X*)6/(Y*) + I of(X*) (Y,
Xx Y* e TO(P).
Since the n* + # I-forms 8%, o, 4, hk=1 .., A form a basis of
the space of covectors at every point u of P -(cf. Proposition 2.6 of
Chapter 111), g is a:Riemannian metric on P which is invariant
by A(P) by Proposition 1.3. The group of isometries of P is a Lie
transformation group of P with respect to the campact-open
topology by Theorem 4.6 and Corollary 4.9 of Chapter |
(cf., also Theorem, 3.10 of Chapter 1V). Since 41(P) is clearly a
closed subgroup of the group of isometries of P, A(P})is dso a Lie
transformation group of P. QED.

2. Infinitesimal aﬂine tmnsfo:matmns
Throughout this section, P(M, G) ‘denotes the bundle of lincar

frames over a manifold M so. that G = GL(n; R), where y =

di m M
Every transformation ¢ of A induces a transformation of P in

a natural manner, Correspondingly, every vector field X on A
induces a vector ﬁcld X on "Pin, a natura manner. More precisely,

we Drove

PRoposxTIONQ - For each vecte r field X on M, there exists a
unique vector field f(' on P such that

(1) Xis invariant by R, for everya e G;

(2 Lgo = 0; . .

(3) X is n-related to X, that is, #({,) = X, for every y ¢ P.
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Conversely, given a vectorjeld X on P satisfying (1) and (2), there exists
a unique vectorjeld X on M satisfying (3).

We shall cal X the natural lift of X.

Proof. ~ Given a vector field X on M and a point x ¢ M, let o,
be a loca |-parameter group of loca transformations generated
by X in a neighborhood [J of x. For each ¢, ¢, induces a trans-
formation ¢, of =~*(U) onto = *(¢,(U)) in a natural. manner.
Thus we obtain a local |-parameter group of local transformations

7 }Y(U) —» P and hence the induced vector field on P, which
will be denoted by X. Since &, commutes with R, for every a ¢ G,
X satisfies (1) (cf. Corollary 1.8 of Chapter 1). Since ¢, preserves
the form 6, X satisfies (2). Findly, 7 ¢ &, = &, o 7 implies (3).

To prove the uniqueness of X let X, be another vector field on
P satisfying (1), (2) and (3). Let @, be a local |-parameter group
of local transformations generated by X;. Then , commutes with
every R,, a ¢ G, and preserves the canonical form 6. By (1) of
Proposition 1.3, it follows that , is induced by a loca |-parameter
group of local transformations y; of M. Because of (3) ¥, induces

the vector field X on M. Thus y, =", and hence ¢, = &, which
implies that X =

Conversely, let X be a vector fidld on P satisfying (1) and (2).
For each x ¢ M, choose a point u ¢ P such that =(x) = X. We'then
set X, = =(X,). Since X satisfies (1), X, is independent of the
choice of u and thus we obtain a vector field X which satisfies (3).

. The uniqueness of X is evident, ! P QED.

Let ' be a linear connection on M. A vector fleld X on M is
called an intnitesimal gffing transformation of M if, for each x ¢ M, a
local I:parameter group of local transformations ¢, of a neighbor-
hood U of x into M preserves the connection I, more precisaly, if
each ¢,: U - M is an &ffine mapping, where U is provided with

the affine connection I’ \ U which is the restriciion’of I’ to U,

ProposiTioN 2.2. Let I' be a’ linear connection on M. For a vector
field X on M, the following conditions are mutually equivalent:

(1) Xis an infinitesimal affine transformation of M ;"

(2) Lgw =0, where @ is the connectlon form of Iy and X is the
natural lift of X;

(3) [X, B(£)] = 0 for every £ ¢ R”, where B(¢) is the stan/g{frd
horizontal vectorjeld corresponding to &, )
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(4) Lx o Vy = Vy o Lx = Vyy for every vector field Y on M.

Proof. Let ¢, be alocal |-parameter group of local transforma-
tions of M generated by X and let, for each't, &, be a loca trans-
formation of P induced by ¢,.

(i) (1) — (2). By Proposition 1.4, &, preserves . Hence we
have (2).

(i) (2) — (3). For every vector field X, we have (Proposition
2.1)

0= X(0(BE) = (Le0)(BE) + 6(L%, BE)]) = 6(L%, BE)),
which means that [X, B(E)] is vertical. If Lgw =: 0, then
0 = X(o(B(£))) = (Lzw)(B(&) + o([X, B(&)]) = o([X, B(&)]),

‘which means that [X, B(t)] is horizontal. Hence, [X, B(¢)] = 0.

@iii) (3) — (2). If [X B(£)] = 0, then &, leaves B(¢) invariant
and thus maps the horizontal subspace a u into. the horizontal
subspace a &,(u), whenever ;(u) is defined. Therefore @, preserves
the connection, I' and X is an |nf|n|tesmal affine transformation
of M..

C(v) () - (4) By Proposition 14 we have

9(VyZ) = V,y(p,Z).  for any vector fields 'Y and Z on M.

From the definition of Lle differentiation given |n §3 of Chapter I,
we obtain

Ly oVyZ = 11m - [Vyz — ¢(VyZ)]

—0

N —hm [VyZ VwYZ]+11m AP ,YZ V,,Y(%Z)]

t—0

——VL YZ+V °sz—V[X’]Z"LVY LXZ.

“We thus verified the formula:

Ly oVyK = Vy o LyK = Vg ik,

‘when K is,a vector field. If K is a function, the above formula is
evidently true. By the lemma for Proposition 3.3-of Chapter I, the
formula holds for any tensor field K.

(v) (4) —{1).'We fix a point x ¢ M. We set

V() = (V¥ 2 and W() = (V,r(9.2)).
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For each ¢, both V() and W(1) are elements of T (M )WIn view of
» Proposition 1.4, it is sufficient to prove that V(¢f = W(¢). As in
(iv), we obtain

dV(t)/dt = (Pz((LX ° VI’Z)¢7143))>
dwt)jdt = o(VixrZ + Vy L,X'Z)qvt_l(.'t))'

From our assumption we obtain d¥(¢)/dt = dW(t)/dt. On the other
hand, we have evidently V(0) = W(0). Hence, V(I) = W(t).

QED.
Let a(M) be the set of infinitesmal affine transformations of
M. Then aM) forms a subalgebra of the Lie algebra X(M) of
all vector fields on M. In fact, the correspondence X — X defined
in Proposition 2.1 is an isomorphism of the Lie algebra X(M) of
vector fields on M into the Lie algebra X(P) of vector fields on P.
Let a(P) be the set of vector fields X on P satisfying (1) and (2) of
Proposition 2.1 and aso (2) of Proposition 2.2. Since er.,.r'l =
LyeLy ~ Ly oLy (cf. Proposition 3.4 of Chapter 1), a(P)
forms a subalgebra of the Lie agebra X(P). |t follows that a(M)
is a subalgebra of X(M) isomorphic with a(P) nder the corre-
spondence X — 8 defined in Proposition 2.1. **

Theorem  2.3. If Mis g connected manifpld with an affine connection
T, the Lie algebra a(M)sz'ngﬁz ‘esimal_affine transformations of A is of
dimension at most n? + n, where-n = dim M. If dim a(M) = »? 4 n,
then I' is flat, that is, both the forsion and the curvature of I' vanish
identically.

Proof.  To prove the first statement it is sufficient to show that
a(P) is of dimension at most #2 + n, since a(Af) is isomorphic with
a(P). Let u bc an arbitrary point of P. The following lemma
implics that the lincar mapping f: aP) — T, (P ) defined by
S(X) = &, isinjcctive so that dim q(P) < dim T,(P)= n? +n.

Lemma, If an element X of a(P) vanishes at some Point of P, then it
vanishes identically on P.

Proof of Lemma. If X, =0, then X, = 0forevery aeG as 8
is invariant by R, (cf. Proposition 2.1). Let F be the set of points
x =n(u) e M such that X, = 0. Then F is closed in M. ‘Since M
is connected, it suffices to show that F is open. Assume X, = 0.
Let b, be a loca |-parameter group of local transformations

z

By E..
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generated by a standard horizontal vector field B( &) in a neighbor-
hood of u. Since [X, B(£)] = 0 by Proposition 2.2, X is"invariant
by &, and hence Xb‘u = 0. In the definition of a norma coordinate

system (cf. §8 of Chapter I11), We saw that the points of the form
w(bu) cover a neighborhood of x = =(x) when & and ¢ vary. This
proves that F is open.

To prove the second statement, we assume that dim a(M) =
dim a(P) = n* + n. Let u %e an arbitrary point of P. Then the
linear mapping J* T (X) = X,, maps a(P) onto T,(P). In partic-
ular, given any element A € g, there exists a -(unique) element
X € a(P) such that X, = A%, where A* denotes the fundamental
vector field corresponding to 4. Let B = B(&) and B’ = B(§') be
the standard horizontal vector fields corresponding to & and £/
respectively. Then

X.(0(B, B)) = 43(6(B, B').

W e compute both sides of the equality separately. " From
Ly® = Ly(d6+ w A0) =0 and from (3) of Proposition 2.2,
we obtain
X(0(B,B)) = (LxO) (B, B) + O(IX, B], B') + O(B, [X, B]) = 0.
To compute the right hand side, we first observe that the exterior
differentiation d applied to the first structure equation yields
0= —-QA06+ A0+ dO.
Hence we have
LA.Q = (d o ye + tqe 0 d)G)
= o d 0= W@Alh—wA 0)= —o(d*)0
and
(Ly©)(B,B) = -A . O(B, B).
Therefore,
A*(9(B,B)) = -A*O(B,B) + 0([4* B], B') + O(B, [A*, B']).

If we take as A the identity matrix of g = gl(n; R), then, by
Proposition 2.3 of Chapter I, we have

[A*, B]= B and [A*, H'] = B
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Thus we have

0= X,(6(8,B)) = 45(0(B, B'))

= ~0,(B8, B')+ 0,(B8,8") + 0,(8,B") = 0,(8, B),
showing that the torsion form vanishes.
Similarly, comparing the both sides of the equdlity:
X,(Q(B, B)) = 43(Q(B, B))

and letting A equal the identity matrix of g = gl(n; R), we see
that the curvature form vanishes identically. ’ QED.

We now prove the following result due to Kobayashi [2].

THeoreM 2.4. Let 17 be a complete linear connection on M. Then
every infinitesimal affine transformation X of M is complete, that is,
generates a global I-parameter group of gffine transformations of M.

Proof. It suffices to show that every element X of a(P) is
complete under the assumption that M is connected. Let #, be an
arbitrary point of P and let &,: U - P Jii<é, be alocd 1-
parameter group of local transformations generated by X (cf.
Proposition 1.5 of Chapter ). We shall prove that ,(u) is defined
for every u ¢ P and |{{ < 6. Then it follows that X is complete.

By Proposition 6.5 of Chapter Ill, every standard horizontal
vector field B(¢) is complete since the connection is complete.
Given any point u of P, there exist standard horizontal vector
fields B(&,), . . ., B(¢,) and an element a « G such that

u= (b o bf o+ obiuya,

where each & is the |-parameter group of transformations of P
generated by B(£,;). In fact, the existence of normal coordinate
neighborhoods (cf. Proposition 8.2 of Chapter Ill) and the
connectedness of M imply that the point x = #(x) can be joined

to the point x, = =(u,) by a finite succession of geodesics. By
Proposition 6.3 of Chapter Ill, every geodesic is the projection
of an integral curve of a certain standard horizontal vector field.

This means that by taking suitable B(¢)), ..., B(£,), we obtain a
point v = b}l 0 by o vie b};uo which liesin the same fibre as 4. Then

u = pa for a suitable a ¢ G, thus proving our assertion. We then

define p?,(u) by-

Golu) = (b, o o - - - 0 B\ (Bo(ug)))a, 1] < 0.
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The fact that (%) is independent of the choice of &, - - b, a
and that &, is generated by X follows from Sl) of Proposition 2.1
and (3) of Proposition 2.2; note that (3) of Proposition 2.2
implies that b, ¢ ,(u) = &, o b,(u) whenever they are both defined.
QED.-

In general, every element of the Lie algebra of the group (M)
of affine transformations of M gives rise to an eement of a(M)
which is complete, and conversely. In other words, the Lie
agebra of A(M) can be identified with the subalgebra of a(M)
consisting of complete vector fields. Theorem 2.4 means that if the
connection is complete, then a{M ) can be considered as the Lie
algebra of A(M) .

For any vector field X on M, the derivation Ax = Ly — Vy is
induced by a tensor, field of .type (1, 1) because it is zero on the
function algebra F(M) (cf. the proof of Proposition 3.3 of
Chapter 1). This fact- may be derived also from the following

Prercsi v 2.5, For any vectorﬁelds X and Y on M, we have
AxY = -V, X = T(X, ),

where T is the torsion.
Proof. By Theorem 5.1 of Chapter Ill, we have

AxY = LyY =V, Y = [X, Y] — (VpX + [X, Y]+ T(X, Y))

= —VuX - T Y).
¥ ( QED.

We conclude this section by
Precsi oy 2.6. (1) A Vector field X on M is an infinitesimal
affine transformation if and only if

Vy(4dx) = R(X, Y)  forevery vector field Y on M.
(2) If both X and Y are infinitesimal affine transformations of M, then
Axr = [Ax, 4y] + R(X, Y),

where R denotes: the curvature.
Proof. (1) By Theorem 5.1 of Chapter III, we have

R(X, Y) = [VXa Vy] - V[.\r,Y] = [LX - AX: Vr] - V[X,Y]
=CL,, V¢l = Vixn =~ [4x Yyl
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By Proposition 2.2, X is an infinitesmal affine transformation if
and only if R(X, Y) = -[A, V] for every Y, that is, if and
only if g

R(X, Y)Z = Vi(dZ) = Ax(VyZ) = (Vy(dy))Z

for adl Y and Z.
(2) By Theorem 5.1 of Chapter 11l and' Proposition 2.2, we
have

[y, A4yl = 4xpy = [L % Vi Ly ~ V] = Uiy = Virw)
2Lyl ~ [Vy, Ly] — [Ly, Vy]
[VX: Vel = Ligy) + Vizy) = R(X, T).
QED.

3. Isometrics and infinitesimal isometries

Let M be a manifold with a Riemannian- metric g and the
corresponding Riemannian connection [', An isometry of Af is a
transformation of Af which leaves the metric g invariant. We
know from Proposition 2.5 of Chapter 1V that an isomctry of Af
is necessarily an affine transformation of A/ with respect to I,

Consider the bundle O(3M) of orthonorma frames over Af
which is a subbundle of the bundle L(Af) of linear frames over
M. We have

PROPOSITION 3.1. (1) A transformation f of A is an isometry if
and only if the induced transformation f Of L(M) maps O(M) into
itself;

2 A ﬁbre-pmgrvmg transformation F of O(M) which leaves the
canonical form @ on 0 (M) invariant is induced by an isometry of Af.

Proof. (1) This follows from the fact that a transformation
of Af is an isometry if and only if it maps each orthonormal frame
at an arbitrary point x into an orthonormal frame a f(X).

(2) Letf be the transformation of the base M induced by F. We
set J =f-1 o F. Then J is a fibre-preserving mapping of O(M)
into L (M ) which preserves f. Moreover, J induces the identity
transformation on the base M, Therefore we have

u--(X) = 6(X*) = 6(JX*) = J(u)-*(X),
X* e T,(0(M)), X=n(X*).
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This implies that J(u) = that is, f(u) = F(u). By (1), f is an
isometry of M. QED.

A vector field X on M is called an infinitesimal isometry (or, a
Killing vector field) if the loca |-parameter group of local trans-
formations generated by X in a neighborhood of each point of M
consists of local'isometries. An infinitesimal isometry is necessarily
an infinitesimal-affine transformation.

Proposi TION 3.2, For a vector field X on a Riemannian manifold M,
the following conditions are mutually €guivalent .

(1) X is an infinitesimal isometry;

(2) The natural [ift X of X to L(M) is tangent to O(M) at every
point of O(M) ;

8) L xz = 0, where g is the metric tensarﬁeld of M;

(4) The tensor field Ax = Ly — V x0ftype (1, 1) is skew-symmetric
with respect to g everywhere on M, that is, (4 x¥; Z)= —g(4xZ, V)

for grbitrary vector fields Y and Z.
IProof. (i) To prove the equivalence of (1) and (2), let @, and

Kz Hae ,ike local |-parameter groups of local transformations

generated by X and X respectively. If X is an infinitesimal
isometry, then ¢, are local isometries and hence ¢ map O(M)

' into iitssif, Thus X is tangent to O(M) at ‘every point of O(M).

Conversely, if -£ -is tangent to O(M) ‘a every point of O(M),

the integia] cumsee @f X through each point of O(M) is contained
in @(M) and hence each &, maps O(M) into itself. This' means,
bv Progosition 3.1; that each g, is a local |sometxy and hence X

- is'an infinitesimal isometry.

(ii) The- equivalence of (1) and (3) follows from Corollary 3.7

of Chapter l.
{iii) Since V.xg = 0 for any vector field X, Lyg= 0is equivar

‘ Ient to Ayg = 0. Since 45 IS a derivation of the algebra of tensor

ﬁelds, we have

Ax(gY, Z).= (Axg)(Y, 2) + g(dxY, Z) + g(¥, AxZ)
for Y,Z ¢ ¥(M).

Since A, maps every function into zero, 4y (g(Y, 2) =
Hence Ayg = 0.if and only if g{AyY,2) + g(Y, AxZ) =0 for
al Y and Z, thus proving the equivalence of (3) and (4). QED.
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The set of al infinitesimal isometries of A, denoted by .itm)
forms a Lie algebra. In fact, if X and Y are infinitesimal isometries
of M, then

Liyyig = L\° Lyg—LyoLyg=0

by Proposition 3.2. By the same proposition, [X, Y] is an infini-
tesimal isometry of M.
]

THeEorREM 3.3.  The Lie algebra i(M) of infinitesimal isometries
of a connected Riemannian marifold M is of dimension at most fn(n + 1)
where n = dim M. If dim i(M) = In(n + 1), then M is a space of
constant  curvature.

Proof. To prove the first assertion, it is sufficient to show that,
for any point z of O(M), the linear mapping X — Xu maps (M)
1 :1 into T,(0O(M)). By Proposition 32, X, is certainly an
element of 7,(0O(M)). If X, = 0,.then the proof of Theorem.23
shows that X = 0."We now prove the second assertion.

Let X, X’ be an orthonorma basis of a plane p in T,(M) and
let 4 be a point Of O(M) such that =(u) = x. We set § = u~1(X),
¢ = u}(X’'), B = B(¢)and B’ = B(¢’), where B(5) and
B(¢') are the restrictions to O(M) of the standard horizontal
vector’ fields corresponding to ¢ and &7, respectively. From the
definition of the curvature transformationgiven in §5 of Chapter
Il we see that the, sectional curvature K(j) (cf. 92 of Chapter V)
is given by

2

- K@) = (208, B))E, ),

where ( , ) denotes the natural inner product in R, To prove that
K(g) is independent of p, let ¥, Y’ be an orthonormal basis of
another plane ¢ in T,(M) and set » = «~Y(Y) and 5’ = u-Y(¥’),
Let a be an element of SO(n):guch that a& = g-and a&’ = 4. By
Proposition 2.2 of Chapter1iI, we have

QB() . B').) = UB(ad),» B(a&").) = QRy1(Buo), R J(’ uA))

=ad (a){Q(B.q, Bi)) =23 ' QByo, Bia) *

Hence the sectional curvature K(g) is given by
K(g) = ((2Q(B(n) wBM) Jn', n)
= (@' 2Q(B,, By,)-a™t)ad’, af)
= ((2Q(B., B.’m))S’ £).
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To prove that K(p) = K(q), it is sufficient to show that

Q(Bues Bua) = Q(B,, B,). Given any vertical vector X* e

T (O(M)) with n(v) = x, there exists an element X ¢ i(M) such

that X, = X* if dim |(M) = in(n + 1), since the mapping
X X, maps i(M) onto T(O( )). We have

X(Q(B, BY) = (LsQ)(B, B) + Q([X, B], B)) + (B, [X, B]) = 0.

This implies that Q(B., B.) = Q(B.., Bl for every a e so(n).
We thus proved .that K(p) depends only on the point x. We
prove that K(p) does not depend even on Xx. Given any vector

Y¥e T,(0(M)), let Y be an element of i(M) such that Y, =1~
We have agan ¥(Q(B; B’)) = 0. Hence, for.fixed & and £', the
function ((QQ(B B) E gg' constant in a neighborhood of U
This means that K(p), consdered -as a function on A is localy
constant. Since it is continuous and M is connected, it must be
constant on M. (If dim M = 3, the fact that K{p) is independént

of x follows also from Theorem 2.2 of Chapter V.) = QED..

THEOREM 3.4. (I)‘Fb; a Riemannian manifold Af with’ a ﬁ;zité
number of connected components, the group J(M ) -of isometries of M is a
Lie transformation group with respect to the compact-open topology 2 M;

(2) The Lie algebra_of J(Miy naturally isomorphic with the Lie
algebra of all complete mﬁmteszmal 1somelries ;

(3) The isotropy, subgroup 3,(M) of 3(M) at an arbitrary point x is
compact;

(4) If M is complete, the Lie algebra of S(M) is naturally isomorphic
with the Lie algebra i(M) of all infinitesimal isometries of M ;

(5) Zf M is compact, then the group 3! M) {s-compact.

Proof. (1) ‘As we indicated in, the proof of Theorem 1.5, this
follows from Theorem-4.6 and, Qorqllary 4.9 of Chapter | and
Theorem 3.10 of Chapter IV,

(2) Every |-parameter subgroup of (M) induces an infinitesi-
mal ‘isometry X which is complete on’ M and, conversely, every.
complete infinitesmal isometry X generates a |-parameter sub-
group of J(M). v

(3) This follows from Corollary 4.8 of Chapter I.

(4) This follows from (2) and Theorem 2.4.

(5) This follows from Corollary 4.10 of Chapter |. QED.

Clearly, 3(M) is a closed subgroup of %(Af). We shall see that,
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in many instances, the identity component I°(M) of 3(M)
coincides with the identity component A°(M) of A(M). We

first prove a result by Hano [l].

THEOREM 3.5. If M= M, x M, x +. +x M, is the de Rham
decomposition of a complete, S|mply connected Riemannian manifold M,
then

AW(M) ~ AO(My) X W(M,) x o ox  A(M,),
(M) ~ (M) x (M) x oo X I(M).

Proof. ~ We need the following two lemmas. .

Lemva 1. Let T,(M) = Z¥_ T be the canonical decomposition:

g0 If ¢ e A(M), then (T“”) TO and foreachi, 1< i<k

(i) ¥ #(z) - = vy
o(TP) = 7Y, forsome j, 1 = = k;

@ If ¢ € 4°%M), then ¢(T) = TG, for evey i, 0.5 i < k.

Proof of Lemma 1. Let 7 be any loop a x and set ' = #(7)
so that 7' is aloop at 9(x). If we denote by the same letter = and +/
the paralle] displacements along + and ' respectively, then

gor(X) =7 09X) for XeT,(M).

It follows easily that ¢(T®) is invariant elementwise and every
¢( TP), 1 < i < k, is irreducible by the linear holonomy group
Y(g(x)). Hence, ¢( T) ¢ TH, and, their dimensions being the
same, ¢(7) = T®, . Thus we obtain the canonical decomposi-
tion T, =k, ¢ T(”) which should coincide with the canoni-
cal decompostion T, = Z¥_, T(')) up to an ‘order by (4) of
Theorem 5.4 of Chapter V. ThIS meanspremsely the statement
(1). Let ¢, be a, |-parameter subgroup of ‘II°(M) and let X be a
non-zero element of 79, Let r = x, = ). Since g(

g(X, X) # 0, we have glpd(X), T,X) ;é 0 for |tig g for some
d > 0, where ! denotes the paralel displacement from x,
to x, ‘dong 7. This means that (p( T“)) = T('{ ) for || < 8 for
some positive number 8'; in fact, if X}, ..., X, is a basis for. 7%
then g(g, (X)), X)) #0for 1 <j. <7 and ]t| < 6 for some
positive number ¢ and hence @,(X,) ¢ T4, for | < &', which’

?dz)
implies @,( T) = TW_ for |¢| < 8 because of the linearity of
@;. This concludes the proof of the statement (2), since AY(M) is
generated by |-parameter subgroups.

Lemma 1 is due to Nomizu [3].
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Lemma 2. Let ¢, be an arbitrary transformation of A, for every i,

0 < i =k Let ¢ be the transformation of M = Mgy x My X+ x
M, defined by

g(*) = (%(xo)f‘fl(xt), el ex(%) for 1 = (o 235 ..., ) € M.
Then

(1) @ is an affine transformation of M"if and only if every @; is an
affine transform&ion OF M.

(2) @.is an jsometry qutfaNd Mb’ if every ¢ is an isometry‘of M.

, The proof:is trivial. |

The correspondence- (%, P ' ¢, @k — 9 defined iIn Lemma
2 maps A(My) x A(M,;) x ++ « X *2[( M,) isomorphically into
A(M). Fo complete the proof of Theorem 3.5, it suffices to
show that, for every ge A%(M), there exist transformations
@it M, > M, 0 £i £k, such that

@(x) = (pol*0)s p1(x1)5 . . | %@xk)) for x = (x0, %1, .+, %) € M.

We prove that, ifp,: M - M, denotes the naturalprojection then
p@(x)) depends only on x, = p,(x). Given any Point. y =

()’0: v i1 Xis Jir1s e 0y .yk)’ Iet for eaChJ T 1l v i -1

i+l ..., kT =x(0),08t <1, beacurvefromxtoy in
Msothatx()_xandx() =y, Lett =x(1),0 <t = 1,be
the curve from x toy in M defined by

x(t = (xo(t)’ xl(t)) rers xi—l(t), Xis xa’+1(t)’~' L] xlc(t)) 0 St 6

For each ¢, the tangent vector #(¢) to + a x(t) is in the distribution
TO + ...+ TU-D L pu g 4 TW, By Lemma 1, ¢(x(2))
lies dso in the same distribution. chce iy x(f) ) is independent
of ¢ (cf. Lemma 2 for Theorem 7.2 of Chapter H). In particular,

pilo(x) = (), thus proving our assertion. We then define a
transformation ¢,: M, — M, by ‘

oix) = plp(3)-

Clearly, we have

p(x) = (%(xo)’ ¢1(k;)", L es(xe)- QED.

It is therefore important to study A{M) when M is irreducible.
The following result is due to Kobayashi [4].
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Theorem  3.6. If Mis acomplete, irreducible Riemannian manifold,
then W(M) = 3(M) except when M is a I-dimensional Euclidean
space.

Proof. A transformation ¢ of a Riemannian manifold is said
to be homothetic if there is a positive constant ¢ such that g(p(X),
¢(Y)) = (X, Y) for dl X, YE T,(M) and x ¢ M. Consider the
Riemannian metric g* defined by g*(X, ¥) = g(p(X), o(Y)).
From the proof (B) of Theorem 2.2 of Chapter Ill, we see that
the Riemannian connection defined by g* coincides with the one
defined by g. This means that every homothetic transformation of
a Riemannian manifold M is an affine transformation of M.

LEMMA 1. If M is an irreducible Riemannian manifgld, then every
affine transformation g of M is homothetic.

Proof of Lemma 1. Since ¢ is an affine transformation, the two
Riemannian metrics g and g* (defined above) determine the same
Riemannian connection, say I'. Let ¥(x) be the linear holonomy
group of I' with reference point x. Since it is irreducible and leaves
both g aréi g* invariant, there exists a positive constant ¢, such that

g (X, Y) = - g(X,Y) for al X, ¥e T(M),that is, g;"= . g
(cf Theorem 1 of Appendix 5). Since both g * and g’ are paraIIeI
tensor fields with respect to I’, ¢, is constant.

Lema 2. If A4 is a complete Riemannian manifold which is not
locally Euclidean, then every homothetic transformation ¢ of M is an
isometry.

Proofof Lemma 2. Assume that ¢ is a non-isometric homothetic
transformation of M. Considering the inverse transformation if
necessary, we may assume that the. constant ¢ associated with ¢ is
less than 1. Take, an arbitrary pomt x of M. If the distance
between X and g(x) is less than 4, then the distance between
¢ (x ) and g™+ (x) is less than ¢m§, It follows that {pm(x); m =
,2,...}is a Cauchy sequence and hence. [converges 10 some
pomt say x*, since M is complete. It is easy fo see’[hat the point
x* is left flxed by ¢.

Let U be a neighborhood of x* such that U is compact. Let K*
be a postive number such that |g(R( Y,, ¥,)Y,, ¥;)| < K* for
any unit vectors Y, and ¥, a y ¢ U, where R denotes the
curvature tensor field. Let z ¢ M and ¢ any'plane in T,(M).
Let X,Y be an orthonormal basis for ¢. Since ¢ is° an éaffine
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transformation, (3) of Proposition 1.2 implies that
R(g™X, ¢™Y) (pmY) = om(R(X, ) T).
Hence we have
g(R(ymX, g"Y) (9" ), gX) = g(p™(R(X, V) Y), o™X}
= ¢mg(R(X, Y)Y, X) = &=K(q).

On the other hand, the distance between x* = gm(x*) and ¢™(2)
approaches {) as m tends to infinity. In other words, there exists
an integer m, such that ¢™(z) ¢ U for every m 2m, Since the
lengths of the vectors ¢™X and =Y are equa to ¢™, we have

dnK* z lg(R(emX, gnY)(pnY), gnX)| for m=m,

Thus we obtain
¢2mK* = |K(q)| for m =z m,.

Letting m tend to infinity, we have K(g) = 0. This shows that M is
localy Euclidean. QED.

Let X be an infinitesmal affine transformation on a complete
Riemannian manifold M. Using Theorems 3.5 and 3.6, we shall
find a number of sufficient conditions for X to be an infinitesmal
isometry, Assuming that M is connected, let A be the universal
covering manifold with the naturaly induced Riemannian metric
g = p*(g), where p; M — M is the natural projection. Let X be
the vector field on A induced by X; X is p-related to X. Then Xis
an infinitesimal affine transformation of M. Clearly, X is an infini-
tesimal isometry of Af if and only if X is an infinitesmal isometry
of M. Let A1 = ‘M, x M;x -+ x M, be the de Rham decom-
position of the complete simply connected Riemannian manifold
M. By Theorem 3.5, the Lie agebra a(M) is isomorphic with

a(My) + a(M,) 4+ ++ -+ a(My). Let (X, Xy, . . ., X,) be the
element_of a(M,) + a(M,) + . « . + a(M,) corresponding to
X ca(M).Since Xy, . .., X, ae dl infinitesma isometries by

Theorem 3.6, X is an infinitesma isometry if and only if X, is.

COROLLARY If M is a connected, complete Riemannian  manifold
whose restricted lmear holonomy group ‘P‘"(x) leaves no non-zero vector at x
fixed, then A°(M) = J°(M).

Proof.  The linear holonomy group of M is naturally isomorphic
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with the restricted linear holonomy group ¥°(x) of A4 (cf. Example
2.1 of Chapter 1V).. This means that M, reduces to a point and
hence X, = O in the above notations. QED.

CROLLARY  3.0. If X is an ininitesimal gffine transformation of a
complete Riemannian manifold and ¢f the length of X is bounded, then X
is an infinitesimal isometry.’

Proof. We may assume M to be connected. If the length of X
is bounded on Af, the length of X, is also bounded on AM,. Let
x1, ., ., « be the Euclidean coordinate system in M, and set

X = ¥ 8(00x).
Applying the formula (Ly o Vy ~ Vy o Ly )Z = Viy yZ (cf.
Proposition 2.2) to Y =: 9/0x” and Z = 9/dx", we see that
%W o’ dx’
This means that X, is of the form
S, @+ b (9)0x).

It is casy to see that length of X, is bounded on M, if and only if
a; = Oior o, =1, .,., r. Thusif X, is of bounded length, then
X s an mﬁmthmal isometry of Af,. QED.

Corollary 3.8, obtained by Hano [1], implies the following
result of Yano |1] which was originaly proved by a completely
different method.

CoroLLarY 39.  On ,acompact ‘Riemannian manifold M', we have
A AL == IO M),

Proof. On a compact manifold A, every vector field is of
bounded length. By Corollary 3.8, every infinitesma  affine
transformation X iy an infinitesma jsometty. QED.

4. Holonomy and infinitesiaml isometrics

Let M be a differentiable manifold with a linear connection
I’. -For an infinitesimal affine transformation X of M, we give a
geometric interpretation’ of the tensor ‘fild A, = Ly — Vy
introduced in §2.
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Let x be an arbitrary point of M and let ¢, be a loca I-pa
.rameter group of affine transformations generated by X in a
neighborhood of x. Let 7 be the orbit x, = ¢,(x) of Xx. We denote
by 7! the parallel displacement along the curve + from , to x,.

For each t, we consider a Ilnear transformation €, = 74 o (@)% Of
T.(M).

Prercsimian 4.1, C, is 2 {ocal l-paramgter group of linear trans-
formations of T,(M)  C,,, = C,+C,,and C, = exp ( —#(Az).).

Proof.  Since g, maps the portlon of rfrom x, tghx, into the
portion Of = from ¥, to x,,, and since g, iS compatible'with parallel
displacement, we have

B groth =10
Hence - , o
C C“‘"‘°‘Pt°"’0°‘7’s—"'o°7’“°¢t ‘Pa 5 0 @iy = Cye
ThIS proves the first assertlon Thus there is a linear endomor-

phism, say, A of T(M) such that C, = exp ¢4. The second
assertion says that A = —(Ay),. To prove this, we show that

hm (CY Y,) = —(4%).Y, for Y, ¢ T,(M).
t—0 .
First, consider the case where X, % 0. Then x has a coordinate
neighborhood with local coordinate system «x!, . . ., x* such that
the curve ¢ = x,isgiven by sl = + 2= .= x* = 0 for smal

values oft. We may therefore extend Y, to a vector field Y on A{ in
such a way that ¢,(Y,) = ¥, for smal vaues -of . Evidently,
(LyY), = 0. We have

—(dx)Ye = (VxT), — (Lx¥). = (ViT),

= lim (A7, = ¥ = lim & (= .7, = ¥

ot -+() t—0:

.1
= }Lr?;A(Cth - Y,).

Second, consider the case where X, = 0. In this case, ¢ is aloca
[-parameter group of loca transformations leaving x fised and the
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paralel displacement 7/, reduces to the identity transformation of
T,(M). Thus (VyY), = 0. We have

_-(AX)me = (VXY):c - (L.\;’Y)x = “(LXY)z

o1 1 .
= - lim - (¥, — =lim - (C,Y, — .
(= g) = lm 3 (€, - 1)

t—~0
This completes the proof of the second assertion. QED.

Remark. Proposition 4.1 is indeed a specia’ case of Proposition
11.2 of Chapter Il and can be derived from it,

ProposiTion 42 Let N(W(x)) ‘and N (W0(x)) be the normalizors
of the Linear holonomy group Y(x) and the restricted linear holonomy group
WO(x) in the group of linear transformations of T,(M). Then (, is con-
tained in N(W(x)) as well as in N(¥°(x)).

Proof. Let ¢, and 7} be as before. For any loop u at x, we set
py =@, (pu)so thaty; is aloop at x, = ¢,(x). We denote by x and
w, the paralel displacements along x and gy, respectively. Then
RLNTES 'u;o(pt, We have

CoopeCt = rhogopogtord = rjop o oqtor = vhopond.
This shows that C, < u - C;* is an dement of Y(x). It isin ¥(x) if

pisin ¥(x). (Note that N(¥'(x)) < N(¥°(x)) since ¥o(x) is the
identity component of N(%¥(x).) QED.

CoroLtary  4.3.  If X isan infinitesimal affine transformation of M,
then, at each point x ¢ M, (A)), belongs to the.normalizor N(g(x)) of
the Lie algebra g(x) of ¥(¥)in the Lie algebra of endomorphisms of
T.(M).

We recall that N(g(x)) is by definition the set of linear endo-
morphisms A of T,(M) such that [A, B] ¢ g(x) for every
B e g(x).

If X is an infinitesma isometry of a Riemannian manifold M,
then A, is skew-symmetric (cf. Proposition 3.2) and, for each I,
C, is an orthogonal transformation of T,(M). We have then

THEoREM 4.4. Let M be a Riemannian manifold and g(x) the Lie
algebra of Y(x). If X is an infinitesimal isometry of A, then, for each
X € M, (A), isin the normalizor N (9(x)) of g(x)” in the Lie algebra
E(x) of skew-symmetric linear endomorphisms of T,(M).
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The following theorem is due to Kostant [ 1].

THEoREM 4.5. If X is an infinitesimal isometry of a compact
Riemannian manifold M, then, for each x ¢ M, (A,), belongs to the Lie
algebra g(x) of the linear holvhomy group Y(x).

Proof. In the Lie agebra E(x) of skew-symmetric endomor-
phisms of T,(M), we introduce a positive definite inner product
(,) by setting

(A, B)= -trace {4B) .
Let B(x) be the orthogona complement of g(x) in E(x) with
respect this inner product. For the given infinitesima isometry X
of M, we set o

A‘X =Sx+Bx,
where Sx € g(x), Bx ¢B(X), xe¢ M.

Lemva.  Thetensor field B y of type (1, 1) is parallel.

Proof, of Lemma. Let ¢ be an arbitrary curve from a ‘.pojrit X
to another pointy. The paralle! displacement, 7 gives an isomor-
phism of E(x) onto .E(y) which maps g(x) onto g( ). Since the
inner products. in, E(x) and- in E(y) arc, preserved by 7, = maps
B(x) onto B(y). This means that, for any vector field. ¥ on M,
V(S x) isin g(x) whereas.Vy (By) is.in B(x) a each point x ¢ M.-
On the other hand, the formula Viy(4x) = R(X, Y) (cf. Propo-
sition 2.6) implies that V(4 x) belongs to g(x) at each x ¢ M (cf.
Theorem, 9.1 of Chapter Il1). By comparing the g(x)-component
and the B(x)-component of the equaity V,(4dx) = Vy(Bx) +
Vy(Sx), we see that Vy(Bx) belongs to - g(x) also. Hence
Vy(Bx) = 0, concluding the proof of the lemma,,

We shall show that By = 0. We set Y = BxX. By Green's
theorem (cf. Appendix 6), we have (assuming that M is orientable
for the moment) ,

. f dv Y ds=0 (dv: the volume element).
M

Since div ¥1s equal. to the trace of the linear mapping V'— V.Y
at each point X, we have (Lemma and Proposition 2.5)
div Y = trace (V — Vy(BxX)) =trace (V —» By(V, X))
= -trace (BxAyx) = —trace (ByBy) — trace (BxSy)



248 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

Thus
f trace (BxBy) dv = 0,
x

which implies trace B By =0 and hence B, = 0. If M 5 ot
orientable, we lift X to an infinitesmal |sometry X* of the two—
fold orientable covering space M* of A{, Then B,, = 0 implies

By =0. QED.

As an application of Theorem 4.5, we prove a result of H. C.
Wang [I].

Trecrem 4.6 If M is a compact Riemannian manifold, then

( 1) Every parallel tensor field K on M is invariant 4y the identity
component J%( M) of the group of isometries of M;

(2) At each point x,” the linear isotropy group of J°(M)is contained in
the linear holonomy group Y(x) . :

Proof. (1) Let X be an arbitrary infinitessimal isometry of M.
By Proposition 4.1 and Theorem 4.5, the |-parameter group C,
of linear transformations of T,(M) is contained in ¥(x). When
C, is cxtended, fo a |-parameter group of automorphisms of the
tensor agebra over T, (M), it leaves K invariant. Thus ¢,(K,) =

= K, for every ¢, where ¢, iS the |-parameter group of
|sometr|es generamed by X. Smce 3°(M) is connected, it leaves K
invariant. %

(2) Let ¢ Be any.element Of 3°(M) such that ¢(x) = x. Since
J°(A) is a compact connected Lie group, there exists a |-param-
eter subgroup ¢, such that ¢ = s, for some ¢, In the proof of
(1), we saw that €, (obtained from ) isin ¥(x). On the other
hand, since ¢, (x) ==, 7 is adso in W¥(x). Hence ¢, = 10 Cyy
belongs to ‘P‘(x) , ‘ QED"

5. Ricei teasor and infinitesimal isometries
Let M be a manifold with a linear connection I'. The Ricci
tensor field § is the covariant tensor field of degree 2 defined as
follows :

§(X, Y) = trace of the map V — R(V, X) Y of T,(M),
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where XY, V ¢ T,(M). If M is a Riemannian manifold and if
Vi -+« Va is an orthonormal basis of T,(M), then

S(Xy Y= 2" gR( VX T, V)
= 2 RV, Y, Vi X), X)YeT, (M),
where R in the last eguation denotes the Riemannian curvature
tensor (cf. $2 of Chapter V). Property (d) of the Riemannian

curvature tensor (cf. §I of Chapter V) implies S(X, Y) =
S(Y, X), that is, § is symmetric.

""Proposition 5.1 If X is an infinitesimal affine transformation of a

"Riemannian manifold M, then

div (4,Y) = =S(X, Y) — trace (4xdy)
for every vector field Y on M. In particular,
div (AxX) = =8(X, X) — trace (4\-;1 -

Proof. By Proposition 2.6, we have R( ¥V, X) = - —R(X, I") =
= Vy(Ay) for any vector field V. on M. Henice ’

RV, X)Y = —(V(4dy))Y = <Vp(dxY) + d(V,Y)
L= = V(A Y) - A4V

Ou; proposition folldws from the fact that S(X,‘ Y) isg'the trace of
V = R(V, X) Y and that div (4 1Y) is'the trace of ¥ — V(4 Y).
QED.

PropostTiON 5.2. For an infinitesimal isometry X of a Riemannian
manifold M, consider the function f = }g{X, X) an M. Then
« (1) Vf =9( V, AxX) for every tangent vector V,

@ )V’f o(V, V(A x X)) for every vector field . ;rucﬁ that

= 0; w

(ﬂ) dtv (A xX’) 2 0 at any point where f attains 2 refatwe mzmmum,
- siudiv (A X) < 0 at any point where f attains a relative maximum.

Proof. Since £ i§ paralel, we have

Z(g(X, Y)) = Vz(8(X, 1)) = &(VzX, ') + &(X, V,¥)

for arbitrary vector fields X, Y and Z on Af. Applying this formula
to the case where X Y and Z = ¥V, we obtain

V= 8(VX, X) = —eldxV, X) = g(V, 4,X)
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by virtue of Proposition 2.5 and the skew-symmetry of A, (cf.
Proposition 3.2). This proves (1). If V is a vector field such that
v,V = 0, then

-V = V(g(V, Ax X)) = g(VV, 4xX) + g(V, Vp(4xX))
= g(V, Vy(4xX)),

proving (2). To prove (3),let ¥y, . .., ¥, be an orthonormal basis

for T,(M). For each i, let 7, = #,(t) be the geodesic with the

initial condition (x, V,) so that ¥; = 4, (0). We extend each V, to
a vector field which coincides with #;(¢) at x,(¢) for small values of
t. Then we have ‘

Pf(x,(t)]d = VI f = &(Vy,Vis AxX) + g(Vi, Yy (AxX))
= g(V, Yy (A5 X))

Since div (4 xX) is the trace of-the linear mapping V — V,}(ZXX),
we have ‘ .
div (AxX), = T, (V2 f).

Now (3), follows from the fact that, iffattains a relative minimum
(resp. maximum) at x, then (VZf), = 0 (rep] <0) QED.

As an application of these two propositions, We prove the
following, result of Bochner [1]. .

TheoreM 5.3; Let M be a connected Riemannian manifold- whose
Ricci tensor field S is negative definite everywhere on M. 1T the length.of an
infinitesimal isometry X attains a relative maximum at some point ¢f M,
then X vanishes identically on M.

Proof. Assume the length of X attains a relative maximum at
x. By Proposition 5.2, we have div {: | xX) < 0 at . By Proposition
5.1, we obtain —S$(X, X) = trace(dxAx) = 0, But S(X;X) =0
by assumption,-and trace (4 x4 y) = O.since 4 y isskew-symmetric.
Thus we have §(X, X) =0and A, = 0 at x. Since § is negative
definite, X =0 at «x. Since the length of X attains a relative
maximum at x, X vanishes in a neighborhood x. If u is any point
of G{M) such that =(u) = x, then the natural lift X of Xvanishes
in a neighborhood of u. As we have seen in the proof of Theorem
3.3, X vanishes identically on M. QED.
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CoROLLARY 5.4. If M is a compact Riemannian manifold with
negative definite Ricci tensor field, then the group 3( M of isometries of M

is finite.
Proof. By Theorem 5.3, 3°(M) reduces to the identity; Since
J(M) is compact (cf. Theorem 3.4}, it is finite. QED.

Remark. Corollary 5.1 can be derived from Proposition 5.1 by
means of Green’s thcorem in the following way.

We may assume that A is orientable; otherwise, we have only
to consider the orientable twofold covering space of M. From
Proposition 5.1 and Green's theorem, we obtain

f [S(X, X) + trace (AyAx)] dv = 0.

Since S(X, X) = 0. and trace (Axdy) = 0, we must Have
S(X, X) =0andtrace (A4xAx)=0 everywhere on M. Sincd S is
negative definite, we have X = 0 everywhere ‘on Af. This proof
gives also

CoroLLARY 5.5. If M: {5 a compact Riemdannian manifold with
vanishing Ricci sensor field, then every znﬁmteslmal zsometrv of Mis a

parallel vector field. - ¥
Proof. By Proposition 2.5, we have 0— Ay V = - V;.X for
every vector field V on M. . QED.
From Corollary 5.5, we obtain the following result of Lich-
n e r o w i c z [}

CoroLLARY 5.6. |J 4 connected compact homogeneous Riemannian
manifold. M has zero, Ricer- tensor, then M is a Euclidean torus.
Proof. By Theorem 5.1 of Chapter III and Corollary 5.5, we
have
[X, Y] = V.V =V, X =0

for any infinitesmal. isometries X,Y. Thus J%(M)1s a compact
abelian group. Since 3I°(M) acts effectively on Al the isotropy
subgroup of J%(A):-at-every point 3 rcduces to the iHentity
element. As we have seen in Example 4.1 of Chapter V, W is a
Euclidean torus. C JED.

As another application of Proposition 5.2, we prove
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Prerosi Tiav  5.7.  Let ¢, be the I-parameter group oOf isometries
generated by an infinitesimal tsometry X of a Riemannian manifold M.
If x is a critical point of the length function g(X, X)!, then the orbit
@,(x) is a geodesic. ,

Proof. If xisa critical point of g(X, X)*, it is a critical point of
the function ¥ = Ig(X, X) also. By (1) of Proposition 5.2, we
have g( ¥, A xX) = O for every vector .V at x. Hence 4y X =0 at
% that is, VX = 0 a x. Since ¢,(X,) = X, by (1) of Proposi-

tion 1.2, we have V 4X = 0 aong the orbit ¢,(x). This shows that
the orbit ¢,(x) is a-geodesic. QED.

6. Extension of local isomorphisms

Let M be a red andytic manifold with an analytic linear
connection ', The bundle L(M) of linear frames is an anaytic
manifold and the connection form w is anaytic. The distribution
. @ which assigns the horizontal subspace @, to each point u ¢ L(M)
“is analytic in the sense that each point « has a neighbbrhood and a
local basis for the distribution Q consisting of analytic vector
fields. Th® same is true for the distribution on the tangent bundle
T(N) which defines the notion of paralel displacement in the
bundle T(M) (for the notion of horizontal subspaces in an
associated fibre bundle, see §7 of Chapter I11).

The main object of this section is to prove the following
theorem.

Trecew 6.1 Let M be a connected, simply connected analytic
manifold with an analytic linear connection. Let M’ be an analytic
manifold with a complete ‘analytic linear connection. Then every affine
mapping  fy, of a connected open subset I/ of M into Af’ can be uniquely
extended to an affine mapping f of M into AL’

The proof is preceded by several lemmas.

LEMvA 1. Let f and g be analytic mappings of a connected analytic
manifold M into an anafytic manifold M’ Iff andg coincide on a non-empty
open-subset of M, then they coincide on M. S

Proof of Lemma 1. Let x be-any pointof M and let x%,. .., x*
be an analytic local coordinate system in a neighborhood of x. Let
24 ...,y be an andytic loca coordinate system in a neighbor-
hood of the point T(X). The mapping f can be expressed by
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a set of analytic functions

}i:f i(x‘l, .. ..’x";),k.‘ i=l;. Lo, M
These functions can be expanded @ x into convergent power
seriesof Y, . . ., %" Similarly for ‘the mapping g. Let N be the set

of points x € M such that f(x) = g(x) and ‘that the power series
expansions of f and g at x coincide. Then N is clearly a closed sub-
set of M. From tht well known properties of power series, it
follows that ¥ is open in M. Since M is connected, N = M.

LemmA: 2. Let §and 8’ be analytic distributions on analytic manifolds
M and M’. Let f be an analytic mapping of M into M’ such that

(* S(82) < Spery

or every point x of an open subset of M. If M is connected, then (*) is
satisfied at every point x of M. )
Proof of Lemma 2. Let N be the set of dl pon3ts x o M stich
that (*) is satisfied in a neighborhood of x. Then N is clearly a
non-empty open subset of M. Since M is connected, it suffices to
show that Nis closed. Let x, € N and x, — xo. Let 3, . . . ,»™bean
analytic local coordinate system in a neighborhood F off (x4).

Let Z,, ..., Z, be-aloca basis for the distribution §" in ¥, From
39", . .., 8/dym; choose m — A vector fields, say, Zyis v i lm
suchthat Z,, . .., Z,, Zy4y, - - - , Z,, aelinearly independent at

f (x,) and hence in a neighborhood V' off (o). Let U be a con-
nected neighborhood of x, with an anaytic loca coordinate
system 1, . . ., x* such that f{U) & V' and that”§ has a local
basis X,, . .., X, consisting of analytic vector fields defined on U.
Since f is analytic, we have

S(X)a = zﬁl.ﬁ(") ' Z, =100,k

where fi(x) are-analytic functions of #%,. ..., x" Since x,.¢ N and
x, — %, there exists a neighborhood. U; of some x, such thdt
U, < U and that (*) is batisfied: at every point x of U,. In ether
words, fi(x) =0on. U;forl st kadh+ 1gj<m It

followsthat f 4 = 0 on U for the.same i and j. This proves that (*)
is satisfied at every point = of U.

Lemma 3. Let M and M’ ‘be analptic manifolds with analytic
linear connections and f an analytic mapping of M into M. If the
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restriclion off to an open subset I/ of M is an qffine mapping and if M is
coxnected, then  is an affine mapping 0f Af into A"

Proof of Lemma 3. Let F be the analytic .mapping of the
tangent bundle T(M) into T(M') induced by f. By assumption,
£ ma ps the horizontal subspace at each pomt of n-l(U) into a
horizontal subspace in T(M") (here m denOtes the projection of
T( M) onto M)). Applymg Lemma 9 to the mapping F, we see that
[ is an affine mapping of M'into M”.

LEMMA 4. Let M and M’ be differentiable manifolds -with linear
conneclzans and let f and g be affine mappings of .M into M. If f (X) =
o X) for every X € T,(M) at -some point x ¢ M and {f M is connected,

lzen S and g coincide on M.

Proof of Lenma 4. Let N be the set of all points x ¢ M such
that f(.X) = g(X) for X ¢ T,(M). Then N is clearly a non-empty
closed subset of Af. Since f and g commute with the exponential
mappings (Proposition 1 .1), ¥ . N iinpiies that a normal co-
ordinate neighborhood of x is in N. Thus N is open. Since M is
connected, we have N = M.

We %re now in position to prove Theorem 6.L.. Under the

assumptions-in Theorem 6.1, let x(t), 0 < £ < 1, be a curve in M
such that x(0) ¢ E. An analytic continuation off,, alorg the curve x( )
is, /by definition, a family of affine mappings f, 0=t =
satisfying the following conditions:
(¥) For each ¢, f, is an affine mapping of-a nkighborhbod U, of
the p@)’mtX (t) into M’ . i
) For each ¢, there exists a positive number & such that if
5 — t| 9, then x(s) e U,and f, coincides with £, in a neighbor-
hood of x(s) ;
(3) Sy =fu- o
It follows easily from Lemma 4 that an analytic continuation of
T - dong the curve x(t) is unique if it exists: We now show that. it
exists. Let {, be the supremum of #; >-0 such that an analytic
continuation f, exists for 0 = { <. #;, Let W be a convex.neighbor-
hood of the point x(to) as in Theorem 8.7 of Chapter Ill such that
every point of W has a normal coordinate neighborhood con-
taining W, Take t, such that ¢, < ¢, and that-x{t;) eW. Let V¥ be
a normal coordinate neighborhood of x(¢,) which contains W.
Siflce there exists an andytic continuation f, of fy; for0 <t ¢y,
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we have the affine mappmg ﬁ of a neighborhood x(¢,) into Af".
We extend'f, to an, analytic mapping, say g, of Jinto M’ as
follows. Since the expoqegtlal mapping gives a diffeomorphism
of an open neighborhood V* of the originin 77, { M)onto T, each
_pointy eV detexmme.s 3,unique. element. X ¢ Ve T, m( M) such
thaty = exp X. Set X' = f, (X) so that X’is a vector atf, (xi&)).
Since M’ is complete, €xp X' is well defined and we set d\ e
exp X'. The exteﬁsxon g off, thus deﬁned commutes with tlu
egponﬂgi al’ mappings: Since ' the exponential mappings are
‘aralytic;’ g i$ also"analytic. By Lemma 3, ¢ is an affine mapping of
'Vinto M’. We cdn easily define the continuation ‘f, beyond 1, by
using this affine mapping g. We have thus proved the existence of

™ an analytxc continuation f, along the whole curve x(¢), 05 ¢: 1

To complete the proof of THeorem 6.1, let x bean abitrarily fixed
point of {J, For each point y of M, let x(£); 0 ¢ « = 1, be a curve
from x t0 y. The affine niapping fU can be analytlcallv continued
‘dlong the curve () and gives rise to an affine mapping'¢ of a
neighborhood of y into AM* We Show, thit g(y) s independent Of
the choice of a curve from x to'y. For this, ¥t is sufficfent to observe
that if (¢) i§*a closed curve, then the’ analytic éontinuation f, of
Jy dong x(t) gives risé to the affinc mapping f, which coincides
with f;- in a neighborhood x. Since M is simply connected, the
curve X(t) ‘is homotopic to zero and our assertjon follows readlly
from the factorization lemma (cf..-Appendix 7.) and from the
uniqueness of -an :analytic continuation we. have already-proved.

. It folows that the given mapping fc can be extended to an
afine mapping f of A{ into M. The uniqueness off follows from
Lemma 4. QED.

¢ CoraLLARY 6.2, Let M and 3’ be connected and simply connected
enalytic manifolds with complete analytic \inear connestions. Then every
affine.4somorphism between connected open subsets of .\l and M’ can be
uniquely extended to an affine isomorphism between M and Af".

We have the corresponding results for analytic Ricmannian
manifolds. The Riemannian éonnection of an analytic Rieman-
nian metric is anal\tu this follows from Corollary 2. { of Chapter
IV,

THEOREM 6.3. Iet M and M be analvtic Rzemanm(m manifolds.
]f M is connected and .Smt/)ll u)h .,f(/ and // Mis (()m/)[gtp’ then every

5
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isometric immersion £, of a connected open subset U of M into M’ can be
uniguely extended to an isometric immersion f of M into M’

Proof. The proof is quite similar to that of Theorem 6.1.
We indicate only the necessary changes. Lemma 1 can be used
without any change. Lemma 2 was necessary only to derive

Lemma 3. In the present case, we prove the following Lemma 3'
directly.

LEMMA 3. Let M and M’ be analytic manifolds with analytic

Riemannian metrics g and g’, respectively, and let f e an analytic mappmg
‘of M into M’. If the restriction ‘off to an open subset U of M is an
isometric immersion and if M is connected, then f is an ummc
immersion of M into M’,

Proof of Lemma 3. Compae gand f# (g) . ‘Snce they coincide
on U, the argument similar to the one used in the proof of Lemma
1 shows that they coincide on the whole of M.

In Lemma 4, we replace “affine mappings’ by ‘ Hisometric
immersions. ” Since an isometric immersion maps every geodesic
into a geodesic and hence commutes with: the exponentia
mappings,, the proof of Lemma 4 is till valid.

‘In the rest of the proof of Theorem 6.1, we replace “affine
mapping” by “isometric immersion.” Then thz' proof %oes
through without any other change. QED.

Remark. Since ‘an isometric immersion f: M — M’ is not
necessarily an affine mapping, Theorem 6.3 does not follow from
Theorem 6.1. If' dim M = dim:M’, then every isometric immersion
f: M - M’ is an affine mapping (cf. Proposition 2.6 of Chapter

IV). Hence the following corollary_follows from Corollary 6.2 as
well as from Theorem 6.3.

CoroLLARY 6.4, Let M and M’ be connected and simply connected,
complete  analytic  Riemannian manifolds. Then every isometry between

connected open ‘subsets of M and M’ can be uniquely extended to an
isometry between M and M.

7. Equivalence problem

Lét M be a manifold with a linear connection. Let &%, . . ., x*

be a normal coordinate system at a point %, and let U be a neigh= |
., Nn. Let 4y be theiinear

borhood of x, given by |xf| < 6,i =1,

where ta stands for (fal,

" This proves (3). Slmﬂarly, (4) foltows from the fact that o(i,)
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frame a the origin x, given by (3/dx, . . ., 9/dx"). We define a
cross section ¢: / — L(M) as follows. If x is a point of [J with
coordinates (al, ..., a"), then \a-(x2 is the frame obtained by the
parallel displacement of u, along the geodesic given by xf = ',

0 =t = 1. We cal ¢ the ¢ross seetion adapted to the normal coordinate
system %, ..., x™,

The first objective of this section: is to prove the following
theorem.

' s bn l\
Theorem  7.1. et M and ML be manifolds with linear connections.
Let U (resp. V) be a normal coordinate neighborhood of a point Xy € M

(’“P Jo € M) with 3 normal coordinate system 2, ..., % (resp.
Yol M andlet a U L(MY (resp. 62 V L(My) be the cross
section adapted to #%, ... , a" (resp. y

™. A dtﬂwmorghgm f of
Uonto V is an aﬁne isomorphism if it satzsﬁes the followma two tonditions:

(1) f maps the frame a(x) into the frame o’( f(x)) for each point x € U;
(2) T preserves the torsion and curvature tensor fields. =

Proof. Let § = (6) and @ = (¢f) be the canonical form and
the connection form on L(M) resPCCU"‘EIY We set

WP =0c* =3, Lidd, =1,, Ve

(2) @ = 0% = L, B det, 4j=1. n

LEMA 1. For any (a?, . . ., a®) (0’“_, 0) with [a'] < &,
we have

(3)Z, 4j(t)a’ = @', O0=<ts<1, = 1

. seies
(4) Z, Bjy(ta)a* =0, O0sts<!, dj=1...n
, tan).

Proof of Lemma 1. For a fixed a = ('), considcr the geodesic

x, given by ** =1, Os t< 1, ; o |,
which:is the horlzontal lift of x, starting from u Slnce t”nefragngé
u, are parallel along x,, we have

g 0‘(x)—0(u =ai

bn the other hand we have

£, = E a’l (a/ax’) and 0 (%) Z Aj{ta)a’
<0,
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We set [cf. §7 of Chapter Il1)

(3)0 = o*Q' =3, 1T B Al (Tjp=0*T}),

(6) O = o*Q)i = z“ IR NG (Rly = o*Rjy).

LEMMA 2. For an arbitrarily fixed (@, ., , a”), we set
A"(l) = tdj(ta), Bix(t) = tBj(ta),
ﬂ,(t) = L&m) R}},.,(t) = Rf;w(m)-

Then the functions Ai(f) and B (t) satisfy the following system of
ordinary linear differential equations:

(7) dAi()jdt = & + Ty Bj(0)a* + By, TL A (1)e!
(8) dB(B)]dt = 3, Ry ()AL (. |
with the initial conditions:
(9) A'(o) 0, Bi(0) = 0.
Proof of Lemma 2. We cons1der the open set Q of R"*+1

defined by @ = {(t, at, . . ., @); lta'l < 6for i=1,..., n} Let
p be the mapping of €. into {7 defined by g

pltya, ... a™) = (ta, ...  ta").
We set _
b = p*l, B = p*af, O = p*0, QO = pH0.
From Lemma 1, we obtain V
(10) 8' = 5, tdi(ta) do’ + @' dt,
(1 1o =Z; tBjta) da*.
From (5) and (6), we obtain
U =A@ Bl
N B =S R BEAR
From' (10) and { 11); we obtain ‘ '

(1-k) D == [ (tdj(ta)} ~ & 1 daiadt + o

2

N SRR

(15) do = =% [E <tB,‘fk(ta>,>} da* A dt* :

where the dots dengte 1}1q terms nptjinvolvililg dt. .

‘,m—-012
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From (10), (11), (12) and (13), ‘tie obtain
(16) —Z, D A0 O
—Z; [Z, tB(ta)a* + =, T (ta) (¢A](ta))a'] da? ndt + . . -,
A7) ~Z, A+ Q
=22, R ,m(ta)(tA’”(ta)) a').da® A dt +

where the dots denote thc terms not mvolvmg dt. Now (7)
follows from (14), (16) and the first structure equation. Similarly,
(8) follows. from (15), (17) and the second siructure equation.

Finaly, (9) is obvious from the definition of A;(t) and B}, (). This
proves. Lemma 2,

From Lemma 2 and from the unigueness theorem on systems
of prdinary linear dlﬂ'erentzal equaﬂons (cf. Appendix,. .,) it

follows that the functions A*(t ) and-B! (1) are uniquely determmed
by Tt (1) and Rk,(t) On the other hand, the functions T%(¢) and
]k,(t} -are uniquely determined by the torsion temsor-ifields T
and the curvature tensor fields R and also by the cross section -(for
each fixed (g, . * . , a®)). Frem ( 1) we' s¢e that the eonnection
form w is uniquely, determined by T, R and o. "QED.
“In the case of a'real analytic&near connection, the torsion and
curvatire tensor fields and their successive govariant derivatives

a a point determine the connection uniquely. More precisely, we
have

THEOREM 7.2 l.gt M and M’ be aualytzc manlfolds with analytlc

inear connections. Let T, R and ¥ (rgsh, T R and V') ‘be ‘tke torsion,

the curvature and the covariant di ~ﬁm’ent:atzon of M (resp. M Y. 1f a linear
isomorphism F: T (M) —» TA(M; maps the. tensors (V™ T'), and
( V™R),, into the tensors (V »T"),, and (V"R'),., respectlvely, for
Mnen there is an qﬁne isomorphism f ofa nelghborhood
U of 3 x0 onto'a nezgﬁborhood 'V of J such that f (xo) = yo and ‘that the
différential of fat x9 F v

_ Probf. Let L xtiad| ‘34, be a normal scoordinate
systent’in an‘éxg{“’oorhmoc‘lUof:c0 Let 5% .« ., " 1yl < d,bea
normal coordinété System in a neighborheod ¥ of yy'such that
(019y),, = F((a/axi‘)‘,o =L, m ,suclwt ‘fiormal coordmate

i
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_—ii) The tensors (V"‘R), ,m=0,12 ...,
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system exists and is unique. Letf be the anaytic homeomorphism
of U onto ¥ defined by

¢ .yiof——'xi: i=1,...,n.
Clearly the differentia of f at x, coincides with F. We shall show
that f is an affine isomorphism of U onto ¥.

We use the same notation as in the proof of Theorem 7.1. It
suffices to prove the foIIowing five ‘statements. If the normal
coordinate system x%, . . ., x* is fixed, then

(i) The tcn;m{(V"'T),o, m'=0,1,2,.
tions T,,(?), 0t <1;

, determine t-he func-

determine the func-
tions Ri(#),0 st <1 : ’
(i) The functions Fit) and R (t) determine the forms '§
and w ; vt

(iv) The forms 0 determine the cross sectlon a

(v) The cross section ¢ and the forms @} determine the, connec-
tion form w.

To prove (i) and (ii) we need the foIIowmg lemma.

LEMMA 1. Let 4, 0<t < 1, be a hori Zontél lift of a curve’'x,,
0£t=1, toL(M). Let T be ¢ hze tensor spade of ¢ype (r, s) over R".
Given o tensor field K of type (r, 5) aiong x,, let 1K be the T:-valued
Sunction' defined along u, by '

K@) = w'(K,), 0st=],
where u; is conﬁderea' asa lznear mapping of - T’ onto the tensor’ space
T’( ,) at x, of type, (r, 5) . Then we have
T dK ()
« e o=
froof of ‘Lemmal. Thxs isa spec;al case of Proposition |.3 of
Chapter IIl. The tensor field X and the function K here corre-

4NV, K K, 0=ts 3

, spond to -the cross section ¢ and the fugctionf there; Although ¢

‘in:Proposition 1.3. of Chapter 111 is defined on.the whole of M,
the proof goes through when ¢ is deﬁned on, a curve in M (cf.
thc femma for; Propesition.1. 1 of Chapter LII)

To prove (i}, we apply Lemma 1 to the torson T, the geodesic
x, given by- x' = ta', i =1, . 77, n, and the horizontal lift u, of #,
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with u, = ((9/9x),,, . . ., (9/0x™), ). Then Lemma 1 (applied m
times) implies that, for each £, 4 '( ( 'V, )™ T) is the element of the
tensor space T} with componentsd™ 74 (¢)/dt™. In particular, setting
t = 0, we see that, once the' coordinate system -#}, . . ., x” and
(@, ..., a")are fixed, (dmff,/dtm),,o, m=0,1,2,..., aeal

determined by (V™T),,. (Actudly, it is not hard to see that

(dm f‘jik/dlgm)'!so-:_—“ 1, ‘l,,, T;k;ll;...;lm(xo)al‘ - ahm,

where Thy . . ... are the components of VT with respect to

xl, L ™) Smce each T‘ L(t) is an analytlc function of t, it is
determined by (VT), m = 0, 1,2, . This proves (i). The

» proof of (ii) is smllar

Lemma 2 for Theorem 7.1 |mpl|eﬁ that the functions T' L(t) and
R

".(¢) determine the functions A’(t) and B',,(t) Now (iii) follows
from the formula (1) and (2) in the proof of Theorem 7.1.
(iv) follows from the following lemma.

Lema 2. Letg and ¢’ be two cross sections of L(M) over an open
subset I/ of M. If g* = ¢'*@ on U, then ¢ = a’.
Proof of Lemma 2. For each X ¢ T,(M), where x ¢ U, we
have
(0*0)(X) = 0(cX) = o(x) Y (m(0X)) =0a{x)1X,
where g(x) ¢ L(M) is considered as a linear isomorphisn of R*
onto T,(M). Using the same equation for ¢', we obtain

a(x)-‘X = a'(x)-‘X.

Since this holds for every X in T,(M), we obtain o(x) =.¢'(x).
Findly, (v) is evident from the definition of & QED.

" COROLLARY ‘7.3. In Theorem 7.2, if M and M’ are, moreover,
connected, simply connected analytic manifolds with complete analytic
linear connestions, then there exists a unique affine &morphism £ of M onto
M’ whose dzjerentml at x, coincides wtth F.

Proof. This is an immediate consequence of Corollary 6.2 and
Theorem 7.2. QED.

THEOREM 74. Let M and M’ be differentiable manifolds with linear
connections. Let T, R and V (resp. T', R" and C’) be the torsion, the
curvature and the covhriant differentiation of Af “wop "), Assume
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/

VI =0,VR=0,V T =0and VR = 0, If Fis a “lincar
isomorphism of, 77, (M) onto T, (M") and maps the tensors 7 and R,
at x, into the tensors T, and R, aty, respectively, then the/e is an affine
isomorphismf of a neighborhood (/9 of x4 onto @ neighborrhgdd V of y, such
that /' (x,) = o and that the differential off at x, coinCides with F.
Proof. We follow the notation and the argument in the proof
of Theorem 7.2, By Lemma ! in the proof of Theorem 7.2, the
functions (¢) and Ri,(:) are constant functions and hence are

determined by T, and R, (and the coordinate system x1, . . . , x%),
Our theorem now follows from (iii), (iv) and (v) in the proof of
Theorem 7.2. QED.

CoRroLLARY 7.5. Let M be a differentiable manifold with a linear
connection such that VT = 0 and VR = 0. Then, for any two points x
andy of A, there exists an affine isomorphism of a neighborhood of x onto
a neighborhood ofy.

Proof. Let 7 be an arbitrary curve from x toy. Since VT = C
and VR = {, the pardlel displacement +: T,(M) — T,(M) maps
the tensors 7, and R, at x into the tensors 7, and R, at y. By
Theorem 7.4, there exists a loca affine isomorphism f such that
f(x) = y and that the differential off at x coincides with 7, QED.

Let M be a manifold with a linear connection I’. The connection
I’ is said to be invariant by parallelism if, for arbitrary points x and y
of M and for an arbitrary curve 7 from x to,y, there exists a
(unique) local affine isomorphism f such that f(x) = y and that
the differential off at x coincides with the parallel displacement
7: T,(M) = T,(M). In the proof of Corollary 7.5, we saw that
if VI' = 0 and VR = 0O, then the connection is invariant by
parallelism. The converse is aso true. Namely, we have

CoroLLARY  7.6. A linedr connection is invariant -by parallelism if
and only if VT = 0 and VR =0.

Proof. ~ Assuming that the connection is invariant by parallel-
isin, let 7 be an arbitrary curve from x toy. Letfbe a loca affine
isomorphism such that f (x) = y and that the differential off at x
coincides with the parale displacement . Then f maps 7, and
R, into T, and R, respectively. Hence the parallel displacement
7 maps T, and R, into 7, and R, respectively. This means that T
and R are pardld tensor fields. QED.

5
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THEOREM 7.7. Let M be a differentiable manifold with a linear
connection such that VT = 0 and VR = 0. With respect to the atlas
consisting of normal coordinate systems, M is an analytic manifold and the
connection: is analytic. .

Proof. Letx! ..., x* be a norma coordinate system in an
open set /. We introduce a coordinate system (xf, X3); ;—; . »
in #71(U) < L(M) in a natural way as in $7 of Chapter IIT (cf.
Example 5.2 of Chapter 1). If we denote by (77j) the inverse
matrix of (Xi), then the canonical form and the connection form

, can be expressed as follows (cf. Propositions 7.1 and 7.2 of Chapter
[ :
(18) 6= X, Uj dx?, i=1,...,n

(19) o = %, Ui(dXs + 5, T XL dem),  §i=1. .n.

The forms 6¢ are analytic with respect to (x, X). We show that
the forms w} are aso anaytic with respect to (x?, Xj). Clearly it
is sufficient to show that- the components I, of the connection are
analytic in #%, . .. , x*. We use the same notation as in the proof

of Theorem 7.1. Since the functions T;’k(t) and f{;.'ékl('t) are domistants
which do not-depend on (4}, . . ., a") by virtue of the assumption
that VT = 0and VR = 0, Lemma 2 in the proof of Theorem 7.1

implies (cf. Appendix 1) that the functions ﬁj(t) and Z?j;,(t) are
anaytic in ¢ and depend analyticaly on (4%, ..., a"). Hence the
functions Ai and Bi, dre andytic in %, . . ., x». From (1) in the
proof of Theorem 7.1, we see that the cross section ¢: U — L(M)
given by “
(20) Ui= 4, i,j="1....n
Let (C}).be the inverse matrix Of (d4i). From (19) and (20), we
obtain
(@21 orel = @f = S, AidCE+ S, TECE dim),
By comparing (21) with (2) in the proof of Theorem 7.1, we
obtain"™
(22) Bl = Zy AL(ACH0xm + X, TH,CY.
Transforming (22): we obtain
(23) I, = Z, (&, C{-‘B}':,,, - 80}'/8;\'"2)_4{,

1,m

o



264 FOUNDATI ONS OF DI FFERENTI AL GEOVETRY

which shows that the components T, are analytic functions of
AL X
Smce the % 4 n I-forms ' and ] are analytic with respect to
, Xi) and define an absolute paralelism (Proposition 25 of
Chapter 1), the following lemma implies that L(M) is an
analytic manifold with respect to the atlas consisting of the
coordinate system (x', X!) induced from the normal coordinate
systems (x1,.. ., x") of M.

Lemva.  Let o1, ..., @™ be 1-forms defining an absolute parallelism
on a manifold P of dimension m. Let u}, ..., y™ (resp. v}, ..., v™) be
a local coordinate spstem valid in an open set U (resp. V) If the form
ol, . . ., w™are analytic with respect to both &1, ..., y™and 2}, ..., o™,
then the functions

=fi(ai,...,ﬂm), i=11¢o|,m’

which define the coordinate change are analytic.
Proof of Lemma. We write

' = X, du) & = I, 8() dv,

where the functions aj(u) (resp. 8(v)) are andyticin u?, ..., u"
(resp. v, . .., ™), Let (ci(v)) be the inverse matrix of (bi(2)).
Then the system offunctions v=f .. um),1=1, ..., m,is

a solution of the following system of Iinear partia differential
equations :

ovijow’ = Iy ci(v)af(w), t,j=1,...,n

Since the functions ¢i(v) and &} (x) are andytic in #%, . . . , ™ and
ul, ..., um respectively, the functions f i(ul, . . . , u™) are andytic
inu!y...,u™ (cf. Appendix 1). This proves the lemma
Let 2}, ..., x" and 3, ," be two normal coordinate

systems in M. Let (x%, X]) and (y’, ¥}) be the local coordinate
systems in L(Minduced by these normal coordinate systems. By
the lemma just proved, »!,..., 3" are analytic functions:of x' and
Xj. Since y,..., y~ are clearly *independent of Xj, they are
analytic functions of #!, ..., x". This proves the first assertion of
Theorem 7.7. Since we have aready proved that the forms ) are
analytic with respect to (¢, X}), the connection is analytic. QED.

As an application of Theorem 7.7 we have -

t
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THeorem 7.8. In Theorem 7.4, {f M and M’ are, moreover,
connected, simply connected and complete then there exists a unique
affine isomorphism f of M onto M’ such that f (x,)= y, and that the’
differential off at x, coincides with F.

Proof. This is an immediate consequence of Corollary 6.2,
Theorem 7.4, and Theorem 7.7. QED.

CoroLLARY  7.9. Let M be a connected, stmply connected manifold
with a complete linear connection such that V 77 =0and VR = 0. If F
is a linear isomorphism of 7', ( M) onto T, (M) which maps the tensors
T, and R, into T, and R,, respectwel} then there is a unique affine
transformatlon f of M such that f (xy) = », and that the differéntial of
fatxyisF.

In particular, the group A(AM) of affine transformations of Af is
transitive on M.

Proof. The first assertion is clear. The second assertion
follows from Corollary 7.5 and Theorem 7.8. QED.

In §3 of Chapter V, we constructed, for each real number £, a
connected, simply connected complete Riemannian manifold of
constant curvature k. Any connected, simply connected complete
space of constant curvature k is isometric to the model we con-
structed. Namely, we have

Treorem  7.10. Any two connected, simply connected complete
Riemannian manifolds of constant curvature k are isometric to each other,

Proof. By Corollary 2.3 of Chapter V, for a space of constant
curvature, we have VR = 0. Our assertion now follows from
Theorem 7.8 and from the fact that, if both 3 and M’ have the
same sectional curvature k, then any linear isomorphism
F: T,o(M) -T, (M) mapping the metric tensor g, at X, into
the mefric tensor’ g,, at y, necessarily maps the curvature tensor
R, a x, into the curvature tensor R, at y, (cf. Proposition 1.2 of

Chapter V). QED.



APPENDIX 1

Ordinary linear differential equations

The ‘purpose of this appendix is to state the fundamental
theorem on ordinary linear differential equations in the form
needed in the text. The proof will be found in various text books
on differential equations.

For the sake of simplicity, we use the following abbreviated
notation :

R A N AT !
=Y o, "), s=(s ..., 8m), x=(x ..., ™).
Then we have

Theorem.  Let f(2,-y, ) be a family of n functions dejined in [¢| < 6
and { 3, § € D, where D is an open set in R, If f(¢, v, s) is continuous
in t ad differentiable of class C1in y, then there exists a unique family
qlt. n, s) of n functions defined in |t| < ¢ and (n,s) e D', where
0..9d < dand D’ is an open subset of D, such that

(@) ¢ (t, m, ) is differentiable of class C* in tand p;

(2) g (t, m, )00 = f(t, 9 (ty m, 5, )5

(3) q (O, 7, 5) =n

If f(t, 3, s) is differentiable of class 7,0 p 7" ¢, in t and of class
C'y1:2¢ < o,inyands, then ¢(¢, n, s) is differentiable of class CP+1
in ¢ and of class (" in y and s.

Considgr the system of differential equations :
dyldt = £ (8,3, 5)

which depend on the parameters s. Then y = ¢(¢, #, s) is called
the solution satisfying the initial condition:

y = n when ¢ = 0.
267
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Consider now a system of partial differentia equations:
W' jox' = fi(x,), i=1...,n5=1...,m

It follows from the theorem that if the functions fi(x,y) are
differentiable of class €, 0 r £ .w, then every solution
y = p(x) is differentiable of class Cr+1, This fact is used in the proof
of Theorem 7.7 of Chapter VI.

APPENDIX 2

A connected, locally compact metric space
is separable

We recall that a topological space M is separable if there exists a
dense subset D which contains at most countably many points. It
is caled locally separable if every point of M has a neighborhood
which is separable. Note that, for a metric space, the separability
is equivalent to the second axiom of countability (cf. Kelley
[1, p. 120]). The proof of the statement in the title is divided
into the following three lemmas.

LEmMMA 1. A compact metric space is separable.

For the proof, see Kelley [1, p. 138].

Lemma 2. A locally compact metric space is locally separable.

This is a trivial consequence of Lemma 1.
The following lemma is due to Sierpinski [ 1].

LEMMA 3. A connected, locally separable metric space is separable.
Proof of Lemma 3. ‘Let d be the metric of a connected, locally
separable metric space M. For every point ¥ ¢ M and every
positive number r, let U(x; r) be the Interlor of the sphere of
center x.amd radius 7, that is, Ulx; 1) = {y ¢ M; d(x,y) < r}. We
Say that two points x and y of M are R-related and write xRy, .
if there, exist a separable” U(x; 1) containing y and .a separable
ﬁ(}, 1) ‘containing x. Evidently, xRx for every x ¢ M.\We have

also xRy if and only if yRx.

For every subset A of M, we denote by S4 the set of points which
are R-related to a point of 4: S4 ={y ¢ M; yRx for some x € A}.
Set $"4= S$*14,n=2,3,. ... If {x} is the set consisting of a
single point x, we write Sx for S{x}. We see easily that y e §"x if
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and only if x € $"y. We prove the following three statements:
(@ Sx is open for every x ¢ AM;
(b) If 4 is separable, so is §4;

w0
(c) Set U(x) = U S”x for each x ¢ M. Then, for any x, 53 ¢ 1/,

either- U(x) N ( ) is empty or u(x) = U(3y).
Proof of (a). Let » be a point of Sx. Since ny, there exist
positive numbers r and ' such that U(x; r) and {( y; r') are

separable and that y € U(x; 7)and x ¢ U(y; ). Since d(x,y) < 1/,
there is a positive number r; such that

dx,3) < ry <r..
Let 7, be any positive number such that
To Lt =Ty Ty <7 = d(x), 1o < 1y o= d(x, ).

‘It suffices to show that U(y, r,) is contained in Sx. If z ¢ U(y; r,),
-then . -
dix, 2) S d(x,p) + d(p, 2) < dx )+ 75 <m i n frr

Hence z is in U(x; r) which is separable and x is in U{z; ;). To
prove that U/(z; r,) is separable, we shall show that ['(z; r,) is
contained in U( y; r’) which is separable. Let w ¢ U'(z; 7} so that
d{z, w) < r,. Then

d(y,w =d(y, 2)+ d(z,w <dy, 8) 471 <1y F 1 <1
Hence w € U{ y; 7). This proves that zRx for every z ¢ U(y; ),
that is, U{y;7,) . Sx.

Proof @ (B). Let A be a separable subset of M and D a
countable dense subset of . It suffices tot",provc that every
.x € $.1 is contained in, a separable spherewhose center is a point of
D and whose radius is a rational number, because there are only
countably many such spheres and the union of these spheres is
separable. Let x € S, Then there is » ¢ A such that xRy and ‘there
is a separable sphere U(J; r) containing x. Let r, be a pasitive
rational number such that d(r )< 1y < 1. Since D is dense in A,
there is z ¢ D such that

d{z,y) < min {70 d(xs)’\): P Tyl

It suffices to show that [({z; ;) contains x and is separable. From’

dlx, z) d(x, ») ~ d(y, 2 <1y
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it follows that x e U(z; 7,). To prove that U(z; r,) is separable, we
show that U(z; 1) is' contained in {/( ; 7) which is separable. If
w € U(z; 1,), then

dw,y) =dw,z ) +dz,3)<rn+dzy)<r,

and hence w ¢ U(y; ).
Proof of (c). Assume that U(x) n U(y) is non-empty and let

ze UX) NUWY). Then z ¢ §"x and z ¢ $"y for some m and n.
From z ¢ $™x, we obtain x ¢ $™z. Hence x ¢ $"z < §m*%y. This
implies $tx Sk+m+ny for every k and hence Ux) < U(y).
Similarly, we have U(y) & U(X)-, thus proving (c). .

By (a), SA U Sx is open for any subset A of M. Hence U(x)

is open. for every x e M. By (b), $x is separable for every n. Hence
U(X) is separable. Since A4 is connected and since each. U(X) is
open, (c) implies M = U(x) for every x ¢ M. Hence M is separable,
thus completing the proof of the statement in’the t|tle

We are now in position to prove

TueorEm.  For a connected differentiable manifold M, the following
conditions  are mutually equivalent

(1) There exists a Riemannian metric on M;

(2) M is metrizable;

(3) M satisfies the second axiom of countability;

(4) M is paracompact.

Proof. The implication (1) -» (2) was proved in Proposition
3.5 of Chapter 1IV. As we stated at the beginning, for a metric
space, the second axiom of countability is equivalent to the
separability, The implication (2) —» (3) is therefore a consequence
of the statement in the title. If (3) holds, then Af is metrizable by
Urysohn’s metrization theorem (cf. Kelley {1, p. 123]) and,
hence, M is paracompact (cf. Kelley [I, p.156]). This shows
that (3) implies’ (4). The implication (4) (1) follows from
Proposition 1.4 of Chapter III. ‘ QED..



APPENDIX 3

Partition of unity

Let {U,};; be a localy finite open covering of a differentiable
manifold M, i.e, every point of M has a neighborhood which
intersects only finitely many U;s. A family of differentiable
functions { f;} on M is caled a partition of unity subordinate to the
covering {U,}, if the following conditions are satisfied:

(DO f,£1 on M forevery tel;

(2) The support of each f, i.e, the closure of the set
{x e M; fi(x)# 0} is contained in the corresponding U;;

- (3) I, filx) =

Note that in (3) for each point x ¢ M, f,(x) = 0 except for a
finite number of i’s so that X, fi(x) is a finite sum for each .

We first prove

Treorem 1. Let {U} be a locally finite open covering of a para-
compact manifold M such that each U, has compact closure 0. Then there
exists a partition of unity {f;} subordinate to {U}.

Proof. We first prove the following three Iemmas The first
two are valid without the assumption that M is paracompact
whereas the third holdsfor any paracompact topological space.

LemMMmA 1. For each point x e M and for each neighborhood U of =,
there exists a differentiable function f (of class C®) on M such that (1)
0£f<lonM; (2 f(x) = 1, and (3) f = 0 outside U. .

Proof of Lemma 1. This can be easily reduced to the case where

M=R"x=0and U={xl,..., x"); 1¥*| < a}. Then, for each
ij=1,...,n welet f;(x") be a differentiable function such that
£5(0) =1and that f;(x’) = O for |[x/| 2 a We set f(x,..., x") =

SilxY) v f,(x™). This proves Lemma 1.

Lema 2. For every compact subset K of M and for every neighbor-

hood U of K, there exists a dlﬁrentzable function f on M such that (1)
f=0o0n M; (2 yf>0onK;and (3) f =0 outside U.
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Proof of Lemma 2. For each point x of K, let £, be a different-
iable function on Af with the property off in Lemma 1. Let V,
be the neighborhood of x defined by f, > 1. Since K is compact,
there exist a finite number of points x,, . .., %, of K such that
Veyy U UV, 2 K Then we set

f :le+ ] '.+fzk’
This completes the proof of Lemma 2.

Lema 3. Let {U} be a local{yﬁnue open covering of M. Then there
exists a locally finite open refmement{V} (with. the same index set) of { U}
such that 7, < U, for every i.

Proof of Lemma 3. For:each point xe M, let W, be an open
neighborhood of x such that Wx is contained in some U,. Let
{W} be alocaly finite refinement of {W,; x ¢ M}. For each i, let
V; be the union of al W, whose closures are contained in U..
Since {W;} is locally finite, we have P, = J W, where the union is
taken over al a such that W, < U,. We thus obtained ‘an open
covering {V;} with the required property.

We are now in position to complete .the proof of Theorem 1.
Let {V.} be asin Lemma 3. For each i, let W, be an open set such
that 7, ¢ W, ¢ W, < U,. By Lemma 2, there exists, for each i,
a differentiable function g, on M such that (1) g; = 0 on M;
(2) g >0on P; and (3) g, = 0 outside W,. Since the support of
each g, contains V and is contained in U, and since {U;} is localy
finite, the sum g = X, g, is defined and differentiable on M. Since
{V.} is an open covering of M, g >0 on M. We set, for each i,

Ji = &g
Then {f} is a partition of unity subordinate to {U}. QED.

Let f be a function defined on a subset F of a manifold M. We
say that f is differentiable on F if, for each point x ¢ F, there exists
a differentiable function £, on an open neighborhood V, of x such
thatf =f,onKn V,

THEORem 2. Let F be a closed subset of a paracompact manifold M.
Then every differentiable function f defined on F can be extended to a
differentiable function on M.
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Proof. For each x ¢ F, let f, be a differentiable function on an
open neighborhood ¥, of % such that f, = f on FN V.. Let U, be
a localy finite open refinement of the covering of M consisting of

M — Fand V,, x ¢ F. For each i, we define a differentiable
function g; on U; as follows. If U, is contained in some V,, we

choose such a ¥, and set
gi = restriction of f, to U..

If there is no ¥, which contains U;, then we set
g = 0.

Let { f;} be a partition of unity subordinate to {U,}. We define
g =L fig:

Since {U,} is locdlly finite, every point of M has a neighborhood in
which Z; fg;, isredly afinite sum. Thus g is differentiable 06%.
It is easy to see that ¢ is an extension off. ’

In the terminologies of the sheaf theory, Theorem 2 means that
the sheaf of germs of differentiable functions on a paracompact
manifold M is soft (“mox” in Codement [ 1]).

APPENDIX 4

On arcwise connected subgraups of a Lie group

Kuranishi and Yamabe proved that every arcwise connected
subgroup of a Lie group is a Lie subgroup-(see Yamabe [I]). We
shall prove here the following wesker theorem, which is sufficient
for our purpose (cf. Theorem 4.2 of Chapter I1). This result is
essentially due to Freudenthal [I].

THEOREM. Let G be a Lie group and H a subgroup of G such that
every element of H can be joined to the idehtigy e by a piecewise differentiable
curve of class C* which is contained in H. Then H is a Lie subgroup of .

Proof. Let § be the set of vectors X ¢ T,(G) which are tangent
to differentiable curves of class C! contained in H. We identify
T,(G) with the Lie algebra g of G. Then

LeEmvA. S is a subalgebra of g.

Proof of Lemma.  Given a curve &, in G, we denote by #, the
vector tangent to the curve at the point x,. Let r be any rea
number and set z, = x,. Then z, = r %, This shows that if
X ¢S, then 71X ¢ S. Let x, and 3, be curves. in G such that x, =
Jo = e If we set g, = x,y, then 4, = % + j, (cf. Chevalley

[ 1, pp. 120-122]). This shows that if X, Y ¢S, then X + YES.
There exists a curve w, such that ws = x,y.x7 'y, ! and we have
w, = [%0, )] (cf. Chevadley [1, pp. 120-122] or Pontrjagin [1,
p. 238]). This shows that if X, Y € S, then [X, Y] € S, thus com-
pleting the proof of the Jlemma.

Since § < T,(G) =g is a subagebra of g, the distribution
x — LS, x ¢ G, isinvolutive (where L, is the left trandation by x)
and its maximal integral manifold through e, denoted by KX, is
the Lie subgroup of G corresponding to the subalgebra S. We
shall show that H = K.

We first prove that K = H. Let a be any point of H and - = x,,
0<t<1 acurvefrometo qsothat e= x,and a = x,. We clam

275
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that the vector %, isin L, S for al ¢ In fact, for each fixed ¢,
L;' (%) is the vector tangent to the curve L;'(7) at ¢ and hence
lies in S, thus proving our assertion. Since #, ¢ L. S for dl ¢t and
Xy = 6 the curve x, lies in the maximal |nt%ral manifold X of the
distribution x — LS (cf. Lemma 2 for Theorem 7.2 of Chapter
[1). Hence a ¢ K, showing that K = H.
TO prove that H > K, let ¢}, . . ., ¢ be a basis for § and
x§,0 ;<1 be curves in H such that % = ¢ and
xo —e, fori =1, , k. Consider the mapping f of a neighbor-
hood {J of the origin in R* into K defined b by o o v, =
le ,“Ux“(tl,”,? t,) eU.Since 1, . . ., Yf{;r\rﬁabassfo)r S,
the differential off: [J —» K a the origin is non-singular, lakmg
U sufficiently small, we may assume that “ is a diffeomorphism of
U onto an open subset f( U) of K. From the definition 6ff, we
have f(U) c H. This shows that a neighborhood of e inQEdS
contained in H. Since K is connected, K < H. '

APPENDIX 5

Irreducible subgroups of O(n)

We prove the following two theorems.

THEOREM 1. Let G be a subgroup of O(n) which acts irreducibly on
the n-aimensional real vector space R®, Then every symmetric bilinear form
on R* which is invariant by G is a multiple of the standard inner product

(%) = 3 xiy.

i=1

THEOREM 2. . Let G be a connected Lie subgroup of 8O (n) which acts
irveducibly on R™. Then G is closed in SO(n).

We begin with the following lemmas.

Lemva 1. Let G be a subgroup of GL(n; R) which acts irreducibly
on R®, Let A be a linear transformation of R* ‘Which commuites With every
element of G. Then :

(1) If A is nilpotent, then A = 0.

(2) The minimal polynomial of A is irreducible pver R

(3) Either A = al, (a :real number, I, : the identity transformatlon of
R*), or A=al, + b, where a and b are real numbers, § £ 0, J is a
linear transformatwn such that J2 = —1I, and n is even.

Proof. (1) Let. £ be the smallest integer such that 4* = (..
Assuming that k = 2, we. derive a contradiction. Let | —
{x ¢ R*; Ax = 0}. Since W.is invariant by G, we have either W/ =
R* or W= (0. In the first case, ;A = 0 In the second case, A
is non-smgﬁlar and 41 = A7 - 4* =

.(2) If the minima} polynomia T (x) of Alsaproduct filx)
with (fy, fo) =, then R* = W, + W, (direct sum), \Aﬁ}ere
W,a{x « R f(d)x = O}, Smce every element of G commutes
with A and hence with f;(4), it follows that W, are both invariant
by G, contradicting the assumption of irreducibility. Thus
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f(x) = g(x)*, where g(x|is irreducible. Applying (1) to g(A), we
see that f(4) = g(4)* = 0 implies g(A) = 0. Thus f = g.

(3) By (2), the minimal polynomial f(x) of A is either (X — q)
or (x — a)® + b with b # 0. In the first case, A = al,. In the
second case, let J= (A = al,)/b. Then J2 = -1,, and A= al, +
b J. Wehave (— 1)” = det J? = (dét J)2 > 0 so that 7 is even.

LemMa 2. Let G be a subgroup of O(n) which acts irreducibly on R™,
Let A, B, . .. be linear transformations ‘of R which commute with G.

(1) If A1s symmetric, i.e., (4x, ) = (X, Ay), then A= al,.

@ 1T Ais sew-symmetric, ie, (A, y) + {x, Ay) = 0, then A =0
or A = bJ, where J2 = -I, and n = 2m. ,

(3) Ifs 4 +# 0 and B are skew-symmetric and AB = BA, then
B = cA.

Proof. (1) By (3) of Lemma 1, A = al, + bJ, possibly with
b= 0. If A issymmetric, sois-b J. If b5 0, J is symmetric so that
(Jx, Jx) = (x, J2x) = -(x x )V I¢ i a contradiction for x #* 0.

(2) Since the eigenvalues of skew-symmetric A are O or purely
imaginary, the minima polynomia of A is either x or x® + b2
b # 0. In the first case, 4 = 0. In ‘the second case, A = --bJ
with J* = —I.

(3 Let A ="bJ and B = §'K, where J* = K* = -I,,. We
have JK = KJ. We show that R* = W, + W, (direct sum),
where. W, = {x ¢ R*; Jx = Kx}- and W, = {x ¢ R*; Ix = —Kx}.
Clearly, W, n W, = (0): Every x ¢R” is of the form y + z with
y e Wyand z ¢ W,, as we see by setting y = (x_— JKx)/2 and
z = (X + JKx)[2. W, and W, are invariant by G, because J and
K commute with évery element of G. Since G is irreducible, we
have either #, = R» or W, = R=, that is, either K =J or
K = —J. This means th?t B = ¢4 for some c.

Proof of Theorem 1. For any symmetric bilinear form f(x, »),
there is a synimétric linear transformation A such that f(x,3) =
(Az, ») . 1ff isinvaiant by G, then A commutes with every element
of G. By (1) of Lemma 2, 4 = al, and hénce f(x, ») = a(x, »).

Proof of Theorem 2. We first show that the centcr 3 of the Lie
agebra g of G is at most I-dimensional. Let A # 0 and B ¢ 3. Since
4, B are skew-symmetric linear transformations. which commute
with every element »f G, (3) of Lemma 2 implies that B = ¢4 for
some ¢. Thusdim 3 < 1. If dim 3 =1, then 3 = {¢J; ¢ real}, where

| W)
Y
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Jis a certain skew-symmetric linear transformation with J2 = —1I,.
Now J is representable by a matrix which is a block form, each

. {0 :
block being , With respect to a certain orthonorma basis

of R”. The |-parameter subgroup exp ¢J consists of matrices of a
Cos ¢ -sin ¢ o

. , and hence is iso-
sin ¢} cos ¢

block form, each block being

morphic with the circle group.

Since g is the subalgebra of the Lie algebra of al skew-sym-
metric matrices, g has a positive definite inner product (A, B) =
—trace (AB) whichisinvariant by ad (G). It follows that the orthog-
onal complement s of the center 3 in g with respect to this inner
product is an ided of gand ¢ = 3 + g is the direct sum. If s
contains a proper ideal, say, s, then the orthogonal compement
s’ of s, insisanided of s (infact of q) and s = 5, + 5. Thus we
see that ¢ is a direct sum of smple idedls: § = s, + - + 5,, We
have already seen that the connected Lie subgroup generated by
3 isclosed in SO(n). We now show that the connected Lie subgroup
generated by g is closed in §O(n). This will finish the proof of
Theorem 2.

We first remark that Yosida [ 1 ] proved the following result.
Every connected semisimple Lie subgroup G of GL(n; C) is closed
in GL(n; C). His proof, based on a theorem of Weyl that any
representation of a semisimple Lie agebra is completely reducible,
also works when we replace GL(n; C) by GL(r; R). In the case of
a subgroup G of $O(n), we need not use the Weyl theorem. We
now prove the following result by the same method as Yosida's.

A connected semisimple Lie subgroup G of SO(n) is closed in SO(n).

Proof. ~ Since g is a direct sum of smple ideds g,, . . . , g, of
dimension > 1 and since g, = [g,, g;] for each i, it follows that
g = [9, g]. Now consider SO(n) and hence its subgroup G as aciing
on the complex vector space C* with standard hermitian inner
product which is left invariant by SO(n). Then C* is the direct sum
of complex subspaces V;, . . . , ¥, which are invariant and
irreducible by G. Assuming that G is not closed in SO(n), let G
be its closure: Since G is a connected closed subgroup of SO(n),
it is a Lie subgroup. Let § be its Lie agebra. Obviously, ¢ < g,

Since ad (G)g < g, we have ad (G)g < g, which implies that g is
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an ideal of g. Since the Lie algebra of SO(n) has a positive definite
inner product invariant by ad (SO(n)) as we aready noted, it
follows that g is the direct sum of g and the orthogona comple-
ment u Of g |n §- Each summand V; of C* is aso’ invariant by
G and hence by § actlng on Cr, For any . ¢ §, denote by ., its
action on V, for each i, For any A, B ¢ g, we have obwously
trace [4 B] = 0.Since 4 — A, is a representation of g on ¥, and
since g == [g, g], we have trace A == 0 for every A4 ¢ g. Thus the
restriction of ¢ e Goneach ¥, has determinant 1 (cf. Corollary 1
of Chevafley [1; p. 6]). By continuity, the restriction of a ¢ (
on each ¥, has determinant 1. This means that trace 4; = 0
for every 4 ¢ g and for each i. Now let B ¢ it. Its action B, on
¥, commutes with the actions of {4,; A ¢ gq}. By Schur's Lemma
(which is an obvious consequence of Lemma 1, (2), which is
vaid for any field instead of R), we have B, = 4,1, where [ is
the identity transformation of V, Since trace B, = 0, it follows
that 4, = O, that is, B, = 0. This being the case for each :, we
have B {), This means that u = (0) and § =:g. This proves
that ¢ = G that is, ¢ is closed in SO(n).

APPENDIX 6

Green’s theorem

Let M be an oriented n-dimensional differentiable manifold.
An n-form @ on M is called a volume element, if w(d/dst, . . . ,
d/éx") > 0 for each oriented local coordinate system #%, . . ., ™
With a fixed volume element « (which will be also denoted by a

moremuuty notation dv), thelntegralf S dv of any continuous

function f with compact support can be defined (cf. Chevalley

[I, pp.. 161-167}).
For eachvector field X on M with a fixed volume element ,

the divergence of X, denoted by div &, is a function on M defined by

(div Xy o = Lyw,
where Ly isthe Lie differentiation in the direction of X,

GREEN’S THEOREM. Let M be an otiented compact manifold with a
fixed volume element o = dv. For every vector field X on M, we have

fdiVde:O.
M

Proof. Let ¢, be the ‘I-parameter group of transformations
generated by X (cf. Proposition 1.6 of Chapter 1). Since we have
(cf. Chevalley [1 p. 165])

Lol

f @ 1*w, considered as a function oft, is a constant. By definition
M
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of Ly, we have B{t ((ffl*w):\ = —Lym. Hence

=0

|4 -1*} _f[ﬁ ik }
0 —l:(thM% @ (=0 Juldt (g %) (=0

= —| Lyw = =| dvX dv.
M M

QED.

Remark 1. The above formula is valid for a non-compact

manifold M as long as X has a compact support.
Remark 2. The above formula follows also from Stokes formula.

In fact, since dw =0, we have Lyw = detx o4ty odo = dotyo.

We then have
f Lo :f iy = 0,
M M

Prorosi Tion.  Let M be an oriented manifold with a fixed volume

element o= dv. If I' is an affine connection with no torsion on M such that
w is parallel with respect to I', then, for every vector field X on M, we have

(div X), =trace OF the endomorphismVv =V, X, V € T,(M).

Proof. Let A, be the tensor field of type (1, 1) defined by
Ax = Ly = Vx asin $2 of Chapter VI. Let X,, ..., X, be a
basis o] T,(M). Since Vyw = 0 and since Ax, as a derivation,
maps every function into zero, we have

(Lxw)(Xp + s X} = (Ax0)(Xy 000 X)
= Ax(w(Xy o 0, X)) = Z 0(Xy, o0, Ay XG0, XG)
= -, 0(Xy, ..., AxXi ... X,)
—(trace’d x) (X, . .., X,).
This shows that

i

div X = -trace A,.
Qur assertion follows from the formula (cf. Proposition 2.5 of
Chapter VI) :
A‘\'Y —_ ——VyX — T (X, Y)

and from the assumption that T = 0. QED.

APPENDI X 6 2

Remark 3. The formula div X = -trace 4y holds without the
assumption T = 0.

Le M be an oriented Riemannian manifold. We define a
natural volume eement 4y on M. At an arbitrary point = of M,

let X3, ..., X, be an orthonormal basis of T,(M) compatibie
with the orientation of Af. We define an n-form dv by
dv(XI, sy Xn) = 1 L4

It is easy to verify that dv is defined independently of the frame
Xy -« ., X, chosen. In terms of an allowable local coordinate
system x1, . . .., x® and the components &y of the metric tensor g,
we have

dv =\/_G.dx1Adsz"'Adx", where G=det(g,). .

In fact, let (9/dx%), = Z, C*X, so that g, = =, CiC* and G =
det (CH)? at x. Since 8/dY, . . ., 9fdx" and X, . . ., XZ,, have the

same orientation, we have det (C¥) = V'G > 0. Hence, at x, we
have

(00, ..., 0fox™)= B, ... 5 e C. o Cin do(X,,. .. X.)
= det (CY) = VG,
where ¢ is 1 or -1 according as (i;,. .., i,) is an even or odd
permutation of (1,..., n). )
Since the parallel displacement aong any curve 7 of M maps
every orthonormal frame into an orthonormal frame and preserves
the orientation, the volume element dv is paralel. Thus the

proposition as well as Green's theorem is walid for the volume
element dy of a Riemannian manifold.
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Factorization lemma

Let A4 be a differentiable manifold. Two continuous curves
X(t) and y(t) defined on the unit interval Z = [0, 1] with x(0) =
2(0) and x(1) =y(I) are said to be homotopic to each other if
there exists a continuous. mapping f: (¢, s) € Zx Z —f(t, 5) e A4
such thatf(t, 9) = x(t), (¢ 1) = (), f(0, s) = %(0) = »(0) and
S(1,8) =x(1) =x(1)for every t and s in I When x(t) and »(t) are
piecewise differentiable curves of class C* (briefly, piecewise C*-
curves), they are piecewise C*-homotopic, if the mapping. T can be
chosen in such a way that it is piecewise C* on Z x Z, that is, for a

r
certain subdivisonZ = ¥ I, f is a differentiable mapping of class

=]

C* of I;x Z, into M for each (i, j).

LEMMA.  If two piecewise C*-curves x(t) and y(¢) are homotopic to each
other, then they are piecewise C*-homotapic. ,
Proof. We can take a litable subdivison Z = 3,1, SO that

=1
S, x Z)) is contained in some coordinate neighborhood for each
par (i, j). By modifying the mapping f in the smal squares
I, x Z, we can obtain a piecewise C*-homotopy between x(t) and

).

Now let U be an arbitrary open covering. We shall say that a
closed curve r a a point x is a U-lasso if it can be decomposed into
three curves » = =1+ ¢ + u, Wwhere y is a curve from x to a point
y and ¢ is a closed curve aty which is contained in an open set of
U. Two curves = and 7' are said.to be equivaent, if +' can be
obtained from 7 by replacing a finite number of times a portion of
the curve of the form A * @ by a trivial curve consisting of a
single point or vice versa. With these definitions, we prove
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FACTORIZATION L EMMA. et I be an arbitrary open covering Of M.
(@ Any closed curve which is homotopic to zero is equivalent to a product

of a finite number Of W-lassos.

(b) Zf  the curve is moreover piecewise C*, then each U-lasso in the
product can be chosen to be Of the form =1+ o + p, where u is a piecewise
C*-curve and ¢ is a C*-curve.

Proof. (a) Let 7= x(t), 0 £t =1, so tha x = x(0) = x(1).
Letf be a homotopy Z x - M such that f(t, 0) = x(¢), f{¢, 1)
= %, f(0, 5) = f(1, s) = x for every t and s in I We divide the
square Z x Z into m® equal squares so that the image of each small
square by f lies in some open set of the covering Y. For each pair
of integers (i, J), 1 £1i,] £ m, let A(z, j) be the closed curve in the
square Z x Z consisting of line segments joining lattice points in
the following order:

(0, 0) — (0, 5/m) — ((i = 1)/m, jlm) — ]
(¢ ~ Dim, (j = V)fm) — (ifm, (j — 1)[m) = (ifm, j/m) —
(& = 1)/m, jfm) — (0, jjm) — (0, 0).

Geometrically, A(z, j) looks like a lasso. Let =(t, j) be the image
of A{i, j) by the mapping f. Then = is equivalent to the product of
U-lassos

r(m,m) e r(l,m) -c o 7(m, 2) 0 7(1,2) 7(m,1) 0 7(1,1).

(b) By the preceding lemma, we may assume that the homo-
topy mapping f is piecewise C*, By choosing m larger if necessary,
we may also assume that f is C* on each of the m? small squares.
Then each lasso (7, j) has the required property. QED.

The factorization lemma is taken from Lichnerowicz [2, p. 5 13.



NOTES

Note 1. Connections and holonomy groups

1. Although differential geometry of surfaces in the 3-dimen-
sional Euclidean space goes back to Gauss, the notion of a Rieman-
nian space originates with Riemann’s Habilitationsschrift [1] in
1854. The Christoffel symbols were introduced by Christoffel [1]
in 1869. Tensor calculus,: founded and developed in a series of
papers by Ricci, was given a systematic account in Levi-Civita and
Ricci [1] in 1901. Covariant differentiation which’'was formally
introduced in this tensor calculus was given a geometric inter-
pretation by Levi-Civita [1] who introduced in 1917 the notion of
parale displacement for the surfaces. This discovery led Weyl
[1, 2] and E. Cartan [ 1, 2, 4,'5, 8, 9] to the introduction of affine,
projective’ and conformal connections. Although the approach of
Cartan is the most’ natural. one and reveas best ‘the geometric
nature of the connections, it-was not until 1950 that Ehresmann [2]
clarified the genera notion of connections from the point of view
of contemporary mathematics. His paper was followed by
Chern [ 1, 2], Ambrose-Singer [ 1], Kobayashi [6], Nomizu [7],
Lichnerowicz [2] and others.

Ehresmann [2] defined, for the first time, a connection in an
arbitrary fibre bundle as a field of horizonta subspaces and
proved the existence of connections in any bundle. He introduced
also a connection form o and defined the curvature form Q by
means of the structure equation. The definition of Q given in this
book is due to Ambrose and Singer [1] who proved aso the
structure equation (Theorem 5.2 of Chapter II). Chern [ 1, 2]
defined a connection by means of a set of differential forms w, on
U, with values in the Lie algebra of the structure group, where
{U,} is an open covering of the base manifold (see Proposition 1.4
of Chapter II).

Ehresmann [2] aso defined the notion of a Cartan connec-
tion, whose examples include affine, projective and conforma
connections. See also Kobayashi [6] and Takizawa [ 1]. We have
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given in the text a detailed account of the relationship between
linear and affine connections.

2. The notion of holonomy group is due, to E. Cartan [ 1, 6].
The fact that the holonomy group is a Lie group was taken for
granted even for a Riemannian connection until Borel and
Lichnerowicz [1] proved it explicitly. The holonomy theorem
(Theorem 8.1 of Chapter 11) of E. Cartan was rigorously proved
first by Ambrose-Singer [ 1 1. The proof was simplified. by Nomizu
[7] and Kobayashi {6] by fiest proving the. reduction theorem
{Theorem. 7. 1 of Chapter IT);:whichiis essentialy due to, Cartan.
and Ehresmann. Kobayashi [6] showed that Theorem 8.1 is
essentially equivalent. to the following fact. For a principa fibre
bundle P(M, G), consider the. prigcipal fibre bundle T(P) over
T(M) with group T{(G), where T( .) denotes the tangent bundle.
For any connection F mP there:s a naturally induced connection
T(T).im T(P) whose holoaqmy group is T(®), where @ is the
holonomy  groupof I, |

The gesult of Hano and;Qzekx [l] and Nomizu [5] (Thcorem
8.2 of Chapter I1) to the effect that the structure group G of P(M,
G) can be reduced to a subgroup H if and only if there exists a
connection in P whose holonomy group is exactly H means that
the holonomy group by itself does not give any information other
than thosebbtainable by topologica methods, However, combined
with other. conditions (such as a “‘forsion-free linear connection”),
the holonomy group is of considerable interest.

3. Chern [3] defined the notion of a G-structure on a differenti-
able manifold M,” where 6 is a certain Lie subgroup of GL(n; R)
with g == dim M ‘In our terminologies, a G-structure on M is a
reduction of the bundle of linear frames t(M) to the subgroup G.
For & O(n), a G-structure is'nothing but a Riemannian metric
given on M (sec Example 5.7 of Chapter 1). For a general theory
of G-structures, see Chern [3], Bernard [1] and Fujimoto [ 1]. We
mention some other special cases.

Weyl [{3 d E. Cartan [3] proved the following. For a closed
subgroup G of GL(n; R), n 2 3, the following two conditions are
equivalent :

(1) G is the group of all matrices which preserve a certain non-degenerate
quadratic form of any signature:
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(2) For every n-dimensional manifold M and for every reduced subbundle
P of L(M) with group G, there is a unique torsion-free connection in P.

The implication (1) (2) is clear from Theorem 2.2 of
Chapter IV (in which g can be an indefinite Riemannian metric) ;
in fact, if G is such a group, any G-structure on M corresponds to
an indefinite Riemannian metric on M in a smilaa way to
Example 5.7 of Chapter |I. The implication (2) - (1) is non-
trivial. See aso Klingenberg [ 1].

Let G be the subgroup of GL(n; R) consisting of al matrices
which leave the r-dimensiona subspace R of R* invariant. A G-
stracture on an n-dimensional manifold M is nothing but an 7-
dimensional ‘distribution. Walker [3] proved that an r-dimensional
distribution is parallel with respect to a certain torsion-free linear
connection if and only if the distribution is integrable. See aso
Willmore [1, 2].

Let G be GL(n ; C) regarded as a subgroup of GL(2z; R) in a
natural manner. A G-structure on a 2nr-dimensional manifold M
is nothing but an almost complex ‘structure on M. This structure
will be treated in Volume II.

4. The notions of local and infinitessmal holonomy groups were
introduced systematically by Nijenhuis [2]. The results in §10 of
Chapter 1l were obtained by him in the case of a linear connection
( §9 of Chapter 111). Nijenhuis results were generalized by Ozeki
[17 to the general case as presented in §10 of Chapter Il. See also
Nijenhuis [3]. Chevalley aso obtained Corollary 10.7 of Chapter
Il in the case of a linear connection (unpublished) and his result
was used by Nomizu [2] who discussed invariant linear connec-
tions on homogeneous spaces. His results were generaized by
Wang [1] as in $11 of Chapter II.

5. By making use of a connection, one can define characteristic
classes of any principa fibre bundle. This will be treated in
Volume Il. See Chem [2], H. Cartan [2, 3]. We shall here state
a result of Narasimhan and Ramanan [I] which is closely related
to the notion of a universal bundle (cf. Steenrod [1, p: 101]).

THeorem.  Given a compact Lie group G and a positive integer n,
there exists a principal bundle E( N, G) and a cosinection T'y on E such that
any connection T' in any principal bundle P(M, G), dm M n, can be
obtained as the inverse image of L'y by a certain homomorphism of P into E
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(that is, e = f *@,, where @ and w, are the connection forms of I and T
respectively, see Proposition 6.2 of Chapter I1).

The connection Ty is therefore called a universal connection for G
(and n). For example, the canonical connection in a Stiefel mani-
fold with structure group O(k) is universal for O(k). For the
canonical connections in the Stiefel manifolds, see also Kobayashi
[5] who gave an interpretation of the Riemannian connections of
manifolds imbedded in Euclidean spaces (see Volume I1).

6. The holonomy groups of linear and Riemannian connections
were studied in detail by Berger [ 1]. By acareful examination of the
curvature tensor,/ he obtained a list of groups which can be
resricted linear holonomy groups of irreducible Riemannian
manifolds with non-parallel curvature tensor. His list coincides
with the list of connected orthogona groups acting transitively on
spheres. Simons {1} proved directly that the linear holonomy
group of an irreducible Riemannian manifold with non-paralel
curvature tensor js transitive on the unit sphere in the tangent
space. See Note 7 (symmetric spaces).

7. The local decomposition of a Riemannian manifold (Proposi-
tion 5.2 of Chapter V) has been treated by a number of authors.
The global decomposition (Theorem 6.2 of Chapter 1V) was
proved by de Rham [l];. the same problem was-also treated by
Walker [2], A more genera stuation than the direct product has
been studied by Reinhart [1], Nagano [2] and Hermann [1].

It is worthwhile noting that even the local decomposition is a
strongly metric property. Ozeki gave an exampleof a torsion-free
linear connection with the following property. The linear holo-
nomy group is completely reducible (that is, the tangent space is
the direct sum of invariant irreducible subspaces) but the linear
connection is not a direct product even locally. His example is as
follows: On R? with coordinates (x1, %), take the linear connec-
tion given by the Christoffel symbols I'}, (x, = A and other

I, = 0. The holonomy group is {(0 (1)), ¢ > o;,

8. The redtricted linear holonomy group of an arbitrary
Riemannian manifold is a closed subgroup of the orthogonal
group. Hano and Ozeki [1] gave an example of a torsion-free
linear connection whose restricted linear holonomy group is not
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closed in the general linear group. The linear holonomy group
of an arbitrary Riemannian manifold is not in general compact,
as Example 4.3 of Chapter V shows. For a compact flat Rieman-
nian manifold, it is compact (Theorem 4.2 of Chapter V).
Recently, Wolf [6] proved that this is also the case for a compact
localy symmetric Riemannian manifold.

dote 2. Complete affine and Riemannian
connections

Hopf and Rinow [1] proved Theorem 4.1 (the equivalence of
(1), (2) and (3)), Theorem 4.2 and Theorem 4.4 of Chapter IV,
Theorem 4.2 goes back to Hilbert {1} ; his proof can be aso found
in E. Cartan’s book [8]. In $4 of Chapter IV, we followed the
appendix of de Rham [ 1]. Condition (4) of Theorem 4.1 of
Chapter IV was given as the definition of completeness by
Ehresmann [1, 2].

For a complete affine connection, it does not hold: in general
that every pair of points can be joined by a geodesic. To construct
counterexamples, consider an affine connection on a connected
Lie group G such that the geodesics emanating from the identity
are precisely the |-parameter groups of G. Such connections will
be studied in Volume Il. For our present purpose, it suffices to
consider the affine connection which makes every left invariant
vector field paralel; the existence and the uniqueness of such a
connection is easy to see. Then the question is whether every
element of G is on a |-parameter subgroup. The answer-is yes, if G
is compact (well known) or if G is nilpotent (cf. Matsushima [l]).
For a solvable group G, this is no longer true in genera; Saito [ 1]
gave a necessary and sufficient condition in terms of the Lie
agebra of G for the answer to be affirmative when G is a simply
connected solvable group. For some linear real algebraic groups,
this question was studied by Sibuya [ 1]. Even for a simple group,
the answer is not affirmative in general. For instance, a direct
computation shows that an elemeit

a b
g ( ) (ad. — bc = 1)
“\¢ d

of SL(2; R) lies on some I-parameter subgroup if and only if
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either ¢ 4-d >-2 ora = d = -] and § = ¢ = 0. This means
that, for every element A of SL(2; R), either A or .-A (possibly
both) lies on a ‘I-parameter subgroup. Thus the answer to our
question is negative for SL(2; R) and is affirmative for SL(2; R)
modulo its center. Smith [ 1] also constructed a Lorentz metric,
i.e, an indefinite Riemannian metric, on a 2-dimensional mani-
fold such that the (Riemannian) connection is complete, and that
not every pair of points can be connected by a geodesie.' It is not
known whether every pair of points of a compact, connected mani-
fold with a complete affine connection can be joined by a geodesic.

An affine connection on a compact manifold is not necessarily
complete as the following example of Auslander and Markus [1]
shows. Consider the Riemannian connection on the rea line R!
defined by the metric ds® = ¢* dxt, where x is the natural coordinate
system in R}Yj it is flat. It is not complete as the length of the
geodesic from x = 0t0 ¥ = —oo is equal to 2. The translation
x — x + 1 is an affine transformation as it sends ‘the metric
& dx? into ¢ ¢ dx2, Thus the real line modulo 1, i.e., acircle, has a
non-complete flat affine connection. This furnishes anon-complete,
compact, homogeneous affinely connected manifold. An example
of a non-complete affine connection on a simply connected compact
manifold is obtained by defining the above affine connection on
the equator of a sphere and’ extending it on the whole sphere so
that the:equator is a geodesic.

It is known that every metrizable space admits a complete
uniform structure (compatible with the topology) (Dieudonné [I]).
Nomizu and Qzeki [I] proved that, given a Riemannian metric g
on'a manifold M, there exists a positive functionfon M such that
f-g is a complete Riemannian metric.

-

Note 3. Ricci tensor and scalar curvature

Anaogous to the theorem of Schur (Theorem 2.2 of Chapter
V), we have the following classical result.

THEoREM 1.  Let M be a connected Riemannian manifold with metric
tensor g and Ricci tensor S, If§ = Ag, where } is a function on M, then A
is necessarily @ constant provided that n = dim M = 3.

Proof. The simplest proof is probahly by means of the
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classical tensor calculus. Let g Rygy; ad R, be the components of
the .metric tensor g, the Riemannian curvature tensor R and the
Ricci tensor S, respectively, with respect to a loca coordinate
system #, . .., x® Then Bianchi’s second identity (Theorem 5.3 of
Chapter 111) is expressed by

Ritim + Rigmz + Riymay = 0. .
Multiplying by g* and g, summing with respect to i, j, k and {
and finally using the following formulas
'Rt?ﬂ = "'Rjikl = "Ri:lm e g‘kRijkl = Ry = M
we obtain
(n=—2) A, =0.
Hence A is a constant. QED.

A Riemannian manifold is called an Einstein manifold if S = Ag,
where 1 is a constanl. ,
The following proposition is due to Schouten and Struik [ 1].

Proposrrion 2. I M is a 3-dimensional Einstein manifold, then i#&
is a space Of congtant curvature.

Proof. Let p be any plane in T,(M) and let X;, X, X be an
orthonormal basis for T,(M) such that p is spanned by Xj, X,.
Let p;, be the plane spanned by X; and X; (i # j) SO thatp, = py,.

Then
S(X,, X)) = K(pi2) + K(p1s)
S(Xy X)) = K(pay) + k()
S(Xy Xs) = K(ps1) + K(bsa)s

where K(g,,) -denotes the sectional curvature determined by the
plane py;. Hence we have

S(Xy Xo) + S(Xyy X)) = S(Xar Xo) = 2K(p) = 2K(p).
Since 8(X,, X) = 1, we have. K(p) = }a. / QED.

Remark. The above formula implies aso that, if 0 « ¢ <
S(X, X) <2 for al ‘unit vectors X e T,(M), then K(p) > O for
al planes p in T (M). Similarly, if 2c < §(X; X) < ¢ < O for 4l
unit vectors X o T (M), then K(p) < O for dl planes p in T,(M).
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Going back to the genera case where n = dim M is arbitrary,
let X,, ... , X, be an orthonorma basis for T,(M). Then
S(Xy, Xy) + o+ S(X,, X,) is independent of the choice of
orthonormal basis and is called the scalar curvature at x. In terms of
the components R,; and g;; of S and g, respectively, the scalar
curvature is given by Z,; g"R,,.

Note 4. Spaces of constant positive curvature

Let M be an n-dimensional, connected, complete Riemannian
manifold of constant curvature 1/4®. Then, by Theorem 3.2 of
Chapter V and Theorem 7.10 of Chapter VI, the universal
covering manifold of M is isometric to the sphere $* of radius a
in R+ given by (x1)2 + .+ + (x**1)2 = @2 that is, M = §%/G,
where G is a finite subgroup of ((n + 1) which acts freely on $=,

In the case where n is even, the determination of these groups G
is extremely simple. Let y(Af) denote the Euler number of M. Then
we have (cf. Hu [l; p. 277))

4
3

2 = y($" = z(M) x order of G (if niseven).

Hence, G consists of either the identity 1 only or Z and another

element A of O(n + 1) such that 4% = [, Clearly, the eigen-values
of Aare 4 1. Since A can not have any fixed point on $*, the eigen-
values of A ae dl equa to — 1. Hence, A = —1. We thus
obtained

Tueorem 1. Every connected, complete Riemannian manifold M of
even dimension n with constant curvature l/a2 is isometric either to the
sphere §™ of radius a or to the real projective space $"/{+1}.

The case where n is odd has not been selved completely. The
most general result in this direction is due to Zassenhaus [2].

TheoRem 2. Let G be a finite subgroup of O(n + 1) whick acts
freely on §%, Then, any subgroup of G of order pg (where p dnd“q are
prime numbers, not necessarily distinct) is cyclic.

Proof. It suffices to prove that if G isorder pq, thenG is cyclic.
. First, consider the case G is of order g% Then, G is either cyclic or a

direct product of two cyclic groups G; and G, of order p (cf. Hall
11, p. 49]). Assuming the latter, let. A and B be generators of

—— T

"“'U'r‘u
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G, and G,, respectively. Since every element T # | of G is bf order
p, we have T(ZPZ) Tty) = X2} T% for each y ¢ R™1 Since T
has no fixed point on $*, we have
2Ty =0 foryeR™L

By setting T = 4*B and y = x, we obtain

2P0 (A'B)Yx = 0 forx eR*™! and =0,1,...p — 1,
and hence

0 = P} ZP2) (A'B)’x = 222} ZP2) AYB'x for x e R,
On the other hand, by setting T = 47 and y = B’x, we obtain

X2 AUBix =0
Hence, we have

0 = ZPy 2720 AYBix = ZP25 A'B% = px
which is obviously a contradiction. Thus, G must be cyclic.

Second, consider the case where p < q. Then G is either cyclic

or non-abeiian. Assuming that G is non-abelian, let S and A be
elements of order p and q, respectively. Then, we have (cf. Hall

[1, p. 511)

forxe R** and ;=12 ,..., p-I.

for x € R*+1,

SAS-1 = 4,

where 1 < t < gand ## = 1 mod g, and every element of G can
be written uniquely as A’'S”, where0 £ i£qg—1and0 £k £
p — 1. For each integer k, define an integer f(k) by f(k) =
14+ ¢4+ 2+« + 51 We then have

(a) f(p) = 0 mod g;

(b) f(k) = 1 mod ¢, if k= 1mod p;

(c) (AiS)k = Aifihgk,
Indeed, (a) follows from ## = 1 mod g, and (c) follows from
SAS-1 = A*. For each i,0<i =q = 1, let G, be the cyclic sub-
group of G’genefated by A'S. Since (A'S)” = A"/P§? = I, G, is
of order p. Hence we have either G, n G, = {I} or G, = G , for
0 <ij=<q—1 Weprovethat G, n G, ={2) if i #j, If
G, = G,, there exists an integer k such that (4'S)* = 4S. By (c),
we have At 7®S¥ = A’Snd, hence, §* = S. This implies k = 1
mod p and f(k) = 1 mod g. Hence, we have Ai§* = A’S, which
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implies : = j. Let N be the norma subgroup of G generated by ‘4
Since N is of order q and since G, is of order g, we have G, n N'&
{I} for each 4,0 £ i £ q ~ 1. By counting the orders of N, G,

Gy .. Gy y, we see that G is a digoint union of N, G, — (1),
G, — i}, ..., Gy = {I}. Therefore we have
Zpey Tx + Lpeg, TX+ v 00 4 ZTeG,_, Tx = Zree Tx + gx
for x e R,

On the other hand, for every T, ¢ N, we have
To(zTgN TX) = ETEN ToTx = ETEN TX fOf xeR”‘*‘l'
Since G acts freely on §*, we have Xy, Tx = 0. By the same

reasoning, we have ;.4 Tx=0for ;1 =0,1,..., g—1and
Yree Tx = 0. Hence, we have ¢x = O for each x ¢ R, which
is obviously a contradiction. QED.

Recently, Wolf [1] classified the homogeneous Riemannian
manifolds of constant curvature 1/a?. His result may be stated as
follows.

THEOREM 3. LetM = S"/G be a homogeneous Riemannian manifold
of constant curvature 1/g2,
(1) Zfn 4 1 = 2m (but not divisible by 4}, then

St = {(z, ..., z7) ¢ Cm; |ZY 2+ ¢ oo+ |22 = a?),

and G is a Jfnite group of matrices of the form AZ,,,, where 4 € C with
|{A}= 1 and I, is the m x m identity matrix;
2 If n+ 1 = 4m, then

S ={@ . ) . Qg P g o)

(where- Qis the field of quaternions) , and G is a finite group of matrices of
the form pZ,,, where p € Q with | p| = 1.

Conversely, if G is a finite group of the ¢ype described in (1) or (2), then
M = §"/G is homogeneous.

In view of Theorem 1, we do not have to conS|der the case
where n is even.

The reader interested in the classification problem of eliptic
spaces, i.e., spaces of constant positive curvature, is referred to the
following papers: Vincent [1], Wolf [5]; for n= 3, H. Hopf [1]
and Seifert and Threlfal [ 1]. Milnor [I] partialy, generalized
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Theorem 2 to the case where G is a group of homeomorphisms
acting freely on §, Calabi and Markus {1 | and Wolf [3, 4] studied
Lorentz manifolds of constant positive curvature. See also Hel-
gason [1]. For the study of spaces covered by a homogeneous
Riemanman manifold, see Wolf [2].

Note 5. Flat Riemannlan manifolds

. Let M = R"/G be a compact flat Riemannian manifold, where
G is a discrete subgroup of the group of Euclidean motions of R*,
Let N be the subgroup of G consisting of pure transations. Then

(1) N is an abelian normal subgroup of (; and- is free on n

generators;

(2) N is a maximal abelian subgroup of G;

(3) G/N is finite;

(4).G has no finite subgroup.

Indeed, (1) and (3) have been proved in (4) of Theorem 4.2 of
Chapter V. To prove (2), let K be any abelian subgroup of G
containing N. Since G/K is dso finite by (2), RY/K is a compact
flat Riemannian manifold. Since X is an abelian normal subgroup
of K, K contains nothing but transations by Lemma 6 for
Theorem 4.2, of Chapter V, Hence K = N. Findly, (4) follows
from the fact that G’acts freely on R*, In fact, any finite group of
Euclidean motions has a fixed point (cf. the proof of Theorem 7.1
of Chapter V) and hence G has no finite subgroup.

Audander and Kuranishi [I] proved the converse

Let G be a group with a subgroup N satisfying the above conditions (1),
(2), (3) and (4). Then Gcan be realized as a-group of Euclidean motions
of R such that R*{G is a compact flat Riemannian manifold.

Let R*/G and R"/G" be two compact flat Riemannian manifolds.
We say that they are equivalent, if there exists an affine transforma-
tion ¢ such that ¢Gg~! = G, that is, if G and G’ are conjugate in
the group of affine transformations of R". In addition to (4) of
Theorem 4.2 of Chapter V, Bieberbach [1] obtained the following
results :

(@) If G G and ¢’ are zsomorphw as abstract group, then R"/G and R*/G’
are equzvalmt .

(b) For each n, there are only a finife number of equivalence classes of
compact flat Riemannian manifolds R"[G. .
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We shall sketch here an outline of the proof. We denote by
(4, p) an affine transformation of R™ with linear pat A and
trandlation part p. Let N be the subgroup of G consisting of pure
trandations and let (Z, t,), . . ., (L t,) be abasis of N, where Z is
the identity matrix and ¢; ¢ R™ Since (A, p) (L, t,) (A, pt =
(I, At) ¢ N for any (A, p) € G, We can write At; = X%, dit;,
where each ! is an integer. Let T be an (n X n)-matrix whose
i-th column is given by ¢, thatis, T = (¢, . . . t,). Then (ai) =
T-14A T is unimodular. (A matrix is caled unimodular if it is non-
singular and integral together with its inverse.)

To prove (a), let (A’, p') € G' be the element corresponding to
(A, p) € G by the isomorphism G’ ~ G. Let N’ be the subgroup of
G’ corresponding to N by che isomorphism G' ~ G. Then N’ is
normal and maxima abenan in G'. Hence N’ is the subgroup of
G’ consisting of pure translations. Let (Z, ¢;) correspond to (Z, ).
Since (A", p') (Z, &) (A’, p')1=(Z, 4't), (Z, A't}) corresponds to
(Z, At)). Hence we have A't; = 7., alt]. In other words, if "we set
T =(t .. .t then T4 T'= T-1AT. Set

G* ={ (T4T, T-% —T-%); (Ap €Gh

Then G* is a group which contains no pure translations and hence
isfinite. Let u « R™ be a point Ieft fixed by G*. Then we have
(T, Tu)(4, p)(T, Tu) = (T, 0014, p')(T, 0)
)74 (7,07 "Foral (A #)¢G.
This completes the proof of (a).
To prove (b), it suffices to show that there are only a finite
number of mutually non-isomorphic groups G such that R*/G are
compact flat Riemannian manifolds. Each G determines a group

extension

where the' finite group K = G/N acts linearly on N when N is
considered as a subgroup of R* Given such a finite aroun % the
st of group extensions 0 — N — G — K — 1isgiven by H¥(K, N).

Since K is finite and N is finitely generated, H2(K, N) ¥ finite. As

we have seen in the proof of (a), if we identify N with ™€ integral
lattice points of R®, then K = G[/N is given by unimodular
matrices. Let K and K’ be two finite grouEs of unimedutar matrices
o of degree n which are conjugate in the group GL(n; Z) of all

s
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unimodular matrices so that SKS-1 = K’ for some § ¢ GL(n; Z).
The mapping which sends { ¢ N into & ¢ ¥ is an automorphism of
N. Hence § induces an isomorphism, H%(K, N) ~ H*K’, N), and
%fO — N > G — K’ — 1is the dement of H%(K’, N) correspond-
Ing to an element 0 - N — G — K — 1 of H2(K, N), then G and
G’ are isomorphic. Thus our problem is reduced to the following
theorem of Jordan :

There are gnly a finite number of conjugate classes of finite subgroups of
GL(n; Z2).

This theorem of Jordan follows from the theory of Minkowski-
Segel. Let H, be the space of al real symmetric positive definite
matrices of degree n. Then GL(n; Z) acts properly discontinuously
on H, as follows:

X - SX§  for XeH, and SeGL(n; 2). |

Let R be the subset of. H, consisting of reduced matrices in the
sense of Minkowski. Denote 1SX§ by S[X]. Then

(i) U S[RI=H,;

SeG L(m, Z)

(ii) The set F defined by F = {§ ¢ GL(n; 2) ; S[R]'n R =z non-
empty) is a finite set.

The first propetty of R implies that any finite subgroup K of
GL(n; Z) is conjugate to a subgroup of GL(n; Z) contained in F.
Indeed, let X, ¢ H, be a fixed point of K (for instance, set X, =
Ziex *AA). Let § € GL(n; Z) be such that S[X,] ¢ R Then
$—1KS < F. Since F is finite, there are only a finite number of
conjugate classes of finite subgroups of GL(r; Z). OED.

As references we mention Minkowski [I], Biebcrbach 72},
Bieberbach and Schur [I] and Siegd [1].

Note that (a) implies that two compact flaa Riemannian
manifolds are equivalent if and only if they are homeomorphic
to each other. Although (b) does not hold for non-compact fiat
Riemannian manifolds, there are only a finite number of homeo-
morphism classes of complete flat Riemannian manifolds for each
dimension (Bieberbach [3]).

For the classification of 3-dimensional complete flat Riemannian
manifolds, see Hantzche and Wendt [ 1] and Nowacki [ 1].

Most of the results for flaa Riemannian manifolds cannot
be generdlized to flat affine connections, see, for example,
Auslander [I].
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Note 6. Parallel displacement of curvature

Let M and M’ be Riemannian manifolds and ¢: M — M’ a
diffeomorphism which preserves the curvature tensor fields. In
general, this does not imply the existence of an isometry of M
onto M’. For instance, let M be a compact Riemannian manifold
obtained by attaching a unit hemisphere to each end of the right
circular cylinder S x [O; 1], where §* is the unit circle, and then
smoothing out the corners. Similaly, let M’ be a compact
Riemannian manifold obtained by attaching a unit hemisphere
to each end of the right circular cylinder $' x [0,2] and then
smoothing out the corners in the same way. Let ¢: M — M’ be a
diffeomorphism which induces an isometry on the attached
hemispheres and their neighborhoods. Since the cylinder parts of
M and M’ are flat, ¢ preserves the curvature. tensor fields. How-
ever, M and M’ cannot be isometric with each other.

Ambrose [1] obtained the following result, which generalizes
Theorem 7.4 of Chapter VI in the Riemannian case.

Let M and M’ be complete, simply connected Riemannian
manifolds, x an arbitrarily fixed point of M and %' an arbitrarily
fixed point of M. Letf: T,(M) — T»(M’) be a fixed orthogona
transformation. Let = be a simply broken geodesic of M from x
to a pointy and ¢’ the corresponding simply broken geodesic of
M' from X’ to a point. y’, the correspondence being given by f
through parallel displacement. Let p (resp. p’) be a plane in T,(M)
(resp. T.(M")) and ¢ (resp. ') the plane in T,(M) (resp. 7y:(M"))
obtained from p (resp. p') by pardlel displacement aong 7 (resp.
7). Assume that p’ corresponds top by f. If the sectional curvature
K(q) is equal to the sectional curvature K'(¢") for al simply
broken geodesics r and al planes p in T,(M), then there exists
a unique isometry F: M -» M’ whose differential at x coincides
with  f.

Hicks [I] obtained a similar result in the case of &ffine
connection; his result generalizes Theorem 7.4 of Chapter VI.

Note 7. Symmetric spaces

Although the theory Of symmetric spaces, in particular,
Riemannian symmetric spaces, will be taken up ‘in detail' n
Volume II, we shall give here its definition and basic properties.
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Let G be a connected Lie group with an involutive auto-
morphism ¢ (62 = 1, ¢ # 1). Let H be a closed subgroup which
lies between the (closed) subgroup of al fixed points of ¢ and its
identity component. We shall then say that G/H is a symmetric
homogeneous space (defined, by a). Denoting by the same letter
¢ the involutive automorphism of the Lie agebra g induced
by o, we have g= m + p (direct sum), where § = {Xc g;
X” = X} coincides with the subalgebra corresponding to H and
m={X e g X°== —X}. We have obvioudy {b, m] € m and
[m, m] < b.

The automorphism a of G aso induces an involutive diffco-
morphism ¢, of G/H such that o,(7x) = =(x°) for every x e G,
where 7 is the canonical projection of G onto G/H. The origin
0 = -r(e) of G/H is then an-isolated fixed point of ¢, We call o,
the symmetry around o. v

By Theorem 11.1 of Chapter II, the bundle G(G/H, H) admits
an invariant connection I' determined by the subspace m. We
call this connection the canonical connection in G{(G/H, H).

Trueorem 1.  For a symmetric space G/H, the canonical connection
I'in G(G/H, H) has the _following properties :

(1) T s invariant by #he automorphism a of G (which is a bundle
automorphism of G(G[H, H)). ;

(2) The curvature form 75 given by Q(X,Y) = -~ (1/2)[X, Y] e b,
where X and Y are arbitrary left invariant vector fields belonging’
to m; ,

(3) Forany Xe m, leta, = exp tX and let x, = n(a,) = a,(o).
The parallel displacement of #ze fibre H along the curve ¥, coincides with
the left translation 4 — a,k, h ¢ H.

Proof. (1) follows easily from m? = m. (2) is contained in Theo-
rem 11.1 of Chapter II. (3) follows from the fact that ¢4 for any
fixed h € His the horizontal lift through 4 of the curve x,. QED.

The projection » gives a linear isomorphism of the horizontal
subspace m at e of I' onto the tangent space 7,(G/H) a the origin
0. Ifh ¢ H, then ad (h) on m corresponds by this isomorphism to the
linear isotropy h, i.e, the linear transformation of T,(G/H)
induced by the transformation h of G/H which fixes o.

Now, denoting G/H by M, we define a mapping f of G into the
bundle of frames L(M) over M as follows. Let u, be an arbitrarily
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fixed frame X,, . . ., X, a o, which can be identified with a
certain basis of m. For any a ¢ G, f(a) is the frame a a(o) con-
sisting of the images of X, by the differential of a In particular,
for h e H f(h) = h. uy = u, @(h), where (k) e GL(n; R) is the
matrix which represents the linear transformation of T,(M)
induced by 4 with respect to the basis ,. It is easy to see thatfis a
bundle homomorphism of G into L(M) corresponding to the
homomorphism ¢ of Hinto GL(z; R). If G is effective on G/H (or
equivaently, if H contains no non-trivial invariant subgroup of
G), then T and ¢ are isomorphisms.

By Proposition 6.1, of Chapter II, the canonical connection I’
in G(M, H) induces a connection in L(M), which we shall call
the canonical linear connection on G/H and denote till by T,

Theorem 2.  The canonical linear connection on a symmetric space
G/H has the following properties :

(1) I'is invariant by G as well as the symmetry @, around o;

(2) The-restricted homogeneous holonomy group of I' at o is contained in

the linear isotropy group 1?;

(3) Forany Xem,leta = exp (X and 'x, = =(a,) = a,(0). The
parallel displacement of vectors along x, is the same as‘ the transformation
by a,. In particular, x, is a geodesic;

(4) The torsion tensorjeld is 0;

(5) Every G-invariant tensorjeld on G/H is parallel with respect to I'.
In particular, the curvature tensorjeld R is parallel, i.e., VR = 0.

Proof. (1), (2) and (3) follow from the corresponding prop-
erties in Theorem 1. (4) follows from (1) ; since the torsion tensor
fidd T is invariant by o,, we have T(X, Y) = (T(X%, ¥%))% =
-T( =X, -Y) = -T(X, Y) and hence T(X, Y) = 0 for any
X and Y in T,(M). Thus T = 0 at 0o and hence everywhere. (5)
follows from (3). In fact, if K is a G-invariant tensor field, then
Vy K = 0for any X, ¢ T,(M), since there exists X ¢ m such that
x, in (3) has the initia tangent vector X,. QED.

Remark. I' is the unique linear connection on G/H which has
property (1). This justifies the name of canonical linear connection.
Let G/H be a symmetric space with compact H. There exists a
G-invariant Riemannian metric on G/H. For any such metric g,
the Riemannian connection coincides with I'. In fact, the metric
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tensor field g is parallel with respect to I’ by (5). Since I' has zero
torsion, it is the Riemannian connection by the uniqueness
(Theorem 2.2, Chapter I1).

Example. In G = §0(n + 1), let ¢ be the involutive auto-
morphism A € $O{r + 1) — SAS-1 ¢ SO(n + 1) where § is the

. —1
matrix of the form with identity matrix 1,, of degree n.

The identity component HY" of the subgroup H of fixed points of

o consists of all matrices of the form 0 ,Where B o SO(n) . We

shall write SO(n) for H® with this understanding. The symmetric
homogeneous space SO(n + 1)/$6{n) is naturaly diffeomorphic
with the unit sphere 8" in R™#1, In fact, let ¢, €, . . . , ¢, be the
standard orthonormal basis in R*+!, The mapping A € SO(n + 1) —
4ey € S™ induces a diffeomorphism of SO(n + 1)/80(n) onto §”. The
set of vectors Ae,, . . ., 4e, can be considered as an orthonormal
frame at the point Ae, of §* This gives an isomorphism of the
bundle $O(n +.1) over §O(n + 1)/SO(n) onto the bundle of
orthonormal frames over $», The canonical linear connection on
8§O(n + 1)[8O(n) coincides with the Riemannian connection of §»
with respect to the Riemannian metric of $§* as imbedded
submanifold of R#+1,

A linear connection I’ on a differentiable manifold Af is sad
to be locally symmetric at x ¢ M, if there exists an involutive affine
transformation of an open neighborhood {7 of x which has x as an
isolated fixed point. This local symmetry at x, if it exists, must be
of the form (x*) — (—#*) with respect to any normal coordinate
system with origin X, since it induces the linear transformation
X - -Xin T,(M). We say that I is locally symmetric, if it is localy
symmetric at every point x of M. |

THeorem 3. A linear connection T on M is locally symmetric ;£ and
only if T =0 and VR = 0.

Proof. If I’ is locally symmetric, then any tensor field of tvpe
(r, s) with odd r + 5 which is invariant by the loca symmetry at
xisOat x.Hence T=0and VR = 0 on M. The converse fol?ows
from Theorem 7.4 of Chapter VI. QED
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S Twecem 4. Let I'be a locally symmetric linear connection on M. If
M is connected, simply connected and complete, then the group ‘l(M) of all
affine transformations is transitive on M. Let G = A*(M). Then M =
G/H is a symmetric space for which I' is the canonical linear connection.
Proof.  The first assertion follows from Corollary 7.9 of Chapter
VI. Let o, be the local symmetry at a point o of M. By Corollary
6.2, g, can be extended to an affine transformation of M onto itself
which is involutive. Define an involutive automorphism of G by

a = g,°a0 g, Then H lies between the subgroup of all fixed
elements of ¢ and its identity component. QED.

The Riemannian versions of Theorems 3 and 4 are obvious.

The Riemannian symmetric spaces were introduced and studied
extensively by Cartan [ 7]. For the canonical linear connection on
symmetric G/H, see Nomizu [2] and Kobayabhi [3]. Nomizu [4, 6]
proved the converse of (2) of Theorem 2 that if the restricted linear
holonomy group of a complete Riemannian manifold M is
contained in the linear isotropy group at every point, then M is
locally symmetric. Simons [1] has a similar theorem.

Nomizu and Ozeki {3] proved that, for any complete Riemannian
manifold M, the condition V»R = 0 for some m > 1 implies

= 0. (This was known by Lichnerowicz [3, p. 4] when M

is compact.) They remarked later that the assumption of com-
pleteness is not necessary.

Note 8. Linear connections with recurrent
curvature

Let M be an n-dimensiona manifold with a linear connection
I". A non-zero tensor field K of type (r, ) on M is said to be
recurrent’ if there exists a I-form a such that VK = K ® a The
following result is due to Wong [ 1].

Teeorem 1.  In the notation of §5 of chapter 11l, let f: L(M) —
T (R") be the mapping which corresponds to a given tensorﬁeldK of type
(r, s). Then K is recurrent if and only if, for the holonomy bundle P(t)
through any #, € L(M), there exists a differentiable function @(%) with no
zero on P(ug) such that

fu) = () *f ()  for ue€Plu)

As a specia case, X is pardld if and only if f (u) is constant on
P(uy).

&-«W
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Using this result and the holonomy theorem (Theorem 8.1 of
Chapter 11), Wong obtained

Tecrem 2. Let T be a linear ‘connection on M with recurrent
curvature tensor R. Then the Lie algebra of its linear holonomy group W' (o)
is spanned by all eements of the form €2, ( X, Y) , where € is the curvature
form and X and Y are horizontal vectors at %,. In particular, we have

dim W(u,) < 3n(n — 1),

;A;éhapplication of Theorem 1, we shall sketch the proof of the
following

"-'Trecrem 3. For a Riemannian manifold M with recurrent curvature
tensor whose restricted linear holonomy group is irreducible, the curvature
tensor is necessarily parallel provided that dim M z 3.

Proof. Let R, be the components of the T}(R")-valued
function on O(M) which corresponds to the curvature tensor field
R. We apply Theorem 1 to R. Since %, , , , (Rj;)? is constant on
each fibre of O(M), ¢? is constanton each fibre of P(u,). Since ¢
never .vanishes on P(u,), it is either aways postive or aways
negative. Hence ¢ itself is constant on each fibre of P(u,). Let 4
be the function on M defined by A(x) = 1l/g(u), where x =
m(u) ¢ M. Then AR is a parale tensor field. If we denote by § the
Ricci tensor field, then A§ is adso pardld. The irreducibility of
M implies that AS = c g, where cisa constant and g is the metric
tensor (cf. Theorem 1 of Appendix 5). If dm M 2 3 and if the
Ricci tensor S is non&trivia, then :4 is a constant function by
‘Theorem 1 of Note 3. Since AR is parallel and since } is a constant,
R is pardld.

Next we shall consider the case where the Ricci tensor §
vanishes identicadly. Let ¥ R = R @ dand let R}, and a, be the
components of R and a with respect to a local coordlnate system
%', ..., 2™ By Bianchi’s second identity (Theorem 5.3 of Chapter
Il; see also Note 3), we have

R}Ham + R;lnzal;. + R_;:mkml = 0.

Multiply by g™ and sum with respect to J and m. Since the Ricci

ﬁn%r vanishes identically, we have Z‘j.mglmR-lﬂm _ 2] &’ Jne ,;mL = 0.
ence,

IRl =0, . where o = 38",
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This equation has the following geometric implication. Let x be an
arbitrarily fixed point of Af and let X and } be any vectors at x, If
we denote by |7 the vector at x with components «/(x), then the
lincar transformation R(X, Y): T,(M) ~ T,(M) maps V' into the
zevo vector. On the other hand, by the Holonomy Theorem
(Theorem 8.1 of Chapter IT) and Theorem 1 of this Note (Te also
Wong | 1]), the Lie agebra of the linear holonomy grou ¥(x)
is spanned by the set of al endomorphisms of T,(M) given by
R(Y, Y) with X, Y e T,(M). It follows that V is invariant by W (x)
and hence is zero by the irreducibility of Y (x). Consequently, VR
vanishes a x. Since x is an arbitrary point of M, R is paalld.

On the other hand, every non-flat 2-dimensiona Riemannian
manifold is of recurrent curvature if the sectional curvature does
not vanish anywhere.

OOROLLARY. I M is a complete Riemannian manifold with recurrent
curvature tensor, then' the universal covering manifold A of M is either a
symmetric space or a direct product of the Euclidean space R*~2and a 2-
dimensional Riemannian manifold.

Proof.  Use the decomposition theorem of de Rham (Theorem
6.2 of Chapter IV) and Theorem 3 above together with the
following fact which can be verified easily. Let M and M’ be
manifolds with linear connections and let R and R’ be their curva-
ture tensors, respectively. If the curvature tensor of M x M’ is
recutrrent, then there are only three possibilities: (1) V¥ R = 0 and
VR=02 R=0ad VR #0, (3) VR#0and R = 0.
(See dlso Walker [1].) QED.

Note 9. The aulomorphism group of
a geometric structure

Given a differentiable manifold M, the group of al differentiable
transformations of A is a very large group. However, the group of
difl’erentiable transformations of M leaving a certain geometric
structure is often a Lie group. The first result of this nature was
given by H. Cartan {1] who proved that the group of al complex
analytic transformations of a bounded domainin C" is a Lie group.
Myers and Steenrod [I] proved that the group of all isometries of a

B i ar ]
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Riemannian manifold is a Lie group. Bochner and N lont-
gomery |1, 2] proved that the group of all comples analvtic trans-
formations of a compact complcs manifold is a complex].ic aroup:
they made yse of a general theorem concerning 3 locally compad
group of differentiable transformations which IS now know n o be
vaid,& the form of Theorem 4.6, Chapter 1. The theorem thati e
group of all affine transformations of an aflincly connected manitold
is a Lie group was first proved by Nomizu| 1 under the assuniption
o completeness; this assumption was later removed by lano i
Motimoto [1].. Kobayashi (1, 6] proved that the group of i
automorphisms Of an absolute parallelism IS a Lie group n
iinbedding it into the manifold. This method can be applied to 1 he
absolute paralelism of the bundle of frames LM of an a flinely
connected manifold A7 (cf. Propositic N 2.6 of Chapter 111 and
Theorcm 1.5 of Chapter V1),

Automorphisms of a complcs structure and a K:ihlerian
structure will be discussed in Volume I.

A globd theory of Lie transformation groups was studicd in
Pdais [1]. We shal here state one theorem which has. a direct
bearing on us. Let ¢ be a certain group of diflerentiable trans-
formations acting on a differentiable manifold Af. Let g° be the set
of al vector fields X on Af which generate a globa 1-paramcier
group of transformations which belong to the given group . Let
g be the Lie subalgebra of the Lic algebra ¥(M) gencrated by g'.

THEOREM.  If g is finite-dimensiona/, then G admits a Lie group
structure (such that the mapping G X Af = M i s . iiflerentiable) and
g =g'. The L1€ algebra of G is naturaily isomorphic with'q. ‘

We have the following applications of this result, If G is the
group of all affine transformations (resp. isometrics) of an affinel
connected (resp. Riemannian) manifold A, then g’ is the set of alr
infinitesimal  affine transformations (resp. infinitesimal isometrics)
which are globally integrable (note that if Af'is complete, these
infinitesmal  transformations are -always globaly integrable by
Theorem 2.4 of Chapter VI). By virtue of Theorem 2.3 (resp.
Theorem 3.3) of Chapter M, it follows that a IS finite-dimensionil.
By the theorem above, G is a Lic group. .

“The Lic agebra (M) of alin’ Hitesimal isometrics of a Rieman-

nian-manifold A7 was studied in-detadl by Nomizu [ 8, 9], Ateach
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point ¥ of M, a certain Lie algebra i(x) is constructed by using-the
curvature tensor field and its covariant differentids. If M is
simply connected and analytic together with the metric, then i(M)
is naturally isomorphic with (x), where x is an arbitrary point.

Note 10. Groups of isometries and affine trans-
formations with maximum dimensions

In Theorem 3.3 of Chapter VI, we proved that the group J(M)
of isometries of a connected, n-dimensiona Riemannian manifold
M is of dimension at most 4z2{(n + 1) and that if dim 3(M) =
n(n + 1), then M is a space of constant curvature. We shall

outline the proof of the following theorem.

Theorem 1. Let M be a connected, n-dimensional Riemannian
manifold. If dim J(M) = in(n + 1), then M is isometric to one of
the following spaces of constant curvature;

(@ An n-dimensional Euclidean space R*;

(b) An n-dimensiond sphere §*;

(©) An n-dimensional real projective space S*[{+/};

(d) An n-dimensional, simply connected hyperbolic space.

Proof. From the proof of Theorem 3.3 of Chapter VI, we see
that M is homogeneous and hence is complete. The universal
covering space M of M is isometric to one of (a), (b) and (d)
above (cf. Theorem 7.10 of Chapter VI). Every infinitesimal
isometry X of M induces an infinitesimal isometry X of M. Hence,
%h(n + 1) = dim 3(M) < dim 3(M) £ }a(n + 1), whichimplies

hat every infinitesmal isometry 8 of M1 induced by an infini-
tesimal isometry X of M. If M is isometric to (a) or (d), then
there exists an infinitesimal isometry X of M which vanishes only

a a single point of M. HenFe M
curvature is nonpositive. It M i

any antipodal points ¥ and ¥,

X of M = §» which vanishes only a # and x'. This implies that
|>. We see easily that if M is isometric to

§*f{ 4+ I}, then 3(M) is isomorphic to
O(n + 1) modulo its center and hence of dimension 3n(n +3eD.

M=2S"or M=§"+
the projective space

In Theorem 2.3 of Chapter VI, we proved that the group

is simply connected in case the
s isometric to a sphere $* for
! there exists an infinitesmal, isometry

—rpii
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QI(M) of affine transformations of a connected, "n-dimensiona
manifold M with an affine connection is of dimension at most
n? 4+ g and that if dim Q[(M) = 2 4+ n, then the connection is
flat. We prove

Treorem 2. |f dim X(M) = #2 4 n, then M is an ordinary affine
space with the natural flat affine connection.

Proof. Every element of ‘u(M) induces a transformation of
L(M) leaving the canonical form and the connection form
invariant (cf. §1 of Chapter VI). From the fact that A(M) acts
frccly.f on L(M) and from the assumption that dim A(M) =
nt 4+ n =dm L(M), it follows that A°(M) is transitive on each

connected component of L(M). Th_ ‘. .
horizontal vector field on L(M) is r<‘i:son|1rpT)iIce){legfﬁ,t rza"itpreé\)/o yisSts"flrnncljfj‘er\;j
to that of Theorem 2.4 of Chapter VI. In other words, the
connection is complete. By Theorem 4.2 of Chapter V or by
Theorem 7.8 of Chapter VI, the universal covering space M of
M is an ordinary affine space. Finally, the fact that Jf = Af can

be proved in the same way as Theorem | above. QED

_Theorems 2.3 and 3.3 are classical (see, for instance
Eisenhart [ 11). |

Riemannian manifolds and affine connections admitting very
large groups of automorphisms have been studied by Egorov
Wang, Yano and others. The reader will find references on thk
subject in the book of Yano [2].

Note 11. Conformal transformations of
a Riemannian manifold '

Let M be a Riemannian manifold with metric tensor g1 A
transformation ¢ of M‘is said to be conformal if g*g = pg, where p
is a positive function on Af, If \ : :

. . '« p 1§ aconstanf function, @ is a homo-
thetic transformation. If p is |cfent|cal?y equ toqc, ¥ |s¢noth|ng r&?’[
an isometry, An infinitesimal transformation X of Af is said to be
conformal if L ¢ = g, where ¢ is 4 function on Af. It is homothetic
if o is a constant function, and it is isometric if ¢ = (, The local
|-Parameter group of local transformations generated by an
infinitesimal transformation X is conformal if and only if X is

iconformal.
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THEcrem 1. The group of conformal transformations of a connected,
n-dimensional Riemannian manifold M is a Lie transformation group of
dimension at most 4{n <+ 1) (n + 2}, Provided n 2 3.

This can be proved aong the following line. The integrability
conditions of Lyg = ¢ imply that the Lie agebra of infini-
tesimal conforma transformation X is of dimension a most
}(n+1) (n+ 2) (cf. for instance, Eisenhart {1, p. 285]). By the
theorem of Pelais cited in Note 9, the group of conformal trans-
formations is a Lic transformation group.

In §3 of Chapter VI we showed that, for almost all Riemannian
manifolds M, the largest connected group A% M) of affine trans-
formations of A{ coincides with the largest connected group J,(M)
of isometries of M. For the largest connected group €°(M) of
conformal transformations of M, we have the following severa
results in the same direction.

THEOREM 2. Let A4 be a connected n-dimensional Riemannian
mamfo{d for which G°(M) £ J°(AM). Then,

! If M is compact, there is no harmonic p-form of constant length for
1. p < n (Goldberg and Kobayashi [1]);

(2) If Af is compact and homogeneous, then M is isometric to a sphere
provided n > 3 (Goldberg and Kobayashi [2]),

(3) If Al is a complete Riemannian manifold of dimension n > 3 with
parallel Ricci tensor, then M is isometric to a sphere (Nagano [ 1])

(4) M cannot be a compact Riemannian mantfold with constant "%
positive scalar curvature (Yano [2; p. 279] and Lichnerowicz [3;

p. 134]).
(3) is an improvement of the result of Nagano and Yano [1] to

the effect that if M is a.complete Einstein space of dimension
» 3 for which €°(M) # J*(M), then M is isometric to a sphere.
Nagano [I] made use of a result of Tanaka [1].

On the other hand, it is easy to construct Riemannian manifolds
(other than spheres) for which €°(M) %= J°(M). Indeed, let M
be a Ricmannian manifold-with metric tensor g which admits a
1-parameter group of isometries. Let p be a positive function on
M which is not invariant by this |-parameter group of isometries.
Then, with respect to the new metric pg, this group is a 1-parameter
‘group of non-isometric, conformal  transformations.

To show that dim G°(M) = }(n + 1)(n + 2) for a sphere M of

o o i e
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dimension n, we imbed M into the real projective space of di-
mension n + 1. Let x% x!, . . ., x"+1 be a homogeneous coordinate
system of the real projective space P, , of dimension n + 1. Let
M be the n-dimensional sphere in R* +! defined bv (31)2 +

+ (™12 = 1. We imbed M into P,,, by ‘means of
the mappmg defined by

X =\/;§(1 +yn+‘l)’ ¥l 2_))1,---,1.’"

The image of M in P, is given by

n n 1
=y, x"H1 :\/_/5(1 _},n+l)_

(#F)2 4 + (am)2 — 24041 = 0.
Let h be the Riemannian metric on P,,, given by

o = 2 (B8 DS (@)%) — (5t e

(T2 (x)2)2 ’
wherep is the natura prOJectlon from R"+2 — (0) onto P, ,. Then
the imbedding M — P, s jsometric. Let G be the group of linear
transformations of R"+2 leaving the quadratic form “(x1)2 + . . .
+ (22 — 2%+ invariant. Then G maps the image of M in
P, ,ontv itself. It is easy to verify that, considered as a transforma-
tion group acting cn M, G is a group of conformal transformations
of dimension 1(n+ 1) (n + 2).

The case n = 2 is exceptional in most of the problems concer-
ning conformal transformations for the following reason. Let A be a
complex manifold of complex dimension 1 with a local coordinate
system z = x + 1y. Let g be a Riemannian metric on M which is
of the form

Sld? + &%) =F dz 4z,
where f is a positive function on M. Then every complex analytic
transformation of M is conformal.



SUMMARY OF B A SI C NOTATIONS

We summarize only those basic notations which are used most
frequently throughout the book.

LX,%,; .., ec, sand for the summation taken over i or
z',j, .-+, where the range of indices is generally clear from the
context.

2. R and C denote the real and complex number fields, respec-
tively.
R*: vector space of n-tuples of real numbers (x!, ..., x7)
Cn: vector space of n-tuples of complex numbers (z!, ..., z")
(x,y) : standard inner product X, x»*in R* (X, x'j*in C¥)
GL(n; R) : general linear group acting on R*
gl(n; R) : Lie algebra of GL(n; R)
GL(n; C) : genera linear group acting on C
gl(n; C) : Lie algebra of GL(n; C)
O(n) : orthogona group
o(n): Lie agebra of O(n)
U(n): unitary group
u(n) : Lie agebra of U(n)
T;( V) : tensor space of type (r, s5) over a vector space .V
T(V) : tensor algebra over ¥V
A”: space R" regarded as an affine space
. 4(n; R) : group of affine transformations of A"
a(n; R) : Lie dgebra of A(n; R)

3. M denotes an n-dimensional differentiable manifold.
T,(M) : tangent space of M at x
§(M) : agebra of differentiable functions on Af
I(M) : Lie algebra of vector fields on Af
2(M) : agebra of tensor fields on Af
D(M) : agebra of differential forms on Af
T(M) : tangent bundie of M
L(M) : bundle of linear ftames of M

313
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O(M) : bundle of orthonormal frames of M (with respect to
a given Riemannian metric)

6 = (9%): canonical I-form on L(Af) or O(M)

A(M) : bundle of affine frames of M

T (M) : tensor bundle of type (r, s) of A

f* . differential of a differentiable mappingf

S*w: the transform of a differential form « by f

X%,. tangent vector of a curve x,0 -2 { £ 1, at the point x,

Ly: Lie differentiation with respect to a vector field X

4. For a Lie group G, (;* denotes the identity component and g
the Lie algebra of G.
L,: left translation by a ¢ G
R,: right translation by a ¢ G
ad a inner automorphism by a ¢ G; also adjoint representa-
tionin g
P(M, G) : principal fibre bundle over A{ with structure group
G
A*:. fundamental vector field correspchdingto A € g
o = (wi): connection form
Q = (Q;.'): curvature form
E(M, F, G, P) : bundle associated to P(M, G) with fibre F

5. For an affine (linear) connection I' on M,
60 = ((~)J€) . torsion form
I, - Christoffel’s symbols
¥'(x) : linear holonomy group a x ¢ M
®(x) : affinc holonomy group at x ¢ M
V@ covariant differentiation with respect to a vector (field)
X
R: curvature tensor field (with components _R)"l.,)
T torsion ‘tensor field (with components 77;)
§: Ricci tensor field (with components R,;)
A(M) : group of all affinc transformations
a M) Lic agebra of al infinitesimal afline transformations
J(M) : group of al isomriries
i(M) : Lic algebra of al infinitesmal isometries
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Divergence, 281
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metric, 154
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tangent space, 193
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Exponential mapping, 39, 140, 147
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covariant derivative, 77
covariant differentiation, 77
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Holonomy bundle, 85
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Indefinite Ricmannian metric, 155
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bundle, 60
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