41

The Flow of Wet Water

41-1 Viscosity

In the last chapter we discussed the behavior of water, disregarding the
phenomenon of viscosity. Now we would like to discuss the phenomena of the
flow of fluids, including the effects of viscosity. We want to look at the real behavior
of flmds. We will describe qualitatively the actual behavior of the fluids under
various different circumstances so that you will get some feel for the subject. Al-
though you will see some complicated equations and hear about some complicated
things, 1t is not our purpose that you should learn all these things. This 1s, in a
sense, a “‘cultural” chapter which will give you some idea of the way the world is.
There is only one item which is worth learning, and that is the simple definition of
viscosity which we will come to in a moment. The rest 1s only for your entertain-
ment.

In the last chapter we found that the laws of motion of a fluid are contained
n the equation

v W = — VP _ Sose .
Y + (- VvV = p V¢ + 0 “L.1)

In our “dry” water approximation we left out the last term, so we were neglecting
all viscous effects. Also, we sometimes made an additional approximation by
considering the fluid as incompressible; then we had the additional equation

v-v=0.

This last approximation is often quite good——particularly when flow speeds are
much slower than the speed of sound. But in real fluids it is almost never true that
we can neglect the internal friction that we call viscosity; most of the interesting
things that happen come from it in one way or another. For example, we saw that
in “dry” water the circulation never changes—if there is none to start out with,
there will never be any. Yet, circulation in fluids is an everyday occurrence. We
must fix up our theory.

We begin with an important experimental fact. When we worked out the
flow of “dry”” water around or past a cylinder—the so-called “potential flow”—we
had no reason not to permit the water to have a velocity tangent to the surface;
only the normal component had to be zero. We took no account of the possibility
that there might be a shear force between the liquid and the solid. It turns out—
although it 1s not at all self-evident—that in all circumstances where it has been
experimentally checked, the velocity of a fluid is exactly zero at the surface of a
solid. You have noticed, no doubt, that the blade of a fan will collect a thin layer of
dust—and that it is still there after the fan has been churning up the air. You
can see the same effect even on the great fan of a wind tunnel. Why 1sn’t the dust
blown off by the air? In spite of the fact that the fan blade is moving at high speed
through the air, the speed of the air relative to the fan blade goes to zero right at
the surface. So the very smallest dust particles are not disturbed.* We must
modify the theory to agree with the experimental fact that in all ordinary fluids,
the molecules next to a solid surface have zero velocity (relative to the surface).t

* You can blow large dust particles from a table top, but not the very finest ones. The
large ones stick up into the breeze.

+ You can imagine circumstances when it is not true: glass 1s theoretically a “liquid,”
but 1t can certainly be made to shde along a steel surface. So our assertion must break
down somewhere.
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Fig. 41-2. The shear stress in a
viscous fluid.

Fig. 41-3. The flow in a fluid be-
tween two concentric cylinders rotating
at different angular velocities.

We originally characterized a liquid by the fact that if you put a shearing
stress on it-——no matter how small—it would give way. It flows. In static situations,
there are no shear stresses. But before equilibrium 1s reached—as long as you still
push on 1t-—there can be shear forces. Viscosiry describes these shear forces which
exist in a moving fluid. To get a measure of the shear forces during the motion
of a fluid, we consider the following kind of experiment. Suppose that we have two
solid plane surfaces with water between them, as in Fig. 41-1, and we keep one
stationary while moving the other parallel to 1t at the slow speed . If you measure
the force required to keep the upper plate moving, you find that 1t 1s proportional
to the area of the plates and to rn/d. where d 1s the distance between the plates. So
the shear stress F/A4 1s proportional to v,/d:
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The constant of proportionality « is called the cocfficient of viscosity.
If we have a more complicated situation, we can always consider a little, flat,
rectangular cell in the water with its faces parallel to the flow, as in Fig. 41-2. The
shear force across this cell is given by
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Now, dr,/dy is the rate of change of the shear strain we defined 1in Chapter 38, so
for a hquid, the shear stress is proportional to the rate of change of the shear strain.
In the general case we write

an, O ¢
Sey = 7 <a% + ‘(.;y) : (41.3)

If there 1s @ uniform rotation of the flmd, dr,/dy 1s the negative of dv,/dx and S,
1s zero—as 1t should be since there are no stresses in a uniformly rotating fluid.
(We did a similar thing in defining e,,, 1n Chapter 39.) There are, of course, the
corresponding expressions for .S, and S',.

As an example of the application of these 1deas, we consider the motion of a
fluid between two coaxial cylinders. Let the inner one have the radius « and the
peripheral velocity v,, and let the outer one have radius b and velocity vy, See
Fig. 41-3. We might ask, what 1s the velocity distribution between the cylinders?
To answer this question, we begin by finding a formula for the viscous shear n
the fluid at a distance r from the axis From the symmetry of the problem, we can
assume that the flow is always tangential and that its magnitude depends only on
r; v = v(r). If we watch a speck in the water at the radius r, 1ts coordinates as a
function of time are

X = rCOS wl, y = rsin wt,
where w = »/r. Then the x- and y-components of velocity are
v, = —rwsinwl = —wy and Py = FwCOS Wl = WX. (41.4)

From Eq. (41.3), we have
Sey = a*(w)—*a(w) =X ST (41.5)
i K ax * 6}) 4 K dx Y ’
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For a point at y = 0, dw/dy = 0, and x dw/dx Is the same as r dw/dr. So at that
point
(Se)y—0 = r—dg- (41.6)
ryly=0 n dr .
(It is reasonable that S should depend on dw/dr: when there is no change in w
with r, the liquid is m uniform rotation and there are no stresses.)

The stress we have calculated 1s the tangential shear which is the same all
around the cylinder We can get the rorque acting across a cylindrical surface at
the radius » by multiplying the shear stress by the moment arm » and the area
27rl. We get

T = 20 U(Say)yo = 2mnl® ‘f{‘rﬁ (41.7)

Since the motion of the water is steady—there is no angular acceleration—the
net torque on the cylindrical shell of water between r and r + dr must be zero;
that s, the torque at » must be balanced by an equal and opposite torque at » 4 dr,
so that 7 must be independent of r. In other words, r® dw/dr is equal to some con-
stant, say A4, and

do A
il b (41.8)
Integrating, we find that w varies with r as
A

The constants 4 and B are to be determined to fit the conditions that w =w,
atr = a,and w = w, atr = b. We get that

2a°b*
A= =gz (00 — wa),
41.10)
bPw, — a’w,
B=—m=pm
So we know w as a function of », and from it » = wr.
If we want the torque, we can get it from Eqs. (41.7) and (41.8):
T = 27rnlA
or
4rnla*h’
T = 33— g2 @~ @) (41.11)

It is proportional to the relative angular velocities of the two cylinders. One stand-
ard apparatus for measuring the coefficients of viscosity is built this way. One
cylinder—say the outer cne—is on pivots but is held stationary by a spring balance
which measures the torque on it, while the inner one is rotated at a constant angular
velocity. The coefficient of viscosity is then determined from Eq. (41.11).

From its definition, you see that the units of » are newton-sec/m?, For water
at 20°C,

n = 10° newton-sec/m2.

It is usually more convenient to use the specific viscosity, which is 5 divided by
the density p. The values for water and air are then comparable:

water at 20°C, n/p = 107" m?/sec,

(41.12)
air at20°C,  n/p = 15 X 107 m?2/sec.

Viscosities usually depend strongly on temperature. For instance, for water just
above the freezing point, »/p is 1.8 times larger than 1t is at 20°C.
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41-2 Viscous flow

We now go to a general theory of viscous flow—at least in the most general
form known to man We already understand that the shear stress components are
proportional to the spatial derivatives of the various velocity components such
as di,/dy or dr,/dx. However, 1n the general case of a compressible fluid there is
another term in the stress which depends on other derivatives of the velocity.
The general expression is

&,=n@“ 1%>+nWJVUL (41.13)

dx, | ax,

where x, 1s any one of the rectangular coordmnates x, y, or z, and v, is any one of
the rectangular coordinates of the velocity. (The symbol §,, 18 the Kronecker
delta which 1s 1 when ; = jand O for +  ;.) The additional term adds 'V - v
to all the diagonal elements S, of the stress tensor. If the iquid is incompressible
Vv -v = 0, and this extra term doesn’t appear. So it has to do with internal forces
during compression. So two constants are required to describe the hquid, just
as we had two constants to describe a homogeneous elastic sotid. The coeflicient
n 1s the “ordmary” coefficient of viscosity which we have already encountered.
It 15 also called the first coefficient of viscosity or the “shear viscosity coefficient,”
and the new coeflicient 4 is called the second coefficient of viscosity.

Now we want to determine the viscous force per umt volume, f, .., S0 we can
put 1t into Eq (41 1) to get the equation of motion for a real fluid. The force on a
small cubical volume element of a fluid 18 the resultant of the forces on all the six
faces. Taking them two at a time, we will get differences that depend on the
derivatives of the stresses, and, therefore, on the second derivatives of the velocity.
This 1s nice because 1t will get us back to a vector equation. The component of
the viscous force per unit volume 1n the direction of the rectangular coordinate
X, is

3
(fv1sc)z = Z ?§£

ot ox,

3 ) ) G
_ nZ(;’.{n <61, N m,)} 49 (v (41 14)
J=1

X, dx, ax, ax,

Usually, the variation of the viscosity coefficients with position 15 not significant
and can be neglected. Then, the viscous force per unit volume contains only second
derivatives of the velocity. We saw in Chapter 39 that the most general form of
second derivatives that can occur in a vector equation 1s the sum of a term in the
Laplacian (V - Vv = V2p), and a term in the gradient of the divergence (V(¥ - v)).
Equation (41.14) 1s just such a sum with the coeflicients 4 and (5 + 7’). We get

fose = V0 + (0 + 7)) V(V - v). (41.15)

In the mmcompressible case, V- v = 0, and the viscous force per unit volume 1s
just 7 V2. That 1s all that many people use; however, 1f you should want to cal-
culate the absorption of sound 1n a fluid, you would need the second term.

We can now complete our general equation of motion for a real fluiid. Sub-
stituting Eq. (41 15) into Eq. (41.1), we get

p{%;)—{— (v~V)v} = —Yp —pVe + V0 4+ (n + 7)) V(YD)

It’s complicated. But that’s the way nature 1s.
If we introduce the vorticity = V X v, as we did before, we can write our
equation as

p:%’+ng+éwz}= —Vp —p Ve + nvzv

+ (n+ ) V(V-v). (41.16)
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We are supposing again that the only body forces acting are conservative forces
like gravity. To see what the new term means, let’s look at the incompressible
fluid case. Then, if we take the curl of Eq. (41.16), we get

(?T? + VX (@X0v)= ;’}v%}. (41.17)

This is like Eq. (40.9) except for the new term on the right-hand side. When the
right-hand side was zero, we had the Helmholtz theorem that the vorticity stays
with the fluid. Now, we have the rather complicated nonzero term on the right-
hand side which, however, has straightforward physical consequences. If we
disregard for the moment the term Vv X (& X v), we have a diffusion equation.
The new term means that the vorticity Q diffuses through the fluid. If there is a
large gradient in the vorticity, it will spread out into the neighboring fluid.

This is the term that causes the smoke ring to get thicker as it goes along.
Also, it shows up nicely if you send a *“‘clean™ vortex (a ‘“‘smokeless’ ring made by
the apparatus described n the last chapter) through a cloud of smoke. When it
comes out of the cloud, it will have picked up some smoke, and you will see a
hollow shell of a smoke ring. Some of the @ diffuses outward into the smoke,
while still maintaining its forward motion with the vortex.

41-3 The Reynolds number

We will now describe the changes which are made in the character of fluid
flow as a consequence of the new viscosity term. We will look at two problems
in some detail. The first of these is the flow of a fluid past a cylinder—a flow which
we tried to calculate in the previous chapter using the theory for nonviscous flow.
It turns out that the viscous equations can be solved by man today only for a few
special cases. So some of what we will tell you is based on experimental measure-
ments-—assuming that the experimental model satisfies Eq. (41.17).

The mathematical problem is this: We would like the solution for the flow of
an incompressible, viscous fluid past a long cylinder of diameter D. The flow should
be given by Eq. (41.17) and by

Q=VXv (41.18)

with the conditions that the velocity at large distances is some constant velocity,
say V (parallel to the x-axis), and at the surface of the cylinder is zero. That 1s,

Ve =1y, =0, =0 (41.19)

for
2, 2 _ D*

Xty =g

That specifies completely the mathematical problem.
If you look at the equations, you see that there are four different parameters

to the problem: 5, p, D, and ¥. You might think that we would have to give a
whole series of cases for different ¥’s, different D’s, and so on. However, that is
not the case. All the different possible solutions correspond to different values of
one parameter. This is the most important general thing we can say about viscous
flow. To see why this is so, notice first that the viscosity and density appear only
in the ratio 5/p—the specific viscosity. That reduces the number of independent
parameters to three. Now suppose we measure all distances in the only length
that appears in the problem, the diameter D of the cylinder; that is, we substitute
for x, y, z, the new variables x', y/, z’ with

x = x'D, y =yD, z=2'D.

Then D disappears from (41.19). In the same way, if we measure all velocities in
terms of V—that is, we set » = ’V—we get rid of the V, and ¢’ 1s just equal to 1
at large distances. Since we have fixed our units of length and velocity, our unit
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of time is now D/V; so we should set
, D
t =1 v (41.20)

With our new variables, the derivatives in Eq. (41.18) get changed from d/dx
to (1/D) 9/3x’, and so on: so Eq (41.18) becomes

_ _ K ’ r_ _V ’
Q=VXv=FVXV=50 (41.21)
Our main equation (41.17) then reads
o0Q’ ’ ’ N T w20
Tt,—i—v X (Q Xv)—pVDVQ.

All the constants condense into one factor which we write, following tradition, as
1/®:

® = % VD. (41.22)

If we just remember that all of our equations are to be written with all quantities
in the new units, we can omit all the primes. Our equations for the flow are then

Brvx@x = (Jﬁ Vo (41.23)
and
Q =V Xv
with the conditions
v=20
for
x4+ =1/4 (41.24)
and
vy = 1, vy, = v, =0
for

x2+y2+22>>1.

What this all means physically is very interesting It means, for exampie, that
if we solve the problem of the flow for one velocity ¥; and a certamn cylinder
diameter D, and then ask about the flow for a different diameter D, and a different
fluid, the flow will be the same for the velocity V', which gives the same Reynolds
number—that is, when

(Rl = & V1D1 = R = Bg VQDQ. (4125)

A N2

For any two situations which have the same Reynolds number, the flows will
“look”™ the same—in terms of the appropriate scaled x’, 3/, 2/, and /. This 1s an
mmportant proposition because it means that we can determine what the behavior
of the flow of air past an arrplane wing will be without having to build an airplane
and try it. We can, instead, make a model and make measurements using a velocity
that gives the same Reynolds number. This 1s the principle which allows us to
apply the results of “wind-tunnel” measurements on small-scale arrplanes, or
“modei-basin™ results on scale model boats, to the full-scale objects. Remember,
however, that we can only do this provided the compressibility of the fluid can be
neglected. Otherwise, a new quantity enters—the speed of sound. And different
sttuations will really correspond to each other only if the ratio of ¥ to the sound
speed 1s also the same This latter ratio 1s called the Mach number So, for veloci-
ties near the speed of sound or above, the flows are the same in two situations
if both the Mach number and the Reynolds number are the same for both
situations.
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Fig. 41-4. The drag coefficient Cp of a circular cylinder as a function of the Reynolds number.

41-4 Flow past a circular cylinder

Let’s go back to the problem of low-speed (nearly incompressible) flow over
the cylinder. We will give a qualitative description of the flow of a real flud.
There are many things we might want to know about such a flow—for instance,
what is the drag force on the cylinder? The drag force on a cylinder is plotted in
Fig. 414 as a function of ®@—which 1s proportional to the air speed V 1f everything
else is held fixed. What is actually plotted 1s the so-called drag coefficient Cp,
which is a dimensionless number equal to the force divided by p¥V2DI, where
D is the diameter, [ is the length of the cylinder, and p 1s the densuty of the liqud:

F

Cp = 1oV2Dl’

The coefficient of drag varies in a rather complicated way, giving us a pre-hint
that something rather interesting and complicated 1s happening in the flow. We will
now describe the nature of flow for the different ranges of the Reynolds number.
First, when the Reynolds number is very small, the flow is quite steady; that 1s,
the velocity is constant at any place, and the flow goes around the cylinder. The
actual distribution of the flow lines is, however, not like it 1s in potential flow.
They are solutions of a somewhat different equation. When the veloctty is very
low or, what 1s equivalent, when the viscosity is very high so the stuff 1s like honey,
then the inertial terms are negligible and the flow is described by the equation

viQ = 0.

This equation was first solved by Stokes. He also solved the same problem for a
sphere. If you have a small sphere moving under such conditions of low Reynolds
number, the force needed to drag it is equal to 6mqalV, where a 1s the radius of the
sphere and V 1s its velocity. This ts a very useful formula because it tells the speed
at which tiny grains of dirt (or other particles which can be approximated as
spheres) move through a fluid under a given force—as, for instance, in a centrifuge,
or in sedimentation, or diffusion In the low Reynolds number region—for & less
than 1—the lines of v around a cylinder are as drawn in Fig 41-5.

If we now increase the fluid speed to get a Reynolds number somewhat greater
than 1, we find that the flow 1s different. There is a circulation behind the sphere,
as shown i Fig. 41-6(b). It is still an open question as to whether there is always
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Fig. 41-6.

Flow past a cylinder for various Reynolds numbers.

a circulation there even at the smallest Reynolds number or whether things sud-
denly change at a certain Reynolds number. It used to be thought that the cir-
culation grew continuously. But it 1s now thought that it appears suddenly, and
it is certain that the circulation increases with ®. In any case, there is a different
character to the flow for ® in the region from about 10 to 30. There is a pair of
vortices behind the cylinder.

The flow changes again by the time we get to a number of 40 or so. There is
suddenly a complete change in the character of the motion. What happens is that
one of the vortices behind the cylinder gets so long that it breaks off and travels
downstream with the fluid. Then the fluid curls around behind the cylinder and
makes a new vortex. The vortices peel off alternately on each side, so an instan-
taneous view of the flow looks roughly as sketched in Fig. 41-6(c). The stream of
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Fig. 41-7.

vortices is called a “Kdrman vortex street.” They always appear for ® > 40,
We show a photograph of such a flow in Fig. 41-7.

The difference between the two flows in Fig. 41-6(c) and 41-6(b) or 41-6(a)
is almost a complete difference in regime In Fig. 41-6(a) or (b), the velocity is
constant, whereas in Fig 41-6(c), the velocity at any point varies with time There
is no steady solution above 6t = 40—which we have marked on Fig. 41-4 by a
dashed line. For these higher Reynolds numbers, the flow varies with time but in a
regular, cyclic fashion.

We can get a physical 1dea of how these vortices are produced We know
that the fluid velocity must be zero at the surface of the cylinder and that it also
increases rapidly away from that surface. Vorticity is created by this large local
variation in flurd velocity. Now when the main stream velocity is low enough, there
1s sufficient time for this vorticity to diffuse out of the thin region near the solid
surface where it is produced and to grow into a large region of vorticity. This
physical picture should help to prepare us for the next change in the nature of the
flow as the main stream velocity, or @, is increased still more.

As the velocity gets higher and higher, there is less and less time for the
vorticity to diffuse mto a larger region of fluid. By the time we reach a Reynolds
number of several hundred, the vorticity begins to fill in a thin band, as shown in
Fig. 41-6(d). In this layer the flow is chaotic and irregular. The region is called
the boundury luyer and this irregular flow region works its way farther and farther
upstream as & is increased. In the turbulent region, the velocities are very irregular
and “noisy”; also the flow 1s no longer two-dimensional but twists and turns in
all three dimensions. There is still a regular alternating motion superimposed on
the turbulent one.

As the Reynolds number is increased further, the turbulent region works its
way forward until it reaches the point where the flow lines leave the cylinder—for
flows somewhat above ® = 10°. The flow is as shown in Fig. 41-6(e), and we
have what is called a “turbulent boundary layer.”” Also, there is a drastic change
in the drag force; 1t drops by a large factor, as shown in Fig. 41-4. In this speed
region, the drag force actually decreases with increasing speed. There seems to
be little evidence of periodicity.

What happens for still larger Reynolds numbers? As we increase the speed
further, the wake mcreases in size again and the drag increases. The latest experi-
ments—which go up to ® = 107 or so—indicate that a new pertodicity appears
in the wake, either because the whole wake is oscillating back and forth 1n a gross
motion or because some new kind of vortex is occurring together with an irregular
noisy motion. The details are as yet not entirely clear, and are still being studied
experimentally.

41-5 The limit of zero viscosity

We would like to point out that none of the flows we have described are
anything like the potential flow solution we found in the preceding chapter. This
is, at first sight, quite surprising. After all, ® is proportional to 1/5. So 5 going to
zero is equivalent to ® going to mfinity. And if we take the limit of large & n
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Liquid flow patterns be-

tween two fransparent rotating cylinders.

Eq. (41.23), we get rid of the right-hand side and get just the equations of the last
chapter. Yet, you would find it hard to believe that the hmghly turbulent flow at
® = 107 was approaching the smooth flow computed from the equations of “dry”
water. How can it be that as we approach ® = «, the flow described by Eq.
(41.23) gives a completely different solution from the one we obtained taking
n = 0 to start out with? The answer is very interesting. Note that the right-hand
term of Eq. (41.23) has 1/& times a second derivative. It is a higher dertvative than
any other derivative in the equation. What happens is that although the coefficient
1/® 1s small, there are very rapid variations of Q in the space near the surface.
These rapid variations compensate for the small coefficient, and the product
does not go to zero with increasing &. The solutions do not approach the limiting
case as the coefficient of V2@ goes to zero.

You may be wondering, “What is the fine-grain turbulence and how does it
maintain itself? How can the vorticity which 1s made somewhere at the edge of
the cylinder generate so much noise in the background?” The answer 1s again
interesting. Vorticity has a tendency to amplify itself. If we forget for a moment
about the diffusion of vorticity which causes a loss, the laws of flow say (as we have
seen) that the vortex lines are carried along with the fluid, at the velocity v. We
can imagine a certain number of lines of & which are being distorted and twisted
by the complicated flow pattern of v. This pulls the lines closer together and mixes
them all up. Lines that were simple before will get knotted and pulled close
together. They will be longer and tighter together, The strength of the vorticity
will increase and its irregularities—the pluses and minuses—will, in general,
mcrease. So the magnitude of vorticity in three dimensions increases as we twist
the fluid about.

You might well ask, “When is the potential flow a satisfactory theory at all?”
In the first place, it is satisfactory outside the turbulent region where the vorticity
has not entered appreciably by diffusion. By making special streamlined bodies,
we can keep the turbulent region as small as possible; the flow around airplane
wings—which are carefully designed—is almost entirely true potential flow.

41-6 Couette flow

It is possible to demonstrate that the complex and shifting character of the
flow past a cylinder is not special but that the great variety of flow possibilities
occurs generally. We have worked out in Section 1 a solution for the viscous
flow between two cylinders, and we can compare the results with what actually
happens. If we take two concentric cylinders with an oil in the space between them
and put a fine aluminum powder as a suspension in the oil, the flow is easy to see.
Now if we turn the outer cylinder slowly, nothing unexpected happens; see Fig.
41-8(a). Alternatively, if we turn the inner cylinder slowly, nothing very striking
occurs. However, if we turn the inner cylinder at a higher rate, we get a surprise.
The fluid breaks into horizontal bands, as indicated in Fig. 41-8(b). When the
outer cylinder rotates at a similar rate with the inner one at rest, no such effect
occurs. How can it be that there is a difference between rotating the inner or the
out cylinder? After all, the flow pattern we derived in Section 1 depended only
on w, — w,. We can get the answer by looking at the cross sections shown in
Fig. 41-9. When the inner layers of the fluid are moving more rapidly than the
outer ones, they tend to move outward—the centrifugal force 1s larger than the
pressure holding them in place. A whole layer cannot move out uniformly because
the outer layers are in the way. It must break into cells and circulate, as shown in
Fig. 41-9(b). It is like the convection currents in a room which has hot air at the
bottom. When the inner cylinder is at rest and the outer cylinder has a high velocity,
the centrifugal forces build up a pressure gradient which keeps everything in
equilibrium—see Fig. 41-9(c) (as in a room with hot air at the top).

Now let’s speed up the inner cylinder. At first, the number of bands increases.
Then suddenly you see the bands become wavy, as in Fig. 41-8(c), and the waves
travel around the cylinder. The speed of these waves is easily measured. For high
rotation speeds they approach 1/3 the speed of the mner cylinder. And no one
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Fig. 41-9. Why the flow breaks up into bands.

knows why! There’s a challenge. A simple number like 1/3, and no explanation
In fact, the whole mechanism of the wave formation is not very well understood,
yet 1t is steady laminar flow.

If we now start rotating the outer cylinder also—but 1n the opposite direction—
the flow pattern starts to break up. We get wavy regions alternating with apparently
quiet regions, as sketched in Fig. 41-8(d), making a spiral pattern. In these “quiet”
regions, however, we can see that the flow 1s really quite 1rregular; 1t 1s, n fact
completely turbulent. The wavy regions also begin to show irregular turbulent
flow If the cylinders are rotated still more rapidly, the whole flow becomes
chaotically turbulent.

In this simple experiment we see many interesting regimes of flow which are
quite different, and yet which are all contamed in our simple equauon for various
values of the one parameter &. With our rotating cylinders, we can see many of
the effects which occur in the flow past a cylinder: first, there is a steady flow, second,
a flow sets in which varies in time but in a regular, smooth way; finally, the flow
becomes completely wrregular.  You have all seen the same effects in the column
of smoke rising from a cigarette in quiet air. There is a smooth steady column
followed by a series of twistings as the stream of smoke begins to break up, ending
finally 1n an irregular churning cloud of smoke

The main lesson to be learned from all of this is that a tremendous varietv
of behavior 1s hidden 1n the simple set of equations in (41.23). All the solutions
are for the same equations, only with different values of ® We have no reason
to think that there are any terms missing from these equations. The only difficulty
1s that we do not have the mathematical power today to analyze them except for
very smail Reynolds numbers—that 1s, in the completely viscous case. That we
have written an equation does not remove from the flow of fluids its charm or
mystery or its surprise.

If such variety is possible in a simple equation with only one parameter, how
much more is possible with more complex equations! Perhaps the fundamental
equation that describes the swirling nebulae and the condensing, revolving, and
exploding stars and galaxies 1s just a simple equation for the hydrodynamic
behavior of nearly pure hydrogen gas. Often, people in some unjustified fear of
physics say you can’t write an equation for life. Well, perhaps we can. As a matter
of fact, we very possibly already have the equation to a sufficient approximation
when we write the equation of quantum mechanics:

We have just seen that the complexities of things can so easily and dramatically
escape the simplicity of the equations which describe them. Unaware of the scope
of simple equations, man has often concluded that nothing short of God, not mere
equations, 1s required to explam the complexities of the world.
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We have written the equations of water flow. From experiment, we find a set
of concepts and approximations to use to discuss the solution—vortex streets,
turbulent wakes, boundary layers. When we have similar equations in a less
familiar situation, and one for which we cannot yet experiment, we try to solve
the equations in a primitive, halting, and coafused way to try to determine what
new qualitative features may come out, or what new qualitative forms are a con-
sequence of the equations. Our equations for the sun, for example, as a ball of
hydrogen gas, describe a sun without sunspots, without the rice-grain structure of
the surface, without prominences, without coronas. Yet, all of these are really
1 the equations; we just haven’t found the way to get them out.

There are those who are going to be disappointed when no life is found on
other planets. Not I—I want to be reminded and delighted and surprised once
again, through interplanetary exploration, with the infinite variety and novelty of
phenomena that can be generated from such simple principles. The test of science
is its ability to predict. Had you never visited the earth, could you predict the
thunderstorms, the volcanos, the ocean waves, the auroras, and the colorful sunset?
A salutary lesson it will be when we learn of all that goes on on each of those
dead planets—those eight or ten balls, each agglomerated from the same dust cloud
and each obeying exactly the same laws of physics.

The next great era of awakening of human intellect may well produce a method
of understanding the qualitative content of equations. Today we cannot. Today
we cannot see that the water flow equations contain such things as the barber pole
structure of turbulence that one sees between rotating cylinders. Today we cannot
see whether Schrodinger’s equation contains frogs, musical composers, or morality
—or whether it does not. We cannot say whether something beyond it like God
is needed, or not. And so we can all hold strong opinions either way.
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