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Elastie Materials

39-1 The tensor of strain

In the last chapter we talked about the distortions of particular elastic objects.
In this chapter we want to look at what can happen in general inside an elastic
material. We would like to be able to describe the conditions of stress and strain
inside some big glob of jello which is twisted and squashed in some complicated
way. To do this, we need to be able to describe the local strain at every pomnt in an
elastic body ; we can do it by giving a set of six numbers—which are the components
of a symmetric tensor—for each point. Earlier, we spoke of the stress tensor
(Chapter 31); now we need the tensor of strain.

Imagine that we start with the material initially unstrained and watch the
motion of a small speck of “dirt” embedded in the material when the strain is
applied. A speck that was at the point P located at r = (x, y, z) moves to a new
position P’ at » = (x’, . 2’) as shown in Fig. 39-1. We will call # the vector
displacements from P to F.. Then

(39.1)

The displacement u depends, of course, on which point P we start with, so uis a
vector function of r—or, if you prefer, of (x, y, 2).

Let’s look first at a simple situation in which the strain 18 constant over the
material—so we have what is called a homogeneous strain. Suppose, for instance,
that we have a block of material and we stretch it uniformly. We just change its
dimensions uniformly in one direction—say, in the x-direction, as shown in Fig.
39-2. The motion u, of a speck at x is proportional to x. In fact,

u, Al

x 1
We will write u,, this way:

Uy = €32X
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Fig. 39-1. A speck of the material af the point P in an unstrained block

moves fo P’ where the block is strained.
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Fig. 39-2. A homogeneous stretch-type strain.
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The proportionality constant e,, is, of course, the same thing as Al/l. (You will
see shortly why we use a double subscript.)

If the strain is not uniform, the relation between u, and x will vary from place
to place in the material. For the general situation, we define the e, by a kind of
local Al/l, namely by

ery = OU,/dx. (39.2)

This number—which is now a function of x, y, and z—describes the amount of
stretching in the x-direction throughout the hunk of jello. There may, of course,
also be stretching in the y- and z-directions. We describe them by the numbers

~ _ 9u

Cyy = ay €22 = 9z (393)

We need to be able to describe also the shear-type strams. Suppose we imagine
a little cube marked out in the initially undisturbed jello. When the jello is pushed
out of shape, this cube may get changed into a parallelogram, as sketched in Fig.
39-3.* 1In this kind of a strain, the x-motion of each particle is proportional to
its y-coordinate,

ue =1y (39.4)
And there is also a y-motion proportional to x,
]
Uy = 5 X. (39.5)

So we can describe such a shear-type strain by writing

Uy = Cxy)s Uy = €yX
with
0
ely f— eyl; = E -

Now you might think that when the strains are not homogeneous we could
describe the generalized shear strains by defining the quantities e,y and e, by

L (39.6)
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Fig. 39-3. A homogeneous shear strain.

But there is one difficulty. Suppose that the displacements w, and w«, were given by

Uy = 55, iy = —
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* We choose for the moment to split the total shear angle 8 into two equal parts and
make the strain symmetric with respect to x and y.
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Fig. 39—-4. A homogeneous rotation—there is no strain.

They are like Eqs. (39.4) and (39.5) except that the sign of u, is reversed. With
these displacements a little cube in the jello simply gets shifted by the angle 6/2,
as shown in Fig. 39-4. There is no strain at all—just a rotation in space. There is
no distortion of the material; the relative positions of all the atoms are not changed
at all. We must somehow make our definitions so that pure rotations are not
included in our definitions of a shear strain. The key point is that if du,,/dx and
du,/dy are equal and opposite, there is no strain; so we can fix things up by defining

A
P

& ery = €ys = $(0u,/0x + Ouy/dy).

For a pure rotation they are both zero, but for a pure shear we get that e,, is
equal to e,,, as we would like.

In the most general distortion—which may include stretching or compression
as well as shear—we define the state of strain by giving the nine numbers

o — ou,
rx — Ix ’
eyy = L, (39.7)

ay
exy = 3(9uy/dx + Oug/dy),

These are the terms of a tensor of strain. Because it is a symmetric tensor—our
definitions make e,, = e,,. always—there are really only six different numbers.
You remember (see Chapter 31) that the general characteristic of a tensor 1s that
the terms transform like the products of the components of two vectors. (If
A and B are vectors, C,;, = A,B, is a tensor.) Each term of e,, is a product
(or the sum of such products) of the components of the vector u = (u, u,, u,), and
of the operator V = (3/dx, 3/dy, d/dz), which we know transforms like a vector.
Let’s let x4, x5, and x3 stand for x, y, and z and u,, u,, and u3 stand for u,, u,,
and u,; then we can write the general term e;, of the strain tensor as

e, = 3(0u,/0x, + du,/9x,), (39.8)

where i and j can be 1, 2, or 3.

When we have a homogeneous strain—which may include both stretching
and shear—all of the e,; are constants, and we can write

Uy = epeX + enyy + eg.Z. (39.9)

(We choose our origin of x, y, z at the point where u is zero.) In this case, the strain
tensor e,, gives the relationship between two vectors: the coordinate vector r =
(x, y, ) and the displacement vector u = (uy, Uy, u,).
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When the strains are not homogeneous, any piece of the jello may also get
somewhat twisted—there will be a local rotation. If the distortions are all small,
we would have

Au, = Z (e — wiy) Ax,y, (39.10)
3

where w,; iS an anzisymmerric tensor,
w,; = 3(0u,/0x, — ou,/dx,), (39.11)

which describes the rotation. We will, however, not worry any more about rota-
tions, but only about the strains described by the symmetric tensor e,,.

39-2 The tensor of elasticity

Now that we have described the strains, we want to relate them to the internal
forces—the stresses in the material. For each small piece of the material, we
assume Hooke’s law holds and write that the stresses are proportional to the
strains. In Chapter 31 we defined the stress tensor S, as the ith component of the
force across a unit area perpendicular to the j-axis. Hooke’s law says that each
component of S, is linearly related to each of the components of strain. Since
§ and e each have nine components, there are 9 X 9 = 81 possible coefficients
which describe the elastic properties of the material. They are constants if the
material itself 1s homogeneous. We write these coefficients as C,,; and define
them by the equation

Su = Y, Cokiert, (39.12)
k,l

where 7, j, k, I all take on the values 1, 2, or 3. Since the coefficients C,,; relate
one tensor to another, they also form a tensor—a tensor of the fourth rank. We
can call it the tensor of elasticity.

Suppose that all the C’s are known and that you put a complicated force on
an object of some peculiar shape. There will be all kinds of distortion, and the
thing will settle down with some twisted shape. What are the displacements?
You can see that it is a complicated problem. If you knew the strains, you could
find the stresses from Eq. (39.12)—or vice versa. But the stresses and strains you
end up with at any point depend on what happens in all the rest of the material,

The easiest way to get at the problem is by thinking of the energy. When there
is a force F proportional to a displacement x, say F = kx, the work required for
any displacement x is kx2/2. In a similar way, the work w that goes nto each
unit volume of a distorted material turns out to be

w = % Z Conieer. (39.13)

23kl

The total work W done in distorting the body is the integral of w over its volume:

W= / 33" Ciprenerid Vol (39.14)

17kl

This is then the potential energy stored in the internal stresses of the material.
Now when a body is in equilibrium, this internal energy must be at a minimum.
So the problem of finding the strains in a body can be solved by finding the set of
displacements u throughout the body which will make W a minimum. In Chapter
19 we gave some of the general ideas of the calculus of variations that are used in
tackling minimization problems like this. We cannot go into the problem in any
more detail here.

What we are mainly interested in now 1s what we can say about the general
properties of the tensor of elasticity. First, it is clear that there are not really 81
different terms in C,,x;. Since both S,, and e,, are symmetric tensors, each with
only six different terms, there can be at most 36 different terms in C,,5;. There are,
however, usually many fewer than this.
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Let’s look at the special case of a cubic crystal. In it, the energy density w
starts out like this:

2
W = %{szrxezr + C:ca:zyexze:cy T+ Cozz2€relzs
+ szyxexzexy + Cxxyyeg;xeyy ...ete. ..
4+ Cyyyyeay + ...ctc...etc...}, (39.15)

with 81 terms in alll Now a cubic crystal has certain symmetries. In particular, if
the crystal is rotated 90°, it has the same physical properties. It has the same
stiffness for stretching in the y-direction as for stretching in the x-direction. There-
fore, if we change our definition of the coordinate directions x and y in Eq. (39.15),
the energy wouldn’t change. It must be that for a cubic crystal

Crzoe = nyyy = Czzzz. (3916)

Next we can show that the terms like C,,,, must be zero. A cubic crystal has
the property that it is symmetric under a reflection about any plane perpendicular
to one of the axes. If we replace y by —y, nothing is different. But changing y to
—y changes e, to —e,,—a displacement which was toward 4y is now toward — .
If the energy is not to change, C,;,, must go into — C,,,, when we make a reflec-
tion. But a reflected crystal is the same as before, so C,.,, must be the same as
— Cyzzy. This can happen only if both are zero.

You say, “But the same argument will make C,,,,, = 0! No, because there
are four y’s. The sign changes once for each y, and four minuses make a plus. If
there are two or four y’s, the term does not have to be zero. It is zero only when
there is one, or three. So, for a cubic crystal, any nonzero term of C will have only
an even number of identical subscripts. (The arguments we have made for y ob-
viously hold also for x and z.) We might then have terms like C,uyy, Cayeys Coyyzs
and so on. We have already shown, however, that if we change all x’s to y’s and
vice versa (or all z’s and x’s, and so on) we must get—for a cubic crystal—the same
number. This means that there are only three different nonzero possibilities:

Cizzz (= nyyy = szzz),
Cozyy (= Cyyaz = Coras ete.), (39.17)
Coyey (= Cyzye = Craza, €1C.).

For a cubic crystal, then, the energy density will look like this:

w = %{szxx(egx + e'12/y + eZ)
+2szyy(ezxeyy + eyyez. + ezze.m;) (3918)
+4Coyeedy + €5 + €2}

For an isotropic—that is, noncrystalline—material, the symmetry is still
higher. The C’s must be the same for any choice of the coordinate system. Then
it turns out that there is another relation among the C’s, namely, that

Crzzz = Cxxyy + Czyxy- (3919)

We can see that this is so by the following general argument. The stress tensor
S.; has to be related to ¢,, in a way that doesn’t depend at all on the coordinate
directions—it must be related only by scalar quantities. “That’s easy,” you say.
“The only way to obtain S,; from e,, is by multiplication by a scalar constant.
It’s just Hooke’s law. It must be that S,, = (const)e,,.”” But that’s not quite
right; there could also be the wunit tensor 5,, multiplied by some scalar, linearly
related to ¢,,. The only invariant you can make that is linear in the e’s 1s 2 e,
(It transforms like x2 4 yp* + z?, which is a scalar.) So the most general form
for the equation relating S;, to e,,—for isotropic materials—is

S, = 2ue,, + A (Z ekk) £ (39.20)
k

(The first constant is usually written as two times u; then the coefficient u is equal
39-5



Fig. 39-5. A small volume element V
bounded by the surface A.

to the shear modulus we defined in the last chapter.) The constants y and \ are
called the Lamé elastic constants. Comparing Eq. (39.20) with Eq. (39.12), you
see that

Cxxyy = )\s /jy
Coyey = 20, / (39.21)
Corzzr = 2,“ + A

So we have proved that Eq. (39.19) is indeed true. You also see that the elastic
properties of an isotropic material are completely given by two constants, as we
said in the last chapter.

The C’s can be put in terms of any two of the elastic constants we have used
earlier—for instance, in terms of Young’s modulus Y and Poisson’s ratios. We
will leave it for you to show that

Y o

Covee = 1 +0_<1+ 1 _20,>’
Y o

Crayy = TFro (Tﬁ) > (39.22)
Y

o = Tx )

39-3 The motions in an elastic body

We have pointed out that for an elastic body in equilibrium the internal
stresses adjust themselves to make the energy a mimimum. Now we take a look at
what happens when the internal forces are not in equilibrium. Let’s say we have
a small piece of the material inside some surface 4. See Fig. 39-5. If the piece is in
equilibrium, the total force F acting on 1t must be zero. We can think of this force
as being made up of two parts. There could be one part due to “external” forces
like gravity, which act from a distance on the matter 1n the piece to produce a
Jorce per unit volume f,,;. The total external force F,,, is the integral of f., over
the volume of the piece:

Fe o = / Soxs AV (39.23)
In equilibrium, this force would be balanced by the total force F,,,; from the neigh-
boring material which acts across the surface 4. When the piece is not in equili-
brium—if it is moving—the sum of the internal and external forces is equal to the
mass times the acceleration. We would have

Foge -+ Fiy = ] pr dv, (3924)

where p is the density of the material, and r 1s its acceleration. We can now com-
bine Egs. (39.23) and (39.24), writing

Flnt = / (_fext + pr) dv. (3925)
We will simplify our writing by defining
S = —foxt + pr. (39.26)
Then Eq. (39.25) is written
F, = /de. (39.27)

What we have called F,,, is related to the stresses in the material. The stress
tensor S,, was defined (Chapter 31) so that the x-component of the force dF across
a surface element da, whose unit normal is a, is given by

dF, = (Sectts + Segty + Seanz) da. (39.28)
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The x-component of F,,; on our little piece is then the integral of dF, over the
surface. Substituting this into the x-component of Eq. (39.27), we get

/ (Sxxn:u + Sxyny -+ sznz) da = / fx dav. (3929)
A J

We have a surface integral related to a volume integral—and that reminds
us of something we learned in electricity. Note that if you ignore the first subscript
x on each of the S’s in the left-hand side of Eq. (39.29), it looks just like the integral
of a quantity “S” - n—that is, the normal component of a vector—over the
surface. It would be the flux of ““‘$”° out of the volume. And this could be written,
using Gauss law, as the volume integral of the divergence of “S”. It is, in fact,
true whether the x-subscript is there or not—it is just a mathematical theorem
you get by integrating by parts. In other words, we can change Eq. (39.29) into

(39S, 9S., |, 8S.s B /
/v <6—x + et W) v = | fdv (39.30)

Now we can leave off the volume integrals and write the differential equation for
the general component of fas

fi= 3 %, (39.31)

ax,

This tells us how the force per unit volume is related to the stress tensor S,,.

The theory of the motions mnside a solid works this way. If we start out know-
ing the initial displacements—given by, say, #—we can work out the strains e,,.
From the strains we can get the stresses from Eq. (39.12). From the stresses we
can get the force density fin Eq. (39.31). Knowing f, we can get, from Eq. (39.26),
the acceleration r of the material, which tells us how the displacements will be
changing. Putting everythimg together, we get the horrible equation of motion
for an elastic solid. We will just write down the results that come out for an
1sotropic material. If you use (39.20) for S,,, and write the e,, as 3du,/dx, +
du,/dx,, you end up with the vector equation

=0+ WV w)+ pVu (39.32)

You can, in fact, see that the equation relating f and u must have this form.
The force must depend on the second derivatives of the displacements # What
second derivatives of u are there that are vectors? One 1s V(V - u); that’s a true
vector. The only other one is V2u. So the most general form 1s

‘

f=av(V-u + bV,

which is just (39.32) with a different definition of the constants. You may be
wondering why we don’t have a third term using Vv X V X u, which is also a
vector. But remember that V X V X u 1s the same thing as Vu — V(V - u),
soit1s a linear combination of the two terms we have. Adding it would add nothing
new. We have proved once more that isotropic material has only two elastic
constants.

For the equation of motion of the material, we can set (39.32) equal to
p 3%u/dt>*—neglecting for now any body forces lIike gravity—and get

2
0 %ti; — A+ W V(Y ) + uVoa (39.33)

It looks something like the wave equation we had in electromagnetism, except
that there is an additional complicating term. For materials whose elastic proper-
ties are everywhere the same we can see what the general solutions look like in the
following way. You will remember that any vector field can be written as the sum
of two vectors: one whose divergence is zero, and the other whose curl is zero. In
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POLAROIDS

UNDER STRESS

Fig. 39-6. Measuring internal
stresses with polarized light.

Fig. 39-7. A stressed plastic model
as seen between crossed polaroids.
[From F. W. Sears, Optcs, Addison-
Wesley Publishing Co., Reading, Mass.,
1949.]

other words, we can put
u=u; + ug, (39.39)
where
v THy = O, v X U = 0. (39.35)

Substituting 1, + u, for u in (39.33), we get
p9%/31uy + us] = (N + ) V(V - uy) + uVi(ay + u).  (39.36)
We can eliminate #, by taking the divergence of this equation,
p 82/013(V - ug) = (N + w) VAV - up) + pV - Vu,.

Since the operators (V?) and (V') can be interchanged, we can factor out the di-

vergence to get
V- {pd%uy/3t2 — (A + 2u) Viuy} = 0. (39.37)

Since V X u, is zero by definition, the curl of the bracket {} is also zero; so the
bracket itself 1s identically zero, and

p 8%uz/0t2 = (A + 21) Vs : (39.38)

This is the vector wave equation for waves which move at the speed
Cy = vV(\ + 2w)/p. Since the curl of u, 1s zero, there is no shearing associated
with this wave ; this wave 1s just the compressional—sound-type—wave we discussed
in the last chapter, and the velocity is just what we found for Cigp.
In a similar way—by taking the curl of Eq. (39.36)—we can show that u;
satisfies the equation
p8%u,/81% = uViu,. (39.39)

This is again a vector wave equation for waves with the speed C; = u/p.
Since V - u, 18 zero, u; produces no changes in density; the vector u; corresponds
to the transverse, or shear-type, wave we saw in the last chapter, and C; = Cyrenre

If we wished to know the static stresses in an isotropic material, we could,
in principle, find them by solving Eq. (39.32) with fequal to zero—or equal to the
static body forces from gravity such as pg—under certain conditions which are
related to the forces acting on the surfaces of our large block of material. This is
somewhat more difficult to do than the corresponding problems 1n electromagne-
tism. It is more difficult, first, because the equations are a little more difficult to
handie, and second, because the shape of the elastic bodies we are likely to be
mterested in are usually much more complicated. In electromagnetism, we are
often interested in solving Maxwell’s equations around relatively simple geometric
shapes such as cylinders, spheres, and so on, since these are convenient shapes
for electrical devices. In elasticity, the objects we would like to analyze may have
quite complicated shapes—Ilike a crane hook, or an automobile crankshaft, or the
rotor of a gas turbine. Such problems can sometimes be worked out approxi-
mately by numerical methods, using the mimimum energy principle we mentioned
earlier. Another way 1s to use a model of the object and measure the internal strains
experimentally, using polarized hight.

It works this way: When a transparent isotropic material—for example, a
clear plastic like lucite—is put under stress, it becomes birefringent. If you put
polarized light through 1t, the plane of polarization will be rotated by an amount
related to the stress: by measuring the rotation, you can measure the stress. Figure
39-6 shows how such a setup might look. Figure 39-7 is a photograph of a
photoelastic model of a complicated shape under stress.

39-4 Nonelastic behavior

In all that has been said so far, we have assumed that stress is proportional
to strain; in general, that is not true. Figure 39-8 shows a typical stress-strain
curve for a ductile material. For small strains, the stress is proportional to the
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strain. Eventually, however, after a certain point, the relationship between stress
and strain begins to deviate from a straight line. For many materials—the ones
we would call “brittle’ —the object breaks for strains only a little above the point
where the curve starts to bend over. In general, there are other complications in
the stress-strain relationship. For example, if you strain an object, the stresses
may be high at first, but decrease slowly with time. Also if you go to high stresses,

but still not to the “breaking” point, when you lower the strain the stress will OCURRED:
return along a different curve. There is a small hysteresis effect (like the one we STRESS HERE
saw between B and H in magnetic materials).

The stress at which a material will break varies widely from one material to
another. Some materials will break when the maximum fensile stress reaches a
certain value. Other materials will fail when the maximum shear stress reaches a
certain value. Chalk is an example of a material which is much weaker in tension LINEAR
than in shear. If you pull on the ends of a piece of blackboard chalk, the chalk will REGION
break perpendicular to the direction of the applied stress, as shown in Fig. 39-9(a).
It breaks perpendicular to the applied force because it is only a bunch of particles STRAIN
packed together which are easily pulled apart. The material is, however, much
harder to shear, because the particles get in each other’s way. Now you will re-
member that when we had a rod in torsion there was a shear all around it. Also, we
showed that a shear was equivalent to a combination of a tension and compression
at 45°. For these reasons, if you twist a piece of blackboard chalk, it will break
along a complicated surface which starts out at 45° to the axis. A photograph of a
piece of chalk broken in this way is shown in Fig. 39-9(b). The chalk breaks where
the material is in maximum tension.
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Fig. 39-8. A typical stress-strain re-
lation for large strains.

\J) w1

Fig. 39-9. (a) A piece of chalk broken by pulling on the ends; (b) a piece broken by twisting.

Other materials behave in strange and complicated ways. The more compli-
cated the materials are, the more interesting their behavior. If we take a sheet of
“Saran-Wrap” and crumple it up into a ball and throw it on the table, it slowly
unfolds itself and returns toward its original flat form. At first sight, we might
be tempted to think that it is inertia which prevents it from returning to its original
form. However, a simple calculation shows that the inertia is several orders of
~magnitude too small to account for,the effect. There appear to be two important
competing effects: “something” inside the material “remembers” the shape it had
initially and “tries” to get back there, but something else “‘prefers” the new shape
and “resists” the return to the old shape.

We will not attempt to describe the mechanism at play in the Saran plastic,
but you can get an idea of how such an effect might come about from the following
model. Suppose you imagine a material made of long, flexible, but strong, fibers
mixed together with some hollow cells filled with a viscous liquid. Imagine also
that there are narrow pathways from one cell to the next so the liquid can leak
slowly from a cell to its neighbor. When we crumple a sheet of this stuff, we
distort the long fibers, squeezing the liquid out of the cells in one place and forcing
it into other cells which are being stretched. When we let go, the long fibers try to
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return to their original shape. But to do this, they have to force the liquid back to
its original location—which will happen relatively slowly because of the viscosity.
The forces we apply in crumpling the sheet are much larger than the forces exerted
by the fibers. We can crumple the sheet quickly, but it will return more slowly.
It is undoubtedly a combination of large stiff molecules and smaller, movable ones
in the Saran-Wrap that is responsible for its behavior. This idea also fits with the
fact that the material returns more quickly to its original shape when it’s warmed
up than when it’s cold—the heat increases the mobility (decreases the viscosity)
of the smaller molecules.

Although we have been discussing how Hooke’s law breaks down, the re-
markable thing is perhaps not that Hooke’s law breaks down for large strains but
that it should be so generally true. We can get some idea of w¥y this might be by
looking at the strain energy in a material. To say that the stress is proportional to
the strain is the same thing as saying that the strain energy varies as the square of
the strain. Suppose we have a rod and we twist it through a small angle 6. If
Hooke’s law holds, the strain energy should be proportional to the square of 8.
Suppose we were to assume that the energy were some arbitrary function of the
angle; we could write it as a Taylor expansion about zero angle

U@ = U©) + U(0)8 + 1U"(0)82 + LU (6)8°. .. (39.40)
The torque 7 is the derivative of U with respect to angle; we would have
1(6) = U'(0) + U"(0) + LU™(0)6% + -- - (39.41)

Now if we measure our angles from the equilibrium position, the first term is zero.
So the first remaining term is proportional to 6; and for small enough angles, it
will dominate the term in 62. [Actually, materials are sufficiently symmetric
internally so that 7(f) = —7(—6); the term in 62 will be zero, and the departures
from linearity would come only from the 62 term. There is, however, no reason
why this should be true for compressions and tensions.] The thing we have not
explained is why materials usually break soon after the higher-order terms become
significant.

39-5 Calculating the elastic constants

As our last topic on elasticity we would like to show how one could try to
calculate the elastic constants of a material, starting with some knowledge of the
properties of the atoms which make up the material. We will take only the simple
case of an ionic cubic crystal like sodium chloride. When a crystal is strained, its
volume or its shape is changed. Such changes result in an increase in the potential
energy of the crystal. To calculate the change in strain energy, we have to know
where each atom goes. In complicated crystals, the atoms will rearrange themselves
in the lattice in very complicated ways to make the total energy as small as possible.
This makes the computation of the strain energy rather difficult. In the case of a
simple cubic crystal, however, it is easy to see what will happen. The distortions
inside the crystal will be geometrically similar to the distortions of the outside
boundaries of the crystal.

We can calculate the elastic constants for a cubic crystal in the following way.
First, we assume some force law between each pair of atoms in the crystal. Then, we
calculate the change in the internal energy of the crystal when it is distorted from
its equilibrium shape. This gives us a relation between the energy and the strains
which is quadratic in all the strains. Comparing the energy obtained this way with
Eq. (39.13), we can identify the coefficient of each term with the elastic constants
Cz]kl-

For our example we will assume a simple force law: that the force between
neighboring atoms is a central force, by which we mean that it acts along the line
between the two atoms. We would expect the forces in ionic crystals to be like
this, since they are just primarily Coulomb forces. (The forces of covalent bonds
are usually more complicated, since they can exert a sideways push on a nearby
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atom; we will leave out this complication.) We are also going to include only the
forces between each atom and its nearest and next-nearest neighbors. In other
words, we will make an approximation which neglects all forces beyond the next-
nearest neighbor. The forces we will include are shown for the xy-plane in Fig.
39-10(a). The corresponding forces in the yz- and zx-planes also have to be
included.

Since we are only interested in the elastic coefficients which apply to small
strains, and therefore only want the terms in the energy which vary quadratically
with the strains, we can imagine that the force between each atom pair varies
linearly with the displacements. We can then imagine that each pair of atoms is
joined by a linear spring, as drawn in Fig. 39-10(b). All of the springs between a
sodium atom and a chlorine atom should have the same spring constant, say k.
The springs between two sodiums and between two chlorines could have different
constants, but we will make our discussion simpler by taking them equal; we call
them k5. (We could come back later and make them different after we have seen
how the calculations go.)

Now we assume that the crystal is distorted by a homogeneous strain de-
scribed by the strain tensor e;,. In general, it will have components involving
x, y, and z; but we will consider now only a strain with the three components
€2z, oy, and ey, so that it will be easy to visualize. If we pick one atom as our
origin, the displacement of every other atom is given by equations like Eq. (39.9):

Uy = e X + €zy),
39.42
Uy, = exX + ey). ( )

Suppose we call the atom at x = y = 0 “atom 1’ and number its neighbors in
the xy-plane as shown in Fig. 39-11. Calling the lattice constant a, we get the x
and y displacements u, and u, listed in Table 39-1.

Now we can calculate the energy stored in the springs, which is k2/2 times
the square of the extension for each spring. For example, the energy in the hori-
zontal spring between atom 1 and atom 2 is

kl(exxa)z R

5 (39.43)

Note that to first order, the y-displacement of atom 2 does not change the length of
the spring between atom 1 and atom 2. To get the strain energy in a diagonal spring,
such as that to atom 3, however, we need to calculate the change in length due to
both the horizontal and vertical displacements. For small displacements from the
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Fig. 39-10. (a) The interatomic
forces we are taking into account; (b} a
model in which the atoms are connected
by springs.

Fig. 39-11. The displacements of the
nearest and next-nearest neighbors of
atom 1 (exaggerated).



Table 39-1

Location
Atom X,y i, iy k
1 0, a 0 0 —
2 a,0 €230 ez k1
3 a,a (ezz + eyy)a (eyz 1+ ey)a ke
4 0,a €2y eyya k1
5 —a,a (—ez + ey)a (—ey: + ey)a k2
6 —a,0 — ez — ey k1
7 —a, —a —(ezz + egy)a —(eyz + eya k2
8 0, —a —e.,a —eya ki1
9 a, —a (ezz — €3)a (e — ep)a ko

original cube, we can write the change in the distance to atom 3 as the sum of the
components of u, and u, in the diagonal direction, namely as

1
— (uz + uy).
V2 ‘
Using the values of u, and u, from the table, we get the energy
2 2
%(”’\“/}“”) = k“f (exz + ey + €y + €)° (39.44)

For the total energy for all the springs in the xy-plane, we need the sum of
eight terms like (39.43) and (39.44). Calling this energy U, we get

a2

U0:2

{klefr + k_22 (ezz + eyr + ezy + eyy)2
2 k2 2

+ kleyy + 5 (ezz — Cyr — €ry + eyy)
2 k2 2

+ kiezr + 5 (62 + eyz + ey + eyy)

+ kieg, + k—; (xo — €yz — €ay + €’} - (39.45)

To get the total energy of all the springs connected to atom 1, we must make one
addition to the energy in Eq. (39.45). Even though we have only x- and y-com-
ponents of the strain, there are still some energies associated with the next-nearest
neighbors off the xy-plane. This additional energy is

ko(eZa® + ega®. (39.46)

The elastic constants are related to the energy density w by Eq. (39.13). The
energy we have calculated is the energy associated with one atom, or rather, it is
twice the energy per atom, since one-half of the energy of each spring should be
assigned to each of the two atoms it joins. Since there are 1/a® atoms per unit
volume, w and U, are related by

To find the elastic constants C,,x;, we need only to expand out the squares in
Eq. (39.45)—adding the terms of (39.46)—and compare the coefficients of e;ex
with the corresponding coefficient in Eq. (39.13). For example, collecting the terms
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in e, and in eZ,, we get the factor

(k1 + 2kg)a?,
S0

Cxx:c:c = nyyy =

ki + 2k,

a2

For the remaining terms, there is a slight complication. Since we cannot distin-
guish the product of two terms like e,.e,, from e, e.., the coefficient of such terms
n our energy is equal to the sum of two terms in Eq. (39.13). The coefficient of
ex2€yy in Eq. (39.45) is 2k 5, so we have that

2k
(Cxxyy + nyzz = _0—2

But because of the symmetry in our crystal, Cpzyy = Cyyzz, S0 We have that

ko
szyy = nyrr =
a
By a similar process, we can also get
ko
nyxy = Cya:yz = '?l‘ :

Finally, you will notice that any term which involves either x or y only once is
zero—as we concluded earlier from symmetry arguments. Summarizing our results:

ki + 2k
Cozzz = Cyyyy = ——1—‘;—2 )
k
Coyzy = Cyoye = 72 ’ (39.47)
ko
Coay = Cypyar = Capyz = Cyaay = a’
Cfm:l".l/ = C:tyyy = etc. = 0.

We have been able to relate the bulk elastic constants to the atomic properties
which appear 1n the constants k; and k,. In our particular case, C,yzy = Cizyy.
It turns out—as you can perhaps see from the way the calculations went—that
these terms are always equal for a cubic crystal, no matter how many force terms
are taken into account, provided only that the forces act along the line joining
each pair of atoms—that is, so long as the forces between atoms are like springs
and don’t have a sideways part such as you might get from a cantilevered beam
(and you do get in covalent bonds).

We can check this conclusion with the experimental measurements of the
elastic constants. In Table 39-2 we give the observed values of the three elastic
coefficients for several cubic crystals.* You will notice that Cyyyy and Cgyyyy are,
in general, not equal. The reason is that in metals like sodium and potassium the
interatomic forces are not along the line joining the atoms, as we assumed in our
model. Diamond does not obey the law either, because the forces in diamond are
covalent forces and have some directional properties—the bonds would prefer to
be at the tetrahedral angle. The ionic crystals like lithium fluoride, sodium chloride,
and so on, do have nearly all the physical properties assumed in our model, and
the table shows that the constants C,,,,, and C,,,, are almost equal. It is not clear
why silver chloride should not satisfy the condition that Cppyy = Cryay.

* In the literature you will often find that a different notation 1s used. For 1nstance,
people usually write Cpppr = Ci11, Crayy = Ci2, and Cpypy = Cyas.
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Table 39-2*

Elastic Moduli of Cubic Crystals
in 10!2 dynes-cm?

CIZII
Na 0.055
K 0.046
Fe 2.37
Diamond 10.76
Al 108
LiF 1.19
NaCl 0.486
KCI 0.40
NaBr 0.33
KI 0.27
AgCl 0.60

Cxﬂ/l/

0.042
0.037
1.41
1.25
062
0.54
0.127
0.062
0.13
0.043
036

gﬂ”l{

0.049
0026
1.16
5.76
0.28
0.53
0.128
0.062
0.13
0.042
0.062

* From C. Kittel, Introduction to Solid
State Physics, John Wiley and Sons, Inc ,

New York, 2nd. ed , 1956, p. 93.



