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Elasticity

38-1 Hooke’s law

The subject of elasticity deals with the behavior of those substances which
have the property of recovering their size and shape when the forces producing
deformations are removed. We find this elastic property to some extent in all
solid bodies. If we had the time to deal with the subject at length, we would want
to look into many things: the behavior of materials, the general laws of elasticity,
the general theory of elasticity, the atomic machinery that determine the elastic
properties, and finally the limitations of elastic laws when the forces become so
great that plastic flow and fracture occur. It would take more time than we have
to cover all these subjects 1 detail, so we will have to leave out some things
For example, we will not discuss plasticity or the limitations of the elastic laws.
(We touched on these subjects briefly when we were talking about dislocations in
metals.) Also, we will not be able to discuss the internal mechanisms of elasticity—
so our treatment will not have the completeness we have tried to achieve in the
earlier chapters. Our aim is mainly to give you an acquaintance with some of the
ways of dealing with such practical problems as the bending of beams.

When you push on a piece of material, it “gives”—the material is deformed.
If the force is small enough, the relative displacements of the various points in the
material are proportional to the force—we say the behavior 1s elastic. We will
discuss only the elastic behavior. First, we will write down the fundamental laws
of elasticity, and then we will apply them to a number of different situations

Suppose we take a rectangular block of materal of length I, width w, and
height 4, as shown in Fig. 38-1. If we pull on the ends with a force F, then the
length increases by an amount A/, We will suppose in all cases that the change n
length 1s a small fraction of the original length. As a matter of fact, for materials
Iikke wood and steel, the material will break if the change in length 1s more than a
few percent of the original length. For a large number of materials, experiments
show that for sufficiently small extensions the force is proportional to the extenston

F o Al (38.1)

This relation 1s known as Hooke’s law.

The lengthening A/ of the bar will also depend on its length. We can figure out
how by the following argument. If we cement two identical blocks together, end
to end. the same forces act on each block, each will stretch by A/. Thus, the stretch
of a block of length 2/ would be twice as big as a block of the same cross section,
but of length /. In order to get « number more characteristic of the material, and
less of any particular shape, we choose to deal with the ratio A/// of the extension
to the original length. This ratio is proportional to the force but independent of /:

Fo (38.2)

The force F will also depend on the area of the block. Suppose that we put
two blocks side by side. Then for a given stretch A/ we would have the force F
on each block, or twice as much on the combination of the two blocks. The force,
for a given amount of stretch, must be proportional to the cross-sectional area A
of the block. To obtain a law in which the coefficient of proportionality 1s inde-
pendent of the dimensions of the body, we write Hooke’s law for a rectangular
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Fig. 38-1. The stretching of a bar
under uniform tension.
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Fig. 38-2. A bar under uniform
hydrostatic pressure.

A
3

Fig 38-3. Hydrostatic pressure is
the superposition of three longitudinal
compressions.

block 1n the form
Al

F=17Y4 T (38.3)

The constant Y is a property only of the nature of the materal; i1t is known as
Young’s modulus. (Usually you will see Young’s modulus called E. But we've
used E for electric fields, energy, and emf’s, so we prefer to use a different letter.)

The force per unit area is called the stress, and the stretch per unit length—the
Sractional stretch—is called the strain. Equation (38.3) can therefore be rewritten
in the following way:

F Al
qi= Y X T (38.4)

Stress = (Young’s modulus) X (Strain).

There is another part to Hooke’s law: When you strefch a block of material
in one direction it contracts at right angles to the stretch. The contraction in
width is proportional to the width w and also to Al/l. The sideways contraction is
in the same proportion for both width and height, and 1s usually written

Aw  Ah Al

SR =TT (38.5)
where the constant ¢ is another property of the material called Poisson’s ratio. Itis
always positive i sign and 1s a number less than 1/2. (It 1s “reasonable” thate
should be generally posiuve, but it is not quite clear that 1t must be so.)

The two constants Y and o specify completely the elastic properties of a Ao-
mogeneous’ isotropic (that 1s, noncrystalline) material. In crystalline materials the
stretches and contractions can be different in different directions, so there can be
many more elastic constants. We will restrict our discussion temporarily to homo-
geneous’ isotropic materials whose properties can be described by Y andg. Asusual
there are different ways of describing things—some people like to describe the
elastic properties of materials by different constants. 1t always takes two, and
they can be related to o and Y.

The last general Jaw we need is the principle of superposition. Since the two
laws (38 4) and (38.5) are linear in the forces and in the displacements, superposition
will work. If you have one set of forces and get some displacements, and then
you add a new set of forces and get some additional displacements, the resulting
displacements will be the sum of the ones you would get with the two sets of forces
acting independently.

Now we have all the general principles—the superposition principle and Egs.
(38.4) and (38.5)—and that’s all there is to elasticity. But that is like saying that
once you have Newton’s laws that’s all there 1s to mechanics. Or, given Maxwell’s
equations, that’s all there is to electricity. It is, of course, true that with these
principles you have a great deal, because with your present mathematical ability
you could go a long way. We will, however, work out a few special applications.

38-2 Uniform strains

As our first example let’s find out what happens to a rectangular block under
uniform hydrostatic pressure Let’s put a block under water in a pressure tank.
Then there will be a force acting inward on every face of the block proportional
to the area (see Fig. 38-2). Since the hydrostatic pressure is uniform, the siress
(force per unit area) on each face of the block is the same. We will work out first
the change 1n the length. The change n length of the block can be thought of as
the sum of changes in length that would occur in the three independent problems
which are sketched 1in Fig. 38-3.
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Problem 1. 1f we push on the ends of the block with a pressure p, the com-
pressional strain is p/ Y, and it is negative,
v _p.
I Y
Problem 2. 1f we push on the two sides of the block with pressure p, the com-
pressional strain is again p/ Y, but now we want the lengthwise strain. We can get
that from the sideways strain multiplied by —a. The sideways strain is

Aw _ _ P
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Problem 3. If we push on the top of the block, the compressional strain is
once more p/Y, and the corresponding strain in the sideways direction is again
—ap/Y. We get

Combining the results of the three problems—that is, taking Al = Al; +
Aly + Alg—we get
Al

- _Pq_
7=y {1-20 (38.6)

The problem is, of course, symmetrical in all three directions; it follows that

Aw AR p o
=T =-fa-2w (38.7)

The change in the volume under hydrostatic pressure is also of some interest.
Since V = Iwh, we can write, for small displacements,

AV Al Aw Ah
2

Using (38.6) and (38.7), we have

AV 2P _
- = 3Y(1 20). (388)

People like to call AV/V the volume strain and write

AV
= —_K2°.
P vV
The volume stress p is proportional to the volume strain—Hooke’s law once more.

The coeflicient K 1s called the bulk modulus, 1t is related to the other constants by

Y

K= 35 —2" (38.9)

Since K is of some practical interest, many handbooks give Y and K instead of Y
and o. If you want o you can always get 1t from Eq. (38.9). We can also see from
Eq. (38.9) that Poisson’s ratio, o, must be less than one-half. If it were not, the
buik modulus K would be negative, and the material would expand under increas-
ing pressure. That would allow us to get mechanical energy out of any old block—
it would mean that the block was in unstable equilibrium. If it started to expand
it would continue by itself with a release of energy.

Now we want to consider what happens when you put a “‘shear” strain on
something. By shear strain we mean the kind of distortion shown in Fig. 38-4. Asa
preliminary to this, let us look at the strains in a cube of material subjected to the
forces shown in Fig. 38-5. Again we can break it up into two problems: the vertical
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Fig 38-4 A cubeinuniform shear.
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Fig. 38-5. A cube with compressing
forces on top and bottom and equal
stretching forces on two sides.



(a)

Fig. 38-6.
the compressing and stretching forces of (b).
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pushes, and the horizontal pulls. Calling 4 the area of the cube face, we have for
the change in horizontal length
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(38.10)
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The change in the vertical height is just the negative of this.
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The two pairs of shear forces in (a) produce the same stress as

Now suppose we have the same cube and subject it to the shearing forces
shown in Fig. 38-6(a). Note that all the forces have to be equal if there are to be
no net torques and the cube is to be in equilibrium. (Similar forces must also
exist in Fig. 38—4, since the block is in equilibrium. They are provided through
the “glue” that holds the block to the table.) The cube is then said to be in a state
of pure shear. But note that if we cut the cube by a plane at 45°—say along the
diagonal 4 in the figure—the total force acting across the plane is normal to plane
and is equal to ~/2G. The area over which this force acts is /24 ; therefore, the
tensile stress normal to this plane 1s simply G/A4. Similarly, if we examine a plane
at an angle of 45° the other way—the diagonal B in the figure—we see that there
is a compressional stress normal to this plane of —G/A4. From this, we see that
the stress in a “pure shear” is equivalent to a combination of tension and com-
pression stresses of equal strength and at right angles to each other, and at 45° to
the original faces of the cube The internal stresses and strains are the same as
we would find in the larger block of material with the forces shown in Fig. 38-6(b).
But this is the problem we have already solved. The change in length of the diagonal
1s given by Eq. (38.10),

AD 140G
D Y 4

(38.11)

(One diagonal is shortened; the other is elongated.)

It is often convenient to express a shear strain in terms of the angle by which
the cube is twisted—the angle 6 in Fig. 38-7. From the geometry of the figure you
can see that the horizontal shift § of the top edge is equal to /2 AD. So

g = 0 _ V24D AD

] —7 = D (38.12)

The shear stress g is defined as the tangential force on one face divided by the
area, g = G/A. Using Eq. (38.11) in (38.12), we get

1 o
* g

6 =2 %

Or, writing this in the form “stress = constant times strain,”

g = po. (38.13)
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The proportionality coefficient u is called the shear modulus (or, sometimes, the
coefficient of rigidity). It is given in terms of Y and o by

Y

Incidentally, the shear modulus must be positive—otherwise you could get work
out of a self-shearing block. From Eq. (38.14), ¢ must be greater than —1. We
know, then, that ¢ must be between — | and +4; in practice, however, it is always
greater than zero.

As a last example of the type of situation where the stresses are uniform through
the material, let’s consider the problem of a block which is stretched, while it is
at the same time constrained so that no lateral contraction can take place. (Tech-
nically, it’s a little easier to compress it while keeping the sides from bulging out—
but it’s the same problem.) What happens? Well, there must be sideways forces
which keep 1t from changing its thickness—forces we don’t know off-hand but
will have to calculate. It’s the same kind of problem we have already done, only
with a little different algebra. We imagine forces on all three sides, as shown n
Fig. 38-8; we calculate the changes in dimensions, and we choose the transverse
forces to make the width and height remain constant. Following the usual argu-
ments, we get for the three strains:

A, 1 F, oF ofF 1\F _ _(F _  F

T oY A4 Y4, YAZ_Y[Ax "(741,+A,>]’ (8.15)
%_L&_(Q.g]

7 -Y[Ay (Z+5)| (38.16)
al, 1[F.  (F. _F

Tl -G ) (8171

Now since A/, and A/, are supposed to be zero, Eqgs. (38.16) and (38.17) give
two equations relating F, and F, to F,. Solving them together, we get that

F,_F._ o F

Rk AR (38.18)
Substituting in (38.15), we have
Al, 1 202 \F, _1(l—0d—2"\F
‘E—?Q‘n—>z—7(—ﬁ:?»2' (38.19)

Often, you will see this turned around, and with the quadratic in ¢ factored out, 1t
1s then written
F_ -0 —
A (14 o)1 — 20) /

(38.20)

When we constrain the sides, Young’s modulus gets multiplied by a complicated
function of ¢. As you can most easily see from Eq. (38.19), the factor in front of
Y is always greater than 1. It is harder to stretch the block when the sides are
held—which also means that a block is stronger when the sides are held than
when they are not.

38-3 The torsion bar; shear waves

Let’s now turn our attention to an example which is more complicated because
different parts of the material are stressed by different amounts. We consider a
twisted rod such as you would find in a drive shaft of some machinery, or 1n a
quartz fiber suspension used in a delicate instrument. As you probably know from
experiments with the torsion pendulum, the rorque on a twisted rod is proportional
to the angle—the constant of proportionality obviously depending upon the
length of the rod, on the radius of the rod, and on the properties of the material.
The question 1s: In what way? We are now in a position to answer this question;
it’s just a matter of working out some geometry.
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(b)

Fig. 38-9.

(a) A cylindrical bar in torsion. (b) A cylindrical shell in torsion.
(c) Each small piece of the shell is in shear.

Fig. 38-9(a) shows a cylindrical rod of length L, and radius a, with one end
twisted by the angle ¢ with respect to the other. If we want to relate the strains to
what we already know, we can think of the rod as being made up of many cylindrical
shells and work out separately what happens to each shell. We start by looking at
a thin, short cylinder of radius 7 (less than «) and thickness Ar—as drawn in Fig.
38-9(b). Now if we look at a piece of this cylinder that was originally a small
square, we see that it has been distorted into a parallelogram. Each such element
of the cylinder 1s in shear, and the shear angle 6 is

e,

6=L

The shear stress g in the material is, therefore [from Eq. (38.13)],

g = ub = kT (38.21)

The shear stress is the tangential force AF on the end of the square divided
by the area Al Ar of the end [see Fig. 38-9(c)]

_ AF
£ = Alar

The force AF on the end of such a square contributes a torque A7 around the axis
of the rod equal to
AT = rAF = rg Al Ar. (38.22)

The total torque 7 is the sum of such torques around a complete circumference of
the cylinder. So putting together enough pieces so that the Al’s add up to 27,
we find that the total torque, for a hollow tube, 1s

rg(2mr) Ar. (38.23)
Or, using (38.21),
3
r=2mul” i"”- (38.24)

We get that the rotational stiffness, 7/¢, of a hollow tube is proportional to the
cube of the radius r and to the thickness Ar, and inversely proportional to the
length L.

We can now imagine a solid rod to be made up of a series of concentric tubes,
each twisted by the same angle ¢ (aithough the internal stresses are different for
each tube). The total torque is the sum of the torques required to rotate each

shell; for the solid rod
T = 2##2/)‘3(1/‘,
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where the integral goes from r = 0 to r = a, the radius of the rod. Integrating,

we have

4
wa

T= G # (38.25)

For a rod in torsion, the torque is proportional to the angle and is proportional to
the fourth power of the diameter—a rod twice as thick is sixteen times as stiff
for torsion.

Before leaving the subject of torsion, let us apply what we have just learned
to an interesting problem: torsional waves. If you take a long rod and suddenly
twist one end, a wave of twist works it way along the rod, as sketched in Fig.
38-10(a). That’s a little more exciting than a steady twist—Ilet’s see whether we
can work out what happens.

%
—

Fig. 38-10. (a) A torsional wave on a rod. (b} A volume element of the rod.

Let z be the distance to some point down the rod. For a static torsion the
torque is the same everywhere along the rod, and is proportional to ¢/L, the total
torsion angle over the total length. What matters to the material is the local
torsional strain, which is, you will appreciate, d¢/dz. When the torsion along the
rod is not uniform, we should replace Eq. (38.25) by

ma 3¢
7(z) = u R (38.20)
Now let’s look at what happens to an element of length Az shown magnified in
Fig. 38-10(b). There is a torque 7(z) at end 1 of the little hunk of rod, and a differ-
ent torque 7(z 4+ Az) at end 2. If Az is small enough, we can use a Taylor ex-
pansion and write

7 + AZ) = 7(2) + (gg) Az. (38.27)

The net torque At acting on the little piece of rod between z and z + Az is
clearly the difference between 7(z) and 7(z + Az), or A7 = (87/dz) Az. Differ-
entiating Eq. (38.26), we get

AT = p —— —5 Az, (38.28)

The effect of this net torque is to give an angular acceleration to the little
slice of the rod. The mass of the slice is

AM = (ma? Az)p,

where p is the density of the material. We worked out in Chapter 19, Vol. I, that
the moment of inertia of a circular cylinder is mr?/2; calling the moment of inertia
of our piece Al, we have

Al = -gpa‘* Az. (38.29)

Newton’s law says the torque is equal to the moment of inertia times the angular
acceleration, or

AT = Al — - (38.30)
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Pulling everything together, we get

4 42 2
wa* 4, 0¢
Mmoo AZ = = pa” Az >
or 2 9z2 2 or2
7%  p i _
Fr Rl v 0. (38.31)

You will recognize this as the one-dimensional wave equation. We have found
that waves of torsion will propagate down the rod with the speed

Copear = \/E- 38.32
h - ( )

The denser the rod—for the same stiffness—the slower the waves; and the stiffer
the rod, the quicker the waves work their way down. The speed does not depend
upon the diameter of the rod.

Torsional waves are a special example of shear waves. In general, shear waves
are those in which the strains do not change the volume of any part of the materal.
In torsional waves, we have a particular distribution of such shear stresses—namely,
distributed on a circle. But for any arrangement of shear stresses, waves will
propagate with the same speed—the one given in Eq. (38.32). For example, the
seismologists find such shear waves travelling in the interior of the earth.

We can have another kind of a wave in the elastic world inside a solid material.
If you push something, you can start “longitudinal” waves—also called* compres-
sional”” waves. They are like the sound waves in air or in water—the displace-
ments are in the same direction as the wave propagation. (At the surfaces of an
elastic body there can also be other types of waves—called “Rayleigh waves” or
“Love waves.” In them, the strains are neither purely longitudinal nor purely
transverse. We will not have time to study them.)

While we’re on the subject of waves, what is the velocity of the pure com-
pressional waves in a large solid body like the earth? We say “large” because the
speed of sound in a thick body 1s different from what it is, for instance, along a
thin rod. By a “thick” body we mean one in which the transverse dimensions are
much larger than the wavelength of the sound. Then, when we push on the object,
it cannot expand sideways—it can only compress in one dimension. Fortunately,
we have already worked out the special case of the compression of a constrained
elastic material. We have also worked out in Chapter 47, Vol. 1, the speed of
sound waves in a gas. Following the same arguments you can see that the speed
of sound in a solid 1s equal to \/Y"/p, where Y’ 1s the “longitudinal modulus”—
or pressure divided by the relative change in length—for the constrained case.
This is just the ratio of Al/l to F/A we got in Eq. (38.20). So the speed of the
longitudinal waves is given by

Y’ 1 —0¢ Y
Cl20ng = - ; .

= 38.33
s =TT o0 = 20) (3839

So long as ¢ 1s between zero and 1/2, the shear modulus y is less than Young’s
modulus Y, and also Y’ is greater than Y, so

n< Y<VY.

This means that longitudinal waves travel faster than shear waves. One of the most
precise ways of measuring the elastic constants of a substance is by measuring the
density of the material and the speeds of the two kinds of waves. From this
information one can get both Y and o. It 1s, incidentally, by measuring the differ-
ence in the arrival times of the two kinds of waves from an earthquake that a
seismologist can estimate—even from the signals at only one station—the distance
to the quake.
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38—4 The bent beam

We want now to look at another practical matter—the bending of a rod or a
beam. What are the forces when we bend a bar of some arbitrary cross section?
We will work it out thinking of a bar with a circular cross section, but our answer
will be good for any shape. To save time, however, we will cut some corners, so
our theory we will work out is only approximate. Our results will be correct only
when the radius of the bend is much larger than the thickness of the beam.

Suppose you grab the two ends of a straight bar and bend it into some curve
like the one shown in Fig. 38-11. What goes on inside the bar? Well, if it is curved,
that means that the material on the inside of the curve is compressed and the ma-
terial on the outside is stretched. There is some surface which goes along more or
less parallel to the axis of the bar that is neither stretched nor compressed. This is
called the neutral surface. You would expect this surface to be near the “middle”
of the cross section. It can be shown (but we won’t do 1t here) that, for small
bending of simple beams, the neutral surface goes through the ““center of gravity”
of the cross section. This is true only for “pure” bending—if you are not stretching
or compressing the beam at the same time.

For pure bending, then, a thin transverse slice of the bar is distorted as shown
in Fig. 38-12(a). The material below the neutral surface has a compressional
strain which is proportional 1o the distance from the neutral surface; and the material
above is stretched, also in proportion to its distance from the neutral surface. So
the longitudinal stretch Al is proportional to the height y. The constant of pro-
portionality is just / over the radius of curvature of the bar—see Fig. 38-12:

So the force per unit area—the stress—in a small strip at y is also proportional to
the distance from the neutral surface

AF y
Vin Y R (38.34)
Now let’s look at the forces that would produce such a strain. The forces
acting on the little segment drawn in Fig. 38-12 are shown in the figure. If we
think of any transverse cut, the forces acting across it are one way above the
neutral surface and the other way below. They come in pairs to make a “bending
moment”’ 9—by which we mean the torque about the neutral line. We can com-
pute the total moment by integrating the force times the distance from the neutral
surface for one of the faces of the segment of Fig. 38-12:

M = /de. (38.35)

cross
sect

From Eq. (38.34), dF = Yy/R dA, so

_ Y| 2
M = ]Q’ d/f y (1/1.

The integral of y? dA4 is what we can call the “moment of inertia” of the geometric
cross section about a horizontal axis through its “center of mass”;* we will call
it I

m = —II%I (38.36)

/ y? dA. (38.37)

~
It

* It 1s, of course, really the moment of inertia of a slice with unit mass per unit area.
38-9
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Fig. 38-12. (a) Small segment of a
bent beam. (b) Cross section of the beam.



Fig. 38-13. An “I" beam.
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Fig. 38-14. A cantilevered beam
with a weight at one end.

Equation (38.36), then, gives us the relation between the bending moment 9
and the curvature 1/R of the beam. The “stiffness” of the beam is proportional
to Y and to the moment of mertia /. In other words, if you want the stiffest
possible beam with a given amount of, say, aluminum, you want to put as much
of it as possible as far as you can from the neutral surface, to make a large moment
of inertia. You can’t carry this to an extreme, however, because then the thing
will not curve as we have supposed—it will buckle or twist and become weaker
again. But now you see why structural beams are made in the form of an I or an
H-—as shown in Fig. 38-13.

As an example of the use of our beam equation (38.36), let’s work out the
deflection of a cantilevered beam with a concentrated force W acting at the free
end, as sketched in Fig. 38-14. (By “‘cantilevered” we simply mean that the beam
1s supported in such a way that both the position and the slope are fixed at one
end—it 1s stuck mto a cement wall.) What is the shape of the beam? Let’s call
the deflection at the distance x from the fixed end z; we want to know z(x). We'll
work 1t out only for small deflections. We will also assume that the beam is long
in comparison with its cross section. Now, as you know from your mathematics
courses, the curvature 1/R of any curve z(x) is given by

1 d’z/dx”
R [1 + (dz/dx)?p3iz’

(38.38)

Since we are interested only in small slopes—this is usually the case in engineering
structures—we neglect (dz/dx)? in comparison with 1, and take

1 d’z

R=dd (38.39)
We also need to know the bending moment 9. It is a function of x because it is
equal to the torque about the neutral axis of any cross section. Let’s neglect the
weight of the beam and take only the downward force W at the end of the beam.
(You can put in the beam weight yourself if you want.) Then the bending moment
at x is

M(x) = WL — x),

because that is the torque about the point at x, exerted by the weight W—the
torque which the beam must support of x. We get

YI d*z
WL =0 =F = Mge
or
d’z w
e =y &= X (38.40)

This one we can integrate without any tricks; we get

2 3
2= ?"If (L% - %) (38.41)

using our assumptions that z(0) = 0 and that dz/dx is also zero at x = 0. That
is the shape of the beam. The displacement of the end is

W L?
z(L) = i3 (38.42)
the displacement of the end of a beam increases as the cube of the length.

In deriving our approximate beam theory, we have assumed that the cross
section of the beam did not change when the beam was bent. When the thickness
of the beam is small compared to the radius of curvature, the cross section changes
very little and our result is O.K. In general, however, this effect cannot be neglected,
as you can easily demonstrate for yourselves by bending a soft-rubber eraser in
your fingers. If the cross section was originally rectangular, you will find that when
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it is bent it bulges at the bottom (see Fig. 38-15). This happens because when we
compress the bottom, the material expands sideways—as described by Poisson’s
ratio. Rubber is easy to bend or stretch, but 1t is somewhat like a liquid in that
it’s hard to change the volume—as shows up nicely when you bend the eraser. For
an incompressible material, Poisson’s ratio would be exactly 1/2—for rubber 1t is
nearly that.

38-5 Buckling

We want now to use our beam theory to understand the theory of the ‘“‘buck-
ling” of beams, or columns, or rods. Consider the situation sketched in Fig.
38-16 in which a rod that would normally be straight is held in its bent shape by
two opposite forces that push on the ends of the rod. We would like to calculate
the shape of the rod and the magnitude of the forces on the ends.

Let the deflection of the rod from the straight line between the ends be p(x),
where x 1s the distance from one end. The bending moment M at the point P
in the figure 1s equal to the force F multiplied by the moment arm, which 1s the
perpendicular distance p,

M(x) = Fy. (38.43)

Using the beam equation (38.36), we have

Yl
w = Fy. (38.44)
For small deflections, we can take 1/R = —d?y/dx? (the mmus sign because the
curvature is downward). We get
dy F

which is the differential equation of a sine wave. So for small deflections, the curve
of such a bent beam is a sine curve. The “wavelength” A of the sine wave 1s twice
the distance I between the ends. If the bending is small, this 1s just twice the
unbent length of the rod. So the curve 1s

y = Ksin mx/L.
Taking the second derivative, we get

df ¥ w2

dx: T T Y
Comparing this to Eq. (38.45), we see that the force is

Fen )y (38.46)
For small bendings the force 1s independent of the bending displacement y!

We have, then, the following thing physically If the force 1s less than the F
given in Eq. (38.46), there will be no bending at all. But if 1t 1s shightly greater
than this force, the material will suddenly bend a large amount—that is, for
forces above the critical force m2YI/L? (often called the “Euler force”) the beam
will “buckle.” If the loading on the second floor of a building exceeds the Euler
force for the supporting columns, the building will collapse. Another place where
the buckling force 1s most important 1s in space rockets. On one hand, the rocket
must be able to hold i1ts own weight on the launching pad and endure the stresses
during acceleration, on the other hand, it 1s important to keep the weight of the
structure to a minimum, so that the payload and fuel capacity may be made as
large as possible.

Actually a beam will not necessarily collapse completely when the force
exceeds the Euler force. When the displacements get large, the force is larger than
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Fig. 38-15 (a) A bent eraser; {(b)
cross section.
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Fig. 38-16. A buckled beam.
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what we have found because of the terms in 1/R in Eq. (38.38) that we have ne-
glected. To find the forces for a large bending of the beam, we have to go back to
the exact equation, Eq. (38.44), which we had before we used the approximate
relation between R and y. Equation (38.44) has a rather simple geometrical prop-
erty.* It’s a little complicated to work out, but rather interesting. Instead of
describing the curve in terms of x and y, we can use two new variables: S, the
distance along the curve, and ¢ the slope of the tangent to the curve. See Fig. 38-17.
The curvature is the rate of change of angle with distance:

1 do

R dS
We can, therefore write the exact equation (38.44) as

do F

7
If we take the derivative of this equation with respect to S and replace dy/dS by
sin 6, we get
d’s F .
g5z = — yp Sin®. (38.47)
[If 6 is small, we get back Eq. (38.45). Everything is O.K.]

Now it may or may not delight you to know that Eq. (38.47) is exactly the
same one you get for the large amplitude oscillations of a pendulum—with F/YI
replaced by another constant, of course. We learned way back in Chapter 9, Vol. I,
how to find the solution of such an equation by a numerical calculation.t The
answers you get are some fascinating curves—known as the curves of the *‘Elastica.”
Figure 38-18 shows three curves for different values of F/ Y1

* The same equation appears, incidentally, in other physical situations—for example,
the meniscus at the surface of a liquid contained between parallel planes—and the same
geometrical solution can be used.

+ The solutions can also be expressed 1n terms of some funcuons, called the “"Jacobian
elliptic functions,” that someone else has already computed.
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