36

Ferromagnetism

36-1 Magnetization currents

In this chapter we will discuss some materials in which the net effect of the
magnetic moments in the material 1s much greater than in the case of paramagnetism
or diamagnetism. The phenomenon is called ferromagnetism. In paramagnetic and
diamagnetic materials the induced magnetic moments are usually so weak that
we don’t have to worry about the additional fields produced by the magnetic
moments. For ferromagnetic materials, however, the magnetic moments induced
by applied magnetic fields are quite enormous and have a great effect on the fields
themselves. In fact, the induced moments are so strong that they are often the
dominant effect 1n producing the observed fields. So one of the things we will
have to worry about is the mathematical theory of large induced magnetic moments.
That is, of course, just a technical question. The real problem is, why are the
magnetic moments so strong—how does it all work? We will come to that question
in a little while,

Finding the magnetic fields of ferromagnetic materials is something like the
problem of finding the electrostatic field in the presence of dielectrics. You will
remember that we first described the internal properties of a dielectric in terms of
a vector field P, the dipole moment per unit volume. Then we figured out that the
effects of this polarization are equivalent to a charge density p,,, given by the di-
vergence of P:

Ppol = —Vv - P (361)

The total charge in any situation can be written as the sum of this polarization
charge plus all other charges, whose density we write* p,n.. Then the Maxwell
equation which relates the divergence of E to the charge density becomes

V_E:L)‘:Bpol"i—ponher’
€y €p
or

V.Ez_u_{_'[ﬂ}lel.

€o €0

We can then pull out the polarization part of the charge and put it on the other
side of the equation, to get the new law

A (GOE + P) = Pother- (362)

The new law says the divergence of the quantity (eE + P) is equal to the density
of the other charges.

Pulling E and P together as in Eq. (36.2), of course, 1s useful only if we know
some relation between them. We have seen that the theory which relates the
induced electric dipole moment to the field was a relatively complicated business
and can really only be applied to certain simple situations, and even then as an
approximation. We would like to remind you of one of the approximate ideas
we used. To find the induced dipole moment of an atom inside a dielectric, 1t 1s
necessary to know the electric field that acts on an individual atom. We made the
approximation—which s not too bad in many cases—that the field on the atom

*If all of the “other” charges were on conductors, pother Would be the same as our
piree Of Chapter 10.
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Fig. 36—1. The electric field in a
cavity in a dielectric depends on the
shape of the cavity.
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1s the same as it would be at the center of the small hole which would be left if we
took out the atom (keeping the dipole moments of all the neighboring atoms the
same). You will also remember that the electric field in a hole in a polarized di-
electric depends on the shape of the hole. We summarize our earlier results in
Fig. 36-1. For a thin, disc-shaped hole perpendicular to the polarization, the
electric field in the hole is given by

P
Epie = deelectnc + "; ’
4]

which we showed by using Gauss’ law. On the other hand, in a needle-shaped
slot paralle] to the polarization, we showed—by using the fact that the curl of E is
zero—that the electric fields nside and outside of the slot are the same. Finally,
we found that for a spherical hole the electric field was one-third of the way between
the field of the slot and the field of the disc:

1

Eiore = Egicroctric + 3 (Spherlcal hOlC) (363)
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This was the field we used in thinking about what happens to an atom insid. a
polarized dielectric.

Now we have to discuss the analog of all this for the case of magnetism.
One simple, short-cut way of doing this is to say the M, the magnetic moment per
unit volume, is just ke P, the electric dipole moment per unit volume, and that,
therefore, the negative of the divergence of M 1s equivalent to a “magnetic charge
density” p,,—whatever that may mean. The trouble 1s, of course, that there isn’t
any such thing as a “‘magnetic charge” in the physical world. As we know, the
divergence of B is always zero. But that does not stop us from making an artificial
analog and writing

V-M= —p., (36.4)
where it is to be understood that p,, is purely mathematical. Then we could make
a complete analogy with the electrostatic case and use all our old equations from
electrostatics. People have often done something like that. In fact, historically,
people even believed that the analogy was right. They believed that the quantity
pm represented the density of “magnetic poles.” These days, however, we know
that the magnetization of materials comes from circulating currents within the
atoms—either from the spinning electrons or from the motion of the electrons in
the atom. It is therefore nicer from a physical point of view to describe things
realistically in terms of the atomic currents, rather than in terms of a density of
some mythical “magnetic poles.” Incidentally, these currents are sometimes called
“Amperian” currents, because Ampere first suggested that the magnetism of
matter came from circulating atomic currents.

The actual microscopic current density in magnetized matter 1s, of course,
very complicated. Its value depends on where you look in the atom—it’s large in
some places and small in others; it goes one way in one part of the atom and the
opposite way in another part (just as the microscopic electric field varies enor-
mously inside a dielectric). In many practical problems, however, we are interested
only 1n the fields outside of the matter or in the average magnetic field inside of the
matter—where we mean an average taken over many, many atoms. It is only for
such macroscopic problems that 1t is convenient to describe the magnetic state of
the matter in terms of M, the average dipole moment per unit volume. What we
want to show now is that the atomic currents of magnetized matter can give rise
to certain large-scale currents which are related to M.

What we are going to do, then, is to separate the current density j—which is
the real source of the magnetic fields—into various parts: one part to describe the
circulating currents of the atomic magnets, and the other parts to describe what
other currents there may be. It is usually most convenient to separate the currents
into three parts. In Chapter 32 we made a distinction between the currents which
flow freely on conductors and the ones which are due to the back and forth motions
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of the bound charges in dielectrics. In Section 32-2 we wrote

j = ijI + jothcrs

where j,, represented the currents from the motion of the bound charges in di-
electrics and j,iner took care of all other currents. Now we want to go further,
We want to separate j,,0r 11to one part, j..., which describes the average currents
inside of magnetized materials, and an additional term which we can call j.,,q for
whatever is left over. The last term will generally refer to currents in conductors,
but it may also include other currents—for example the currents from charges
moving freely through empty space. So we will write for the total current density:

.i = jpol + jmag + jcond- (365)

Of course 1t is this total current which belongs 1n the Maxwell equation for the
curl of B:

2 - 4 F
VX B=1+7 (36.6)

Now we have to relate the current j,,,, to the magnetization vector M. So
that you can see where we are going, we will tell you that the result is going to
be that

Jmag = V X M. (36.7)

If we are given the magnetization vector M everywhere in a magnetic material,
the circulation current density 1s given by the curl of M. Let’s see if we can under-
stand why this is so.

First, let’s take the case of a cylindrical rod which has a umform magnetization
parallel to its axis. Physically, we know that such a uniform magnetization really
means a uniform density of atomic circulating currents everywhere inside the
material. Suppose we try to imagine what the actual currents would look like in
a cross section of the material. We would expect to see currents something like
those shown in Fig. 36-2. Each atomic current goes around and around 1n a little
circle, with all the circulating currents going around in the same direction. Now
what is the effective current of such a thing? Well, in most of the bar there is no
effect at all, because right next to each current there is another current going in
the opposite direction. If we imagine a small surface—but one still quite a bit
larger than a single atom—such as is indicated in Fig. 36-2 by the hine 4B,
the net current through such a surface 1s zero. There is no net current any-
where inside the material. Note, however, that at the surface of the material there
are atomic currents which are not cancelled by neighboring currents going the
other way. At the surface there 1s a net current always going in the same direction
around the rod. Now you see why we said earlier that a uniformly magnetized
rod 1s equivalent to a long solenoid carrying an electric current.

How does this view fit with Eq. (36.7)? First, inside the material the magne-
tization M is constant, so all its derivatives are zero. This agrees with our geometric
picture. At the surface, however, M is not really constant—it is constant up to
the edge and then suddenly collapses to zero. So, right at the surface there are
terrific gradients which, according to (36.7), will give a high current density.
Suppose we look at what happens near the point C in Fig. 36-2. Taking the x-
and y-directions as in the figure, the magnetization M is in the z-direction. Writing
out the components of Eq. (36.7), we have

oM, .
_0)7 = (]mag)a:,
(36.8)
oM, .
T Tox (Umag)y-

At the point C, the derivative dM,/dy 1s zero, but dM,/9x is large and positive.
Equation (36.7) says that there is a large current density in the minus y-direction.
This agrees with our picture of a surface current going around the bar.
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Fig. 36-2. Schematic diagram of the
circulating atomic currents as seen in a
cross section of an iron rod magnetized in
the z-direction.
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Now we want to find the current density for a more complicated case in which
the magnetizatton varies from point to point in a material. It is easy to see quali-
tatively that if the magnetization is different in two neighboring regions, there will
not be a perfect cancellation of the circulating currents so that there will be a net
current in the volume of the material. It is this effect that we want to work out
quantitatively.

First, we need to recall the results of Section 14-5 that a circulating current
I has a magnetic moment u given by

uw = IA, 36.9)

where A is the area of the current loop (see Fig. 36-3). Now let’s consider a small
rectangular block inside of a magnetized material, as sketched in Fig. 36-4. We
take the block so small that we can consider that the magnetization 1s uniform
inside it. If this block has a magnetization M, in the z-direction, the net effect
will be the same as a surface current going around on the vertical faces, as shown.
We can find the magnitude of these currents from Eq. (36.9). The total magnetic
moment of the block is equal to the magnetization times the volume:

M= Mz(abc)s
from which we get (remembering that the area of the loop is ac)
I = M.

In other words, the current per unit length (vertically) on each of the vertical
surfaces is equal to M,.
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Now suppose that we imagine two such little blocks next to each other, as
shown 1n Fig. 36-5. Because block 2 is slightly displaced from block 1, 1t will have
a slightly different vertical component of magnetization, which we call M, 4 AM,.
Now on the surface between the two blocks there will be two contributions to the
total current. Block 1 will produce a current 7, flowing in the positive y-direction,
and block 2 will produce a surface current I, flowing 1n the negative y-direction.
The total surface current in the positive y-direction is the sum:

I=1—1,=Mb— (M, + AM)b
= —AM.,b.
We can write AM, as the derivative of M, 1n the x-direction times the displacement

from block 1 1o block 2, which is just a:

oM,
0x

AM, = a.

The current flowing between the two blocks is then

oM,
I —_— - Tx“ ab-
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To relate the current / to an average volume current density j, we must realize
that this current 7 is really spread over a certain cross-sectional area. If we imagine
the whole volume of the material to be filled with such little blocks, one such side
face (perpendicular to the x-axis) can be associated with each block.* Then we
see that the area to be associated with the current [ is just the area ab of one of
the front faces. We get the result

I oM,

v =@ =T ax

We have at least the beginning of the curl of M.

There should be another term in j, from the variation of the x-component of
the magnetization with z. This contribution toj will come from the surface between
two little blocks stacked one on top of the other, as shown in Fig. 36-6. Using
the same arguments we have just made, you can show that this surface will con-
tribute to j, the amount dM,/dz. These are the only surfaces which can contribute
to the y-component of the current so we have that the total current density n the
y-direction is

. oM, M,
= e T Tox

Working out the currents on the remaining faces of a cube—or using the fact
that our z-direction is completely arbitrary—we can conclude that the vector
current density 1s indeed given by the equation

j=VXM.

So if we choose to describe the magnetic situation in matter i terms of the
average magnetic moment per unit volume M, we find that the circulating atomic
currents are equivalent to an average current density in matter given by Eq. (36.7).
If the material 1s also a dielectric, there may be, in addition, a polarization current
Jpot = 0P/dt. And if the materal is also a conductor, we may have a conduction
current j .4 as well. We can write the total current as

oP

j = j(‘ond + Vv X M + 6_t (3610)

36-2 The field H

Next, we want to insert the current as written in Eq. (36.10) into Maxwell’s
equations. We get

c2VXB=J~+%‘=L
€g at €g

. oP oE
(Jcond + v X M+ 3{) + E

We can move the term in M to the left-hand side:

v x (B MY oy 8 (5 7). (36.11)

6002 €p at €g

As we remarked in Chapter 32, many people like to write (E + P/eg) as a new
vector field D/e,. Similarly, it is often convenient to write (B — M/eqc?) as a
single vector field. We choose to define a new vector field H by
M
H=B- 5 (36.12)
Then Eq. (36.11) becomes
oD

€’V X H = joona + 5 (36.13)

It Iooks simple, but all the complexity is just hidden in the letters D and H.
* Or, if you prefer, the current I in each face should be split 50-50 with the blocks on

the two sides.
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Table 36-1
Units of magnetic quantities

[B] = weber/meter? = 10% gauss

[H] = weber/meter? = 10 gauss
or 104 ocersted

[M] = ampere/meter

[H'] = ampere/meter

Convenient conversions

B (gauss) = 10* B (weber/meter2)
H (gauss) = H (oersted)
0.0126 H’ (amp/meter)

Now we have to give you a warning. Most people who use the mks units
have chosen to use a different definition of H. Calling their field H' (of course,
they still call it H without the prime), it is defined by

H = €yc?B — M. (36.14)

(Also, they usually write €gc® as a new number 1/ug: then they have one more
constant to keep track of!) With this defimtion, Eq. (36.13) looks even simpler:

v X H' = jcond + (36-15)

oD
=
But the difficulues with this defimition of H' are, first, that 1t doesn’t agree with the
definition of people who don’t use the mks units, and second, that 1t makes H’
and B have different units. We think it 1s more convement for H to have the same
units as B—rather than the units of M, as H’ does. But if you are going to be an
engineer and work on the design of transformers, magnets, and such, you will have
to watch out. You will find many books which use for H the definition of Eqg.
(36.14) rather than our definition of Eq. (36.12), and many other books—especially
handbooks about magnetic materials—that relate B and H the way we have done.
You’ll have to be careful to figure out which convention they are using.

One way to tell is by the units they use. Remember that in the mks system,
B—and therefore our H—are measured with the unit: one weber per square meter,
equal to 10,000 gauss. In the mks system, a magnetic moment (a current times an
area) has the unit: one ampere-meter?. The magnetization M, then, has the unit:
one ampere per meter. For H' the units are the same as for M. You can see that
this also agrees with Eq. (36.15), since ¥ has the dimensions of one over a length.
People who are working with electromagnets also get in the habit of calling the
unit of H (with the H’ definition) “one ampere furn per meter”—thimking of the
turns of wire on a winding. But a “turn” 1s really a dimensionless number, so that
doesn’t need to confuse you. Since our H 1s equal to H’/egc?, 1f you are using the
mks system, H (in webers/meter?) 1s equal to 47 X 1077 times H’ (in amperes
per meter). It is perhaps more convenient to remember that H (in gauss) =
0.0126 H' (in amp/meter).

There is one more horrible thing. Many people who use our definition of
H have decided to call the units of H and B by different names! Even though they
have the same dimensions, they call the unit of B one gauss, and the unit of H one
oersted (after Gauss and Oersted, of course). So, in many books you will find
graphs with B plotted 1n gauss and H in oersteds. They are really the same unit—
10™* of the mks unit. We have summarized the confusion about magnetic units
in Table 36-1.

36-3 The magnetization curve

Now we will look at some simple situations in which the magnetic field 1s
constant, or in which the fieids change slowly enough that we can neglect dD/dz in
comparison with j.,,q. Then the fields obey the equations

vV-B =0, (36.16)
VX H= jcond/€0c2’ (3617)
H = B — M/eyc?. (36.18)

Suppose we have a torus (a donut) of iron wrapped with a coil of copper wire,
as shown in Fig. 36-7(a). A current 7 flows in the wire. What 1s the magnetic
field? The magnetic field will be mainly inside the 1ron; there, the lines of B will
be circles, as drawn in Fig. 36-7(b). Since the flux of B1s continuous, its divergence
1s zero, and Eq (36.16) 1s satisfied Next, we write Eq (36.17) 1n another form by
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integrating around the closed loop T' drawn in Fig. 36~7(b). From Stokes’s
theorem, we have that

1 (.
fPH-ds = W/Shond n da, (36.19)

where the integral of j is to be carried out over any surface S bounded by I'. This
surface is cut once by each turn of the winding. Each turn contributes the current
I to the integral, and, if there are N turns in all, the integral 1s NI. From the
symmetry of our problem, B is the same all around the curve T'; if we assume that
the magnetization, and therefore, the field H is also constant along I', Eq. (36.19)
becomes

NI

Hl—_—ma

where / is the length of the curve I'. So,

RV
/

e (36.20)

It is because H is directly proportional to the magnetizing current in cases like
this one that H is sometimes called the magnetizing field.
Now all we need is an equation which relates H to B. But there isn’t any such

equation! There 1s, of course, Eq. (36.18), but it 1s no help because there is no .

direct relation between M and B for a ferromagnetic material like iron. The mag-
netization M depends on the whole past history of the iron, and not only on what
B is at the moment.

All is not lost, though. We can get solutions in certain simple cases. If we
start out with unmagnetized iron—let’s say with iron that has been annealed at
high temperatures—then in the simple geometry of the torus, all the iron will have
the same magnetic history. Then we can say something about M—and therefore
about the relation between B and H—from experimental measurements. The
field B in the torus is, from Eq. (36.20), given as a constant times the current 7/
in the winding. The field B can be measured by integrating over time the emf in
the coil (or in an extra coil wound over the magnetizing coil shown in the figure).
This emf is equal to the rate of change of the flux of B, so the integral of the emf
with time is equal to B times the cross-sectional area of the torus.

Figure 36-8 shows the relation between B and H, observed with a torus of
soft iron. When the current is first turned on, B increases with increasing H along
the curve a. Note the different scales on B and H; initially, it takes only a relatively
small H to make a large B. Why is B so much larger with the iron than it would
be with air? Because there is a large magnetization M which is equivalent to a
large surface current on the iron—the field B comes from the swm of this current
and the conduction current in the winding. Why M should be so large, we will
discuss later.

At higher values of H, the magnetization curve levels off. We say that the
iron saturates. With the scales of our figure, the curve appears to become hori-
zontal. Actually, it continues to rise slightly—for large fields, B becomes propor-
tional to H, and with a unit slope. There is no further increase of M. Incidentally,
we should point out that if the torus were made of some nonmagnetic material,
M would be zero and B would equal H for all fields.

The first thing we notice is that curve a i Fig. 36-8—which is the so-called
magnetization curve—is highly nonlinear. But 1t’s worse than that. If, after reaching
saturation, we decrease the current in the coil to bring H back to zero, the magnetic
field B falls along curve b. When H reaches zero, there is still some B left. Even
with no magnetizing current there is a magnetic field in the iron—1t has become
permanently magnetized. If we now turn on a negafive current in the coil, the
B-H curve continues along b until the 1ron is saturated in the negative direction.
If we then bring the current back to zero again, B goes along curve c. If we alternate
the current between large positive and negative values, the B-H curve goes back
and forth along very nearly the curves b and c¢. If we vary H in some arbitrary
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Fig. 36-7. (a) A torus of iron wound
with a coil of insulated wire. (b) Cross
section of torus showing field lines.
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Fig. 36-8. Typical magnetization
and hysteresis curves for soft iron.



way, however, we can get more complicated curves which will, in general, lie
somewhere between the curves b and ¢. The loop made by repeated oscillation
of the fields is called a Aysteresis loop of the iron.

We see then that we cannot write a functional relationship like B = f(H),
because the value of B at any instant depends not only on what H is at that time,
but on its whole past history. Naturally, the magnetization and hysteresis curves
are different for different substances. The shape of the curves depends critically on
the chemical composition of the material, and also on the details of its preparation
and subsequent physical treatment. We will discuss some of the physical explana-
tions for these complications 1n the next chapter.

36—4 Iron-core inductances

One of the most important applications of magnetic materials is in electrical
circuits—for example, in transformers, electric motors, and so on. One reason is
that with iron we can control where the magnetic fields go, and also get much
larger fields for a given electric current. For example, the typical “toroidal”
inductance is made very much like the object shown in Fig. 36-7. For a given in-
ductance, it can be much smaller in volume and use much less copper than an
equivalent “air-core” inductance. For a given inductance, we get a much smaller
resistance in the winding, so the inductance is more nearly *‘ideal”—particularly
for low frequencies. It is very easy to understand, qualitatively, how such an
inductance works. If I is the current in the winding, then the field H which is
produced in the inside is proportional to /—as given by Eq. (36.20). The voltage
U across the terminals 1s related to the magnetic field B. Neglecting the resistance
of the winding, the voltage U is proporuonal to dB/dr. The inductance £, which
is the ratio of U to dI/dt (see Section 17-7), thus involves the relation between B
and H in the iron. Since the B 1s so much bigger than the H, we get a large factor
in the inductance. Physically, what happens is that a small current in the coil,
which would ordinarly produce a small magnetic field, causes the little “‘slave”
magnets in the iron to line up and produce a tremendously greater ‘“‘magnetic”
current than the external current in the winding. It1s as if we had a lot more current
going through the coil than we really have. When we reverse the current, all the
little magnets flip over—all those internal currents reverse—and we get a much
higher induced emf than we would get without the iron. If we want to calculate
the inductance, we can do so through the energy—as described 1n Section 17-8.
The rate at which energy is dehivered from the current source is /U. The voltage U
is the cross-sectional area A4 of the core, times N, times dB/dt. From Eq. (36.20),
I = (eoc®l/N)H. So we have

dUu

o - 2 dB
o = Ol = (ec®lOH 2.

Integrating over time, we have

U = (ec’lA) / H dB. (36.21)

Notice that /4 is the volume of the torus, so we have shown that the energy density
u = U/vol in a magnetic material is given by

u = €’ / H dB. (36.22)

An interesting feature is involved here. When we use alternating currents,
the iron is driven around a hysteresis loop. Since B is not a single-valued function
of H, the integral of [ H dB around one complete cycle is not equal to zero. It
is the area enclosed inside the hysteresis curve. Thus, the driving source delivers
a certain net energy each cycle—an energy proportional to the area inside the
hysteresis loop. And that energy is “lost.” It is lost from the electromagnetic
goings on, but turns up as heat m the iron. It s called the Aysteresis loss. To keep
such energy losses small, we would like the hysteresis loop to be as narrow as
36-8



possible. One way to decrease the area of the loop is to reduce the maximum field
that is reached during each cycle. For smaller maximum fields, we get a hysteresis
curve like the one shown in Fig. 36-9. Also, special materials are designed to have
a very narrow loop. The so-called zransformer irons—which are iron alloys with
a small amount of silicon—have been developed to have this property.

When an inductance is run over a small hysteresis loop, the relationship
between B and H can be approximated by a linear equation. People usually write

B = uH. (36.23)

The constant u is not the magnetic moment we have used before. 1t is called the
permeability of the iron. (It is also sometimes called the “relative permeability.”)
The permeability of ordinary irons is typically several thousand. There are special
alloys alike “supermalloy’” which can have permeabilities as high as a million.

If we use the approximation that B = uH in Eq. (36.21), we can write the
energy in a toroidal inductance as

2
U= (eoc?lA)u ] HdH = (eoc®lA) B2 (36.24)

So the energy density is approximately

2
. €oC 2
U~ —5- uH".

We can now set the energy of Eq. (36.24) equal to theenergy £72/2 of an inductance,

and solve for £. We get
H 2
£ = (E()C2IA)/.L (7—> .

Using H/I from Eq. (36.20), we have

_ uN%4 )
T goc?l

(36.25)

The inductance is proportional to u. If you want inductances for such things as
audio amplifiers, you will try to operate them on a hysteresis loop where the
B-H relationship is as linear as possible. (You will remember that we spoke in
Chapter 50, Vol. 1, about the generation of harmonics in nonlinear systems.)
For such purposes, Eq. (36.23) is a useful approximation. On the other hand,
if you want to generate harmonics, you may use an inductance which is intention-
ally operated in a highly nonlinear way. Then you will have to use the complete
B-H curves, and analyze what happens by graphical or numerical methods.

A “transformer” is often made by putting two coils on the same torus—or
core—of a magnetic material. (For the larger transformers, the core is made with
rectangular proportions for convenience.) Then a varying current in the “primary”
winding causes the magnetic field in the core to change, which induces an emf in
the “secondary” winding. Since the flux through each turn of both windings is
the same, the emf’s in the two windings are in the same ratio as the number of
turns on each. A voltage applied to the primary is transformed to a different
voltage at the secondary. Since a certain net current around the core is needed to
produce the required change in the magnetic field, the algebraic sum of the currents
in the two windings will be fixed and equal to the required “magnetizing” current.
If the current drawn from the secondary increases, the primary current must in-
crease in proportion—there is a “transformation” of currents as well as voltage.

365 Electromagnets

Now let’s discuss a practical situation which is a little more complicated.
Suppose we have an electromagnet of the rather standard form shown i Fig.
36-10—there is a ““C-shaped” yoke of iron, with a coil of many turns of wire
wrapped around the yoke. What is the magnetic field B in the gap?
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Fig. 36-10. An electromagnet.
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If the gap thickness is small compared with all the other dimensions, we can,
as a first approximation, assume that the lines of B will go around through the
loop, just as they did in the torus They will look more or less as shown in Fig.
36-11(a). They tend to spread out somewhat 1n the gap, but 1if the gap is narrow,
this will be a small effect. It is a fair approximation to assume that the flux of
B through any cross section of the yoke is a constant If the yoke has a uniform
cross-sectional area—and if we neglect any edge effects at the gaps or at’tie corners
—we can say that B is uniform around the yoke.

Also, B will have the same value in the gap. This follows from Eq. (36.16).
Imagine the closed surface S, shown in Fig. 36-11(b), which has one face in the
gap and the other in the iron. The total flux of B out of this surface must be zero.
Calling B, the field in the gap and B, the field in the iron, we have that

BiA; — Byd, = 0.

Since 4; = A, (to our approximation), it follows that B; = B,.

Now let’s look at H. We can again use Eq. (36.19), taking the line integral
around the curve T' 1n Fig. 36-11(b). As before, the right-hand side is N/, the
number of turns times the current. Now, however, H will be different 1n the iron
and in the air. Calling H, the field in the iron and /, the path length around the
yoke, this part of the curve will contribute the amount H,/, to the integral. Calling
H  the field in the gap and /; the gap thickness, we get the contribution H/; from
the gap. We have that

NI

Hlll + H212 = GO—CE (3626)

Now we know something else: that in the air gap, the magnetization 1s neghgi-
ble, so that By = H,. Since B; = B,, Eq. (36.26) becomes

Byly + Hsly = —G—OA% (36.27)
We still have two unknowns. To find B, and H,, we need another relationship—
namely, the one which relates B to H in the 1ron.

If we can make the approximation that B, = uH,, we can solve the equation
algebraically. However, let’s do the general case, in which the magnetization curve
of the iron is one like that shown in Fig. 36-8. What we want 1s the simultaneous
solution of this functional relationship together with Eq. (36.27). We can find it
by plotting a graph of Eq. (36.27) on the same graph with the magnetization curve,
as is done in Fig. 36-12. Where the two curves intersect, we have our solution.

For a given current /, the function (36.27) 1s the straight line marked 7 > 0
in Fig. 36-12. The line intersects the H-axis (B, 0) at Hy = NI/eyc?l,, and
the slope is —/3/1,. Different currents just shift the line horizontally. From Fig.
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36-12, we see that for a given current there are several different solutions, depending
on how you got there. If you have just built the magnet and turned the current
up to 1, the field B, (which is also B;) will have the value given by point a. If
you have run the current to some very high value and come down to I, the field
will be given by point 5. Or, if you have just had a high negative current in the
magnet and then come up to I, the field is the one at point ¢. The field in the gap
will depend on what you have done in the past.

When the current in the magnet is zero, the relation between B, and H, in
Eq. (36.27) is shown by the line marked 7 = 0 in the figure. There are still various
possible solutions. If you have first saturated the iron, there may be a considerable
residual field in the magnet as given by point d. You can take the coil off, and you
have a permanent magnet. You can see that for a good permanent magnet, you
would want a material with a wide hysteresis loop. Special alloys, such as Alnico
V, have very wide loops.

36~6 Spontaneous magnetization

We now turn to the question of why it is that in ferromagnetic materials a
small magnetic field produces such a large magnetization. The magnetization of
ferromagnetic materials like iron and nickel comes from the magnetic moment
of the electrons in the inner shell of the atom. Each electron has a magnetic moment
u equal to ¢/2m times its g-factor, times its angular momentum J. For a single
electron with no net orbital motion, g = 2, and the component of J in any direc-
tion—say the z-direction—1s =%/2, so the component of u along the z-axis is

s = Qq—’]; = 0.928 X 1072* amp-m®. (36.28)

In an iron atom, there are actually two electrons that contribute to the ferro-
magnetism, so to keep the discussion simpler we will talk about nickel, which 1s
ferromagnetic like iron but which has only one electron n the inner shell. (It 1s
easy to extend the arguments to iron.)

Now the point is that in the presence of an external field B, the atomic magnets
tend to line up with the field, but are knocked about by thermal motions just as
we described for paramagnetic materials. In the last chapter we found out that the
balance between a magnetic field trying to line up the atomic magnets and the
thermal motions trying to derange them produced the result that the mean mag-
netic moment per unit volume will end up as

M = Nytanh *B:. (36.29)

kT

By B, we mean the field acting at the atom, and kT is the Boltzmann energy.
In #he theory of paramagnetism we used for B, just B itself, neglecting the part of
the field at any given atom contributed by the atoms nearby. In the ferromagnetic
case, there is a complication. We shouldn’t use the average field in the iron for
the B, acting on an individual atom. Instead, we must do as we did in the case of
dielectrics—we have to find the Jocal field acting at a single atom. For an exact
calculation we should add up the fields at the atom n question contributed by all
of the other atoms in the crystal lattice. But as we did for dielectrics, we will make
the approximation that the field at an atom is the same as we would find in a small
spherical hole 1n the material-——assuming that the moments of the atoms in the
neighborhood are not changed by the presence of the hole.

Following the arguments we made in Chapter 11, we might think that we
could write

B,,i. = B+ %g{; (wrong!).
But that is not right. We can, however, make use of the results of Chapter 11 if
we make a careful comparison of the equations of Chapter 11 with the equations
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for ferromagnetism in this chapter. Let’s put together the corresponding equations.
For regions where there are no conduction currents or charges we have:

Electrostatics Static ferromagnetism

V~<E+£>=0 V-B=0
€o (36.30)
VXE=0 vx(s—%):o
€oC ~

2~

3
These two sets of equations can be thought of as analogous if we make the follow-
ing purely mathematical correspondences:

M

€ €9

oc?
This is the same as making the analogy

E — H, P — M/c2 (363D

In other words, if we write the equations of ferromagnetism as

S PEAT
€oC

(36.32)
VX H=0,

they Jook like the equations of electrostatics.

This purely algebraic correspondence has led to some confusion in the past.
People tended to think that H was “the magnetic field.” But, as we have seen,
Band E are physically the fundamental fields, and H is a derived idea. So although
the equations are analogous, the physics is not analogous. However, that doesn’t
need to stop us from using the principle that the same equations have the same
solutions.

We can use our earlier results for the electric field inside of holes of various
shapes 1 dielectrics—summarized in Fig. 36-1—to find the field H inside of
corresponding holes. Knowing H, we can determine B. For instance (using the
results we summarized in Section 1), the field H in a needle-shaped hole parallel
to M 1s the same as the H in the material,

Hhole = IImaterml-

But since M in the hole is zero, we have
M
€oC2

(36.33)

Bhole = Dmaterial —

On the other hand, for a disc-shaped hole, perpendicular to M, we have

P
Ehole = Edlelcct,rlc + 5_0 ’
which translates into
M
Hhole = H;nzltcrxal + ?0? .
Or, in terms of B,
Biole = Bnaterial- (36.34)

Finally, for a spherical hole, by making our analogy with Eq. (36.3) we would have

M
Hholc = material + 3606’2
or
2 M
Bholc = Bnmturml - g —6;; : (3635)

This result is quite different from what we got for E.
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It is, of course, possible to get these results in a more physical way, by using
the Maxwell equations directly. For example, Eq. (36.34) follows directly from
v+ B = 0. (You use a gaussian surface that is half in the material and half out.)
Similarly, you can get Eq. (36.33) by using a line integral along a curve that goes
up 1nside the hole and returns through the material. Physically, the field in the
hole 1s reduced because of the surface currents—which are given by v X M.
We will leave it for you to show that Eq. (36.35) can also be obtained by considering
the effects of the surface currents on the boundary of the spherical cavity.

In finding the equihibrium magnetization from Eq. (36.29), 1t turns out to be
most convenient to deal with H; so write

B, = H+ A M; (36.36)

€pC-

In the spherical hole approximation, we would have A = %, but, as you will see,
we will want later to use some other value, so we leave it as an adjustable parameter.
Also, we will take all the fields in the same direction so that we won’t need to worry
about the vector directions. If we were now to substitute Eq. (36.36) into Eq.
(36.29), we would have one equation that relates the magnetization M to the mag-
netizing field H:

_ H + )\M/6002>
M = Nutanh (———»—kT .

It is, however, an equation that cannot be solved explicitly, so we will do it graph-
ically.
Let’s put the problem in a generalized form by writing Eq. (36.29) as

Msat

= tanh x, (36.37)

where M. is the saturation value of the magnetization, namely, Nu, and x represents
pB./kT. The dependence of M/M,,, on x is shown by curve a in Fig. 36-13.
We can also wrnite x as a function of M—using Eq. (36.36) for B,—as

wBy MH+ <,U«>\Msat> M
Msat

kT ~— kT
For any given value of H, this 1s a straight-line relationship between M/M.,, and
x. The x intercept is at x = wH/KT, and the slope is eqc2kT/u A\M,,.. For any
particular H, we would have a line like the one marked b in Fig. 36-13. The
intersection of curves a and b gives us the solution for M/M.,;. We have solved
the problem.

Let’s look at how the solutions will go for various circumstances. We start
with H = 0. There are two possible situations, shown by the lines b; and b,
in Fig. 36-14. You will notice from Eq. (36.38) that the slope of the line is pro-
portional to the absolute temperature 7. So, at high temperatures we would have
a line like b;. The solution is M/ M., = 0. When the magnetizing field H is zero,
the magnetization s also zero. But at Jow temperatures, we would have a line like b,
and there are rwo solutions for M/M, .—one with M/M,, = 0 and one with
M/M,,, near one. It turns out that only the upper solution is stable—as you can
see by considering small variations about these solutions.

According to these ideas, then, a magnetic material should magnetize itself
spontaneously at sufficiently low temperatures. In short, when the thermal motions
are small enough, the coupling between the atomic magnets causes them all to
lIine up parallel to each other—we have a permanently magnetized material anal-
ogous to the ferroelectrics we discussed in Chapter 11.

If we start at high temperatures and come down, there is a critical temperature,
called the Curie temperature T, where the ferromagnetic behavior suddenly sets in.
This temperature corresponds to the line b5 of Fig. 36-14, which is tangent to the
curve ¢, and has, therefore, a slope of 1. The Curie temperature is given by

2
;O;A’;T: = 1. (36.39)
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We can, if we wish, write Eq. (36.38) more simply in terms of T, as

_HH T (M)

Now we want to see what happens for small magnetizing fields H. We can
see from Fig. 36-14 how things will go if we shift our straight lines a little to the
right. For the low-temperature case, the intersection point will move out a little
bit along the low-slope part of curve a, and M will change relatively little. For the
high-temperature case, however, the intersection point runs up the steep part of
curve a, and M will change relatively rapidly. In fact, we can approximate this
part of curve a by a straight line of unit slope, and write:

M — x e ﬂ & <_,_M ) -
M,. =~ kT T \Mg.,
Now we can solve for M/M_,;:
M uwH

-M; = ‘*———k(T __ T‘.) . (3641)
We have a law that is something like the one we had for paramagnetism. For
paramagnetism, we had

M uB

Mo~ KT (36.42)

One difference now is that we have the magnetization in terms of H, which includes
some of the effects of the interaction of the atomic magnets, but the main difference
is that the magnetization is inversely proportional to the difference between T
and T, instead of to the absolute temperate T, alone. Neglecting the interactions
between neighboring atoms corresponds to taking A = 0, which from Eq. (36.39)
means taking 7, = 0. Then the results are just what we had in Chapter 35.

We can check our theoretical picture with the experimental data for nickel.
It is observed experimentally that the ferromagnetic behavior of nickel disappears
when 1ts temperature 1s raised above 631°K. We can compare this with T, cal-
culated from Eq. (36.39). Remembering that M,,, = ulN, we have

N
TC =A k€0C2 )

From the density and atomic weight of nickel, we get
N = 91X 1028 m~3,
Taking u from Eq. (36.28), and setting A = %, we get
T, = 0.24°K.

There is a discrepancy of a factor of about 2600! Our theory of ferromagnetism
fails completely.

We can try to “patch up” the theory as Weiss did by saying that for some
unknown reason X 1s not one-third, but (2600) X 4—or about 900. It turns out
that one gets similar values for other ferromagnetic materials like iron. To see
what this means, let’s go back to Eq. (36.36). We see that a large A\ means that
B,, the local field on the atom, appears to be much, much larger than we would
think. In fact, writing H = B — M/eqc?, we have

(\— DM

B.= B+ .
€oC

According to our original idea—with A = 1—the local magnetization M reduces
the effective field B, by the amount —2M/e,. Even if our model of a spherical
hole were not very good, we would still expect some reduction. Instead, to explain
36-14



the phenomenon of ferromagnetism, we have to imagine that the magnetization
of the field enhances the local field by some large factor—Ilike one thousand or
more. There doesn’t seem to be any reasonable way to manufacture such tremen-
dous fields at an atom—nor even fields of the proper sign! Clearly, our “magnetic”
theory of ferromagnetism is a dismal failure. We must conclude, then, that ferro-
magnetism has to do with some nonmagnetic interaction between the spinning
electrons in neighboring atoms. This interaction must generate a strong tendency
for all of the nearby spins to line up in one direction. We will see later that it has
to do with quantum mechanics and the Pauli exclusion principle.

Finally, we look at what happens at low temperatures—for 77 < T,. We
have seen that there will then be a spontaneous magnetization—even with H = 0—
given by the intersection of the curves a and b, of Fig. 36-14. If we solve for M
for various temperatures—by varying the slope of the line b ,—we get the theoretical
curve shown in Fig. 36-15. This curve should be the same for all ferromagnetic
materials for which the atomic moment comes from a single electron. The curves
for other materials are only slightly different.

In the limit, as 7 goes to absolute zero, M goes to M. As the temperature
is increased, the magnetization decreases, falling to zero at the Curie temperature.
The points in Fig. 36-15 are the experimental observations for nickel. They fit the
theoretical curve fairly well. Even though we don’t understand the basic mecha-
nism, the general features of the theory seem to be correct.

Finally, there is one more disturbing discrepancy in our attempt to under-
stand ferromagnetism. We have found that above some temperature the material
should behave like a paramagnetic substance with a magnetization M propor-
tional to H (or B), and that below that temperature it should become spontane-
ously magnetized. But that’s not what we found when we measured the mag-
netization curve for iron. It only became permanently magnetized after we had
“magnetized” it. According to the ideas just discussed, it would magneuze riself!
What is wrong? Well, it turns out that if you look at a small enough crystal of iron
or nickel, it 1s indeed completely magnetized! But in large pieces of iron, there are
many small regions or “domains” that are magnetized in different directions, so
that on a large scale the average magnetization appears to be zero. In each small
domain, however, the iron has a locked-in magnetization with M nearly equal to
M.... The consequences of this domain structure are that gross properties of
large pieces of material are quite different from the microscopic properties that
we have really been treating. We will take up in the next lecture the story of the
practical behavior of bulk magnetic materials.
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