35

Paramagnetism and Magnetic Resonance

35-1 Quantized magnetic states

In the last chapter we described how 1 quantum mechanics the angular
momentum of a thing does not have an arbitrary direction, but 1ts component
along a given axis can take on only certain equally spaced, discrete values. 1t 1s
a shocking and peculiar thing. You may think that perhaps we should not go
into such things until your minds are more advanced and ready to accept this
kind of an idea. Actually, your minds will never become more advanced—in
the sense of being able to accept such a thing easily. There 1sn’t any descriptive
way of making it intelligible that isn’t so subtle and advanced in its own form
that 1t is more complicated than the thing you were trying to explain. The behavior
of matter on a small scale—as we have remarked many times—is different from
anything that you are used to and is very strange indeed. As we proceed with
classical physics, it 1s a good idea to try to get a growing acquaintance with the
behavior of things on a small scale, at first as a kind of experience without any
deep understanding. Understanding of these matters comes very slowly, if at all.
Of course, one does get better able to know what is going to happen in a quantum-
mechanical situation—if that is what understanding means—but one never gets a
comfortable feeling that these quantum-mechanical rules are “natural.” Of course
they are, but they are not natural to our own experience at an ordinary level. We
should explain that the attitude that we are going to take with regard to this rule
about angular momentum is quite different from many of the other things we have
talked about. We are not going to try to “explain” it, but we must at least e/l you
what happens; it would be dishonest to describe the magnetic properties of materials
without mentioning the fact that the classical description of magnetism—of
angular momentum and magnetic moments—is incorrect.

One of the most shocking and disturbing features about quantum mechanics
is that if you take the angular momentum along any particular axis you find that
it is always an integer or half-integer times #. This is so no matter which axis you
take. The subtleties involved 1n that curious fact—that you can take any other axis
and find that the component for it is also locked to the same set of values—we will
leave to a later chapter, when you will experience the delight of seeing how this
apparent paradox is ultimately resolved.

We will now just accept the fact that for every atomic system there is 2 number
J, called the spin of the system—which must be an integer or a half-integer—and
that the component of the angular momentum along any particular axis will
always have one of the following values between +j#% and —h:

J
j—1
j—2
J, = one of : - fi. (35.1)
—j+ 2
—j+ 1
—J

We have also mentioned that every simple atomic system has a magnetic
moment which has the same direction as the angular momentum. This is true not
only for atoms and nuclei but also for the fundamental particles. Each funda-
mental particle has 1ts own characteristic value of j and its magnetic moment.
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Fig. 35-1. An atomic system with spin (c)
{ has (2j + 1) possible energy values in a
magnetic field B. The energy splitting is
proportional to B for small fields.

(For some particles, both are zero.) What we mean by ‘“‘the magnetic moment”
in this statement is that the energy of the system in a magnetic field, say in
the z-direction, can be written as —pu, B for small magnetic fields. We must have the
condition that the field should not be too great, otherwise i1t could disturb
the internal motions of the system and the energy would not be a measure
of the magnetic moment that was there before the field was turned on. But if the
field 1s sufficiently weak, the field changes the energy by the amount

AU = —u,B, (35.2)

with the understanding that in this equation we are to replace u, by
m==g@%)h, (35.3)

where J, has one of the values in Eq. (35.1).

Suppose we take a system with a spinj = 3/2. Without a magnetic field, the
system has four different possible states corresponding to the different values of
J., all of which have exactly the same energy. But the moment we turn on the mag-
netic field, there 1s an additional energy of interaction which separates these states
into four shightly different energy levels. The energies of these levels are given by a
certain energy proportional to B8, multiplied by 4 times 3/2,1/2, —1/2,and —3/2—
the values of J,. The splitting of the energy levels for atomic systems with spins of
1/2, 1, and 3/2 are shown 1n the diagrams of Fig. 35-1. (Remember that for any
arrangement of electrons the magnetic moment is always directed opposite to the
angular momentum.)

You will notice from the diagrams that the “center of gravity” of the energy
levels is the same with and without a magnetic field. Also notice that the spacings
from one level to the next are always equal for a given particle in a given magnetic
field. We are going to write the energy spacing, for a given magnetic field B, as
fiw,—which 1s just a definition of w,. Using Eqgs. (35.2) and (35.3), we have

or q
o = gL B, (35.4)
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The quantity g(g/2m) 1s just the ratio of the magnetic moment to the angular
momentum—it is a property of the particle. Equation (35.4) 1s the same formula
that we got in Chapter 34 for the angular velocity of precession in a magnetic
field, for a gyroscope whose angular momentum 1s J and whose magnetic moment
Is .
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Fig. 35-2. The experiment of Stern and Gerlach.

35-2 The Stern-Gerlach experiment

The fact that the angular momentum is quantized is such a surprising thing
that we will talk a Iittle bit about it historically. It was a shock from the moment
it was discovered (although it was expected theoretically). It was first observed 1n
an experiment done in 1922 by Stern and Gerlach. If you wish, you can consider
the experiment of Stern-Gerlach as a direct justification for a belef in the quantiza-
tion of angular momentum. Stern and Gerlach devised an experiment for measur-
ing the magnetic moment of individual silver atoms. They produced a beam of
sitlver atoms by evaporating silver in a hot oven and letting some of them come out
through a series of small holes. This beam was directed between the pole tips
of a special magnet, as shown in Fig. 35-2. Their idea was the following. If
the silver atom has a magnetic moment u, then in a magnetic field B 1t has an energy
—u.B, where z 1s the direction of the magnetic field. In the classical theory, u,
would be equal to the magnetic moment times the cosine of the angle between the
moment and the magnetic field, so the extra energy in the field would be

AU = —uBcos 6. (35.5)

Of course, as the atoms come out of the oven, their magnetic moments would
point in every possible direction, so there would be all values of §. Now if the
magnetic field varies very rapidly with z—if there 1s a strong field gradient—then
the magnetic energy will also vary with position, and there will be a force on the
magnetic moments whose direction will depend on whether cosine 9 is positive or
negative. The atoms will be pulled up or down by a force proportional to the
derivative of the magnetic energy; from the principle of virtual work,

F, = ——aizj = ,ucos(ig—f- (35.6)

Stern and Gerlach made their magnet with a very sharp edge on one of the
pole tips in order to produce a very rapid variation of the magnetic field. The beam
of silver atoms was directed right along this sharp edge, so that the atoms would
feel a vertical force in the inhomogeneous field. A silver atom with its magnetic
moment directed horizontally would have no force on it and would go straight
past the magnet. An atom whose magnetic moment was exactly vertical would
have a force pulling it up toward the sharp edge of the magnet. An atom whose
magnetic moment was pointed downward would feel a downward push. Thus,
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as they left the magnet, the atoms would be spread out according to their vertical
components of magnetic moment. In the classical theory all angles are possible,
so that when the silver atoms are collected by deposition on a glass plate, one should
expect a smear of silver along a vertical line. The height of the line would be pro-
portional to the magnitude of the magnetic moment. The abject failure of clascal
1deas was completely revealed when Stern and Gerlach saw what actually happened.
They found on the glass plate two distinct spots. The silver atoms had formed
two beams.

That a beam of atoms whose spins would apparently be randomly oriented
gets split up into two separate beams is most miraculous. How does the magnetic
moment know that it is only allowed to take on certain components in the direction
of the magnetic field? Well, that was really the beginning of the discovery of the
quantization of angular momentum, and instead of trying to give you a theoretical
explanation, we will just say that you are stuck with the result of this experiment
Just as the physicists of that day had to accept the result when the experiment was
done. It 1s an experimental fuct that the energy of an atom in a magnetic field
takes on a series of individual values. For each of these values the energy is pro-
portional to the field strength. So 1n a region where the field vanes, the principle
of virtual work tells us that the possible magnetic force on the atoms will have a
set of separate values, the force 1s different for each state, so the beam of atoms 1s
split into a small number of separate beams. From a measurement of the deflection
of the beams, one can find the strength of the magnetic moment.

35-3 The Rabi molecular-beam method

We would now like to describe an improved apparatus for the measurement
of magnetic moments which was developed by 1. 1 Rabi and his collaborators.
In the Stern-Gerlach experiment the deflection of atoms is very small, and the
measurement of the magnetic moment 1s not very precise. Rabi’s technique per-
mits a fantastic precision in the measurement of the magnetic moments. The
method 1s based on the fact that the original energy of the atoms in a magnetic
field 1s split up into a finite number of energy levels. That the energy of an atom
in the magnetic field can have only certain discrete energies 1s really not more
surprising than the fact that atoms i general have only certain discrete energy
levels—something we mentioned often in Volume 1. Why should the same thing
not hold for atoms 1n a magnetic field? 1t does. But it 1s the attempt to correlate
this with the idea of an orienied magnetic moment that brings out some of the
strange implications of quantum mechanics.

When an atom has two levels which differ 1n energy by the amount AU, it
can make a transition from the upper level to the lower level by emitting a hght
quantum of frequency w, where

fiw = AU (35.7)

The same thing can happen with atoms in a magnetic field. Only then, the energy
differences are so small that the frequency does not correspond to light, but to
microwaves or to radiofrequencies. The transitions from the lower energy level
to an upper energy level of an atom can also take place with the absorption of hght
or, 1n the case of atoms 1n a magnetic field, by the absorption of microwave energy.
Thus if we have an atom 1n a magnetic field, we can cause transitions from one state
to another by applying an additional electromagnetic field of the proper frequency.
In other words, 1f we have an atom in a strong magnetic field and we “tickle”
the atom with a weak varying electromagnetic field, there will be a certain prob-
ability of knocking 1t to another level if the frequency 1s near to the w 1n Eq. (35.7).
For an atom 1n a magnetic field, this frequency 1s just what we have earlier called
w, and 1t is given 1n terms of the magnetic field by Eq (35.4). If the atom 1s tickled
with the wrong frequency. the chance of causing a transition 1s very small. Thus
there 1s a sharp resonunce at w, in the probability of causing a transition. By
measuring the frequency of this resonance in a known magnetic field B, we can
measure the quantity g(g/2m)—and hence the g-factor—with great precision.
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It is interesting that one comes to the same conclusion from a classical point
of view. According to the classical picture, when we place a small gyroscope with
a magnetic moment u and an angular momentum J 1 an external magnetic field,
the gyroscope will precess about an axis parallel to the magnetic field. (See Fig
35-3.) Suppose we ask: How can we change the angle of the classical gyroscope
with respect to the field—namely, with respect to the z-axis? The magnetic field
produces a torque around a horizontal axis. Such a torque you would think 1s
trying to line up the magnet with the field, but it only causes the precession. If we
want to change the angle of the gyroscope with respect to the z-axis, we must
exert a torque on it about the z-axis. 1f we apply a torque which goes in the same
direction as the precession, the angle of the gyroscope will change to give a smaller
component of J in the z-direction In Fig. 35-3, the angle between J and the
z-ax1is would increase. If we try to hinder the precession, J moves toward the
vertical.

For our precessing atom m a uniform magnetic field, how can we apply the
kind of torque we want? The answer is: with a weak magnetic field from the side
You might at first think that the direction of this magnetic field would have to
rotate with the precession of the magnetic moment, so that it was always at right
angles to the moment, as indicated by the field B’ in Fig. 35-4(a). Such a field
works very well, but an alternating horizontal field is almost as good. If we have
a small horizontal field B’, which 1s always in the x-direction (plus or minus) and
which oscillates with the frequency w,, then on each one-half cycle the torque on
the magnetic moment reverses, so that it has a cumulative effect which is almost
as effective as a rotating magnetic field. Classically, then, we would expect the
component of the magnetic moment along the z-direction to change if we have a
very weak oscillating magnetic field at a frequency which 1s exactly w,, Classically,
of course, u, would change continuously, but in quantum mechanics the z-com-
ponent of the magnetic moment cannot adjust continuously. It must jump suddenly
from one value to another. We have made the comparison between the con-
sequences of classical mechanics and quantum mechanics to give you some clue
as to what might happen classically and how 1t 1s related to what actually happens
in quantum mechanics. You will notice, incidentally, that the expected resonant
frequency is the same 1n both cases.

One additional remark: From what we have said about quantum mechanics,
there 1s no apparent reason why there couldn’t also be transitions at the frequency
2w,. It happens that there 1sn’t any analog of this in the classical case, and also
it doesn’t happen in the quantum theory either—at least not for the particular
method of inducing the transitions that we have described. With an oscillating
horizontal magnetic field, the probability that a frequency 2w, would cause a jump
of two steps at once 1s zero. It 1s only at the frequency w, that transitions, either
upward or downward, are likely to occur.

Now we are ready to describe Rabi’s method for measuring magnetic mo-
menis. We will consider here only the operation for atoms with a spm of 1/2 A
diagram of the apparatus 1s shown i Fig. 35-5. There is an oven which gives out
a stream of neutral atoms which passes down a line of three magnets. Magnet |
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Fig. 35-3. The classical precession of
an atom with the magnetic moment u and
the angular momentum J.
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B'=b coslwt)

Fig. 35—-4. The angle of precession of
an atomic magnet can be changed by a
horizontal magnetic field always at right
angles to u, as in (a), or by an oscillating
field, as in (b).
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Fig. 35-6. The current of atoms in
the beam decreases when w = wp.

18 just like the one in Fig. 35-2, and has a field with a strong field gradient—say,
with 9B,/dz positive. If the atoms have a magnetic moment. they will be deflected
downward f J, = +#/2, or upward if J, = —#/2 (since for electrons u 1s directed
opposite to J). If we consider only those atoms which can get through the slit
S, there are two possible trajectories, as shown. Atoms with J, = -+£/2 must
go along curve a to get through the slit, and those with J, = —#/2 must go along
curve b. Atoms which start out from the oven along other paths will not get
through the slit.

Magnet 2 has a uniform field. There are no forces on the atoms i this
region, so they go straight through and enter magnet 3. Magnet 3 1s just like
magnet 1 but with the field mmverted, so that 9B,/0z has the opposite sign. The
atoms with J, = +7/2 (we say “with spmn up”), that felt a downward push 1n
magnet 1, get an upward push 1n magnet 3; they continue on the path ¢ and go
through sht S, to a detector. The atoms with J, = —7/2 (“with spin down™)
also have opposite forces m magnets | and 3 and go along the path b, which also
takes them through slit S, to the detector.

The detector may be made in various ways, depending on the atom being
measured. For example, for atoms of an alkali metal like sodium, the detector can
be a thin, hot tungsten wire connected to a sensitive current meter. When sodium
atoms land on the wire. they are evaporated off as Na™ ions, leaving an electron
behind. There 1s a current from the wire proportional to the number of sodium
atoms arrving per second.

In the gap of magnet 2 there 1s a set of coils that produces a small horizontal
magnetic field B’. The coils are driven with a current which oscillates at a variable
frequency w. So between the poles of magnet 2 there is a strong, constant,
vertical field B, and a weak, oscillating, horizontal field B’.

Suppose now that the frequency w of the oscllating field 1s set at w,—the
“precession” frequency of the atoms 1n the field B. The alternating field will cause
some of the atoms passing by to make transittons from one J, to the other An
atom whose spin was imtially “up” (J, = +7/2) may be flipped “down”
(/. = —#/2). Now this atom has the direction of its magnetic moment reversed,
so 1t will feel a downward force in magnet 3 and will move along the path &,
shown n Fig. 35-5. It will no longer get through the slit S, to the detector.
Similarly, some of the atoms whose spimns were mitially down (J, = —7#/2) will
have their spins flipped up (J, = +#/2) as they pass through magnet 2. They
will then go along the path b’ and will not get to the detector.

If the osctllating field B’ has a frequency appreciably different from w,,, 1t will
not cause any spin flips. and the atoms will follow their undisturbed paths to
the detector. So you can see that the “‘precession” frequency w, of the atoms
in the field B, can be found by varying the frequency w of the field B’ untl a de-
crease 1s observed in the current of atoms arriving at the detector. A decrease n
the current will occur when w 1s “in resonance” with w,. A plot of the detector
current as a function of w might look like the one shown n Fig. 35-6. Knowing
wp, we can obtain the g-value of the atom.

Such atomic-beam or, as they are usually called, “molecular” beam resonance
experiments are a beautiful and delicate way of measuring the magnetic properties
of atomic objects. The resonance frequency w, can be determined with great
precision—in fact, with a greater precision than we can measure the magnetic
field B, which we must know to find g.

35-4 The paramagnetism of bulk materials

We would like now to describe the phenomenon of the paramagnetism of
bulk materials Suppose we have a substance whose atoms have permanent mag-
netic moments, for example a crystal like copper sulfate. In the crystal there are
copper 1ons whose inner electron shells have a net angular momentum and a net
magnetic moment. So the copper 1on 1s an object which has a permanent magnetic
moment. Let’s say just a word about which atoms have magnetic moments and
which ones don’t. Any atom, like sodium for instance, which has an odd number
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of electrons, will have a magnetic moment. Sodium has one electron in its un-
filled shell. This electron gives the atom a spin and a magnetic moment. Ordinarily,
however, when compounds are formed the extra electrons in the outside shell are
coupled together with other electrons whose spin directions are exactly opposite,
so that all the angular momenta and magnetic moments of the valence electrons
usually cancel out. That’s why, in general, molecules do not have a magnetic
moment. Of course if you have a gas of sodium atoms, there is no such cancella-
tion.* Also, if you have what is called in chemistry a “free radical”—an object
with an odd number of valence electrons—then the bonds are not completely
satisfied, and there is a net angular momentum.

In most bulk materials there is a net magnetic moment only if there are atoms
present whose inner electron shell is not filled. Then there can be a net angular
momentum and a magnetic moment. Such atoms are found in the ‘‘transition
element” part of the periodic table—for instance, chromium, manganese, 1ron,
nickel, cobalt, palladium, and platinum are elements of this kind. Also, all of the
rare earth elements have unfilled inner shells and permanent magnetic moments.
There are a couple of other strange things that also happen to have magnetic
moments, such as liquid oxygen, but we will leave it to the chemistry department
to explain the reason.

Now suppose that we have a box full of atoms or molecules with permanent
moments—say a gas, or a liquid, or a crystal. We would like to know what happens
if we apply an external magnetic field. With no magnetic field, the atoms are kicked
around by the thermal motions, and the moments wind up pointing in all directions.
But when there 1s a magnetic field, it acts to line up the little magnets; then there
are more moments lying toward the field than away from it. The material is
“magnetized.”

We define the magnetization M of a material as the net magnetic moment per
unit volume, by which we mean the vector sum of all the atomic magnetic moments
m a unit volume. If there are N atoms per unit volume and their average moment
is ()., then M can be written as N times the average atomic moment:

M = N (35.8)

The definition of M corresponds to the definition of the electric polarization P
of Chapter 10.

The classical theory of paramagnetism is just like the theory of the dielectric
constant we showed you 1n Chapter 11. One assumes that each of the atoms has a
magnetic moment p, which always has the same magmtude but which can point
in any direction. In a field B, the magnetic energy 1s —u - B = —uB cos 6, where
6 is the angle between the moment and the field. From statistical mechanics, the
relative probability of having any angle 15 e °"*"®/*T 50 angles near zero are
more likely than angles near . Proceeding exactly as we did in Section 11-3, we
find that for small magnetic fields M is directed parallel to B and has the magnitude

_ Nu’B
M= =T

(359)

[See Eq. (11.20).] This approximate formula is correct only for uB/kT much less
than one.

We find that the induced magnetization—the magnetic moment per unit
volume—is proportional to the magnetic field. This is the phenomenon of para-
magnetism. You will see that the effect 1s stronger at lower temperatures and weaker
at higher temperatures. When we put a field on a substance, 1t develops, for small
fields, a magnetic moment proportional to the field. The ratio of M to B (for smalil
fields) 1s called the magnetic susceptibility.

Now we want to look at paramagnetism from the point of view of quantum
mechanics. We take first the case of an atom with a spin of 1/2. In the absence of

* Ordinary Na vapor 1s mostly monatomic, although there are also some molecules of
Naos.
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a magnetic field the atoms have a certain energy, but in a magnetic field there are
two possible energies, one for each value of J,. For J, = +#/2, the energy is
changed by the magnetic field by the amount

EANE
AU, = +g <gﬁ> 5 B. (35.10)
(The energy shift AU is positive for an atom because the electron charge is negative.)
For J, = —17/2, the energy is changed by the amount
AU, = _g<%i>.%.3 (35.11)
To save writing, let’s set
AN
po = g (gﬁ> X (35.12)
then
AU = =uyB. (35.13)

The meaning of u, 1s clear: —u, 1s the z-component of the magnetic moment 1n
the up-spin case, and +puq 1s the z-component of the magnetic moment in the
down-spin case.

Now statistical mechanics tells us that the probability that an atom 1s in one
state or another is proportional to

e—(Energy of state)/kT

With no magnetic field the two states have the same energy ; so when there is equilib-
rium in a magnetic field, the probabilities are proportional to

e AU /KT, (35.14)
The number of atoms per unit volume with spin up is
Ny = ae #oBlkt (35.15)
and the number with spin down is
Niown = aeTHoBIk, (35.16)
The constant a 1s to be determined so that
Ny + Niown = N, (35.17)

the total number of atoms per unit volume. So we get that

N
@ = TFRoBIRT J- g—koBIET (35.18)

What we are interested in 1s the average magnetic moment along the z-axis.
The atoms with spin up will contribute a moment of —u,, and those with spin
down will have a moment of +pu . so the average moment 1s

Gy = el te) L), (35.19)

The magnetic moment per unit volume M is then N {(u),,. Using Egs. (35.15),
(35.16), and (35.17), we get that

BikT —uoBJET
oo 1T P 1k

M = Ny (35.20)

o — .
e-H‘oB/kT + e woB kT

This 1s the quantum-mechanical formula for M for atoms with j = 1/2. Inciden-
tally, this formula can also be written somewhat more concisely in terms of the
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hyperbolic tangent function:

M = Nugtanh %{3 (35.21)
A plot of M as a function of B is given in Fig. 35.7. When B gets very large,
the hyperbolic tangent approaches 1, and M approaches the limiting value Ny,
So at high fields. the magnetization saturates. We can see why that 1s; at high
enough fields the moments are all lined up 1n the same direction  In other words,
they are all in the spin-down state, and each atom contributes the moment u,
In most normal cases—say, for typical moments, room temperatures, and
the fields one can normally get (Itke 10,000 gauss)—the ratio uoB/kT 1s about 0.02.
One must go to very low temperatures to see the saturation. For normal tempera-
tures, we can usually replace tanh x by x, and write

NuiB

M = =7

(3522)

Just as we saw in the classical theory, M is proportional to B. In fact, the
formula is almost exactly the same, except that there seems to be a factor of 1/3
missing. Burt we still need to relate the u, in our quantum formula to the u that
appears in the classical result, Eq (35.9).

In the classical formula, what appears 1s u® = g - u. the square of the vector
magnetic moment, or

© o= (g 2%) J J (35 23)

We pointed out m the last chapter that you can very likely get the right answer
from a classical calculation by replacing J- J by j(j + 1)4% In our particular
example, we have j = 1/2, so

JG + DR® = 3k

Substituting this for J- Jin Eq. (35.23), we get

. =< L»)zéfﬁ,
i 85m) 4

or in terms of ug, defined in Eq. (35.12), we get
popo= 3up.

Substituting this for 2 in the classical formula, Eq. (35.9), does indeed reproduce
the correct quantum formula, Eq. (35.22).

The quantum theory of paramagnetism is easily extended to atoms of any
spin j. The low-field magnetization 1s

. 2
M — Ng? &;—1) ﬁ‘gf, (35.24)
where
i
e = 3 (35.25)

18 a combination of constants with the dimenstons of a magnetic moment. Most
atoms have moments of roughly this size. It 1s called the Bohr magneton. The
spin magnetic moment of the electron 1s almost exactly one Bohr magneton.

35-5 Cooling by adiabatic demagnetization

There is a very interesting special application of paramagnetism. At very
low temperatures 1t is possible to line up the atomic magnets in a strong field.
It is then possible to get down to extremely low temperatures by a process called
adiabatic demagnetizanion. We can take a paramagnetic salt (for example, one
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containing a number of rare-earth atoms like praseodynium-ammeonium-nitrate),
and start by cooling it down with liquid helium to one or two degrees absolute in a
strong magnetic field. Then the factor uB/kT is larger than 1—say more like 2 or 3.
Most of the spins are lined up, and the magnetization is nearly saturated. Let’s
say, to make it easy, that the field is very powerful and the temperature is very low,
so that nearly all the atoms are lined up. Then you isolate the salt thermally (say,
by removing the liquid helium and leaving a good vacuum) and turn off the mag-
netic field. The temperature of the salt goes way down.

Now if you were to turn off the field suddenly, the jiggling and shaking of the
atoms in the crystal lattice would gradually knock all the spins out of alignment.
Some of them would be up and some down. But if there 1s no field (and disregard-
Ing the interactions between the atomic magnets, which will make only a slight
error), it takes no energy to turn over the atomic magnets. They could randomize
their spins without any energy change and, therefore, without any temperature
change.

Suppose, however, that while the atomic magnets are being flipped over by the
thermal motion there is still some magnetic field present. Then it requires some
work to flip them over opposite to the field—zthey must do work aganst the field.
This takes energy from the thermal motions and lowers the temperature. So if the
strong magnetic field is not removed too rapidly, the temperature of the salt will
decrease—it is cooled by the demagnetization. From the quantum-mechanical
view, when the field is strong all the atoms are in the lowest state, because the odds
against any being in the upper state are impossibly big. But as the field is lowered,
1t gets more and more likely that thermal fluctuations will knock an atom 1nto the
upper state. When that happens, the atom absorbs the energy AU = u¢B. So if
the field 1s turned off slowly, the magnetic transitions can take energy out of the
thermal vibrations of the crystal, cooling 1t off. It 1s possible in this way to go from
a temperature of a few degrees absolute down to a temperature of a few thou-
sandths of a degree.

Would you like to make something even colder than that? It turns out that
Nature has provided a way. We have already mentioned that there are also mag-
netic moments for the atomic nuclei. Our formulas for paramagnetism work just
as well for nuclei, except that the moments of nuclei are roughly a thousand times
smaller. [They are of the order of magnitude of g#i/2m,, where m,, 1s the proton
mass, so they are smaller by the ratio of the masses of the electron and proton.]
With such magnetic moments, even at a temperature of 2°K, the factor uB/kT
1s only a few parts 1n a thousand. But if we use the paramagnetic demagnetiza-
tion process to get down to a temperature of a few thousandths of a degree,
wB/kT becomes a number near 1—at these low temperatures we can begin to
saturate the nuclear moments. That is good luck, because we can then use
the adiabatic demagnetization of the nuclear magnetism to reach sull lower
temperatures. Thus it is possible to do two stages of magnetic cooling. First we
use adiabatic demagnetization of paramagnetic 1ons to reach a few thousandths of
a degree. Then we use the cold paramagnetic salt to cool some material which has
a strong nuclear magnetism. Finally, when we remove the magnetic field from this
material, its temperature will go down to within a millionth of a degree of absolute
zero—I1f we have done everything very carefully.

35-6 Nuclear magnetic resonance

We have said that atomic paramagnetism is very small and that nuclear mag-
netism is even a thousand times smaller. Yet it is relatively easy to observe the
nuclear magnetism by the phenomenon of “nuclear magnetic resonance.” Suppose
we take a substance like water, in which all of the electron spins are exactly bal-
anced so that their net magnetic moment is zero. The molecules will still have a
very, very tiny magnetic moment due to the nuclear magnetic moment of the hydro-
gen nuclei. Suppose we put a small sample of water 1n a magnetic field B. Since
the protons (of the hydrogen) have a spin of 1/2, they will have two possible
energy states. If the water is in thermal equilibrium, there will be shightly more
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protons in the lower energy states—with their moments directed parallel to the
field. There is a small net magnetic moment per unit volume. Since the proton
moment is only about one-thousandth of an atomic moment, the magnetization
which goes as u%—using Eq. (35.22)—is only about one-muillionth as strong as
typical atomic paramagnetism. (That’s why we have to pick a material with no
atomic magnetism.) If you work it out, the difference between the number of
protons with spin up and with spin down is only one part in 10%, so the effect
is indeed very small! It can still be observed, however, in the following way.

Suppose we surround the water sample with a small coil that produces a
small horizontal oscillating magnetic field. If this field oscillates at the frequency
wp, it will induce transitions between the two energy states—just as we described
for the Rabi experiment in Section 35-3. When a proton flips from an upper
energy state to a lower one, it will give up the energy u,B which, as we have seen,
18 equal to hw,. If it flips from the lower energy state to the upper one, it will
absorb the energy fw, from the coil. Since there are slightly more protons in the
lower state than n the upper one, there will be a net absorption of energy from the
coil. Although the effect is very small, the slight energy absorption can be seen
with a sensitive electronic amplifier.

Just as in the Rabi molecular-beam experiment, the energy absorption will be
seen only when the oscillating field 1s in resonance, that 1s, when

qe
© = =g (3, )8

It 1s often more conventent to search for the resonance by varying B while keeping
w fixed. The energy absorption will evidently appear when
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A typical nuclear magnetic resonance apparatus 1s shown in Fig. 35-8. A
high-frequency oscillator drives a small coil placed between the poles of a large
electromagnet. Two small auxihary coils around the pole tips are driven with a
60-cycle current so that the magnetic field is “wobbled” about its average value by
a very small amount. As an example, say that the main current of the magnet 1s set
to give a field of 5000 gauss, and the auxiliary coils produce a variation of =1 gauss
about this value. If the osciilator is set at 21.2 megacycles per second, it will then be
at the proton resonance each time the field sweeps through 5000 gauss [using Eq.
(34.13) with g = 5.58 for the proton].

The circuit of the oscillator is arranged to give an additional output signal
proportional to any change in the power being absorbed from the oscillator. This
signal 1s fed to the vertical deflection amplifier of an oscilloscope. The horizontal
sweep of the oscilloscope is triggered once during each cycle of the field-wobbling
frequency. (More usually, the horizontal defiection is made to follow 1 proportion
to the wobbling field.)

Before the water sample is placed inside the high-frequency coil, the power
drawn from the oscillator is some value. (It doesn’t change with the magnetic field )
When a small bottle of water is placed in the coil, however, a signal appears on the
oscilloscope, as shown in the figure. We see a picture of the power being absorbed
by the flipping over of the protons!

In practice, it 1s difficult to know how to set the main magnet to exactly S000
gauss. What one does 1s to adjust the main magnet ¢urrent until the resonance
signal appears on the oscilloscope. It turns out that this is now the most con-
venient way to make an accurate measurement of the strength of a magnetic field.
Of course, at some time someone had to measure accurately the magnetic field and
frequency to determine the g-value of the proton. But now that this has been done,
a proton resonance apparatus like that of the figure can be used as a “proton reso-
nance magnetometer.”

We should say a word about the shape of the signal. If we were to wobble the
magnetic field very slowly, we would expect to see a normal resonance curve.
The energy absorption would read a maximum when w, arrived exactly at the
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oscillator frequency. There would be some absorption at nearby frequencies
because all the protons are not in exactly the same field—and different fields mean
slightly different resonant frequencies.

One might wonder, incidentally, whether at the resonance frequency we should
see any signal at all. Shouldn’t we expect the high-frequency field to equalize the
populations of the two states—so that there should be no signal except when the
water is first put in? Not exactly, because although we are rrying to equalize the
two populations, the thermal motions on their part are trying to keep the proper
ratios for the temperature 7. If we sit at the resonance, the power being absorbed
by the nuclei is just what is being lost to the thermal motions. There is, however,
relatively little “thermal contact” between the proton magnetic moments and the
atomic motions The protons are relatively isolated down in the center of the
electron distributions. So m pure water, the resonance signal 1s, in fact, usually
too small to be seen. To increase the absorption, it is necessary to increase the
“thermal contact.” This is usually done by adding a little iron oxide to the water.
The 1iron atoms are Iitke small magnets; as they jiggle around 1n their thermal dance,
they make tiny jiggling magnetic fields at the protons. These varying fields “‘couple”
the proton magnets to the atomic vibrations and tend to establish thermal equi-
librium. It is through this “coupling” that protons in the higher energy states can
lose their energy so that they are again capable of absorbing energy from the
oscillator.

In practice the output signal of a nuclear resonance apparatus does not look
Iike a normal resonance curve. It is usually a more complicated signal with oscilla-
tions—like the one drawn in the figure. Such signal shapes appear because of the
changing fields. The explanation should be given 1n terms of quantum mechanics,
but it can be shown that 1 such experiments the classical ideas of precessing mo-
ments always give the correct answer. Classically, we would say that when we ar-
rive at resonance we start driving a lot of the precessing nuclear magnets synchro-
nously. In so doing, we make them precess together. These nuclear magnets, all
rotating together, will set up an induced emf in the oscillator coil at the frequency
w,. But because the magnetic field is increasing with time, the precession frequency
1S increasing also, and the induced voltage is soon at a frequency a little higher than
the oscillator frequency. As the induced emf goes alternately i phase and out of
phase with the oscillator, the “absorbed” power goes alternately positive and
negative. So on the oscilloscope we see the beat note between the proton frequency
and the oscillator frequency. Because the proton frequencies are not all identical
(different protons are 1n slightly different fields) and also possibly because of the
disturbance from the iron oxide in the water, the freely precessing moments soon
get out of phase, and the beat signal disappears.

These phenomena of magnetic resonance have been put to use in many ways
as tools for finding out new things about matter—especially in chemistry and
nuclear physics. It goes without saying that the numerical values of the magnetic
moments of nuclei tell us something about their structure. In chemistry, much has
been learned from the structure (or shape) of the resonances. Because of magnetic
fields produced by nearby nuclei, the exact position of a nuclear resonance is
shifted somewhat, depending on the environment in which any particular nucleus
finds itself. Measuring these shifts helps determine which atoms are near which
other ones and helps to elucidate the details of the structure of molecules Equally
important is the electron spin resonance of free radicals. Although not present
to any very large extent in equilibrium, such radicals are often intermediate states
of chemical reactions. A measurement of an electron spin resonance is a delicate
test for the presence of free radicals and is often the key to understanding the
mechanism of certain chemuical reactions.
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