34

The Magnetism of Matter

34-1 Diamagnetism and paramagnetism

In this chapter we are going to talk about the magnetic properties of materials.
The material which has the most striking magnetic properties 1s, of course, iron.
Similar magnetic properties are shared also by the elements nickel, cobalt, and—at
sufficiently low temperatures (below 16°C)—by gadolinium, as well as by a number
of peculiar alloys. That kind of magnetism, called ferromagnetism, is sufficiently
striking and complicated that we will discuss it in a special chapter. However,
all ordinary substances do show some magnetic effects, although very small
ones—a thousand to a million times less than the effects in ferromagnetic materials.
Here we are going to describe ordinary magnetism, that is to say, the magnetism
of substances other than the ferromagnetic ones.

This small magnetism is of two kinds. Some materials are atiracted toward
magnetic fields; others are repelled. Unlike the electrical effect in matter, which
always causes dielectrics to be attracted, there are two signs to the magnetic
effect. These two signs can be easily shown with the help of a strong electromagnet
which has one sharply pointed pole piece and one flat pole piece, as drawn in
Fig. 34-1. The magnetic field is much stronger near the pointed pole than near the
flat pole. If a small piece of material is fastened to a long string and suspended
between the poles, there will, in general, be a small force on it. This small force
can be seen by the slight displacement of the hanging material when the magnet
is turned on. The few ferromagnetic materials are attracted very strongly toward
the pointed pole; all other materials feel only a very weak force. Some are weakly
attracted to the pointed pole; and some are weakly repelled.
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The effect is most easily seen with a small cylinder of bismuth, which is
repelled from the high-field region. Substances which are repelled in this way are
called diamagnetic. Bismuth is one of the strongest diamagnetic materials, but
even with it, the effect is still quite weak. Diamagnetism 1s always very weak.
If a small piece of aluminum is suspended between the poles, there is also a weak
force, but roward the pointed pole. Substances like aluminum are called para-
magnetic. (In such an experiment, eddy-current forces arise when the magnet is
turned on and off, and these can give off strong impulses. You must be careful
to look for the net displacement after the hanging object settles down.)
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Fig. 34-1.
muth is weakly repelled by the sharp pole;
a piece of aluminum is artracted.
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We want now to describe briefly the mechanisms of these two effects.
First, in many substances the atoms have no permanent magnetic moments,
or rather, all the magnets within each atom balance out so that the ner moment
of the atom is zero. The electron spins and orbital motions all exactly balance
out, so that any particular atom has no average magnetic moment. In these cir-
cumstances, when you turn on a magnetic field little extra currents are generated
inside the atom by induction. According to Lenz’s law, these currents are in
such a direction as to oppose the mcreasing field. So the induced magnetic mo-
ments of the atoms are directed opposite to the magnetic field. This 1s the mech-
anism of diamagnetism.

Then there are some substances for which the atoms do have a permanent
magnetic moment—in which the electron spins and orbits have a net circulating
current that is not zero So besides the diamagnetic effect (which is always present),
there is also the possibility of Iiming up the individual atomic magnetic moments
In this case, the moments try to line up wuth the magnetic field (in the way the
permanent dipoles of a dielectric are lined up by the electric field), and the induced
magnetism tends to enhance the magnetic field. These are the paramagnetic sub-
stances. Paramagnetism is generally fairly weak because the lining-up forces are
relatively small compared with the forces from the thermal motions which try to
derange the order. It also follows that paramagnetism 1s usually sensitive to the
temperature  (The paramagnetism arising from the spins of the electrons re-
sponsible for conduction in a metal constitutes an exception. We will not be
discussing this phenomenon here.) For ordinary paramagnetism, the lower the
temperature, the stronger the effect. There 1s more lining-up at low temperatures
when the deranging effects of the collisions are less. Diamagnetism, on the other
hand, 1s more or less mdependent of the temperature. In any substance with built-in
magnetic moments there is a diamagnetic as well as a paramagnetic effect, but the
paramagnetic effect usually dominates.

In Chapter 11 we described a ferroelectric material, in which all the electric
dipoles get lined up by their own mutual electric fields [t 1s also possible to imagine
the magnetic analog of ferroelectricity, in which all the atomic moments would
line up and lock together. If you make calculations of how this should happen,
you will find that because the magnetic forces are so much smaller than the electric
forces, thermal motions should knock out this alignment even at temperatures as
low as a few tenths of a degree Kelvin. So 1t would be impossible at room tempera-
ture to have any permanent lining up of the magnets.

On the other hand, this is exactly what does happen n iron—it does get lined
up. There 1s an effective force between the magnetic moments of the different atoms
of iron which is much, much greater than the direct magnetic interaction It 1s an
indirect effect which can be explained only by quantum mechanics. It 1s about
ten thousand times stronger than the direct magnetic interaction, and is what lines
up the moments in ferromagnetic materials. We discuss this special interaction
in a later chapter.

Now that we have tried to give you a qualitative explanation of diamagnetism
and paramagnetism, we must correct ourselves and say that ir 1s not possible to
understand the magnetic effects of materials 1n any honest way from the pomnt
of view of classical physics. Such magnetic effects are a completely quantum-
mechanical phenomenon. 1t is, however, possible to make some phoney classical
arguments and to get some 1dea of what 1s going on. We might put it this way.
You can make some classical arguments and get guesses as to the behavior of the
material, but these arguments are not “legal”™ in any sense because 1t 1s absolutely
essential that quantum mechanics be involved in every one of these magnetic
phenomena. On the other hand, there are situations, such as in a plasma or a
region of space with many free electrons, where the electrons do obey the laws
of classical mechanics And in those circumstances, some of the theorems from clas-
sical magnetism are worth while  Also, the classical arguments are of some value
for historical reasons. The first few times that people were able to guess at the mean-
ing and behavior of magnetic materials, they used classical arguments  Finally,
as we have already 1llustrated, classical mechanics can give us some useful guesses
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as to what might happen—even though the really honest way to study this subject
would be to learn quantum mechanics first and then to understand the magnetism
i terms of quantum mechanics.

On the other hand, we don’t want to wait until we learn quantum mechanics
inside out to understand a simple thing like diamagnetism We will have to
lean on the classical mechanics as kind of half showing what happens, realizing,
however, that the arguments are really not correct. We therefore make a series of
theorems about classical magnetism that will confuse you because they will prove
different things. Except for the last theorem, every one of them will be wrong
Furthermore, they will all be wrong as a description of the physical world, because
quantum mechanics is left out.

34-2 Magnetic moments and angular momentum

The first theorem we want to prove from classical mechanics 1s the following:
If an electron is moving in a circular orbit (for example, revolving around a nucleus
under the influence of a central force), there is a definite ratio between the magnetic
moment and the angular momentum. Let’s call J the angular momentum and
n the magnetic moment of the electron in the orbit. The magnitude of the angular
momentum 1s the mass of the electron times the velocity times the radius  (See
Fig. 34-2.) It is directed perpendicular to the plane of the orbit.

J = mor. (34.1)

(This is, of course, a nonrelativistic formula, but it is a good approximation for
atoms, because for the electrons mvolved v/c 1s generally of the order of e?/hc =
1/137, or about 1 percent )

The magnetic moment of the same orbit 1s the current times the area. (See
Section 14-5) The current is the charge per unit time which passes any point on
the orbit, namely, the charge g times the frequency of rotation. The frequency is the
velocity divided by the circumference of the orbit; so

The area 1s 7r2, so the magnetic moment is

= 9,
w=2 (342)
It is also directed perpendicular to the plane of the orbit. So J and g are in the
same direction:

- 4
=5 J (orbut). (34.3)

Therr ratio depends neither on the velocity nor on the radius. For any particle
moving in a circular orbit the magnetic moment is equal to ¢/2m times the angular
momentum. For an electron, the charge is negative—we can call it —q,.; so for
an electron

- _ 9
p= s J (electron orbit). (34.4)

That’s what we would expect classically and, miraculously enough, it is also
true quantum-mechanically [t’s one of those things. However, if you keep going
with the classical physics, you find other places where it gives the wrong answers,
and 1t is a great game to try to remember which things are right and which things
are wrong. We mught as well give you immediately what 1s true i general 1n
quantum mechanics. First, Eq. (34 4) 1s true for orbiral motion, but that’s not the
only magnetism that exists. The electron also has a spin rotation about 1ts own
axis (something like the earth rotating on its axis), and as a result of that spin it
has both an angular momentum and a magnetic moment But for reasons that are
purely quantum-mechanical—there is no classical explanation—the ratio of u
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to J for the electron spin 1s twice as large as it is for orbital motion of the spinning
electron:

= — fn J (electron spin). (34 5)

In any atom there are, generally speaking, several electrons and some combina-
tion of spin and orbit rotations which builds up a total angular momentum and a
total magnetic moment. Although there 1s no classical reason why it should be so,
it is always tfrue in quantum mechanics that (for an isolated atom) the direction of
the magnetic moment 1s exactly opposite to the direction of the angular momentum.
The ratio of the two is not necessarily either —g,/m or —g,/2m, but somewhere in
between, because there is a mixture of the contributions from the orbits and the
spins. We can write

w=—g(5m) (34.6)
where g is a factor which is characteristic of the state of the atom. It would be 1
for a pure orbital moment, or 2 for a pure spin moment, or some other number
in between for a complicated system like an atom. This formula does not, of course,
tell us very much. It says that the magnetic moment is parallel to the angular mo-
mentum, but can have any magnitude. The form of Eq. (34.6) is convenient, how-
ever, because g—called the “Landé g-factor’—is a dimensionless constant whose
magnitude is of the order of one. It 1s one of the jobs of quantum mechanics to
predict the g-factor for any particular atomic state.

You might also be interested in what happens in nuclei. In nuclei there are
protons and neutrons which may move around in some kind of orbit and at the
same time, like an electron, have an intrinsic spin. Again the magnetic moment
is parallel to the angular momentum. Only now the order of magnitude of the
ratio of the two is what you would expect for a proton going around 1n a circle,
with m in Eq. (34.3) equal to the proton mass Therefore it is usual to write for
nuclei

qe
n=g (2m,,> J, (34.7)
where m,, is the mass of the proton, and g—called the ruclear g-factor—is a number
near one, to be determined for each nucleus.

Another important difference for a nucleus is that the spin magnetic moment
of the proton does not have a g-factor of 2, as the electron does For a proton,
g = 2(279). Surprisingly enough, the neutron also has a spin magnetic moment,
and its magnetic moment relative to its angular momentum is 2(—1.93). The
neutron, in other words, is not exactly “neutral” in the magnetic sense. It 1s like
a little magnet, and it has the kind of magnetic moment that a rotaung negarive
charge would have.

34-3 The precession of atomic magnets

One of the consequences of having the magnetic moment proportional to the
angular momentum is that an atomic magnet placed in a magnetic field will precess.
First we will argue classically. Suppose that we have the magnetic moment u
suspended freely in a uniform magnetic field. It will feel a torque =, equal to
p X B, which tries to bring it in line with the field direction But the atomic
magnet is a gyroscope—it has the angular momentum J. Therefore the torque
due to the magnetic field will not cause the magnet to line up. Instead, the magnet
will precess, as we saw when we analyzed a gyroscope in Chapter 20 of Volume 1.
The angular momentum—and with it the magnetic moment—precesses about an
axis parallel to the magnetic field. We can find the rate of precession by the same
method we used in Chapter 20 of the first volume.

Suppose that in a small time Ar the angular momentum changes from Jto J',
as drawn in Fig. 34-3, staying always at the same angle ¢ with respect to the direc-
tion of the magnetic field B. Let's call w, the angular velocity of the precession,
so that in the time A7 the angle of precession is w, At. From the geometry of the
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figure, we see that the change of angular momentum in the time Af is
AJ = (J sin 6)(w, AD).

So the rate of change of the angular momentum is

dJ .

7= wpJ sin 6, (34.8)
which must be equal to the torque:

T = uBsin 6. (34.9)

The angular velocity of precession is then

w, = fJfB. (34.10)

Substituting u/J from Eq. (34.6), we see that for an atomic system

4.8

w =
» 2m

, (34.11)

the precession frequency is proportional to B. It is handy to remember that
for an atom (or electron)

Wp

J» = 5= = (1.4 megacycles/gauss)gB, (34.12)
P 29

and that for a nucleus
Sy = 289 = (0.76 kilocycles/gauss)gB. (34.13)

(The formulas for atoms and nuclei are different only because of the different
conventions for g for the two cases.)

According to the classical theory, then, the electron orbits—and spins—in
an atom should precess in a magnetic field. Is it also true quantum-mechanically ?
It is essentially true, but the meaning of the “precession” is different. In quantum
mechanics one cannot talk about the direction of the angular momentum in the
same sense as one does classically, nevertheless, there 1s a very close analogy—so
close that we continue to call it “precession.” We will discuss it later when we talk
about the quantum-mechanical point of view.

34-4 Diamagnetism

Next we want to look at diamagnetism from the classical point of view. It
can be worked out in several ways, but one of the nice ways is the following.
Suppose that we slowly turn on a magnetic field in the vicinity of an atom. As
the magnetic field changes an electric field is generated by magnetic induction.
From Faraday’s law, the line integral of E around any closed path is the rate of
change of the magnetic flux through the path. Suppose we pick a path I" which 1s
a circle of radius r concentric with the center of the atom, as shown in Fig. 34-4.
The average tangential electric field £ around this path is given by

__4d 2
E2qr = 7 (Bwr?),

and there is a circulating electric field whose strength is

r dB
E=—ra
The induced electric field acting on an electron in the atom produces a torque
equal to —gq.Er, which must equal the rate of change of the angular momentum
dJ/dr:
dJ g.r® dB
e~ 2 dr’

(34.14)
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Integrating with respect to time from zero field, we find that the change in angular
momentum due to turning on the field is

2
A = @"2’— B. (34.15)

This is the extra angular momentum from the twist given to the electrons as the
field 1s turned on.

This added angular momentum makes an extra magnetic moment which,
because it is an orbital motion, is just —g./2m times the angular momentum. The
induced diamagnetic moment is

22

Ap = "2% AT = —‘{4"’,’71 B. (34.16)

The minus sign (as you can see is right by using Lenz’s law) means that the added
moment is opposite to the magnetic field.

We would like to write Eq (34.16) a little differently. The rZ which appears
is the radius from an axis through the atom parallel to B, so if Bis along the z-direc-
tion, it 1s x2 + 2 If we consider spherically symmetric atoms (or average over
atoms with their natural axes in all directions) the average of x? + y?is 2/3 of
the average of the square of the true radial distance from the center point of the
atom. It 1s therefore usually more convenient to write Eq. (34.16) as

2
Ap = — q;n (r*)uyB. (34.17)

6

In any case, we have found an induced atomic moment proportional to the
magnetic field B and opposing it. This is diamagnetism of matter. It is this magnetic
effect that is responsible for the small force on a piece of bismuth in a nonuniform
magnetic field. (You could compute the force by working out the energy of the
induced moments in the field and seeing how the energy changes as the material
is moved into or out of the high-field region.)

We are still left with the problem: What is the mean square radius, (r2 o
Classical mechanics cannot supply an answer. We must go back and start over
with quantum mechanics. In an atom we cannot really say where an electron is,
but only know the probability that 1t will be at some place If we nterpret (r2),,
to mean the average of the square of the distance from the center for the probability
distribution, the diamagnetic moment given by quantum mechanics is just the
same as formula (34.17). This equation, of course, is the moment for one electron.
The total moment is given by the sum over all the electrons in the atom. The
surprising thing is that the classical argument and quantum mechanics give the
same answer, although, as we shall see, the classical argument that gives Eq. (34.17)
is not really valid 1n classical mechanics.

The same diamagnetic effect occurs even when an atom already has a perma-
nent moment. Then the system will precess in the magnetic field. As the whole
atom precesses, it takes up an additional small angular velocity, and that slow
turning gives a small current which represents a correction to the magnetic moment.
This is just the diamagnetic effect represented in another way. But we don't
really have to worry about that when we talk about paramagnetism. If the dia-
magnetic effect is first computed, as we have done here, we don’t have to worry
about the fact that there is an extra little current from the precession. That has
already been included in the diamagnetic term.

34-5 Larmor’s theorem

We can already conclude something from our results so far First of all, in
the classical theory the moment u was always proportional to J, with a given con-
stant of proportionality for a particular atom There wasn’t any spin of the
electrons, and the constant of proportionality was always —gq,/2m; that 1s to say,
in Eq. (34.6) we should set g = [. The ratio of u to J was independent of the in-
ternal motion of the electrons. Thus, according to the classical theory, all systems
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of electrons would precess with the same angular velocity. (This is not true in
quantum mechanics.) This result is related to a theorem in classical mechanics
that we would now like to prove Suppose we have a group of electrons which are
all held together by attraction toward a central point—as the electrons are attracted
by a nucleus. The electrons will also be interacting with each other, and can, in
general, have complicated motions. Suppose you have solved for the motions
with no magnetic field and then want to know what the motions would be with a
weak magnetic field. The theorem says that the motion with a weak magnetic
field is always one of the no-field solutions with an added rotation, about the axis
of the field, with the angular velocity w;, = ¢.B/2m. (This is the same as w,,
if g = 1.) There are, of course, many possible motions. The point is that for
every motion without the magnetic field there 1s a corresponding motion in the
field, which is the original motion plus a uniform rotation This is called Larmor’s
theorem, and wy, is called the Larmor frequency.

We would like to show how the theorem can be proved, but we will let you
work out the details. Take, first, one electron 1n a central force field. The force on
it 1s just F(r), directed toward the center. If we now turn on a uniform magnetic
field, there is an additional force, qv X B; so the total force is

F(") + qv X B. (34.18)

Now let’s look at the same system from a coordinate system rotating with angulai
velocity w about an axis through the center of force and parallel to B. This 1s no
longer an inertial system, so we have to put in the proper pseudoforces—the cen-
trifugal and Coriolis forces we talked about in Chapter 19 of Volume I. We found
there that in a frame rotating with angular velocity w, there is an apparent tangential
force proportional to »,, the radial component of velocity:

Fy = —2muwr, (34.19)
And there is an apparent radial force which is given by
F, = mw®r + 2mor,, (34 20)

where v; 1s the tangential component of the velocity, measured in the rotating
frame. (The radial component v, for rotating and inertial frames is the same )

Now for small enough angular velocities (that 1s, if wr << v), we can neglect
the first term (centrifugal) in Eq. (34.20) in comparison with the second (Coriolis)
Then Eqs. (34.19) and (34.20) can be written together as

F= —2mw X v (34.21)

If we now combine a rotation and a magnetic field, we must add the force in
Eq. (34.21) to that in Eq (34.18). The total force 1s

F(r) + qu X B+ 2mv X w (34.22)

[we reverse the cross product and the sign of Eq. (34 21) to get the last term].
Looking at our result, we see that 1f

2mw = —gB

the two terms on the right cancel, and in the moving frame the only force is F(r).
The motion of the electron is just the same as with no magnetic field—and, of
course, no rotation. We have proved Larmor’s theorem for one electron. Since
the proof assumes a small w, it also means that the theorem 1s true only for weak
magnetic fields. The only thing we could ask you to improve on is to take the case
of many electrons mutually interacting with each other, but all in the same central
field, and prove the same theorem. So no matter how complex an atom is, if 1t has
a central field the theorem is true. But that’s the end of the classical mechanics,
because it isn’t true in fact that the motions precess in that way. The precession
frequency w, of Eq. (34.11) is only equal to wy, if g happens to be equal to 1.
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34-6 Classical physics gives neither diamagnetism nor paramagnetism

Now we would like to demonstrate that according to classical mechanics
there can be no diamagnetism and no paramagnetism at all. It sounds crazy—first,
we have proved that there are paramagnetism, diamagnetism, precessing orbits,
and so on, and now we are going to prove that it is all wrong. Yes!-—We are going
to prove that if you follow the classical mechanics far enough, there are no such
magnetic effects—they all cancel out. 1If you start a classical argument in a certain
place and don’t go far enough, you can get any answer you want. But the only
legitimate and correct proof shows that there is no magnetic effect whatever.

It is a consequence of classical mechanics that if you have any kind of system—
a gas with electrons, protons, and whatever—kept in a box so that the whole thing
can’t turn, there will be no magnetic effect. It is possible to have a magnetic effect
if you have an isolated system, like a star held together by itself, which can start
rotating when you put on the magnetic field. But 1f you have a piece of material
that is held in place so that it can’t start spinning, then there will be no magnetic
effects. What we mean by holding down the spin is summarized this way: At a
given temperature we suppose that there is only one state of thermal equilibrium
The theorem then says that if you turn on a magnetic field and wait for the system
to get mto thermal equilibrium, there will be no paramagnetism or diamagnetism—
there will be no induced magnetic moment. Proof: According to statistical me-
chanics, the probability that a system will have any given state of motion is pro-
portional to e~ U/*! where U is the energy of that motion. Now what is the energy
of motion? For a particle moving in a constant magnetic field, the energy is the
ordinary potential energy plus mp?/2, with nothing additional for the magnetic
field. [You know that the forces from electromagnetic fields are g(E 4+ v X B),
and that the rate of work F - v is just gE - v, which is not affected by the magnetic
field ] So the energy of a system, whether 1t 1s in a magnetic field or not, is always
given by the kinetic energy plus the potential energy. Since the probability of any
motion depends only on the energy—that is, on the velocity and position—it is
the same whether or not there is a magnetic field. For thermal equilibrium, there-
fore, the magnetic field has no effect. If we have one system in a box, and then have
another system in a second box, this time with a magnetic field, the probability
of any particular velocity at any point in the first box is the same as in the second.
If the first box has no average circulating current (which it will not have if it is in
equilibrium with the stationary walls), there is no average magnetic moment.
Since in the second box all the motions are the same, there is no average magnetic
moment there either. Hence, if the temperature 1s kept constant and thermal
equilibrium is re-established after the field 1s turned on, there can be no magnetic
moment induced by the field—according to classical mechanics. We can only get a
satisfactory understanding of magnetic phenomena from quantum mechanics.

Unfortunately, we cannot assume that you have a thorough understanding of
quantum mechanics, so this is hardly the place to discuss the matter. On the other
hand, we don’t always have to learn something first by learning the exact rules and
then by learning how they are applied in different cases. Almost every subject
that we have taken up in this course has been treated i a different way. In the
case of electricity, we wrote the Maxwell equations on “Page One” and then de-
duced all the consequences. That’s one way. But we will noz now try to begin a new
“Page One,” writing the equations of quantum mechanics and deducing everything
from them We will just have to tell you some of the consequences of quantum
mechanics, before you learn where they come from. So here we go.

34-7 Angular momentum in quantum mechanics

We have already given you a relation between the magnetic moment and the
angular momentum. That’s pleasant. But what do the magnetic moment and the
angular momentum mean in quantum mechanics? In quantum mechanics it turns
out to be best to define things like magnetic moments in terms of the other con-
cepts such as energy, in order to make sure that one knows what it means. Now,
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it is easy to define a magnetic moment in terms of energy, because the energy of
a moment in a magnetic field is, in the classical theory, u - B. Therefore, the follow-
ing definition has been taken in quantum mechanics: If we calculate the energy of a
system 1n a magnetic field and we find that it is proportional to the field strength
(for small field), the coefficient 1s called the component of magnetic moment in
the direction of the field. (We don’t have to get so elegant for our work now, we
can still think of the magnetic moment in the ordinary, to some extent classical,
sense.)

Now we would like to discuss the idea of angular momentum in quantum
mechanics—or rather, the characteristics of what, in quantum mechanics, is called
angular momentum. You see, when you go to new kinds of laws, you can’t just
assume that each word is going to mean exactly the same thing. You may think,
say, “Oh, I know what angular momentum is. It’s that thing that is changed by a
torque.” But what’s a torque? In quantum mechanics we have to have new
defimtions of old quantities. It would, therefore, be legally best to call it by some
other name such as “‘quantangular momentum,” or something like that, because
it is the angular momentum as defined in quantum mechanics But if we can find a
quantity in quantum mechanics which is identical to our old idea of angular
momentum when the system becomes large enough, there 1s no use 1n inventing
an extra word. We might as well just call it angular momentum. With that under-
standing, this odd thing that we are about to describe s angular momentum It
is the thing which in a large system we recognize as angular momentum 1n classical
mechanics.

First, we take a system in which angular momentum is conserved, such as an
atom all by itself in empty space. Now such a thing (like the earth spinning on its
axis) could, 1n the ordinary sense, be spinning around any axis one wished to choose.
And for a given spin, there could be many different “states,” all of the same
energy, each “‘state” corresponding to a particular direction of the axis of the
angular momentum. So in the classical theory, with a given angular momentum,
there 1s an infinite number of possible states, all of the same energy.

It turns out in quantum mechanics, however, that several strange things
happen. First, the number of states in which such a system can exist is hmited—
there is only a finite number. If the system is small, the finite number is very small,
and if the system 1s large, the finite number gets very, very large. Second, we
cannot describe a “state’” by giving the direction of its angular momentum, but
only by giving the component of the angular momentum along some direction—say
in the z-direction Classically, an object with a given total angular momentum
J could have, for its z-component, any value from +J to —J/. But quantum-
mechanically, the z-component of angular momentum can have only certain discrete
values. Any given system—a particular atom, or a nucleus, or anything—with a
given energy, has a characteristic number j, and its z-component of angular mo-
mentum can only be one of the following set of values:

Jh
(J—Dh
U=k

: (34.23)

- — 2k

- — D

— A
The largest z-component 1s j times #; the next smaller is one unit of # less, and so
on down to —jA. The number j is called “‘the spin of the system.” (Some people
call it the “total angular momentum quantum number’’; but we’ll call it the “spin.””)

You may be worried that what we are saying can only be true for some “spe-
cial” z-axis But that is not so. For a system whose spin is j, the component of

angular momentum along any axis can have only one of the values in (34.23)
Although it is quite mysterious, we ask you just to accept it for the moment We
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will come back and discuss the point later. You may at least be pleased to hear that
the z-component goes from some number to minus the same number, so that we
at least don’t have to decide which 1s the plus direction of the z-axis. (Certainly, if
we said that it went from 4 to minus a different amount, that would be infinitely
mysterious, because we wouldn’t have been able to define the z-axis, pointing the
other way.)

Now if the z-component of angular momentum must go down by integers
from +; to —j, then j must be an integer. No! Not quite; twice ; must be
an integer. It is only the difference between 47 and —j that must be an integer. So,
in general, the spin y 1s either an integer or a half-integer, depending on whether
2y is even or odd. Take, for instance, a nucleus like lithrum, which has a spin of
three-halves, j = 3/2. Then the angular momentum around the z-axis, in units
of #, is one of the following:

+3/2
+1/2
—1/2
—3/2.

There are four possible states, each of the same energy, if the nucleus 1s in empty
space with no external fields. If we have a system whose spin is two, then the
z-component of angular momentum has only the values, in units of #,

2

1

0
-1
—-2.

If you count how many states there are for a given j, there are (2j + 1) possibilities.
In other words, if you tell me the energy and also the spin 4, it turns out that
there are exactly (2j 4 1) states with that energy, each state corresponding to one
of the different possible values of the z-component of the angular momentum.

We would like to add one other fact. If you pick out any atom of known
at random and measure the z-component of the angular momentum, then you may
get any one of the possible values, and each of the values is equally likely. All of
the states are in fact single states, and each is just as good as any other. Each one
has the same “weight” in the world. (We are assuming that nothing has been done
to sort out a special sample.) This fact has, incidentally, a simple classical analog.
If you ask the same question classically: What 1s the hikelihood of a particular
z-component of angular momentum if you take a random sample of systems, all
with the same total angular momentum ?—the answer is that all values from the
maximum to the minimum are equally likely. (You can easily work that out.)
The classical result corresponds to the equal probability of the (2; -+ 1) possi-
bilities in quantum mechanics.

From what we have so far, we can get another interesting and somewhat
surprising conclusion. In certain classical calculations the quantity that appears
in the final result is the square of the magnitude of the angular momentum J—in
other words, J-J. It turns out that it is often possible to guess at the correct
quantum-mechanical formula by using the classical calculation and the following
simple rule: Replace J2 = J-J by j(; + Dh2 This rule 1s commonly used, and
usually gives the correct result, but not always. We can gtve the following argument
to show why you might expect this rule to work.

The scalar product J - J can be written as

J-J =0+ T+ I

Since it is a scalar, it should be the same for any orientation of the spin. Suppose
we pick samples of any given atomic system at random and make measurements of
J3, or J, or JZ, the average value should be the same for each. (There is no special
distinction for any one of the directions.) Therefore, the average of J- J is just
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equal to three times the average of any component squared, say of JZ;

But since J- J is the same for all orientations, its average is, of course, just 1its
constant value; we have

J T = 32, (34.24)

If we now say that we will use the same equation for quantum mechanics, we
can easily find (J7),,. We just have to take the sum of the (2; + 1) possible values
of J2, and divide by the total number;

.2 . 2 2 N2
o _JFG=D)+ -+ (=g F+ D+ (=),
<Jz>:w - 2] + 1 h/ .

(34.25)

For a system with a spin of 3/2, it goes like this:

2y, = G+ (/2 4 (S1/2P 4 (<3/2F 4o 5o
z/av 4 - 4 .

We conclude that
JJ =30 = 33h% = 3G + DA%

We will leave it for you to show that Eq. (34.25), together with Eq. (34.24), gives
the general result

J-J = j(j + i (34.26)

Although we would think classically that the largest possible value of the z-com-
ponent of J is just the magnitude of J—namely, \/J - J—quantum mechanically
the maximum of J, is always a little less than that, because j# is always less than
\V/J(j + 1) 2. The angular momentum is never “completely along the z-direction.”

34-8 The magnetic energy of atoms

Now we want to talk again about the magnetic moment. We have said that in
quantum mechanics the magnetic moment of a particular atomic system can be
written in terms of the angular momentum by Eq. (34.6);

n=—g (2%) J, (34.27)

where —q, and m are the charge and mass of the electron.

An atomic magnet placed in an external magnetic field will have an extra
magnetic energy which depends on the component of its magnetic moment along
the field direction. We know that

Unag = —n - B. (34.28)
Choosing our z-axis along the direction of B,
Unag = —uB. (34.29)
Using Eq. (34.27), we have that
Uneg = & (277) J.B.
Quantum mechanics says that J, can have only certain values: ji, (fj — DA, ...,

—sh. Therefore, the magnetic energy of an atomic system is not arbitrary; it can
have only certain values. Its maximum value, for instance, is

g (ﬁ) fijB.
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Fig. 34-5. The possible magnetic en-

ergies of an atomic system with a spin of
3/2 in a magnetic field B.
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Fig. 34-6. The two possible energy

states of an electron in a magnetic field B.

The quantity g.#/2m 1s usually given the name “the Bohr magneton” and written
KRt
qchi

BB g

The possible values of the magnetic energy are

I
Umag = gupB 7’

where J,/fi takes on the possible valuesj, (; — 1), G — 2),...,(—j + 1), —/.

In other words, the energy of an atomic system is changed when it is put in a
magnetic field by an amount that is proportional to the field, and proportional to
J.. We say that the energy of an atomic system is “split into 2; + 1 levels” by
a magnetic field. For nstance, an atom whose energy is U, outside a magnetic
field and whose ; is 3/2, will have four possible energies when placed in a field.
We can show these energies by an energy-level diagram Iike that drawn in Fig
34-5. Any particular atom can have only one of the four possible energies in any
given field B. That 1s what quantum mechanics says about the behavior of an
atomic system in a magnetic field.

The simplest “‘atomic” system is a single electron. The spin of an electron 1s
1/2, so there are two possible states. J, = #/2 and J, = —7%/2. For an electron
at rest (no orbital motion), the spin magnetic moment has a g-value of 2, so the
magnetic energy can be either =uzB. The possible energies in a magnetic field are
shown in Fig. 34-6. Speaking loosely we say that the electron either has its spin
“up” (along the field) or “down” (opposite the field).

For systems with higher spins, there are more states. We can think that the
spin is ““up” or “down” or cocked at some “angle” n between, depending on the
value of J,.

We will use these quantum mechanical results to discuss the magnetic prop-
erties of materials in the next chapter.
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