33

Reflection from Surfaces

33-1 Reflection and refraction of light

The subject of this chapter is the reflection and refraction of light—or electro-
magnetic waves in general—at surfaces. We have already discussed the laws of
reflection and refraction in Chapter 35 of Volume I. Here’s what we found out
there:

1. The angle of reflection is equal to the angle of incidence. With the angles
defined as shown 1 Fig. 33~1,

(33.1)

2. The product n sin 6 is the same for the incident and transmitted beams
(Snell’s law).
nysin 8, = nysin 6,. (33.2)
3. The intensity of the reflected light depends on the angle of incidence and
also on the direction of polarization. For E perpendicular to the plane of
incidence, the reflection coefficient R | is

2
R, = I _ sin (9, )

1, sin2 (0, + 6,) (33.3)

For E parallel to the plane of incidence, the reflection coefficient R 1s

I, tan? (6, — 9,)

4. For normal incidence (any polarization, of course!),
IT Ho — Nq 2
S= (2t 3
I, <n2 + n1> (3‘ 5)

(Earlier, we used 1 for the incident angle and r for the refracted angle Since we
can’t use r for both “refracted” and “‘reflected” angles, we are now using 8, =
incident angle, 6, = reflected angle, and 8, = transmitted angle.)

Our earlier discussion is really about as far as anyone would normally need
to go with the subject, but we are going to do 1t all over again a different way
Why” One reason is that we assumed before that the indexes were real (no ab-
sorption 1n the materials) But another reason is that you should know how to
deal with what happens to waves at surfaces from the point of view of Maxwell’s
equations. We'll get the same answers as before, but now from a straightforward
solution of the wave problem, rather than by some clever arguments.

We want to emphasize that the amplitude of a surface reflection 1s not a
property of the material, as is the index of refraction It 1s a “surface property,”
one that depends precisely on how the surface is made. A thin layer of extraneous
junk on the surface between two materials of indices #, and n, will usually change
the reflection. (There are all kinds of possibilities of interference here—hke the
colors of o1l films Suitable thickness can even reduce the reflected amplhitude to
zero for a given frequency; that’s how coated lenses are made.) The formulas
we will derive are correct only if the change of index 1s sudden—within a distance
very small compared with one wavelength. For light, the wavelength is about
5000 A, so by a “smooth’ surface we mean one in which the conditions change in
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of light waves at a surface.
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Fig. 33-2. For a wave moving in the
direction k, the phase at any point P is
(wf — k-r).

going a distance of only a few atoms (or a few angstroms). Our equations will
work for light for highly polished surfaces. In general, if the index changes grad-
ually over a distance of several wavelengths, there is very little reflection at all.

33-2 Waves in dense materials

First, we remind you about the convenient way of describing a sinusoidal
plane wave we used in Chapter 36 of Volume 1. Any field componen: in the wave
(we use E as an example) can be written in the form

E = Epe' ™ Fn, (33.6)

where E represents the amplitude at the point r (from the origin) at the time 1.
The vector k points in the direction the wave is travelling, and 1ts magnitude

k| = k = 2w/\is the wave number. The phase velocity of the wave 1s 1, = w/k,
for a light wave in a material of index #, v,, = ¢/n, so
wh
k = = 33.7)

Suppose k is in the z-direction, then k - r 1s just kz, as we have often used 1t For

k in any other direction, we should replace z by r;, the distance from the origin

in the k-direction; that 1s, we should replace kz by kri, which 1s just k& r. (See

Fig. 33-2.) So Eq. (33.6) is a convenient representation of a wave 1n any direction.
We must remember, of course, that

k-r = k.x+ kyy+ k.z,

where k., k,, and k, are the components of k along the three axes. In fact, we
pointed out once that (w, k., k,,, k.) is a four-vector, and that 1ts scalar product
with (7, x, y, z) is an invariant. So the phase of a wave is an invariant, and Eq.
(33.6) could be written

E = Ege'tws,

But we don’t need to be that fancy now.

For a sinusoidal E, as in Eq. (33.6), 0E/dt is the same as iwE, and dE/dx is
—1k,E, and so on for the other components. You can see why 1t is very convenient
to use the form 1n Eq. (33 6) when working with differential equations-—differentia-
tions are replaced by multiplications. One further useful point: The operation
Vv = (9/dx, 3/dy, 8/9z) gets replaced by the three multiplications (—tk,, —iky,
—ik,). But these three factors transform as the components of the vector k, so
the operator V gets replaced by multiplication with —ik:

= — 1w,

ot

v — —ik. (33.8)
This remains true for any V operatton—whether 1t 1s the gradient, or the diver-
gence, or the curl. For instance, the z-component of vV X E is

0E, _ OE.

ax ay
If both E, and E, vary as % T then we get
—ik.E, 4+ 1k, E.,

which 1s, you see, the z-component of —ik X E.

So we have the very useful general fact that whenever you have to take the
gradient of a vector that varies as a wave in three dimensions (they are an important
part of physics), you can always take the derivations quickly and almost without
thinking by remembering that the operation V 1s equivalent to multiplication by
—ik.
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For instance, the Faraday equation

OB
VXE= -+

becomes for a wave
—ik X E = —jwB.

This tells us that

kX E

w

B

) (33.9)

which corresponds to the result we found earlier for waves in free space—that B,
n a wave, 1s at right angles to E and to the wave direction. (In free space, w/k =
¢.) You can remember the sign in Eq. (33 9) from the fact that k is in the direction
of Poynting’s vector § = €yc2E X B.

If you use the same rule with the other Maxwell equations, you get again the
results of the last chapter and, 1n particular, that

2 2

kk=k*="2

iz (33 10)
But since we know that, we won’t do it again.

If you want to entertain yourself, you can try the following terrifying problem
that was the ultimate test for graduate students back in 1890: solve Maxwell’s
equattons for plane waves in an anisotropic crystal, that is, when the polarization
P 1s related to the electric field E by a tensor of polarizability. You should, of
course, choose your axes along the principal axes of the tensor, so that the relations
are simplest (then P, = a,E,, P, = ok, and P, = «.E,), but let the waves
have an arbitrary direction and polarization. You should be able to find the rela-
tions between E and B, and how k varies with direction and wave polarization.
Then you will understand the optics of an anisotropic crystal. It would be best
to start with the simpler case of a birefringent crystal—like calcite—for which
two of the polanzabtlities are equal (say, a;, = a.), and see if you can understand
why you see double when you look through such a crystal If you can do that,
then try the hardest case, in which all three «’s are different. Then you will know
whether you are up to the level of a graduate student of 1890. In this chapter,
however, we will consider only isotropic substances
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We know from experience that when a plane wave arrives at the boundary
between two different materials—say, arr and glass, or water and oill—there is a
wave reflected and a wave transmitted Suppose we assume no more than that and
see what we can work out. We choosc our axes with the yz-plane in the surface
and the xy-plane perpendicular to the incident wave surfaces, as shown in Fig. 33-3.
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Fig. 33-4. A boundary
E, is obtained from £ Eds = 0.

The electric vector of the incident wave can then be written as
E, = Ege"®'™k ", (33.11)
Since k is perpendicular to the z-axis,
k-r = kox + k. (3312)
We write the reflected wave as
E, = Ege"@'i=h"r, (33.13)

so that its frequency is «’, its wave number is k’, and its amplitude 1s E;. (We
know, of course, that the frequency is the same and the magnitude of k 1s the same
as for the incident wave, but we are not going to assume even that. We will let 1t
come out of the mathematical machinery.) Finally, we write for the transmitted
wave,

E; = Efeve/'!7k"0, (33.14)

We know that one of Maxwell’s equations gives Eq (33.9), so for each of the
waves we have
_kXE

B, = > B,
) w

’ r’
_KXE g _k_,gfl Ec @as)

Also, 1f we call the mdexes of the two media n; and #n,, we have from Eq. (33.10)

2.2
k2 = kf+ ki _em. (33 16)

c?

Since the reflected wave 1s 1n the same material, then

2 2
K? = fp’il (33.17)
whereas for the transmitted wave,
12,2
k"2 = 55’62”2- (33.18)

33-3 The boundary conditions

All we have done so far is to describe the three waves; our problem now 1s
to work out the parameters of the reflected and transmitted waves in terms of
those of the incident wave. How can we do that? The three waves we have de-
scribed satisfy Maxwell’s equations in the uniform material, but Maxwell’s equa-
tions must also be satisfied ar the boundary between the two different materials.
So we must now look at what happens right ar the boundary. We will find that
Maxwell's equations demand that the three waves fit together in a certain way.

As an example of what we mean, the y-component of the electric field E must
be the same on both sides of the boundary. This is required by Faraday’s law,

dB

VXE:_at

, (33.19)

as we can see in the following way. Consider a little rectangular loop I' which
straddles the boundary, as shown in Fig 33-4. Equation (33.19) says that the line
integral of E around T is equal to the rate of change of the flux of B through the

loop: )
a
fE-ds = ———/B'nda.
r at

Now imagine that the rectangle is very narrow, so that the loop encloses an n-
finitesimal area. If B remains finite (and there's no reason it should be infinite
at the boundary!) the flux through the area is zero So the line integral of E must
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be zero. If E,, and E,; are the components of the field on the two sides of the
boundary and if the length of the rectangle 1s /, we have

EI/]’ - Eu?] = 0
or
E, = E, (33.20)

as we have surd. This gives us one relation among the fields of the three waves.

The procedure of working out the consequences of Maxwell’s equations at
the boundary 1s called “determining the boundary conditions.” Ordinarily, 1t 1s
done by finding as many cquations like Eq. (33 20) as one can, by making argu-
ments about little rectangles hike T in Fig. 33-4, or by using httle gaussian surfaces
that straddle the boundary Although that is a perfectly good way of proceeding,
it gives the impression that the problem of dealing with a boundary 1s different
for every different physical problem

For example, in a problem of heat flow across a boundary, how are the tem-
peratures on the two sides related? Well, you could argue, for one thing, that the
heat flow ro the boundary from one side would have to equal the flow away from
the other side. It 1s usually possible, and generally quite useful, to work out the
boundary conditions by making such physical arguments. There may be times,
however, when 1n working on some problem you have only some equations, and
you may not sce right away what physical arguments to use. So although we are
at the moment interested only 1n an electromagnetic problem, where we can make
the physical arguments, we want to show you a method that can be used for any
problem—a general way of finding what happens at a boundary directly from the
differenual equations

We begin by writing all the Maxwell equations for a dielectric—and this time
we are very specific and write out explicitly all the components:

ve=-Y7F
€y
9E, . OE, = OE aP.  aP, | oP
Lo 0Ly | 0L (O, 9y O 2
e"(/)x + Ay + {J:> <(’)x T ay t 02) (33.21)
OB
VXE= =73
ok, _9E, _ 0B, (33.22a)
dy az ot o
oF oF, 0B,
Doy o TEE L Ty 33.22
az Ox at ( b)
oF, oF JB
Oy _ Te Y72 3322
ax oy a1 (33 22¢)
v-B-0
9B, 9B, | 0B. _ (33 23)
ox ay a9z
e g | P OE
v x B~ €0 ot ot
) ()B’ aB/ 1 (’)P aEx
.2 @ 9%y o L 7 a3 33.24:
‘ <{)y az> e o T oan (33.248)
> (OB a8, 1 oP, oE,
2 o 9Py o Py I8 33.24b
¢ <az rfx) €y Ot ot (33 )
,(aB, 9B 1 0P,  OE.
S ek Ao Ll z i 33.2
¢ <ax ay) ¢ 01 T oi (33.24c)
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Fig. 33-5. The fields in the transition
region (3) between two different ma-
terials in regions (1) and (2).

Now these equations must all hold in region 1 (to the left of the boundary)
and in region 2 (to the right of the boundary). We have already written the solu-
trons in regions 1 and 2. Finally, they must also be satisfied i the boundary, which
we can call region 3. Although we usually think of the boundary as being sharply
discontinuous, in reality 1t 1s not. The physical properties change very rapidly
but not infinitely fast. In any case, we can imagine that there is a very rapid, but
continuous, transition of the index between region 1 and 2, in a short distance we
can call region 3. Also, any field quantity like P,, or E,, etc., will make a similar
kind of transition in region 3. In this region, the differential equations must still
be satisfied, and 1t 1s by following the differential equations in this region that we
can arrive at the needed “boundary conditions.”

For instance, suppose that we have a boundary between vacuum (region 1)
and glass (region 2). There 1s nothing to polarize m the vacuum, so P, = 0.
Let’s say there is some polarization P, in the glass. Between the vacuum and the
glass there is a smooth, but rapid, transitton If we look at any component of
P, say P,, it might vary as drawn 1n Fig. 33-5(a). Suppose now we take the first
of our equations, Eq (33.21). It involves derivatives of the components of P with
respect to x, y, and z. The p- and z-derivatives are not interesting; nothing spec-
tacular is happening in those directions. But the x-derivative of P, will have some
very large values in region 3, because of the tremendous slope of P,. The derivative
dP,./dx will have a sharp spike at the boundary, as shown in Fig. 33-5(b). If we
imagine squashing the boundary to an even thinner layer, the spike would get
much higher If the boundary is really sharp for the waves we are interested in,
the magmtude of dP,/dx in region 3 will be much, much greater than any contribu-
tions we might have from the variation of P in the wave away from the boundary—
so we ignore any variations other than those due to the boundary.

Now how can Eq. (33 21) be satisfied if there 1s 2 whopping big spike on the
right-hand side? Only 1f there 1s an equally whopping big spike on the other side.
Something on the left-hand side must also be big. The only candidate is dE,/dx,
because the variations with y and z are only those small effects in the wave we just
mentioned. So —ey(dE/dx) must be as drawn in Fig. 33-5(c)—just a copy of
dP,/9x. We have that

IE, _ P, ‘§

©%9x T T Tax

If we mtegrate this equation with respect to x across region 3, we conclude that
€o(Ere — Ep1) = —(Paz — Pry) (33.25)

In other words, the jump n €yF, in going from region 1 to region 2 must be equal
to the jump 1in —P,.
We can rewrite Eq. (33.25) as

€0k + Pro = €E; + Puy, (33.26)

which says that the quantity (e,E, 4 P.) has equal values in region 2 and region 1.
People say: the quantity (eoE, + P.) is continuous across the boundary. We have,
in this way, one of our boundary conditions.

Although we took as an illustration the case in which P was zero because
region 1 was a vacuum, 1t 1s clear that the same argument applies for any two
materials in the two regions, so Eq. (33.26) 1s true in general.

Let’s now go through the rest of Maxwell’s equations and see what each of
them tells us. We take next Eq. (33.22a). There are no x-derivatives, so 1t doesn’t
tell us anything. (Remember that the fields themselves do not get especially large
at the boundary; only the derivatives with respect to x can become so huge that
they dominate the equation.) Next, we look at Eq. (33 22b). Ah' There 1s an
x-derivative! We have 0E,/dx on the left-hand side. Suppose 1t has a huge de-
rivative  But wait a moment! There 1s nothing on the right-hand side to match it
with; therefore E, cannot have any jump in going from region 1 to region 2.
[If 1t did, there would be a spike on the left of Eq. (33.22a) but none on the right,
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and the equation would be false ] So we have a new condition:

E.o = E,. (33.27)
By the same argument, Eq (33.22¢) gives

E,, = E,. (33.28)

Thus last result is just what we got in Eq. (33 20) by a line integral argument.
We go on to Eq. (33 23) The only term that could have a sptke 1s 9B, /dx.
But there’s nothing on the right to match it, so we conclude that

B,y = B... (33.29)

On to the last of Maxwell’s equations! Equation (33 24a) gives nothing,
because there are no a-derivatives Equation (33 23b) has one, —c¢? 9B./dx, but
again, there 1s nothing to match it with. We get

B., = B,,. (33.30)
The last equation 1s quite similar, and gives
Bl/2 = Byl- (3331)

The last three equations gives us that B, = B,. We want to emphasize,
however, that we get this result only when the materials on both sides of the
boundary are nonmagnetic-—or rather, when we can neglect any magnetic effects
of the materials. This can usually be done for most matenals, except ferromagnetic
opes  (We will treat the magnetic properties of materials in some later chapters.)

E Our program has netted us the six relations between the fields in region 1 and
those 1n region 2. We have put them all together in Table 33-1. We can now use
them to match the waves in the two regions. We want to emphasize, however, that
the idea we have just used will work 1n any physical situation in which you have
differential equations and you want a solution that crosses a sharp boundary
between two regions where some property changes. For our present purposes,
we could have easily derived the same equations by using arguments about the
fluxes and circulations at the boundary. (You might see whether you can get the
same result that way.) But now you have seen a method that will work 1n case you
ever get stuck and don’t see any easy argument about the physics of what 1s happen-
ing at the boundary—you can just work with the equations.

33-4 The reflected and transmitted waves

Now we are ready to apply our boundary conditions to the waves we wrote
down in Section 33-2. We had:

E, = Eye'"/ ==k, (3332)

E, — E(/)eL(w,l—/\:/EI———ki,l/), (3333)

E, = Elfe!@ =k e=ki/v) (33.34)

B - l?_%@, (33.35)

B, = ¥ xXE (33.36)
w

g =¥ X E. (3337)

We have one further bit of knowledge: E 1s perpendicular to its propagation
vector k for each wave.

33-7

Table 33-1
Boundary conditions at the surface of :
dielectric
(eoE, + P), = (ewE2 4 P2),
(El)u = (E2)II
(E1). = (E2),
B, = B,

(The surface 15 1n the yz-plane)



The results will depend on the direction of the E-vector (the “polarization™)
of the incoming wave. The analysis is much simplified if we treat separately the case
of an incident wave with 1ts E-vector parallel to the “plane of incidence” (that 1s,
the xy-plane) and the case of an mcident wave with the E-vector perpendicular to

Y the plane of incidence. A wave of any other polarization 1s just a linear combina-
tion of two such waves. In other words, the reflected and transmitted intensities
are different for different polarizations, and 1t is easiest to pick the two simplest
cases and treat them separately.

We will carry through the analysis for an incomung wave polarized per-
" E, o pendicular to the plane of incidence and then just give you the result for the other.
' Bt We are cheating a little by taking the simplest case, but the principle 1s the same
. for both. So we take that E, has only a z-component, and since all the E-vectors
k- are in the same direction we can leave off the vector signs.
j SNy So long as both materials are 1sotropic, the induced oscillations of charges in

SURFACE the material will also be in the z-direction, and the E-field of the transmutted and
radiated waves will have only z-components. So for all the waves, E, and E,
and P, and P, are zero. The waves will have their E- and B-vectors as drawn in
‘- ne Fig. 33-6 (We are cutting a corner here on our original plan of getting everything
from the equations. This result would also come out of the boundary conditions,

Fig. 33-6. Polarization of the re- but we can save a lot of algebra by using the physical argument When you have

flected and transmitted waves when the some spare time, see if you can get the same result from the equations. It is clear
E-field of the incident wave is perpendicu- that what we have said agrees with the equations; 1t 1s just that we have not shown
lar to the plane of incidence. that there are no other possibilities.)

Now our boundary conditions, Egs. (33 26) through (33.31), give relations
between the components of E and B in regions 1 and 2. For region 2 we have only
the transmitted wave, but in region 1 we have two waves. Which one do we use?
The fields 1n region 1 are, of course, the superposition of the fields of the incident
and reflected waves. (Since each satisfies Maxwell’s equations, so does the sum.)
So when we use the boundary conditions, we must use that

>y

- B.".“

"E, =E + E, E, = E,
and similarly for the B’s.
For the polarization we are considering, Eqs. (33.26) and (33.28) give us no‘t\
new information; only Eq (33.27) 1s useful. It says that

EL + Er = Et
at the boundary, that is, for x = 0. So we have that
Eoe1(wt-—kuy) + E6e¢(m'{—kull) — E(;),ea(w"{—kl','g/), (3338)

which must be true for a// 1 and for all y. Suppose we look first at y = 0. Then we
have

¢ "t 2t
En(:‘w} ‘I"‘ E(’](_’Lw = E(’)’@L“

This equation says that two oscillating terms are equal to a third oscillation.
That can happen only if all the oscillations have the same frequency. (It is 1m-
possible for three—or any number—of such terms with different frequencies to
add to zero for all times.) So

W= = w (33.39)

As we knew all along, the frequencies of the reflected and transnutted waves are
the same as that of the incident wave.

We should really have saved ourselves some trouble by putting that in at the
beginning, but we wanted to show you that it can also be got out of the equations.
When you are doing a real problem, it 15 usually the best thing to put everything you
know 1nto the works right at the stert and save yourself a lot of trouble.

By definition, the magnitude of k 1s given by k? = n%w?/c?, so we have also
that . , )

k 5 = ]% = —k2 (33.40)
ng n ny
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Now look at Eq. (33.38) for 7 = 0. Using again the same kind of argument
we have just made, but this time based on the fact that the equation must hold
for all values of y, we get that

ki = ki, = k. (33.41)
From Eq. (33.40), k’2 = k2, so
R
Combining this with Eq. (33.41), we have that
K2 = ks,

or that k% = =k, The positive sign makes no sense; that would not give a
reflected wave, but another incident wave, and we said at the start that we were
solving the problem of only one incident wave. So we have

Ky = —k,. (33 42)

The two equations (33.41) and (33.42) give us that the angle of reflection is equal
to the angle of ncidence, as we expected. (See Fig. 33-3 ) The reflected wave 1s

E, = Efe'“!~htiuw, (33.43)

For the transmitted wave we already have that

Ky = Ky
and

k'"? k®

KoK 4

72 TR (33.44)
so we can solve these to find k. We get

2
KPP =k — k= K~k (33.45)

Suppose for a moment that n, and »n, are real numbers (that the imaginary
parts of the indexes are very small). Then all the k£’s are also real numbers, and
from Fig. 33-3 we find that

k .
# = sin 9,

i = sin 6,. (33.46)

From (33.44) we get that
ngsin §;, = nysin 4, (33.47)

which is Sneil’s law of refraction—again, something we already knew. If the
indexes are not real, the wave numbers are complex, and we have to use Eq. (33.45).
[We could still define the angles 8, and 6, by Eq. (33.46), and Snell’s law, Eq. (33.47),
would be true in general. But then the “angles™ also are complex numbers, thereby
losing their simple geometrical interpretation as angles. It 1s best then to describe
the behavior of the waves by theirr complex &, or k7 values ]

So far, we haven’t found anything new. We have just had the simple-minded
delight of getting some obvious answers from a complicated mathematical ma-
chinery. Now we are ready to find the amplitudes of the waves which we have
not yet known. Using our results for the w’s and k’s, the exponential factors in
Eq. (33.38) can be cancelled, and we get

Ey + E, = Eg. (33 48)

Since both Ej and E{ are unknown, we need one more relationship. We must
use another of the boundary conditions. The equations for E, and E, are no help,
because all the E’s have only a z-component So we must use the conditions on
B. Let’s try Eq. (33 29):

B.z = By
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Fig. 33-7. Polarization of the waves
when the E-field of the incident wave is
parallel to the plane of incidence.
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From Egs. (33.35) through (33.37),
_ kE,

Brt 7 - 7
w w w

Recalling that o’ = « = wand k| = k| = k,, we get that
E, + Ey = EF.

But this is just Eq. (33 48) all over again' We've just wasted time getting something
we already knew.

We could try Eq. (33.30), B,, = B.j, but there are no z-components of B'
So there’s only one equation left: Eq. (33.31), B, = B,;. For the three waves.

B, = — ki E’ . (33.49)
Putting for E,, E,, and E; the wave expression for x = 0 (to be at the boundary),
the boundary condition 1s

ﬁ{c_, E(J/ez(w”l—l\]j'u).

1

k t—h k; —ky
Rz Eﬂez(w W) + ‘:}: E(Jeb(w [ -
w w w

Again all w’s and k,’s are equal, so this reduces to
k.E, + kiEy = kJE]. (33.50)

This gives us an equation for the E’s that 1s different from Eq. (33 48). With the

two, we can solve for E} and Ey. Remembering that k, = —k,, we get
ke — K
E) = k, + k/ Ey, (3351)
2k
g~ o 33.52
EO kr + k{[/ EO' ( 5 )

These, together with Eq. (33.45) or Eq. (33 46) for k", give us what we wanted to
know. We will discuss the consequences of this result in the next section.

If we begin with a wave polarized with its E-vector parallel to the plane of
inctdence, E will have both x- and y-components, as shown in Fig. 33-7. The
algebra is straightforward but more complicated (The work can be somewhat
reduced by expressing things in this case 1n terms of the magnetic fields, which are
all in the z-direction.) One finds that

ngkz — n2k

Byl = 2 M (3353)
nyky + niky
and
Ef = e gy (33 54)

Let’s see whether our results agree with those we got earlier Equation (33 3)
1s the result we worked out 1n Chapter 35 of Volume | for the ratio of the intensity
of the reflected wave to the intensity of the incident wave Then, however, we were
considering only real indexes For real indexes (and k's), we can write

wh
k, = kcosf, = Ac—l cos 0,
wh
kY = k' cos§, = ‘0—2 cos 6,

Substituting in Eq. (33.51), we have

Ey, nycosf, — n,cosd,

E() N ny COS 0; =+ Ay COos 6, ’ (3355)

33-10



which does not look the same as Eq. (33.3). It will, however, if we use Snell’s law
to get rid of the n’s. Setting ny = ny sin §,/sin ¢,, and multiplying the numerator
and denominator by sin ¢, we get

EL  cos#,sin g, — sin 8, cos 6,

E,  cos#é,smné, + siné,cos 6,

The numerator and denominator are just the sines of (8, — 8,) and (8, + 6,);
we get
Eq

Ey _ sin 6, — ot).
E, smm(9, + 6y

(33.56)

Since E; and E, are in the same material, the intensities are proportional to the
squares of the electric fields, and we get the same result as before. Similarly, Eq.
(33.53) 1s the same as Eq. (33.4).

For waves which arrive at normal incidence, 6, = 0 and 6, = 0. Equation
(33.56) gives 0/0, which is not very useful. We can, however, go back to Eq.

(33.55), which gives
1\ 2 2
0 Ny — A2
= | = =|—) - 33.57
<E<)> <n1 + ’12> ( )

This result, naturally, applies for “either” polarization, since for normal ncidence
there is no special “plane of incidence.”

33-5 Reflection from metals

We can now use our results to understand the interesting phenomenon of
reflection from metals. Why is 1t that metals are shiny? We saw 1n the last chapter
that metals have an index of refraction which, for some frequencies, has a large
imaginary part. Let’s see what we would get for the reflected intensity when light
shies from air (with # = 1) onto a material with » = —in;. Then Eq. (33.55)
gives (for normal incidence)

E6 _ 1 + il’l]
_E_o o r— i’l] '

For the intensity of the reflected wave, we want the square of the absolute values

of E),and E,:
I, _|EW® 1+ my?

I, [Eol2 — |t = ing?’

or
2
L Lt+nr (33 58)
R

For a material with an index which is a pure imaginary number, there is 100 per-
cent reflection!

Metals do not reflect 100 percent, but many do reflect visible light very well.
In other words, the imaginary part of their indexes is very large But we have seen
that a large imaginary part of the index means a strong absorption. So there 1s a
general rule that if any material gets to be a very good absorber at any frequency,
the waves are strongly reflected at the surface and very little gets mside to be ab-
sorbed You can see this effect with strong dyes Pure crystals of the strongest
dyes have a “metallic” shine. Probably you have noticed that at the edge of a bottle
of purple ink the dried dye will give a golden metallic reflection, or that dried red
ink will sometimes give a greenish metallic reflection. Red ink absorbs out the
greens of transmitted light, so 1f the ink 1s very concentrated, it will exhibit a strong
surface reflection for the frequencies of green light.

You can easily show this effect by coating a glass plate with red ink and
letting 1t dry. If you direct a beam of white light at the back of the plate, as shown
in Fig. 33-8, there will be a transmitted beam of réd hight and a reflected beam of
green light.
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Fig. 33-8. A material which absorbs
light strongly at the frequency w also
reflects light of that frequency.
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Fig. 33-10. [f there is a small gap,
internal reflection is not “total”; a trans-
mitted wave appears beyond the gap.

Fig. 33-9. Total internal reflection.

33-6 Total internal reflection

If Iight goes from a material like glass, with a real index n greater than 1,
toward, say, air, with an index n, equal to 1, Snell’s law says that

sin 6, = nsin 6,.

The angle 6, of the transmitted wave becomes 90° when the incident angle 6, is
equal to the “critical angle’ 4, given by

nsm b = 1. (33.59)

What happens for 8, greater than the critical angle? You know that there 1s total
mternal reflection. But how does that come about?

Let’s go back to Eq (33.45) which gives the wave number k7 for the trans-
mitted wave. We would have

2 k* 2
ki= = 5~ k.
Now k, = ksin 8, and k = wn/c, so
9
ky? = %)E (I — n®sin?8,).

If nsin 6, 15 greater than one, k%2 1s negative and k’ is a pure imaginary, say
=+1k;. You know by now what that means' The “transmitted” wave (Eq. 33.34)
will have the form

Et _ E6,eik1xet(ut—l.,/y)

The wave amplitude either grows or drops off exponentially with increasing x.
Clearly, what we want here 1s the negative sign. Then the wmplitude of the wave
to the right of the boundary will go as shown in Fig. 33-9. Notice that A; 15 of
the order w/c—which is Aq, the free-space wavelength of the hght. When light 1s
totally reflected from the wnside of a glass-air surface, there are fields in the air,
but they extend beyond the surface only a distance of the order of the wavelength
of the light

We can now see how to answer the following question: If a light wave in glass
arrives at the surface at a large enough angle, 1t 1s reflected, 1f another piece of
glass is brought up to the surface (so that the “surface” in effect disappears) the
light is transmuitted. Exactly when does this happen? Surely there must be con-
tinuous change from total reflection to no reflection' The answer, of course, 1s
that if the air gap 1s so small that the exponential tail of the wave n the air has an
appreciable strength at the second piece of glass, it will shake the electrons there
and generate a new wave, as shown in Fig. 33-10. Some light will be transmitted.
(Clearly, our solution is incomplete, we should solve all the equations agam for a
thin layer of air between two regions of glass.)
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Fig. 33-11. A demonstration of the penetration of internally reflected waves.

This transmission effect can be observed with ordinary light only 1f the air
gap is very small (of the order of the wavelength of light, ike 1077 cm), but it is
easily demonstrated with three-centimeter waves. Then the exponentially de-
creasing field extends several centimeters. A mucrowave apparatus that shows the
effect 1s drawn in Fig. 33-11 Waves from a small three-centimeter transmitter are
directed at a 45° prism of paraffin. The index of refraction of paraffin for these
frequencies is 1.50, and therefore the critical angle is 41.5°. So the wave 1s totally
reflected from the 45° face and is picked up by detector A4, as indicated mn
Fig. 33-11(a). If a second paraffin prism 1s placed in contact with the first, as
shown in part (b) of the figure, the wave passes straight through and 1s picked up
at detector B. If a gap of a few centimeters is left between the two prisms, as in
part (c), there are both transmitted and reflected waves. The electric field outside
the 45° face of the prism in Fig. 33-11(a) can also be shown by bringing detector
B to within a few centimeters of the surface.
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