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The Internal Geometry of Crystals

30-1 The internal geometry of crystals

We have finished the study of the basic laws of electricity and magnetism, and
we are now going to study the electromagnetic properties of matter. We begin
by describing solids—that is, crystals. When the atoms of matter are not moving
around very much, they get stuck together and arrange themselves in a configura-
tion with as low an energy as possible. If the atoms in a certain place have found a
pattern which seems to be of low energy, then the atoms somewhere else will
probably make the same arrangement. For these reasons, we have 1n a solid ma-
terial a repetitive pattern of atoms

In other words, the conditions in a crystal are this way: The environment of a
particular atom 1n a crystal has a certain arrangement, and 1f you look at the same
kind of an atom at another place farther along, you will find one whose surround-
ings are exactly the same. If you pick an atom farther along by the same distance,
you will find the conditions exactly the same once more. The pattern is repeated
over and over again—and, of course, in three dimensions.

Imagine the problem of designing a wallpaper—or a cloth, or some geometric
design for a plane area—in which you are supposed to have a design element which
repeats and repeats and repeats, so that you can make the area as large as you want.
This 1s the two-dimensional analog of a problem which a crystal solves in three
dimensions. For example, Fig. 30-1(a) shows a common kind of wallpaper design.
There is a single element repeated 1n a pattern that can go on forever. The geometric
characteristics of this wallpaper design, considering only its repetition properties
and not worrying about the geometry of the flower itself or its artistic merit, are
contaned in Fig. 30-1(b). If you start at any point, you can find the corresponding
point by moving the distance « along the direction of arrow 1 You can also get
to a correspoirding point if you move the distance b 1n the direction of the other
arrow. There are, of course, many other directions. You can go, for example.
from point « to pomnt 3 and reach a corresponding position, but such a step
can be considered as a combination of a step along direction 1, followed by a step
along direction 2. One of the basic properties of the pattern can be described by
the two shortest steps to nearby equal positions. By “‘equal’ positions we mean that
if you were to stand in any one of them and look around you, you would see exactly
the same thing as if you were to stand in another one. That’s the fundamental
property of a crystal. The only difference is that a crystal 1s a three-dimensional
arrangement instead of a two-dimensional arrangement; and naturally, instead of
flowers, each element of the lattice is some kind of an arrangement of atoms—
perhaps six hydrogen atoms and two carbon atoms—in some kind of pattern
The pattern of atoms in a crystal can be found out experimentally by x-ray diffrac-
tion. We have mentioned this method briefly before, and won’t say any more now
except that the precise arrangement of the atoms in space has been worked out for
most simple crystals and also for some fairly complex ones.

The internal pattern of a crystal shows up 1n several ways. First, the binding
strength of the atoms 1n certain directions 1s usually stronger than m other direc-
tions. This means that there are certain planes through the crystal where 1t 1s more
easily broken than others. They are called the cleavage planes. If you crack a
crystal with a knife blade it will often split apart along such a plane. Second, the
internal structure often appears at the surface because of the way the crystal was
formed. Imagine a crystal being deposited out of a solution. There are the atoms
floating around in the solution and finally settling down when they find a position
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Fig. 30-2. Natural crystals:  (a)
quartz, {b} sodium chloride, (c) mica.

Fig. 30-3. The lattice of a molecular
crystal.

of lowest energy. (It’s as 1f the wallpaper got made by flowers drifting around
until one drifted accidentally mto place and got stuck, and then the next, and the
next so that the pattern gradually grows.) You can appreciate that there will be
certain directions 1n which 1t will grow at a different speed than in other directions,
thereby growing into some kind of geometrical shape. Because of such effects, the
outside surfaces of many crystals show some of the character of the internal
arrangement of the atoms

For example, Fig. 30-2(a) shows the shape of a typical quartz crystal whose
internal pattern is hexagonal. If you look closely at such a crystal, you will notice
that the outside does not make a very good hexagon because the sides are not all
of equal length—they are, 1n fact, often very unequal. But in one respect 1t 1s a
very good hexagon: the angles between the faces are exactly 120°. Clearly, the size
of any particular face 1s an accident of the growth, but the angles are a representa-
tion of the internal geometry So every crystal of quartz has a different shape,
even though the angles between corresponding faces are always the same.

The internal geometry of a crystal of sodium chloride is also evident from 1ts
external shape Figure 30-2(b) shows the shape of a typical grain of salt. Again
the crystal 1s not a perfect cube, but the faces are exactly at right angles to one
another

A more complicated crystal 1s mica, which has the shape shown in Fig 30-2(c)
It is a highly anisotropic crystal, as is easily seen from the fact that it 1s very tough
if you try to pull it apart in one direction (horizontally in the figure), but very easy
to split by pulling apart in the other direction (vertically) It has commonly been
used to obtain very tough, thin sheets Mica and quartz are two examples of
natural minerals containing silica. A third example of a mineral with silica 1s
asbestos, which has the interesting property that it is easily pulled apart in two
directions but not in the third. [t appears to be made of very strong, linear fibers.

30-2 Chemical bonds in crystals

The mechanical properties of crystals clearly depend on the kind ot chemical
bindings between the atoms. The strikingly different strength of mica along differ-
ent directions depends on the kinds of interatomic binding in the different directions.
You have already learned in chemustry, no doubt, about the different kinds of
chemical bonds First, there are 1onic bonds, as we have already discussed for
sodium chloride Roughly speaking, the sodium atoms have lost an electron and
become positive 10ns, the chlorine atoms have gamed an electron and become
negative ions. The positive and negative ions are arranged 1n a three-dimensional
checkerboard and are held together by electrical forces.

The covalent bond—in which electrons are shared between two atoms—is
more common and 1s usually very strong. In a diamond, for example, the carbon
atoms have covalent bonds 1n all four directions to the nearest neighbors. so the
crystal 1s very hard indeed. There 1s also covalent bonding between silicon and
oxygen in a quartz crystal, but there the bond 1s really only partially covalent.
Because there 1s not complete sharing of the electrons, the atoms are partly charged,
and the crystal 1s somewhat 1onic  Nature 1s not as simple as we try to make 1t;
there are really all possible gradations between covalent and 10nic bonding

A sugar crystal has still another kind of binding In 1t there are large molecules
1n which the atoms are held strongly together by covalent bonds, so that the mole-
cule 1s a tough structure. But since the strong bonds are completely satisfied, there
are only relatively weak attractions between the separate, individual molecules
In such molecular crystals the molecules keep their individual 1dentity, so to speak,
and the internal arrangement might be as shown in Fig. 30-3. Since the molecules
are not held strongly to each other, the crystals are easy to break They are quite
different from something like diamond, which 1s really one giant molecule that
cannot be broken anywhere without disrupting strong covalent bonds. Pariffin
1s another example of a molecular crystal.

An extreme example of a molecular crystal occurs in a substance like solid
argon. There is very little attraction between the atoms—-each atom 1s a completely
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saturated monatomic molecule. But at very low temperatures, the thermal motion
is very small, so the slight interatomic forces can cause the atoms to settle down into
a regular array like a pile of closely packed spheres.

The metals form a completely different class of substances The bonding is
of an entirely different kind. In a metal the bonding 1s not between adjacent atoms
but is a property of the whole crystal. The valence electrons are not attached to
one atom or to a pair of atoms but are shared throughout the crystal. Each atom
contributes an electron to a universal pool of electrons, and the atomic positive
ions reside in the sea of negative electrons. The electron sea holds the ions together
like some kind of glue.

In the metals, since there are no special bonds in any particular direction, there
is no strong directionality in the binding. They are still crystalline, however, be-
cause the total energy is lowest when the atomic ions are arranged in some definite
array—although the energy of the preferred arrangement is not usually much lower
than other possible ones. To a first approximation, the atoms of many metals are
like small spheres packed in as tightly as possible.

30-3 The growth of crystals

Try to imagine the natural formation of crystals in the earth. In the earth’s
surface there 1s a big mixture of all kinds of atoms. They are being continually
churned about by volcanic action, by wind, and by water—continually being moved
about and mixed. Yet, by some trick, silicon atoms gradually begin to find each
other, and to find oxygen atoms, to make silica. One atom at a time 1s added to
the others to build up a crystal—the mixture gets unmixed. And somewhere
nearby, sodium and chlorine atoms are finding each other and building up a crystal
of salt.

How does it happen that once a crystal 1s started, it permits only a particular
kind of atom to join on? It happens because the whole system 1s working toward
the lowest possible energy. A growing crystal will accept a new atom 1f 1t 1s going
to make the energy as low as possible. But how does it know that a silicon—or
an oxygen—atom at some particular spot is going to result in the lowest possible
energy? It does it by trial and error. In the liquid, all of the atoms are in perpetual
motion. Each atom bounces against its neighbors about 10!* times every second.
If it hits against the right spot of growing crystal, it has a somewhat smaller chance
of jumping off again if the energy 1s low. By continually testing over periods of
nullions of years at a rate of 10'? tests per second. the atoms gradually build up
at the places where they find their lowest energy. Eventually they grow into big
crystals.

30-4 Crystal lattices

The arrangement of the atoms in a crystal—the crystal lartice—can take on
many geometric forms. We would like to describe first the simplest lattices, which
are characteristic of most of the metals and of the solid form of the inert gases.
They are the cubic lattices which can occur in two forms: the body-centered cubic.
shown in Fig. 30-4(a), and the face-centered cubic shown in Fig. 30-4(b). The
drawings show, of course, only one cube of the lattice; you are to imagine that the
pattern 1s repeated indefinitely in three dimensions. Also, to make the drawing
clearer, only the “centers” of the atoms are shown. In an actual crystal, the atoms
are more like spheres in contact with each other. The dark and light spheres in
the drawings may, in general, stand for different kinds of atoms or may be the
same kind. For instance, iron has a body-centered cubic lattice at low temperatures,
but a face-centered cubic lattice at higher temperatures. The physical properties
are quite different in the two crystalline forms.

How do such forms come about? Imagine that you have the problem of
packing spherical atoms together as tightly as possible. One way would be to start
by making a layer in a “hexagonal close-packed array,” as shown in Fig. 30-5(a)
Then you could build up a second layer like the first, but displaced horizontally,
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Fig. 30-5. Building up a hexagonal close-packed Iattice.

Fig. 30-6. Isthis a hexagon or a cube
seen from one corner?

as shown 1n Fig. 30-5(b) Next, you can put on the third layer. But notice'
There are rwo distinct ways of placing the turd layer If you start the third layer
by placing an atom at 4 1in Fig 30-5(b), each atom 1n the third layer 1s directly
above an atom of the bottom layer On the other hand, if you start the third layer
by putting an atom at the position B, the atoms of the third fayer will be centered
at points exactly in the middle of a triangle formed by three atoms of the bottom
layer. Any other starting place 1s equivalent to 4 or B, so there are only two ways
of placing the third layer.

If the third layer has an atom at point B, the crystal lattice 1s a face-centered
cubic—but seen at an angle It seems funny that starting with hexagons you can
end up with cubes. But notice that a cube looked at from a corner has a hexagonal
outhine For instance, Fig. 30-6 could represent a plane hexagon or a cube seen in
perspective!

If a third layer is added to Fig. 30-5(b) by starting with an atom at A, there 1s
no cubical structure, and the lattice has instead only a hexagonal symmetry. It 1s
clear that both possibilities we have described are equally close-packed

Some metals—for example, copper and silver—choose the first alternative,
the face-centered cubic. Others—for example, beryllium and magnesiunmi—choose
the other alternatives; they form hexagonal crystals. Clearly, which crystal lattice
appears cannot depend only on the packing of little spheres, but must also be deter-
mined in part by other factors In particular, it depends on the shight remaining
angular dependence of the interatomic forces (or, 1n the case of the metals, on the
energy of the electron pool) You will, no doubt, learn all about such things 1n
your chemistry courses.

30-5 Symmetries in two dimensions

We would now like to discuss some of the properties of crystals from the point
of view of their internal symmetries. The main feature of a crystal 1s that 1f you
start at one atom and move to a corresponding atom one lattice unit away, you
are again in the same kind of an environment. That’s the fundamental proposition.
But if you were an atom, there would be another kind of change that could take
you again to the same environment—that is, another possible ‘“symmetry.”
Figure 30-7(a) shows another possible “wallpaper-type” design (though one you
have probably never seen). Suppose we compare the environments for points
A and B You might, at first, think that they are the same—but not quite Points
C and D are equivalent to A4, but the environment of B 1s like that of 4 only 1f the
surroundings are reversed, as in a murror reflection.
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Fig. 30-7. A pattern of high symmetry.

There are other kinds of “equivalent” points in the pattern. For instance,
the points £ and F have the “same” environments except that one is rotated 90°
with respect to the other. The pattern is quite special. A rotation of 90°—or any
multiple of it—about a vertex such as A gives the same pattern all over again. A
crystal with such a structure would have square corners on the outside, but inside
it is more complicated than a simple cube.

Now that we have described some special examples, let’s try to figure out all
the possible symmetries a crystal can have. First, we consider what happens in a
plane. A plune lattice can be defined by the two so-called primitive vectors that go
from one point of the lattice to the two nearest equivalent points. The two vectors
1 and 2 are the primitive vectors of the lattice of Fig. 30-1. The two vectors a and
b of F1g 30-7(a) are the primitive vectors of the pattern there We could, of course,
equally well replace @ by —a, or b by —b. Since a and b are equal in magnitude
and at right angles, a rotation of 90° turns a mnto b, and b into —a, giving the same
lattice once again.

We see that there are lattices which have a “four-sided” symmetry. And we
have described earler a close-packed array based on a hexagon which could have
a six-stded symmetry. A rotation of the array of circles in Fig. 30-5(a) by an angle
of 60° about the center of any circle brings the pattern back to itself.

What other kinds of rotational symmetry are there? Can we have, for example,
a fivefold or an eightfold rotational symmetry? It is easy to see that they are
impossible. The only symmetry with more sides than four i1s a six-sided symmetry.
First, let’s show that more than sixfold symmetry is impossible. Suppose we try to
imagine a lattice with two equal primitive vectors with an enclosed angle less than
60°, as in Fig. 30-8(a). We are to suppose that points B and C are equivalent
to A, and that @ and b are the two shortest vectors from A toits equivalent neighbors
But that 1s clearly wrong, bacause the distance between B and C1s shorter than from
either one to 4. There must be a neighbor at D equivalent to 4 which is closer
than B or C. We should have chosen &’ as one of our primitive vectors. So the
angle between the two primitive vectors must be 60° or larger. Octagonal symmetry
is not possible.

What about fivefold symmetry? If we assume that the primitive vectors a
and b have equal lengths and make an angle of 27/5 = 72° as in Fig. 30-8(b),
then there should also be an equivalent lattice point at D, at 72° from C. But the
vector b’ from E to D is then less than b, so b is not a primitive vector. There can
be no fivefold symmetry. The only possibilities that do not get us into this kind
of difficulty are 8 = 60°, 90°, or 120°. Zero or 180° are also clearly possible.
One way of stating our result 1s that the pattern can be left unchanged by a rotation
of one full turn (no change at all), one-half of a turn, one-third, one-fourth, or
one-sixth of a turn And those are all the possible rotational symmetries in a
plane—a total of five. If' § = 27/n, we speak of an “n-fold” symmetry. We say
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Fig. 30-9. Symmetry under inversion. Pattern (b} is unchanged if R — —R, but pattern
(a) is changed. In three dimensions pattern (d) 1s symmetric under an inversion but (c} is not.

that a pattern with # equal to 4 or to 6 has a “higher symmetry” than one with
n equal to 1 or to 2.

Returning to Fig. 30-7(a), we see that the pattern has a fourfold rotational
symmetry. We have drawn in Fig. 30-7(b) another design which has the same
symmetry properties as part (a). The lhittle comma-like figures arc asymmetric
objects which serve to define the symmetry of the design inside of each square
Notice that the commas are reversed 1n alternate squares, so that the unit cell 1s
larger than one of the small squares. If there were no commas, the pattern would
sull have fourfold symmetry, but the unit cell would be smaller. The patterns of
Fig. 30-7 also have other symmetry properties. For instance, a reflection about any
of the broken lines R-R reproduces the same pattern

The patterns of Fig. 30-7 have still another kind of symmetiy. If the pattern
15 reflected about the line Y-V and shifted one square to the right (or left), we get
back the original pattern The hine Y=Y 1s called a ~"ghde™ line,

These are all the possible symmetries in two dimensions There 15 one more
spatial symmetry operation which 1s equivalent in two dimensions to a 180° rotation,
but which is a quite distinct operation 1n three dimensions. 1t is version. By an
inversion we mean that any point at the vector displacement R from some origin
[for instance, the point 4 1in Fig. 30-9(b)] 1s moved to the point at — R

An inversion of pattern (a) of Fig. 30~9 produces a new pattern, but an -
version of pattern (b) reproduces the same pattern. Fot a two-dimensional pattern
(as you can see from the figure), an inversion of the pattern (b) through the point
A 1s equivalent to a rotation of 180° about the same point  Suppose, however,
we make the pattern in Fig. 30-9(b) three dimensional by imagining that the httle
6’s and 9’s each have an “arrow’ pomnting our of the page. After an inversion in
three dimensions all the arrows will be reversed, so the pattern 1s nor 1eproduced.
If we indicate the heads and tails of the arrows by dots and crosses, respectively,
we can make a three-dimensional pattern, as in Fig 30-9(c), which is nor symmetric
under an inversion, or we can make a pattern like the one shown 1n (d), which
does have such a symmetry. Notice that it 1s nor possible o mutate a three-
dimensional 1nversion by any combination of rotations.

If we characterize the “symmetry” of a pattern—or lattice—by the kinds of
symmetry operations we have been describing, it turns out that for two dimensions
17 distinct patterns are possible  We have drawn one pattern of the lowest possible
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symmetry in Fig. 30-1, and one of high symmetry in Fig. 30-7. We will leave you
with the game of trying to figure out all of the 17 possible patterns.

It is peculiar how few of the 17 possible patterns are used in making wall-
paper and fabrics. One always sees the same three or four basic patterns. Is this
because of a lack of imagination of designers, or because many of the possible
patterns are not pleasing to the eye?

30-6 Symmetries in three dimensions

So far we have talked only about patterns in two dimensions. What we are
really interested in, however, are patterns of atoms in three dimensions. First,
it is clear that a three-dimensional crystal will have three primitive vectors. If
we then ask about the possible symmetry operations 1n three dimensions, we find
that there are 230 different possible symmetries! For some purposes, these 230
types can be grouped into seven classes, which are drawn in Fig. 30-10. The lattice
with the least symmetry is called the sriclinic. Its unit cell 1s a parallelepiped. The
primitive vectors are of different lengths, and no two of the angles between them are
equal. There 1s no possibility of any rotational or reflection symmetry. There are,
however, still two possible symmetries—the unit cell 1s, or is not, changed by an
inversion through the vertex. (By an inversion in three dimensions, we again mean
that spatial displacements R are replaced by — R—in other words, that (x, y, z)
goes into (—x, —y, —z) So the triclinic lattice has only two possible symmetries,
unless there 1s some special relation among the primitive vectors. For example, if
all the vectors are equal and are separated by equal angles, one has the trigonal
latice shown in the figure. This figure can have an additional symmetry, it may
be unchanged by a rotation about the long, body diagonal.

If one of the primitive vectors, say e, 1s at right angles to the other two, we
get a monoclinic unit cell. A new symmetry 1s possible—a rotation by 180° about ¢
The hexagonal cell is a special case in which the vectors @ and b are equal and the
angle between them 1s 60°, so that a rotation of 60°, or 120°, or 180° about the vector
¢ repeats the same lattice (for certain internal symmetries).

If all three primitive vectors are at right angles, but of different lengths, we
get the orthorhombic cell. The figure 1s symmetric for rotations of 180° about the
three axes. Higher-order symmetries are possible with the rerragonal cell, which
has all right angles and two equal primitive vectors Finally, there 1s the cubic
cell, which 1s the most symmetric of all.

The point of all this discussion about symmetries is that the internal symmetries
of the crystals show up—sometimes in subtle ways—in the macroscopic physical
properties of the crystal For instance, a crystal will, in general, have a tensor
electric polarizability. 1f we describe the tensor in terms of the ellipsoid of polari-
zation, we should expect that some of the crystal symmetries should show up
also 1 the ellipsoid. For example, a cubic crystal 1s symmetric with respect to
a rotatton of 90° about any one of three orthogonal directions. Clearly, the
only ellipsoid with this property is a sphere. A cubic crystal must be an isotropic
dielectric.

On the other hand, a tetragona| crystal has a fourfold rotational symmetry
Its ellipsoid must have two of its ptincipal axes equal, and the third must be
parallel to the axis of the crystal. Similarly, since the orthorhombic crystal has
twofold rotational symmetry about three orthogonal axes, its axes must coincide
with the axes of the polarization ellipsoid. In a like manner, one of the axes of a
monoclinic crystal must be parallel to one of the principal axes of the ellipsoid,
though we can’t say anything about the other axes. Since a trichinic crystal has no
rotational symmetry, the ellipsoid can have any orientation at all.

As you can see, we can make a big game of figuring out the possible sym-
metries and relating them to the possible physical tensors. We have considered
only the polarization tensor, but things get more complicated for others—for
instance, for the tensor of elasticity. There is a branch of mathematics called
“group theory” that deals with such subjects, but usually you can figure out what
you want with common sense.
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Fig. 30-12. A photograph of a small
crystal of copper after stretching. [Cour-
tesy of S. S. Brenner, Senior Scientist,
United States Steel Research Center,
Monroeville, Pa ]

Fig. 30-13. A dislocation in a cry-
stal.

Fig. 30-11. Slippage of crystal planes.

30-7 The strength of metals

We have said that metals usually have a simple cubic crystal structure; we
want now to discuss their mechanical properties—which depend on this structure.
Metals are, generally speaking, very “‘soft,” because 1t is casy to slide one layer
of the crystal over the next. You may think: “That’s ridiculous; metals are strong.”
Not so, a single crystal of a metal can be distorted very easily.

Suppose we look at two layers of a crystal subjected to a shear force, as shown
in the diagram of Fig. 30-11(a). You might at first think the whole layer would
restst motion until the force was big enough to push the whole layer “over the
hump,” so that it shifted one notch to the left. Although slipping does occur along
a plane, 1t doesn’t happen that way (If it did, you would calculate that the metal
1s much stronger than 1t really 1s.) What happens 1s more like one atom going at a
time; first the atom on the left makes its jump, then the next, and so on, as indicated
in Fig. 30-11(b). In effect 1t 1s the vacant space between two atoms that quickly
travels to the right, with the net resuit that the whole second layer has moved
over one atomic spacing. The slipping goes this way because 1t takes much less
energy to lift one atom at a time over the hump than to lift a whole row. Once
the force 1s enough to start the process, it goes the rest of the way very fast

It turns out that 1n a real crystal, slipping will occur repeatedly at one plane,
then will stop there and start at some other plane. The details of why it starts and
stops are quite mysterious. 1t is, 1n fact, quite strange that successive regions of
slip are often fairly evenly spaced. Figure 30-12 shows a photograph of a tiny,
thin copper crystal that has been stretched. You can see the various planes where
shipping has occurred.

The sudden slipping of individual crystal planes 1s quite apparent 1f you take
a piece of tin wire that has large crystals m it and stretch it while holding 1t next
to your ear. You can hear a rush of “ticks” as the planes snap to their new post-
tions, one after the other.

The problem of having a “missing’ atom in one row is somewhat more difficult
than 1t might appear from Fig. 30-11. When there are more layers, the sttuation
must be something like that shown in Fig. 30-13. Such an imperfection 1n a crystal
1s called a dislocation. It 1s presumed that such dislocations are either present
when the crystal was formed or are generated at some notch or crack at the surface
Once they are produced, they can move relatively freely through the crystal The
gross distortions result from the motions of many of such dislocations.

Dislocations can move freely—that is, they require hittle extia energy—so
long as the rest of the crystal has a perfect lattice. But they may get “stuck™ 1if they
encounter some other kind of imperfection in the crystal. If it takes a lot of energy
for them to pass the imperfection, they will be stopped. This 1s precisely the
mechanism that gives strength to nnperfect metal crystals. Pure ron crystals are
quite soft, but a small concentration of impurity atoms may cause enough imper-
fections to effectively immobilize the dislocations. As you know, steel, which 1s
primarily iron, 1s very hard. To make steel, a small amount of carbon 1s dissolved
in the iron melt; if the melt 1s cooled rapidly, the carbon precipitates out 1n Iittle
grains, making many microscopic distortions in the lattice. The dislocations can
no longer move about, and the metal is hard.

Pure copper is very soft, but can be “work-hardened.”” This is done by ham-
mering on it or bending it back and forth. In this case, many new dislocations of
various kinds are made which interfere with one another, cutting down their
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mobility. Perhaps you've seen the trick of taking a bar of “dead soft” copper
and gently bending it around someone’s wrist as a bracelet. In the process, it
becomes work-hardened and cannot easily be unbent again' A work-hardened
metal like copper can be made soft again by annealing at a high temperature.
The thermal motion of the atoms “irons out” the dislocations and makes large
single crystals again. We have, so far, described only the so-called s/ip dislocation.
There are many other kinds, one of which is the screw dislocation shown in Fig.
30-14. Such dislocations often play an important part in crystal growth.

30-8 Dislocations and crystal growth

One of the great puzzles for a long time was how crystals can possibly grow.
We have described how 1t 1s that each atom might, by repeated testing, determine
whether it was better to be in the crystal or not. But that means that each atom
must find a place of low energy. However, an atom put on a new surface 1s only
bound by one or two bonds from below, and doesn’t have the same energy it
would have if it were placed 1n a corner, where it would have atoms on three sides
Suppose we imagine a growing crystal as a stack of blocks, as shown in Fig. 30-15
If we try a new block at, say, position A, it will have only one of the six neighbors
it should ultimately get. With so many bonds lacking, its energy 1s not very low.
It would be better off at position B, where it already has one-half of 1ts quota of
bonds. Crystals do indeed grow by attaching new atoms at places like B.

What happens, though, when that line is finished? To start a new line, an
atom must come to rest with only two sides attached, and that 1s again not very
likely. Even if 1t did, what would happen when the layer was finished? How
could a new layer get started? One answer is that the crystal prefers to grow at a
dislocation, for instance around a screw dislocation like the one shown in Fig.
30-14. As blocks are added to this crystal, there is always some place where there
are three available bonds. The crystal prefers, therefore, to grow with a dislocation
built in. Such a spiral pattern of growth is shown in Fig. 30-16, which 1s a photo-
graph of a single crystal of paraffin.

30~9 The Bragg-Nye crystal model

We cannot, of course, see what goes on with the individual atoms in a crystal.
Also, as you reahze by now, there are many complicated phenomena that are not
easy to treat quantitatively. Sir Lawrence Bragg and J. F. Nye have devised a
scheme for making a model of a metallic crystal which shows in a striking way
many of the phenomena that are believed to occur in a real metal. In the following
pages we have reproduced their original article, which describes their method and
shows some of the results they obtained with it. (The article is reprinted from the
Proceedings of the Royal Soctety of London, Vol. 190, September 1947, pp. 474-481
—with the permission of the authors and of the Royal Society.)
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Fig. 30-14. A screw dislocation.
[From Charles Kittel, Introduction to
Solid State Physics, John Wiley and Sons,
Inc., New York, 2nd ed., 1956.]

Fig. 30-15. Crystal growth.

Fig. 30-16. A paraffin crystal which
has grown around a screw dislocation.
[From Charles Kittel, Infroduction to Solid
State Physics, John Wiley and Sons, Inc.,
New York, 2nd ed., 1956.]



A dynamical model of a crystal structure

By St LAWRENCE Bragg, FR S. axp J. F. NYE
Cavendish Laboratory, Unwersity of Cambridge

(Recesved 9 January 1947—Read 19 June 1947)

[Plates 8 to 21]

‘The crystal structure of a metal 1 rep. 1 by an of bubbles, a mll or
lees 1n diameter, floating on the surface of a soap solution The bubbles are blown from a fine
pipette beneath the surface with a air p . and are kabl 1 B1Ze
‘They are held together by surface tension, either mn a single layer on the surface or 1n a three-
di 1 mass An blage may contain hundreds of th ds of bubbles and persists
for an hour or more The assemblages show structures which nave been supposed to exist
1n metals, and simulate effects which have bheen observed, such as grain boundaries, disloca-
tions and other types of fault, shp, recrystallzation, annealing, and stramns due to ‘foreign’
atoms

1 THE BUBBLE MODEL

Modeis of crystal structure have been descrtbed from wme to time 1n which the
atoms are represented by small floating or suspended magnets, or by circular disks
floating on a water surface and held together by the forces of capillary attraction
These models have certain disadvantages, for mstance, i the case of floating objects
in contact, frictional forces 1mpede their free relative movement A more serious
disadvantage 1s that the number of components 18 hmited for a large number of
components 18 required 1n order to approach the state of affairs in a real crystal
The present paper describes the behaviour of a model m which the atoms are repre-
sented by small bubbles from 2 0 to 0 1mm 1n diameter floating on the surface of
a soap solution These small bubbles are sufficiently persistent for experiments
lasting an hour or more, they shde past each other without friction, and they can
be produced in large numbers Some of the illustrations m this paper were taken
from assemblages of bubbles numbering 100,000 or more The model most nearly
represents the behaviour of a metal structure, because the bubbles are of one type
only and are held together by a general capillary attraction which represents the
binding force of the free electrons m the metal A brief description of the model has
been given i the Journal of Scientific Instrumenis (Bragg 1942b)
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Apparatus for producing rafts of bubbles.

2 METHOD OF FORMATION

The bubbles are blown from a fine orfice, beneath the surface of a soap solution.
We have had the best results with a solution the formula of which was given to us
by Mr Green of the Royal Institution 15 2¢ ¢ of oleic acid (pure redistilled) is well
shaken 1n 50c ¢ of distilled water This 18 mixed thoroughly with 73¢c ¢ of 109,
solution of tri-ethanolamune and the mixture made up to 200¢ ¢ To this 18 added
164c ¢ of pure glycerine It 18 left to stand and the clear hquud 18 drawn off from
below In some experiments this was diluted in three times 1ts volume of water to
Teduce viscosity The onfice of the jet 18 about 5mm below the surface A constant
air pressure of 50 to 200cm of water 18 supphed by means of two Winchester
flasks Normally the bubbles are remarkably uniform n size Ocecasionally they
issue 1n an wrregular manner, but this can be corrected by a change of jet or of pres-
sure Unwanted bubbles can easily be destroyed by playing a small flame over the
surface Figure 1 shows the apparatus We have found 1t of advantage to blacken
the bottom of the vessel, because details of structure, such as gramn boundarnes and
dislocations, then show up more clearly

Figure 2, plate 8, shows a portion of a raft’ or two-dimensional crystal of bubbles
Its regulamty can be judged by looking at the figure 1n a glancing direction The
size of the bubbles vanes with the aperture, but does not appear to vary to any
marked degree with the pressure or the depth of the onfice beneath the surface
The main effect of ncreasing the pressure 18 to mcrease the rate of 1ssue of the
bubbles As an example, a thick-walled Jet of 49 bore with a pressure of 100cm
produced bubbles of 1:2mm in diameter A thin-walled jet of 274 diameter and
a pressure of 180cm produced bubbles of 0 6mm diameter It 18 convement to
refer to bubbles of 20 to 1 0mm diameter as ‘large’ bubbles, those from 0 8 to
0-6mm diameter as ‘medium’ bubbles, and those from 0-3 to 01 mm diameter
as small’ bubbles, since their behaviour vares with their size

30-10

Fioure 3 Apparatus for producing bubbles of small size

With this apparatus we have not found 1t possible to reduce the size of the jet
and so produce bubbles of smaller diameter than 0 6 mm As 1t was desired to expen-
ment with very small bubbles, we had recourse to placing the soap solution m a
rotating vessel and mntroducing a fine Jet as nearly as possible parallel to a stream
lne The bubbles are swept away as they form, and under steady conditions are
reasonably uniform They 1ssue at a rate of one thousand or more per second, giving
a high-pitched note The soap solution mounts up 1 a steep wall around the per-
meter of the vessel while 1t 18 rotating but carries back most of the bubbles with it
when rotation ceases With this device, illustrated 1n figure 3, bubbles down to
0-12mm 1n diameter can be obtamed As an example, an orifice 384 across m a
thin-walled jet, with a pressure of 190cm of water, and a speed of the flmd of
180 cm /sec past the orifice, produced bubbles of 0 14mm diameter. In this case
a dish of diameter 9-5cm and speed of 6 rev /sec wasused Figure 4, plate 8, 18 an
enlarged picture of these ‘small’ bubbles and shows their degree of regulanty, the
pattern 1s not as perfect with a rotating as with a stationary vessel, the rows bemng
seen to be shghtly irregular when viewed 1n a glancing direction

These two-dumensional crystals show structures which have been supposed to
exist i metals, and sunulate effects which have been observed, such as gram
boundaries, dislocations and other types of fault, shp, recrystallization, annealing,
and strains due to ‘foreign’ atoms.

3 GRAIN BOUNDARIES

Figures 5a, 55 and 5¢, plates 9 and 10, show typical grain boundaries for bubbles
of 1-87, 0 76 and 0-30mm diameter respectively The width of the disturbed area
at the boundary, where the bubbles have an irregular distribution, 1s in general
greater the smaller the bubbles In figure 5a, which shows portions of several
adjacent grains, bubbles at a boundary between two grans adhere definitely to one
crystalline arrangement or the other In figure 5¢ there 18 a marked ‘ Beilby layer’
between the two grains The small bubbles, as will be seen, have a greater rgidity
than the large ones, and this appears to give nse to more rregularity at the imterface

Separate grains show up distinctly when photographs of polycrystalline rafts
such as figures 5a to 5c¢, plates 9 and 10, and figures 12a to 12¢, plates 14 to 16,
are viewed obhiquely. With smtable ighting, the floating raft of bubbles 1tself when
viewed obliquely resembles a polished and etched metal 1n a remarkable way

It often happens that some ‘impurity atoms’, or bubbles which are markedly
larger or smaller than the average, are found in a polyerystalline raft, and when this
18 80 & large proportion of them are situated at the grain boundares It would be
mcorrect to say that the irregular bubbles make their way to the boundares, 1t 18
a defect of the model that no diffusion of bubbles through the structure can take
place, mutual adjustments of neighbours alone beng possible It appears that the
boundamnes tend to readjust themselves by the growth of one crystal at the expense
of another till they pass through the irregular atoms

4 DisLocaTIONS

When a single crystal or polycrystalline raft 1s compressed, extended, or other-
wise deformed 1t exhibits a behaviour very similar to that which has been pictured
for metals subjected to strain Up to a certain limit the model 18 within 1ts elastic
range Beyond that point 1t yields by shp along one of the three equally inchined
directions of closely packed rows Shp takes place by the bubbles 1n one row moving
forward over those in the next row by an amount equal to the distance between
neighbours. It 18 very interesting to watch this process taking place The
movement 18 not simultaneous along the whole row but begins at one end with
the appearance of a ‘dislocation’, where there 18 locally one more bubble 1n the
rows on one side of the ship line as compared with those on the other This dis-
location then runs along the slip line from one side of the crystal to the other, the
final result bemng a slip by one ‘inter-atomic’ distance Such a process has been
mvoked by Orowan, by Polany1 and by Taylor to explamn the small forces required
to produce plastic ghiding 1n metal structures The theory put forward by Taylor
(1934) to explan the mechanism of plastic deformation of crystals considers the
mutual action and equibbrium of such dislocations The bubbles afford a very
striking picture of what has been supposed to take place in the metal Sometimes



the dislocations run along quite slowly, taking a matter of seconds to cross a crystal,
stationary dislocations also are to be seen i crystals which are not homogeneously

stramed They appear as short black lines, and can be seen 1n the series of photo-
graphs, figures 12a to 12¢, plates 14 to 16. When a polycrystalline raft is compressed,
these dark lmes are seen to be dashing about n all directions across the crystals.

Figures 6a, 65 and 8¢, plates 10 and 11, show examples of dislocations In
figure 6a, where the diameter of the bubbles 18 1 9mm , the dislocation 18 very
local, extending over about six bubbles 1n figure 85 (diameter 0 76 mm ) 1t extends
over twelve bubbles, and mn figure 6¢ (diameter 0 30 mm ) 1ts mnfluence can be
traced for a length of about fifty bubbles The greater rigidity of the small bubbles
leads to longer dislocations, The study of any mass of bubbles shows, however,
that there 18 not a standard length of dislocation for each size The length depends
upon the nature of the strain 1n the crystal A boundary between two crystals with
corresponding axes at approximately 30° (the maximum angle which can occur)
may be regarded as a series of dislocations i alternate rows, and 1n this case the
dislocations are very short As the angle bevween the neighbouring crystals decreases,
the distocations occur at wider mtervals and at the same time become longer, tall
one finally has single dislocations mn a large body of perfect structure as shown 1n
figures 64, 65 and 6¢

Figure 7, plate 11, shows three parallel dislocations If we call them positive and
negative (following Taylor) they are positive, negative. positive. reading from left
to nght The strip between the last two has three bubbles in excess, as can be seen
by looking along the rows m a horizontal direction Figure 8, plate 12, shows a
dislocation projecting from a gramn boundary, an effect often observed.

Figure 9, plate 12, shows a place where two bubbles take the place of one This
may be regarded as a kmiting case of positive and negative dislocations on neigh-
bouring rows, with the compressive sides of the dislocations facing each other. The
contrary case would lead to a hole m the structure, one bubble bemg missing at the
pomt where the dislocations met

5. OTHER TYPES OF FAULT

Figure 10, plate 12, shows a narrow strip between two crystals of parallel onen-
tation, the strip being crossed by a number of fault hnes where the bubbles are nov
in close packing It1s in such places as these that recrystallization may be expected
The boundaries approach and the strip 1s absorbed into a wider area of perfect
crystal

Figures11ato 11g, plates 13and 14 are examples of arrangements which frequently
appear 1n places where there 1s a local deficieney of bubbles While a dislocation 18
seen as a dark stripe 1n a general view, these structures show up in the shape of the
letter V or as triangles A typical V structure 18 seen 1n figure 11a When the model 18
being distorted, a V structure 18 formed by two dislocations meeting at an inchination
of 60°, 1t 18 destroyed by the dislocations continuing along their paths. Figure 115
shows a small trnangle, which also embodies a dislocation, for 1t will be noticed that
the rows below the fault have one more bubble than those below If a mild amount
of ‘thermal movement’ 18 imposed by gentle agitation of one side of the crystal,
such faulty places disappear and a perfect structure 18 formed

Here and there in the crystals there 1s a blank space where a bubble 18 missing.
showmg as a black dot 1n a general view Examples ocour m figure 11g. Such a gap
cannot be closed by a local readjustment, smce filing the hole causes another to
appear Such holes both appear and disappear when the crystal 1s * cold-worked ",

These structures 1 the model suggest that sumilar local faults may exsst in an
sotual metal They may play a part in processes such as diffusion or the order-
disorder change by reducing energy barriers in their neighbourhood. and act as
nucle: for crystallization i an allotropic change

6 RECRYSTALLIZATION AND ANNEALING

Figures 12a to 12¢, plates 14 to 16, show the same raft of bubbles at successive
tames A raft covering the surface of the solution was given a vigorous stirrng with
a glass rake, and then left to adjust itself Figure 12a shows 1ts aspect about 1 sec.
after stirring has ceased. The raft 18 broken mto a number of small ‘crystallites’,
these are m a high state of non-homogeneous strain as 18 shown by the numerous
dislocations and other faults The following photograph (figure 125) shows the
same raft 32 sec later. The small grains have coalesced to form larger grains, and
much of the strain has disappeared in the process. Recrystallization takes place
right through the series, the last three photographs of which show the appearance
of the raft 2, 14 and 25 min after the mitial stirrng. It is not posaible to follow the
rearrangement; for much longer times, because the bubbles shrink after long standing,
apparently due to the diffusion of air through their walls, and they also become thin
and tend to burst No agitation was given to the model during this process An
ever slower process of rearrangement goes on, the movement of the bubbles i one
part of the raft setting up strains which activate a rearrangement 1 & neighbouring
part, and that n its turn still another

A number of interesting pointa are to be seen in this series. Note the three small
grains at the pomnts indicated by the co-ordinates AA, BB, CC. A permsts, though
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changed 1 form, throughout the whole series B 1s still present after 14 min , bat
has disappeared 1n 25 min , leaving behind 1t four dislocations marking internal
strain 1n the grain. Gram € shrinks and finally disappears n figure 12d, leaving a
hole and a V which has disappeared 1n figure 12¢ At the same time the 1ll-defined
boundary in figure 12d at DD has become a defimte one n figure 12¢ Note also
the straightening out of the grain boundary mn the neighbourhood of EE 1n figures
125 to0 12e. Dislocations of various lengths can be seen, marking all stages between
a slight warping of the structure and a defimte boundary Holes where bubbles
are missing show up as black dots Some of these holes are formed or filled up by
movements of dislocations, but others represent places where a bubble has burst
Many examples of V’s and some of triangles can be seen Other interesting points
will be apparent from a study of this senes of photographs.

Figures 13a, 13b and 13¢, plate 17, show a portion of a raft 1 sec , 4 sec and 4 mun.
after the stuming process, and 18 interesting as showing two successive stages 1n the
relaxation towards a more perfect arrangement The changes show up well when one
looks 1n a glancing direction across the page The arrangement 18 very broken in
figure 132 In figure 135 the bubbles have grouped themselves in rows, but the
curvature of these rows indicates a high degree of internal strain In figure 13¢ this
stram has been relieved by the formation of a new boundary at A-4, the rows on
etther side now bemg straight It would appear that the energy of this strained
crystal 18 greater than that of the itercrystalline boundary We are indebted to
Messrs Kodak for the photographs of figure 13, which were taken when the cine-
matograph film referred to below was produced

7 EFFECT OF IMPURITY ATOM

Figure 14, plate 18, shows the widespread effect of a bubble which 18 of the wrong
size If this figure 18 compared with the perfect rafts shown in figures 2 and 4,
plate 8, 1t will be seen that three bubbles, one larger and two smaller than
normal, disturb the regularity of the rows over the whole of the figure As has been
mentioned above, bubbles of the wrong size are generally found in the gramn boun-
daries, where holes of irregular size occur which can accommodate them

8 MECHANICAL PROPERTIES OF THE TWO-DIMENSIONAL MODEL

The mechanical properties of a two-dimensional perfect raft have been described
1n the paper referred to above (Bragg 19426) The raft lies between two parallel
springs dipping horizontally 1n the surface of the soap solution The pitch of the
springs 1s adjusted to fit the spacing of the rows of bubbles, which then adhere firmly
to them One spring can be translated parallel to 1tself by a micrometer screw, and
the other 1s supported by two thin vertical glass fibres The shearing stress can be
measured by notg the deflexion of the glass fibres When subjected to a shearing
stram, the raft obeys Hooke's law of elasticity up to the pont where the elastic
hmut 18 reached It then ships along some mtermediate row by an amount equal to
the width of one bubble The elastic shear and ship can be repeated several times The
elastic hmit 18 approximately reached when one side of the raft has been sheared
by an amount equal to a bubble width past the other side This feature supports
the basic assumption made by one of us 1 the calculation of the elastic Lmit of a
metal (Bragg 1942a), in which 1t 1s supposed that each crystalhite 1n a cold-worked
metal only yields when the stram 1n 1t has reached such a value that energy 1s
released by the shp

A calculation has been made by M M Nicolson of the forces between the bubbles,
and will be published shortly It shows two iteresting pomts The curve for
the vanation of potential energy with distance between centres 18 very similar to
those which have been plotted for atoms It has a minimum for a distance between
centres shightly less than a free bubble diameter, and nses sharply for smaller dis-
tances Further, the rise 18 extremely sharp for bubbles of 0 1mm d.ameter but
much less so for bubbles of 1mm diameter, thus confirming the mnpression given
by the model that the small bubbles behave as if they were much more ngid than
the large ones.

9 THREE-DIMENSIONAL ASSEMBLAGES

If the bubbles are allowed to accumulate 1n multiple Tayers on the surface, they
form a mass of three-dimensional ‘crystals’ with one of the arrangements of closest
packing Figure 15, plate 18, shows an oblique view of such a mass, 1ts resemblance
to a polished and etched metal surface 18 noticeable In figure 16, plate 20, a similar
mass 18 seen viewed normally Parts of the structure are definitely in cubic closest
packing, the outer surface being the (111) face or (100) face Figure 174, plate 19,
shows a (111) face The outhnes of the three bubbles on which each upper bubble
rests can be clearly seen, and the next layer of these bubbles 18 famntly vimble in a
position not beneath the uppermost layer, showing that the packing of the (111}
planes has the well-known cubie succession Figure 17b plate 19, shows a (100) face
with each bubble resting on four others The cubic axes are of course imclned at
45° to the close-packed rows of the surface layer Figure 17¢, plate 19, shows a
twin m the cubie structure across the face (111) The uppermost faces are (111)
and (100), and they make a small angle with each other, though this 18 not apparent
m the figure, 1t shows up i an oblique view Figure 174, plate 19, appears to show
both the cubic and hexagonal succession of closely packed planes, but 1t 15 difficult
to verify whether the left-hand side follows the true hexagonal close-packed struc-



ture because it 18 not certamn that the assemblage had a depth of more than two
layers at this pomt Many mnstances of twins, and of intercrystalline boundaries,
can be seen 1n figure 16, plate 20

Figure 18, plate 21, shows several dislocations 1n a three-dimensional structure
subjected 1o a bending strain

10 DEMONSTRATION OF THE MODEL

With the co-operation of Messrs Kodak, a 16 mm cmematograph film has been
made of the movements of the dislocations and grain boundaries when single crystal
and polycrystalline rafts are sheared compressed, or extended Moreover, 1if the
8oap solution 18 placed in a glass vessel with a flat bottom, the model lends 1tself to
projection on a large scale by transmitted hght Since a certain depth 1s requured for
producing the bubbles, and the solution 1s rather opaque, 1t 1s desirable to make the
projection through a glass block resung on the bottom of the vessel and Just sub-
merged beneath the surface

In conclusion, we wish to express our thanks to Mr C E Harrold, of King’s College,
Cambridge, who made for us some of the pipettes which were used to produce the
bubbles
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FiGUuRrg 4. Perfect crystalline raft of bubbles. Diameter 0-30 mm.
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irain boundaries

Ficore 5a¢. Ihameter 1 87 mun.

Ficure 56. IDiameter 0-76 mumn.
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A graimn boundary. Diameter 0-30 mm.

FIGURE 5c¢.

A dislocation. Diameter 1-9 mm.

F1GUrE 6a.
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Ficure 7. Parallel dislocations. Diameter 0-76 mm.
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Ficure 10. Series of fault lines between two areas of parallel orientation. Diameter 0-30 mm.
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a. Immediately after stirring.

Fraure 12. Recrystallization. Diameter 0-60 mm,

30-19




C A B E
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Ficure 13. Two stages of recrystallization. Diameter 1-64 mm.
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Fioune 14. Effect of atoms of impurity. Dinmeter of uniform bubbles about 13 mn.
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Fravee 15. Oblique view of three-dimensional raft,
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Ficure 17
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FIGURE 16. A three-dimensional raft viewed normally. Diameter 0-70 mm.
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Ficure 18. Dislocations in three-dimensional structure. Diameter 0-70 mm.
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