26

Lorentz Transformations of the Fields

26-1 The four-potential of a moving charge

We saw 1n the last chapter that the potential 4, = (¢, 4) is a four-vector.
The time component 1s the scalar potential ¢, and the three space components are
the vector potential 4. We also worked out the potentials of a particle moving with
uniform speed on a straight line by using the Lorentz transformation (We had
already found them by another method in Chapter 21.) For a point charge whose
position at the time 7 is (v, 0, 0), the potentials at the point (x, y, z) are

q
¢ = Z 012 J172
drreg/T = 12 [(llt’;_lz) + 24 22]1/2
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A, = A, = 0

Equations (26 1) give the potentials at x. y, and z at the time 7, for a charge
whose “present” position (by which we mean the position at the time t)1sat x = vt
Notice that the equations are in terms of (x — »1), y, and z, which are the coordi-
nates measured from the current position P of the moving charge (see Fig. 26-1)
The actual influence we know really travels at the speed c, so it is the behavior of
the charge back at the retarded position P’ that really counts.t The point P’ is at
x = rt’ (where, I = f — ¢’ /cistheretarded time). But we said that the charge was
moving with uniform velocity in a straight line, so naturally the behavior at P’ and
the current position are directly related. In fact, if we make the added assumption
that the potentials depend only upon the position and the velocity at the retarded
moment, we have in equations (26.1) a complete formula for the potentials for a
charge moving any way. It works this way. Suppose that you have a charge
moving 1n some arbitrary fashion, say with the trajectory in Fig. 26-2, and you
are trying to find the potentials at the point (x, y, z). First, you find the retarded
position P’ and the velocity »" at that point. Then you imgaine that the charge
would keep on moving with this velocity during the delay time (+/ — 1), so that
it would then appear at an 1maginary posttion P,,,, which we can call the “pro-
jected position,” and would arrive there with the velocity /. (Of course, it doesn’t
do that; its real position at ¢ is at P.) Then the potentials at (x, y, z) are just what
equattons (26 1) would give for the imaginary charge at the projected position
P, What we are saying is that since the potentials depend only on what the
charge 1s doing at the refarded time, the potentials will be the same whether the
charge continued moving at a constant velocity or whether 1t changed its velocity
after r'—that 1s, after the potentials that were going to appear at (x, y, z) at the
time ¢ were already determined.

You know, of course, that the moment that we have the formula for the po-
tentials from a charge moving in any manner whatsoever, we have the complete
electrodynamics; we can get the potentials of any charge distribution by super-

t The primes used here to indicate the refarded positions and times should not be confused
with the primes referring to a Lorentz-transformed frame 1n the preceding chapter.
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position. Therefore we can summarize all the phenomena of electrodynamics
either by writing Maxwell’s equations or by the following series of remarks.
(Remember them in case you are ever on a desert island. From them, all can be
reconstructed. You will, of course, know the Lorentz transformation; you will
never forget rhar on a desert 1sland or anywhere else )

First, A, 18 a four-vector. Second, the Coulomb potential for a stationary
charge is g/4meqr. Third, the potentials produced by a charge moving 1n any way
depend only upon the velocity and position at the retarded trme  With those
three facts we have everything From the fact that 4, 1s a four-vector, we transform
the Coulomb potential, which we know, and get the potentials for a constant
velocity. Then. by the last statement that potentials depend only upon the past
velocity at the retarded time, we can use the projected position game to find them.
It 1s not a particularly useful way of doing things. but it is interesting to show that
the laws of physics can be put in so many different ways

It is sometimes said, by people who are careless, that all of electrodynamics
can be deduced solely from the Lorentz transformation and Coulomb’s law. Of
course, that 1s completely false. First, we have to suppose that there 1s a scalar
potential and a vector potential that together make a four-vector That tells us
how the potentials transform Then why is it that the effects at the retarded
time are the only things that count? Better yet, why 1s it that the potentials depend
only on the position and the velocity and not, for instance, on the acceleration?
The fields E and B do depend on the acceleration. If you try to make the same
kind of an argument with respect to them, you would say that they depend only
upon the position and velocity at the retarded time But then the fields from an
accelerating charge would be the same as the fields from a charge at the projected
position—which is false. The fields depend not only on the position and the velocity
along the path but also on the acceleration. So there are several additional tacit
assumptions in this great statement that everything can be deduced from the
Lorentz transformation (Whenever you see a sweeping statement that a tremen-
dous amount can come from a very small number of assumptions, you always
find that 1t is false. There are usually a large number of implied assumptions that
are far from obvious if you think about them sufficiently carefully.)

26-2 The fields of a point charge with a constant velocity

Now that we have the potentials from a point charge moving at constant
velocity, we ought to find the fields—for practical reasons There are many cases
where we have uniformly moving particles—for instance, cosmic rays going through
a cloud chamber, or even slow-moving electrons 1n a wire. So let’s at least see
what the fields actually do look like for any speed—even for speeds nearly that
of light—assuming only that there is no acceleration. It is an interesting question.

We get the fields from the potentials by the usual rules-

’ B:VXA.

First, for E,

But A4, 1s zero: so differentiating ¢ 1n equations (26 1), we get

q z
E, = . : . (26.2)
_ 2 ¢
drepN/ 1T — 12 %__:_l;%) + y2 + 22:|¥/2
Stmilarly, for E,, )
_ q y o
E, = T = vy o | o |32 (26.3)
dregy/ 1 — v2 1T +y +z

The x-component is a little more work. The derivative of ¢ is more complicated
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and A, is not zero. First,

d¢ q (x — en)/(1 = v*)

= ) P (26.4)
47!'60\/1—02[ — + y? +zJ
Then, differentiating 4, with respect to ¢, we find
20 .2
47reol—v2[1_ + 24z J
And finally. taking the sum,
E, - —9 ?_;‘Alﬂﬂ (26.6)

We'll look at the physics of E in a minute, let’s first find B For the z-compo-
nent,

Since A, is zero, we have just one derivative to get. Notice, however, that A,
is just ¢, and 9/9y of v¢ is just —rE,. So

B, = vE,. (26.7)
Similarly,
04, 04, ¢
B =3 ax ~ TUaz’
and
B, = —vE,. (26.8)

Finally, B, is zero. since 4, and A4, are both zero. We can write the magnetic field
simply as
B=vXE (26.9)

Now let’s see what the fields look ike. We will try to draw a picture of the
field at various positions around the present position of the charge. It is true that
the mfluence of the charge comes, in a certain sense. from the retarded position,
but because the motion is exactly specified, the retarded position 1s uniquely given
in terms of the present position For uniform velocities, it’s nicer to relate the
fields to the current position, because the field components at (x, y, z) depend
only on (x — vr), y, and z—which are the components of the displacements
rp from the present position to (x, y, z) (see Fig. 26-3).

Consider first a point with z = 0. Then E has only x- and y-components.
From Egs. (26.3) and (26.6), the ratio of these components 1s just equal to the
ratio of the x- and y-components of the displacement. That means that E 15 1n
the sume direction as rp, as shown in Fig. 26-3. Since E, is also proportional to z.
it is clear that this result holds in three dimensions. In short, the electric field 1s
radial from the charge, and the field lines radiate directly out of the charge, just
as they do for a stationary charge. Of course, the field 1sn’t exactly the same as
for the stationary charge. because of all the extra factors of (I — »2) But we
can show something rather interesting. The difference 1s just what you would get
if you were to draw the Coulomb field with a peculiar set of coordinates in which
the scale of x was squashed up by the factor /1 — »2. If you do that, the field
lines will be spread out ahead and behind the charge and will be squeezed together
around the sides, as shown in Fig. 26—4.

If we relate the strength of E to the density of the field lines in the conventional
way, we see a stronger field at the sides and a weaker field ahead and behind.
which is just what the equations say. First, if we look at the strength of the field
at right angles to the line of motion, that is, for (x — vf) = 0, the distance from

26-3

Ey E
(X,Y,/Z)MEX

AN

— > pRESENT
POSITION

Fig. 26-3. For a charge moving with
constant speed, the electric field points
radially from the ‘“present” position of
the charge.

Fig. 26-4. The electric field of a
charge moving with the constant speed

= 0.9¢, part (b), compared with the
field of a charge at rest, part {a).



Fig. 26-5. The magnetic field near

a moving charge is v X E.
with Fig. 26-4.)

{Compare

the charge is (y? + z%). Here the total field strength is /E2 + E2, which is

— q 1
£- 4reeV/1T — 2 V2 + 22 (26.10)

The field is proportional to the inverse square of the distance—just like the Cou-
lomb field except increased by the constant, extra factor 1/4/1 — v2, which 1s
always greater than one. So at the sides of a moving charge, the electric field 1s
stronger than you get from the Coulomb law. In fact, the field in the sidewise
direction is bigger than the Coulomb potential by the ratio of the energy of the
particle to its rest mass.

Ahead of the charge (and behind), y and z are zero and

_p o el =)
E=E = drreg(x — vi)2 26.11)

The field again varies as the inverse square of the distance from the charge but s
now reduced by the factor (1 — »?), in agreement with the picture of the field lines.
If »/c is small, #?/c? is still smaller, and the effect of the (1 — »?) terms is very
small; we get back to Coulomb’s law. But if a particle is moving very close to
the speed of light, the field in the forward direction is enormously reduced, and
the field in the sidewise direction is enormously increased.

Our results for the electric field of a charge can be put this way: Suppose
you were to draw on a piece of paper the field lines for a charge at rest, and then
set the picture to travelling with the speed ». Then, of course, the whole picture
would be compressed by the Lorentz contraction; that is, the carbon granules
on the paper would appear 1n different places The miracle of 1t 1s that the picture
you would see as the page flies by would still represent the field lines of the point
charge. The contraction moves them closer together at the sides and spreads them
out ahead and behind, just in the right way to give the correct line densities. We
have emphasized before that field lines are not real but are only one way of repre-
senting the field. However, here they almost seem to be real. In this particular
case, 1If you make the mistake of thinking that the field lines are somehow really
there in space, and transform them, you get the correct field. That doesn’t, however,
make the field lines any more real All you need do to remind yourself that they
aren’t real is to think about the electric fields produced by a charge together with
a magnet; when the magnet moves, new electric fields are produced, and destroy
the beautiful picture So the neat idea of the contracting picture doesn’t work 1n
general. It 1s, however, a handy way to remember what the fields from a fast-
moving charge are like.

The magnetic field 1s v X E [from Eq. (26.9)). If you take the velocity crossed
into a radial E-field, you get a B which circles around the line of motion, as shown
in Fig. 26-5. If we put back the ¢’s, you will see that 1t’s the same result we had
for low-velocity charges. A good way to see where the ¢’s must go 1s to refer back
to the force law,

F = g(E + v X B).

You see that a velocity times the magnetic field has the same dimensions as an
electric field. So the right-hand side of Eq (26.9) must have a factor 1/¢*:

v><E_

B = 2

(26 12)

For a slow-moving charge (» << ¢), we can take for E the Coulomb field: then

q v Xr

B= tre r (26.13)

This formula corresponds exactly to equations for the magnetic field of a current
that we found mn Section 14-7.
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We would like to point out, in passing, something interesting for you to think
about. (We will come back to discuss 1t again later.) Imagine two electrons with
velocities at right angles, so that one will cross over the path of the other, but in
front of it, so they don’t collide. At some instant, their relative positions will be
as in Fig 26-6(a). We look at the force on ¢, due to g, and vice versa. On g,
there is only the electric force from ¢4, since ¢; makes no magnetic field along 1ts
line of motion. On ¢, however, there 1s again the electric force but, in addition,
a magnetic force, since 1t is moving in a B-field made by g,. The forces are as drawn
in Fig. 26-6(b). The electric forces on g, and ¢ are equal and opposite. However,
there is a sidewise (magnetic) force on g, and no sidewise force on q,. Does action
not equal reaction? We leave it for you to worry about.

26-3 Relativistic transformation of the fields

In the last section we calculated the electric and magnetic fields from the
transformed potentials. The fields are important, of course, in spite of the argu-
ments grven earlier that there is physical meaning and reality to the potentials.
The fields, too, are real. It would be convenient for many purposes to have a way
to compute the fields in a moving system if you already know the fields in some
“rest” system. We have the transformation laws for ¢ and A, because A4, is a
four-vector. Now we would like to know the transformation laws of E and B.
Given E and B in one frame, how do they look in another frame moving past?
It is a convenient transformation to have. We could always work back through the
potentials, but it 1s useful sometimes to be able to transform the fields directly.
We will now see how that goes.

How can we find the transformation laws of the fields? We know the trans-
formation laws of the ¢ and 4, and we know how the fields are given 1n terms of
¢ and A—it should be easy to find the transformation for the B and E. (You
might think that with every vector there should be something to make it a four-
vector, so with E there’s got to be something else we can use for the fourth com-
ponent. And also for B. But it’s not so. It’s quite different from what you would
expect.) To begin with, let’s take just a magnetic field B, which is, of course
v X A. Now we know that the vector potential with its x-, y-, and z-components
is only a piece of something; there is also a f-component. Also we know that for
derivatives like ¥, besides the x, y, z parts, there 1s also a derivative with respect to
t. So let’s try to figure out what happens if we replace a “p™ by a “r”, or a “z"
by a “,” or something like that.

First, notice the form of the terms in V X A when we write out the com-
ponents:

_ 04, _ 94, B = 94, 04, B - 94y 04,

(26.14)

ay 9z v " oz ax " ay

2

The x-component is equal to a couple of terms that involve only y- and z-com-
ponents. Suppose we call this combination of derivatives and components a
“zy-thing,”” and give it a shorthand name, F,,. We simply mean that

F,=2:_ 2y, (26.15)

Similarly. B,, 1s equal to the same kind of “thing,” but this time 1t is an “xz-thing.”
And B, is, of course, the corresponding “yx-thing.” We have

Bx = FZV’ By = sz, Bz = FT/I‘ (26.16)
Now what happens if we simply try to concoct also some “f’-type things
like F.; and F;, (since nature should be nice and symmetric in x, y, z, and 7)? For
instance, what is F,,? It s, of course,
04, 94,

0z at
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But remember that 4, = ¢, so it 1s also

You've seen that before. It 1s the z-component of E. Well, almost—there 1s a
sign wrong But we forgot that in the four-dimensional gradient the r-derivative
comes with the opposite sign from x, y, and = So we should really have taken the
more consistent extension of F,, as

F=""04 00 (26.17)

Then 1t 1s exactly equal to —E. Trying also F,, and F,,, we find that the three
possibilities give
F,, = —E, F, = —E, F.. = —E,. (26.18)

What happens 1f both subscripts are 17 Or, for that matter, if both are x?
We get things like

0A, 04,
F = ——— = ——
t EY; EY;
and
04, 04,
Foo = 3¢ — %x

which give nothing but zero.
We have then six of these F-things. There are six more which you get by
reversing the subscripts, but they give nothing really new, since

Fu, = —F,,.

and so on. So, out of sixteen possible combinations of the four subscripts taken
i pairs, we get only six different physical objects: and thev are the components
of Band E.

To represent the general term of F, we will use the general subscripts u and v,
where cach can stand for 0, 1, 2, or 3—meaning 1 our usual four-vector notation
t, x, y, and z Also, everything will be consistent with our four-vector notation if
we define £,, by

Table 26—1 F.l“/ = V“A,, — V,,A’“ (26 19)

The components of F,, remembering that v, = (9/0t. —9/dx, —3/dy, —d/dz) and that 4, = (¢, 4., A,
B T - i Az)

—F.. ‘ What we have found s that there are six quantities that belong together 1n

nature—that are different aspects of the same thing. The electric and magnctic
fields which we have considered as sepatate vectors in our slow-moving world
F., = —B, Fo = (where we don’t worry about the speed of light) are not vectors 1n four-space.
They are parts of a new “thing.” Our physical “field” 1s really the six-component
object F,,. That 1s the way we must look at 1t for relativity We summatize our
F.. - —B, F,, = results on £, in Table 26-1

- - You see that what we have done here 1s to generalize the cross product We
began with the curl operation, and the fact that the transformation properties of
the curl are the same as the transformation properties of 1wo vectors—the ordimary
three-dimenstonal vector 4 and the gradient operator which we know also behaves
like a vector Let’s look for a moment at an ordinary cross product in three di-
mensions, for example, the angular momentum of a particle When an object 15
moving in a plane. the quantity (x», — pv,) 1s important. For motion in three
dimensions, there are three such important quantities, which we call the angular
momentum:

Fp =
F}A» :0

L)

Fl/z = '—Bz Fu/ = Er/

™

2

L:r/ = In(X"l/ - yl'r)a L//: = m(yr- — Zr,), Lw = m(zr, — ar)

Then (although you may have forgotten by now) we discovered in Chapter 20
of Vol I the miracle that these three quantities could be 1dentified with the com-

26-6



ponents of a vector. In order to do so, we had to make an artificial rule with a
right-hand convention It was just luck. It was luck because L,, (with ¢ and g
equal to x, y, or z) was an antisymmetric object

LL] = *LH* Lm, =0

Of the nine possible quantities, there are only three independent numbers. And
it just happens that when you change coordinate systems these three objects
transform 1n exactly the same way as the components of a vector.

The same thing lets us represent an element of surface as a vector A surface
element has two parts—say dx and dy—which we can represent by the vector da
normal to the suiface. But we can’t do that in four dimensions What 1s the
“normal” to dx dy? s it along z or along #?

In short, for three dimensions it happens by luck that after you've taken a
combination of two vectors like L,,, you can represent it again by another vector
because there are just three terms that happen to transform hike the components
of a vector But in four dimensions that 1s evidently impossible, because there are
six independent terms, and you can’t represent six things by four things.

Even n three dimensions it is possible to have combinations of vectors that
can’t be represented by vectors. Suppose we take any two vectors @ = (ay, a,, a.)
and b = (b, b,, b,), and make the various possible combinations of components,
like a,b,. a.b,. etc There would be nine possible quantities:

ab,, ash,, a.b,,
a,b.. a,b,, a,b.,
azby,, a:h,, @:b.,.

We might call these quantities 7.

If we now go to a rotated coordinate system (say rotated about the z-axis),
the components of @ and b are changed. In the new system, a,, for example. gets
replaced by

ay

i

aycos 8 + a,sin @,

and b, gets replaced by
b, = b,cos 8 — b, sin 4.

And smularly for other components The nine components of the product quantity

T,, we have mvented are all changed too, of course For instance, 7., = a.b,
gets changed to

T., = ab,(cos® 8) — a.b.(cos 6sin8) + a,b,(sin 6cos 8) — a,b,(sin” §),

li

or

T., = T.,cos” § — T,y cos fsin§ + T, sin 6cos 8 — T, sin® 6.

Each component of 77, is a linear combination of the components of T,,.

So we discover that 1t 1s not only possible to have a “vector product™ Iike
a X b which has three components that transform like a vector, but we can—
artificially—also make another kind of “product” of two vectors T,, with nmne
components that transform under a rotation by « complicated set of rules that
we could figure out  Such an object which has two indices to describe it, instead
of one, 1s called a tensor. 1t 1s a tensor of the “‘second rank,” because you can
play this game with three vectors too and get a tensor of the third rank,—or with
four, to get a tensor of the fourth rank, and so on. A tensor of the first rank 1s a
vector

The point of all this 1s that our electromagnetic quantity F,, is also a tensor
of the second rank, because it has two indices in 1t. It 1s, however, a tensor
four dimensions. It transforms in a special way which we will work out in a mo-
ment—it is just the way a product of vectors transforms. For F,, it happens
that if you change the indices around, £, changes sign. That’s a special case—it is
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an antisymmetric tensor. So we say: the electric and magnetic fields are both part
of an antisymmetric tensor of the second rank in four dimensions.

You've come a long way. Remember way back when we defined what a
velocity meant? Now we are talking about “an antisymmetric tensor of the
second rank in four dimensions.”

Now we have to find the law of the transformation of F,,. It isn’t at all
difficult to do; it’s just laborious—the brains involved are nil, but the work is not.
What we want 1s the Lorentz transformation of V,4, — V,4,. Since V, 1s just a
special case of a vector, we will work with the general antisymmetric vector com-
bination. which we can call G,,:

G,, = ab, — a,b,. (26.20)

(For our purposes, a, will eventually be replaced by Vv, and b, will be replaced by
the potential A4,.) The components of a, and b, transform by the Lorentz formulas,
which are

, a, — va, b b, — vb,

ay = —————= > = >

‘ VI =2 ! V19— 2

, _ G — vay p_ be = by 26.21
“= Uiz T Ui (2620)
a;; = ay; b;l = by’

a, = a,. b, = b,.

Now let’s transform the components of G,,. We start with G,:

1 ? r ’ ’
tz = aby — axb’

a; — va, \{ b, — vb,; [ — vay b, — vb,
VI =2 A1 = 02 V1 — 2\ — 2

(I[bx et axbt.

I

Ii

But that 15 just Gy,; so we have the simple result

G,t:c = Gt‘r-
We will do one more

J ad; — Vay

b, — vb, (ab, — ayb;) — v(ab, — a,by)
y = *bu—ay = — - .
VI — 2 V19— 2 V1= 2

So we get that

’ Gy — Gy |

v NG
And, of course, in the same way,

, G, — vG,,

tz \/—1-——';

It is clear how the rest will go. Let’s make a table of all six terms, only now we
may as well write them for F,;:

Fl, = Fu, Fr, = T = vl
VI — 2
Fy, — oF,
Fl, = Tty - Yy F,, = F,, 26.22
ty m v y2 ( )
Fl, = Fi, — z'F“’ Fl, = Foe — viz/_
V1 — 2 V1 — 2
Of course, we still have F), = —F}, and F, = 0.
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So we have the transformation of the electric and magnetic fields. All we have
to do 1s look at Table 26~1 to find out what our grand notation n terms of F,
means 1n terms of E and B. It’s just a matter of substitution. So that we can see
how 1t looks in the ordinary symbols, we'll rewrite our transformation of the
field components in Table 26-2.

Table 26-2
The Lorentz transformation of the electric and magnetic fields (Note: ¢ = 1)
F., = E, B, = B,
E,ZEy—sz B,:By+sz
iy - Y S
V1= »? V16— 02
g~ E:+ vB, p o B:—vE,
V19— 2 V1 o— v?

S - _ _ S

The equations in Table 26-2 tell us how E and B change if we go from one inertial
frame to another. If we know E and B 1n one system, we can find what they are
1in another that moves by with the speed ».

We can write these equations in a form that is easier to remember 1f we notice
that since » is in the x-direction, all the terms with » are components of the cross

products v X E and v X B. So we can rewrite the transformations as shown in
Table 26-3

Table 26-3

An alternative form for the field transformations (Note: ¢ = 1)

E, = E, B, = B,

E/I:(E+UXB)7/ B,=(B—’UXE)1/
’ V1= 92 Y V1 = 2
o _ (E+ X B, g _ B vXE).

It 1s now easier to remember which components go where In fact, the transforma-
tion can be written even more simply if we define the field components along x
as the “parallel” components E|; and By, (because they are parallel to the relative
velocity of S and S’), and the total transverse components—the vector sums of
the p- and z-components—as the “perpendicular’™ components £, and B, Then
we get the equations in Table 26-4. (We have also put back the ¢’s, so it will be
more conventent when we want to refer back later )

Table 26-4

Still another form for the Lorentz transformation of £ and B

| =E Bl = B

, (E+ v X B)
EJ_ = _/T:f,jfj = T
V1 — 12/e? V1 — v2/c2
The field transformations give us another way of solving some problems we
have done before—for instance, for finding the fields of a moving point charge.
We have worked out the fields before by differentiating the potentials. But we
could now do 1t by transforming the Coulomb field. If we have a point charge
at rest 1n the S-frame, then there 1s only the simple radial E-field In the $’-frame
we will see a point charge moving with the velocity u, if the S’-frame moves by the
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Fig. 26-7. The coordinate frame §’
moving through a static electric field.

S-frame with the speed v = —u. We will let you show that the transformations
of Tables 26-3 and 26-4 give the same electric and magnetic fields we got in Section
26-2.

The transformation of Table 26-2 gives us an interesting and simple answer
for what we see 1f we move past any system of fixed charges. For example. suppose
we want to know the fields in our frame S’ if we are moving along between the
plates of a condenser, as shown in Fig. 26-7. (It is, of course, the same thing if
we say that a charged condenser is moving past us.) What do we see? The trans-
formation is easy 1n this case because the B-field in the original system 1s zero.
Suppose, first, that our motion is perpendicular to E, then we will see an E' =
E/\/1 — v2/c2 which is still completely transverse. We will see, in addition, a
magnetic field B> = —v X E’/c?. (The /1 — 12 doesn’t appear in our formula
for B’ because we wrote it in terms of E’ rather than E; but it’s the same thing.)
So when we move along perpendicular to a static electric field, we see a reduced
E and an added transverse B. If our motion is not perpendicular to E, we break
Ento E|| and E,. The parallel part is unchanged, E/, = E|;, and the perpendicular
component does as just described.

Let’s take the opposite case, and imagine we are moving through a pure
static magnetic field. This time we would see an electric field E’ equal tov X B/,
and the magnetic field changed by the factor 1/4/1 — ¢#2/c2 (assuming it 1s trans-
verse). So long as v is much less than ¢, we can neglect the change in the magnetic
field, and the main effect is that an electric field appears. As one example of this
effect, consider this once famous problem of determining the speed of an airplane.
It’s no longer famous, since radar can now be used to determine the air speed
from ground reflections, but for many years it was very hard to find the speed of
an airplane 1n bad weather. You could not see the ground and you didn’t know
which way was up, and so on. Yet it was important to know how fast you were
moving relative to the earth. How can this be done without seeing the earth?
Many who knew the transformation formulas thought of the 1dea of using the fact
that the airplane moves 1n the magnetic field of the earth Suppose that an airplane
1s flying where there is a magnetic field more or less known. Let’s just take the
simple case where the magnetic field 1s vertical. If we were flying through 1t with
a horizontal velocity », then, according to our formula, we should see an electric
field which is v X B, i.e, perpendicular to the line of motion 1f we hang an
insulated wire across the airplane, this electric field will induce charges on the ends
of the wire. That 1s nothing new. From the point of view of someone on the ground,
we are moving a wire through a field, and the v X B force causes charges to move
to the ends of the wire The transformation equations just say the same thing in
a different way. (The fact that we can say the thing more than one way doesn’t
mean that one way 1s better than another We are getting so many different
methods and tools that we can usually get the same result in 65 different ways')

So to measure v, all we have to do is measure the voltage between the ends of
the wire. We can’t do 1t with a voltmeter because the same fields will act on the
wires in the voltmeter, but there are ways of measuring such fields. We talked
about some of them when we discussed atmospheric electricity in Chapter 9 So
it should be possible to measure the speed of the airplane.

This important problem was, however, never solved this way. The reason is
that the electric field that is developed is of the order of millivolts per meter. It
is possible to measure such fields, but the trouble 1s that these fields are, unfortun-
ately, not any different from any other electric fields. The field that 1s produced
by motion through the magnetic field can’t be distinguished from some electric
field that was already 1n the air from another cause, say from electrostatic charges
in the air, or on the clouds We described in Chapter 9 that there are, typically,
electric fields above the surface of the earth with strengths of about 100 volts per
meter But they are quite irregular. So as the airplane flies through the arr, it
sees fluctuations of atmospheric electric fields which are enormous in comparison
to the tiny fields produced by the v X Bterm, and it turns out for practical reasons
to be impossible to measure speeds of an airplane by its motion through the earth’s
magnetic field.
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26-4 The equations of motion in relativistic notation*

It doesn’t do much good to find electric and magnetic fields from Maxwell’s
equations unless we know what the fields do when we have them. You may re-
member that the fields are required to find the forces on charges, and that those
forces determine the motion of the charge. So, of course, part of the theory of
electrodynamics 15 the relation between the motion of charges and the forces.

For a single charge in the fields E and B, the force is

F = g(E + v X B). (26 23)

This force is equal to the mass times the acceleration for low velocities, but the
correct law for any velocity 1s that the force 1s equal to dp/dr. Writing p =

mov/A/1 — v2/c2, we find that the relativistically correct equation of motion 1s
df_m¥ N\ _ F_ oE+vXB) (26.24)
dt\\/1T = 12/c2 ' '

We would like now to discuss this equatton from the point of view of relativity.
Since we have put our Maxwell equations in relativistic form, it would be interesting
to see what the equations of motion would look like in relativistic form  Let’s see
whether we can rewrite the equation in a four-vector notation.

We know that the momentum is part of a four-vector p, whose time com-
ponent 1s the energy m,/+/1 — r2/c2. So we might think to replace the left-hand
side of Eq. (26 24) by dp,/dt Then we need only find a fourth component to go
with F. This fourth component must equal the rate-of-change of the energy, or the
rate of domng work, which 1s F-v. We would then like to write the right-hand
side of Eq (26.24) as a four-vector like (F - v, F,, F,. F;). But this does not make
a four-vector.

The nme derivative of a four-vector is no longer a four-vector, because the
d/dt requires the choice of some special frame for measuring 1. We got nto that
trouble belore when we tried to make v into a four-vector. Our first guess was
that the time component would be c¢dt/dt = c¢. But the quantities

dx dy dz\ _
(C, —d; s —c‘i—r‘ s ?{;) = (C, U) (2625)

are not the components of a four-vector We found that they could be made nto
one by multiplying each component by 1/4/1 — r2/c2. The “four-velocity™

u, 1s the four-vector
¢ v
w, = | - - g ———————— } . (26.26)
g <\/l — 2/cz 1 — u2,/62>

So it appears that the trick 1s to multiply d/dr by 1/4/1 — v2/c2, 1f we want the
dervatives to make a four-vector.
Our second guess then is that

1 d
VT Z2jc2 dt

should be a four-vector. But what is v? It 1s the velocity of the particle—not of a
coordmate frame! Then the quantity f, defined by

fu = < Fro F > (26.28)

(Pu) (26.27)

V1 — 02/02’\/1 — v2/c2

1s the extension into four dimensions of a force—we can call it the “four-force.”
It is mndeed a four-vector, and its space components are not the components of
F but of F/+/1 — r2/c2,

* In this section we will put back all of the ¢'s.
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The question 1s—why 1s £, a four-vector? It would be nice to get a little under-
standing of that 1/ /1 — v2/c2 factor Since 1t has come up twice now, 1t 1s time
to see why the d/dr can always be fixed by the same factor. The answer is 1n the
following: When we take the time derivative of some function x, we compute the
increment Ax m a small interval Af in the variable 7. But in another frame, the
interval Ar nught correspond to a change in both ¢ and x’, so if we vary only ¢,
the change in x will be different. We have to find a variable for our differentiation
that is a measure of an ‘““interval’ in space-time, which will then be the sume in
all coordinate systems. When we take Ax for that interval, it will be the same for
all coordinate frames. When a particle “moves” in four-space, there are the changes
At, Ax, Ay, Az. Can we make an invariant interval out of them? Well, they are
the components of the four-vector x, = (ct, x, y, z) so 1f we define a quantity
As by

(as)* = ?LAx“ Ax, = clz (? A2 — ax? — Ay® — AZ®) (26.29)

—which 1s a four-dimensional dot product—we then have a good four-scalar to
use as a measure of a four-dimensional interval. From As—or its limit ds—we
can define a parameter s = fds. And a derivative with respect to s, d/ds, 15 a
nice four-dimensional operation, because it is invariant with respect to a Lorentz
transformation.

It is easy to relate ds to dt for a moving particle. For a moving point particle,

dx = v, dt, dy = v,dt, dz = v, dt, (26 30)
and

ds = \/(dt2/c2)(c2 -2 =l —H= dev1 — /e, (26.31)

x

So the operator
1 d

i ad

is an mnvariant operator. 1f we operate on any four-vector with 1t, we get another
four-vector. For 1nstance, if we operate on (ct, x, y, z), we get the four-velocity u,:

dx,
ds

We see now why the factor /1 — 12/c? fixes things up.

The nvariant variable s is a useful physical quantity. It is called the *“‘proper
time” along the path of a particle, because ds is always an interval of time in a
frame that is moving with the particle at any particluar mstant. (Then, Ax =
Ay = Az = 0, and As = A1) If you can imagine some “clock™ whose rate
doesn’t depend on the acceleration, such a clock carried along with the particle
would show the time s

We can now go back and write Newton’s law (as corrected by Einstein)
the neat form

= Uy

dpu _
e S (26.32)

where f, 1s given in Eq. (26.28). Also, the momentum p, can be written as

dx,
ds ’

Pp = Moy, = My (26.33)
where the coordinates x, = (ct, x, y, z) now describe the trajectory of the particle.
Finally, the four-dimensional notation gives us this very simple form of the equa-

tions of motion:
2
fu = m %, (26.34)

which is reminiscent of F = ma It 1s important to notice that Eq. (26.34) 1s not
the same as F = ma, because the four-vector formula Eq. (26.34) has 1n it the

26-12



relativistic mechanics which are different from Newton’s law for high velocities.
It 1s unlike the case of Maxwell’s equations, where we were able to rewnte the
equations in the relativistic form without any change in the meaning at all—but with
just a change of notation.

Now let’s return to Eq. (26.24) and see how we can write the right-hand side
in four-vector notation. The three components—when divided by 4/1 — ©2/¢c2—
are the components of f,, so

odErex®, [ E . wB B ]
VA Wy VT = 2/c2 V1T =) V1= )2
(26.35)
Now we must put all quantities in their relativistic notation. First, ¢/\/1 — v2/c?
and v,/\') — v2/c2 and r,/\/1 — r2/c? are the r-, y-, and z-components of the

four-velocity 1, And the components of E and B are components of the second-
rank tensor of the fields F,,. Looking back in Table 26-1 for the components of
F,, that correspond to E,, B,, and B, we get

fl‘ = Q(utsz - uszy - uzsz)v

which begins to look interesting. Every term has the subscript x, which 1s reason-
able, since we're finding an x-component. Then all the others appear in pairs:
1t, yy, zz—except that the xx-term 18 missing. So we just stick it in, and write

fr = q(u!Fxt - uszz - uquy - uzez)- (26 36)

We haven’t changed anything because F,, is antisymmetric, and F,, is zero. The
reason for wanting to put in the xx-term 1s so that we can write Eq. (26.36) in
the short-hand form

fo = quuFy,. (26.37)

This equation is the same as Eq (26.36) if we make the rule that whenever any
subscript occurs rwice (as v does here), you automatically sum over terms in the
same way as for the scalar product, using the same convention for the signs.

You can easily believe that (26.37) works equally well for u = y or p = z.
but what about u = ¢? Let’s see, for fun, what 1t says:

fi = q(utFtt — uthx - uuny - uthz)

Now we have to translate back to E’s and B’s. We get

=0 e Bt Gt e )
or , o E (26.38)
But from Eq. (26.28), 1, is supposed to be
F-v =q(E+vXB)-v_

This 1s the same thing as Eq. (26.38), since (v X B) - viszero. So everything comes
out all right.
Summarizing, our equation of motion can be written in the elegant form

d2
my TE = fu = quFp. (26.39)

Although it 1s nice to see that the equations can be written that way, this form
1s not particularly useful It’s usually more convenient to solve for particle motions
by using the oniginal equations (26.24), and that’s what we will usually do.
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