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Electrodynamies in Relativistie Notation

25-1 Four-vectors

We now discuss the application of the special theory of relativity to electro-
dynamics. Since we have already studied the special theory of relativity in Chapters
15 through 17 of Vol. 1, we will just review quickly the basic ideas.

It is found experimentally that the laws of physics are unchanged 1f we move
with uniform velocity. You can’t tell if you are inside a spaceship moving with
uniform velocity in a straight hne, unless you look outside the spaceship, or at
least make an observation having to do with the world outside. Any true law of
physics we writc down must be arranged so that this fact of nature 1s built 1n.

The relationship between the space and time of two systems of coordinates,
one, S, m uniform motion in the x-direction with speed @ relative to the other, S,
is given by the Loreniz iransformation:

Lk, S A
VT =2 ’
(25.1)
X = X — S o=z
AV "

The laws of physics must be such that after a Lorentz transformation, the new

form of the laws looks just like the old form. This is just like the principle that

the laws of physics don’t depend on the orrentation of our coordinate system. In

Chapter 11 of Vol 1, we saw that the way to describe mathematically the invariance

of physics with respect to rotations was to write our equations i terms of veciors.
For example, if we have two vectors

A = (Ats AI/’ A:) and B = (Br, B,/, Bz),
we found that the combination
A-B= A8, + A,B, + A.B.

was not changed if we transformed to a rotated coordinate system. So we know
that if we have a scalar product like 4 + B on both sides of an equation, the equation
will have exactly the same form in all rotated coordinate systems. We also dis-
covered an operator (see Chapter 2),

v - <ﬁ_,ﬁ,£>,
dx dy 09z

which, when applied to a scalar function, gave three quantities which transform
just like a vector  With this operator we defined the gradient, and 1 combination
with other vectors, the divergence and the Laplacian. Finally we discovered that
by taking sums of certamn products of pairs of the components of two vectors we
could get three new quantities which behaved like a new vector. We called 1t the
cross product of two vectors  Using the cross product with our operator V we then
defined the curl of a vector

Since we will be referring back to what we have done 1n vector analysis. we
have put 1n Table 25-1 a summary of all the important vector operations in
three dimensions that we have used in the past. The point is that 1t must be possible
to write the equations of physics so that both sides transform the same way under
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Table 25-1

The important quantities and operations
of vector analysis in three dimensions

Definition of 4

vector
Scalar product

Differential vector
operator

Gradient
Davergence
Laplacian
Cross product
Curl

]

A = (A, Ay, A2)
A-B

v

Ve

VA
V.-V =V?
A X B r
vV X A |

rotations. If one side is a vector, the other side must also be a vector, and both
sides will change together i exactly the same way if we rotate our coordinate sys-
tem Simularly, if one side 1s a scalar, the other side must also be a scalar, so that
neither side changes when we rotate coordinates, and so on.

Now in the case of special relativity, time and space are inextricably nmixed,
and we must do the analogous things for four dimensions We want our equations
to remain the same not only for rotations, but also for any mertial frame. That
means that our equations should be invariant under the Lorentz transtormation
of equauons (25.1). The purpose of this chapter 1s to show you how that can be
done. Before we get started, however, we want to do something that makes our
work a lot easier (and saves some confusion) And that 1s to choose our units of
length and time so that the speed of light ¢ 1s equal to I  You can think of 1t as
taking our unit of time to be the tume that it takes light to go one merer (which 1s
about 3 X 107Y sec) We can even call this time unit *““one meter.”” Using this
unit, all of our equations will show more clearly the space-time symuietry  Also,
all the ¢’s will disappear from our relativistic equations. (If this bothers you,
you can always put the ¢’s back into any equation by replacing every 7 by ¢, or, in
general, by sticking in a ¢ wherever 1t 1s needed to make the dimensions of the
equations come out right.) With this groundwork we are ready to begin  Our
program is to do in the four dimensions of space-time all of the things we did with
vectors for three dimensions. It is really quite a simple game, we just work by
analogy The only real complications 1s the notation (we’ve already used up the
vector symbol for three dimensions) and one shight twist of signs

First, by analogy with vectors in three dimensions, we define a fowr-vecior as
a set of the four quantities a,, a,, a,, and a,, which transform like 7, x, v, and z when
we change to a moving coordinate system. There are several different notations
people use for a four-vector; we will write a,, by which we mean the group of four
numbers (a,, d,, u,, a,)—in other words, the subscript g can take on the four
“values” 1, x, y, z It will also be convenient, at times to indicate the three space
components by a three-vector, like this: ¢, = (a/, a)

We have already encountered one four-vector, which consists of the energ
and momentum of a particle (Chapter 17, Vol. 1). In our new notation we write

pe = (E.p), (25.2)

which means that the four-vector p, 1s made up of the energy E and the three
components of the three-vector p of a particle.

It looks as though the game 1s really very simple—for each three-vector in
physics all we have to do is find what the remaining component should be, and we
have a four-vector To see that this 1s not the case, consider the velocity vector
with components

dx dy dz

= [

I = - My, = —— 1 = —— .
T dl’ T T di

The question 1s: What 1s the time component? Instinct should give the right
answer. Since four-vectors are like ¢, x, y, z, we would guess that the ume com-
ponent 1s

Thuis s wrong The reason is that the ¢ 1n each denominator is not an mvariant
when we make a Lorentz transformation  The numerators have the right behavior
to make a four-vector, but the dr in the denominator spoils things; it 1s unsymmetric
and 1s not the same in two different systems.

It turns out that the four “*velocity” components which we have written down
will become the components of a four-vector 1f we just divide by /T — 2. We
can see that that is true because 1f we start with the momentum four-vector

pe = (E,p) = <~—’”“» - ,4’?2‘?), (25 3)
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and divide 1t by the rest mass #7,, which 1s an invariant scalar in fowr dinensions,
we have

e (L ¥ ) (24.4)
ny, V1 — 2 V1 — 02

which must still be a four-vector. (Dividing by an wvariant scalar doesn’t change
the transformation properties ) So we can defme the “velocity four-vector” u, by

1 )
Uy — ——— ’ u, = _Z/:l/__’
V1 — 2 V19— 2
(25.5)
iy Vg
Uy = —————> Uy = ———————
V1 — 2 V1 — p?
The four-velocity 15 a useful quantity; we can, for 1nstance, write
p/.t = m()llu. (25.6)

This 1s the typical sort of form an equation which 1s relativistically correct must
have; each side 1s a four-vector. (The right-hand side 1s an mvarnant times a
four-vector, which is still a4 four-vector.)

25-2 The scalar product

It 15 an accident of Ilife, if you wish, that under coordinate rotations the
distance of a point from the origin does not change. This means mathematically
that r2 = x? + p? 4 z% 15 an nvartant  In other words, after a rotation
r2

2
re o= r or

X/Z + V/Z + 2/2 — x2 + y2 _|__ 22.

Now the question 1s° Is there a similar quantity which 1s mvarnant under the
Lorentz transformatton”? There 1s. From Eq. (25.1) you can see that

That 15 pretty nice, except that it depends on a particular choice of the x-direction
We can fix that up by subtracting y# and z2. Then any Lorentz transformation
plus a rotation will leave the quantity unchanged. So the quantity which 15 anal-
agous to r* for four dimensions, in three dimensions is

12— x% — p?— z%

It 15 an nvartant under what s called the “complete Lorentz group”—which
means for transformation of both translations at constant velocity and rotations.
Now smce this invariance 18 an algebraic matter depending only on the
transformation rules of Eq (25.1)—plus rotations—it 1s true for any four-vector
(by defimtion they all transform the same). So for a four-vector ¢, we have that
a — & —af — a = af — al — ai — a.
We will call this quantity the square of “the length™ of the four-vector ¢, (Some-
times people change the sign of all the terms and call the length «® + o +
a> — di, so you'll have to watch out)
Now 1f we have rwo vectors g, and b,, their corresponding components
transform in the same way, so the combination

a{b[ - (llbr - al/b'I/ - azbz

15 also an mvariant (scalar) quantity. (We have in fact already proved this in
Chapter 17 of Vol. I.) Clearly this expression 1s quite analogous to the dot product
for vectors. We will, in fact, call 1t the dor product or scalar product of two four-
vectors It would seem logical to write 1t as a, b, s0 1t would /ook like a dot prod-
uct But, unhappily. 1t’s not done that way: it 1s usually written without the dot.
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So we will follow the convention and write the dot product simply as a,b,. So,
by definition,
ab, = a;by — ab. — aby, — a.b, (25.7)

Whenever you see two identical subscripts together (we will occasionally have
to use v or some other letter instead of u) 1t means that you are to take the four
products and sum, remembering the minus sign for the products of the space
components. With this convention the invariance of the scalar product under a
Lorentz transformation can be written as

TR -
a,b, = a.b,.

Since the last three terms n (25.7) are just the scalar dot product in three
dimensions, it is often more convenient to write

(]#b“ = (l/bt — a-b.

It is also obvious that the four-dimensional length we described above can be

written as a,a,:

2 2 2
a,a, = u; — a? — a, — a; = @ — a-a. (25.8)

It will also be convenient to sometimes write this quantity as «;:
at = aua,.

We will now give you an illustration of the usefulness of four-vector dot
products. Antiprotons (P) are produced in large accelerators by the reaction

P+P—->P+P+P+ P

That is, an energetic proton collides with a proton at rest (for example, mn a hy-
drogen target placed in the beam), and if the incident proton has enough energy,
a proton-antiproton pair may be produced, 1n addition to the two original protons.*
The question is: How much energy must be given to the incident proton to make
this reaction energetically possible?

The easiest way to get the answer is to consider what the reaction looks hke
in the center-of-mass (CM) system (see Fig. 25-1). We’ll call the incident proton
a and 1ts four-momentum pi Similarly, we’ll call the target proton b and 1ts four-
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Fig. 25-1. The reaction P + P —
3P 4+ P viewed in the laboratory and
CM systems. The incident proton is sup-
posed to have just barely enough energy
to make the reaction go. Protons are
denoted by solid circles; antiprotons, by
open circles.
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* You may well ask: Why not consider the reactions

P+P—>P+ P+ P,
or even _
P+Po>P+P

which clearly require less energy? The answer 1s that a principle called conservanion of
baryons tells us the quantity “number of protons minus number of antiprotons” cannot
change. This quantity 1s 2 on the left side of our reaction. Therefore, if we want an
antiproton on the right side, we must have also t/iree protons (or other baryons).
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momentum p?2. If the incident proton has just barely enough energy to make the
reaction go. the final state—the situation after the collision—will consist of a
glob containing three protons and an antiproton at rest in the CM system  If
the incident energy were slightly higher, the final state particles would have some
kinetic energy and be moving apart; if the incident energy were slightly lower,
there would not be enough energy to make the four particles

If we call p; the total four-momentum of the whole glob in the final state,
conservation of energy and momenrtum tells us that

pa + pb — pc'
and
E® + E®* = E°.

Combining these two equations, we can write that

pi + pi = pi (25.9)

Now the important thing is that this is an equation among four-vectors, and
is, therefore, true in any inertial frame. We can use this fact to simplify our
calculations. We start by taking the “length” of each side of Eq. (259); they are,
of course, also equal. We get

(p: + POt + pb) = pipt. (25.10)

Since pips is invariant, we can evaluate it in any coordinate system. In the CM
system, the time component of pf is the rest energy of four protons, namely 4M,
and the space part p 1s zero; so pg = (4M, 0). We have used the fact that the
rest mass of an antiproton equals the rest mass of a proton, and we have called
this common mass M.

Thus, Eq. (25.10) becomes

pipi + 2pips + pipi = 16M>. (25.11)

Now pipi and plpl are very easy. since the “length” of the momentum four-vector
of any particle is just the mass of the particle squared:

pubu = E* — p* = M*.
This can be shown by direct calculation or, more cleverly, by noting that for a
particle af rest p, = (M, 0), so p,p, = M-* Butsince it 1s an invariant, it 1s equal
to M*? in any frame. Using these results in Eq. (25.11), we have

2pipl = 14M?
or

pip. = TM*. (25.12)

Now we can also evaluate pZp’ in the laboratory system. The four-vector
p? can be written (E°. p%), while p} = (M, 0), since 1t describes a proton at rest.
Thus, p2p® must also be equal to ME®, and since we know the scalar product 15
an invariant this must be numerically the same as what we found in (25.12). So
we have that
E¢ = M,

which 1s the result we were after The foral energy of the initial proton must be
at least 7M (about 6.6 Gev since M = 938 Mev) or, subtracting the rest mass M,
the Ametic energy must be at least 6M (about 5.6 Gev). The Bevatron accelerator
at Berkeley was designed to give about 6 2 Gev of kinetic energy to the protons it
accelerates, in order to be able to make antiprotons

Since scalar products are invariant, they are always interesting to evaluate.
What about the “length™ of the four-velocity u,u,”?

2 1 Uz

ST DT 1 =2

= l.

Uy, = U7 — u

Thus, u, is the unit four-vector



25-3 The four-dimensional gradient

The next thing that we have to discuss 1s the four-dimensional analog of the
gradient. We recall (Chapter 14, Vol. I) that the three differential operators
a/dx, d/dy, 9/9z transform like a three-vector and are called the gradient. The
same scheme ought to work 1n four dimensions; that is, we might guess that the
four-dimensional gradient should be (9/9¢, 3/9x, /9y, 8/9z). This is wrong.

To see the error, consider a scalar function ¢ which depends only on x and 1.
The change 1n ¢, 1f we make a small change Af in t while holding x constant, is

Ap = %? At. (25.13)

On the other hand, according to a moving observer,

= 9 Ax 4 Ay
A¢ = o5 Ax' 4 =2 AL

We can express Ax’ and A1’ in terms of At by using Eq (25.1) Remembering
that we are holding x constant, so that Ax = 0, we write

v Ar
Ax' = — ——— Ay, Af = — .
V1 — »2 V1 — 2
Thus,
do A do At
Ap = —— | — ———A)+ | ———
ox < V1= 2 > at’ <\/1 - 1)2)

d¢ d¢ At

= (&7‘”59)*,#“1_02'

Comparing this result with Eq. (25.13), we learn that

¢ 1 (o _ 99

a1 T2 (az' ¢ ax'> (25.14)
A similar calculation gives

o0 1 (o _ %)

Ix VI =2 <ax’ v or (25.15)

Now we can see that the gradient is rather strange. The formulas for x and ¢
in terms of x’ and ¢’ [obtained by solving Eq. (25 1)] are:

t_t’—l—z)x' X_x’—l—vt’
VI — 2 V1 — 2

This 1s the way a four-vector must transform. But Egs. (25.14) and (25 15) have
a couple of signs wrong!

The answer is that instead of the incorrect (0/3t, V). we must define the four-
dimensional gradient operator, which we will call v, by

0 lé] 0 0 0
V““(&’"v>‘<b?’“5}"5y’“02)' (25.16)

With this definition, the sign difficulties encountered above go away, and V,
behaves as a four-vector should. (It’s rather awkward to have those nunus signs,
but that’s the way the world 15.) Of course, what 1t means to say that v, “behaves
like a four-vector™ 1s simply that the four-gradient of a scalar 1s a four-vector. 1If
¢ 1s a true scalar invariant field (Lorentz invariant) then vV, 1s a four-vector field
All right, now that we have vectors, gradients, and dot products, the next
thing is to look for an invanant which 1s analogous to the divergence of three-
dimensional vector analysis. Clearly, the analog 1s to form the expression V,5,,
where b, is a four-vector field whose components are functions of space and time.
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We define the divergence of the four-vector b, = (b, b) as the dot product of
V. and b,:

J i) J a
by = 5 bi — <— 5) b, — (- 5) b, — (- a?) b.

J
_;.)’Ebt‘{"v b,

(25.17)

where V - b is the ordinary three-divergence of the three-vector b, Note that one
has to be careful with the signs. Some of the ninus signs come from the definttion
of the scalar product. Eq. (25.7); the others are required because the space com-
ponents of ¥, are —9d/dx, etc, as in Eq. (25.16) The divergence as defined by
(25 17) 15 an mvariant and gives the same answer n all coordinate systems which
differ by a Lorentz transformation.

Let’s look at a physical example in which the four-divergence shows up
We can use 1t to solve the problem of the fields around a moving wire  We have
already seen (Section 13-7) that the electric charge density p and the current
density j form a four-vector j, = (p.j). If an uncharged wire carries the current
Je then in a frame moving past it with velocity » (along x), the wire will have the
charge and current density [obtained from the Lorentz transformation Egs.
(25.1)] as follows:

’ TV 5 Jz

VT :

V1= w2
These are just what we found in Chapter 13 We can then use these sources
in Maxwell’s equation in the moving system to find the fields.
The charge conservation law, Section 13-2, also takes on a simple form 1n
the four-vector notation. Consider the four divergence of s,:

p

.9 :
V,j, = -a—‘; + V. (25.18)

The law of the conservation of charge says that the outflow of current per unit
volume must equal the negative rate of increase of charge density. In other words,
that

. ap

Voj= — .

/ EY
Putting this into Eq. (25.18), the law of conservation of charge takes on the simple
form

Vo = 0. (25.19)

Since ¥, j, 15 an invanant scalar, 1f it is zero 1n one frame 1t is zero in all frames.
We have the result that if charge 1s conserved 1n one coordinate system, 1t 1s con-
served in all coordinate systems moving with uniform velocity.

As our last example we want to consider the scalar product of the gradient
operator V, with itself. In three dimensions, such a product gives the Laplacian
0 ? 9 9

Ve VY Eae Tt e

What do we get in four dimensions? That’s easy Following our rules for dot
products and gradients, we get

W = 55~ (‘ %)(“ %) - (‘ %)(' %) N (“ gz)(‘ %)

1
|
|
<

This operator, which 1s the analog of the three-dimensional Laplacian, 1s called
25-7



the D’Alembertian and has a special notation:

62
0° = V.V, = 37~ ve. (25.20)
From its definition 1t is an invariant scalar operator; if it operates on a four-vector
field. it produces a new four-vector field. (Some people define the D’Alembertian
with the opposite sign to Eq. (25.20), so you will have to be careful when reading
the Iiterature.)

We have now found four-dimensional equivalents of most of the three-
dimensional quantities we had listed in Table 25-1. (We do not yet have the
equivalents of the cross product and the curl operation; we won’t get to them until
the next chapter ) It may help you remember how they go if we put all the impor-
tant definitions and results together 1n one place, so we have made such a summary
in Table 25-2.

Table 25-2

The important quantities of vector analysis in three and four dimensions.

Vector

Scalar product A-

Vector operator

Gradient

Divergence v -

Laplacian and
D’Alembertian

Three dimensions Four dimensions
= (Az, Ayy A2) a, = (dyg, sz, ay, 4;) = (as, a)
= A.B, + A,B, + A,B, aby = aby — azbr — ab, — ab, = ab, — a-b
= (d,/9x,8/dy,d/0z) V, (0,91, — 9/dx, — 9,0y, — 9,9z) = (@/0t, — V)
_@»uwx) V_ég_aﬁ_ef_@_ésov)
ax 3y 8z “ = \ar ox —ay 9z)  \a ¥
0A, a4, 0A, da, Au day, O - da
= 2l Yy, Yz Vg = Aty 9%, G4y | Od: .
ax T oy T e M= T Ty T e T TV ‘
52 52 92 9? 2 92 92 Pe ) )
S A T A T 2 v/ A =
dx2 + dy? + dz2 VaVa a2 dx2 a2 0z2 ar2 v =

25-4 FElectrodynamics in four-dimensional notation

We have already encountered the D Alembertian operatot, without giving 1t
that name, in Section 18-6. the differential equations we found there for the po-
tentials can be written 1n the new notations as:

0% =2, pnu="7. (25.21)
€o €o

The four quantiues on the right-hand side of the two equations 1n (25.21) are
0. Jus Jus Jo» divided by €,, which 1s a universal constant which will be the sane
in all coordinate systems if the same unit of charge is used 1n all frames. So the four
quantities p/€g, /./€o, J,/ €0, Jo/ €0 also transform as a four-vector We can write
them as j,/e, The D’Alembertian doesn’t change when the coordinate system
1s changed, so the quantities ¢, A,, A, A. must also transform like a four-vector—
which means that they are the components of a four-vector. In short.

AH = (d)s A)

1s a four-vector. What we call the scalar and vector potentials are really different
aspects of the same physical thing. They belong together And 1f they are kept
together the relativistic invariance of the world 1s obvious  We call 4, the four-
potential

25-8



In the four-vector notation Egs. (25.21) become simply
024, = &, (25.22)

The physics of this equation is just the same as Maxwell’s equations. But there is
some pleasure in being able to rewrite them in an elegant form. The pretty form
is also meaningful, it shows directly the invariance of electrodynamics under the
Lorentz transformation.

Remember that Eqs (25.21) could be deduced from Maxwell’s equations only
if we imposed the gauge condition

f"% + V-4 =0, (25.23)

which just says V,4, = 0; the gauge condition says that the divergence of the
four-vector A, 1s zero. This condition is called the Lorentz condition. 1t 18 very
convenient because 1t 1s an invartant condition and therefore Maxwell’s equations
stay in the form of Eq. (25.22) for all frames.

25-5 The four-potential of a moving charge

Although it is implicit in what we have already said, let us write down the
transformation laws which give ¢ and A in a moving system in terms of ¢ and A
in a stationary system. Since 4, = (¢, A) is a four-vector, the equations niust
look just like Eqgs. (25.1), except that ¢ 1s replaced by ¢, and x is replaced by 4
Thus,

¢ — Z)AJ:
¢ =L g -4,
R ¥ v
_ (25.24)
A, = Az vy
V16— 2

This assumes that the primed coordinate system is moving with speed v in the
positive x-direction. as measured in the unprimed coordinate system.

We will consider one example of the usefulness of the idea of the four-potential
What are the vector and scalar potentials of a charge ¢ moving with speed v along
the x-axis? The problem 1s easy in a coordinate system moving with the charge,
since in this system the charge is standing still. Let’s say that the charge is at the
origin of the S’-frame, as shown tn Fig. 25-2. The scalar potential in the moving
system is then given by

=4, 25.2
¢ 4reor’ (25.25)
¥ being the distance from ¢ to the field point, as measured 1n the moving system
The vector potential 4’ 1s, of course, zero.
Now it 1s straightforward to find ¢ and A, the potentials as measured in the
stationary coordinates. The inverse relations to Egs. (25 24) are

_ ¢+ vAL T
¢—\/———1_02, A, = A,
(25.26)
I3 !
Ax = —14_{_—{___2__’ Az = Alz-
V1 — 02
Using the ¢" given by Eq. (25.25), and 4" = 0, we get
q 1
e
€ '\ — v2
q 1

T dweg VT — 2Vx2 4 y2 4 2’2'

25-9

Fig. 25-2. The frame S’ moves with
velocity v (in the x-direction) with respect
to S. A charge at rest at the origin of S’
is at x = vtin S. The potentials at P can
be computed in either frame.



This gives us the scalar potential ¢ we would see in S. but, unfortunately, expressed
in terms of the S” coordinates. We can get things in terms of 1, x, y, z by substituting
for ¢, x', y’, and Z’, using (25.1). We get

1 1
= P\l = VT = P+ 2

¢ (25.27)

=1
47]'6() \/1

Following the same procedure for the components of 4. you can show that
A = vé. (25.28)

These are the same formulas we derived by a different method in Chapter 21.

25-6 The invariance of the equations of electrodynamics

We have found that the potentials ¢ and A taken together form a four-vector
which we call 4,, and that the wave equations—the full equations which determine
the A, in terms of the j,—can be written as in Eq. (25 22). This equation, together
with the conservation of charge, Eq. (25 19), gives us the fundamental law of the
electromagnetic field:

0%4, = zlg Jus  Vuju = 0. (25.29)
There, in one tiny space on the page, are all of the Maxwell equations—beautiful
and simple. Did we learn anything from writing the equations this way, besides
that they are beautiful and simple? In the first place, 1s 1t anything different from
what we had before when we wrote everything out in all the various components?
Can we from this equation deduce something that could not be deduced from the
wave equations for the potentials in terms of the charges and currents? The answer
is definitely no. The only thing we have been doing is changing the names of things
—using a new notation. We have written a square symbol to represent the de-
rivatives, but it still means nothing more nor less than the second derivative with
respect to ¢, minus the second derivative with respect to x, minus the second
derivative with respect to y, minus the second derivative with respect to z. And the
1« means that we have four equations, one each for u = 1, x, y, or z. What then 1s
the significance of the fact that the equations can be written in this simple form?
From the point of view of deducing anything directly, it doesn’t mean anything.
Perhaps, though, the simplicity of the equations means that nature also has a
certain stmplicity.

Let us show you something interesting that we have recently discovered: A/
of the laws of physics can be contained in one equation. That equation is

U=o. (25.30)

What a simple equation! Of course, it is necessary to know what the symbol
means. U is a physical quantity which we will call the “unworldliness” of the
situation. And we have a formula for it. Here is how you calculate the unworld-
liness. You take all of the known physical laws and write them 1n a special form.
For example, suppose you take the law of mechanics, F = ma, and rewrite it as
F — ma = 0 Then you can call (F — ma)—which should, of course, be zero—
the **musmatch,” of mechanics. Next, you take the square of this mismatch and
call it U, which can be called the “unworldliness of mechanical effects.”” In other

words, you take
U, = (F — ma)> (25.31)

Now you write another physical law, say, V- E = p/e, and define

2
U4=<VE——£—>3
€o

which you might call “the gaussian unworldliness of electricity.’
to write U3, Uy, and so on—one for every physical law there is
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Finally you call the roral unworldliness U of the world the sum of the various
unworldinesses U, from all the subphenomena that are involved; that is, U =
2-U, Then the great “law of nature” is

u=o (25 32)

This “law” means, of course, that the sum of the squares of all the individual
mismatches is zero, and the only way the sum of a lot of squares can be zero 1s for
each one of the terms to be zero

So the “beautifully simple” law in Eq. (25.32) is equivalent to the whole series
of equations that you originally wrote down It is therefore absolutely obvious
that a simple notation that just hides the complexity in the definitions of symbols
is not real simplicity. It is just a trick. The beauty that appears in Eq. (25 32)—
just from the fact that several equations are hidden within it—is no more than a
trick. When you unwrap the whole thing, you get back where you were before

However, there /v more to the simplicity of the laws of electromagnetism
written in the form of Eq. (25.29). It means more, just as a theory of vector
analysis means more. The fact that the electromagnetic equations can be written
in a very particular notation which was designed for the four-dimensional geometry
of the Lorentz transformations—in other words, as a vector equation in the four-
space—means that it is invariant under the Lorentz transformations. It 1s because
the Maxwell equations are invariant under those transformations that they can
be written in a beautiful form.

It is no accident that the equations of electrodynamics can be written in the
beautifully elegant form of Eq. (2529). The theory of relativity was developed
because 1t was found experunentally that the phenomena predicted by Maxwell’s
equations were the same in all inertial systems. And 1t was precisely by studying
the transformation properties of Maxwell’s equations that Lorentz discovered
his transformation as the one which left the equations invariant.

There 1s, however, another reason for writing our equations this way. It has
been discovered—after Einstein guessed that it might be so— that a// of the laws
of physics are invariant under the Lorentz transformation. That 1s the principle
of relativity. Therefore, if we invent a notation which shows immediately when a
law is written down whether 1t 1s invariant or not, we can be sure that in trymng
to make new theories we will write only equations which are consistent with the
principle of relativity.

The fact that the Maxwell equations are simple in this particular notation 1s
not a miracle, because the notation was invented with them 1n mind. But the
mteresting physical thing is that every law of physics—the propagation of meson
waves or the behavior of neutrinos in beta decay, and so forth—must have this
same vartance under the same transformation Then when you are moving at a
uniform velocity in a spaceship, all of the laws of nature transform together in
such a way that no new phenomenon will show up. It is because the principle of
relativity is a fact of nature that in the notation of four-dimensional vectors the
equations of the world will look simple.
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