24

Waveguides

24-1 The transmission line

In the last chapter we studied what happened to the lumped elements of circuits
when they were operated at very high frequencies, and we were led to see that a
resonant circuit could be replaced by a cavity with the fields resonating inside.
Another mteresting technical problem is the connection of one object to another,
so that electromagnetic energy can be transmitted between them. In low-frequency
circuits the connection 1s made with wires, but this method doesn’t work very well
at high frequencies because the circurts would radiate energy into all the space
around them, and 1t 1s hard to control where the energy will go. The fields spread
out around the wires; the currents and voltages are not “guided™ very well by
the wires. In this chapter we want to look mnto the ways that objects can be
interconnected at high frequencies At least, that’s one way of presenting our
subject.

Another way is to say that we have been discussing the behavior of waves in
free space. Now 1t 1s time to see what happens when oscillating fields are confined
in one or more dimensions. We will discover the interesting new phenomenon
when the fields are confined in only two dimensions and allowed to go free in the
third dimension, they propagate in waves. These are “guided waves”—the subject
of this chapter.

We begin by working out the general theory of the transmission line. The
ordinary power transmission line that runs from tower to tower over the country-
side radiates away some of 1ts power. but the power frequencies (50-60 cycles/sec)
are so low that this loss 1s not serious. The radiation could be stopped by surround-
g the line with a metal pipe, but this method would not be practical for power
Iines because the voltages and currents used would require a very large, expensive,
and heavy pipe. So simple “open lines™ are used.

For somewhat higher frequencies—say a few kilocycles—radiation can al-
ready be serious However, it can be reduced by using “twisted-pair” transmisston
lines, as 1s done for short-run telephone connections. At higher frequencies, how-
ever, the radiation soon becomes intolerable, either because of power losses or
because the energy appears 1n other circurts where it 1sn’t wanted For frequencies
from a few kilocycles to some hundreds of megacycles, electromagnetic signals
and power are usually transmitted via coaxial lines consisting of a wire inside a
cylindrical *“‘outer conductor” or “shield ™ Although the following treatment will
apply to a transmussion line of two parallel conductors of any shape, we will carry
it out referring to a coaxial line.

We take the simplest coaxial line that has a central conductor, which we sup-
pose 1s a thin hollow cylinder, and an outer conductor which 1s another thin
cylinder on the same axis as the inner conductor, as in Fig. 24-1 We begin by
figuring out approximately how the line behaves at relatively low frequencies
We have already described some of the low-frequency behavior when we said
earlier that two such conductors had a certain amount of inductance per umt
length or a certain capacity per unit length. We can, in fact, describe the low-
frequency behavior of any transmission line by giving its inductance per unit
length, L, and its capacity per unit length, Co,. Then we can analyze the line as
the limiting case of the L-C filter as discussed in Section 22-6. We can make a
filter which imitates the Iine by taking small series elements L, Ax and small
shunt capacities Cy Ax, where Ax 1s an element of length of the line. Using our
results for the infinite filter. we see that there would be a propagation of electric
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of a transmission line.

signals along the line. Rather than following that approach, however, we would
now rather look at the line from the point of view of a differential equation.

Suppose that we see what happens at two neighboring points along the
transmission line, say at the distances x and x + Ax from the beginning of the
Iine. Let’s call the voltage difference between the two conductors V(x), and the
current along the “hot” conductor I(x) (see Fig. 24-2). If the current in the line
is varying, the inductance will give us a voltage drop across the small section of
line from x to x 4+ Ax in the amount

AV = V(x + ax) — V(x) = ——LOAx%g-
Or, taking the limit as Ax — 0, we get
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The changing current gives a gradient of the voltage.

Referring again to the figure, 1f the voltage at x is changing, there must be
some charge supplied to the capacity in that region. If we take the small piece of
line between x and x + Ax, the charge on it is ¢ = Cy AxV. The time rate-of-
change of this charge is Cy Ax dV/d1, but the charge changes only if the current
[(x) into the element is different from the current I(x + Ax) out. Calling the differ-
ence Al, we have

av
Al = —CO Ax —‘E ‘
Taking the limit as Ax — 0, we get
af 1%
= —C, 5 (24.2)

So the conservation of charge implies that the gradient of the current is propor-
tional to the time rate-of-change of the voltage.

Equations (24.1) and (24.2) are then the basic equations of a transmission
line. If we wish, we could modify them to include the effects of resistance in the
conductors or of leakage of charge through the insulation between the conductors,
but for our present discussion we will just stay with the simple example.

The two transmission line equations can be combined by differentiating one
with respect to ¢ and the other with respect to x and ehiminating either V or 1.
Then we have either

v oy

= C0L0—6t2 (24.3)
or

a%r 921

axz = Colo g (24.4)

Once more we recognize the wave equation in x. For a uniform transmission
line, the voltage (and current) propagates along the line as a wave. The voltage
along the line must be of the form V(x, 1) = f(x — ) or V(x, 1) = g(x + »0),
or a sum of both. Now what is the velocity +? We know that the coeflicient of
the 82/0t% term is just 1/02, so

1
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We will leave 1t for you to show that the voltage for each wave in a line is
proportional to the current of that wave and that the constant of proportionality
is just the characteristic impedance z,. Calling ¥V and 7, the voltage and current
for a wave going in the plus x-direction, you should get

(24.5)

v

V+ = Z()I+. (24'6)
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Similary, for the wave going toward minus x the relation is
V_ = —'201_.

The characteristic impedance—as we found out from our filter equations—is

given by
}L
Zg = F(()) ’ (247)

and is, therefore, a pure resistance.

To find the propagation speed v and the characteristic impedance zy of a
transmission Iine, we have to know the inductance and capacity per unit length.
We can calculate them easily for a coaxial cable, so we will see how that goes. For
the inductance we follow the ideas of Section 17-8, and set 3L1* equal to the mag-
netic energy which we get by integrating e,c?B?/2 over the volume. Suppose
that the central conductor carries the current I; then we know that B = [I/2weqc?r.
where r is the distance from the axis. Taking as a volume element a cylindrical
shell of thickness dr and of length /, we have for the magnetic energy

€oc” /b / 2
U= = . (_—271'606‘2") [27r dr,

where a and b are the radii of the inner and outer conductors, respectively. Carry-
ing out the integral, we get

I’ b
T Gmeocz o (248)
Setting the energy equal to 1LI% we find
! n b, (24.9)

= —
2mepc? T a

It 1s. as it should be, proportional to the length [ of the line, so the inductance per
unit length L is

_ In@®/a)
Lo= Soc (24.10)

We have worked out the charge on a cylindrical condenser (see Section 12-2)
Now, dividing the charge by the potential difference, we get

_ 2megl )
C=n b/a)

The capacity per umt length Cy is C//. Combining this result with Eq. (24.10),
we see that the product L,C, is just equal to 1/c? so v = 1/4/LyC, is equal
to c. The wave travels down the line with the speed of light. We point out that this
result depends on our assumptions: (a) that there are no dielectrics or magnetic
materials in the space between the conductors, and (b) that the currents are all on
the surfaces of the conductors (as they would be for perfect conductors). We will
see later that for good conductors at high frequencies, all currents distribute
themselves on the surfaces as they would for a perfect conductor, so this assump-
tion is then valid.

Now it is interesting that so long as assumptions (a) and (b) are correct, the
product L,Cy is equal to 1/c? for any parallel pair of conductors—even, say, for a
hexagonal inner conductor anywhere inside an elliptical outer conductor. So long
as the cross section 1s constant and the space between has no material, waves are
propagated at the velocity of light.

No such general statement can be made about the characteristic impedance.
For the coaxial line, it is

2y = In(b/a) (24.11)

2mege
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Fig. 24-3. Coordinates chosen for
the rectangular waveguide.
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Fig. 24-4. The electric field in the
waveguide at some value of z.
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Fig. 24-5. The z-dependence of the
field in the waveguide.

The factor 1/eqc has the dimensions of a resistance and is equal to 1207 ohms.
The geometric factor In (b/a) depends only logarithmically on the dimensions, so
for the coaxial line—and most lines—the characteristic impedance has typical
values of from 50 ohms or so to a few hundred ohms.

24-2 The rectangular waveguide

The next thing we want to talk about seems, at first sight, to be a striking
phenomenon: if the central conductor is removed from the coaxial line, it can still
carry electromagnetic power. In other words, at high enough frequencies a hollow
tube will work just as well as one with wires. It is related to the mysterious way 1n
which a resonant circuit of a condenser and inductance gets replaced by nothing
but a can at high frequencies.

Although 1t may seem to be a remarkable thing when one has been thinking
in terms of a transmission line as a distributed inductance and capacity, we all
know that electromagnetic waves can travel along inside a hollow metal pipe.
If the pipe is straight, we can see through it! So certainly electromagnetic waves
go through a pipe. But we also know that it is not possible to transmit low-fre-
quency waves (power or telephone) through the inside of a single metal pipe. So
it must be that electromagnetic waves will go through if their wavelength is short
enough. Therefore we want to discuss the limiting case of the longest wavelength
(or the lowest frequency) that can get through a pipe of a given size. Since the
pipe is then being used to carry waves, it is called a waveguide.

We will begin with a rectangular pipe, because 1t is the simplest case to
analyze. We will first give a mathematical treatment and come back later to look
at the problem in a much more elementary way. The more elementary approach.
however, can be applied easily only to a rectangular guide. The basic phenomena
are the same for a general guide of arbitrary shape, so the mathematical argument
is fundamentally more sound.

Our problem, then, is to find what kind of waves can exist inside a rectangular
pipe. Let’s first choose some convenient coordinates; we take the z-axis along the
length of the pipe, and the x- and y-axes parallel to the two sides, as shown 1n
Fig. 24-3.

We know that when light waves go down the pipe, they have a transverse
electric field; so suppose we look first for solutions in which E is perpendicular to
z, say with only a y-component, E,. This electric field will have some variation
across the guide; in fact, it must go to zero at the sides parallel to the y-axis, because
the currents and charges 1n a conductor always adjust themselves so that there is
no tangential component of the electric field at the surface of a conductor. So
E, will vary with x in some arch, as shown 1n Fig. 24—4. Perhaps it 1s the Bessel
function we found for a cavity? No, because the Bessel function has to do with
cylindrical geometries. For a rectangular geometry, waves are usually simple
harmonic functions, so we should try something like sin k.x.

Since we want waves that propagate down the guide, we expect the field to
alternate between positive and negative values as we go along in z, as i Fig. 24-5,
and these oscillations will travel along the guide with some velocity ». If we have
oscillations at some definite frequency w, we would guess that the wave might vary
with z like cos(wt — k,z), or to use the more convenient mathematical form,
like e'“t*%:)  This z-dependence represents a wave travelling with the speed
v = w/k, (see Chapter 29, Vol. I).

So we might guess that the wave in the guide would have the following
mathematical form:

E, = Eqsin k,xe"“! =) (24.12)

Let’s see whether this guess satisfies the correct field equations. First, the
electric field should have no tangential components at the conductors. Our field
satisfies this requirement; it 1s perpendicular to the top and bottom faces and is
zero at the two side faces. Well, it is if we choose k, so that one-half a cycle of
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sin k.x just fits in the width of the guide—that 1s, if

ka = (2413)
There are other possibilities, like k.a = 2, 3w, ..., or, in general,
k.a = nm, 24 14)

where # is any integer. These represent various comphcated arrangements of the
field, but for now let’s take only the simplest one, where k, = w/a, where a is
the width of the inside of the guide.

Next, the divergence of E must be zero in the free space wnside the guide,
since there are no charges there. Our E has only a y-component, and 1t doesn’t
change with y, so we do have that V- E = 0.

Finally, our electric field must agree with the rest of Maxwell’s equations in
the free space inside the guide. That 1s the same thing as saying that it must
satisfy the wave equation

o°E,
ax?

0’E, n °E, 1 0°E, _

+ 50t e @ e = O (24.15)

We have to see whether our guess, Eq. (24.12), will work. The second derivative of
E, with respect to x 1s just —k3E, The second derivative with respect to y 1s
zero. since nothing depends on v. The second derivative with respect to z 15 —k2E,
and the second derivative with respect to ¢ is —w”E,. Equation (24.15) then says

that
2 2 w?
kxEy + szy —_ 0—2 Ey = 0.
Unless E,, is zero everywhere (which is not very interesting), this equation is correct
if
w?
o2

k2 4+ k2 — = = 0. (24.16)
We have already fixed k., so this equation tells us that there can be waves of the
type we have assumed if k, is related to the frequency w so that Eq. (24 16) 1s
satisfied—in other words, if

k. = V(w?/c?) — (72/a?). (24.17)

The waves we have described are propagated in the z-direction with this value of k.
The wave number k, we get from Eq. (24.17) tells us, for a given frequency w,
the speed with which the nodes of the wave propagate down the guide. The
phase velocity is
w
V= (24.18)
You will remember that the wavelength A of a travelling wave 1s given by
A = 2mv/w, so k, 18 also equal to 2m/\,, where A, is the wavelength of the oscilla-
uons along the z-direction—the **guide wavelength.”” The wavelength in the guide
1s different ,of course, from the free-space wavelength of electromagnetic waves
of the same frequency. If we call the free-space wavelength X, which 1s equal to
27c/w, we can write Eq. (24.17) as

- M
V1 — (Ap/2a)?

Besides the electric fields there are magnetic fields that will travel with the
wave, but we will not bother to work out an expression for them right now. Since
¢®v X B = QE/dt, the lines of B will circulate around the regions in which
dE/dr 1s largest, that 1s, halfway between the maximum and minimum of E. The
loops of B will lie parallel to the xz-plane and between the crests and troughs of
E, as shown in Fig. 24-6.

(24.19)
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24-3 The cutoff frequency

In solving Eq. (24.16) for k,, there should really be two roots—one plus and
one minus. We should write

k, = =+/(02/c?) — (72/a?). (24.20)

The two signs simply mean that there can be waves which propagate with a nega-
tive phase velocity (toward —z), as well as waves which propagate in the positive
direction in the guide. Naturally, it should be possible for waves to go in either
direction. Since both types of waves can be present at the same time, there will be
the possibility of standing-wave solutions.

Our equation for k, also tells us that higher frequencies give larger values of
k., and therefore smaller wavelengths, until in the Iimit of large w, & becomes
equal to w/c, which is the value we would expect for waves in free space. The
light we “see” through a pipe still travels at the speed ¢. But now notice that if we
go toward low frequencies, something strange happens. At first the wavelength
gets longer and longer, but 1if @ gets too small the quantity inside the square root
of Eq. (24.20) suddenly becomes negative. This will happen as soon as w gets to
be less than mc/a—or when Ao becomes greater than 2a. In other words, when
the frequency gets smaller than a certain critical frequency w. = wc/a, the wave
number k, (and also A\,) becomes imaginary and we haven’t got a solution any
more. Or do we? Who said that k, has to be real? What if 1t does come out
imaginary? Our field equations are still satisfied. Perhaps an imaginary k. also
represents a wave.

Suppose w 15 less than w.; then we can write

k., = =ik’, (24.21)

where k' is a positive real number:
k' = V(@2/a2) — (w2/c2). (24.22)

If we now go back to our expression, Eq. (24.12), for E,, we have

E, = Ejsin kyxe' @ ¥ (24.23)
which we can write as
E, = Eqsin kyxe™ ?e™". (24.24)

This expression gives an E-field that oscillates with time as ¢! but which
varies with z as e**'#, It decreases or increases with z smoothly as a real exponent-
ial In our derivation we didn’t worry about the sources that started the waves,
but there must, of course, be a source someplace in the guide. The sign that goes
with k" must be the one that makes the field decrease with increasing distance
from the source of the waves.

So for frequencies below w, = wc/a, waves do not propagate down the guide;
the oscillating fields penetrate into the guide only a distance of the order of 1/k’.
For this reason, the frequency w,. 1s called the “cutoff frequency” of the guide.
Looking at Eq. (24 22), we see that for frequencies just a little below w,., the num-
ber &’ 1s small and the fields can penetrate a long distance into the guide. But if
w 1s much less than w,, the exponential coefficient k” 1s equal to 7/a and the field
dies off extremely rapidly, as shown n Fig. 24-7. The field decreases by 1/e in the
distance a/w, or in only about one-third of the guide width. The fields penetrate
very little distance from the source.

We want to emphasize an interesting feature of our analysis of the guided
waves—the appearance of the imaginary wave number &,. Normally, if we solve
an equation in physics and get an imaginary number, 1t doesn’t mean anything
physical. For waves, however, an imaginary wave number does mean something.
The wave equation is still satisfied; it only means that the solution gives expo-
nentially decreasing fields instead of propagating waves. So in any wave problem
where k becomes imaginary for some frequency, it means that the form of the wave
changes—the sine wave changes into an exponential.
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24-4 The speed of the guided waves

The wave velocity we have used above is the phase velocity, which 1s the speed
of a node of the wave; it is a function of frequency. If we combine Egs. (24.17)

and (24.18), we can write
c

VI = (el

For frequencies above cutoff—where travelling waves exist—w,/w is less than one,
and ¢phase is real and greater than the speed of light. We have already seen in
Chapter 48 of Vol. I that phase velocities greater than light are possible, because it
is just the nodes of the wave which are moving and not energy or information. In
order to know how fast signals will travel, we have to calculate the speed of pulses
or modulations made by the nterference of a wave of one frequency with one or
more waves of slightly different frequencies (see Chapter 48. Vol. 1). We have
called the speed of the envelope of such a group of waves the group velocity: it is
not w/k but dw/dk:

(24.25)

Uphase =

dw

Vgroup = (24.26)

Taking the derivative of Eq. (24.17) with respect to w and inverting to get dw/dk.

we find that
Vgroup = €V 1 — (we/w)?, (24.27)

which is less than the speed of light.
The geometric mean of vppage and vgroyp 18 just ¢, the speed of light:

Uphase Vgroup = €. (24.28)

This is curious, because we have seen a simular relation in quantum mechanics.

For a particle with any velocity—even relativistic—the momentum p and energy
U are related by

U? = p2c? + m2ct, (24.29)

But in quantum mechanics the energy 1s fiw. and the momentum is #/X, which is
equal to #ik; so Eq. (24.29) can be written

w2 2
=Kt

, (24.30)

or

k = V{@2/c?) — (m2ci/h?), (24.31)

which looks very much like Eq. (24.17) . . . Interesting!

The group velocity of the waves is also the speed at which energy 1s transported
along the guide. If we want to find the energy flow down the guide, we can get it
from the energy density times the group velocity. If the root mean square electric
field is E,, then the average density of electric energy is eoEa/2. There is also
some energy associated with the magnetic field. We will not prove it here, but 1n
any cavity or guide the magnetic and electric energies are equal, so the total
electromagnetic energy density is €,Es. The power dU/dt transmitted by the guide
is then

du

- = €0EZabugroup. (24.32)

(We will see later another, more general way of getting the energy flow.)

24-5 Observing guided waves

Energy can be coupled into a waveguide by some kind of an “antenna.” For
example, a little vertical wire or “‘stub” will do. The presence of the guided waves
can be observed by picking up some of the electromagnetic energy with a little
receiving “antenna,” which again can be a little stub of wire or a small loop.
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Fig. 24-8. A waveguide with a driv-

ing stub and a pickup probe.
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In Fig. 24-8, we show a guide with some cutaways to show a driving stub and a
pickup “probe”. The driving stub can be connected to a signal generator via a
coaxial cable, and the pickup probe can be connected by a similar cable to a
detector. It is usually convenient to nsert the pickup probe via a long thin slot
in the guide, as shown in Fig. 24-8. Then the probe can be moved back and forth
along the guide to sample the fields at various positions.

If the signal generator is set at some frequency w greater than the cutoff
frequency w,, there will be waves propagated down the guide from the driving
stub. These will be the only waves present 1f the guide 1s infinitely long, which
can effectively be arranged by terminating the guide with a carefully designed
absorber 1n such a way that there are no reflections from the far end. Then, since
the detector measures the time average of the ficlds near the probe, it will pick
up a signal which 1s independent of the position along the guide; 1ts output will
be proportional to the power being transmitted.

If now the far end of the guide is finished off in some way that produces a
reflected wave—as an extreme example, if we closed 1t off with a metal plate—there
will be a reflected wave in addition to the original forward wave. These two waves
will interfere and produce a standing wave 1 the guide sinular to the standing
waves on a string which we discussed in Chapter 49 of Vol. I. Then, as the pickup
probe 1s moved along the line, the detector reading will rise and fall periodically.
showing a maximum in the fields at each loop of the standing wave and a nunimum
at each node The distance between two successive nodes (or loops) 1s just A,/2.
This gives a convenient way of measuring the guide wavelength. If the frequency
1s now moved closer to w,, the distances between nodes increase. showing that the
guide wavelength increases as predicted by Eq. (24.19).

Suppose now the signal generator 1s set at a frequency just a little below w,
Then the detector output will decrease gradually as the pickup probe 1s moved
down the guide If the frequency is set somewhat lower, the field strength will
fall rapidly, following the curve of Fig. 24-7. and showing that waves are not
propagated.

24-6 Waveguide plumbing

An 1mportant practical use of waveguides is for the transmission of high-
frequency power, as, for example, in couplng the high-frequency oscillator or
output amplifier of a radar set to an antenna. In fact, the antenna itself usually
consists of a parabolic reflector fed at its focus by a wavegwide flared out at the
end to make a “horn” that radiates the waves coming along the guide. Although
high frequencies can be transmitted along a coaxial cable, a waveguide is better
for transmitting large amounts of power. First. the maximum power that can be
transmitted along a Iine 1s imited by the breakdown of the insulation (solid or gas)
between the conductors. For a given amount of power, the field strengths in a
guide are usually less than they are in a coaxial cable, so higher powers can be
transmitted before breakdown occurs. Second, the power losses in the coaxial cable
are usually greater than in a waveguide. In a coaxial cable there must be nsulating
material to support the central conductor, and there is an energy loss in this
material—particularly at high frequencies. Also, the current densities on the
central conductor are quite high, and since the losses go as the square of the current
density, the lower currents that appear on the walls of the guide result in lower
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Fig. 24-9. Sections of waveguide connected Fig. 24-10. A low-loss connection between
with flanges. two sections of waveguide.

energy losses. To keep these losses to a minimum, the inner surfaces of the guide
are often plated with a material of high conductivity, such as silver.

The problem of connecting a “circuit” with waveguides is quite different
from the corresponding circuit problem at low frequencies, and is usually called
microwave “plumbing.” Many special devices have been developed for the pur-
pose. For instance, two sections of waveguide are usually connected together by
means of flanges, as can be seen in Fig. 24-9. Such connections can, however,
cause serious energy losses, because the surface currents must flow across the joint
which may have a relatively high resistance. One way to avoid such losses is to
make the flanges as shown in the cross section drawn in Fig. 24-10. A small space
is left between the adjacent sections of the guide, and a groove is cut 1n the face of
one of the flanges to make a small cavity of the type shown in Fig. 23-16(c) The
dimensions are chosen so that this cavity is resonant at the frequency being used
This resonant cavity presents a high “impedance” to the currents, so relatively
little current flows across the metallic joints (at @ in Fig. 24-10). The high guide
currents simply charge and discharge the “capacity” of the gap (at b in the figure),
where there is little dissipation of energy.

Suppose you want to stop a waveguide in a way that won’t result in reflected
waves. Then you must put something at the end that imitates an infinite length of
guide. You need a “termination” which acts for the guide like the characteristic
impedance does for a transmission line—something that absorbs the arriving waves
without making reflections. Then the guide will act as though 1t went on forever
Such terminations are made by putting mside the guide some wedges of resistance
material carefully designed to absorb the wave energy while generating almost
no reflected waves.

If you want to connect three things together—for instance, one source to
two different antennas—then you can use a “T” like the one shown in Fig 24-11.
Power fed in at the center section of the “T"" will be split and go out the two side
arms (and there may also be some reflected waves). You can see qualitatively from
the sketches in Fig. 24-12 that the fields would spread out when they get to the
end of the input section and make electric fields that will start waves going out the
two arms. Depending on whether electric fields in the guide are parallel or per-
pendicular to the “top” of the “T,” the fields at the junction would be roughly
as shown in (a) or (b) of Fig. 24-12.

Finally, we would like to describe a device called an “unidirectional coupler,™
which is very useful for telling what is going on after you have connected a compli-
cated arrangement of waveguides. Suppose you want to know which way the
waves are going in a particular section of guide—you might be wondering, for
mstance, whether or not there is a strong reflected wave. The unidirectional
coupler takes out a small fraction of the power of a guide 1f there is a wave going
one way, but none 1If the wave 1s going the other way. By connecting the output
of the coupler to a detector, you can measure the “one-way” power in the guide
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Fig 24~13. A unidirectional coupler.
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Figure 24-13 is a drawing of a umdirectional coupler; a piece of waveguide
AB has another piece of waveguide CD soldered to it along one face. The guide
CD is curved away so that there is room for the connecting flanges. Before the
guides are soldered together, two (or more) holes have been drilled in each guide
(matching each other) so that some of the fields in the main guide 4B can be
coupled nto the secondary guide CD. Each of the holes acts like a little antenna
that produces a wave in the secondary guide. If there were only one hole, waves
would be sent in both directions and would be the same no matter which way the
wave was going in the primary guide. But when there are rwo holes with a separa-
tion space equal to one-quarter of the guide wavelength, they will make two sources
90° out of phase Do you remember that we considered in Chapter 29 of Vol 1 the
interference of the waves from two antennas spaced A/4 apart and excited 90°
out of phase in time? We found that the waves subtract in one direction and add
n the opposite direction The same thing will happen here. The wave produced
in the gurde CD will be going in the same direction as the wave in AB.

If the wave in the primary guide is travelling from A toward B, there will be
a wave at the output D of the secondary guide. If the wave n the primary guide
goes from B toward A, there will be a wave going toward the end C of the secondary
guirde. This end is equipped with a termination. so that this wave 1s absorbed and
there 1s no wave at the output of the coupler

24-7 Waveguide modes

The wave we have chosen to analyze 1s a special solution of the field equations.
There are many more. Each solution is called a waveguide “mode ”* For example,
our x-dependence of the field was just one-half a cycle of a sine wave. There 1s an
equally good solution with a full cycle, then the variation of E, with x 1s as shown
in Fig 24-14 The k, for such a mode is twice as large, so the cutoff frequency is
much higher. Also, in the wave we studied E has only a y-component, but there
are other modes with more complicated electric fields. 1f the electric field has
components only in x and y—so that the total electric field is always at 11ght
angles to the z-direction—the mode 1s called a “transverse electric” (or TE) mode.
The magnetic field of such modes will always have a z-component. It turns out
that 1f E has a component 1n the z-direction (along the direction of propagation),
then the magnetic field will always have only transverse components. So such
ficlds are called transverse magnetic (TM) modes. For a rectangular guide, all
the other modes have a higher cutoff frequency than the simple TE mode we have
described. It 1s, therefore, possible—and usual—to use a guide with a frequency
Just above the cutoff for this lowest mode but below the cutoff frequency for all
the others, so that just the one mode is propagated. Otherwise. the behavior gets
complicated and difficult to control.

24-8 Another way of looking at the guided waves

We want now to show you another way of understanding why a wavegude
attenuates the fields rapidly for frequencies below the cutoff frequency w,. Then
you will have a more “physical” idea of why the behavior changes so drastically
between low and high frequencies We can do this for the rectangular guide by
analyzing the fields n terms of reflections—or 1mages—in the walls of the guide.
The approach only works for rectangular guides, however, that’s why we started
with the more mathematical analysis which works, in principle, for guides of any
shape.

For the mode we have described. the vertical dimension (in p) had no effect,
so we can 1gnore the top and bottom of the guide and 1magine that the guide 1s
extended indefinitely in the vertical direction. We imagine then that the gude
Just consists of two vertical plates with the separation a.

Let’s say that the source of the fields is a vertical wire placed in the nuddle of
the guide, with the wire cairying a current that oscillates at the frequency w.
In the absence of the guide walls such a wire would radiate cylindrical waves
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Now we consider that the guide walls are perfect conductors. Then, just as in
electrostatics, the conditions at the surface will be correct if we add to the field of
the wire the field of one or more suitable image wires. The image idea works just
as well for electrodynamics as it does for electrostatics, provided, of course, that
we also include the retardations. We know that is true because we have often
seen a mirror producing an image of a light source. And a mirror is just a “perfect”
conductor for electromagnetic waves with optical frequencies.

Now let’s take a horizontal cross section, as shown in Fig. 24-15, where W,
and W, are the two guide walls and Sy is the source wire. We call the direction of
the current in the wire positive. Now if there were only one wall, say W, we could
remove 1t if we placed an image source (with opposite polarity) at the position
marked S;. But with both walls in place there will also be an image of Sy in the
wall W,, which we show as the image S5. This source, too, will have an 1image in
W, which we call S3. Now both S, and S3 will have images in W, at the positions
marked Sy and Sg, and so on. For our two plane conductors with the source
halfway between, the fields are the same as those produced by an infinite line of
sources, all separated by the distance a. (It is, in fact just what you would see if
you looked at a wire placed halfway between two parallel mirrors.) For the fields
to be zero at the walls, the polarity of the currents in the images must alternate
from one mmage to the next. In other words, they oscillate 180° out of phase.
The waveguide field is, then, just the superposition of the fields of such an infinite
set of line sources.

We know that if we are close to the sources, the field 1s very much like the
static fields. We considered in Section 7-5 the static field ot a grid of line sources
and found that it s like the field of a charged plate except for terms that decrease
exponentially with the distance from the grid. Here the average source strength
is zero, because the sign alternates from one source to the next. Any fields which
exist should fall off exponentially with distance. Close to the source, we see the
field mainly of the nearest source; at large distances, many sources contribute and
their average effect is zero. So now we see why the waveguide below cutoff fre-
quency gives an exponentially decreasing field. At low frequencies, in particular,
the static approximation is good, and it predicts a rapid attenuation of the fields
with distance.

Now we are faced with the opposite question: Why are waves propagated
at all? That is the mysterious part! The reason is that at high frequencies the
retardation of the fields can introduce additional changes in phase which can cause
the fields of the out-of-phase sources to add instead of cancelling. In fact, in
Chapter 29 of Vol. I we have already studied, just for this problem, the fields
generated by an array of antennas or by an optical grating. There we found that
when several radio antennas are suitably arranged, they can give an interference
pattern that has a strong signal in some direction but no signal in another.

Suppose we go back to Fig. 24-15 and look at the fields which arrive at a
large distance from the array of image sources. The fields will be strong only in
certain directions which depend on the frequency—only in those directions for
which the fields from all the sources add in phase. At a reasonable distance from
the sources the field propagates in these special directions as plane waves. We have
sketched such a wave in Fig. 24-16, where the solid lines represent the wave crests
and the dashed lines represent the troughs. The wave direction will be the one
for which the difference in the retardation for two neighboring sources to the crest
of a wave corresponds to one-half a period of oscillation. In other words, the
difference between 5 and r in the figure is one-half of the free-space wavelength:

A
The angle @ is then given by
. _ Mo
sin § = 3 (24.33)

There is, of course, another set of waves travelling downward at the symmetric
angle with respect to the array of sources. The complete waveguide field (not too
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Fig. 24-17. The waveguide field can
be viewed as the superposition of two
trains of plane waves.

close to the source) 1s the superposition of these two sets of waves, as shown mn
Fig. 24-17. The gctual fields are really ltke this, of course, only between the two
walls of the waveguide.

At points like 4 and C, the crests of the two wave patterns coincide, and the
field will have a maximum, at points Iike B, both waves have their peak negative
value, and the field has its minimum (largest negative) value. As time goes on
the field in the guide appears to be travelling along the guide with a wavelength
Xg. which is the distance from A4 to C. That distance is related to ¢ by

cos 6 = M. (24 34)
Ay

Using Eq. (24.33) for 6, we get that

No— Mo Mo ,
Tocost /T = (n/2a)?

which 1s just what we found 1n Eq (24 19)

Now we see why there is only wave propagation above the cutolff frequency
wy I the free-space wavelength 1s longer than 24, there 1s no angle where the waves
shown 1n Fig 24-16 can appear. The necessary constructive interference appears
suddenly when X drops below 2a, or when w goes above wy = w¢/d.

If the frequency 1s high enough, there can be two or more possible directions
in which the waves will appear. For our case, this will happen 1if Ay < %3¢ In
general, however, 1t could also happen when Ay < «. These addittonal waves
correspond to the higher guide modes we have mentioned.

It has also been made evident by our analysis why the phase velocity of the
gwded waves 1s greater than ¢ and why this velocity depends on w  As w1s changed,
the angle of the free waves of Fig. 24-16 changes, and therefore so does the velocity
along the guide.

Although we have described the guided wave as the superposition of the fields
of an infinite array of line sources, you can see that we would arrive at the same
result if we imagined two sets of free-space waves being continually reflected back
and forth between two perfect mirrors—remembering that a reflection means a
reversal of phase. These sets of reflecting waves would all cancel each other unless
they were going at just the angle 6 given in Eq. (24 33) There are many ways of
looking at the same thing,.

(24.35)
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