20

Solutions of Maxwell’s Equations in
Free Space

20-1 Waves in free space; plane waves

In Chapter 18 we had reached the point where we had the Maxwell equations
in complete form. All there 1s to know about the classical theory of the electric
and magnetic fields can be found in the four equations:
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When we put all these equations together, a remarkable new phenomenon occurs:
fields generated by moving charges can leave the sources and travel alone through
space. We considered a special example in which an infinite current sheet is
suddenly turned on. After the current has been on for the time z, there are uniform
electric and magnetic fields extending out the distance cf from the source. Suppose
that the current sheet lies in the yz-plane with a surface current density J going
toward positive p. The electric field will have only a y-component, and the mag-
netic field, only a z-component. The magnitude of the field components is given by
E = cB, = — =, (20.2)
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for positive values of x less than ¢z. For larger x the fields are zero. There are,
of course, similar fields extending the same distance from the current sheet mn the
negative x-direction. In Fig. 20-1 we show a graph of the magnmitude of the fields
as a function of x at the instant t. As time goes on, the “wavefront” at ¢t moves
outward 1n x at the constant velocity c.

Now consider the following sequence of events. We turn on a current of unit
strength for a while, then suddenly increase the current strength to three units,
and hold 1t constant at this value. What do the fields look like then? We can see
what the fields will look lIike in the following way. First, we imagine a current of
unit strength that is turned on at t = 0 and left constant forever. The fields for
positive x are then given by the graph in part (a) of Fig. 20-2. Next, we ask what
would happen if we turn on a steady current of two units at the time #;.

The fields in this case will be twice as high as before, but will extend out in
x only the distance ¢(t — t,), as shown in part (b) of the figure. When we add
these two solutions, using the principle of superposition, we find that the sum of
the two sources is a current of one unit for the time from zero to ¢; and a current
of three units for times greater than 7;. At the time ¢ the fields will vary with x
as shown in part (c) of Fig. 20-2.

Now let’s take a more complicated problem. Consider a current which is
turned on to one unit for a while, then turned up to three units, and later turned
off to zero. What are the fields for such a current? We can find the solution 1n
the same way—by adding the solutions of three separate problems. First, we find
the fields for a step current of unit strength. (We have solved that problem already.)
Next, we find the fields produced by a step current of two units. Finally, we solve
for the fields of a step current of minus three units. When we add the three solutions,
we will have a current which 1s one unit strong from ¢+ = 0 to some later time,
say ¢, then three units strong until a still later time 75, and then turned off—that
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Fig. 20-1. The electric and mag-
netic field as a function of x at the time #
after the current sheet is turned on.
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Fig. 20-2. The electric field of a
current sheet. {(a) One unit of current
turned on at t = 0; (b) Two units of
current turned on at t = t;; (c) Super-
position of {a) and (b).
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Fig. 20-3. If the current source strength varies as shown in (a), then at the
time + shown by the arrow the electric field as a function of x is as shown in {b).

1s, to zero. A graph of the current as a function of time is shown in Fig. 20-3(a).
When we add the three solutions for the electric field, we find that its variation
with x, at a given instant ¢, is as shown in Fig. 20-3(b). The field is an exact
representation of the current. The field distribution in space is a nice graph of
the current variation with time—only drawn backwards. As time goes on the whole
picture moves outward at the speed c, so there is a little blob of field, travelling
toward positive x, which contains a completely detailed memory of the history of
all the current variations. If we were to stand miles away, we could tell from the
variation of the electric or magnetic field exactly how the current had varied
at the source.

You will also notice that long after all activity at the source has completely
stopped and all charges and currents are zero, the block of field continues to travel
through space. We have a distribution of electric and magnetic fields that exist
independently of any charges or currents. That is the new effect that comes from
the complete set of Maxwell’s equations. If we want, we can give a complete
mathematical representation of the analysis we have just done by writing that the
electric field at a given place and a given time is proportional to the current at the
source, only not at the same time, but at the earlier time 1 — x/c. We can write

J(t — x/c).

Jeuc (20.3)
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We have, believe it or not, already derived this same equation from another
point of view in Vol. I, when we were dealing with the theory of the index of re-
fraction. Then, we had to figure out what fields were produced by a thin layer of
oscillating dipoles in a sheet of dielectric material with the dipoles set in motion
by the electric field of an incoming electromagnetic wave. Our problem was to
calculate the combined fields of the original wave and the waves radiated by the
oscillating dipoles. How could we have calculated the fields generated by moving
charges when we didn’t have Maxwell’s equations? At that time we took as our
starting point (without any derivation) a formula for the radiation fields produced
at large distances from an accelerating point charge. If you will look in Chapter
31 of Vol. I, you will see that Eq. (31.10) there is just the same as the Eq. (20.3)
that we have just written down. Although our earlier derivation was correct only
at large distances from the source, we see now that the same result continues to
be correct even right up to the source.

We want now to look in a general way at the behavior of electric and magnetic
fields in empty space far away from the sources, i.e., from the currents and charges.
Very near the sources—near enough so that during the delay in transmission, the
source has not had time to change much—the fields are very much the same as we
have found in what we called the electrostatic or magnetostatic cases. If we go out
to distances large enough so that the delays become important, however, the
nature of the fields can be radically different from the solutions we have found.
In a sense, the fields begin to take on a character of their own when they have
gone a long way from all the sources. So we can begin by discussing the behavior
of the fields in a region where there are no currents or charges.
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Suppose we ask: What kind of fields can there be in regions where p and j are
both zero? In Chapter 18 we saw that the physics of Maxwell’s equations
could also be expressed in terms of differential equations for the scalar and vector
potentials:

2 L _ _p
v = e (20.4)
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If p and j are zero, these equations take on the simpler form
1 9%
vip — =2 =
= 3 0, (20.6)
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Thus in free space the scalar potential ¢ and each component of the vector potential
A all satisfy the same mathematical equation. Suppose we let ¢ (psi) stand for
any one of the four quantities ¢, 4., 4, A.; then we want to investigate the general
solutions of the following equation:
2, _ L%
VY e = 0. (20.8)
This equation is called the three-dimensional wave equation—three-dimensional,
because the function ¢ may depend in general on x, y, and z, and we need to worry
about variations in all three coordinates. This is made clear if we write out ex-
plicitly the three terms of the Laplacian operator:
Py %y N 19N _
T T e e = O (209
In free space, the electric fields E and B also satisfy the wave equation. For
example, since B = V X A4, we can get a differential equation for B by taking
the curl of Eq. (20.7). Since the Laplacian is a scalar operator, the order of the
Laplacian and curl operations can be interchanged:

V X (V34) = V3(V X 4) = V°B.

Similarly, the order of the operations curl and 3/dt can be interchanged:

Using these results, we get the following differential equation for B:

g _ LOB _
V°B T 0. (20.10)
So each component of the magnetic field B satisfies the three-dimensional wave
equation. Similarly, using the fact that E = —V¢ — dA/dt, it follows that the
electric field E in free space also satisfies the three-dimensional wave equation:
g L TE_
V°E Bz = 0. (20.11)
All of our electromagnetic fields satisfy the same wave equation, Eq. (20.8).
We might well ask: What is the most general solution to this equation? However,
rather than tackling that difficult question right away, we will look first at what
can be said in general about those solutions in which nothing varies in y and z.
(Always do an easy case first so that you can see what is going to happen, and
then you can go to the more complicated cases.) Let’s suppose that the magnitudes
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of the fields depend only upon x—that there are no variations of the fields with
y and z. We are, of course, considering plane waves again. We should expect to
get results something like those 1n the previous section. In fact, we will find
precisely the same answers. You may ask: “Why do it all over again?”” It 1s im-
portant to do it again, first, because we did not show that the waves we found were
the most general solutions for plane waves, and second, because we found the fields
only from a very particular kind of current source. We would like to ask now:
What is the most general kind of one-dimensional wave there can be in free space?
We cannot find that by seeing what happens for this or that particular source, but
must work with greater generality. Also we are going to work this time with differ-
ential equations instead of with integral forms. Although we will get the same re-
sults, it is a way of practicing back and forth to show that it doesn’t make any
difference which way you go. You should know how to do things every which
way, because when you get a hard problem, you will often find that only one of
the various ways is tractable.

We could consider directly the solution of the wave equation for some elec-
tromagnetic quantity. Instead, we want to start right from the beginning with
Maxwell’s equations in free space so that you can see their close relationship to
the electromagnetic waves. So we start with the equations 1n (20.1), setting the
charges and currents equal to zero. They become

I. V-E=0
n vxE=-9
(20.12)
II. v-B=0
vy x g < O
IV. ¢°V X B = 37
We write the first equation out 1n components:
g o OE 0B, OE. _
v-FE = s + 5 + 5. = 0. (20.13)

We are assuming that there are no variations with y and z, so the last two terms are
zero. This equation then tells us that

aFE,

i 0. (20.14)

Its solution is that E,, the component of the electric field in the x-direction. 15 a
constant in space. If you look at 1V in (20.12), supposing no B-variation n y and
z either, you can see that E, 1s also constant in time. Such a field could be the
steady Dc field from some charged condenser plates a long distance away. We are
not interested now in such an uninteresting static field; we are at the moment
interested only in dynamically varying fields. For dynamic fields, E, = 0.

We have then the important result that for the propagation of plane waves
in any direction, the electric field must be at right angles to the direction of propaga-
tion. It can, of course, still vary in a complicated way with the coordinate x.

The transverse E-field can always be resolved into two components, say the
y-component and the z-component. So let’s first work out a case in which the elec-
tric field has only one transverse component. We’ll take first an electric field that
1s always mn the y-direction, with zero z-component. Evidently, if we solve this
problem we can also solve for the case where the electric field 1s always n the
z-direction. The general solution can always be expressed as the superposition of
two such fields.

How easy our equations now get. The only component of the electric field
that is not zero is E,, and all derivatives—except those with respect to x—are zero
The rest of Maxwell’s equations then become quite simple.

204



Let’s look next at the second of Maxwell’s equations [II of Eq. (20.12)].
Writing out the components of the curl E, we have

dE, OE, _

(VXE)’”Z_@——WZ——O’
dE, OE, _

(VXEh="% ~% -0

v X E), = 2B _ 3. _ 3E,

The x-component of V X E is zero because the derivatives with respect to y and
zare zero. The y-component is also zero; the first term is zero because the derivative
with respect to z is zero, and the second term is zero because E, is zero. The only
components of the curl of E that is not zero 1s the z-component, which is equal to
dF,/dx. Setting the three components of v X E equal to the corresponding
components of —dB/dt, we can conclude the following:

OB, B,

=0, -, (20.15)
0B. _ _ 9E
= - (20.16)

Since the x-component of the magnetic field and the y-component of the magnetic
field both have zero time derivatives, these two components are just constant fields
and correspond to the magnetostatic solutions we found earlier. Somebody may
have left some permanent magnets near where the waves are propagating. We will
ignore these constant fields and set B, and B, equal to zero.

Incidentally, we would already have concluded that the x-component of B
should be zero for a different reason. Since the divergence of B is zero (from the
third Maxwell equation), applying the same arguments we used above for the
electric field, we would conclude that the longitudinal component of the magnetic
field can have no variation with x. Since we are ignoring such uniform fields in
our wave solutions, we would have set B, equal to zero. In plane electromagnetic
waves the B-field, as well as the E-field, must be directed at right angles to the
direction of propagation.

Equation (20.16) gives us the additional proposition that if the electric field
has only a y-component, the magnetic field will have only a z-component. So
E and B are at right angles to each other. This is exactly what happened in the
special wave we have already considered.

We are now ready to use the last of Maxwell’s equations for free space [IV
of Eq. (20.12)]. Writing out the components, we have

2 _ 20B. 0B, 3K
(VX B), =c o i Th
2 2 g{ L2 dB, _ aEy
(VX B)y,=c 3z < ax = ar (20.17)
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Of the six derivatives of the components of B, only the term dB,/dx is not equal
to zero. So the three equations give us simply

2 9B _ OE,
T (20.18)
The result of all our work is that only one component each of the electric and
magnetic fields is not zero, and that these components must satisfy Eqgs. (20.16)
and (20.18). The two equations can be combined into one if we differentiate the
first with respect to x and the second with respect to ¢; the left-hand sides of the
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Fig. 20-4. The function flx — ¢
represents a constant shape’ that travels
toward positive x with the speed c.

two equations will then be the same (except for the factor ¢2). So we find that
E, satisfies the equation

— = = = 0. (20.19)

We have seen the same differential equation before, when we studied the propaga-
tion of sound. It is the wave equation for one-dimensional waves.

You should note that 1n the process of our derivation we have found something
more than is contained in Eq. (20 11). Maxwell’s equations have given us the
further information that electromagnetic waves have field components only at
right angles to the direction of the wave propagation.

Let’s review what we know about the solutions of the one-dimensional wave
equation. If any quantity ¢ satisfies the one-dimensional wave equation

S-St =0 (20.20)

then one possible solution is a function ¥(x, t) of the form

Y(x, 1) = flx — cp), (20.21)

that is, some function of the single variable (x — cf). The function f(x — cf)
represents a “rigid” pattern in x which travels toward posttive x at the speed ¢
(see Fig. 20-4). For example, if the function f has a maximum when its argument
is zero, then for ¢ = 0 the maximum of y will occur at x = 0. At some later time,
say ¢ = 10, ¢ will have its maximum at x = 10c. As time goes on, the maximum
moves toward positive x at the speed c.

Sometimes it is more convenient to say that a solution of the one-dimensional
wave equation is a function of (+ — x/c). However, this is saying the same thing,
because any function of (¢ — x/c¢) is also a function of (x — cf):

x — ct
C

F(t — x/c) = F[- J = f(x — ct).

Let’s show that f(x — c¢f) is indeed a solution of the wave equation. Since
it is a function of only one variable—the variable (x — cr)—we will let " represent
the derivative of f with respect to its vartable and f** represent the second derivative
of f. Differentiating Eq. (20.21) with respect to x, we have

W
gi_f(x Ct)a

since the derivative of (x — cr) with respect to x is 1. The second derivative of
¢ with respect to x is clearly
N _ o
TRz = f"(x — ct). (20.22)

Taking derivatives of ¢ with respect to ¢, we find
W _
T= f1x = en(=o),

%y 2
== = +cf"(x — cr1) (20.23)
a2
We see that ¢ does indeed satisfy the one-dimensional wave equation.

You may be wondering: “If I have the wave equation, how do I know that
I should take f(x — ct) as a solution? I don’t like this backward method. Isn’t
there some forward way to find the solution?” Well, one good forward way is
to know the solution. It is possible to “cook up” an apparently forward mathe-
matical argument, expecially because we know what the solution is supposed to
be, but with an equation as simple as this we don’t have to play games. Soon
you will get so that when you see Eq. (20.20), you nearly simultaneously see

20-6



¥ = f(x — ct) as a solution. (Just as now when you see the integral of xZ dx, you
know right away that the answer is x3/3.)

Actually you should also see a little more. Not only is any function of (x — c¢f)
a solution, put any function of (x + ct)is also a solution. Since the wave equation
contains only cZ2, changing the sign of ¢ makes no difference. In fact, the most
general solution of the one-dimensional wave equation is the sum of two arbitrary
functions, one of (x — cr) and the other of (x + cf):

¥ = f(x — cf) + g(x 4 c1). (20.24)

The first term represents a wave travelling toward positive x, and the second term
an arbitrary wave travelling toward negative x. The general solution is the super-
position of two such waves both existing at the same time.

We will leave the following amusing question for you to think about. Take a function
¥ of the following form:

Y = cos kx cos kct.

This equation 1sn’t in the form of a function of (x — ¢f) or of (x + cf). Yet you can
easily show that this function 1s a solution of the wave equation by direct substitution into
Eq. (20.20). How can we then say that the general solution is of the form of Eq. (20.24)?

Applying our conclusions about the solution of the wave equation to the
y-component of the electric field, E,, we conclude that E, can vary with x in any
arbitrary fashion. However, the fields which do exist can always be considered as
the sum of two patterns. One wave is sailing through space in one direction with
speed ¢, with an associated magnetic field perpendicular to the electric field;
another wave is travelling in the opposite direction with the same speed. Such
waves correspond to the electromagnetic waves that we know about—Ilight, radio-
waves, infrared radiation, ultraviolet radiation, x-rays, and so on. We have already
discussed the radiation of light in great detail in Vol. I. Since everything we learned
there applies to any electromagnetic wave, we don’t need to consider in great detail
here the behavior of these waves.

We should perhaps make a few further remarks on the question of the polariza-
tion of the electromagnetic waves. In our solution we chose to consider the special
case in which the electric field has only a y-component. There is clearly another
solution for waves travelling in the plus or minus x-direction, with an electric
field which has only a z-component. Since Maxwell’s equations are linear, the
general solution for one-dimensional waves propagating in the x-direction is the
sum of waves of E, and waves of E,. This general solution is summarized in the
following equations:

E=(Q,E,E)
Ey = flx — c) + glx + 1)
E, = F(x — ct) + G(x + ct)
B = (0,B, B,)
cB, = f(x—ct) —g(x + ci)
¢B, = —F(x — ct) + G(x + c1).

(20.25)

Such electromagnetic waves have an E-vector whose direction is not constant but
which gyrates around in some arbitrary way in the yz-plane. At every point
the magnetic field is always perpendicular to the electric field and to the direction
of propagation.
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If there are only waves travelling in one direction, say the positive x-direction,
there is a simple rule which tells the relative orientation of the electric and mag-
netic fields. The rule is that the cross product E X B—which is, of course, a
vector at right angles to both E and B—points 1n the direction in which the wave is
travelling. 1f E is rotated into B by a right-hand screw, the screw points in the
direction of the wave velocity. (We shall see later that the vector E X B has a
special physical significance: it is a vector which describes the flow of energy 1n an
electromagnetic field.)

20-2 Three-dimensional waves

We want now to turn to the subject of three-dimensional waves. We have
already seen that the vector E satisfies the wave equation. It is also easy to arrive
at the same conclusion by arguing directly from Maxwell’s equations. Suppose we
start with the equation

oB
VX E= — 5
and take the curl of both sides:
VX (VXE) = — %(v X B). (20.26)

You will remember that the curl of the curl of any vector can be written as the sum
of two terms, one involving the divergence and the other the Laplacian,

V X (VX E)=V(V:E)— V2E.

In free space, however, the divergence of E is zero, so only the Laplacian term
remains. Also, from the fourth of Maxwell’s equations in free space [Eq. (20.12)]
the time derivative of ¢2 v X B 1s the second derivative of E with respect to f:

29 _ J’E
C 6—I(VXB)—-6t2'
Equation (20.26) then becomes
op _ 1 OE
VE = c2 9z’

which is the three-dimensional wave equation. Written out 1n all its glory, this
equation is, of course,
O°E | °E | °E 1 I’E

T ot oz T @

= 0. (20.27)

How shall we find the general wave solution? The answer 1s that all the solu-
tions of the three-dimensional wave equation can be represented as a superposition
of the one-dimensional solutions we have already found. We obtained the equation
for waves which move in the x-direction by supposing that the field did not depend
on y and z. Obviously, there are other solutions in which the fields do not depend
on x and z, representing waves going in the y-direction. Then there are solutions
which do not depend on x and y, representing waves travelling in the z-direction.
Or in general, since we have written our equations in vector form, the three-
dimensional wave equation can have solutions which are plane waves moving in
any direction at all. Again, since the equations are linear, we may have simultane-
ously as many plane waves as we wish, travelling in as many different directions.
Thus the most general solution of the three-dimensional wave equation 1s a
superposition of all sorts of plane waves moving in all sorts of directions.

Try to imagine what the electric and magnetic fields look like at present in
the space in this lecture room. First of all, there 1s a steady magnetic field ; 1t comes
from the currents 1n the interior of the earth—that 1s, the earth’s steady magnetic
field. Then there are some 1rregular, nearly static electric fields produced perhaps
by electric charges generated by friction as various people move about mn their
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chairs and rub their coat sleeves against the chair arms. Then there are other
magnetic fields produced by oscillating currents in the electrical wiring—fields
which vary at a frequency of 60 cycles per second, in synchronism with the genera-
tor at Boulder Dam. But more interesting are the electric and magnetic fields vary-
ing at much higher frequencies. For instance, as light travels from window to
floor and wall to wall, there are little wiggles of the electric and magnetic fields
moving along at 186,000 miles per second. Then there are also infrared waves
travelling from the warm foreheads to the cold blackboard. And we have forgotten
the ultraviolet light, the x-rays, and the radiowaves travelling through the room.

Flying across the room are electromagnetic waves which carry music of a jazz
band. There are waves modulated by a series of impulses representing pictures of
events going on in other parts of the world, or of imaginary aspirins dissolving in
mmaginary stomachs. To demonstrate the reality of these waves it is only necessary
to turn on electronic equipment that converts these waves into pictures and sounds.

If we go into further detail to analyze even the smallest wiggles, there are
tiny electromagnetic waves that have come into the room from enormous distances.
There are now tiny oscillations of the electric field, whose crests are separated by
a distance of one foot, that have come from millions of miles away, transmitted
to the earth from the Mariner II space craft which has just passed Venus. Its
signals carry summaries of information it has picked up about the planets (infor-
mation obtained from electromagnetic waves that travelled from the planet to
the space craft).

There are very tiny wiggles of the electric and magnetic fields that are waves
which originated billions of light years away—from galaxies in the remotest corners
of the universe. That this is true has been found by “filling the room with wires”—
by building antennas as large as this room. Such radiowaves have been detected
from places in space beyond the range of the greatest optical telescopes. Even they,
the optical telescopes, are simply gatherers of electromagnetic waves. What we
call the stars are only inferences, inferences drawn from the only physical reality
we have yet gotten from them—from a careful study of the unendingly complex
undulations of the electric and magnetic fields reaching us on earth.

There is, of course, more: the fields produced by lightning miles away, the
fields of the charged cosmic ray particles as they zip through the room, and more,
and more. What a complicated thing is the electric field in the space around you!
Yet it always satisfies the three-dimensional wave equation.

20-3 Scientific imagination

I have asked you to imagine these electric and magnetic fields. What do you
do? Do you know how? How do I imagine the electric and magnetic field? What
do I actually see? What are the demands of scientific imagination? Is it any
different from trying to imagine that the room is full of invisible angels? No, 1t is
not like imagining invisible angels. It requires a much higher degree of imagination
to understand the electromagnetic field than to understand invisible angels. Why?
Because to make invisible angels understandable, all 1 have to do is to alter their
properties a little bir—I make them slightly visible, and then I can see the shapes
of their wings, and bodies, and halos. Once I succeed in imagining a visible angel,
the abstraction required—which is to take almost invisible angels and imagine
them completely invisible—is relatively easy. So you say, “Professor, please give
me an approximate description of the electromagnetic waves, even though it may
be slightly 1naccurate, so that I too can see them as well as I can see almost invisible
angels. Then I will modify the picture to the necessary abstraction.”

I'm sorry I can’t do that for you. I don’t know how. I have no picture of this
electromagnetic field that is in any sense accurate. I have known about the electro-
magnetic field a long time—1I was in the same position 25 years ago that you are
now, and I have had 25 years more of experience thinking about these wiggling
waves. When I start describing the magnetic field moving through space, I speak
of the E- and B fields and wave my arms and you may imagine that I can see them.
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I’ll tell you what I see. I see some kind of vague shadowy, wiggling lines—here
and there is an E and B written on them somehow, and perhaps some of the lines
have arrows on them—an arrow here or there which disappears when I look too
closely at it. When I talk about the fields swishing through space, I have a terrible
confusion between the symbols I use to describe the objects and the objects them-
selves. I cannot really make a picture that 1s even nearly like the true waves. So
if you have some difficulty in making such a picture, you should not be worried
that your difficulty is unusual.

Our science makes terrific demands on the imagination. The degree of
imagination that is required is much more extreme than that required for some of
the ancient ideas. The modern ideas are much harder to imagine. We use a lot
of tools, though. We use mathematical equations and rules, and make a lot of
pictures. What I realize now is that when I talk about the electromagnetic field in
space, I see some kind of a superposition of all of the diagrams which I've ever
seen drawn about them. I don’t see hittle bundles of field lines running about be-
cause it worries me that if I ran at a different speed the bundles would disappear.
1 don’t even always see the electric and magnetic fields because sometimes I think
I should have made a picture with the vector potential and the scalar potential,
for those were perhaps the more physically significant things that were wiggling.

Perhaps the only hope, you say, is to take a mathematical view. Now what is
a mathematical view? From a mathematical view, there 1s an electric field vector
and a magnetic field vector at every point in space; that 1s, there are six numbers
associated with every point. Can you imagine six numbers associated with each
point in space? That’s too hard. Can you imagine even one number associated
with every point? Icannot! Icanimagine such a thing as the temperature at every
point 1n space. That seems to be understandable. There is a hotness and coldness
that varies from place to place. But I honestly do not understand the idea of a
number at every point.

So perhaps we should put the question: Can we represent the electric field by
something more like a temperature, say like the displacement of a piece of jello?
Suppose that we were to begin by imagining that the world was filled with thin
jello and that the fields represented some distortion—say a stretching or twisting—
of the jello. Then we could visualize the field. After we “see” what 1t is like we
could abstract the jello away. For many years that’s what people tried to do.
Maxwell, Ampere, Faraday, and others tried to understand electromagnetism
this way. (Sometimes they called the abstract jello “‘ether.”) But it turned out that
the attempt to imagine the electromagnetic field in that way was really standing in
the way of progress. We are unfortunately limited to abstractions, to using in-
struments to detect the field, to using mathematical symbols to describe the field,
etc. But nevertheless, in some sense the fields are real, because after we are all
finished fiddling around with mathematical equations—with or without making
pictures and drawings or trying to visualize the thing—we can still make the instru-
ments detect the signals from Mariner II and find out about galaxies a billion miles
away, and so on.

The whole question of imagination in science 1s often misunderstood by people
in other disciplines. They try to test our imagination in the following way. They
say, “Here is a picture of some people 1n a situation. What do you imagine will
happen next?” When we say, “I can’t imagine,” they may think we have a weak
imagination. They overlook the fact that whatever we are allowed to 1magine in
science must be consistent with everything else we know: that the electric fields and
the waves we talk about are not just some happy thoughts which we are free to
make as we wish, but ideas which must be consistent with all the laws of physics
we know. We can’t allow ourselves to seriously imagine things which are obviously
in contradiction to the known laws of nature. And so our kind of imagination is
quite a difficult game. One has to have the imagination to think of something that
has never been seen before, never been heard of before. At the same time the
thoughts are restricted in a strait jacket, so to speak, limited by the conditions that
come from our knowledge of the way nature really is. The problem of creating
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something which is new, but which is consistent with everything which has been
seen before, 1s one of extreme difficulty.

While 1'm on this subject I want to talk about whether it will ever be possible
to imagine beauty that we can’t sec It is an interesting question. When we look
at a rainbow, it looks beautiful to us. Everybody says, “Ooh, a rainbow.” (You
see how scientific I am. 1 am afraid to say something is beautiful unless I have an
experimental way of defining it.) But how would we describe a rainbow if we were
blind? We are blind when we measure the infrared reflection coefficient of sodium
chloride, or when we talk about the frequency of the waves that are coming from
some galaxy that we can’t see—we make a diagramfwe make a plot. For instance,
for the ramnbow, such a plot would be the intensity of radiation vs. wavelength
measured with a spectrophotometer for each direction 1n the sky. Generally, such
measurements would give a curve that was rather flat. Then some day, someone
would discover that for certain conditions of the weather, and at certain angles in
the sky, the spectrum of intensity as a function of wavelength would behave
strangely; 1t would have a bump. As the angle of the instrument was varied only a
little bit, the maximum of the bump would move from one wavelength to another.
Then one day the physical review of the blind men nught publish a technical article
with the title “The Intensity of Radiation as a Function of Angle under Certain
Conditions of the Weather.” In this article there might appear a graph such as
the one in Fig. 20-5 The author would perhaps remark that at the larger angles
there was more rachation at long wavelengths, whereas for the smaller angles the
maximum in the radiation came at shorter wavelengths. (From our point of view,
we would say that the light at 40° 1s predonunantly green and the light at 42° is
predominantly red.)

Fig. 20-5. The intensity of electro-
magnetic waves as a function of wave-
length for three angles (measured from
the direction opposite the sun), observed
only with certain meteorological con-
Wavelength ditions.

Intensity

Now do we find the graph of Fig. 20-5 beautiful? It contains much more de-
tail than we apprehend when we look at a rainbow, because our eyes cannot see
the exact details in the shape of a spectrum. The eye, however, finds the rainbow
beautiful. Do we have enough imagination to see in the spectral curves the same
beauty we see when we look directly at the rainbow? T don’t know.

But suppose I have a graph of the reflection coefficient of a sodium chloride
crystal as a function of wavelength in the infrared, and aiso as a function of angle.
I would have a representation of how it would look to my eyes if they could see
n the infrared—perhaps some glowing, shiny “green,” mixed with reflections from
the surface in a “metalhic red.” That would be a beautiful thing, but I don’t know
whether I can ever look at a graph of the reflection coefficient of NaCl measured
with some instrument and say that 1t has the same beauty.

On the other hand, even if we cannot see beauty in particular measured results,
we can already claim to see a certain beauty in the equations which describe general
physical laws. For example, in the wave equation (20.9), there’s something nice
about the regularity of the appearance of the x, the p, the z, and the . And this
nice symmetry 1 appearance of the x. p, z, and 7 suggests to the mind still a greater
beauty which has to do with the four dimensions, the possibility that space has
four-dimensional symmetry, the possibility of analyzing that and the developments
of the special theory of relativity. So there 1s plenty of intellectual beauty asso-
ciated with the equations.
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20-4 Spherical waves

We have seen that there are solutions of the wave equation which corre-
spond to plane waves, and that any electromagnetic wave can be described as a
superposition of many plane waves. In certain special cases, however, it is more
convenient to describe the wave field in a different mathematical form. We would
like to discuss now the theory of spherical waves—waves which correspond to
spherical surfaces that are spreading out from some center. When you drop a
stone into a lake, the ripples spread out in circular waves on the surface—they are
two-dimensional waves. A spherical wave is a similar thing except that it spreads
out in three dimensions.

Before we start describing spherical waves, we need a little mathematics.
Suppose we have a function that depends only on the radial distance r from a
certain origin—in other words, a function that is spherically symmetric. Let’s
call the function y(r), where by r we mean

r= Vx4 y2 4 22,

the radial distance from the origin. In order to find out what functions y(r) satisfy
the wave equation, we will need an expression for the Laplacian of y. So we want
to find the sum of the second derivatives of § with respect to x, y, and z. We will
use the notation that ¢'(r) represents the derivative of  with respect to r and ¢//(r)
represents the second derivative of ¢ with respect to r.

First, we find the derivatives with respect to x. The first derivative is

6¢(r)

=y )

The second derivative of ¢ with respect to x is
N _ yn(or g T
ax2 dx ax?

We can evaluate the partial derivatives of r with respect to x from

o _x o _ L X
Ix  r x2 ~ r r?

So the second derivative of ¥ with respect to x is

62‘!’ _ x2 " 1 X2 4

e v l(i-n)v (2028)
Likewise,

92 2 1 2

Myt @02

62"!/ 22 7] 1 22 !

Pz, +;(1_7§ v (20.30)

The Laplacian is the sum of these three derivatives. Remembering that
x2 4+ y2 4+ 2% = r2 we get

2
V() = () + SV (). (20.31)
It is often more convenient to write this equation in the following form:
2, 1 d°
VY = L (). (20.32)

If you carry out the differentiation indicated in Eq. (20.32), you will see that the
right-hand side 1s the same as in Eq. (20.31).

If we wish to consider spherically symmetric fields which can propagate as
spherical waves, our field quantity must be a function of both r and ¢. Suppose
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we ask, then, what functions ¢(r, f) are solutions of the three-dimensional wave
equation
2

VE(r, 1) ~ 515(%; ¥, 1) = 0. (20.33)

Since y(r, ) depends only on the spatial coordinates through r, we can use the equa-
tion for the Laplacian we found above, Eq. (20.32). To be precise, however, since
¢ is also a function of 7, we should write the derivatives with respect to r as partial
derivatives. Then the wave equation becomes

We must now solve this equation, which appears to be much more complicated
than the plane wave case. But notice that 1f we multiply this equation by r, we get

a® 1 9
53 ) — T (ry) = 0. (20.34)
This equation tells us that the function ry satisfies the one-dimensional wave equa-
tion in the variable . Using the general principle which we have emphasized so
often, that the same equations always have the same soluttons, we know that if
ry is a function only of (» — c¢1) then it will be a soluuon of Eq. (20.34). So we
know that spherical waves must have the form

r(r, ) = f(r — ci).

Or, as we have seen before, we can equally well say that r¢ can have the form
ry = flt — r/o).

Dividing by r, we find that the field quantity ¢ (whatever it may be) has the follow-
ing form:

Y = IQ‘_TLLC) (20.35)
Such a function represents a general spherical wave travelling outward from the
origin at the speed c. If we forget about the r in the denominator for a moment,
the amplitude of the wave as a function of the distance from the origin at a given
ume has a certain shape that travels outward at the speed ¢. The factor r in the
denominator, however, says that the amplitude of the wave decreases in proportion
to 1/r as the wave propagates. In other words, unlike a plane wave in which the
amplitude remains constant as the wave runs along, in a spherical wave the ampli-
tude steadily decreases, as shown in Fig. 20-6. This effect is easy to understand
from a simple physical argument.
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(a)

Fig. 20-6. A spherical wave ¢ = f{t — r/c)/r. (a} ¢ as a function of r for ¢

t; and the

same wave for the later time t,. (b} ¥ as a function of t for r = r; and the same wave seen at r,.
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We know that the energy density in a wave depends on the square of the wave
amplitude. As the wave spreads, its energy is spread over larger and larger areas
proportional to the radial distance squared. If the total energy is conserved, the
energy density must fall as 1/r2, and the amplitude of the wave must decrease as
1/r. So Eq. (20.35) is the “reasonable” form for a spherical wave.

We have disregarded the second possible solution to the one-dimenstonal
wave equation:

ry = gt + r/o),
or
_ 8+ r/o)

r

¥

Thrs also represents a spherical wave, but one which travels inward from large r
toward the origin.

We are now going to make a special assumption. We say, without any demon-
stration whatever, that the waves generated by a source are only the waves which
go outward. Since we know that waves are caused by the motion of charges, we
want to think that the waves proceed outward from the charges. It would be
rather strange to imagine that before charges were set in motion, a spherical wave
started out from infinity and arrived at the charges just at the time they began to
move. That is a possible solution, but experience shows that when charges are
accelerated the waves travel outward from the charges. Although Maxwell’s
equations would allow either possibility, we will put in an additional fact—based
on experience—that only the outgoing wave solution makes “physical sense.”

We should remark, however, that there is an interesting consequence to this
additional assumption: we are removing the symmetry with respect to time that
exists in Maxwell’s equations. The original equations for E and B, and also the
wave equations we derived from them, have the property that if we change the sign
of ¢, the equation 1s unchanged. These equations say that for every solution
corresponding to a wave going in one direction there is an equally valid solution
for a wave travelling in the opposite direction. Our statement that we will consider
only the outgoing spherical waves is an important additional assumption. (A
formulation of electrodynamics in which this additional assumption is avoided has
been carefully studied. Surprisingly, in many circumstances it does not lead to
physically absurd conclusions, but it would take us too far astray to discuss these
ideas just now. We will talk about them a little more in Chapter 28.)

We must mention another important point. In our solution for an outgoing
wave, Eq. (20.35), the function y 1s infinite at the origin. That is somewhat peculiar.
We would like to have a wave solution which is smooth everywhere. Our solution
must represent physically a situation in which there is some source at the origin.
In other words, we have inadvertently made a mistake. We have not solved the
free wave equation (20.33) everywhere; we have solved Eq. (20.33) with zero on
the right everywhere, except at the origin. Our mistake crept in because some of
the steps in our derivation are not “legal” when r = 0.

Let’s show that it is easy to make the same kind of mistake in an electrostatic
problem. Suppose we want a solution of the equation for an electrostatic potential
in free space, V2¢ = 0. The Laplacian is equal to zero, because we are assuming
that there are no charges anywhere. But what about a spherically symmetric
solution to this equation—that is, some function ¢ that depends only on r. Using
the formula of Eq. (20.32) for the Laplacian, we have

1 d?
;@2 (r¢) = 0.

Multiplying this equation by r, we have an equation which is readily integrated:
d2
P (r¢) = 0.

If we integrate once with respect to r, we find that the first derivative of r¢ is a
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constant, which we may call a:

d

E (r¢)) = d.
Integrating again, we find that r¢ is of the form

r¢ = ar + b,

where b is another constant of integration. So we have found that the following ¢
is a solution for the electrostatic potential in free space:

b
¢—a—}—;-

Something is evidently wrong. In the region where there are no electric
charges, we know the solution for the electrostatic potential: the potential is
everywhere a constant. That corresponds to the first term 1n our solution. But we
also have the second term, which says that there 1s a contribution to the potential
that varies as one over the distance from the origin. We know, however, that such
a potential corresponds to a point charge at the origin. So, although we thought
we were solving for the potential in free space, our solution also gives the field
for a point source at the origin. Do you see the similarity between what happened
now and what happened when we solved for a spherically symmetric solution to
the wave equation? If there were really no charges or currents at the origin, there
would not be spherical outgoing waves. The spherical waves must, of course, be
produced by sources at the origin. In the next chapter we will investigate the con-
nection between the outgoing electromagnetic waves and the currents and voltages
which produce them.
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