10

Dielecetries

10-1 The dielectric constant

Here we begin to discuss another of the peculiar properties of matter under
the influence of the electric field. In an earlier chapter we considered the behavior
of conductors, in which the charges move freely in response to an electric field to
such points that there is no field left inside a conductor. Now we will discuss
insulators, materials which do not conduct electricity. One might at first believe
that there should be no effect whatsoever. However, using a simple electroscope
and a parallel-plate capacitor, Faraday discovered that this was not so. His experi-
ments showed that the capacitance of such a capacitor is increased when an in-
sulator is put between the plates. If the insulator completely fills the space between
the plates, the capacitance is increased by a factor x which depends only on the
nature of the insulating material. Insulating materials are also called dielectrics;
the factor « is then a property of the dielectric, and is called the dielectric constant.
The dielectric constant of a vacuum is, of course, unity.

Our problem now is to explain why there is any electrical effect if the insulators
are indeed insulators and do not conduct electricity. We begin with the experi-
mental fact that the capacitance is increased and try to reason out what might
be going on. Consider a parallel-plate capacitor with some charges on the surfaces
of the conductors, let us say negative charge on the top plate and positive charge on
the bottom plate. Suppose that the spacing between the plates is d and the area of
each plate is 4. As we have proved earlier, the capacitance is

EoA

= 22, (10.1)

and the charge and voltage on the capacitor are related by
Q= CV. (10.2)

Now the experimental fact is that if we put a piece of insulating material like
lucite or glass between the plates, we find that the capacitance is larger. That means,
of course, that the voltage is lower for the same charge. But the voltage difference
is the integral of the electric field across the capacitor; so we must conclude that
inside the capacitor, the electric field is reduced even though the charges on the
plates remain unchanged.
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Now how can that be? We have a law due to Gauss that tells us that the flux
of the electric field is directly related to the enclosed charge. Consider the gaussian
surface S shown by broken lines in Fig. 10-1. Since the electric field is reduced
vgith the dielectric present, we conclude that the net charge inside the surface must
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Fig. 10-3. A model of a dielectric:
small conducting spheres embedded in
an idealized insulator.

be lower than it would be without the material. There is only one possible conclu-
sion, and that is that there must be positive charges on the surface of the dielectric.
Since the field is reduced but is not zero, we would expect this positive charge to
be smaller than the negative charge on the conductor. So the phenomena can be
explained if we could understand in some way that when a dielectric material is
placed in an electric field there is positive charge induced on one surface and nega-
tive charge induced on the other.
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We would expect that to happen for a conductor. For example, suppose that
we had a capacitor with a plate spacing d, and we put between the plates a neutral
conductor whose thickness is b, as in Fig. 10-2. The electric field induces a positive
charge on the upper surface and a negative charge on the lower surface, so there is
no field inside the conductor. The field in the rest of the space is the same as it
was without the conductor, because it is the surface density of charge divided by
€o; but the distance over which we have to integrate to get the voltage (the potential
difference) is reduced. The voltage is

a

The resulting equation for the capacitance is like Eq. (10.1), with (d — b) sub-
stituted for d:

_ 60A .
~ dll — (¢/d)]

The capacitance is increased by a factor which depends upon (b/d), the proportion
of the volume which is occupied by the conductor.

This gives us an obvious model for what happens with dielectrics—that inside
the material there are many little sheets of conducting material. The trouble with
such a model is that it has a specific axis, the normal to the sheets, whereas most
dielectrics have no such axis. However, this difficulty can be eliminated if we
assume that all insulating materials contain small conducting spheres separated
from each other by insulation, as shown in Fig. 10-3. The phenomenon of the
dielectric constant is explained by the effect of the charges which would be induced
on each sphere. This is one of the earliest physical models of dielectrics used to
explain the phenomenon that Faraday observed. More specifically, it was assumed
that each of the atoms of a material was a perfect conductor, but insulated from
the others. The dielectric constant k would depend on the proportion of space
which was occupied by the conducting spheres. This is not, however, the model
that is used today.

C (10.3)

10-2 The polarization vector P

If we follow the above analysis further, we discover that the idea of regions
of perfect conductivity and insulation is not essential. Each of the small spheres
acts like a dipole, the moment of which is induced by the external field. The only
thing that is essential to the understanding of dielectrics is that there are many
little dipoles induced in the material. Whether the dipoles are induced because
there are tiny conducting spheres or for any other reason is irrelevant.
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Why should a field induce a dipole moment in an atom if the atom is not a
conducting sphere? This subject will be discussed in much greater detail in the
next chapter, which will be about the inner workings of dielectric materials.
However, we give here one example to illustrate a possible mechanism. An atom
has a positive charge on the nucleus, which is surrounded by negative electrons.
In an electric field, the nucleus will be attracted in one direction and the electrons in
the other. The orbits or wave patterns of the electrons (or whatever picture is
used in quantum mechanics) will be distorted to some extent, as shown in Fig. 10-4;
the center of gravity of the negative charge will be displaced and will no longer
coincide with the positive charge of the nucleus. We have already discussed such
distributions of charge. If we look from a distance, such a neutral configuration
is equivalent, to a first approximation, to a little dipole.

It seems reasonable that if the field is not too enormous, the amount of induced
dipole moment will be proportional to the field. That is, a small field will displace
the charges a little bit and a larger field will displace them further—and in propor-
tion to the field—unless the displacement gets too large. For the remainder of this
chapter, it will be supposed that the dipole moment is exactly proportional to the
field.

We will now assume that in each atom there are charges ¢ separated by a
distance 5, so that ¢ is the dipole moment per atom. (We use & because we are
already using d for the plate separation.) If there are N atoms per unit volume,
there will be a dipole moment per unit volume equal to Ngs. This dipole moment
per unit volume will be represented by a vector, P. Needless to say, it is in the
direction of the individual dipole moments, i.e., in the direction of the charge
separation §:

P = Ngs. (10.4)

In general, P will vary from place to place in the dielectric. However, at any
point in the material, P is proportional to the electric field E. The constant of
proportionality, which depends on the ease with which the electron are displaced,
will depend on the kinds of atoms in the material.

What actually determines how this constant of proportionality behaves, how
accurately it is constant for very large fields, and what is going on inside different
materials, we will discuss at a later time. For the present, we will simply suppose
that there exists a mechanism by which a dipole moment is induced which is
proportional to the electric field.

10-3 Polarization charges

Now let us see what this model gives for the theory of a condenser with a di-
electric. First consider a sheet of material in which there is a certain dipole moment
per unit volume. Will there be on the average any charge density produced by this?
Not if P is uniform. If the positive and negative charges being displaced relative
to each other have the same average density, the fact that they are displaced does
not produce any net charge inside the volume. On the other hand, if P were larger
at one place and smaller at another, that would mean that more charge would be
moved into some region than away from it; we would then expect to get a volume
density of charge. For the parallel-plate condenser, we suppose that P is uniform,
50 we need to look only at what happens at the surfates. At one surface the nega-
tive charges, the electrons, have effectively moved out a distance §; at the other
surface they have moved in, leaving some positive charge effectively out a distance
8. As shown in Fig. 10-5, we will have a surface density of charge, which will be
called the surface polarization charge.
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This charge can be calculated as follows. If A is the area of the plate, the
number of electrons that appear at the surface is the product of 4 and N, the
number per unit volume, and the displacement 8, which we assume here is per-
pendicular to the surface. The total charge is obtained by multiplying by the
electronic charge g,. To get the surface density of the polarization charge induced
on the surface, we divide by 4. The magnitude of the surface charge density is

Opol = qu d.
But this is just equal to the magnitude P of the polarization vector P, Eq. (10.4):
Opo1 = P. (10.5)

The surface density of charge is equal to the polarization inside the material. The
surface charge is, of course, positive on one surface and negative on the other.

Now let us assume that our slab is the dielectric of a parallel-plate capacitor.
The plates of the capacitor also have a surface charge, which we will call g,
because they can move “freely” anywhere on the conductor. This is, of course,
the charge that we put on when we charged the capacitor. It should be emphasized
that o', exists only because of Gyece- If 01cec is removed by discharging the capacitor,
then o, will disappear, not by going out on the discharging wire, but by moving
back into the material—by the relaxation of the polarization inside the material,

We can now apply Gauss’ law to the gaussian surface S in Fig, 10-1. The
electric field E in the dielectric is equal to the fotal surface charge density divided
by €o. It is clear that o, and o, have opposite signs, so

E = Gtree — Opol . (10.6)
€
Note that the field E, between the metal plate and the surface of the dielectric
is higher than the field E; it corresponds to o'se alone. But here we are concerned

with the field inside the dielectric which, if the dielectric nearly fills the gap, is the
field over nearly the whole volume. Using Eq. (10.5), we can write

E = Ttree = P (10.7)
€o

This equation doesn’t tell us what the electric field is unless we know what P is.
Here, however, we are assuming that P depends on E—in fact, that it is proportional
to E. This proportionality is usually written as

P = XeE. (10.8)

The constant x (Greek “khi”) is called the electric susceptibility of the dielectric.
Then Eq. (10.7) becomes

Ofree 1
= —_—, 10.9
o T+ (109
which gives us the factor 1/(1 + x) by which the field is reduced.

The voltage between the plates is the integral of the electric field. Since the
field is uniform, the integral is just the product of E and the plate separation d.
We have that

d
V = Ed = _Jiree?
eo(l + x)

The total charge on the capacitor is ogee4, 50 that the capacitance defined

by (10.2) becomes
C = eoA(1d+ x) _ xe;A. (10.10)

We have explained the observed facts. When a parallel-plate capacitor is
filled with a dielectric, the capacitance is increased by the factor

k=1+4+x, (10.11)
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which is a property of the material. Our explanation, of course, is not complete
until we have explained—as we will do later—how the atomic polarization comes
about.

Let’s now consider something a little bit more complicated—the situation in
which the polarization P is not everywhere the same. As mentioned earlier, if the
polarization is not constant, we would expect in general to find a charge density
in the volume, because more charge might come into one side of a small volume
element than leaves it on the other. How can we find out how much charge is gained
or lost from a small volume?

First let’s compute how much charge moves across any imaginary surface
when the material is polarized. The amount of charge that goes across a surface
is just P times the surface area if the polarization is normal to the surface.
Of course, if the polarization is tangential to the surface, no charge moves
across it.

Following the same arguments we have already used, it is easy to see that the
charge moved across any surface element is proportional to the component of P
perpendicular to the surface. Compare Fig. 10-6 with Fig. 10-5. We see that
Eq. (10.5) should, in the general case, be written

Opol = P-n. (10.12)

If we are thinking of an imagined surface element inside the dielectric, Eq.
(10.12) gives the charge moved across the surface but doesn’t result in a net
surface charge, because there are equal and opposite contributions from the di-
electric on the two sides of the surface.

The displacements of the charges can, however, result in a volume charge
density. The total charge displaced out of any volume V by the polarization is the
integral of the outward normal component of P over the surface S that bounds the
volume (see Fig. 10-7). An equal excess charge of the opposite sign is left behind.
Denoting the net charge inside ¥ by AQ,,,1 we write

AQpa = —/S P nda. (10.13)

We can attribute AQ,,1 to a volume distribution of charge with the density py,;,
and so

AQpo = /V Ppol dV. (10.14)
Combining the two equations yields
- — - n da. 1
/V Pool AV /S P-nda (10.15)

We have a kind of Gauss’ theorem that relates the charge density from polarized
materials to the polarization vector P. We can sec that it agrees with the result
we got for the surface polarization charge or the dielectric in a parallel-plate capaci-
tor. Using Eq. (10.15) with the gaussian surface of Fig. 10-1, the surface integral
gives P AA, and the charge inside is o501 A4, SO We get again thato = P.

Just as we did for Gauss’ law of electrostatics, we can convert Eq. (10.15) to
a differential form—using Gauss’ mathematical theorem:

P-nda=| v-PdV.
Js J,

We get

Ppol = —V P, (10.16)
If there is a nonuniform polarization, its divergence gives the net density of charge
appearing in the material. We emphasize that this is a perfectly real charge density ;
we call it “polarization charge” only to remind ourselves how it got there.
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104 The electrostatic equations with dielectrics

Now let’s combine the above result with our theory of electrostatics. The
fundamental equation is

V-E= —e”—- (10.17)

o

The p here is the density of all electric charges. Since it is not easy to keep track of
the polarization charges, it is convenient to separate p into two parts. Again we
call pp,1 the charges due to nonuniform polarizations, and call pree all the rest.
Usually psree is the charge we put on conductors, or at known places in space.
Equation (10.17) then becomes

vV E = Piree + Ppol _ Pfree — v-P
€0 €9

or

v- (E + e_’(’) _ Prree (10.18)

€o
Of course, the equation for the curl of F is unchanged:
VX E=0. (10.19)
Taking P from Eq. (10.8), we get the simpler equation

V[l + X)E] = V- (xE) = ’iio— (10.20)
These are the equations of electrostatics when there are dielectrics. They don’t,
of course, say anything new, but they are in a form which is more convenient for
computation in cases where p,.. is known and the polarization P is proportional
to E.

Notice that we have not taken the dielectric “‘constant,” x, out of the diver-
gence. That is because it may not be the same everywhere. If it has everywhere the
same value, it can be factored out and the equations are just those of electrostatics
with the charge density pre. divided by . In the form we have given, the equations
apply to the general case where different dielectrics may be in different places in
the field. Then the equations may be quite difficult to solve.

There is a matter of some historical importance which should be mentioned
here. In the early days of electricity, the atomic mechanism of polarization was
not known and the existence of p,, was not appreciated. The charge psree Was
considered to be the entire charge density. In order to write Maxwell’s equations
in a simple form, a new vector D was defined to be equal to a linear combination
of E and P:

D = ¢E + P. (10.21)

As a result, Eqgs. (10.18) and (10.19) were written in an apparently very simple form:
VD = Pirees VX E-=0. (10.22)

Can one solve these? Only if a third equation is given for the relationship between
D and E. When Eq. (10.8) holds, this relationship is

D = €y(1 + X)E = «keoE. (10.23)

This equation was usually written
D = ¢E, (10.24)

where ¢ is still another constant for describjng the dielectric property of materials.
It is called the “permittivity.” (Now you see why we have €, in our equations, it is
the “permittivity of empty space.””) Evidently,

€ = k&g = (1 4+ X)eo. (10.25)
10-6



Today we look upon these matters from another point of view, namely, that
we have simpler equations in a vacuum, and if we exhibit in every case all the
charges, whatever their origin, the equations are always correct. If we separate
some of the charges away for convenience, or because we do not want to discuss
what is going on in detail, then we can, if we wish, write our equations in any other
form that may be convenient.

One more point should be emphasized. An equationlike D = eEis an attempt
to describe a property of matter. But matter is extremely complicated, and such
an equation is in fact not correct. For instance, if E gets too large, then D is no
longer proportional to E. For some substances, the proportionality breaks down
even with relatively small fields. Also, the “constant™ of proportionality may de-
pend on how fast E changes with time. Therefore this kind of equation is a kind
of approximation, like Hooke’s law. It cannot be a deep and fundamental equation.
On the other hand, our fundamental equations for E, (10.17) and (10.19), represent
our deepest and most complete understanding of electrostatics.

10-5 Fields and forces with dielectrics

We will now prove some rather general theorems for electrostatics in situations
where dielectrics are present. We have seen that the capacitance of a parallel-plate
capacitor is increased by a definite factor if it is filled with a dielectric. We can
show that this is true for a capacitor of any shape, provided the entire region in
the neighborhood of the two conductors is filled with a uniform linear dielectric.
Without the dielectric, the equations to be solved are

V-Eo=£ﬁ and vV X Eg = 0.
€o

With the dielectric present, the first of these equations is modified ; we have instead
the equations

v - (E) = "—feo— and V X E=0. (10.26)

Now since we are taking x to be everywhere the same, the last two equations can
be written as

V - (kE) = "—‘60— and VvV X (kE) = 0. (10.27)

We therefore have the same equations for «E as for Eg, so they have the solu-
tion kE = E,. In other words, the field is everywhere smaller, by the factor 1/x,
than in the case without the dielectric. Since the voltage difference is a line integral
of the field, the voltage is reduced by this same factor. Since the charge on the
electrodes of the capacitor has been taken the same in both cases, Eq. (10.2) tells
us that the capacitance, in the case of an everywhere uniform dielectric, is in-
creased by the factor «. '

Let us now ask what the force would be between two charged conductors in a
dielectric. We consider a liquid dielectric that is homogeneous everywhere. We
have seen earlier that one way to obtain the force is to differentiate the energy with
respect to the appropriate distance. If the conductors have equal and opposite
charges, the energy U = Q2/2C, where C is their capacitance. Using the principle
of virtual work, any component is given by a differentiation; for example,

144 29 (1
-0 -2 = (5) (10.28)

Since the dielectric increases the capacity by a factor «, all forces will be reduced
by this same factor.

One point should be emphasized. What we have said is true only if the di-
electric is a liquid. Any motion of conductors that are embedded in solid dielectric
changes the mechanical stress conditions of the dielectric and alters its electrical

10-7
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Fig. 10-8. A dielectric object in a
nonuniform fleld feels a force toward
regions of higher field strength.

properties, as well as causing some mechanical energy change in the dielectric.
Moving the conductors in a liquid does not change the liquid. The liquid moves
to a new place but its electrical characteristics are not changed.

Many older books on electricity start with the *“fundamental” law that the
force between two charges is

_ 492
= Tres®’ (10.29)

a point of view which is thoroughly unsatisfactory. For one thing, it is not true
in general; it is true only for a world filled with a liquid. Secondly, it depends on
the fact that « is a constant, which is only approximately true for most real materials.
It is much better to start with Coulomb’s law for charges in a vacuum, which is
always right (for stationary charges).

What does happen in a solid? This is a very difficult problem which has not
been solved, because it is, in a sense, indeterminate. If you put charges inside a
dielectric solid, there are many kinds of pressures and strains. You cannot deal
with virtual work without including also the mechanical energy required to com-
press the solid, and it is a difficult matter, generally speaking, to make a unique
distinction between the electrical forces and the mechanical forces due to the solid
material itself. Fortunately, no one ever really needs to know the answer to the
question proposed. He may sometimes want to know how much strain there is
going to be in a solid, and that can be worked out. But it is much more complicated
than the simple result we got for liquids.

A surprisingly complicated problem in the theory of dielectrics is the follow-
ing: Why does a charged object pick up little pieces of dielectric? If you comb your
hair on a dry day, the comb readily picks up small scraps of paper. If you thought
casually about it, you probably assumed the comb had one charge on it and the
paper had the opposite charge on it. But the paper is initially electrically neutral.
It hasn’t any net charge, but it is attracted anyway. It is true that sometimes the
paper will come up to the comb and then fly away, repelled immediately after it
touches the comb. The reason is, of course, that when the paper touches the comb,
it picks up some negative charges and then the like charges repel. But that doesn’t
answer the original question. Why did the paper come toward the comb in the
first place?

The answer has to do with the polarization of a dielectric when it is placed in
an electric field. There are polarization charges of both signs, which are attracted
and repelled by the comb. There is a net attraction, however, because the field
nearer the comb is stronger than the field farther away—the comb is not an infinite
sheet. Its charge is localized. A neutral piece of paper will not be attracted to
either plate inside the parallel plates of a capacitor. The variation of the field is
an essential part of the attraction mechanism.

As illustrated in Fig. 10-8, a dielectric is always drawn from a region of weak
field toward a region of stronger field. In fact, one can prove that for small objects
the force is proportional to the gradient of the square of the electric field. Why
does it depend on the square of the field? Because the induced polarization charges
are proportional to the fields, and for given charges the forces are proportional to
the field. However, as we have just indicated, there will be a net force only if the
square of the field is changing from point to point. So the force is proportional to
the gradient of the square of the field. The constant of proportionality involves,
among other things, the dielectric constant of the object, and it also depends upon
the size and shape of the object.

There is a related problem in which the force on a dielectric can be worked out
quite accurately. If we have a parallel-plate capacitor with a dielectric slab only
partially inserted, as shown in Fig. 10-9, there will be a force driving the sheet in.
A detailed examination of the force is quite complicated; it is related to nonuni-
formities in the field near the edges of the dielectric and the plates. However, if
we do not look at the details, but merely use the principle of conservation of energy,
we can easily calculate the force. We can find the force from the formula we de-
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rived earlier. Equation (10.28) is equivalent to

aU _ | V?acC
F=-% = T3

Ix (10.30)

We need only find out how the capacitance varies with the position of the dielectric
slab.

Let’s suppose that the total length of the plates is L, that the width of the plates
is W, that the plate separation and dielectric thickness are d, and that the distance
to which the dielectric has been inserted is x. The capacitance is the ratio of the
total free charge on the plates to the voltage between the plates. We have seen
above that for a given voltage ¥ the surface charge density of free charge is ke V/d.
So the total charge on the plates is

Q= E‘Z xW + e"V(L— X)W,
from which we get the capacitance:
C = 59;—V (kx + L — x). (10.31)
Using (10.30), we have
F, = —I;%—V & — 1) (10.32)

Now this equation is not particularly useful for anything unless you happen to
need to know the force in such circumstances. We only wished to show that the
theory of energy can often be used to avoid enormous complications in determining
the forces on dielectric materials—as there would be 1 the present case.

Our discussion of the theory of dielectrics has dealt only with electrical phe-
nomena, accepting the fact that the material has a polarization which is proportional
to the electric field. Why there is such a proportionality is perhaps of greater interest
to physics. Once we understand the origin of the dielectric constants from an atomic
point of view, we can use electrical measurements of the dielectric constants in
varying circumstances to obtain detailed information about atomic or molecular
structure. This aspect will be treated in part in the next chapter.
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