6

The Eleetrie Field in Various Circumstances

6-1 Equations of the electrostatic potential

This chapter will describe the behavior of the electric field in a number of
different circumstances. It will provide some experience with the way the electric
field behaves, and will describe some of the mathematical methods which are
used to find this field.

We begin by pointing out that the whole mathematical problem is the solution
of two equations, the Maxwell equations for electrostatics:

v E=", 6.1)
€0
v X E = 0. (6.2)

In fact, the two can be combined into a single equation. From the second equation,
we know at once that we can describe the field as the gradient of a scalar (see

Section 3-7):
E=— V¢ 6.3)

We may, if we wish, completely describe any particular electric field 1in terms
of its potential . We obtain the differential equation that ¢ must obey by sub-
stituting Eq. (6.3) into (6.1), to get

veove =" (6.4)

The divergence of the gradient of ¢ is the same as V2 operating on ¢:

2 2 2
Ve = Vi 0 9P 079
VoVe = V= ol et g (6.5)

so we write Eq. (6.4) as Vi — P 66)
€o

The operator V2 1s called the Laplacian, and Eq (6 6) 1s called the Poisson equa-

tion. The entire subject of electrostatics, from a mathematical point of view, 1s

merely a study of the solutions of the single equation (6.6). Once ¢ 1s obtained by

solving Eq. (6.6) we can find E immediately from Eq. (6.3).

We take up first the special class of problems in which p is given as a function
of x,y,z. In that case the problem 1s almost trivial, for we already know the
solution of Eq. (6.6) for the general case. We have shown that if p is known at
every point, the potential at pont (1) is

o(l) = / pR)dVy ©7)

471'60"12

where p(2) is the charge density, dV 5 is the volume element at point (2), and r;»
is the distance between points (1) and (2). The solution of the differential equation
(6.6) is reduced to an integration over space. The solution (6.7) should be especially
noted, because there are many situations in physics that lead to equations like

v? (something) = (something else),

and Eq. (6.7) 1s a prototype of the solution for any of these problems.

The solution of electrostatic field probiems is thus completely straightforward
when the positions of all the charges are known. Let’s sec how 1t works 1n a few
examples.
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Fig. 6-1. A dipole: two charges

+q and —q the distance d apart.
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Fig. 6~2. The water molecule H,O.
The hydrogen atoms have slightly less
than their share of the electron cloud; the
oxygen, slightly more.

6-2 The electric dipole

First, take two point charges, +q and —gq, separated by the distance d. Let
the z-axis go through the charges, and pick the origin halfway between, as shown
in Fig. 6-1. Then, using (4.24), the potential from the two charges is given by

#(x, y, z)
1 [ q + —9q
T dmeo [VIz — @22+ x2+y2 Vz+ @2 + x2 + y2

] . (68)

We are not going to write out the formula for the electric field, but we can always
calculate it once we have the potential. So we have solved the problem of two
charges.

There is an important special case in which the two charges are very close
together—which is to say that we are interested in the fields only at distances from
the charges large in comparison with their separation. We call such a close pair
of charges a dipole. Dipoles are very common.

A “dipole” antenna can often be approximated by two charges separated by a
small distance—if we don’t ask about the field too close to the antenna. (We are
usually interested in antennas with moving charges; then the equations of statics
do not really apply, but for some purposes they are an adequate approximation.)

More important perhaps, are atomic dipoles. If there is an electric field in
any material, the electrons and protons feel opposite forces and are displaced
relative to each other. In a conductor, you remember, some of the electrons
move to the surfaces, so that the field inside becomes zero. In an insulator the
electrons cannot move very far; they are pulled back by the attraction of the nu-
cleus. They do, however, shift a little bit. So although an atom, or molecule,
remains neutral in an external electric field, there is a very tiny separation of its
positive and negative charges and it becomes a microscopic dipole. If we are
interested in the fields of these atomic dipoles in the neighborhood of ordinary-
sized objects, we are normally dealing with distances large compared with the
separations of the pairs of charges.

In some molecules the charges are somewhat separated even in the absence
of external fields, because of the form of the molecule. In a water molecule, for
example, there is a net negative charge on the oxygen atom and a net positive
charge on each of the two hydrogen atoms, which are not placed symmetrically
but as in Fig. 6-2. Although the charge of the whole molecule is zero, there is a
charge distribution with a little more negative charge on one side and a little
more positive charge on the other. This arrangement is certainly not as simple
as two point charges, but when seen from far away the system acts like a dipole.
As we shall see a little later, the field at large distances is not sensitive to the
fine details.

Let’s look, then, at the field of two opposite charges with a small separation
d. If d becomes zero, the two charges are on top of each other, the two potentials
cancel, and there is no field. But if they are not exactly on top of each other, we
can get a good approximation to the potential by expanding the terms of (6.8) in
a power series in the small quantity d (using the binomial expansion). Keeping
terms only to first order in d, we can write

( —-g)zzzz—zd.

x2+y?P+ 2% = ri

2
(z—‘—zi) +x2+y2zr2—zd=r2(l—z;‘—:)s

1 1 1 ( zd)—”2
= ~=~{1 — = .
Viz— @2+ x2+y2 Nl — (zd/r2)] T r?

It is convenient to write

Then

and
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Using the binomial expansion again for [ — (zd/r2)]”Y2—and throwing away
terms with higher powers than the square of d—we get

1 1 zd
;(“rw)'

VE+ @R+ x2+ 2 T 5 72

The difference of these two terms gives for the potential

Similarly,

#(x,y,2) = = qd. 6.9

The potential, and hence the field, which is its derivative, is proportional to gd,
the product of the charge and the separation. This product is defined as the
dipole moment of the two charges, for which we will use the symbol p (do not
confuse with momentum!):

p = qd. 6.10)

Equation (6.9) can also be written as

1 pcosé
4mrey 12

o(x, p,z) = ’ (6.11)
since z/r = cos 0, where 6 is the angle between the axis of the dipole and the
radius vector to the point (x, y, z)—see Fig. 6-1. The potential of a dipole decreases
as 1/r2 for a given direction from the axis (whereas for a point charge it goes as
1/r). The electric field E of the dipole will then decrease as 1/r3.

We can put our formula into a vector form if we define p as a vector whose
magnitude is p and whose direction is along the axis of the dipole, pointing from
q— toward g,. Then

cosf = p-e, (6.12)

where e, 15 the unit radial vector (Fig. 6-3). We can also represent the point
(x, y, z) by r. Then

Dipole potential: 1 p-e 1 p-r

o(r) = (6.13)

dreg r2  4mey r3

This formula 1s valid for a dipole with any orientation and position if r represents
the vector from the dipole to the point of interest.

If we want the electric field of the dipole we can get it by taking the gradient
of ¢. For example, the z-component of the field 1s —d¢/9z. For a dipole oriented
along the z-axis we can use (6.9):

o _ _ p o(z\_ _ p (1 _32
9z ey 8z \r3) 47req \r3 r5 )’
or 3cos? 6 — 1
P cos” § —
: = Tre, 3 . 6.14)

The x- and y-components are

_ _p 3z - _p 3y
E. = 4rey 15 By = drey 15

These two can be combined to give one component directed perpendicular to the
z-axis, which we will call the transverse component E| :

EL=w/E3_+E3——p——3~Z~/x2+y2

T dareq 1S
or .
D 3cosfsiné

E, =
41req r3

(6.15)
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Fig. 6-4.
dipole.

The electric field of a

The transverse component £, is in the x-p plane and points directly away from
the axis of the dipole. The total field, of course, is

E=vVE + E.

The dipole field varies inversely as the cube of the distance from the dipole.
On the axis, at § = 0, it is twice as strong as at § = 90°. At both of these special
angles the electric field has only a z-component, but of opposite sign at the two
places (Fig. 6-4).

6-3 Remarks on vector equations

This is a good place to make a general remark about vector analysis. The
fundamental proofs can be expressed by elegant equations in a general form, but
in making various calculations and analyses 1t is always a good idea to choose
the axes in some convenient way. Notice that when we were finding the potential
of a dipole we chose the z-axis along the direction of the dipole, rather than at some
arbitrary angle. This made the work much easier. But then we wrote the equations
in vector form so that they would no longer depend on any particular coordinate
system. After that, we are allowed to choose any coordinate system we wish,
knowing that the relation 1s, in general, true. It clearly doesn’t make any sense to
bother with an arbitrary coordinate system at some complicated angle when you
can choose a neat system for the particular problem—provided that the result can
finally be expressed as a vector equation. So by all means take advantage of the
fact that vector equations are independent of any coordinate system.

On the other hand, if you are trying to calculate the divergence of a vector,
instead of just looking at V - E and wondering what 1t is, don’t forget that 1t can
always be spread out as

dE, dEy, + aEz.
ox ady 9z

If you can then work out the x-, y-, and z-components of the electric field and
differentiate them, you will have the divergence. There often seems to be a feeling
that there is something inelegant—some kind of defeat involved—in writing out
the components; that somehow there ought always to be a way to do everything
with the vector operators. There is often no advantage to it. The first time we
encounter a particular kind of problem, it usually helps to write out the components
to be sure we understand what is going on. There is nothing inelegant about put-
ting numbers into equations, and nothing inelegant about substituting the deriva-
tives for the fancy symbols. In fact, there is often a certain cleverness in doing
just that. Of course when you publish a paper in a professional journal it will look
better—and be more easily understood—if you can write everything in vector form.
Besides, it saves print.

6-4 The dipole potential as a gradient

We would like to point out a rather amusing thing about the dipole formula,
Eq. (6.13). The potential can also be written as

I |
6= g V<;). 6.16)

If you calculate the gradient of 1/r, you get

and Eq. (6.16) is the same as Eq. (6.13).

How did we think of that? We just remembered that e,/r? appeared 1n the
formula for the field of a point charge, and that the field was the gradient of a
potential which has a 1/7 dependence.
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There is a physical reason for being able to write the dipole potential in the
form of Eq. (6.16). Suppose we have a point charge ¢ at the origin. The potential
at the point P at (x, y, z) is

b0 =

~=

(Let’s leave off the 1/4me, while we make these arguments; we can stick it in at
the end.) Now if we move the charge +q up a distance Az, the potential at P will
change a little, by, say, A¢,. How much is A¢? Well, it is just the amount that
the potential would change if we were to Jeave the charge at the origin and move
P downward by the same distance Az (Fig. 6-5). That is,

where by Az we mean the same as d/2. So, using ¢ = ¢/r, we have that the po-
tential from the positive charge is

] d
br =7 = ?a_z(%) 3 6.17)
Applying the same reasoning for the potential from the negative charge,

we can write
-9, 9 (-9)\4

o = r+az<r>2 (6.18)

The total potential is the sum of (6.17) and (6.18):

9

$=dr+o_ = —5 (ij)d (6.19)

d (1
~ (7) 9d.

For other orientation of the dipole, we could represent the displacement of
the positive charge by the vector Ar,. We should then write Eq. (6.17) as

Apy = —Vog-Ary,

where Ar is then to be replaced by d/2. Completing the derivation as before,
Eq. (6.19) would then become
1Y,

This is the same as Eq. (6.16), if we replace gd = p, and put back the 1/4me,.
Looking at it another way, we see that the dipole potential, Eq. (6.13), can be
interpreted as

o= —p-Vd,, (6.20)

where ®, = 1/4weqr is the potential of a unit point charge.

Although we can always find the potential of a known charge distribution by
an integration, it is sometimes possible to save time by getting the answer with a
clever trick. For example, one can often make use of the superposition principle.
If we are given a charge distribution that can be made up of the sum of two dis-
tributions for which the potentials are already known, it is easy to find the de-
sired potential by just adding the two known ones. One example of this is our
derivation of (6.20), another is the following.

Suppose we have a spherical surface with a distribution of surface charge
that varies as the cosine of the polar angle. The integration for this distribution is
fairly messy. But, surprisingly, such a distribution can be analyzed by super-
position. For imagine a sphere with a uniform volume density of positive charge,
and another sphere with an equal uniform volume density of negative charge,
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Fig. 6~6. Two v

spheres, superposed with a slight displace-
ment, are equivalent to a nonuniform —_——— —_— - e — -
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— — e— — — —— — —

niformly  charged
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originally superposed to make a neutral—that 1s, uncharged—sﬁhere. If the
positive sphere is then displaced slightly with respect to the negative sphere, the
body of the uncharged sphere would remain nentral, but a little positive charge will
appear on one side, and some negative charg. will appear on the opposite side,
as illustrated in Fig. 6-6. If the relative displacement of the two spheres 1s small,
the net charge is equivalent to a surface charge (on a spherical surface), and the
surface charge density will be proportional to the cosine of the polar angle.

Now if we want the potential from this distribution, we do not need to do an
mtegral. We know that the potential from each of the spheres of charge 1s—for
points outside the sphere—the same as from a point charge. The two displaced
spheres are Itke two point charges; the potential 1s just that of a dipole.

In this way you can show that a charge distribution on a sphere of radius a
with a surface charge density

0 = 0pcCcosf
produces a field outside the sphere which is just that of a dipole whose moment is

_ Amoed®
- 3

It can also be shown that inside the sphere the field is constant, with the value

_ 9o
360

If 6 is the angle from the positive z-axis, the electric field inside the sphere 1s 1n the
negative z-direction. The example we have just considered 1s not as artificial as
it may appear; we will encounter it again in the theory of dielectrics.

6-5 The dipole approximation for an arbitrary distribution

The dipole field appears in another circumstance both interesting and im-
portant. Suppose that we have an object that has a complicated distribution of
charge—like the water molecule (Fig. 6-2)—and we are interested only in the
fields far away. We will show that 1t is possible to find a relatively simple expression
for the fields which is appropriate for distances large compared with the size of
the object.

We can think of our object as an assembly of point charges ¢, 1n a certain limited
region, as shown 1n Fig. 6-7. (We can, later, replace g, by p dV if we wish.) Let
each charge g, be located at the displacement d, from an origin chosen somewhere

1
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Fig. 6~7. Computation of the po- o \y
tential at a point P at a large distance

from a set of charges.
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in the middle of the group of charges. What is the potential at the point P, located
at R, where R is much larger than the maximum d,? The potential from the
whole collection is given by

_ 1 4
b= g i 7 (6.21)

where r, is the distance from P to the charge ¢, (the length of the vector R — d.).
Now if the distance from the charges to P, the point of observation, is enormous,
each of the r,’s can be approximated by R. Each term becomes ¢,/R, and we
can take 1/R out as a factor in front of the summation. This gives us the simple
result {1

_ _ 9
¢ = 47T€0 R Z 4. = 47I'€0R’ (622)

where Q is just the total charge of the whole object. Thus we find that for points
far enough from any lump of charge, the lump looks like a point charge. The
result is not too surprising.

But what if there are equal numbers of positive and negative charges? Then
the total charge Q of the object is zero. This 1s not an unusual case; in fact, as we
know, objects are usually neutral. The water molecule is neutral, but the charges
are not all at one point, so if we are close enough we should be able to see some
effects of the separate charges. We need a better approximation than (6.22) for
the potential from an arbitrary distribution of charge in a neutral object. Equation
(6.21) is still precise, but we can no longer just set », = R. We need a more accu-
rate expression for r,. If the point P is at a large distance, r, will differ from R to
an excellent approximation by the projection of d on R, as can be seen from
Fig. 6-7. (You should imagine that P is really farther away than is shown in the
figure.) In other words, if e, is the unit vector in the direction of R, then our next
approximation to 7, is

r.= R —d,e,. (6.23)
‘What we really want is 1/r,, which, since d, << R, can be written to our approxima-
tion as i 1 P
o 2 v ery
R (1 + R ) (6.24)

Substituting this in (6.21), we get that the potential is

_ 1 Q dz'e'r >
¢‘&T%(F+Zq’7r+"' ' (6:25)

The three dots indicate the terms of higher order 1n d/R that we have neglected.
These, as well as the ones we have already obtained, are successive terms in a Taylor
expansion of 1/r, about 1/R in powers of d,/R.

The first term in (6.25) is what we got before; it drops out if the object 1s
neutral. The second term depends on 1/R?2, just as for a dipole. In fact, if we define

pP=24q4d (6.26)

as a property of the charge distribution, the second term of the potential (6.25) is

6= L P e (6.27)

precisely a dipole potential. The quantity p is called the dipole moment of the
distribution. It is a generalization of our earlier definition, and reduces to it for
the special case of two point charges.

Our result is that, far enough away from any mess of charges that 1s as a
whole neutral, the potential is a dipole potential. It decreases as 1/R? and varies
as cos f—and its strength depends on the dipole moment of the distribution of
charge. It is for these reasons that dipole fields are important, since the sumple
case of a pair of point charges is quite rare.
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Fig. 6—-8. The field lines and equipo-
tentials for two point charges.

CONDUCTOR

/.

Fig. 6-9. The field outside a con-
ductor shaped like the equipotential A
of Fig. 6-8.

The water molecule, for example, has a rather strong dipole moment. The
electric fields that result from this moment are responsible for some of the im-
portant properties of water. For many molecules, for example CO,, the dipole
moment vanishes because of the symmetry of the molecule. For them we should
expand still more accurately, obtaining another term in the potential which de-
creases as 1/R®, and which is called a quadrupole potential. We will discuss such
cases later.

6-6 The fields of charged conductors

We have now finished with the examples we wish to cover of situations in
which the charge distributions is known from the start. It has been a problem
without serious complications, involving at most some integrations. We turn
now to an entirely new kind of problem, the determination of the fields near
charged conductors.

Suppose that we have a situation 1in which a total charge Q is placed on an
arbitrary conductor. Now we will not be able to say exactly where the charges
are. They will spread out in some way on the surface. How can we know how
the charges have distributed themselves on the surface? They must distribute
themselves so that the potential of the surface is constant. If the surface were not
an equipotential, there would be an electric field inside the conductor, and the
charges would keep moving until 1t became zero. The general problem of this
kind can be solved in the following way. We guess at a distribution of charge and
calculate the potential. If the potential turns out to be constant everywhere on
the surface, the problem is finished. If the surface 1s not an equipotential, we
have guessed the wrong distribution of charges, and should guess again—hopefully
with an improved guess! This can go on forever, unless we are judicious about
the successive guesses.

The question of how to guess at the distribution 1s mathematically difficult.
Nature, of course, has time to do 1t; the charges push and pull until they all balance
themselves. When we try to solve the problem, however, 1t takes us so long to
make each trial that that method is very tedious With an arbitrary group of
conductors and charges the problem can be very complicated, and in general 1t
cannot be solved without rather elaborate numerical methods. Such numerical
computations, these days, are set up on a computing machine that will do the
work for us, once we have told it how to proceed.

On the other hand, there are a lot of little practical cases where it would
be nice to be able to find the answer by some more direct method—without having
to write a program for a computer. Fortunately, there are a number of cases where
the answer can be obtained by squeezing it out of Nature by some trick or other.
The first trick we will describe involves making use of solutions we have already
obtained for situations in which charges have specified locations.

6-7 The method of images

We have solved, for example, the field of two point charges. Figure 6-8
shows some of the field lines and equipotential surfaces we obtained by the com-
putations in Chapter 5. Now consider the equipotential surface marked 4. Sup-
pose we were to shape a thin sheet of metal so that it just fits this surface. If we
place it right at the surface and adjust its potential to the proper value, no one
would ever know it was there, because nothing would be changed.

But notice! We have really solved a new problem. We have a situation in
which the surface of a curved conductor with a given potential is placed near a
point charge. If the metal sheet we placed at the equipotential surface eventually
closes on itself (or, in practice, if it goes far enough) we have the kind of situation
considered in Section 5-10, in which our space is divided into two regions, one
inside and one outside a closed conducting shell. We found there that the fields in
the two regions are quite independent of each other. So we would have the same
fields outside our curved conductor no matter what 1s inside. We can even fill up
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the whole inside with conducting material. We have found, therefore, the fields
for the arrangement of Fig. 6-9. In the space outside the conductor the field is
just like that of two point charges, as in Fig. 6-8. Inside the conductor, it is zero
Also—as it must be—the electric field just outside the conductor is normal to
the surface.

Thus we can compute the fields in Fig. 6-9 by computing the field due to ¢
and to an mmagmary point charge —q at a suitable point. The point charge we
“imagine”’ existing behind the conducting surface is called an image charge.

In books you can find long lists of solutions for hyperbolic-shaped conductors
and other complicated looking things, and you wonder how anyone ever solved
these terrible shapes. They were solved backwards! Someone solved a simple
problem with given charges. He then saw that some equipotential surface showed
up 1n a new shape, and he wrote a paper in which he pointed out that the field
outside that particular shape can be described in a certain way.

6-8 A point charge near a conducting plane

As the simplest application of the use of this method, let’s make use of the
plane equipotential surface B of Fig. 6-8. With 1t, we can solve the problem of a
charge in front of a conducting sheet. We just cross out the left-hand half of the
picture. The field lines for our solution are shown in Fig. 6-10. Notice that the
plane, since 1t was halfway between the two charges, has zero potential. We have
solved the problem of a positive charge next to a grounded conducting sheet.

We have now solved for the total field, but what about the real/ charges that
are responsible for it? There are, in addition to our positive point charge, some
induced negative charges on the conducting sheet that have been attracted by the
positive charge (from large distances away). Now suppose that for some technical
reason—or out of curiosity—you would like to know how the negative charges
are distributed on the surface. You can find the surface charge density by using
the result we worked out 1n Section 5-6 with Gauss’ theorem. The normal com-
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Fig. 6—~10. The field of a charge near a plane conducting surface, found by the
method of images.
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Fig. 6-11. The point charge q in-
duces charges on a grounded conducting
sphere whose fields are those of an
image charge q’ placed at the point
shown.

ponent of the electric field just outside a conductor is equal to the density of surface
charge o divided by €,. We can obtain the density of charge at any point on the
surface by working backwards from the normal component of the electric field at
the surface. We know that, because we know the field everywhere.

Consider a point on the surface at the distance p from the point directly be-
neath the positive charge (Fig. 6-10). The electric field at this point is normal to
the surface and is directed into 1t. The component normal to the surface of the
field from the positive point charge is

1 aq

B = e @ T o 2

To this we must add the electric field produced by the negative image charge. That
just doubles the normal component (and cancels all others), so the charge density
o at any point on the surface is

o(p) = €oblp) = — o S (629)

4r(a? +’pz):f/z :

An interesting check on our work 1s to integrate o over the whole surface. We
find that the total induced charge 1s —g, as 1t should be. '

One further question: Is there a force on the point charge? Yes, because there
1s an attraction from the induced negative surface charge on the plate. Now that
we know what the surface charges are (from Eq. (6.29)), we could compute the
force on our positive point charge by an integral. But we also know that the force
acting on the positive charge is exactly the same as 1t would he with the negative
image charge instead of the plate, because the fields in the neighborhood are the
same in both cases. The point charge feels a force toward the plate whose magni-
tude is

1 q°
= re Qi (6.30)
We have found the force much more easily than by integrating over all the nega-
tive charges.

6-9 A point charge near a conducting sphere

What other surfaces besides a plane have a simple solution? The next most
simple shape 1s a sphere. Let’s find the fields around a metal sphere which has a
point charge g near it, as shown in Fig. 6-11. Now we must look for a simple
physical situation which gives a sphere for an equipotential surface. If we look
around at problems people have already solved, we find that someone has noticed
that the field of two unequal point charges has an equipotential that is a sphere
Aha' If we choose the location of an image charge—and pick the right amount
of charge—maybe we can make the equipotential surface fit our sphere. Indeed,
it can be done with the following prescription.

Assume that you want the equipotential surface to be a sphere of radius a
with its center at the distance b from the charge ¢. Put an image charge of strength
q' = —q(a/b) on the line from the charge to the center of the sphere, and at a
distance a?/b from the center. The sphere will be at zero potential.

The mathematical reason stems from the fact that a sphere is the locus of all
ponts for which the distances from two points are 1n a constant ratio  Referring
to Fig. 6-11, the potential at P from ¢ and ¢’ is proportional to

’
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The potential will thus be zero at all points for which
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If we place ¢’ at the distance a®/b from the center, the ratio r,/r has the constant
value a/b. Then if

’

q

a
i~ b (6.31)
the sphere 1s an equipotenual. Its potenual 1s, in fact, zero.

What happens 1f we are mterested 1in a sphere that 1s not at zero potential?
That would be so only 1f 1ts total charge happens accidentally to be g’ Of course if 1t
is grounded, the charges induced on it would have to be just that. But what 1f 1t
is insulated, and we have put no charge on 1t? Or if we know that the total charge
Q has been put on 1t? Or just that 1t has a given potential not equal to zero? All
these questions are easily answered. We can always add a point charge g’/ at the
center of the sphere  The sphere still remains an equipotential by superposition:
only the magnitude of the potential will be changed.

If we have, for example, a conducting sphere which 1s 1mitially uncharged
and nsulated from everything else, and we bring near to it the positive pomnt
charge ¢, the total charge of the sphere will remain zero. The solution 15 found
by using an image charge ¢’ as before, but, in addition. adding a charge ¢’ at the
center of the sphere, choosing

q” = —'ql = %q. (6.32)

The fields everywhere outside the sphere are given by the superposition of the
fields of ¢, ¢’, and ¢”’. The problem is solved.

We can see now that there will be a force of attraction between the sphere
and the point charge g. It 1s not zero even though there 1s no charge on the neutral
sphere. Where does the attraction come from? When you bring a positive charge
up to a conducting sphere, the positive charge attracts negative charges to the
side closer to itself and leaves positive charges on the surface of the far side. The
attraction by the negative charges exceeds the repulsion from the positive charges,
there 1s a net attraction. We can find out how large the attraction 1s by computing
the force on g 1n the field produced by ¢’ and ¢”’. The total force is the sum of the
attractive force between g and a charge ¢ = —(a/b)q. at the distance b — (a?/b),
and the repulsive force between ¢ and a charge ¢’ = +(a/b)q at the distance b.

Those who were entertained in childhood by the baking powder box which
has on its label a picture of a baking powder box which has on 1ts label a picture
of a baking powder box which has .  may be interested 1n the following problem.
Two equal spheres, one with a total charge of 4+ Q and the other with a total charge
of — @, are placed at some distance from each other. What 1s the force between
them? The problem can be solved with an infinite number of 1mages. One first
approximates each sphere by a charge at its center. These charges will have image
charges in the other sphere. The image charges will have images, etc , etc, etc
The solution 1s like the picture on the box of baking powder—and 1t converges
pretty fast.

6-10 Condensers; parallel plates

We take up now another kind of a problem involving conductors. Consider
two large metal plates which are parallel to each other and separated by a distance
small compared with therr width. Let’s suppose that equal and opposite charges
have been put on the plates. The charges on each plate will be attracted by the
charges on the other plate, and the charges will spread out uniformly on the inner
surfaces of the plates. The plates will have surface charge densities +o0 and —o,
respectively, as in Fig. 6-12. From Chapter 5 we know that the field between the
plates 15 o/€,, and that the field outside the plates 1s zero. The plates will have
different potentials ¢ and ¢,. For convenience we will call the difference V' 1t
1s often called the **voltage™:

¢1 — ¢ = V.
(You will find that sometimes people use V for the potential, but we have chosen
to use ¢.)
6~11
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Fig. 6-13. The electric field near the
edge of two parallel plates.

The potential difference V is the work per unit charge required to carry a
small charge from one plate to the other, so that

veEi=2a-2 o (6.33)

where = Q 1s the total charge on each plate, 4 1s the area of the plates, and d is
the separation.

We find that the voltage is proportional to the charge. Such a proportionality
between V and Q 1s found for any two conductors in space if there 15> a plus charge
on one and an equal minus charge on the other. The potential difference between
them—that is, the voltage—will be proportional to the charge. (We are assuming
that there are no other charges around.)

Why this proportionality? Just the superposition principle. Suppose we
know the solution for one set of charges, and then we superimpose two such
solutions. The charges are doubled, the fields are doubled, and the work done 1n
carrying a unit charge from one point to the other is also doubled. Therefore the
potential difference between any two points is proportional to the charges. In
particular, the potential difference between the two conductors 1s proportional
to the charges on them. Someone originally wrote the equation of proportionality
the other way. That 1s, they wrote

Q= cCv,

where C1s a constant This coefficient of proportionality 1s called the capucity,
and such a system of two conductors 1s called a condenser.* For our parallel-plate
condenser

C = 9;']4 (parallel plates). (6.34)

This formula is not exact, because the field 15 not really uniform everywhere
between the plates, as we assumed. The field does not just suddenly quit at the
edges, but really 1s more as shown in Fig 6-13 The total charge 1s not o4, as we
have assumed—there 1s a little correction for the effects at the edges. To find out
what the correction is, we will have to calculate the field more exactly and find
out just what does happen at the edges. That 1s a complicated mathematical
problem which can, however, be solved by techniques which we will not describe
now. The result of such calculations 1s that the charge density rises somewhat
near the edges of the plates This means that the capacity of the plates 1s a little
higher than we computeci. [A very good approximation for the capacity 1s ob-
tained 1f we use Eq. (6.34) but take for A the area one would get if the plates were
extended artificially by a distance 3/8 of the separation between the plates.]

We have talked about the capacity for two conductors only. Sometimes
people talk about the capacity of a single object. They say, for instance, that the
capacity of a sphere of radius a is 4mwepa. What they imagine 1s that the other
terminal 1s another sphere of infimite radius—that when there is a charge +Q on
the sphere, the opposite charge, — Q, is on an infinite sphere. One can also speak
of capacities when there are three or more conductors, a discussion we shall,
however, defer.

Suppose that we wish to have a condenser with a very large capacity We
could get a large capacity by taking a very big area and a very small separation
We could put waxed paper between sheets of aluminum foil and roll 1t up. (If
we seal it 1n plastic, we have a typical radio-type condenser.) What good 1s 1t?
It 1s good for storing charge. If we try to store charge on a ball, for example, its
potential rises rapidly as we charge 1t up. It may even get so high that the charge
begins to escape into the air by way of sparks But if we put the same charge on a
condenser whose capacity 1s very large, the voltage developed across the con-
denser will be small.

* Some people think the words “capacitance” and “capacitor™ should be used, instead
of “capacity” and *‘condensor ° We have decided to use the older terminology, because
it 1s still more commonly heard in the physics laboratory—even 1f not in textbooks'
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In many applications in electronic circuits, it is useful to have something
which can absorb or deliver large quantities of charge without changing its po-
tential much. A condenser (or *“capacitor’) does just that. There are also many
applications in electronic instruments and in computers where a condenser 18
used to get a specified change in voltage in response to a particular change in
charge. We have seen a similar application 1n Chapter 23, Vol. I, where we de-
scribed the properties of resonant circuits.

From the definition of C, we see that its unit 1s one coul/volt. This unit is
also called a farad. Looking at Eq. (6.34), we see that one can express the units
of €p as farad/meter, which is the unit most commonly used. Typical sizes of
condensers run from one micro-microfarad (= 1 picofarad) to millifarads. Small
condensers of a few picofarads are used in high-frequency tuned circuits, and
capacities up to hundreds or thousands of microfarads are found in power-supply
filters. A pair of plates one square centimeter 1n area with a one millimeter separa-
tion have a capacity of roughly one micro-microfarad.

6-11 High-voltage breakdown

We would like now to discuss qualitatively some of the characteristics of the
fields around conductors. If we charge a conductor that is not a sphere, but one
that has on it a point or a very sharp end, as, for example, the object sketched
m Fig. 6-14, the field around the point is much higher than the field in the other
regions. The reason is, qualitatively, that charges try to spread out as much as
possible on the surface of a conductor, and the tip of a sharp point is as far away
as it 1s possible to be from most of the surface. Some of the charges on the plate
get pushed all the way to the tip. A relauvely small amount of charge on the tip
can still provide a large surface density; a high charge density means a high field
just outside.

One way to see that the field is highest at those places on a conductor where
the radius of curvature is smallest is to consider the combination of a big sphere
and a little sphere connected by a wire, as shown in Fig. 6-15. It is a somewhat
idealized version of the conductor of Fig. 6~14. The wire will have little influence
on the fields outside; it is there to keep the spheres at the same potential. Now,
which ball has the biggest field at its surface? If the ball on the left has the radius
a and carries a charge Q, 1ts potential is about

1 0

471'60 a

¢ =

(Of course the presence of one ball changes the charge distribution on the other,
so that the charges are not really spherically symmetric on either. But if we are
interested only in an estimate of the fields, we can use the potential of a spherical
charge.) If the smaller ball, whose radius is b, carries the charge ¢, its potential
is about {

- 471'60

2

S

But ¢1 = ¢, s0

£_1.
a b
On the other hand, the field at the surface (see Eq. 5.8) is proportional to the
surface charge density, which 1s like the total charge over the radius squared.
We get that
E. _ _Q_/ﬁ"j _b. (6.35)
Eb q/b‘Z a )
Therefore the field is higher at the surface of the small sphere. The fields are in the
inverse proportion of the radu.

This result is technically very important, because air will break down if the
electric field is too great. What happens 1s that a loose charge (electron, or ion)
somewhere in the air is accelerated by the field, and if the field is very great, the
charge can pick up enough speed before it hits another atom to be able to knock an
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Fig. 6-14. The electric field near a
sharp point on a conductor is very high.

Fig. 6~15. The field of a pointed
object can be approximated by that of
two spheres at the same potential.
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Fig. 6-16. Field-emission microscope.

Fig. 6~17. Image produced by a
field-emission microscope. [Courtesy of
Erwin W. Mueller, Research Prof. of
Physics, Pennsylvania State University.]

electron off that atom. As a result, more and more ions are produced. Their
motion constitutes a discharge, or spark. If you want to charge an object to a
high potential and not have it discharge itself by sparks in the air, you must be
sure that the surface is smooth, so that there is no place where the field is ab-
normally large.

6-12 The field-emission microscope

There 1s an interesting application of the extremely high electric field which
surrounds any sharp protuberance on a charged conductor. The field-emission
microscope depends for its operation on the high fields produced at a sharp metal
point.* Itis built in the following way. A very fine needle, with a tip whose diameter
is about 1000 angstroms, is placed at the center of an evacuated glass sphere (Fig.
6-16.) The inner surface of the sphere is coated with a thin conducting layer of
fluorescent material, and a very high potential difference 1s applied between the
fluorescent coating and the needle.

Let’s first consider what happens when the needle is negative with respect to
the fluorescent coating. The field lines are highly concentrated at the sharp point.
The electric field can be as high as 40 million volts per centimeter. In such
intense fields, electrons are pulled out of the surface of the needle and accelerated
across the potential difference between the needle and the fluorescent layer. When
they arrive there they cause light to be emitted, just as in a television picture tube.

The electrons which arrive at a given point on the fluorescent surface are, to
an excellent approximation, those which leave the other end of the radial field line,
because the electrons will travel along the field line passing from the pont to the
surface. Thus we see on the surface some kind of an image of the tip of the needle.
More precisely, we see a picture of the emissivity of the surface of the needle—that
1s the ease with which electrons can leave the surface of the metal tip. If the resolu-
tion were high enough, one could hope to resolve the positions of the individual
atoms on the tip of the needle. With electrons, this resolution 1s not possible for
the following reasons. First, there is quantum-mechanical diffraction of the
electron waves which blurs the image. Second, due to the internal motions of the
electrons 1n the metal they have a small sideways initial velocity when they leave
the needle, and this random transverse component of the velocity causes some
smearing of the image. The combination of these two effects limits the resolution
to 25 A or so.

If, however, we reverse the polarity and introduce a small amount of helium
gas 1nto the bulb, much higher resolutions are possible. When a helium atom col-
lides with the tip of the needle, the intense field there strips an electron off the
helium atom, leaving it positively charged. The helium ion 1s then accelerated
outward along a field line to the fluorescent screen. Since the helium ion is so much
heavier than an electron, the quantum-mechanical wavelengths are much smaller.
If the temperature 1s not too high, the effect of the thermal velocities is also smaller
than in the electron case. With less smearing of the image a much sharper picture
of the point is obtained. It has been possible to obtain magnifications up to
2,000,000 times with the positive ion field-emission microscope—a magnification
ten times better than is obtained with the best electron microscope.

Figure 6-17 is an example of the results which were obtained with a field-
ion microscope, using a tungsten needle. The center of a tungsten atom ionizes
a helium atom at a shightly different rate than the spaces between the tungsten
atoms. The pattern of spots on the fluorescent screen shows the arrangement of
the individual atoms on the tungsten tip. The reason the spots appear 1n rings can
be understood by visualizing a large box of balls packed in a rectangular array,
representing the atoms in the metal. If you cut an approximately spherical section
out of this box, you will see the ring pattern characteristic of the atomic structure.
The field-ion microscope provided human beings with the means of seeing atoms
for the first ime. This is a remarkable achievement, considering the simplicity of
the instrument.

* See E. W. Mueller: “The field-ion microscope,” Advances m Electronics and Electron
Physics, 13, 83-179 (1960). Academic Press, New York
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