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Electrostaties

4-1 Statics

We begin now our detailed study of the theory of electromagnetism. All of
electromagnetism is contained in the Maxwell equations.

Maxwell’s equations:
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The situations that are described by these equations can be very complicated.
We will consider first relatively simple situations, and learn how to handle them
before we take up more complicated ones. The easiest circumstance to treat is one
in which nothing depends on the time—called the staric case. All charges are
permanently fixed in space, or if they do move, they move as a steady flow in a
circuit (so p and j are constant in time). In these circumstances, ali of the terms in
the Maxwell equations which are time derivatives of the field are zero. In this
case, the Maxwell equations become:

Electrostatics:
v E=2, (4.5)
€p
vV X E=0. 4.6)
Magnetostatics:
_
VXB=_5 @.7
v-B=0. 4.8)

You will notice an interesting thing about this set of four equations. It can
be separated into two pairs. The electric field E appears only in the first two, and
the magnetic field B appears only in the second two. The two fields are not inter-
connected. This means that electricity and magnetism are distinct phenomena so
long as charges and currents are static. The interdependence of E and B does not
appear until there are changes in charges or currents, as when a condensor is
charged, or a magnet moved. Only when there are sufficiently rapid changes, so
that the time derivatives in Maxwell’s equations become significant, will £ and B
depend on each other.

Now if you look at the equations of statics you will see that the study of the
two subjects we call electrostatics and magnetostatics is ideal from the point of
view of learning about the mathematical properties of vector fields. Electrostatics
is a neat example of a vector field with zero curl and a given divergence. Magnet-
ostatics is a neat example of a field with zero divergence and a given curl. The more
conventional—and you may be thinking, more satisfactory—way of presenting
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the theory of electromagnetism is to start first with electrostatics and thus to learn
about the divergence. Magnetostatics and the curl are taken up later. Finally,
electricity and magnetism are put together. We have chosen to start with the
complete theory of vector calculus. Now we shall apply it to the special case of
electrostatics, the field of E given by the first pair of equations.

We will begin with the simplest situations—ones in which the positions of all
charges are specified. If we had only to study electrostatics at this level (as we
shall do in the next two chapters), life would be very simple—in fact, almost
trivial. Everything can be obtained from Coulomb’s law and some integration,
as you will see. In many real electrostatic problems, however, we do not know,
initially, where the charges are. We know only that they have distributed them-
selves in ways that depend on the properties of matter. The positions that the
charges take up depend on the E field, which in turn depends on the positions of
the charges. Then things can get quite complicated. If, for instance, a charged
body is brought near a conductor or insulator, the electrons and protons in the
conductor or insulator will move around. The charge density p in Eq. (4.5) may
have one part that we know about, from the charge that we brought up; but there
will be other parts from charges that have moved around in the conductor. And
all of the charges must be taken into account. One can get into some rather subtle
and interesting problems. So although this chapter is to be on electrostatics, it will
not cover the more beautiful and subtle parts of the subject. It will treat only the
situation where we can assume that the positions of all the charges are known.
Naturally, you should be able to do that case before you try to handle the other
ones.

4-2 Coulomb’s law; superposition

It would be logical to use Egs. (4.5) and (4.6) as our starting points. It will
be easier, however, if we start somewhere else and come back to these equations.
The results will be equivalent. We will start with a law that we have talked about
before, called Coulomb’s law, which says that between two charges at rest there is
a force directly proportional to the product of the charges and inversely propor-
tional to the square of the distance between. The force is along the straight line
from one charge to the other.

Coulomb’s law: 1 g9
Fi = grg 1, o = @

F, is the force on charge ¢,, e, is the unit vector in the direction to q; from g,
and r , is the distance between ¢, and g,. The force F; on g4 is equal and opposite
to F 1.

The constant of proportionality, for historical reasons, is written as 1/4me,.
In the system of units which we use—the mks system—it is defined as exactly
107 times the speed of light squared. Now since the speed of light is approxi-
mately 3 X 108 meters per second, the constant is approximately 9 X 109, and
the unit turns out to be newton-meter? per coulomb? or volt-meter per coulomb.

1
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1077%¢?  (by definition)
9.0 X 10° (by experiment). (4.10)

Il

Unit: newton-meter?/coulomb?,
or volt-meter/coulomb.

When there are more than two charges present—the only really interesting
times—we must supplement Coulomb’s law with one other fact of nature: the
force on any charge is the vector sum of the Coulomb forces from each of the other
charges. This fact is called “the principle of superposition.” That’s all there is to
electrostatics. If we combine the Coulomb law and the principle of superposition,
there is nothing else. Equations (4.5) and (4.6)—the electrostatic equations—say
no more and no less.
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When applying Coulomb’s law, it is convenient to introduce the idea of an
electric field. We say that the field E(1) is the force per unit charge on g, (due to
all other charges). Dividing Eq. (4.9) by g1, we have, for one other charge besides

q1
1 g»

ED = 77 72,

€1s. (4.11)

Also, we consider that E(1) describes something about the point (1) even if ¢,
were not there—assuming that all other charges keep their same positions. We
say: E(1) is the electric field at the point (1).

The electric field E is a vector, so by Eq. (4.11) we really mean three equations
—one for each component. Writing out explicitly the x-component, Eq. (4.11)
means

_ 4 X1 — X2
Elou 020 = o [ = % T O = 720 F i = 2P

(4.12)

and similarly for the other components.

If there are many charges present, the field E at any point (1) is a sum of the
contributions from each of the other charges. Each term of the sum will look like
(4.11) or (4.12). Letting g; be the magnitude of the jth charge, and r,, the dis-
placement from g, to the point (1), we write

E) =Y — L, (4.13)
) 0

Which means, of course,

= 1 g;(x1 — x;)
By i) = X G = w0l 7 01 — 9 ¥ G = myps 419

and so on.

Often it is convenient to ignore the fact that charges come in packages like
electrons and protons, and think of them as being spread out in a continuous smear
—or in a “distribution,” as it is called. This is O.K. so long as we are not interested
in what is happening on too small a scale. We describe a charge distribution by
the ‘“charge density,” p(x, y, z). If the amount of charge in a small volume AV,
located at the point (2) is Ags, then p is defined by

Agz = p(2) AV>. (4.15)

To use Coulomb’s law with such a description, we replace the sums of Egs.
(4.13) or (4.14) by integrals over all volumes containing charges. Then we have

_ 1 pR)ei2 dVs

E() = 5 f e (4.16)
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Some people prefer to write
re

€12 = —— >
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where r,2 is the vector displacement fo (1) from (2), as shown in Fig. 4-1. The
integral for E is then written as

E) = . / prizdVs “@17)
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When we want to calculate something with these integrals, we usually have to
write them out in explicit detail. For the x-component of either Eq. (4.16) or
(4.17), we would have

— (x1 — x2)p(x2, y2, 22) dxy dys dzy .
Bz = '( dmegl(xy — x2)2 + (1 — y2)* + (21 — 22)*P32 (4.18)
8space
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Fig. 4—1. The electric field E at
point (1), from a charge distribution, is
obtained from an integral over the
distribution. Point (1) could also be inside
the distribution,



one path

‘another

path
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Fig. 4-2. The work done in carrying
a charge from a to b is the negative of
the integral of F-ds along the path
taken.

We are not going to use this formula much. We write it here only to empha-
size the fact that we have completely solved all the electrostatic problems in which
we know the locations of all of the charges. Given the charges, what are the fields?
Answer: Do this integral. So there is nothing to the subject; it is just a case of
doing complicated integrals over three dimensions—strictly a job for a computing
machine!

With our integrals we can find the fields produced by a sheet of charge, from
a line of charge, from a spherical shell of charge, or from any specified distribution.
It is important to realize, as we go on to draw field lines, to talk about potentials,
or to calculate divergences, that we already have the answer here. It is merely a
matter of it being sometimes easier to do an integral by some clever guesswork
than by actually carrying it out. The guesswork requires learning all kinds of
strange things. In practice, it might be easier to forget trying to be clever and al-
ways to do the integral directly instead of being so smart. We are, however, going
to try to be smart about it. We shall go on to discuss some other features of the
electric field.

4-3 Electric potential

First we take up the idea of electric potential, which is related to the work done
in carrying a charge from one point to another. There is some distribution of
charge, which produces an electric field. We ask about how much work it would
take to carry a small charge from one place to another. The work done against
the electrical forces in carrying a charge along some path is the negative of the com-
ponent of the electrical force in the direction of the motion, integrated along the
path. If we carry a charge from point a to point b,

b
- fra

where F is the electrical force on the charge at each point, and ds is the differential
vector displacement along the path. (See Fig. 4-2.)

It is more interesting for our purposes to consider the work that would be
done in carrying one unit of charge. Then the force on the charge is numerically
the same as the electric field. Calling the work done against electrical forces in this
case W(unit), we write

b

W(unit) = — / E-ds. 4.19)

Now, in general, what we get with this kind of an integral depends on the path we
take. But if the integral of (4.19) depended on the path from a to b, we could get
work out of the field by carrying the charge to b along one path and then back to a
on the other. We would go to b along the path for which W is smaller and back
along the other, getting our more work than we put in.

There is nothing impossible, in principle, about getting energy out of a field.
We shall, in fact, encounter fields where it is possible. 1t could be that as you move
a charge you produce forces on the other part of the “machinery.” If the “ma-
chinery” moved against the force it would lose energy, thereby keeping the total
energy in the world constant. For electrostatics, however, there is no such “ma-
chinery.” We know what the forces back on the sources of the field are. They are
the Coulomb forces on the charges responsible for the field. If the other charges
are fixed in position—as we assume in electrostatics only—these back forces can
do no work on them. There is no way to get energy from them—provided, of
course, that the principle of energy conservation works for electrostatic situations.
We believe that it will work, but let’s just show that it must follow from Coulomb’s
law of force.

We consider first what happens in the field due to a single charge g. Let
point a be at the distance r, from g, and point b at r,. Now we carry a different
charge, which we will call the “test” charge, and whose magnitude we choose to
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be one unit, from a to b. Let’s start with the easiest possible path to calculate. We
carry our test charge first along the arc of a circle, then along a radius, as shown in
part (a) of Fig. 4-3. Now on that particular path it is child’s play to find the work
done (otherwise we wouldn’t have picked it). First, there is no work done at all
on the path from a to a’. The field is radial (from Coulomb’s law), so it is at right
angles to the direction of motion. Next, on the path from a’ to b, the field is in the
direction of motion and varies as 1/r%. Thus the work done on the test charge
in carrying it from a to b would be

b b
_ g — 4 a _ _ g (1 _ 1),
/a E-ds = e o 72 = Ireq (ra "b) (4.20)

Now let’s take another easy path. For instance, the one shown in part (b) of
Fig. 4-3. It goes for awhile along an arc of a circle, then radially for awhile, then
along an arc again, then radially, and so on. Every time we go along the circular
parts, we do no work. Every time we go along the radial parts, we must just
integrate 1/r2. Along the first radial stretch, we integrate from r, to r,,, then
along the next radial stretch from r,- to r,+, and so on. The sum of all these in-
tegrals is the same as a single integral directly from r, to r,. We get the same answer
for this path that we did for the first path we tried. It is clear that we would get
the same answer for any path which is made up of an arbitrary number of the same
kinds of pieces.

What about smooth paths? Would we get the same answer? We discussed
this point previously in Chapter 13 of Vol. I. Applying the same arguments used
there, we can conclude that work done in carrying a unit charge from a to b is
independent of the path.

E - ds.

ny
path

W(unit)) _ b
a—b .

Since the work done depends only on the endpoints, it can be represented as
the difference between two numbers. We can see this in the following way. Let’s
choose a reference point P, and agree to evaluate our integral by using a path that
always goes by way of point P,. Let ¢(a) stand for the work done against the field
in going from P to point a, and let ¢(b) be the work done in going from P, to
point b (Fig. 4-4). The work in going fo P, from a (on the way to b) is the negative
of ¢(a), so we have that

b
- / E-ds = ¢(b) — ¢(a). @.21)

Since only the difference in the function ¢ at two points is ever involved, we
do not really have 1o specify the location of Py. Once we have chosen some
reference point, however, a number ¢ is determined for any point in space; ¢ is
then a scalar field. 1t is a function of x, p, z. We call this scalar function the elec-
trostatic potential at any point.

Electrostatic potential:

P
o(P) = — / E - ds. 4.22)
Py
For convenience, we will often take the reference point at infinity. Then,
for a single charge at the origin, the potential ¢ is given for any point (x, y, z)—
using Eq. (4.20):
q
47eg

o(x,y,2) = (4.23)
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The electric field from several charges can be written as the sum of the electric
field from the first, from the second, from the third, etc. When we integrate the
sum to find the potential we get a sum of integrals. Each of the integrals is the
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Fig. 4-3. In carrying o test charge
from a to b the same work is done along
either path.

W(a = b) = #(v) - ¢(a) b

H(Po = 1) = ()

u(p, = a) = #s) P,

Fig. 4-4. The work done in going
along any path from a to b is the negative
of the work from some point Py to a plus
the work from Pg to b.



potential from one of the charges. We conclude that the potential ¢ from a lot of
charges is the sum of the potentials from all the individual charges. There is a
superposition principle also for potentials. Using the same kind of arguments by
which we found the electric field from a group of charges and for a distribution of
charges, we can get the complete formulas for the potential ¢ at a point we call (1):

_ 1 g

¢(1) = Z}) T (4.24)
__1 [e@ar

(1) = Z_ﬂ:e—oj—_r;;_z (4.25)

Remember that the potential ¢ has a physical significance: it is the potential
energy which a unit charge would have if brought to the specified point in space
from some reference point.

44 E=—V¢

Who cares about ¢? Forces on charges are given by E, the electric field. The
point is that E can be obtained easily from ¢—it is as easy, in fact, as taking a
derivative. Consider two points, one at x and one at (x 4 dx), but both at the
same y and z, and ask how much work is done in carrying a unit charge from one
point to the other. The path is along the horizontal line from x to x 4 dx. The
work done is the difference in the potential at the two points:

AW = ¢(X + Ax’yxz) - ¢(X,y,2) = g—i'Ax‘

But the work done against the field for the same path is

AW: —fE'ds= —EJ,AX.
We see that

- 9.
E = -3 (4.26)

Similarly, E, = —d¢/dy, E,
vector analysis,

—a¢/dz, or, summarizing with the notation of
E = —V¢. @4.27)

This equation is the differential form of Eq. (4.22). Any problem with specified
charges can be solved by computing the potential from (4.24) or (4.25) and using
(4.27) to get the field. Equation (4.27) also agrees with what we found from vector
calculus: that for any scalar field ¢

b
/a V¢ -ds = ¢(b) — ¢(a). 4.28)

According to Eq. (4.25) the scalar potential ¢ is given by a three-dimensional
integral similar to the one we had for E. Is there any advantage to computing ¢
rather than E? Yes. There is only one integral for ¢, while there are three integrals
for E—because it is a vector. Furthermore, 1/r is usually a little easier to integrate
than x/r2. It turns out in many practical cases that it is easier to calculate ¢ and
then take the gradient to find the electric field, than it is to evaluate the three
integrals for E. It is merely a practical matter.

There is also a deeper physical significance to the potential 4. We have shown
that E of Coulomb’s law is obtained from E = —grad ¢, when ¢ is given by
(4.22). But if E is equal to the gradient of a scalar field, then we know from the
vector calculus that the curl of E must vanish:

VXE-=0. (4.29)



But that is just our second fundamental equation of electrostatics, Eq. (4.6). We
have shown that Coulomb’s law gives an E field that staisfies that condition. So
far, everything is all right.

We had really proved that V X E was zero before we defined the potential.
We had shown that the work done around a closed path is zero. That is, that

§£E-ds=o

for any path. We saw in Chapter 3 that for any such field V X E must be zero
everywhere. The electric field in electrostatics is an example of a curl-free field.

You can practice your vector calculus by proving that vV X E is zero in a dif-
ferent way—Dby computing the components of ¥V X E for the field of a point charge,
as given by Eq. (4.11). If you get zero, the superposition principle says you would
get zero for the field of any charge distribution.

We should point out an important fact. For any radial force the work done is
independent of the path, and there exists a potential. If you think about it, the
entire argument we made above to show that the work integral was independent
of the path depended only on the fact that the force from a single charge was
radial and spherically symmetric. It did not depend on the fact that the dependence
on distance was as 1/r2—there could have been any r dependence. The existence
of a potential, and the fact that the curl of E is zero, comes really only from the
symmetry and direction of the electrostatic forces. Because of this, Eq. (4-28)—
or (4.29)—can contain only part of the laws of electricity.

4-5 The flux of E

We will now derive a field equation that depends specifically and directly on
the fact that the force law is inverse square. That the field varies inversely as the
square of the distance seems, for some people, to be “only natural,” because “‘that’s
the way things spread out.” Take a light source with light streaming out: the
amount of light that passes through a surface cut out by a cone with its apex at
the source is the same no matter at what radius the surface is placed. It must be so
if there is to be conservation of light energy. The amount of light per unit area—
the intensity—must vary inversely as the area cut by the cone, i.e., inversely as the
square of the distance from the source. Certainly the electric field should vary
inversely as the square of the distance for the same reason! But there is no such
thing as the ‘“‘same reason” here. Nobody can say that the electric field measures
the flow of something like light which must be conserved. If we had a “model”
of the electric field in which the electric field vector represented the direction and
speed—say the current—of some kind of little “bullets” which were flying out,
and if our model required that these bullets were conserved, that none could ever
disappear once it was shot out of a charge, then we might say that we can “see”
that the inverse square law is necessary. On the other hand, there would necessarily
be some mathematical way to express this physical idea. If the electric field were
like conserved bullets going out, then it would vary inversely as the square of the
distance and we would be able to describe that behavior by an equation—which
is purely mathematical. Now there is no harm in thinking this way, so long as we
do not say that the electric field is made out of bullets, but realize that we are
using a model to help us find the right mathematics.

Suppose, indeed, that we imagine for a moment that the electric field did
represent the flow of something that was conserved—everywhere, that is, except
at charges. (It has to start somewhere!) We imagine that whatever it is flows out
of a charge into the space around. If E were the vector of such a flow (as A is for
heat flow), it would have a 1/r% dependence near a point source. Now we wish to
use this model to find out how to state the inverse square law in a deeper or more
abstract way, rather than simply saying ‘“‘inverse square.” (You may wonder
why we should want to avoid the direct statement of such a simple law, and want
instead to imply the same thing sneakily in a different way. Patience! It will turn
out to be useful.)
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Fig. 4-5. The flux of E out of the @ - Fig. 4—6. The flux of E out of the
Point Charge surface S is zero. Point Charge surface S is zero.

Fig. 4-7. Any volume can be thought
of as completely made up of infinitesimal
truncated cones. The flux of E from one
end of each conical segment is equal and
opposite to the flux from the other end.
The total flux from the surface S is
therefore zero.
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Fig. 4-8. If a charge is inside a
surface, the flux out is not zero.

We ask: What is the “flow” of E out of an arbitrary closed surface in the
neighborhood of a point charge? First let’s take an easy surface—the one shown
in Fig. 4-5. If the E field is like a flow, the net flow out of this box should be zero.
That is what we get if by the “flow” from this surface we mean the surface integral
of the normal component of E—that is, the flux of E. On the radial faces, the nor-
mal component is zero. On the spherical faces, the normal component E, is just
the magnitude of E—minus for the smaller face and plus for the larger face. The
magnitude of E decreases as 1/r2, but the surface area is proportional to 2, so
the product is independent of . The flux of E into face a is just cancelled by the
flux out of face b. The total flow out of S is zero, which is to say that for this
surface

L E,da = 0. (4.30)

Next we show that the two end surfaces may be tilted with respect to the
radial line without changing the integral (4.30). Although it is true in general, for
our purposes it is only necessary to show that this is true when the end surfaces are
small, so that they subtend a small angle from the source—in fact, an infinitesimal
angle. In Fig. 4-6 we show a surface .S whose “sides” are radial, but whose “ends”
are tilted. The end surfaces are not small in the figure, but you are to imagine the
situation for very small end surfaces. Then the field E will be sufficiently uniform
over the surface that we can use just its value at the center. When we tilt the sur-
face by an angle 6, the area is increased by the factor 1/cos 6. But E,, the compo-
nent of E normal to the surface, is decreased by the factor cos §. The product
E, Aa is unchanged. The flux out of the whole surface S is still zero.

Now it is easy to see that the flux out of a volume enclosed by any surface S
must be zero. Any volume can be thought of as made up of pieces, like that in
Fig. 4-6. The surface will be subdivided completely into pairs of end surfaces,
and since the fluxes in and out of these end surfaces cancel by pairs, the total flux
out of the surface will be zero. The idea is illustrated in Fig. 4-7. We have the
completely general result that the total flux of E out of any surface S in the field
of a point charge is zero.

But notice! Our proof works only if the surface .S does not surround the charge.
What would happen if the point charge were inside the surface? We could still
divide our surface into pairs of areas that are matched by radial lines through the
charge, as shown in Fig. 4-8. The fluxes through the two surfaces are still equal—
by the same arguments as before—only now they have the same sign. The flux
out of a surface that surrounds a charge is not zero. Then what is it? We can find
out by a little trick. Suppose we “remove” the charge from the “inside” by sur-
rounding the charge by a little surface S’ totally inside the original surface S, as
shown in Fig. 4-9. Now the volume enclosed between the two surfaces S and S’
has no charge in it. The total flux out of this volume (including that through S’)
is zero, by the arguments we have given above. The arguments tell us, in fact, that
the flux into the volume through S’ is the same as the flux outward through S.
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We can choose any shape we wish for .5, so let’s make it a sphere centered on
the charge, as in Fig. 4-10. Then we can easily calculate the flux through it. If the
radius of the little sphere is r, the value of E everywhere on its surface is

1 g
d7eq 72

and is directed always normal to the surface. We find the total flux through S’ if
we multiply this normal component of E by the surface area:

1 ¢ 2 q
! = —— = — .
Flux through the suface S’ = ( Tre; r2> @nr?) P (4.3
a number independent of the radius of the sphere! We know then that the flux
outward through S is also g/e,—a value independent of the shape of S so long as
the charge ¢ is inside.
We can write our conclusions as follows:

0; g outside S

E,da = -
" 4, q inside §
any surface S €o

(4.32)

Let’s return to our “bullet” analogy and see if it makes sense. Our theorem
says that the net flow of bullets through a surface is zero if the surface does not
enclose the gun that shoots the bullets. If the gun is enclosed in a surface, whatever
size and shape it is, the number of bullets passing through is the same—it is given
by the rate at which bullets are generated at the gun. It all seems quite reasonable
for conserved bullets. But does the model tell us anything more than we get
simply by writing Eq. (4.32)? No one has succeeded in making these “bullets” do
anything else but produce this one law. After that, they produce nothing but
errors. That is why today we prefer to represent the electromagnetic field purely
abstractly.

4-6 Gauss’ law; the divergence of E

Our nice result, Eq. (4.32), was proved for a single point charge. Now suppose
that there are two charges, a charge ¢, at one point and a charge g, at another.
The problem looks more difficult. The electric field whose normal component we
integrate for the flux is the field due to both charges. That is, if E, represents the
electric field that would have been produced by ¢, alone, and E, represents the
electric field produced by g, alone, the total electric field is E = E; + E,. The
flux through any closed surface S is

/S (Ein + Egp)da = /S Einda + [S Es, da. (4.33)

The flux with both charges present is the flux due to a single charge plus the flux
due to the other charge. If both charges are outside S, the flux through S is zero.
If ¢, is inside S but g is outside, then the first integral gives q1/¢€, and the second
integral gives zero. If the surface encloses both charges, each will give its contribu-
tion and we have that the flux is (g; + ¢2)/€o. The general rule is clearly that the
total flux out of a closed surface is equal to the total charge inside, divided by €.

Qur result is an important general law of the electrostatic field, called Gauss’
law.

Gauss’ law: insi
auss’ law / E, da = Sim of chaerges inside (4.34)
0
PR/
or
f E-nda = int, (4.35)
€
. ey
where
Qint = Z qi. (4.36)
inside 8§
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Fig. 4-9. The flux through S is the
same as the flux through §’.

Fig. 4—-10. The flux through a spheri-
cal surface containing a point charge

qis q/e.
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Fig. 4-11. Using Gauss' law to find
the fleld of a uniform sphere of charge.

If we describe the location of charges in terms of a charge density p, we can con-
sider that each infinitesimal volume d¥ contains a “point” charge p dV. The sum
over all charges is then the integral

Que= [ pav. 437

volume
inside §

From our derivation you see that Gauss’ law follows from the fact that the
exponent in Coulomb’s law is exactly two. A 1/r2 field, or any 1/r" field with
n = 2, would not give Gauss’ law. So Gauss’ law is just an expression, in a dif-
ferent form, of the Coulomb law of forces between two charges. In fact, working
back from Gauss’ law, you can derive Coulomb’s law. The two are quite equiva-
lent so long as we keep in mind the rule that the forces between charges is radial.

We would now like to write Gauss’ law in terms of derivatives. To do this,
we apply Gauss’ law to an infinitesimal cubical surface. We showed in Chapter 3
that the flux of E out of such a cube is V - E times the volume d¥ of the cube. The
charge inside of dV, by the definition of p, is equal to p dV, so Gauss’ law gives

v-Eav = 2%,
€o
or
v E=£L. (4.38)
€o

The differential form of Gauss’ law is the first of our fundamental field equations of
electrostatics, Eq. (4.5). We have now shown that the two equations of electro-
statics, Eqs. (4.5) and (4.6), are equivalent to Coulomb’s law of force. We will
now consider one example of the use of Gauss’ law. (We will come later to many
more examples.)

4-7 Field of a sphere of charge

One of the difficult problems we had when we studied the theory of gravita-
tional attractions was to prove that the force produced by a solid sphere of matter
was the same at the surface of the sphere as it would be if all the matter were
concentrated at the center. For many years Newton didn’t make public his
theory of gravitation, because he couldn’t be sure this theorem was true. We
proved the theorem in Chapter 13 of Vol. 1 by doing the integral for the
potential and then finding the gravitational force by using the gradient. Now we
can prove the theorem in a most simple fashion. Only this time we will prove the
corresponding theorem for a uniform sphere of electrical charge. (Since the laws
of electrostatics are the same as those of gravitation, the same proof could be
done for the gravitational field.)

We ask: What is the electric field E at a point P anywhere outside the surface
of a sphere filled with a uniform distribution of charge? Since there is no “special”
direction, we can assume that E is everywhere directed away from the center of the
sphere. We consider an imaginary surface that is spherical and concentric with
the sphere of charge, and that passes through the point P (Fig. 4-11). For this
surface, the flux outward is

fEn da = E-47R%.

Gauss’ law tells us that this flux is equal to the total charge Q of the sphere (over €):

E-47R? = Q,
0
or
__1 9
E = Tres 73’ (4.39)
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Fig. 4-12. Field lines and equipotential surfaces for a positive point charge.

which is the same formula we would have for a point charge Q. We have proved
Newton’s problem more easily than by doing the integral. It is, of course, a false
kind of easiness—it has taken you some time to be able to understand Gauss’ law,
$0 you may think that no time has really been saved. But after you have used the
theorem more and more, it begins to pay. It is a question of efficiency.

4-8 Field lines; equipotential surfaces

We would like now to give a geometrical description of the electrostatic field.
The two laws of electrostatics, one that the flux is proportional to the charge inside
and the other that the electric field is the gradient of a potential, can also be repre-
sented geometrically. We illustrate this with two examples.

First, we take the field of a point charge. We draw lines in the direction of the
field—lines which are always tangent to the field, as in Fig. 4-12. These are called
field lines. The lines show everywhere the direction of the electric vector. But we
also wish to represent the magnitude of the vector. We can make the rule that the
strength of the electric field will be represented by the ‘“‘density” of the lines. By
the density of the lines we mean the number of lines per unit area through a sur-
face perpendicular to the lines. With these two rules we can have a picture of the
electric field. For a point charge, the density of the lines must decrease as 1/r2.
But the area of a spherical surface perpendicular to the lines at any radius 7 increases
as r2, so if we always keep the same number of lines for all distances from the
charge, the density will remain in proportion to the magnitude of the field. We can
guarantee that there are the same number of lines at every distance if we insist
that the lines be continuous—that once a line is started from the charge, it never
stops. In terms of the field lines, Gauss’ law says that lines should start only at
plus charges and stop at minus charges. The number which leave a charge ¢ must
be equal to g/eq.

Now, we can find a similar geometrical picture for the potential ¢. The easiest
way to represent the potential is to draw surfaces on which ¢ is a constant. We call
them equipotential surfaces—surfaces of equal potential. Now what is the geometri-
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A Note about Units
Quantity Unit
F newton
Q coulomb
L meter
w joule
p~ Q/L3 coulomb/meter3
1/e0 ~ FL2/Q? newton'meter2/coulomb?
E~ F/Q newton/coulomb
o~ W/Q joule/coulomb = volt
E~ ¢/L volt/meter

1/e0 ~ EL2/Q volt-meter/coulomb
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Fig. 4-13. Field lines and equipotentials for two equal and opposite point charges.

cal relationship of the equipotential surfaces to the field lines? The electric field is
the gradient of the potential. The gradient is in the direction of the most rapid
change of the potential, and is therefore perpendicular to an equipotential surface.
If E were not perpendicular to the surface, it would have a component in the
surface. The potential would be changing in the surface, but then it wouldn’t be
an equipotential. The equipotential surfaces must then be everywhere at right
angles to the electric field lines.

For a point charge all by itself, the equipotential surfaces are spheres centered
at the charge. We have shown in Fig. 4-12 the intersection of these spheres with a
plane through the charge.

As a second example, we consider the field near two equal charges, a positive
one and a negative one. To get the field is easy. The field is the superposition of
the fields from each of the two charges. So, we can take two pictures like Fig. 4-12
and superimpose them—impossible! Then we would have field lines crossing each
other, and that’s not possible, because E can’t have two directions at the same point.
The disadvantage of the field-line picture is now evident. By geometrical argu-
ments it is impossible to analyze in a very simple way where the new lines go.
From the two independent pictures, we can’t get the combined picture. The
principle of superposition, a simple and deep principle about electric fields, does
not have, in the field-line picture, an easy representation.

The field-line picture has its uses, however, so we might still like to draw the
picture for a pair of equal (and opposite) charges. If we calculate the fields from
Eq. (4.13) and the potentials from (4.23), we can draw the field lines and equi-
potentials. Figure 4-13 shows the result. But we first had to solve the problem
mathematically!
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