The Feynman LECTURES ON PHYSICS ### MAINLY ELECTROMAGNETISM AND MATTER ### RICHARD P. FEYNMAN Richard Chace Tolman Professor of Theoretical Physics California Institute of Technology ### **ROBERT B. LEIGHTON** Professor of Physics California Institute of Technology ### **MATTHEW SANDS** Professor Stanford University OXNARD PUBLIC LIBRARY 251 SOUTH A STREET OXNARD, CALIFORNIA 93030 ADDISON-WESLEY PUBLISHING COMPANY, INC. READING, MASSACHUSETTS · PALO ALTO · LONDON # Copyright © 1964 # CALIFORNIA INSTITUTE OF TECHNOLOGY Printed in the United States of America ALL RIGHTS RESERVED. THIS BOOK, OR PARTS THEREOF MAY NOT BE REPRODUCED IN ANY FORM WITHOUT WRITTEN PERMISSION OF THE PUBLISHER Library of Congress Catalog Card No. 63-20717 Second printing—November, 1964 ## Feynman's Preface These are the lectures in physics that I gave last year and the year before to the freshman and sophomore classes at Caltech. The lectures are, of course, not verbatim—they have been edited, sometimes extensively and sometimes less so. The lectures form only part of the complete course. The whole group of 180 students gathered in a big lecture room twice a week to hear these lectures and then they broke up into small groups of 15 to 20 students in recitation sections under the guidance of a teaching assistant. In addition, there was a laboratory session once a week. The special problem we tried to get at with these lectures was to maintain the interest of the very enthusiastic and rather smart students coming out of the high schools and into Caltech. They have heard a lot about how interesting and exciting physics is—the theory of relativity, quantum mechanics, and other modern ideas. By the end of two years of our previous course, many would be very discouraged because there were really very few grand, new, modern ideas presented to them. They were made to study inclined planes, electrostatics, and so forth, and after two years it was quite stultifying. The problem was whether or not we could make a course which would save the more advanced and excited student by maintaining his enthusiasm. The lectures here are not in any way meant to be a survey course, but are very serious. I thought to address them to the most intelligent in the class and to make sure, if possible, that even the most intelligent student was unable to completely encompass everything that was in the lectures—by putting in suggestions of applications of the ideas and concepts in various directions outside the main line of attack. For this reason, though, I tried very hard to make all the statements as accurate as possible, to point out in every case where the equations and ideas fitted into the body of physics, and how—when they learned more—things would be modified. I also felt that for such students it is important to indicate what it is that they should—if they are sufficiently clever—be able to understand by deduction from what has been said before, and what is being put in as something new. When new ideas came in, I would try either to deduce them if they were deducible, or to explain that it was a new idea which hadn't any basis in terms of things they had already learned and which was not supposed to be provable—but was just added in At the start of these lectures, I assumed that the students knew something when they came out of high school—such things as geometrical optics, simple chemistry ideas, and so on. I also didn't see that there was any reason to make the lectures in a definite order, in the sense that I would not be allowed to mention something until I was ready to discuss it in detail. There was a great deal of mention of things to come, without complete discussions. These more complete discussions would come later when the preparation became more advanced. Examples are the discussions of inductance, and of energy levels, which are at first brought in in a very qualitative way and are later developed more completely. At the same time that I was aiming at the more active student, I also wanted to take care of the fellow for whom the extra fireworks and side applications are merely disquieting and who cannot be expected to learn most of the material in the lecture at all. For such students I wanted there to be at least a central core or backbone of material which he *could* get. Even if he didn't understand everything in a lecture, I hoped he wouldn't get nervous. I didn't expect him to understand everything, but only the central and most direct features. It takes, of course, a certain intelligence on his part to see which are the central theorems and central ideas, and which are the more advanced side issues and applications which he may understand only in later years. In giving these lectures there was one serious difficulty: in the way the course was given, there wasn't any feedback from the students to the lecturer to indicate how well the lectures were going over. This is indeed a very serious difficulty, and I don't know how good the lectures really are. The whole thing was essentially an experiment. And if I did it again I wouldn't do it the same way—I hope I don't have to do it again! I think, though, that things worked out—so far as the physics is concerned—quite satisfactorily in the first year. In the second year I was not so satisfied. In the first part of the course, dealing with electricity and magnetism, I couldn't think of any really unique or different way of doing it—of any way that would be particularly more exciting than the usual way of presenting it. So I don't think I did very much in the lectures on electricity and magnetism. At the end of the second year I had originally intended to go on, after the electricity and magnetism, by giving some more lectures on the properties of materials, but mainly to take up things like fundamental modes, solutions of the diffusion equation, vibrating systems, orthogonal functions, . . . developing the first stages of what are usually called "the mathematical methods of physics." In retrospect, I think that if I were doing it again I would go back to that original idea. But since it was not planned that I would be giving these lectures again, it was suggested that it might be a good idea to try to give an introduction to the quantum mechanics—what you will find in Volume III. It is perfectly clear that students who will major in physics can wait until their third year for quantum mechanics. On the other hand, the argument was made that many of the students in our course study physics as a background for their primary interest in other fields. And the usual way of dealing with quantum mechanics makes that subject almost unavailable for the great majority of students because they have to take so long to learn it. Yet, in its real applications—especially in its more complex applications, such as in electrical engineering and chemistry—the full machinery of the differential equation approach is not actually used. So I tried to describe the principles of quantum mechanics in a way which wouldn't require that one first know the mathematics of partial differential equations. Even for a physicist I think that is an interesting thing to try to do—to present quantum mechanics in this reverse fashion-for several reasons which may be apparent in the lectures themselves. However, I think that the experiment in the quantum mechanics part was not completely successful—in large part because I really did not have enough time at the end (I should, for instance, have had three or four more lectures in order to deal more completely with such matters as energy bands and the spatial dependence of amplitudes). Also, I had never presented the subject this way before, so the lack of feedback was particularly serious. I now believe the quantum mechanics should be given at a later time. Maybe I'll have a chance to do it again someday. Then I'll do it right. The reason there are no lectures on how to solve problems is because there were recitation sections. Although I did put in three lectures in the first year on how to solve problems, they are not included here. Also there was a lecture on inertial guidance which certainly belongs after the lecture on rotating systems, but which was, unfortunately, omitted. The fifth and sixth lectures are actually due to Matthew Sands, as I was out of town. The question, of course, is how well this experiment has succeeded. My own point of view—which, however, does not seem to be shared by most of the people who worked with the students—is pessimistic. I don't think I did very well by the students. When I look at the way the majority of the students handled the problems on the examinations, I think that the system is a failure Of course, my friends point out to me that there were one or two dozen students who—very surprisingly—understood almost everything in all of the lectures, and who were quite active in working with the material and worrying about the many points in an excited and interested way. These people have now, I believe, a first-rate background in physics—and they are, after all, the ones I was trying to get at. But then, "The power of instruction is seldom of much efficacy except in those happy dispositions where it is almost superfluous" (Gibbons) Still, I didn't want to leave any student completely behind, as perhaps I did. I think one way we could help the students more would be by putting more hard work into developing a set of problems which would elucidate some of the ideas in the lectures. Problems give a good opportunity to fill out the material of the lectures and make more realistic, more complete, and more settled in the mind the ideas that have been exposed. I think, however, that there isn't any solution to this problem of education other than to realize that the best teaching can be done only when there is a direct individual relationship between a student and a good teacher—a situation in which the student discusses the ideas, thinks about the things, and talks about the things. It's impossible to learn very much by simply sitting in a lecture, or even by simply doing problems that are assigned. But in our modern times we have so many students to teach that we have to try to find some substitute for the ideal. Perhaps my lectures can make some contribution. Perhaps in some small place where there are individual teachers and students, they may get some inspiration or some ideas from the lectures. Perhaps they will have fun thinking them through—or going on to develop some of the ideas further. RICHARD P. FEYNMAN June, 1963 For some forty years Richard P. Feynman focussed his curiosity on the mysterious workings of the physical world, and bent his intellect to searching out the order in its chaos. Now, he has given two years of his ability and his energy to his Lectures on Physics for beginning students. For them he has distilled the essence of his knowledge, and has created in terms they can hope to grasp a picture of the physicist's universe. To his lectures he has brought the brilliance and clarity of his thought, the originality and vitality of his approach, and the contagious enthusiasm of his delivery. It was a joy to behold. The first year's lectures formed the basis for the first volume of this set of books. We have tried in this the second volume to make some kind of a record of a part of the second year's lectures—which were given to the sophomore class during the 1962–1963 academic year. The rest of the second year's lectures will make up Volume III. Of the second year of lectures, the first two-thirds were devoted to a fairly complete treatment of the physics of electricity and magnetism. Its presentation was intended to serve a dual purpose. We hoped, first, to give the students a complete view of one of the great chapters of physics—from the early gropings of Franklin, through the great synthesis of Maxwell, on to the Lorentz electron theory of material properties, and ending with the still unsolved dilemmas of the electromagnetic self-energy. And we hoped, second, by introducing at the outset the calculus of vector fields, to give a solid introduction to the mathematics of field theories. To emphasize the general utility of the mathematical methods, related subjects from other parts of physics were sometimes analyzed together with their electric counterparts. We continually tried to drive home the generality of the mathematics. ("The same equations have the same solutions.") And we emphasized this point by the kinds of exercises and examinations we gave with the course. Following the electromagnetism there are two chapters each on elasticity and fluid flow. In the first chapter of each pair, the elementary and practical aspects are treated. The second chapter on each subject attempts to give an overview of the whole complex range of phenomena which the subject can lead to. These four chapters can well be omitted without serious loss, since they are not at all a necessary preparation for Volume III. The last quarter, approximately, of the second year was dedicated to an introduction to quantum mechanics. This material has been put into the third volume. In this record of the Feynman Lectures we wished to do more than provide a transcription of what was said. We hoped to make the written version as clear an exposition as possible of the ideas on which the original lectures were based For some of the lectures this could be done by making only minor adjustments of the wording in the original transcript. For others of the lectures a major reworking and rearrangement of the material was required. Sometimes we felt we should add some new material to improve the clarity or balance of the presentation. Throughout the process we benefitted from the continual help and advice of Professor Feynman The translation of over 1,000,000 spoken words into a coherent text on a tight schedule is a formidable task, particularly when it is accompanied by the other onerous burdens which come with the introduction of a new course—preparing for recitation sections, and meeting students, designing exercises and examinations, and grading them, and so on. Many hands—and heads—were involved. In some instances we have, I believe, been able to render a faithful image—or a tenderly retouched portrait—of the original Feynman. In other instances we have fallen far short of this ideal. Our successes are owed to all those who helped. The failures, we regret. As explained in detail in the Foreword to Volume I, these lectures were but one aspect of a program initiated and supervised by the Physics Course Revision Committee (R. B. Leighton, Chairman, H. V. Neher, and M. Sands) at the California Institute of Technology, and supported financially by the Ford Foundation. In addition, the following people helped with one aspect or another of the preparation of textual material for this second volume: T. K. Caughey, M. L. Clayton, J. B. Curcio, J. B. Hartle, T. W. H. Harvey, M. H. Israel, W. J. Karzas, R. W. Kavanagh, R. B. Leighton, J. Mathews, M. S. Plesset, F. L. Warren, W. Whaling, C. H. Wilts, and B. Zimmerman. Others contributed indirectly through their work on the course: J. Blue, G. F. Chapline, M. J. Clauser, R. Dolen, H. H. Hill, and A. M. Title. Professor Gerry Neugebauer contributed in all aspects of our task with a diligence and devotion far beyond the dictates of duty. The story of physics you find here would, however, not have been, except for the extraordinary ability and industry of Richard P. Feynman. MATTHEW SANDS March, 1964