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PREFACE

Dr Freundlich has undertaken in the following essay to illumine

the ideas and observations which gave rise to the general theory

of relativity so as to make them available to a wider circle of

readers.

I have gained the impression in perusing these pages that the

author has succeeded in rendering the fundamental ideas of the

theory accessible to all who are to some extent conversant with

the methods of reasoning of the exact sciences. The relations of

the problem to mathematics, to the theory of knowledge, physics

and astronomy are expounded in a fascinating style, and the depth

of thought of Riemann, a mathematician so far in advance of his

time, has in particular received warm appreciation.

Dr Freundlich is not only highly qualified as a specialist in the

various branches of knowledge involved to demonstrate the sub-

ject; he is also the first amongst fellow-scientists who has taken

pains to put the theory to the test.

May his booklet prove a source of pleasure to many !

A. EINSTEIN.





TRANSLATOR'S NOTE

For the sake of those English readers who wish to pursue the

development of the special (or restricted) and the general theory

of relativity in greater detail, reference may be made to the

following :

"On the Hypotheses which lie at the Bases of Geometry," being

Bernh. Riemann's disquisition, translated by W. K. Clifford in Nature

(1873), vol. viii. Nos. 183, 184, pp. 14-17, 36, 37.

Or in the Mathematical Papers of W. K. Clifford, pp. 55-71.

(The Introduction to the latter volume and the paper "On the

Classification of Loci" bear upon the question.)

"Memoir on Abstract Geometry." Cayley, Math. Papers, vol. vi.

1893, No. 413.

The special theory of relativity is dealt with in :

The Principle of Relativity . Eb. Cunningham. Camb. Univ. Press.

Relativity and the Electron Theory. Eb. Cunningham. Monographs on

Physics. Longmans, Green & Co.

The Principle of Relativity. L. Silberstein. Macmillan & Co.

"The Space-Time Manifold of Relativity." E. B. Wilson and G. N.

Lewis. Proc. of American Assoc, of Arts and Science, vol. xlviii.

No. 11, 1912.

The general theory of relativity has been excellently summarised

by Prof. A. S. Eddington in his "Report on the Relativity Theory
of Gravitation for the Physical Society of London," published by
the Fleetway Press, Ltd., Fleet St.

Vide also Prof. W. de Sitter, "On Einstein's Theory of Gravita-

tion and its Astronomical Consequences" in the Monthly Notices

of the Royal Astronomical Society in three papers :

Vol. lxxvi. p. 699. Vol. lxxvii. p. 155. Vol. lxxviii. Nov. 1917.

Prof. J. H. Jeans, "Recent Developments of Molecular Physics" in

the Report of Royal Inst, of Great Britain, Friday, March 30, 1917.

Prof. A. S. Eddington. Article in Nature, vol. xcviii. p. 328 (Dec. 28.

1916).

Articles by Dr H. Wildon Carr, Prof. F. A. Lindemann, and

Prof. A. N. Whitehead in the Educational Supplement of The Times

(Jan. 22 and 29, Feb. 5, 1920).



viii Translators Note

The monthly copies of The Observatory (published by Taylor
and Francis, Red Lion Court, Fleet St.) contain a number of

interesting reviews and discussions about the theory of gravitation

of which the following may be specially mentioned:

The Observatory, No. 505, p. 412. "Space, Time and Gravitation,"

by Prof. W. de Sitter.

The Observatory, March, 1919. "The Total Eclipse of 29 May, 1919,

and the Influence of Gravitation on Light," by Prof. A. S. Eddington.

The following quotation may assist in making intelligible one

of the vital points which tends to mystify the unphilosophical

physicist :

"When a rod is started from rest into uniform motion, nothing what-

ever happens to the rod. We say that it contracts; but length is not a

property of the rod
;
it is a relation between the rod and the observer.

Until the observer is specified the length of the rod is quite indeterminate.

We ought always to remember that our experiments reveal only rela-

tions, and not properties inherent in individual objects; and then the

correspondence of two systems, differing only in uniform motion, becomes

axiomatic, so that laborious mathematical verifications are redundant."

(Prof. Eddington.)

The introductory words of Minkowski's famous paper may be

recalled in conclusion:

"From henceforth time by itself and space by itself are mere shadows,

they are only two aspects of a single and indivisible manner of co-

ordinating the facts of the physical world." (Minkowski.)

I wish to express my thanks to Consul Arnold Gumprecht and

Miss Gertrud Gerdau for valuable assistance in the earlier stages

of translation, to Dr Freundlich for his kindness in perusing the

manuscript, and to Professors Turner and Eddington for the great

interest they have shewn in getting the booklet published. I am
indebted to Mr J. W. N. Smith, M.A., for kindly reading the proofs.

HENRY L. BROSE.

Christ Church,
Oxford.

2 February, 1920.
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INTRODUCTION

The Universe is limited by the properties of light. Until half a

century ago it was strictly true that we depended upon our eyes

for all our knowledge of the universe, which extended no further

than we could see. Even the invention of the telescope did not

disturb this proposition, but it is otherwise with the invention of

the photographic plate. It is now conceivable that a blind man,

by taking photographs and rendering their records in some way

decipherable by his fingers, could investigate the universe; but

still it would remain true, that all his knowledge of anything out-

side the earth would be derived by the use of light and would

therefore be limited by its properties. On this little earth there is

indeed a tiny corner of the universe accessible to other senses:

but feeling and taste act only at those minute distances which

separate particles of matter when "in contact": smell ranges over,

at the utmost, a mile or two; and the greatest distance which

sound is ever known to have travelled (when Krakatoa exploded

in 1883) is but a few thousand miles a mere fraction of the earth's

girdle. The scale of phenomena manifested through agencies other

than light is so small that we are unlikely to reach any noteworthy

precision by their study.

Few people who are not astronomers have spent much thought

on the limitations introduced by the news agency to which we are

so profoundly indebted. Light comes speedily but has far to travel,

and some of the news is thousands of years old before we get it.

Hence our universe is not co-existent: the part close around us

belongs to the peaceful present, but the nearest star is still in the

midst of the late War, for our news of him is three years old;

other stars are Elizabethan, others belong to the time of the

Pharaohs; and we have alongside our modern civilization yet

others of prehistoric date. The electric telegraph has accustomed

us to a world in which the news is approximately of even date:

but our forefathers must have been better able, from their daily

experience of getting news many months old, to realise the un-

equal age of the universe we know. Nowadays the inequality is
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almost entirely the concern of the astronomer, and even he often

neglects or forgets it. But when fundamental issues are at stake,

the time taken by the messenger is an essential part of the dis-

cussion, and we must be careful to take account of it, with the

utmost precision.

Our knowledge that light had a finite velocity followed on the

invention of the telescope and the discovery of Jupiter's satellites:

the news of their eclipses came late at times and these times were

identified as those when Jupiter was unusually far away from us.

But the full consequences of the discovery were not realised at

first. One such consequence is. that the stars are not seen in their

true places, that is in the places which they truly held when the

light left them (for what may have happened to them since we
do not know at all they may have gone out or exploded). Our

earth is only moving slowly compared with the great haste of

light: but still she is moving, and consequently there is "aberra-

tion
"

a displacement due to the ratio of the two velocities, easy

enough to recognise now, but so difficult to apprehend for the first

time that Bradley spent two years in worrying over the conundrum

presented by his observations before he thought of the solution.

It came to him unexpectedly, as often happens in such cases. In

his own words
"
at last when he despaired of being able to account

for the phenomena which he had observed, a satisfactory explana-
tion of them occurred to him all at once when he was not in search

of it." He accompanied a pleasure party in a sail upon the river

Thames. The boat in which they were was provided with a mast

which had a vane at the top of it. It blew a moderate wind, and

the party sailed up and down the river for a considerable time.

Dr Bradley remarked that every time the boat put about, the

vane at the top of the boat's mast shifted a little, as if there had

been a slight change in the direction of the wind. The sailors told

him that this was due to the change in the boat, not the wind : and

at once the solution of his problem was suggested. The earth

running hither and thither round the sun resembles the boat

sailing up and down the river: and the apparent changes of wind

correspond to the apparent changes in direction of the light of a

star. But now comes a point of detail does the vane itself affect

the wind just round it? And, similarly, does the earth itself by



Introduction xiii

its movement affect the ether just round it, or the apparent direc-

tion of the light waves? This question suggested the famous

Michelson and Morley experiment (Phil. Mag. Dec. 1887). It is

curious to think that in the little corner of the universe represented

by the space available in a laboratory an experiment should be

possible which alters our whole conceptions of what happens in

the profoundest depths of space known to us, but so it is. The

laboratory experiment of Michelson and Morley was the first step

in the great advance recently made. It discredited the existence

of the virtual stream of ether which is the natural antithesis to the

earth's actual motion. It was indeed open to question whether

restrictions of a laboratory might not be responsible for the result :

for the ether stream might exist, but the laboratory in which it

was hoped to detect it might be in a sheltered eddy. When bodies

move thiough the air, they encounter an apparent stream of

opposing air, as all motorists know: but by using a glass screen

shelter from the stream can be found. And even without such

special screening, there may be shelter. When a pendulum is set

swinging in ordinary air, it is found from experiments on clocks

that it carries a certain amount of air along with it in its movement,

although the portion carried probably clings closely to the surface

of the pendulum. A very small insect placed in the region might
be unable to detect the streaming of the air further out. In a

similar way it seemed possible that as the earth moved through
the ether such tiny insects as the physicists in their laboratories

might be in a part of the ether carried along with the earth, in

which they could not detect the streaming outside. But another

laboratory experiment, this time by Sir Oliver Lodge, discredited

this explanation, and it was then suggested as an alternative that

distances were automatically altered by movement.

It may be well to explain briefly the significance of this alterna-

tive. The Michelson-Morley experiment depended on the difference

between travelling up-and-down-stream, and across it. To use a

few figures may be the quickest way of making the point clear.

Suppose a very wide, perfectly smooth stream running at three miles

an hour, and that oarsmen are to start from & fixed point in mid-

stream, row out in any direction to a distance of four miles from 0,

and back again to the starting-point 0. Which is the best direction
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to choose? We shall probably all agree that it will be either

directly up and down stream, or directly across it, and we may
confine attention to these two directions. First suppose an oarsman
A starts straight across stream. To keep straight he must set his

boat at an angle to the stream. If he reaches his four mile limit

in an hour, the stream has been virtually carrying him down three

miles in a direction at right angles to his course: and the well-

known relation between the sides of a right-angled triangle tells

us that he has effectively pulled five miles in the hour. It will take

him similarly an hour to come back, and the total journey will

involve an effective pull of ten miles.

Now suppose another oarsman B of equal skill elects to row up
stream. In two hours he could pull ten miles if there were no stream

;

but since meantime the stream has pulled him back six miles by
"direct action" he will have only just reached the four mile limit

from the start, and has still his return journey to go. No doubt he

will accomplish this pretty quickly with the stream to help him,

but his antagonist has already got home before he begins the

return. We might have let him do his quick journey down stream

first, but it is easy to see that this would gain him no ultimate

advantage.
Michelson and Morley sent two rays of light on two journeys

similar to those of the oarsmen A and B. The stream was the sup-

posed stream of ether from east to west which should result from the

earth's movement of rotation from west to east. They confidently

expected the return of A before that of B, and were quite taken

aback to find the two reaching the goal together. In the aquatic

analogy of which we have made use, it would no doubt be suspected

that B was really the faster oar, which might be tested by inter-

changing the courses; but there are no known differences in the

velocity of light which would allow of a parallel explanation.

There was however the possibility that the distances had been

marked wrongly, and this was tested by interchanging them,

without altering the "dead-heat."

Now there are several alternative explanations of this result.

One is that the ether does not itself exist, and therefore there is

no stream of it, actual or apparent; and it is to this sweeping con-

clusion that modern reasoning, following recent experiments and
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observations, is tending. The possibility of saving the ether by

endowing it with four dimensions instead of three is scarcely cal-

culated to satisfy those who believed (until recently) that we

knew more about the ether than about matter itself. They saved

the ether for a time by an automatic shortening of all bodies in

the direction of their movement, which explained the dead-heat

puzzle. With the velocities used above the goal attained by B
must be automatically moved f of a mile nearer the starting-point,

so that B only rows 3^ miles out and back instead of four miles. So

gross a piece of cheating would enable B to make his dead-heat,

but could scarcely escape detection. The shortening of the course

required in the case of light is very minute indeed, because the

velocities of the heavenly bodies are so small compared with that

of light. If they could be multiplied a thousand times we might
see some curious things but we have no actual experience to guide
a forecast.

. It is a great triumph for Pure Mathematics that it should have

devised a forecast for us in its own peculiar way. Starting from

axioms or postulates, Einstein by sheer mathematical skill, making
full use of the beautiful theoretical apparatus inherited from his

predecessors, pointed ultimately to three observational tests, three

things which must happen if the axioms and postulates were well

founded. One of the tests the movement of the perihelion of

Mercury's orbit had already been made and was awaiting ex-

planation as a standing puzzle. Another- a displacement of lines

in the spectrum of the sun is still being made, the issue being not

vet clear.

The third suggestion was that the rays of light from a star

would be bent on passing near the sun by a particular amount,
and this test has just provided a sensational triumph for Einstein.

The application was particularly interesting because it was not

known which of at least three results might be attained. If light

were composed of material particles as Newton suggested, then in

passing the sun they would suffer a natural deflection (the use of

the adjective is an almost automatic consequence of modes of

thought which we must now abandon) which we may call N. On
Einstein's theory the deflection would be just twice this amount,
E = 22V. But it was thought quite possible that the result might



xvi Introduction

be neither N nor E but zero, and Professor Eddington remarked

before setting out on the recent expedition that a zero result, how-

ever disappointing immediately, might ultimately turn out the

most fruitful of all. That was less than a year ago. Perhaps a few

dates are worth remembering. Einstein's theory was fully developed
and stated in November, 1915, but news of it did not reach England

(owing to the War) for some months. In 1917 the Astronomer

Royal pointed out the special suitability of the Total Solar Eclipse

of May, 1919, as an occasion for testing Einstein's Theory. Pre-

parations for two Expeditions were commenced Mr Hinks

described the geographical conditions on the central line in No-

vember, 1917 but could not be fully in earnest until the Armistice

of November, 1918. In November, 1919, the entirely satisfactory

outcome was announced to the Royal Society and characterised

by the President as necessitating a veritable revolution in scientific

thought.

But when Mr Brose brought me his translation of the pamphlet
in the spring of 1919, the issue was still in doubt. He had become

deeply interested in the new theory while interned in Germany as a

civilian prisoner and had there made this translation. I encouraged

him to publish it and opened negotiations to that end, but it

was not until we enlisted the sympathy of Professor Eddington

(on his return from the Expedition) and approached the Cambridge
Press that a feasible plan of publication was found. Professor

Eddington would have been a far more appropriate introducer;

and it is only in deference to his own express wish that I have

ventured to take up the pen that he would have used to much

better purpose. One advantage I reap from the decision: I can

express the thanks of Mr Brose and myself to him for his practical

help, and perhaps I may add those of a far wider circle for his own

able expositions of an intricate theory, which have done so much

to make it known in England.

H. H. TURNER.
University Observatory,

Oxford.

November BOth, 1919.
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THE SPECIAL THEORY OF RELATIVITY AS A

STEPPING-STONE TO THE GENERAL
THEORY OF RELATIVITY

In the following pages the results of the special principle of rela-

tivity will often be utilised. In order not to have to interrupt the

course of discussion later, I shall therefore open with a chapter

dealing with the significance of the special* principle of relativity

as a stepping-stone to the general principle. The difficulties in-

volved in the principles of classical mechanics are to be treated

separately in a later chapter : they will therefore only be considered

here as far as is absolutely necessary.

The entire upheaval, which we are witnessing in the world of

physics at the present time, received its impulse from obstacles

which were encountered in the progress of electrodynamics.

Starting from these, therefore, we shall best be able to trace how a

series of new discoveries, brought to light by electrodynamics, had

necessarily to lead to an entirely new view of the foundations of

mechanics. Most of the objections against the latter developments,

it is true, have been raised for the very reason that a branch of

science, which was not considered to have a just claim to deal with

questions of mechanics, asserted the right of exercising a far-reach-

ing influence upon the latter extending to its foundations even.

If, however, we trace these objections to their source, we dis-

cover that they are due to a wish to give mechanics the form of a

purely mathematical science, similar to geometry, in spite of the

fact that it is founded upon hypotheses which are essentially

physical: up to the present, certainly, these hypotheses have not

been recognised to be such.

The development of electrodynamics took place essentially with-

out being influenced by the results of mechanics, and without

exerting any influence itself upon the latter, so long as its range of

investigation remained confined to the electrodynamical phenomena
* Vide Note 1 (p. 43).

B. F. 1
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of bodies at rest. Only after Maxwell's equations had supplied a

foundation for these, did it become possible to take up the study
of the electrodynamical phenomena of moving media. Numerous

questions of far-reaching importance hereupon intruded them-

selves. All optical occurrences and according to Maxwell's theory
these also belong to the sphere of electrodynamics take place
either between bodies, which are in motion relatively to one another

as in astrophysics, or upon the earth, which revolves about the sun

with a velocity of about 30 kilometres per second, and performs,

together with the sun, a translational motion of about the same
order of magnitude. Accordingly, it was a problem of great im-

portance to ascertain the influence of the motion of a source of

light upon the velocity of propagation of the light it emits. An
endeavour was therefore made to find a theory of these phenomena
in which electrodynamical and mechanical effects occurred simul-

taneously. Mechanics, which had long stood as a structuie complete
in every detail, had to stand the test whether it was capable of

supplying the fitting arguments for a description of these complex

phenomena.
In addition to these optical problems, however, the discovery

of electrons revealed new facts, in which electrodynamical and

mechanical phenomena take place together. In the case of cathode-

rays and radium preparations we observe the motions of elementary

particles of electricity, freefrom the action of mass-attraction (gravi-

tation). We have here to a certain extent a counterpart to the

fundamental observations upon which mechanics is founded, viz.

to the motions of the heavenly bodies: these take place unin-

fluenced by any other physical actions, solely under the influence of

mass-attraction. From this quarter, too, mechanics was subjected
to a crucial test (proof-test).

The first outstanding attempt to describe these phenomena was

made by H. Hertz. He extended Maxwell's equations by additional

terms, which were to represent the influence of the motion of

electric charges. Hertz made no definite assumptions about the

character of the motion of electric charges in his extensions, and

was fully aware that his new equations would not encompass the

optical phenomena produced by moving media. Lorentz's electro-

dynamics first led to fundamental equations which agreed with the
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results of observation and experiment. From these fundamental

equations again the problem of finding a relativity-principle, corre-

sponding to the equations describing physical phenomena, evolved

itself. Up to this point the Galilei-Newton relativity-principle of

classical mechanics had remained master of the field. This prin-

ciple requires that two systems of coordinates, moving with uniform

motion in a straight line with respect to one another, are to be

regarded as fully equivalent for the description of events in the

domain of mechanics. The transition from one such system to

another is effected by means of equations of transformation of the

form: x x - vt, if
=

y, z' = z, t' = t (1),

if we restrict ourselves, for the sake of simplicity, to the case of two

systems moving relatively to one another with a velocity v along

their x-axes.

The study of the electrodynamical phenomena of moving bodies,

however, finally led to a system of fundamental equations, which

did not remain invariable after the application of transformations

of the above form, but only after transformations of the form:

v

x'=
x
,'

v

\ , y'
=

y, z' = z, t'= /' 2
(2),

(where c denotes the velocity of light in vacuo). These are the so-

called Lorentz-Einstein transformations. From this one could not

but conclude that the relativity-principle of Newton and Galilei

does not hold for electrodynamics. Does it entail entirely giving

up the relativity-principle in physics? As a result of repeated

fruitless attempts to demonstrate the motion of the earth by means

of optical experiments, the impression grew increasingly stronger

that there must inevitably be a principle of relativity in physical

nature, and that absolute motion has no meaning in itself. But as

there can be only one principle of relativity in the equations both

of physics and of mechanics, the relativity-principle of mechanics

had to adapt itself to that which had been derived from the

equations of electrodynamics. This constitutes the so-called

Lorentz-Einstein special theory of relativity, which also like the

relativity-principle of Newton and Galilei postulates the equiva-

12
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lence of two systems of coordinates, which are in uniform rectilinear

motion with respect to one another, in order to describe physical

events mathematically : but connects the coordinates x, y, z. t and

x', y', z', t' of two such systems with one another by means of the

Lorentz-Einstein transformation-formulae (2) given above.

From these remarks we see that thetwo principlesof relativity (i.e.

the mechanical and the electrodynamical) differ from one another

only in the form of the group of mathematical transformation-

formulae, by which such equivalent systems are mutually related.

At this stage the question forces itself upon one : what physical

assumptions are involved in the transformations of the relativity-

principle of Newton and Galilei, and in what respect do they so

far disagree with experience or experiment that one might be com-

pelled to abandon them?

The Galilei-Newton transformation contains the hypothesis

(hitherto not recognised as such) that there can be no finite

velocity g which has the character of a universal constant. In

other words, up to the present, the following was tacitly assumed

to be true:

If an observer attached to a system S measure the velocity of

propagation (v) of a certain effect, then an observer attached to a

second system S', which is in motion relatively to S, would find a

different value for the velocity of propagation of the same effect as

measured from his system ;
and this applies for every finite value

of the velocity v.

This assumption is, however, not confirmed in the case of the

velocity of light in vacuo according to the experiments hitherto

performed. To all appearances this velocity plays the part of a

universal constant in physical nature; every observer finds the

same value for the velocity of light, irrespective of his state of

motion.

By taking due account of this experimental fact, and combining

it with the postulate that systems which are in uniform rectilinear

motion with regard to one another are to be equivalent, one arrives

at the special relativity-theory postulated by Einstein, which is

mathematically represented by the above group of equations of

transformation of Lorentz-Einstein. This has in its turn led to the

discovery of the remarkable fact that the conception of simul-
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taneity upon which all time-measurements are founded, is devoid

of meaning. It is possible to select a suitable time-coordinate

in such a way that a time-measurement enters into physical laws

in exactly the same manner as regards its significance as a space-

measurement (i.e. they are fully equivalent symbolically), and has

likewise a definite coordinate direction
;
a fact to which Minkowski

in particular called attention.

The new form of the equations of transformation by no means

exhausts the whole effect of the special principle of relativity upon
classical mechanics. The change which it brought about in the

conception of mass was almost still more marked. The experi-

mental facts, which were mainly instrumental in bringing about this

change, are those exhibited in the behaviour of electrons in motion.

Although it had been clearly recognised that electrons are freely

moving energy-particles without associated material carriers, never-

theless they revealed in their own changes of motion all the charac-

teristics of inertial matter in motion. But this inertia was not

found to be a scalar quantity such as that of matter had always
been considered to be hitherto. The special theory of relativity

taught us that the conception of apparent electromagnetic mass,

which had been deduced from the observations of electrons, was

only a particular case of the inertia which is common to all forms

of energy.

A hollow space, enclosed by reflecting walls of no mass and filled

with radiation (cavity-radiation) when set in motion reveals the

properties of inert mass, according to Maxwell's theory, on account

of the enclosed energy of radiation. The fact that measurable

deviations from the behaviour demanded bv classical mechanics

first exposed themselves in these inertial phenomena (of electrons)

is above all due to the circumstance that velocities, that do not

greatly differ from that of light, first made their appearance in

these motions of the electrons. All the laws of mechanics have

hitherto been tested only by motions in comparison with which

the velocity of light was, practically speaking, infinitely great.

The Lorentz-Einstein equations of transformation, however, show

that motions approximating to the velocity of light take place

in a manner quite different from that required by the laws of

classical mechanics.



6 Inertia and Gravitational Mass

The discovery of the relativity of the inertia of energy created

entirelynew starting-points for erecting the structure of mechanics.

Classical mechanics regards the inertia! mass of a body as an abso-

lute, invariable, characteristic quantity. The special theory of

relativity, it is true, makes no mention of the inertial mass asso-

ciated with matter. But as every kind of matter probably contains

an enormous amount of latent energy, its inertia is composed of

two components: (1) the inertia of the actual mass, (2) the inertia

of the associated quantity of energy. The latter is not a scalar

quantity ;
so that, in consequence, the sum of the two, as observed

and measured by us, is also not a scalar. According to the present
view of the general theory of relativity, all inertia of matter con-

sists only of the inertia of the latent energy in it
;
in this case, every-

thing that we know of the inertia of energy holds without exception
for the inertia of matter.

Classical mechanics is, however, founded upon a conception of

mass in which the inertial mass of a body is an attribute assumed

to be peculiar to matter, and independent of all other physical con-

ditions. The discovery of the inertia of energy, however, made
it compulsory to arrange these phenomena into the scheme of

mechanics.

The special theory of relativity, being confined to systems which are

connected by the Lorentz-Einstein equations of transformation {i.e. are

in uniform rectilinear motion with regard to one another), is not

equipped with the means of bringing this task to a satisfactory con-

clusion.

The reason for this statement will become clear from the following

example. One of the fundamental facts of mechanics is the equality
. of the inertial and gravitational mass of a body. It is on the sup-

position that this is true that we determine the mass of a body by

measuring its weight. The weight of a body is, however, only defined

with reference to a gravitational field : in our case, with reference to

the earth. The idea of inertial mass of a body is, however, introduced

as an attribute of matter without any reference whatsoever to physical
conditions external to thehody. How does the mysterious coincidence

in the values of the inertial and gravitational mass of a body come
about ?

Nor does the special theory of relativity provide an answer to
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this question ;
for this purpose a theory of gravitational phenomena,

a theory of gravitation, is required.

Furthermore, the special theory of relativity does not even pre-

serve the equality in the values of inertia and gravitational mass
;

a fact which is to be reckoned amongst the most firmly established

facts in the whole of physics. For, although the special theory of

relativity makes allowance for an inertia of energy, it makes none

for a gravitation of energy. Consequently, a body which absorbs

energy in any way will register a gain of inertia but not of weight,

thereby transgressing the principle of the equality of inertial and

gravitational mass. The special theory of relativity can therefore

be regarded only as a stepping-stone to a more general principle,

which will enable us to take up a satisfactory position with regard
to these vaiious facts of experience in toto.

This is the point where Einstein's researches towards establishing

a general theory of relativity set in. He has discovered that, by

extending the application of the relativity-principle to accelerated

motions, and by introducing gravitational phenomena into the con-

sideration of the fundamental principles of mechanics, a new

foundation for mechanics is made possible, in which all the diffi-

culties occurring up to the present are solved. Although this theory

represents a consistent development of the knowledge gathered by
means of the special theory of relativity, it is so deeply rooted in

the substructure of our principles of knowing, in their application

to physical phenomena, that it is possible thoroughly to grasp the

new theory only by clearly understanding its attitude toward these

guiding lines provided by the theory of knowledge.
I shall, therefore, commence the account of his theory by dis-

cussing two general postulates, which should be fulfilled by every

physical law, but neither of which is satisfied in classical mechanics :

whereas their strict fulfilment is a characteristic feature of the new

theory.



2

TWO FUNDAMENTAL POSTULATES IN THE
MATHEMATICAL FORMULATION

OF PHYSICAL LAWS

Newton had established the simple and fruitful law that two bodies,

even when they are not visibly connected with one another, as in

the case of the heavenly bodies, exert a mutual influence, attracting

one another with a force directly proportional to the product of

their masses, and inversely proportional to the square of the dis-

tance between them. But Huygens and Leibniz refused to ac-

knowledge the validity of this law, on the ground that it did not

satisfy a fundamental condition to which every physical law is

subject, viz. that of continuity (continuity in the transmission of

force, action "by contact" in contradistinction to action "at a

distance"). How were two bodies to exert an influence upon one

another without a medium between them to transmit the action?

The demand for a satisfactory answer to this question became in

fact so imperative that finally, in order to satisfy it, the existence

of a substance which pervaded the whole of cosmic space and per-

meated all matter the
"
luminiferous ether" was assumed, al-

though this substance seemed to be condemned to remain intangible

and invisible (i.e. imperceptible to the senses for all time) and had to

be endowed with all sorts of contradictory properties. In the course

of time, however, there arose in opposition to such assumptions the

more and more definite demand that, in the formulation of physical

laws, only those things were to be regarded as being in causal connection

which ivere capable of being actually observed : a demand which doubt-

less originates from the same instinct in the search for knowledge
as that of action "by contact," and which really gives the law of

causality the true character of an empirical law, i.e. one of actual

experience.

The consistent fulfilment of these two postulates combined to-

gether is, I believe, the mainspring of Einstein's method of investi-

gation; this imbues his results with their far-reaching importance
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in the construction of a physical picture of the world. In this

respect his endeavours will probably not encounter any opposition

in the matter of principle on the part of scientists. For both postulates

(1) that of continuity and (2) that of causal relationship between only

such things as lie within the realm of observation are of an inherent

nature, i.e. contained in the very nature of the problem. The only

question that might be raised is whether it is expedient to abandon

such useful working hypotheses as "forces at a distance."

The principle of continuity requires that all physical laws allow

of formulation as differential laws, i.e. physical laws must be ex-

pressible in a form such that the physical state at any point is

completely determined by that of the point in its immediate

neighbourhood. Consequently the distances between points, which

are atfinite distances from one another, must not occur in these laws,

but only those between points infinitely near to one another. The

law of attraction of Newton given above, inasmuch as it involves

"action at a distance," disobeys the first postulate.

The second postulate, that of a stricter form of expression for

causality in its occurrence in physical laws, contains the principle

of the relativity of all motions as a special case. It denotes the

application of the former to the fundamental ideas of mechanics.

As a matter of fact, we observe the motions of bodies only relatively

to one another, whereas classical mechanics from the time of

Newton onwards utilises the idea of absolute motion of a body in

space. Einstein is the first to succeed in divesting mechanics en-

tirely of these unnatural notions. .

The rigorous application of the principles of continuity and rela-

tivity in their general form penetrates deeply into the problem of

the mathematical formulation of physical laws. It will therefore be

essential at the outset to enter into a consideration of the principles

involved in the latter process.



3

CONCERNING THE FULFILMENT OF
THE TWO POSTULATES

A physical law is clothed in mathematical language by setting up
a formula. This comprises, and represents in theform of an equation,

all measurements which numerically describe the event in question.

We make use of such formulae not only in cases in which we have

the means of checking the results of our calculations at any moment

actually at our disposal: but also when the corresponding measure-

ments cannot really be carried out in practice but have to be

imagined, i.e. only take place in our minds: e.g. when we speak of

the distance of the moon from the earth, and express it in metres,

as if it were really possible to measure it by applying a metre-rule

end to end.

By means of this expedient of analysis we have extended the

range of exact scientific research far beyond the limits of mea-

surement actually accessible in practice, both in the matter of

immeasurably large, as well as in that of immeasurably small,

quantities.

We have at the same time thereby created a symbolical method of

representation, which expresses .the events as being dependent on

measurements of various kinds, e.g. time- and space-measurements,

but unhampered by accidental limitations pronouncedly anthropo-

morphic in character. The discovery of suitable mathematical

terms, which can be inserted in a formula as symbols for definite

physical magnitudes of measurements, such as e.g. length of a rod,

volume of a cube, etc., in order to shift the responsibility, as it were,

for all further deductions upon analysis, is one of the fundamental

problems of theoretical physics and is intimately connected with the

two postdates enunciated in 2.

To realise this fully, we must revert to the foundations of

geometry, and analyse them from the point of view adopted by

Helmholtz in various essays, and by Riemann in his inaugural
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dissertation of 1854 :

" On the hypotheses which lie at the bases of

geometry." Riemann points almost prophetically to the path now

taken by Einstein.

(a) The line-element in the three-dimensional manifold of

POINTS IN SPACE, EXPRESSED IN A FORM COMPATIBLE WITH

THE TWO POSTULATES.

Every point in space can be singly and unambiguously defined

by the three numbers xx ,
x2 ,

x3 ,
which may be regarded as the co-

ordinates of a rectangular system of coordinates, and which distin-

guish it from all other points ;
a continuous variation of these three

numbers enables us to specify every single point of space in turn.

The assemblage of points in space represents, in Riemann's nota-

tion, "a multiply extended magnitude" (an n-fold manifoldness or

manifold) between the single elements (points) of which a con-

tinuous transition is possible. We are familiar with diverse con-

tinuous manifolds, e.g. the system of colours, of tones and various

others. A feature which is common to all of them is that, in order

to specify a single element out of the entire manifold (to define a

particular point, a particular colour, or a particular tone), a charac-

teristic number of magnitude-determinations, i.e. coordinates, is

required: this characteristic number is called the dimensions of the

respective manifold. Its value is three for space, two for a plane,

one for a line. The system of colours is a continuous manifold of

the dimension three, corresponding to the three "primary" colours

red, green and violet, by mixing which in due proportions every

colour can be produced.
But the assumption of continuity for the transition from one

element to another in the same manifold, and the determination of

the dimensions of the latter, does not give us any information about

the possibility of comparing limited parts of the same manifold

with one another, e.g. about the possibility of comparing two tones

with one another or two single colours; i.e. nothing has yet been

stated about the metric relations (measure-conditions) of the

manifold, about the nature of the scale, according to which measure-

ments can be undertaken within the manifold\{ In order to be able

to do this, we must allow experience to give us the facts from which
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to establish the metric (measure-) laws which hold for each par-
ticular manifold (space-points, colours, tones) under various

physical conditions; these metric laws will be different according
to the set of empirical facts chosen for this purpose*.

In the case of the manifold of space-points experience has taught
us that finite rigid point-systems can be freely moved in space
without altering their form or dimensions; the conception of

"congruence" which has been derived from this fact, has become
a \ital factor for a measure-determination f . It sets us the problem
of building up an expression from the numbers xx ,

x2 ,
x3 ,

and

Vi> 2/2 > Vzi denoting two definite points in space, which can be

regarded as a measure of their fixed or invariable distance from one

another and as such can be introduced into physical laws.

The equations of physical laws, which in order to fulfil the

conditions of continuity must be differential laws, only contain

the distances ds, of infinitely near points, so-called line-elements.

We must therefore enquire whether our two postulates of 2 have

any influence upon the analytical expression for the line-element ds

and, if so, which expression for the latter is compatible with both.

Riemann demands of a line-element in the first place that it can be

compared in respect to its length with every other line-element

independent of its position and direction. This is a distinguishing
characteristic of the metric conditions ("measure relations")

prevalent in space; this peculiarity does not exist, for instance,
in the manifold of tones or in that of colours (vide Note 2). Riemann
formulates this condition in the words, "that lines must have a

length independent of their position and that every line is to be

measurable by means of any other." He then discovers that: if

^d x2 ,
x3 and xx + dxx ,

x2 + dx
2 ,

x3 + dx3 respectively denote two

infinitely near points in space and if the continuously variable

numbers x1} x2 ,
x3 are any coordinates whatsoever (not e.g. neces-

sarily rectilinear), then the square root of an always positive,

integral, homogeneous function of the second degree in the differ-

entials dxx ,
dx2 ,

dx3 has all the properties J which the line-element

must exhibit. We thus find that :

ds = ^9ixd%i + 9i2dxidx2 + ... + g33dx3
2
,

* Vide Note 2. f Vide Note 3. J Vide Note 4.
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in which the coefficients g^ v are continuous functions of the three

variables x
1 ,

x2 ,
x3 , gives us an expression for the line-element at

the point xx ,
x2 ,

xz .

No assumptions whatsoever are contained in this expression

concerning the question as to the coordinates of the three variables

that are to be used, whether they are to be Cartesian, polar, or

curvilinear (Gaussian) (vide page 32), i.e. about the nature of the co-

ordination of space. If it be in particular demanded that each

point can be defined by means of Cartesian coordinates x, y, z the

line-element assumes the form

ds = Vdx* + dy
2 + dz\

for this special case.

This latter expression has hitherto always been introduced into

all physical laws, as it allows the use of Euclidean geometry for all

space-measurements. But this particular assumption contains the

hypothesis, as Helmholtz has shown in a detailed discussion, that

finite rigid point-systems, i.e. finite fixed distances, are capable of

unrestrained motion in space, and can be made (by superposition)

to coincide with other (congruent) point-systems. With respect to

the postulate of continuity, this hypothesis seems inconsistent, in so

far as it introduces implicit statements about finite distances into

purely differential laws, in which only line-elements occur; but it

does not contradict the postulate.

The postulate of the relativity of all motion takes a different

stand towards the possibility of giving the line-element the

Euclidean form in particular*.

According to the principle of the relativity of all motions, all

systems, which come about owing to relative motions of bodies towards

one another, may be regarded as fully equivalent. The laws of physics

must therefore preserve their form in passing from one such system

to another; i.e. the transformation-formulae of the variables which

perform this transition to another system, must not alter the ana-

lytical expression for the physical law under consideration.

*
Strictly speaking I should at this juncture state in anticipation that the above

investigations can manifestly also be so generalised as to be valid for the four-

dimensional space-time manifold, in which all events actually take place, and that

the transformation-formulae apply to the four variables of this manifold. In these

general remarks the neglect of the fourth dimension is of no importance. This

statement will be justified later in 3 (b).

(
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As we have to reckon with all possible relative motions of bodies

with respect to one another, the general principle of relativity re-

quires that the physical laws, and thereby also the line-element

which occurs in them, preserve their form for every arbitrary trans-

formation of the variables. This condition is fully satisfied by the

line-element:

ds = Vgxldx^ + g12dx1dx2 + . . . + g33dx3
2

,

in which no restrictive reservations of any description are made as

to what the coordinates x
x ,

x
2 ,

xs are to signify. The Euclidean

line-element

ds = Vdx2 + dy
2 + dz2

>

on the other hand, preserves its form only for transformations of the

special theory of relativity (vide 1 and Note 1), which confine

themselves to systems moving uniformly and rectilinearly. More-

over, experience teaches us daily that bodies continually move with

accelerated motion towards one another as a result of their mutual

gravitational influences. Consequently the postulate of a principle

of relativity for all motions is not to be brought into agreement
with the limitation imposed by adopting the Euclidean element of

arc for the differential laws of physics.
3

The choice of the expression ds2 =
Hg^ v

dx
(/ix v

to represent the
i

line-element in physical laws is, in spite of its very general character,

still to be regarded as a hypothesis, as Riemann has already pointed

out. For there are other functions of the differentials dxx ,
dx2 ,

dx3

such as e.g. the fourth root of a homogeneous differential expression

of the fourth degree in these variables which could provide a

measure for the length of the line-element (vide Note 5). But at

present there is no ground for abandoning the simplest general

expression for the line-element, viz. that of the second degree, and

adopting more complicated functions. Within the range (of fulfil-

ment) of the two postulates, which we have imposed upon every

description of physical events, the former expression for ds satisfies

all requirements. Nevertheless, it must never be forgotten that the

choice of an analytical expression for the line-element always con-

tains a hypothetical factor
;
and it is the duty of the physicist to

remain fully conscious of this fact at all times, without being in any
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way prejudiced. It is for this reason that Riemann closes his essay

with the following remarks, which impress one particularly with

their great importance for the present time.
" The question of the validity of the hypotheses of geometry in

the infinitely small is bound up with the question of the ground of

the metric relations of space. In this question, which we may still

regard as belonging to the doctrine of space, is found the application

of the remark made above
;
that in a discrete* manifold, the principle

or character of its metric relations is already given in the notion

of the manifold, whereas in a continuous manifold this ground has

to be found elsewhere, i.e. has to come from outside. Either, there-

fore, the reality which underlies space must form a discrete manifold,

or we must seek the ground of its metric relations (measure-con-

ditions) outside it, in binding forces which act upon it.

A decisive answer to these questions can be obtained only by

starting from the conception of phenomena which has hitherto been

justified by experience, to which Newton laid the foundation, and

then making in this conception the successive changes required by
facts which admit of no explanation on the old theory; researches

of this kind, which commence with general notions, cannot be other

than useful in preventing the work from being hampered by too

narrow views, and in keeping progress in the knowledge of the inter-

connections of things from being checked by traditional prejudices.

This carries us over into the sphere of another science, that of

physics, into which the character and purpose of the present dis-

cussion will not allow us to enter."

That is to say: according to Riemann's view these questions are

to be solved by starting from Newton's view of physical phenomena,
and compelled by facts which do not allow of any explanation by
it, gradually remoulding it. This is what Einstein has done. The
"
binding forces," to which Riemann points, will be found again in

Einstein's theory. As we shall see in the fifth chapter, Einstein's

theory of gravitation is based upon the view that the gravitational

forces are the "binding forces," i.e. they represent the "inner

ground" of the metric conditions (measure-relations) of the space-

time-manifold.

* Vide Note 6.
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(b) The line-element in the fouk-dimensional manifold of

SPACE-TIME POINTS, EXPRESSED IN A FORM COMPATIBLE

WITH THE TWO POSTULATES.

The measure-conditions, which we were to take as a basis for the

formulation of physical laws, could have been treated immediately
in connection with the four-dimensional manifold of space-time

points, seeing that, according to the special theory of relativity,

time-measurements enter into physical laws exactly like space-

measurements. Nevertheless, I wish to treat time-measurements

separately; for one reason, that it is just this result of the rela-

tivity-theory which has experienced the greatest opposition at

the hands of supporters of classical mechanics: and for another

that classical mechanics is also obliged to establish certain con-

ditions about time-measurement.

In Galilei's law of inertia, a body which is not subject to external

influences continues to move with uniform motion in a straight

line. Two determining elements are lacking, viz. the reference of the

motion to a definite system of coordinates, and a definite time-

measure. Without a time-measure one cannot speak of a uniform

velocity.

Following a suggestion by C. Neumann*, the law of inertia has

itself been adduced to give a definition of a time-measure in the

form: "Two material points, both left to themselves, move in

such a way that equal lengths of path of the one correspond to

equal lengths of path of the other." On this principle, into which

time-measure does not enter explicitly, we can define "equal
intervals of time as such, within which a point, when left to itself,

traverses equal lengths of path."

This is the attitude which was also taken up by L. Lange,

H. Seeliger and others, in later researches. Maxwell selected this

definition too (in Matter and Motion). On the other hand, H.

Streintzf (following Poisson and d'Alembert) has demanded the

disconnection and independence of the time-measure from the law

of inertia, on the ground that the roots of the time-concept have a

deeper and more general foundation than the law of inertia.

* Vide Note 7. t Vi^ Note 8.
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According to his opinion, every physical event, which can be made

to take place again under exactly the same conditions, can serve

for the determination of a time-measure, inasmuch as every

identical event must claim precisely the same duration of time;

otherwise, an ordered description of physical events would be

out of the question. In point of fact, the clock is constructed on

this principle. It is this principle which enables an observer to

undertake a time-measurement at least for his place of observation.

The reduction of time-measurements to a dependence upon the law

of inertia, on the other hand, leads to an unobjectionable definition

of equal lengths of time
;
but the measurement of the equal paths

traversed by uniformly moving bodies, and the establishment of a

unit of time involved therein, are only then possible for a place of

observation, when the observer and the moving body are in con-

stant connection, e.g. by light-signals. It cannot however be

straightway assumed that two observers, who are in rectilinear

motion relatively to one another, and therefore, according to the

law of inertia, equivalent as reference systems, would in this manner

gain identical results in their time-measurements. Poisson's idea

thus leads to a satisfactory time-measurement for a given place of

observation itself ; i.e. in a certain sense it allows the construction of a

clock for that place. But it does not broach the question of the time-

relations of different places with one another at all; whereas Neu-

mann's suggestion leads directly to those questions which have

been a centre of discussion since Einstein's enunciation of the

relativity-principle.

In the endeavour to reduce classical mechanics to as small a

number of principles as possible, in perfect agreement with one

another, writers resorted to ideal-constructions and imaginary experi-

ments. It never occurred to anyone that the use of a light-signal as

a means of connection between the moving-body and the observer,

which is necessary in practice in order to determine simultaneity,

might affect the final result, i.e. of time-measurements in different

systems. But according to Einstein the truth of just this conjecture

cannot be ignored; because the conception of simultaneity, upon
which all time-measurements are based, has no meaning in itself, i.e.

absolutely {vide Note 9). Consequently the accepted conventions of

classical mechanics about the measurement of time are insufficient.

b. f. 2
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That such a fundamental revision of the assumptions made re-

garding time-measurements became necessary only after so great a

lapse of time, is to be explained by the fact that even the velocities

which occur in astronomy are so small, in comparison with the

velocity of light, that no serious discrepancies could arise between

theory and observation. So it occurred that the weaknesses of the

theory in particular, those due to the motional relations of various

systems to one another did not come to light. It was, above all, not

recognised that the equations of transformation of the relativity-

theory of Newton- Galilei, which express the relations between the

coordinates of two systems in uniform rectilinear motion with

respect to one another (i.e. of two systems mechanically equivalent :

in which therefore time-measurements are assumed to be fully inde-

pendent of one another), contain hypotheses. The relativity-theory

of Einstein first disclosed them. This will presently become more

evident.

In principle, the following question might have been proposed

long before the discovery of electrodynamical phenomena: how are

the measurements x, y, z, t and x'
, y' , z', t' in two different co-

ordinate systems, which are in uniform rectilinear motion relatively,

to be related to one another in general; i.e. in what way are the

x, y, z, t expressible in terms of x', y', z', t' and q, the relative

velocity of the two systems? a question to which Neumann's

proposal for a time-measurement directly points. From perfectly

general considerations, arising from certain fundamental ideas

about motions, one would have arrived at equations of trans-

formation of a much more general character than that of the

relativity-principle of Newton-Galilei, in which t' is always put

equal to t (vide Note 10). In these supposed general equations of

transformation, one magnitude would have claimed special atten-

tion. Whenever any effect propagates itself with the velocity v in

a certain system, then it will in general propagate itself, when

referred to another system which is in motion relatively to the

first, with a velocity in general differing from v, i.e. v' =t= v. But,

according to Frank and Rothe, there is always one unique velocity

for every system, which preserves its value, independent of the

motion of the system. It had hitherto been tacitly assumed that

only infinite velocity possessed this special property. In this par-
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ticular case the general equations of transformation degenerate
into those of Newton and Galilei {vide Note 1). If the question as

to whether there is a finite velocity, which reveals this special

property, had been left open, one would at least have remained

aware of the hypothetical element in this assumption, and the

result of Michelson and Morley's experiment viz. that the velocity

of light actually reveals this property as well as Einstein's deduc-

tions therefrom concerning the measurement of time, would not

have been felt to be such an arbitrary encroachment upon
mechanics.

The character of universal significance possessed by the velocity of

light must be accepted as an established fact.

This shows that the assumptions hitherto made about the time-

measurements, upon which mechanics was supposed to be based,

are not compatible with the equations of transformation of the

relativity-principle of Galilei and Newton and at the same time

with the fact of the constancy of the velocity of light : we are thus

compelled to call into action the views first developed by Einstein,

which take into account the relativity of time-measurements.

The details of the effects, which result from the relativity of the.

time-concept, have so often been discussed in recent years that it

is only possible to repeat what has already often been said. An
essential point is the recognition of the fact, that time-measure-

ments enter into physical laws as in every sense equivalent with

space-measurements, and have similarly their corresponding co-

ordinate-direction. Space and time therefore represent a homo-

geneous manifold of "four" dimensions with homogeneous measure-

relations (vide Note 11). Consequently, to be consistent, we must

apply the arguments of the preceding 3 (a) about the measure-

relations to the four-dimensional space-time-manifold ; and, in view

of the two fundamental postulates (1) of continuity and (2) of

relativity, and including the time-measurement as the fourth

dimension, we must select for our line-element the expression :

ds2 = gndxx
2 + g12dxx

dx2 + . . . + g^dx^dx^ + gudx^2 ,

in which the g^ v (fi, v = 1, 2, 3, 4) are functions of the variables

Hitherto we have been led to adopt this much more general
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attitude towards the questions of the metric laws involved in

physical formulae merely by the desire not to introduce, from

the very outset, more assumptions into the formulations of physical

laws than are compatible with both postulates, and to bring abcut

a deeper appreciation of the points of view, to which the special

theory of relativity has Jed us.

We can briefly summarise by saying: the adoption of Euclidean

metric-conditions (measure-relations) is compatible with the postu-

late of continuity ; though the special assumptions thereby involved

appear as restrictive or limiting hypotheses, which need not be

made. But the second postulate, the reduction of all motions to

relative motions, compels us to abandon the Euclidean measure-

determination (cf. bottom of page 14). A description of the diffi-

culties still remaining in mechanics will make this step clear.
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THE DIFFICULTIES IN THE PRINCIPLES OF
CLASSICAL MECHANICS

The foundations of classical mechanics cannot be exhaustively
described in a narrow space. I can only bring the unfavourable

side of the theory into prominent view for the present purpose,
without being able to do justice to its great achievements in the

past. All doubts about classical mechanics set in at the very com-

mencement with the formulation of the law which Newton places

at its head, the formulation of the law of inertia.

As has already been emphasised on page 16, the assertion that a

point-mass which is left to itself moves with uniform velocity in a

straight line, omits all reference to a definite coordinate system. An
insurmountable difficulty here arises: Nature gives us actually no

coordinate system, with reference to which a uniform rectilinear

motion would be possible. For as soon as we connect a coordinate

system with any body such as the earth, sun or any other body
and this alone gives it a physical meaning the first condition of

the law of inertia (viz. freedom from external influences) is no

longer fulfilled, on account of the mutual gravitational effects of

the bodies. One must accordingly either assign to the motion of the

body a meaning in itself, i.e. grant the existence of motions relative

to "absolute" space, or have recourse to mental experiments by

following the example of C. Neumann and introducing a hypo-
thetical body Alpha, relative to which a system of axes is defined,

and with reference to which the law of inertia is to hold (Inertia!

system, vide Note 12). The alternative with which one is faced is

highly unsatisfactory. The introduction of absolute space gives
rise to the oft-discussed conceptual difficulties which have gnawed
at the foundations of Newton's mechanics. The introduction of the

system of reference Alpha certainly takes the relativity of motions

so far into account, that all systems in uniform motion relative to

an Alpha-system are established as equivalent from the very outset,

but we can affirm with certainty that there is no such thing as a
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visible Alpha-system, and that we shall never succeed in arriving

at a final determination of such a system. (It will, at most, be

possible, by means of progressively taking account of the influences

of constellations upon the solar system and upon one another, to

approximate to a system of coordinates, which could play the part
of such an inertial system with a sufficient degree of accuracy.) As a

result of this objection, the founder of the view himself, C. Neumann,
admits that it will always be somewhat unsatisfactory and enig-

matical, and that mechanics, based on this principle, would indeed

be a very peculiar theory.

It therefore seems quite natural that E. Mach (vide Note 13)

should be led to propose that the law of inertia be so formulated

that its relations to the stellar bodies are directly apparent.
"Instead of saying that the direction and speed of a mass u

remains constant in space, we can make use of the expression that

the mean acceleration of the mass
fj,

relative to the masses m, m',

m" ... at distances r, r', r" ...
, respectively, is zero or

d2 T,mr

dt2
' 2w

= 0.

The latter expression is equivalent to the former statement, as soon

as a sufficient number and sufficiently great and extensive masses

are taken into consideration...." This formulation cannot satisfy

us. For, in addition to a certain requisite accuracy, the character

of a "contact" law is lacking, so that its promotion to the rank of

a fundamental law (in place of the law of inertia) is quite out of the

question.

The inner ground of these difficulties is without doubt to befound in

an insufficient connection between fundamental principles and obser-

vation. As a matter of actual fact, we only observe the motions of

bodies relatively to one another, and these are never absolutely
rectilinear nor uniform. Pure inertial motion is thus a conception

deduced by abstraction from a mental experiment- a mere fiction.

As fruitful and unavoidable as a mental experiment may often

be, there is the ever present danger that an abstraction which has

been carried unduly far loses sight of the physical contents of its

underlying notions. And so it is in this case. If there is no meaning
for our understanding in talking of the

"
motion of a body

"
in space,
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as long as there is only this one body present, is there any meaning
in granting the body attributes such as inertial mass, which only
arise from our observation of several bodies, moving relatively to

one another? If not, we can attach only a relative meaning to the

conception "inertial mass of a body."
The results of the special theory of relativity entirely unhinged

our view of the inertia of matter, for they robbed the theorem con-

cerning the equality of inertial and gravitational mass of its strict

validity. A body was now to have an inertial mass varying with its

contained internal energy*, without its gravitational mass being
altered. But the mass of a body had always been ascertained from

its weight, without any inconsistencies manifesting themselves

(vide Note 15).

A difficulty of such a fundamental character could come to light

only owing to the theorem of the equality of inertial and gravitational

mass not being sufficiently interwoven with the underlying principles

of mechanics ,
and because the same importance had not been accorded to

gravitational phenomena as to inertial phenomena, which, judgedfrom
the standpoint of experience, must be claimed. Gravitation, as a force

acting at a distance, is, on the contrary, introduced only as a special

force for a limited range of phenomena : and the surprising fact of

the equality of inertial and gravitational mass, valid at all times

and in all places, receives no further attention. One must therefore

substitute for the law of inertia a fundamental law which comprises
inertial and gravitational phenomena. This can be brought about by
a consistent application of the principle of the relativity of all motions,

as Einstein has recognised. This is therefore the circumstance chosen

by Einstein as a nucleus about which to weave his developments.

The theorem of the equality of inertial and gravitational mass, which

reflects the intimate connection between inertial and gravitational

phenomena, may be illuminated from another point of vantage,
and thereby disclose its close relationship (vide page 7) to the general

principle of relativity.

However much the notion of "absolute space" repelled Newton,
he nevertheless believed he had a strong argument, in support of

the existence of absolute space, in the phenomenon of centrifugal

forces. When a body rotates, centrifugal forces make their appear
-

* Vide Note 14.
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ance. Their presence in a body alone, without any other visible body

being present, enables one to demonstrate the fact that it is in

rotation. Even if the earth were perpetually enveloped in an

opaque sheet of cloud, one would be able to establish its daily

rotation about its axis by means of Foucault's pendulum-experi-
ment. This peculiarity of rotations led Newton to conclude that

absolute motions exist. From the purely kinematical point of view,

however, the rotation of the earth is not to be distinguished in any

way from a translation; in this case, too, we observe only the

relative motions of bodies, and might just as well imagine that all

bodies in the universe revolve around the earth. E. Mach has in

fact affirmed that both events are equivalent, not onlykinematically,
but also dynamically: it must, however, then be assumed that the

centrifugalforces ,
which are observed at the surface of the earth, would

also arise, equal in quantity and similar in their manifestations,

from the gravitational effect of all bodies in their entirety, if these

revolved around the supposedly fixed earth (vide Note 16).

The justification for this view, which in the first place arises out

of the kinematical standpoint, is in the main to be sought in the

fact, derived from experience, that inertial and gravitational mass

are equal. According to the conceptions, which have hitherto pre-

vailed, the centrifugal forces are called into play by the inertia of the

rotating body (or rather by the inertia of the separate points of mass,

which continually strive to follow the bent of their inertia, and
therefore express the tendency to fly off at a tangent to the path in

which they are constrained to move). The field of centrifugal forces is

therefore an inertialfield {vide Note 17). The possibility of regarding
it equally well as a gravitational field and we do that, as soon as

we also assert the relativity of rotations dynamically : for we must
then assume that the whole of the masses describing paths about

the (supposed) fixed body induce the so-called centrifugal forces by
means of their gravitational action is founded on the equality of

inertial and gravitational mass, a fact which Eotvos has established

with extraordinary precision by making use of the centrifugal
forces of the rotating earth (vide Note 18). From these considerations

one recognises how a general principle of the relativity of all motions

simultaneously implies a theory of gravitational fields.

From these remarks one inevitably gains the impression that a
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construction of mechanics upon an entirely new basis is an absolute

necessity. There is no hope of a satisfactory formulation of the law

of inertia without taking into account the relativity of all motions,

and hence just as little hope of banishing the unwelcome conception

of absolute motion out of mechanics; moreover the discovery of the

inertia of energy has taught us facts which refuse to fit into the

existing system, and necessitate a revision of the foundations of

mechanics^- The condition which must be imposed at the very
outset (cf. page 8) is: Elimination of all actions which are sup-

posed to take place "at a distance
"' and of all quantities which are

not capable of direct observation, out of the fundamental laws; i.e.

the setting-up of a differential equation which comprises the

motion of a body under the influence of both inertia and gravity

and symbolically expresses the relativity of all motions. This

condition is completely satisfied by Einstein's theory of gravita-

tion and the general theory of relativity. The sacrifice, which we

have to make in accepting them, is to renounce the hypothesis,

which is certainly deeply rooted, that all physical events take place

in space which is "equipped" with the axioms of Euclidean geo-

metry. For the postulate of general relativity, which also applies

to accelerated motions, demands that the fundamental laws be

independent of the particular choice of the coordinates of refer-

ence. But the Euclidean line-element does not preserve its form

after any arbitrary change of the coordinates of reference. We have,

therefore, to substitute in its place the general line-element :

4

ds2 = Hg^dx^dx^
l

Whereas, then, the postulate of continuity (cf . page 9) only seemed

to render it advisable not to introduce the narrowing assumptions

of the Euclidean determination of measure, the principle of general

relativity no longer leaves us any choice.

The reason for so emphasising the latter principle as indeed also

the postulate that only observable quantities are to occur in

physical laws is not to be sought in any requirement of a merely

formal nature, but rather in an endeavour to invest the principle of

causality with the authority of a law which holds good in the world

of actual physical experience. One must above all avoid intro-
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ducing into physical laws, side by side with observable quantities,

hypotheses which are purely fictitious in character, as e.g. the

space of Newton's mechanics. Otherwise the principle of causality

would not give us any real information about the causes and

effects, i.e. the causal relations of the contents of direct experience;
which is presumably the aim of every physical description of

natural phenomena. The fact that the postulate of the relativity

of all motions is so deeply rooted in the foundations of all our

knowledge gives us the standpoint from which its true merits are

to be judged (vide Note 19).
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Einstein's Theory of Gravitation

(a) THE FUNDAMENTAL LAW OF MOTION AND
THE PRINCIPLE OF EQUIVALENCE

OF THE NEW THEORY

According to the preceding discussion, the law of inertia of

mechanics must be replaced by an entirely different one, viz. by a

differential law, which in the first place describes the motion of a

point-mass under the influence of both inertia and gravity, and

which, secondly, always preserves the same form, irrespective of

the system of coordinates to which it be referred, so that no system

of coordinates enjoys a preference to any other. (The first condition

arises from the necessity of ascribing the same importance to

gravitational phenomena as to inertial phenomena in the new pro-

cess of founding mechanics the law must therefore also contain

terms which denote the gravitational state of the field from point

to point ;
the second condition is derived from the postulate of the

relativity of all motion.)

A law of this kind exists in the special theory of relativity in the

equation of motion of a single point, not subject to any external

influence, in the form :

8 yds} = 8 {JV- dx2 -
dy

2 - dz2 + c2dt2}
= 0.

According to this equation, the path of a point is the "shortest" or

"straightest" line (vide Note 20) i.e. the "straight line," if the

line-element ds is Euclidean. If the principle of the shortest path,

which is to be followed in actual motions, be elevated in this form

to a general differential law for the motion in a gravitational field

too, with due regard to the principle of the relativity of all motions,

the new fundamental law must run as follows:

8 {$ds}
= 8 {$Vgxxdx^ + gX2dxxdx2 + ... + g^dx^} = ...(1).

For only this form of the line-element remains unaltered (invariant)

for arbitrary transformations of the x
1 ,

x2 ,
xz , 4 . The ten co-

efficients g^ which will in general be functions of the variables

xx ,
... x4 ,

must be able to be brought into such relationship to the
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gravitational field, in which the motion takes place, that they are

determined by the field, and that the motion described by equation
(1) coincides with the observed motion. This is actually possible.

(
Tne 9jB are the gravitational potentials of the new theory, i.e.

they take over the part played by the one gravitational potential
in Newton's theory, without, however, having the special properties,
which according to our knowledge a potential has, in addition.)

Corresponding to the measure-relations of a space-time manifold
based upon the line-element:

4

ds2 = Hg^dx^dXv,
l

which is now placed at the foundation of mechanics by virtue of

the relativity of all motions, the remaining physical laws must also

be so formulated that th,ey remain independent of the accidental

choice of the variables;
1 Before we enter into this more closely,

the distinguishing features of the theory of gravitation charac-

terised by equation (1) will be considered in greater detail.

The postulate of the new theory, that the laws of mechanics are

only to contain statements about the relative motions of bodies,
and that, in particular, the motion of a body under the action of

the attraction of the remaining bodies is to be symbolically de-

scribed by the formula :

8W Zg^dx^dx^ = 0,

is fulfilled in Einstein's theory by a physical hypothesis concerning
the nature of gravitational phenomena, which he calls the hypo-
thesis or principle (respectively) of equivalence (vide Note 21). This

asserts the following :

Any change, which an observer perceives in the passing of any event

to be due to a gravitational field, would be perceived by him in exactly
the same way, if the gravitationalfield were not present, provided that he

the observer makes his system of reference move with the acceleration

which was characteristic of the gravitation at his point of observation*.

For if the variables x, y, z, t in the equation of motion

3 {Jds}
= 8 {JV- dx2 -

dy
2 - dz2 + c2dt2}

=
* This is discussed in an elementary way in a short "essay "The Theory of

Relativity" by the translator, which has been issued as a pamphlet by B. H.

Blackwell, Broad Street, Oxford.
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of a point-mass moving uniformly and rectilinearly (i.e. unin-

fluenced by gravity) be subjected to any transformation corre-

sponding to the change of the x, y, z, t into the coordinates xx ,
x% ,

x3 ,
#4 of a system of reference which has any accelerated motion

whatsoever with regard to the initial system x, y, z, t; then, in

general, coefficients g will occur in the transformed expression for

ds, and will be functions of the new variables x1 ,
... xi} so that the

transformed equation will be:

S {^Vg^dxj
2 + gl2dxx

dx2 + ... + g^dx^
2
}
= 0.

Taking into account the extended region of validity of this equation,

one will be able to regard the g^ v
which arise from the accelerational

transformation (vide Note 22) just as well, as due to the action of

a gravitational field, which asserts its existence in effecting just

these accelerations. Gravitational problems thus resolve into the

general science of motion of a relativity-theory of all motions.

By thus accentuating the equivalence of gravitational and

accelerational events, we raise the fundamental fact, that all bodies

in the gravitational field of the earth fall with equal acceleration.,

to a fundamental assumption for a new theory of gravitational

phenomena. This fact, in spite of its being reckoned amongst the

most certain of those gathered from experience, has hitherto not

been allotted any position whatsoever in the foundations of

mechanics. On the contrary, the Galilean law of inertia makes an

event which had never been actually observed (the uniform recti-

linear motion of a body, which is not subject to external forces)

function as the main-pillar amongst the fundamental laws of

mechanics. This brought about the strange view that inertial and

gravitational phenomena, which are probably not less intimately

connected with one another than electric and magnetic phenomena,
have nothing to do with one another. The phenomenon of inertia

is placed at the head of classical mechanics as the fundamental

property of matter, whereas gravitation is only, as it were, intro-

duced by Newton's law as one of the many possible forces of nature.

The remarkable fact of the equality of the inertial and gravitational

mass of bodies only appears as an accidental coincidence.

Einstein's principle of equivalence assigns to this fact the rank

to which it is entitled in the theory of motional phenomena. The
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new equation of motion (1) is intended to describe the relative

motions of bodies with respect to one another under the influence

of both inertia and gravity. The gravitational and inertial pheno-

mena are amalgamated in the one principle that the motion take

place in the geodetic line (8 jds
=

0). Since the element of arc

ds=
^J

y

Lgv_vdxv.dx v

preserves its form after any arbitrary transformation of the

variables, all systems of reference are equally justified as such, i.e.

there is none which is more important than any other.

The most important part of the problem, with which Einstein

saw himself confronted, was the setting-up of differential equations

for the gravitational potentials g^, of the new theory. With the

help of these differential equations, the g^Js were to be unam-

biguously calculated (i.e. as single-valued functions) from the dis-

tribution of the quantities exciting the gravitational field
;
and the

motion (e.g. of the planets) which was described, according to

equation (1) by inserting these values for the g^Js, had to agree

with the observed motion, if the theory was to hold true. In setting-

up these differential equations for the gravitational potentials g^
Einstein made use of hints gathered from Newton's theory, in

which the factor which excites the field in Poisson's equation

A(/>
=

iirp for the Newtonian gravitational potential (viz. the

factor represented by p, the density of mass in this equation) is put

proportional to a differential expression of the second order. This

circumstance prescribes, as it were, the method of building up
these equations, taking for granted that they are to assume a

form similar to that of Poisson's equation.

In conformity with the deepened meaning we have assigned to

the mutual relation between inertia and gravity, as well as to the

connection between the inertia and latent energy of a body, we

find that ten components of the quantity which determines the

"energetic" state at any point of the field, and which was already

introduced by the special theory of relativity as
"
stress-energy

-

tensor," duly make their appearance in place of the density of mass

p, in Poisson's equation.

Concerning the differential expressions of the second order in the

g Js which are to correspond to the A< of Poisson's equation,
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Riemann has shown the following: the measure-relations of a

manifold based on the line-element

4

US =
/Lu(j^v dX^QiXvi
1

are in the first place determined by a differential expression of the

fourth degree (the Riemann-Christoffel Tensor), which is indepen-

dent of the arbitrary choice of the variables xl7 ... x^ and from

which all other differential expressions which are likewise inde-

pendent of the arbitrary choice of the variables xlf ... xi and only

contain the g Js and their derivatives, can be developed (by means

of algebraical and differential operations). This differential ex-

pression leads unambiguously, i.e. in only one possible way, to ten

differential expressions in the g^Js. And now, in order to arrive at

the required differential equations, Einstein puts these ten differ-

ential expressioiis proportional to the ten components of the

stress-energy-tensor, regarding the latter ten as the quantities

exciting the field. He inserts the gravitational constant as the

constant of gravitation. These differential equations for the #v's,

together with the principle of motion given above, represent the

fundamental laws of the new theory. To the first order they, in

point of fact, lead to those forms of motion, with which Newton's

theory has familiarised us (vide Note 23). More than this, without

requiring the addition of any further hypothesis, they mathe-

matically account for the only phenomenon in the theory of

planetary motion which could not be explained on the Newtonian

theory, viz. the occurrence of the remainder-term in the expression

for the motion of Mercury's perihelion.

Since the formulae of the new theory are based upon a space-

time-manifold, the line-element of which has the general form

ds = a / ^g^dx^dx

all other physical laws, in order to bring the general theory of

relativity to its logical conclusion, must receive a form which, in

agreement with the new measure-conditions, must be independent
of the arbitrary choice of the four variables x1 ,

x2 ,
x3 ,

x4 .

Mathematics has already performed the preliminary work for the

solution of this problem in the calculus of absolute differentials;

Einstein has elaborated them for his particular purposes (in his
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essay "Concerning the formal foundations of the general theory of

relativity*"); Gauss invented the calculus of absolute differentials

in order to study those properties of a surface (in the theory of

surfaces) which are not affected by the position of the surface in

space nor by inelastic continuous deformations of the surface

(deformations without tearing), so that the value of the line-element

does not alter at any point of the surface. As such properties

depend upon the inner measure-relations of the surface only, one

avoids referring, in the theory of surfaces, to the usual system of

coordinates, i.e. one avoids reference to points which do not them-

selves lie on the surface. Instead of this, every point in the surface

is fixed, by covering the surface with a net-work, consisting of two

intersecting arbitrary systems of curves, in which each curve is

characterised by a parameter; every point of the surface is then

unambiguously, i.e. singly, defined by the two parameters of the

two curves (one from each system) which pass through it, i.e. of

which it is the point of intersection. According to this view of

surfaces, a cylindrical envelope and a plane, for instance, are not

to be regarded as different configurations: for each can be unfolded

upon the other without stretching, and accordingly the same plani-

metry holds for both a criterion that the inner measure-relations

of these two manifolds are the same (vide Note 24). The general

theory of relativity is based upon the same view; but now not 4s

applied to the two-dimensional manifold of surfaces, but with respect
to thefour-dimensional space-time manifold. As the four space-time
variables are devoid of all physical meaning, and are only to be

regarded as four parameters, it will be natural to choose a repre-

sentation of the physical laws, which provides us with differential

laws which are independent of the chance choice of the x1 ,
x2 ,

x3 ,
x4 ;

this is what is done by the calculus of absolute differentials. The

results of the preceding paragraphs, the far-reaching consequences of

which can be fully recognised only by a detailed study of the mathe-

matical developments involved, may be summarised as follows :

The calculus of absolute differentials of a space-time-manifold
based upon the general line-element

i

as =
2j(j vaxaxvi
i

* "tJber die formalen Grundlagen der allgemeinen Relativitatstheorie," Silz.

Ber. d, Kgl. Preuss. Akad. d. Wiss. xli. 1916, S. 1080.
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enables us to obtain for every law of the special theory of relativity

a corresponding general form, which is independent of the chance

selection of the four variables. Corresponding to the ten functions

g^, the gravitational potentials of the new theory, ten differential

equations of the second order present themselves, without any
additional hypothesis being necessary, and they have a corre-

sponding form to that possessed by Poisson's equations for the

Newtonian gravitational potential.

The latter allow the g Js to be unambiguously calculated for a

given gravitational field, i.e. when the distribution of the masses

and the energy is given. The motion of every single body in the

gravitational field under discussion then takes place according to

the equation:
4

S {jds}
= 0, where ds'2 = Hg^dx^dx,,.

l

This theory, which is built up from the most general assumptions,

leads, for a first approximation, to Newton's laws of motion.

Wherever deviations from the theory hitherto accepted reveal

themselves, we have possibilities of testing the new theory ex-

perimentally. Before we turn to this question, let us look back,

and become clear as to the attitude which the general theory of

relativity compels us to adopt towards the various questions of

principle we have touched upon in the course of this essay.

(6) RETROSPECT

1. The conceptions "inertial" and "gravitational" (heavy)
mass no longer have the absolute meaning which was assigned to

them in Newton's mechanics. The "mass" of a body depends, on

the contrary, exclusively upon the presence and relative position

of the remaining bodies in the universe. The equality of inertial and

gravitational mass is put at the head of the theory as a rigorously

valid principle. The hypothesis of equivalence hereby supplements
the deduction of the special theory of relativity, that all energy

possesses inertia, by investing all energy with a corresponding

gravitation. It becomes possible on the basis (be it said) of cer-

tain special assumptions into which we cannot enter here to regard

B. F. 3
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rotations unrestrictedly, as relative motions too, so that the centri-

fugal field around a rotating body can be interpreted as a gravi-

tational field, produced by the revolution of all the masses in the

universe about the non-rotating body in question. In this manner
mechanics becomes a perfectly general theory of relative motions.

As our statements are concerned only with observations of relative

motions, the new mechanics fulfils the postulate that in physical
laws observable things only are to be brought into causal con-

nection with one another. It also fulfils the postulate of continuity;
since the new fundamental laws of mechanics are differential laws,

which only contain the line-element ds and no finite distances

between bodies.

2. The principle of the constancy of the velocity of light in

vacuo, which was of particular importance in the special theory of

relativity, is no longer valid in general. It preserves its validity only

in regions in which the gravitational potentials are constant, finite

extents of which we can never meet with in reality. The gravi-

tational field upon the earth's surface is certainly so far constant

that the velocity of light, within the limits of accuracy of our

measurements, had to appear to be a universal constant in the

results of Michelson's experiments. In a gravitational field however,

in which the gravitational potentials vary from place to place, the

velocity of light is not constant; the geodetic lines, along which

light propagates itself, will thus in general be curved. The proof of

the curvature of a ray of light, which passes by in close proximity to

the sun, offers us one of the most important possibilities of con-

firming the new theory.

3. The greatest change has been brought about by the general

theory of relativity in our conceptions of space and time*.

According to Riemann the expression foe the line-element, viz.

4

ds2 = Hg^dx^dXy,
l

determines in our case the measure-relations of the continuous

space-time manifold
;
and according to Einstein the coefficients g^v

of the line-element ds have in the general theory of relativity

* This aspect of the problem has been treated with particular clearness and
detail in the book Raum und Zeit in der gegenwdrtigen Physik by Moritz Schlick,

published by Jul. Springer, Berlin. The Clarendon Press is publishing an English

rendering under the title: Space and Time in Contemporary Physics.



Riemann 35

the significance of gravitational 'potentials. Quantities, which

hitherto had only a purely geometrical import, for the first time

became animated with physical meaning. It seems quite natural

that gravitation should herein play the fundamental part, viz.

that of predominating over the measure-laws of space and time.

For there is no physical event in which it does not cooperate,

inasmuch as it rules wherever matter and energy come into play.

Moreover it is the only force, according to our present knowledge,

which expresses itself quite independently of the physical and

chemical constitution of bodies. It therefore without doubt

occupies a unique position, in its outstanding importance for the

construction of a physical picture of the world.

According to Einstein's Jheory, th p", gravitation is the "inner

ground of the metric relations of space and time" in Kiemann's

sense {vide the final paragraph of Riemann's essay
" On the hypo-

theses which lie at the bases of geometry" quoted on page 15). If

we uphold the view that the space-time manifold is continuously

connected, its measure-relations are not then already contained in

its definition as being a continuous manifold of the dimensions

"four." These have on the contrary yet to be gathered from

experience. And it is, according to Riemann, the task of the phy-

sicist finally to seek the inner ground of these measure-relations in

"binding forces which act upon it." Einstein has discovered in his

theory of gravitation a solution to this problem, which was pre-

sumably first put forward in such clear terms by Riemann. At the

same time he gives an answer to the question of the true geometry

of physical space, a question which has not remained silent for the

last century, but an answer, it is true, of a sort quite different

from that which had been expected.

The alternative, Euclidean or non-Euclidean geometry, is not

decided in favour of either one or the other; but rather space, as a

physical thing with given geometrical properties, is banished out of

physical laws altogether: just as ether was eliminated out of the^

laws of electrodynamics by the Lorentz-Einstein special theory of

relativity. This, too, is a further step in the sense of the postulate

that only observable things are to have a place in physical laws.

The inner ground of metric relations of the space-time manifold,

in which all physical events take place, lies, according to Einstein's

32
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view, in the gravitational conditions. Owing to the continual motion

of bodies relatively to one another, these gravitational conditions

are continually altering ;
and therefore one cannot speak of an in-

variable given geometry of measure or distance whether Euclidean

or non-Euclidean. As the laws of physics preserve their form in the

general theory of relativity, independent of how the four variables

a?j, ... xi may chance to be chosen, the latter have no absolute

physical meaning. Accordingly x
,
x2 ,

x3 ,
for instance, will not in

general denote three distances in space which can be measured with

a metre rule, nor will x4 denote a moment of time which can be

ascertained by means of a clock. The four variables have only the

character of numbers, parameters, and do not immediately allow

of an objective interpretation. Time and space have therefore not

the meaning of real physical things in the description of the events

of physical nature.

4. The gravitational theory, which follows out of the general

theory of relativity, is, in contradistinction to the Newtonian theory,
built up, not upon an elementary law of the gravitationalforces, but

upon an elementary law of the motion of a body in the gravitational

field. Consequently, the expressions which would be interpreted as

gravitational forces in the new theory play only a minor part in the

building-up of the theory (as indeed the conception of force in

mechanics altogether is to be regarded as only an auxiliary or

derived conception, if we regard it as the object of mechanics to

give a flawless description of the motions occurring in physical

events).

Nor does Einstein's theory endeavour to explain the nature of

gravitation; it does not seek to give a mechanical model, which

would symbolise the gravitational effect of two masses upon one

another. This is what the various theories involving ether-impulses

attempted to do, by fieely using hypothetical quantities which had

never been actually observed, such as ether-atoms. It is very
doubtful whether such endeavours will ever lead to a satisfactory

theory of gravitation. For, the difficulties of Newton's mechanics

are not contained only in the fact that it formulates the law of

gravitation as a law of forces acting at a distance. Two much more

seriouspoints are : first, thatthe close relationship existing between

inertial and gravitational phenomena receives no recognition what-
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soever, although Newton was already aware of the fact that in-

ertial and gravitational mass are equal; and second, that Newton's

mechanics does not present us writh a theory of the relative motions

of bodies, although we only observe relative motions of bodies with

respect to one another. Re-moulding Newton's lawr of gravitational

force, in order to make the attraction of matter more feasible, would

therefore not have helped us finally to a satisfactory theory of the

phenomena of motion {vide Note 25).

What distinguishes the Newtonian theory, above all, is the extra-

ordinary simplicity of its mathematical form. Classical mechanics,

which is built up on Newton's initial construction, will, for this

reason, never lose its importance as an excellent mathematical

theory for arithmetically following the observed phenomena of

motion.

Einstein's theory, on the other hand, as far as the uniformity of

its conceptual foundations is concerned, satisfies all the conditions

for a physical theory. The fact that (by abandoning the Euclidean

measure of distance) it cuts its connection with the familiar repre-

sentation bv means of Cartesian coordinates, will not be felt to be

a disturbing factor, as soon as the analytical appliances, which have

been called into use as a help, have been more generally adopted.

It is impossible to say at present whether the newT

theory will con-

siderably facilitate the practical problem of determining the path
of a heavenly body.
The first task which falls to the lot of the astronomer is to test

the theory experimentally in those phenomena in which measur-

able deviations from the results of the classical theory occur.
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THE VERIFICATION OF THE NEW THEORY BY
ACTUAL EXPERIENCE

As far as can be seen at present, there are three possible ex-

periments for verifying Einstein's theory of gravitation ;
all three

can be performed only by the agency of astronomy. One of them

arising from the deviation of the motion of a material point in

the gravitational field according to Einstein's theory, as compared
with that required on Newton's theory has- already decided in

favour of the new theory ;
the decisions of the other two, which are

derived from the combination of electromagnetic with gravitational

phenomena, will not be so readily forthcoming.
Since the sun far exceeds all other bodies of the solar system in

mass, the motion of each particular planet is primarily conditioned

by the gravitational field of the sun. Under its action the planet

describes, according to Newton's theory, an ellipse (Kepler's law),

the major axis of which defined by connecting the point of its path
nearest the sun (perihelion) with the farthest point (aphelion) is at

rest, relative to the stellar system. Upon this elliptic motion of a

planet there are superimposed more or less considerable influences

(disturbances) due to the remaining planets, which do not however

appreciably alter the elliptic form; these influences partly only call

forth periodical fluctuations in the defining elements of the initial

ellipse (i.e. major axis, eccentricity, etc.), partly cause a continual

increase or decrease of the latter. In this latter kind of disturbance

are also to be classed the slow rotation of the major axis, and con-

sequently also of the corresponding perihelion, relative to the stellar

system ;
which has been observed in the case of all planets. For all

the larger planets, the observed motions of the perihelion agree with

those calculated from the disturbing effects (except for small

deviations which have not been definitely established, as in the

case of Mars) ;
on the other hand, in the case of Mercury the calcu-

lations give a value which is too small by 43" per hundred years.

Hypotheses of the most diverse description have been evolved to
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explain this difference; but all of them are unsatisfactory. They

oblige one to resort to still unknown masses in the solar system : and,

as all the searches for masses large enough to explain this anomalous

beliaviour of Mercury prove fruitless, one is compelled to make

assumptions about the distribution of these hypothetical masses,

in order to excuse their invisibility. In view of these circumstances,

there is no shade of probability in these hypotheses.

According to Einstein's theory, a planet, at the distance of Mercury

for instance, moves, under the action of the sun's attraction, along

the "straightest path," according to the equation:

8 {jds}
= 8 {Wg^dx-f + g12dx1

dx2 + ....+ gMdx^2
}
= 0.

The a 's can be derived from the differential equations, which were
J fX.V

given for them above, and which result from the assumed sole

presence of the sun and the planet being regarded as a mass concen-

trated at a point. Einstein's developments give the ellipse of Kepler

too as a first approximation for the path of the planet : at a higher-

degree of approximation, however, it transpires that the radius

vector from the sun to the planet, between two consecutive passages

through perihelion and aphelion, sweeps out an angle, which is

about 0-05" greater than 180; so that, for each complete revolution

of the planet in its path, the major axis of the path i.e. the straight

line connecting perihelion with aphelion turns through about 0-1"

in the sense in which the path is described. Therefore, in 100 years

Mercury completes a revolution in 88 days the major axis will

have turned through 43". The new theory, therefore, actually

explains the hitherto inexplicable amount, 43 seconds per 100

years, in the motion of Mercury's perihelion, merely from the effect

of the sun's gravitation. (The deviations due to such disturbances

would only differ very inappreciably from the values obtained by
Newton's theory in the case of the remaining planets.) The only

arbitrary constant which enters into these calculations is the

gravitational constant which figures in the differential equations

for the gravitational potentials g^, as has already been mentioned

on page 31. This achievement of the new theory can scarcely be

estimated too highly.

The reason that a measurable deviation from the results accord-

ing to Newton's theory occurs in the case of Mercury, the planet
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nearest to the sun, but not in the case of the planets more distant

from the sun, is that this deviation decreases rapidly with in-

creasing distance of the planet from the sun, so that it already

becomes imperceptible at the distance of the earth. In the case of

Venus, the eccentricity of the path is unfortunately so small, that

it scarcely differs from a circle : and the position of the perihelion

can therefore only be determined with great uncertainty.

Of the other two possibilities of verifying the theory, one arises

from the influence of gravitation upon the time an event takes to

pass. How such an influence can come about, will be evident from

the following example: According to the new theory, an observer

cannot immediately distinguish whether a change, which he observes

during the passage of a certain event, is due to a gravitational field

or to a corresponding acceleration of his place of observation (his

system of reference). Let us assume an invariable gravitational

field, denoted by parallel lines of force in the negative direction of

the 2-axis, and having a constant value y for the acceleration with

which all bodies in the field fall (i.e. characterised by conditions

which approximately exist on the surface of the earth). According
to Einstein's theory, any event will take place in this field in just

the same way as it appears to occur when referred to a coordinate

system which has an acceleration y in the positive direction of the

2-axis. Now if a ray of light, the time of oscillation of which is vls

travels from a point A which is to be conveniently supposed at

rest relatively to the corresponding coordinate system at the

moment of departure of the ray in the direction of the 2-axis for a

distance h to a point B : then an observer at B will, owing to his own

acceleration, y, have attained a velocity y . h/c at the instant the

ray of light reaches him (c denotes the velocity of light). According
to the usual Doppler Principle, he will assign a time of oscillation

v2
= v1 (l + y.h/c

2
')

to the ray of light as a first approximation,
instead of vx . If we transfer the same event to the equivalent

gravitational field, this result assumes the following form: The

time of oscillation v2 of a ray of light at a place B, the giavitationaJ

potential of which differs from that of a place A by the amount j>.
is

connected with the time of oscillation there observed bv the relation :

v2
=

v, (l+</>/c
2
),

according to Einstein's theory of gravitation.
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This special case shows how the duration of an event is to be

understood as being dependent upon the gravitational condition.

Moreover, one can regard every vibrating system (which emits a

spectral line) as a clock, the motion of which, according to the

investigation made just above, depends upon the gravitational

potentials of the place where it is stationed. This same "clock"

will have a different time of oscillation at another place in the field

according to the gravitational potential, i.e. it will go at a different

rate. Consequently, a particular line in the spectrum of the light

which comes from the sun, e.g. an Fe-line (iron), must appear to be

shifted in comparison with the corresponding line as produced by a

source of light on the earth
; the gravitational potential at the surface

of the sun has, corresponding to the latter's great mass, a different

value from that at the surface of the earth, and a definite time of

oscillation (colour) is characterised in the spectrum by a definite

position (Fraunhofer line). It has not yet been possible to observe

this effect, which amounts to about 0-008A* for a wave-length of

400^ with certainty: but there are diverse points of attack for a

treatment of this question in the case of the fixed stars too, and

also signs of the existence of such a gravitational effect. The

establishment of this effect beyond all doubt is an important task

for stellar astronomy.
The third and particularly important inference from Einstein's

theory is the dependence of the velocity of light upon the gravi-

tational potential, and the resultant curvature (based upon

Huygens' principle) of a ray of light in passing through a gravi-

tational field. The theory asserts that a ray of light, coming e.g.

from a fixed star, and which passes in close proximity to the sun,

has a curved path. As a consequence of this curvature, the star must

appear displaced from its true position in the heavens by an amount
which attains the value 1-7" at the edge of the sun's disc, and

decreases in proportion to the distance from the centre of the sun.

But since a ray of light which comes from a fixed star and passes by
the sun can be caught .only when the light of the sun, which over-

powers all else,byitsbril]iancy,is intercepted before its entrance into

our atmosphere, only the rare moments of a total eclipse come into

account for this observation and for the solution of the problem.
o o

* A = Angstrom unit = 10-8 cm.
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The solar eclipse of 29th May, 1919, during which photographs
were taken at two widely apart stations, for the pmpose of this

test, has been reported as fully confirming the general theory of

relativity*.

The experimental verification of Einstein's theory of gravitation

has thus not reached completion. But if, in spite of this, the theory

can, even at this early stage, justly claim general attention, the

reason is to be found in the unusual unity and logical structure of
'

the ideas underlying it. In truth, it solves, at one stroke, all the

riddles, concerning the motions of bodies, which have presented

themselves since the time of Newton, as the result of the conven-

tional view about the meaning of space and time in the physical

description of natural phenomena.

* The results were made public at the meeting of the Roval Society on the

6th Nov., 1919. H. L. B.
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APPENDIX

Note 1 (page 1). The term "special" principle of relativity is to

signify the following postulate: All systems of reference which are in

uniform rectilinear motion with regard to one another can be used

for the description of physical events with equal justification. This

means : if physical laws assume a particularly simple form when referred

to any particular system of reference, they will preserve this form

when they are transformed to any other coordinate system which is

in uniform rectilinear motion relatively to the first system.

The mechanics of Galilei and Newton asserts the same postulate for the

laws of motion. The relativity-principle of Galilei and Newton, therefore,

does not differ from the special principle of relativity of Lorentz and

Einstein, as regards its significance for mechanical events. But the

latter extends its range of validity so as to include electrodynamical laws,

taking due account of the constancy of the velocity of light in vacuo.

The equations of transformation which connect coordinate systems

in uniform rectilinear motion relatively to one another (i.e. connect

equivalent systems with one another) are therefore different for the two

principles. If a system x', y', z'
',

t'
',
moves with uniform motion parallel

to the a;-axis of the system x, y, z, t, with a velocity v, the equations of

transformation are, according to the relativity-principle of the mechanics

of Newton and Galilei :

x' = x vt, y'
=

y, z' = z, if = t,

whereas, according to the "special" principle of relativity they are:

v

,
x vt , , ,

c
x =--

, y =y,z =z,t
1)2 I I)

2

1

C2 vM:
(where c denotes the velocity of light in vacuo).

These so-called Lorentz-transformations of the special theory of re-

lativity degenerate into those of the Newton-Galilei theory, if we put

vjc
= in them, i.e. if the velocity of light be regarded as infinitely great
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in comparison with the velocity v of the systems relatively to one an-

other. This important point will be discussed again later in 3(b),

page 16.

For the rest, the points of view which have led us to abandon the

Galilei-Newton principle of relativity, in favour of the special principle

of relativity due toLorentz and Einstein, have in recent years often been

dilated upon at great length. References :

A. Einstein. "Zur Electrodynamik bewegter Medien," Annalen der

Physik, 4 Folge, Bd. 17, S. 891.

M. Laue. "Das Relativitatsprincip," Sammlung, "Die Wissen-

schaft," Bd. 38, Braunschweig, 1913.

A. Petzoldt.
" Das Relativitatsprincip der Physiker," Zeitschriftfur

positivistische Philosophic, 2. Jahrgang, Nr. 1.

Note 2 (page 12). The facts that every pair of points (point-pair) in

space have the same magnitude-relation (viz. the same expression

for the mutual distance between them) and that with the aid of this

relation, every point-pair can be compared with every other,''constitute

the characteristic feature which distinguishes space from the remaining

continuous manifolds which are known to us. We measure the mutual

distance between two points on the floor of a room, and the mutual

distance between two points which lie vertically above one another on

the wall, with the same measuring-scale, which we thus apply in any
direction at pleasure. This enables us to "compare" the mutual distance

of a point-pair on the floor with the mutual distance of any other pair

of points on the wall.

In the system of tones, on the contrary, quite different conditions

prevail. The system of tones represents a manifold of two dimensions,

if one distinguishes every tone from the remaining tones by its pitch

and its intensity. It is, however, not possible to compare the "distance"

between two tones of the same pitch but different intensity (analogous to

the two points on the floor) with the "distance" between two tones of

different pitch but equal intensity (analogous to the two points on the

wall). The measure-conditions are thus quite different in this manifold.

In the system of colours, too, the measure-relations have their own

peculiarity. The dimensions of the manifold of colours are the same as

those of space, as each colour can be produced by mixing the three

"primary" colours. But there is no relation between two arbitrary

colours, which would correspond to the distance between two points in

space. Only when a third colour is derived by mixing these two, does
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one obtain an equation between these three colours similar to that which

connects three points in space lying in one straight line.

These examples, which are borrowed from Helmholtz's essays, serve

to show that the measure-relations of a continuous manifold are not

already given in its definition as a continuous manifold, nor by fixing its

dimensions. A continuous manifold generally allows of various measure-

relations. It is only experience which enables us to derive the measure-

laws which are valid for each particular manifold. The fact, discovered

by experience, that the dimensions of bodies are independent of their

particular position and motion, led to the laws of Euclidean geometry
where congruence is the deciding factor in comparing various por-

tions of space. These questions have been exhaustively treated by
Helmholtz in various essays. References :

Helmholtz. "Ueber die tatsachlichen Grundlagen der Geometrie,"

Wiss. Abh. 2, S. 10.

Helmholtz. "Ueber die Tatsachen, welche der Geometrie zugrunde

liegen," Wiss. Abh. 2, S. 618.

Helmholtz. "Ueber den Ursprung und die Bedeutung der geo-

metrischen Axiome," Vortrage und Reclen, Bd. 2, S. 1.

Note 3 (page 12). The postulate that finite rigid bodies are to be

capable of free motions, can be most strikingly illustrated in the realm of

two-dimensions. Let us imagine a triangle to be drawn upon a sphere,

and also upon a plane : the former being bounded by arcs of great circles

and the latter by straight lines; one can then slide these triangles over

their respective surfaces at will, and can make them coincide with other

triangles, without thereby altering the lengths of the sides or the angles.

Gauss has shown that this is possible because the curvature at every

point of the sphere (or the plane, respectively) has exactly the same value.

And yet the geometry of curves traced upon a sphere is different from

that of curves traced upon a plane, for the reason that these two con-

figurations cannot be deformed into one another without tearing (vide

Note 24). But upon both of them planimetrical figures can be freely

shifted about, and therefore theorems of congruence hold upon them. If,

however, we were to define a curvilinear triangle upon an egg-shaped

surface by the three shortest lines connecting three given points upon it,

we should find that triangles could be constructed at different places on

this surface, having the same lengths for the sides; but these sides would

enclose angles different from those included by the corresponding sides

of the initial triangle, and consequently such triangles would not be con-
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gruent, in spite of the fact that corresponding sides are equal. Figures
ur>on an egg-shaped surface cannot therefore be made to slide over the

surface without altering their dimensions : and in studying the geometrical
conditions upon such a surface, we do not arrive at the usual theorems

of congruence. Quite analogous arguments can be applied to three- and

four-dimensional realms : but the latter cases offer no corresponding pic-

tures to the mind. If we demand that bodies are to be freely movable in

space without suffering a change of dimensions, the "curvature" of the

space must be the same at every point. The conception of curvature, as

applied to any manifold of more than two dimensions, allows of strict

mathematical formulation
;
the term itself only hints at its analogous

meaning, as compared with the conception of curvature of a surface.

In three-dimensional space, too, various cases can be distinguished,

similarly to plane- and spherical-geometry in two-dimensional space.

Corresponding to the sphere, we have a non-Euclidean space with con-

stant positive curvature
; corresponding to the plane we have Euclidean

space with curvature zero. In both these spaces bodies can be moved

about without their dimensions altering; but Euclidean space is further-

more infinitely extended : whereas
"
spherical

"
space, though unbounded

,

like the surface of a sphere, is not infinitely extended. These questions

are to be found extensively treated in a very attractive fashion in Helm-

holtz's familiar essay: "Ueber den Ursprung und die Bedeutung der

geometrischen Axiome" (Vortrcige und Reden, Bd. 2, S. 1).

Note 4 (page 12). The properties, which the analytical expression for

the length of the line-element must have, may be understood from the

following :

Let the numbers x1} x2 denote any point of any continuous two-

dimensional manifold, e.g. a surface. Then, together with this point, a

-certain "domain" around the point is given, which includes points all

of which lie in the plane. D. Hilbert has strictly defined the conception

of a multiply-extended magnitude (i.e. a manifold) upon the basis of the

theory of aggregates in his Grundlagen der Geometric (page 177). In this

definition the conception of the "domain" encircling a point is made to

give Riemann's postulate of the continuous connection existing between

the elements of a manifold a strict form.

Setting out from the point xx ,
x2 we can continuously pass into its

domain, and at any point, e.g. xx + dxx ,
x2 + dx2 , enquire as to the

"distance" of this point from the starting-point. The function which

measures this distance will depend upon the values of x ,x2 , dx{, dx2 ,
and
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for every intermediate point of the path which has conducted us from

xx ,
x2 to the point xx + dx

1 ,
x2 + dx2 will successively assume certain

continually changing, and, as we may suppose, continually increasing,

values. At the point x
x ,

x2 itself it will assume the value zero, and for

every other point of the domain its value must be positive. Moreover, we

shall expect to find that, if for any intermediate point, denoted by

^l + ^i) x2 + d^2 , d^1 =\dxx
and dt;2

= \dx2 ,
the required function

which measures the distance of this point from xt ,
x2 , will, at this point,

have a value half that of its value for the point x1 + dxx ,
x2 + dx2 .

Under these assumptions, the function will be homogeneous and of the

first degree in the dx's; its value will then appear multiplied by that

factor in proportion to which the dx's were increased. In addition, it

must itself vanish if all the dx's are zero; and if they all change their sign

it must not alter its value, which always remains positive. It will

immediately be evident that the function

ds = vVii^i
2 + gi2dx1

dx2 + g22dx2
2

fulfils all these requirements ;
but it is by no means the only function of

this kind.

Note 5 (page 14). But the expression of the fourth degree for the line

element would not permit of any geometrical interpretation of the

formula, such as is possible with the expression

ds2 gudxj
2 + g12dx1dx2 + ... + g33dx3 5

which latter may be regarded as a general case of Pythagoras' theorem.

Note 6 (page 15). By a "discrete" manifold we mean one in which

no continuous transition of the single elements from one to another is

possible, but each element to a certain extent represents an inde-

pendent entity. The aggregate of all whole numbers, for instance, is a

manifold of this type, or the aggregate of all planets in our solar system,

etc., and many other examples may be found; and indeed all finite

aggregates in the theory of aggregates are such discrete manifolds.

"Measuring," in the case of discrete manifolds, is performed merely by

"counting," and does not present any special difficulties
;
as all manifolds

of this type are subject to the same principle of measurement. When
Riemann then proceeds to say: "Either, therefore, the reality which

underlies space must form a discrete manifold
,
or we must seek the ground

of its metric relations outside it, in binding forces which act upon it," he

only wishes to hint at a possibility, which is at present still remote, but

which must, in principle, always be left open. In just the last few years
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a similar change of view has actually occurred in the case of another

manifold which plays a very important part in physics, viz. "energy";
the meaning of the hint Riemann gives will become clearer if we con-

sider this example.

Up till a few years ago, the energy, which a body emanates by radiation,

was regarded as a continuously variable quantity : and it was therefore

attempted to measure its amount at any particular moment, by means of

a continuously varying sequence of numbers. The researches of Max
Planck have, however, led to the view that this energy is emitted in

"quanta," and that therefore the "measuring" of its amount is per-

formed by counting the number of "quanta." The reality underlying

radiant energy, according to this, is a discrete and not a continuous

manifold. If we now suppose that the view were gradually to take root

that, on the one hand, all measurements in space only have to do with

distances between ether-atoms; and that, on the other hand, the dis-

tances of single ether-atoms from one another can only assume certain

definite values, all distances in space would be obtained by "counting"

these values, and we should have to regard space as a discrete manifold.

Note 1 (page 16). C. Neumann. Ueber die Prinzipien der Galilei-

Newtonschen Theorie, Leipzig, 1870, S. 18.

Note 8 (page 16). H. Streintz. Die physikalischen Grundlagen der

Mechanik, Leipzig, 1883.

Note 9 (page 17). A. Einstein. Annalen der Physik, 4 Folge, Bd. 17,

S. 891.

Note 10 (page 18). Ph. Frank und H. Rothe. Annalen der Physik,

4 Folge, Bd. 34, S. 825.

The conditions fulfilled by the general equations of transformation,

which connect two systems S and S' moving uniformly and rectilinearly

with the velocity q relatively to one another, are :

1 . The equations of transformation constitute a linear homogeneous

group in the variable parameter q. This means that the successive

application of two systems of equations of transformation, one of which

connects the system S with 8' and the second S' with S" whereby S

moves with a constant velocity q relatively to *S", and S' moves with a

constant velocity q' relatively to S" leads in turn to a system of

equations of transformation which has the same form as the two original

equational systems; the parameter q"',
which will occur in the new equa-

tions, will depend in a perfectly definite manner upon q' and q.

2. The contractions of the lengths depend only upon the value of the
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parameter q. One must of course, from the very outset, take into account

the possibility of the length of a rod, as measured from the system at

rest, turning out differently from its length as measured in the moving

system. Condition 2 now requires that, if contractions (i.e. alterations

of length due to these different ways of determining it) reveal themselves,

they are to be dependent only upon the magnitude of the velocity of the

two systems relatively to one another, and not upon the direction of their

motion in space. This postulate thus endows space with the property of

isotropy, and corresponds practically to the postulate of 3 (a), viz. that

every line-element can be compared in length with every other line-

element, irrespective of the position or direction of either.

An essential point is that the constancy of the velocity of light is not

required in either of these conditions 1 and 2. The distinguishingproperty
of a definite velocity, that of preserving its value throughout all such

systems which emerge out of one another as a result of such trans-

formations, is, on the contrary, a strict corollary of these two general

conditions; and the result of Michelson's experiment was only the

determination of the value of this special velocity, which could naturally

be gained only from direct experience.

Note 11 (page 19). Minkowski was the first to call particular attention

to this deduction of the special principle of relativity.

Note 12 (page 21). The term "inertial system" was originally not

associated with the system, which Neumann attached to the hypo-
thetical body Alpha. Nowadays it is generally understood to signify a

rectilinear system of coordinates, relatively to which a point-mass, which

is only subject to its own inertia, moves uniformly in a straight line.

Whereas C. Neumann only invented the body Alpha, as an absolutely

hypothetical configuration, in order to be able to formulate the law of

inertia, later researches, especially those of Lange, tended to show that,

on the basis of rigorous kinematical considerations, a coordinate system
could be derived, which would possess the properties of such an inertial

system. However, as C. Neumann and J. Petzoldt have demonstrated,

these developments contain faulty assumptions, and give the law of

inertia no firmer basis than the body Alpha introduced by Neumann.

Such an inertial system is determined by the straight lines which con-

nect three point-masses infinitely distant from one another (and thus

unable to exert a mutual influence upon one another) and which are not

subject to any other forces. This definition makes it evident why no

inertial system will be discoverable in nature, and why, consequently, the

b. f. 4
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law of inertia will never be able to be formulated so as to satisfy the

physicist. References :

C. Neumann. Ueber die Prinzipien der Galilei-Newtonschen Theorie,

"Leipzig, 1870.

L. Lange. Berichte der Kgl. Sachs. Ges. d. Wissenschaften. Math.-

phil. Klasse, 1885.

L. Lange. Die Geschichte der Entwickelung des Beivegungsbegriffes,

Leipzig, 1886.

H. Seeliger. Ber. der Bayr. Akademie, 1906, Heft 1.

C. Neumann. Ber. der Kgl. Sachs. Ges. d. Wiss. Math.-phys.

Klasse, 1910, Bd. 62, S. 69 and 383.

J. Petzoldt. Ann. der Naturphilosophie, Bd. 7.

Note 13 (page 22). E. Mach. Die Mechanih in ihrer Entivickelung,

4 Aufl. S. 244.

Note 14 (page 23). The new points of view as to the nature of inertia

are based upon the study of the electromagnetic phenomena of radiation.

The special theory of relativity, by stating the theorem of the inertia of

energy, organically grafted these views on to the existing structure

of theoretical physics. The dynamics of cavity-radiation, i.e. the dy-

namics of a space enclosed by walls without mass, and filled with electro-

magnetic radiation, taught us that a system of this kind opposes a

resistance to every change of its motion, just like a heavy body in motion.

The study of electrons (free electric charges) in a state of free motion,

e.g. in a cathode-tube, taught us likewise that these exceedingly small

particles behave like inert bodies ;
that their inertia is not, however, con-

ditioned by the matter to which they might happen to be attached, but

rather by the electromagnetic effects of the field, to which the moving

electron is subject. This gave rise to the conception of the apparent

(electromagnetic) mass of an electron. The special theory of relativity

finally led to the conclusion that to all energy must be accorded the

property of inertia.

Every body contains energy (e.g. a certain definite amount in the

form of heat-radiation internally). The inertia, which the body reveals,

is thus partly to be debited to the account of this contained energy. As

this share of inertia is, according to the special theory of relativity,

relative (i.e. represents a quantity which depends upon the choice of the

system of reference), the whole amount of the inertial mass of the body

has no absolute value, but only a relative one. This energy-content of

radiant heat is distributed throughout the whole volume of each par-
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ticular body; one can thus speak of the energy-content of unit volume.

This enables us to derive the notion of density of energy. The density
of the energy (i.e. amount per unit volume) is thus a quantity, the value

of which is also dependent upon the system of reference. References:

M. Planck. Ann. der Phys. 4 Folge, Bd. 26.

M. Abraham. Electromagnetische Energie der Strahlung, 4 Aufl. 1908.

Note 15 (page 23). The determination of the inertial mass of a body
by measuring its weight is rendered possible only by the experimental
fact that all bodies fall with equal acceleration in the gravitational field

at the earth's surface. If p and p' denote the pressures of two bodies

upon the same support (i.e. their respective weights), and g denote the

acceleration due to the earth's gravitational field at the point in question,

then p = m . g dynes and p'
= m . g dynes, respectively, where m and m'

are the factors of proportionality, and are called the masses of the two

bodies, respectively. As g has the same value in both equations, we have

p' _ m'

p m'

and we can accordingly measure the masses of two bodies at the same

place, by determining their weights.

Although Galilei and Newton had already known that all bodies at the

same place fall with the same velocity (if the resistance of the air be

eliminated), this very remarkable fact has not received any recognition
in the foundations of mechanics. Einstein's principle of equivalence is

the first to assign to it the position to which it is, beyond doubt, entitled.

Note 16 (page 24). Arguing along the same lines B. and J. Friedlander

have suggested an experiment to show the relativity of rotational motions,

and accordingly the reversibility of centrifugal phenomena (Absolute and

Relative Motion, Berlin, Leonhard Simion, ] 896). On account of the small-

ness of the effect, the experiment cannot at present be performed success-

fully ;
but it is quite appropriate for making the physical content of this

postulate more evident. The following remarks may be quoted :

"The torsion-balance is the most sensitive of all instruments. The

largest rotating-masses, with which we can experiment, are probably the

large fly-wheels in rolling-mills and other big factories. The centrifugal

forces assert themselves as a pressure which tends from the axis of

rotation. If, therefore, we set up a torsion-balance in somewhat close

proximity to one of these large fly-wheels, in such a position that the point
of suspension of the movable part of the torsion-balance (the needle) lies

42
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exactly, or as nearly as possible, in the continuation of the axis of the fly-

wheel, the needle should endeavour to set itself parallel to the plane of

the fly-wheel, if it is not originally so, and should register a corresponding

displacement. For centrifugal force acts upon every portion of mass

which does not lie exactly in the axis of rotation, in such a way as to tend

to increase the distance of the mass from the axis. It is immediately

apparent that the greatest possible displacement-effect is attained when

the needle is parallel to the plane of the wheel."

This proposed experiment of B. and J. Friedlander is only a variation

of the experiment which persuaded Newton to his view of the absolute

character of rotation. Newton suspended a cylindrical vessel filled

with water by a thread, and turned it about the axis defined by the

thread till the thread became quite stiff. After the vessel and the con-

tained liquid had completely come to rest, he allowed the thread to un-

twist itself again, whereby the vessel and the liquid started to rotate

rapidly. He thereby made the following observations. Immediately

after its release the vessel alone assumed a motion of rotation, since the

friction (viscosity) of the water was not sufficient to transmit the rotation

immediately to the water. So long as this state of affairs prevailed, the

surface of the water remained a horizontal plane. But the more rapidly

the water was carried along by the rotating walls of the vessel, the more

definitely did the centrifugal forces assert themselves, and drive the water

up the walls, so that finally its free surface assumed the form of a para-

boloid of revolution. From these observations Newton concluded that

the rotation of the walls of the vessel relative to the water does not call up
forces in the latter. Only when the water itself shares in the rotation, do

the centrifugal forces make their appearance. From this he came to his

conclusion of the absolute character of rotations.

This experiment became a subject of frequent discussion later : and

E. Mach long ago objected to Newton's deduction, and pointed out that

it cannot be straightway affirmed that the rotation of the walls of the

vessel relative to the water is entirely without effect upon the latter. He

regards it as quite conceivable that, provided the mass of the vessel were

large enough, e.g. if its walls were many kilometres thick, then the free

surface of the water which is at rest in the rotating vessel would not

remain plane. This objection is quite in keeping with the view entailed

by the general theory of relativity. According to the latter, the centri-

fugal forces can also be regarded as gravitational forces, which the total

sum of the masses rotating around the water exerts upon it. The
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gravitational effect of the walls of the vessel upon the enclosed liquid is,

of course, vanishinglv small compared with that of all the masses in the

universe. It is only when the water is in rotation relatively to all these

masses that perceptible centrifugal forces are to be expected. The

experiment of B. and J. Friedlander was intended to refine the ex-

periment performed by Newton, by using a sensitive torsion-balance

susceptible to exceedingly small forces in place of the water, and by

substituting a huge fly-wheel for the vessel which contained the water.

But this arrangement too can lead to no positive result, as even the

greatest fly-wheel at present available represents only a vanishingly

small mass compared with the sum-total of masses in the universe.

Note 17 (page 24). We use the term "field of force" to denote a field

in which the force in question varies continuously from place to place,

and is given for each point in the field by the value of some function of

the place. The centrifugal forces in the interior and on the outer surface

of a rotating body are so distributed as to compose a field of this kind

throughout the whole volume of the body, and there is nothing to hinder

us from imagining this field to extend outwards beyond the outer-

surface of the body, e.g. beyond the surface of the earth into its own

atmosphere. We can thus briefly speak of the whole field as the centri-

fugal field of the earth
; and, as the centrifugal field, according to the older

views, is conditioned only by the inertia of bodies, and not by their

gravitation, we can further speak of it as an inertial field, in contra-

distinction to the gravitational field, under the influence of which all

bodies which are not suspended or supported fall to earth.

Accordingly the effects of various fields of force are superposed at the

earth's surface: (1) the effect of the gravitational field, due to the

gravitation of the particles of the earth's mass towards one another, and

which is directed towards the centre of the earth; (2) the effect of the

centrifugal field, which according to Einstein's view can be regarded as

a gravitational field, and the direction of action of which is outwards and

parallel to the plane of the meridian of latitude
; finally (3) the effect of

the gravitational field, due to the various heavenly bodies, foremost

amongst them, the sun and the moon.

Note 18 (page 24). Eotvos has published the results of his measure-

ments in the Mathematische and Naturwissenschaftliche Berichte aus

Ungarn, Bd. 8, S. 64, 1891.

Whereas the earlier investigations of Newton and Bessel (A sir. Nachr.

10, S. 97, and Abhandlungen von Bessel, Bd. 3, S. 217), about the
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attractive effect of the earth upon various substances, are based upon
observations with a pendulum, Eotvos worked with sensitive torsion-

balances.

The force, in consequence of which bodies fall, is composed of two

components : first the attractive force of the earth, which (except for

deviations which may, for the present, be neglected) is directed towards

the centre of the earth; and second the centrifugal force, which is

directed outwards parallel to the meridians of latitude. If the attraction

of the earth upon two bodies of equal mass but of different substance

were different, the resultant of the attractive and centrifugal forces would

point in a different direction for each body. Eotvos then states: "By
calculation we find that if the attractive effect of the earth upon two

bodies of equal mass, but composed of different substance, differed by a

thousandth, the directions of the gravitational forces acting upon the

two bodies respectively would make an angle of 0-356 second, i.e. about

a third of a second with one another"; and later:

"I attached separate bodies of about 30 grms. weight to the end of a

balance-beam about 25 to 30 cms. long, suspended by a thin platinum

wire in my torsion-balance. After the beam had been placed in a position

perpendicular to the meridian, I determined its position exactly by means

of two mirrors, one fixed to it and another fastened to the case of the

instrument. I then turned the instrument, together with the case, through

180, so that the body which was originally at the east end of the beam,

now arrived at the west end : I then determined the position of the beam

again, relative to the instrument. If the resultant weights of the bodies

attached to both sides pointed in different directions, a torsion of the

suspending wire should ensue. But this did not occur in the cases in

which a brass sphere was constantly attached to the one side, and glass,

cork or crystal antimony was attached to the other
;
and yet a deviation

of lTi5Itli of a second in the direction of the gravitational force would

have produced a torsion of one minute, and this would have been observed

accuratelv."
j

Eotvos thus attained a degree of accuracy, such as is approximately
reached in weighing ;

and this was his aim : for his method of determining

the mass of bodies by weighing is founded upon the axiom that the

attraction exerted by the earth upon various bodies depends only upon
their mass, and not upon the substance composing them. This axiom had

therefore to be verified with the same degree of accuracy as is attained

in 'weighing. If a difference of this kind in the gravitation of various
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bodies exists at all, it is, according to E6tvos,less than a twenty-millionth
for brass, glass, antirnonite, cork, and less than a hundred-thousandth

for air.

Note 19 (page 26). Vide also A. Einstein, "G-rundlagen der allge-

meinen Belativitatstheorie," Ann. d, Phys. 4 Folge, Bd. 49, S. 769.

Note 20 (page 27). The equation S {jds}
= asserts that the variation

in the length of path between two sufficiently near points of the path

vanishes for the path actually traversed; i.e. the path actually chosen

between two such points is the shortest of all possible ones. If we retain

the view of classical mechanics for a moment, the following example will

give us the sense of the principle clearly : In the case of the motion of a

point-mass, free to move about in space, the straight line is always the

shortest connecting line between two points in space : and the point-mass

will move from the one point to the other along this straight line, pro-

vided no other disturbing influences come into play (Law of inertia).

If the point-mass is constrained to move over any curved surface, it will

pass from one point to another along a geodetic line to the surface, since

the geodetic lines represent the shortest connecting lines between points

on the surface. In Einstein's theory, there is a principle quite corre-

sponding, only much more general. Under the influence of inertia and

gravitation every point-mass passes along the geodetic lines of the space-

time-manifold. The fact of these lines not, in general, being straight

lines, is due. to the gravitational field, in a certain sense, putting the point-

mass under a certain constraint, similar to that imposed upon the freedom

of motion of the point-mass by a curved surface. A principle in every

way corresponding had already been installed in mechanics as a funda-

mental principle for all motions by Heinrich Hertz.

Note 21 (page 28). Vide A. Einstein, Ann, d. Phys. 4 Folge, Bd. 35,

S. 898.

Note 22 (page 29). The expression "acceleration-transformation"

means that the equations giving the transformation from the vari-

ables x, y, z, t to the system of variables x
i ,

x2 ,
x3 ,

x4 ,
which is the

basis of our discussion, can be regarded as giving the relations between

two systems of reference which are moving with an accelerated motion

relatively to one another. The nature of the state of motion of two

systems of reference relatively to one another finds its expression in

the analytical form of the equations of transformation of their

coordinates.
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Note 23 (page 31). Two things are to be undertaken in the following:

(1) the fundamental equations of the new theory are to be written in an

explicit form, and (2) the transition to Newton's fundamental equations
is to be performed.

1. From the equation of variation 8 {\ds} where

4

ds2 =
2^,, dx^ dxvt

we have, after carrying out the operation of variation, the four total

differential equations :

W -2^% ("=M,3,4,.
H"

!'

These are the equations of motion of a material point in the gravitational

field defined by the g Js.

The symbol r here denotes the expression

- - 29 (
8g* a

|

^ - ^A
2 a \ Sx v Sxn Sxa j

'

The symbol g
aa-

denotes the minor of g^ in the determinant

<7ll > ) > ^14^

W41 > ' > $W
divided by the determinant itself.

The ten differential equations for the "gravitational potentials"

SV are:

(2) %^+%r;pTL=K(Tllv-^v T).
a axa a/3

The quantities T and T are expressions which are related in a simple
manner to the components of the stress-energy-tensor (which plays the

part of the quantity exciting the field in the new theory in place of the

density of mass), k is essentially equal to the gravitational constant in

Newton's theory.

The differential equations (1) and (2) are thefundamental equations of the

new theory. The derivation of these equations is carried out in detail in

the tract by A. Einstein, The Foundations of the general Principle of

Relativity, J. A. Barth, Leipzig, 1916.

2. In order to obtain a connection between these equations and

Newton's theory, we must make several simplifying assumptions. We



Stress-energy-tensor 57

shall first assume that the g^s differ only by quantities, which are small

compared with unity, from the values given by the scheme :

(
0u
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Thus the second term, being of the second order of small quantities, may
be dismissed. The first term, on the other hand, if we omit the terms

differentiated with respect to time, as above (i.e. if we regard the gravi-

tational field as "stationary"), reduces to:

2 V8V
+ ^T + J^)

- "
2
A&4 for

|i
- v - 4.

The differential equation for gu thus degenerates into Poisson's equation :

(2 a) Agu = kP .

Thus, to a first approximation (i.e. if one regards the velocity of light as

infinitely great, and this is a characteristic feature of the classical theory,

as was explained in detail in 3 (b) : if certain simple assumptions
are made about the behaviour of the g '& at infinity ;

and if the time-

changes of the gravitational field are neglected) the well-known equations
of Newtonian mechanics emerge out of the differential equations of

Einstein's theory, which were obtained from perfectly general begin-

nings.

Note 24 (page 32). The theory of surfaces, i.e. the study of geometry

upon surfaces, makes it immediately apparent that the theorems, which

have been established for any surface, also hold for any surface which

can be generated by distorting the first without tearing. For if two sur-

faces have a point-to-point correspondence, such that the line-elements

are equal at corresponding points, then corresponding finite arcs, angles,

and areas, etc. will be equal. One thus arrives at the same planimetrical

theorems for the two surfaces. Such surfaces are called "deformable"

surfaces. The necessary and sufficient condition that surfaces be con-

tinuously deformable is that the expression for the line-element of the

one surface :-

ds2 = g^dxj
2 + g12dx1

dx
2 + g22dx2

2

can be transformed into that for the other :

ds' 2 = gn'dxi
2 + gX2 dx^dx2 + g22 dx2

'2
.

According to Gauss, it is necessary that both surfaces have equal measures

of curvature. If the latter is constant over the whole surface, as e.g. in

the case of a cylinder or a plane, all conditions for the deformability of

the surfaces are fulfilled. In other cases, special equations offer a cri-

terion as to whether surfaces, or portions of surfaces, are deformable into
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one another. The numerous subsidiary problems, which result out of

these questions, are discussed at length in every book dealing with

differential geometry (e.g. Bianchi-Lukat)
*

. This branch of training,

which was hitherto of interest only to mathematicians, now assumes very

considerable importance for the physicist too.

Note 25 (page 37). One must avoid being deceived into the belief that

Newton's fundamental law is in any way to be regarded as an explanation

of gravitation. The conception of attractive force is borrowed from our

muscular sensations, and has therefore no meaning when applied to dead

matter. C. Neumann, who took great pains to place Newton's mechanics

on a solid basis, glosses upon this point himself in a drastic fashion, in

the following narrative, which shows up the weaknesses of the former

view :

"Let us suppose an explorer to narrate to us his experiences in yonder

mysterious ocean. He had succeeded in gaining access to it, and a re-

markable sight had greeted his eyes. In the middle of the sea he had

observed two floating icebergs, a larger and a smaller one, at a con-

siderable distance from one another. Out of the interior of the larger

one, a voice had resounded, issuing the following command in a peremp-

tory tone :

' Ten feet nearer !

' The little iceberg had. immediately

carried out the order, approaching ten feet nearer the larger one. Again,

the larger gave out the order: 'Six feet nearer!' The other had

again immediately executed, it. And in this manner order after order

had. echoed out : and the little iceberg had continually been in motion,

eager to put every command immediately and implicitly into action.

"We should certainly consign such a report to the realm of fables. But

let us not scoff too soon ! The ideas, which appear so extraordinary to

us in this case, are exactly the same as those which lie at the base of the

most complete branch of natural science, and to which the most famous

of physicists owes the glory attached to his name.

"For in cosmic space such commands are continually resounding, pro-

ceeding from each of the heavenly bodies, from the sun, planets, moons

and comets. Every single body in space hearkens to the orders which the

other bodies give it, always striving to carry them out punctiliously.

Our earth would dash through space in a straight line, if she were not

controlled and guided by the voice of command, issuing from moment

to moment, from the sun, in which the instructions of the remaining

cosmic bodies are less audibly mingled.

*
Forsyth's Differential Geometry. H. L. B.
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" These commands are certainly given just as silently as they are obeyed ;

and Newton has denominated this play of interchange between com-

manding and obeying by another name. He talks quite briefly of a

mutual attractive force, which exists between cosmic bodies. But the

fact remains the same. For this mutual influence consists in one body

dealing out orders, and the other obeying them."
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