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PREFACE

This book had its origin in a one-year course that I taught at Yale

throughout the decade of the 1970’s.  The course was for non-science majors

who were interested in learning about the major branches of Physics.  In the

first semester, emphasis was placed on Newtonian and Einsteinian Relativity.

The recent popularity of the Einstein exhibit at the American Museum of

Natural History in New York City, prompted me to look again at my fading

lecture notes.  I found that they contained material that might be of interest to

today’s readers.  I have therefore reproduced them with some additions,

mostly of a graphical nature.  I recall the books that were most influential in

my approach to the subject at that time; they were Max Born’s The Special

Theory of Relativity, Robert Adair’s Concepts of Physics, and Casper and

Noer’s Revolutions in Physics.  These three books were written with the

non-scientist in mind, and they showed what could be achieved in this

important area of teaching and learning; I am greatly indebted to these

authors.
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1.  INTRODUCTION

This brief book is for the inquisitive reader who wishes to gain an

understanding of the immortal work of Einstein, the greatest scientist since

Newton.  The concepts that form the basis of Einstein’s Theory of Special

Relativity are discussed at a level suitable for Seniors in High School.  Special

Relativity deals with measurements of space, time and motion in inertial

frames of reference (see chapter 4).  An introduction to Einstein’s Theory of

General Relativity, a theory of space, time, and motion in the presence of

gravity, is given at a popular level.  A more formal account of Special

Relativity, that requires a higher level of understanding of Mathematics, is

given in an Appendix.

Historians in the future will, no doubt, choose a phrase that best

characterizes the 20th-century.  Several possible phrases, such as “the Atomic

Age”, “the Space Age” and “the Information Age”, come to mind.  I

believe that a strong case will be made for the phrase “the Age of Einstein”;

no other person in the 20th-century advanced our understanding of the

physical universe in such a dramatic way.  He introduced many original

concepts, each one of a profound nature.  His discovery of the universal

equivalence of energy and mass has had, and continues to have, far-reaching

consequences not only in Science and Technology but also in fields as diverse

as World Politics, Economics, and Philosophy.
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The topics covered include:

a) understanding the physical universe;

b) describing everyday motion;

         relative motion,

         Newton’s Principle of Relativity,

         problems with light,

c) Einstein’s Theory of Special Relativity;

         simultaneity and synchronizing clocks,

         length contraction and time dilation,

         examples of Einstein’s world,

d) Newtonian and Einsteinian mass;

e)  equivalence of energy and mass, E = mc2;

f)  Principle of Equivalence;

g) Einsteinian gravity;

         gravity and the bending of light,

         gravity and the flow of time, and

         red shifts, blue shifts, and black holes.

2.  UNDERSTANDING THE PHYSICAL UNIVERSE

We would be justified in thinking that any attempts to derive a small set

of fundamental laws of Nature from a limited sample of all possible processes

in the physical universe, would lead to a large set of unrelated facts.

Remarkably, however, very few fundamental laws of Nature have been found

to be necessary to account for all observations of basic physical phenomena.
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These phenomena range in scale from the motions of minute subatomic

systems to the motions of the galaxies.  The methods used, over the past five

hundred years, to find the set of fundamental laws of Nature are clearly

important; a random approach to the problem would have been of no use

whatsoever.  In the first place, it is necessary for the scientist to have a

conviction that Nature can be understood in terms of a small set of

fundamental laws, and that these laws should provide a quantitative account

of all basic physical processes.  It is axiomatic that the laws hold throughout

the universe.  In this respect, the methods of Physics belong to Philosophy.

(In earlier times, Physics was referred to by the appropriate title, “Natural

Philosophy”).

2.1  Reality and Pure Thought

In one of his writings entitled “On the Method of Theoretical Physics”,

Einstein stated: “If, then, experience is the alpha and the omega of all our

knowledge of reality, what then is the function of pure reason in science?”

He continued, “Newton, the first creator of a comprehensive, workable

system of theoretical physics, still believed that the basic concepts and laws of

his system could be derived from experience.”  Einstein then wrote “But the

tremendous practical success of his (Newton’s) doctrines may well have

prevented him, and the physicists of the eighteenth and nineteenth centuries,

from recognizing the fictitious character of the foundations of his system”.  It

was Einstein’s view that “..the concepts and fundamental principles which

underlie a theoretical system of physics are free inventions of the human
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intellect, which cannot be justified either by the nature of that intellect or in

any other fashion a priori.”  He continued, “If, then, it is true that the

axiomatic basis of theoretical physics cannot be extracted from experience but

must be freely invented, can we ever hope to find the right way?  ... Can we

hope to be guided safely by experience at all when there exist theories (such

as Classical (Newtonian) Mechanics) which to a large extent do justice to

experience, without getting to the root of the matter?  I answer without

hesitation that there is, in my opinion, a right way, and that we are capable of

finding it.”  Einstein then stated “Experience remains, of course, the sole

criterion of the physical utility of a mathematical construction.  But the

creative principle resides in Mathematics.  ...  I hold it true that pure thought

can grasp reality, as the ancients dreamed.”

3.  DESCRIBING EVERYDAY MOTION

3.1  Motion in a straight line (the absence of forces)

The simplest motion is that of a point, P, moving in a straight line.  Let

the line be labeled the “x-axis”, and let the position of P be measured from a

fixed point on the line, the origin, O.  Let the motion begin (time t = 0) when

P is at the origin (x = 0).  At an arbitrary time, t, P is at the distance x:

                                                                          P [x, t]  

       -x                                  O      position, x            +x  

 at time t
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If successive positions of P are plotted, together with their corresponding

times, we can generate what is called the “world line” of P.

Let us observe a race car, moving at high speed along the straight part

of a race track (the x−axis), and let us signal the instant that it passes our

position, x = 0, by lowering a flag:

An observer, standing at a measured distance D, from x = 0, starts his clock

at the instant, t = 0, when he sees the flag lowered, and stops the clock at the

instant t = T, as the car passes by.

We can obtain the average speed of the car, v, during the interval T, in the

standard way; it is

v = D/T (in units of velocity).

If, for example, D = 1 mile, and T =  20 seconds (1/180 hour), then

v =  1 (mile)/(1/180) (hour) = 180 miles per hour.

This is such a standard procedure that we have no doubt concerning the

validity of the result.

3.2  The relativity of everyday events

Events, the description of when and where happenings occur, are part

of the physical world; they involve finite extensions in both time and space.

From the point of view of a theory of motion, it is useful to consider “point-

like” events that have vanishingly small extensions in time and space. They

then can be represented as “points” in a space-time geometry.  We shall label

events by giving the time and space coordinates: event E → E[t, x], or in

three space dimensions, E[t, x, y, z], where x, y, z are the Cartesian
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components of the position of the event.  There is nothing special about a

Cartesian coordinate system, it is a mathematical construct; any suitable

coordinate mesh with a metrical property (measured distances defined in

terms of coordinates) can be used to describe the spatial locations of events.

A familiar non-Cartesian system is the spherical polar coordinate system of

the lines of latitude and longitude on the surface of the earth.  The time t can

be given by any device that is capable of producing a stable, repetitive motion

such as a pendulum, or a quartz-controlled crystal oscillator, or for high

precision, a clock that depends on the very stable frequency of an atomic

system.  

Suppose we have an observer, O, at rest at the origin of an x−axis, in

the F-frame.  O has assistants with measuring rods and clocks to record

events occurring on the x-axis:

                                    F

                 -x                               O                             +x  

We introduce a second observer, O′, at rest at the origin of his frame of

reference, F′.    O ′ has his assistants with their measuring rods (to measure

distances, x′) and clocks (to measure times, t′) to record events on the x′-axis.

(The F′-clocks are identical in construction and performance to the clocks in

the F-frame).  Let O′ coincide with O at a common origin O = O′ (x = x′ =

0), at the synchronized time zero t = t′ = 0.  At t = t′= 0, we have  
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                                    F′

               -x′                                O′                             +x′

Suppose that the observer O′, and his assistants with rods and clocks, move

to the right with constant speed V along the common x, x′−axis.  At some

later time t, the two sets of observers, represented by O and O′, record a

common event that they write as E[t, x] and E′[t′, x′], respectively.  The

relative positions of the two observers at time t is:

                                   F                       E[t. x]       

                -x                                O           x                       +x

                                                        D     F′⇒        E′[t′, x′]

                          -x′                               O′      x′                        +x′

where D = Vt is the distance that O′ moves at constant speed V, in the time t.

We therefore write the relationship between the two measurements by the

plausible equations (based on everyday experience):

t′ = t (everyday identical clocks tick at the same rate)

and

x′ = x − D = x − Vt.

These are the basic equations of relative motion according to the concepts

first put forward by Galileo and Newton.  They are fully consistent with

measurements made in our real world (the world of experience).  They are
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not, however, internally consistent.  In the equation that relates the

measurement of distance x′ in the F′-frame to the measurements in the F-

frame, we see that the space part, x′, in the F′-frame, is related to the space

part, x, and the time part, t, in the F-frame: space-time in one frame is not

related to space-time in the other frame!  Furthermore, the time equation

makes no mention of space in either frame.  We see that there is a

fundamental lack of symmetry in the equations of relative motion, based on

everyday experience.  The question of the “symmetry of space-time” will

lead us to Einstein’s philosophy of the “free invention of the intellect”.

3.3  Relative velocities

We have seen that the position of an event, E[t, x], measured by an

observer O, is related to the position of the same event, E′[t′, x′], measured

by an observer O′, moving with constant speed V along the common x, x′−

axis of the two frames, by the equation

x′ = x − Vt .

The speed v of a point P[t, x], moving along the x−axis, is given by the

ratio of the finite distance the point moves, ∆x, in a given finite time interval,

∆t:

v = ∆x/∆t .

We can obtain the speeds v, and v′ of the same moving point, as measured in

the two frames, by calculating v = ∆x/∆t and v′ = ∆x′/∆t′, as follows:

  ∆x′/∆t′ = v′ = ∆x/∆t − V∆t/∆t (where we have used ∆t′ = ∆t because  

t = t′ in everyday experience).
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We therefore find

        v′ = v − V,

the speeds differ by the relative speed of the two frames.  This is consistent

with experience:  if a car moves along a straight road at a constant speed of v

= 60 mph, relative to a stationary observer O, and an observer O′ follows in a

car at a constant speed of V = 40 mph relative to O, then the speed of the

first car relative to the occupant of the second car is v′ = 20 mph.  

3.4  The Newtonian Principle of Relativity

The Newtonian Principle of Relativity asserts that, in the inertial

frames F, F′, the following two situations

    x = x′ = 0 at t = t′ = 0

       F

     −x                                         O                                             +x

     D = Vt     ⇒ +V   F′ (moves to right
                                     at speed V)
                    O′                           +x′

      D′ = Vt′       F′

    O′                                           +x′

  −V  ⇐    F (moves to left at speed V)

     O                                  +x                               

cannot be distinguished by experiments that involve mechanical systems

(classical systems that obey Newton’s Laws of Motion).



10

The speed V has been written in bold face to remind us that here we

are dealing with a vector quantity that has both magnitude (the speed in

mph) and a sense of direction: +V in the +x-direction and −V in the −x-

direction.

3.5  Problems with light

We are accustomed to the notion that waves propagate through a

medium, required to support the waves. For example, sound waves propagate

as pressure variations in air, and water waves propagate as coupled

displacements of the water molecules, perpendicular to the direction of the

wave motion.  In the 19th-century, Maxwell discovered that light waves are

electromagnetic phenomena.  This great work was based on theoretical

arguments, motivated by the experimental results of Faraday and Henry.

One of the most pressing questions facing scientists of the day was:

“what is waving when a beam of light propagates through empty 

space?”

It was proposed that the universe is filled with a medium called the aether

with the property of supporting light waves, and having no other physical

attributes.  (For example, it would have no effect on the motion of celestial

bodies).  In the latter part of the 19th-century, Michelson and Morley carried

out a famous experiment at the Case Institute in Cleveland that showed there

is no experimental evidence for the aether.  Light travels through the void,

and that is that.  Implicit in their work was the counter-intuitive notion that

the speed of light does not depend on the speed of the source of the light.
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The Aether Theory was popular for many years.  Non-traditional

theories were proposed to account for the null-result of the Michelson-Morley

experiment.  Fitzgerald (Trinity College, Dublin) proposed that the Michelson-

Morley result could be explained, and the Aether Hypothesis retained, if the

lengths of components in their apparatus were “velocity-dependent” −

lengths contract in the direction of motion, and lengths remain unchanged

when perpendicular to the direction of motion.  He obtained the result

L0             =       [1/√(1 − (v/c)2)]L    ≡     γL

                  ⇑                                             ⇑

   (length of rod at rest)        (length of rod moving at speed v)

Here, c is the constant speed of light (2.99...× 108 meters/second).

All experiments are consistent with the statement that the ratio v/c is always

less than 1, and therefore γ is always greater than 1.  This means that the

measured length of the rod L0 , in its rest frame, is always greater than its

measured length when moving.  

At the end of the 19th-century, Larmor introduced yet another radical

idea:  a moving clock is observed to tick more slowly than an identical clock

at rest.  Furthermore, the relationship between the clock rates in the moving

and rest frames is given by the same factor, γ, introduced previously by

Fitzgerald.  Specifically,
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         ∆t                        =                    γ∆t0   

                  ⇑                                                  ⇑

 (an interval on a moving clock)   (an interval on a clock at rest)

Since the velocity-dependent term γ is greater than 1, the intervals of time ∆t

(moving), are greater than the intervals ∆t0 (at rest).

Fitzgerald, Larmor, and other physicists at that time considered length

contraction and time dilation to be “real” effects, associated with minute

physical changes in the structure of rods and clocks when in motion.  It was

left to the young Einstein, working as a junior Patent Officer in Bern, and

thinking about space, time, and motion in his spare time, to introduce a new

Theory of Relativity, uninfluenced by the current ideas.  Although, in later

life, Einstein acknowledged that he was aware of the Michelson-Morley result,

and of the earlier work on length contraction and time dilation, he neither

used, nor referred to, the earlier results in his first paper on Relativity.
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4.  EINSTEIN’S THEORY OF SPECIAL RELATIVITY

In 1905, Einstein published three great papers in unrelated areas of

Physics.  In this chapter, we shall discuss his new ideas concerning the relative

motion of beams of light, and of objects that move at speeds close to that of

light.  His independent investigations were based upon just two postulates:

1. The generalized Principle of Relativity:  no mechanical or optical

experiments can be carried out that distinguish one inertial frame of reference

from another.  (This is a development of Newton’s Principle of Relativity that

is limited to mechanical experiments, involving speeds much less than the

speed of light; it applies to experiments in the everyday world).

Inertial frames of reference are non-rotating, and move in straight lines

at constant speed.  They are non-accelerating.

2.  The speed of light in a vacuum is a constant of Nature, and is

independent of the velocity of the source of the light.

Einstein was not concerned with questions having to do with the Aether; for

him, a true theory of the physical properties of the universe could not rest

upon the mysterious qualities of such an unobservable.  As we shall see,

Einstein was concerned with the precise meaning of measurements of lengths

and time intervals.  In his later years, he recalled an interesting thought that

he had while in school.  It had to do with the meaning of time.  Our lives are

dominated by “psychological time”; for example, time seems to go by more

quickly as we grow older.  For the young Einstein, time in the physical world

was simply the reading on a clock.  He therefore imagined the following:  if
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the schoolroom clock is reading 3PM, and I rush away from the clock at the

speed of light, then the information (that travels at the speed of light) showing

successive ticks on the clock, and therefore the passage of time, will never

reach me, and therefore, in my frame of reference, it is forever 3PM − time

stands still.  He therefore concluded that the measurement of time must

depend, in some way, on the relative motion of the clock and the observer; he

was, by any standards, a precocious lad.

If we apply the Galilean-Newtonian expression for the relative velocities

v, v′, measured in the inertial frames F, F′, (moving with relative speed V), to

the measurements of flashes of light, v = c, the speed of light in F, and v′ = c′,

the speed of light in F′, we expect

c′ = c − V (corresponding to v′ = v − V for everyday objects).

Modern experiments in Atomic, Nuclear, and Particle Physics are consistent

with the fact that c  = c, no matter what the value of the relative speed V

happens to be.

At the end of the 19th-century, a key question that required an answer

was therefore: - why does the Galilean-Newtonian equation, that correctly

describes the relative motion of everyday objects, fail to describe the relative

motion of beams of light?   Einstein solved the problem in a unique way that

involved a fundamental change in our understanding of the nature of space

and time, a change that resulted in far-reaching consequences; these

consequences are  discussed in the following chapters.
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4.1  The relativity of simultaneity: the synchronization of clocks.

It is important to understand the meaning of the word “observer” in

Relativity.  To record the time and place of a sequence of events in a

particular inertial reference frame, it is necessary to introduce an infinite set

of adjacent “observers”, located throughout the entire space.  Each observer,

at a known, fixed position in the reference frame, carries a clock to record the

time, and the characteristic property, of every event in his immediate

neighborhood.  The observers are not concerned with non-local events.  The

clocks carried by the observers are synchronized: they all read the same time

throughout the reference frame.  It is the job of the chief observer to collect

the information concerning the time, place, and characteristic feature of the

events recorded by all observers, and to construct the world line (a path in

space-time), associated with a particular characteristic feature (the type of

particle, for example).  “Observer” is therefore seen to be a collective noun,

representing the infinite set of synchronized observers in a frame of reference.  

The clocks of all observers in a reference frame are synchronized by

correcting them for the speed of light (the speed of information) as follows:

Consider a set of clocks located at x0, x1, x2, x3, along the x-axis of a

reference frame.  Let x0 be the position of the chief observer, and let a flash

of light be sent from the clock at x0 when it reads t0 (12 noon, say).  At the

instant that the light signal reaches the clock at x1, it is set to read t0 + (x1/c),

at the instant that the light signal reaches the clock at x2, it is set to read t0 +



16

(x2/c) , and so on for every clock along the x-axis.  All clocks along the x -

axis then “read the same time” − they are synchronized:  

            These  4 clocks read the same time “noon + x3/c in their rest frame

                                ~~~>         ~~~>            ~~~>             ~~~>

                           x0               x1                 x2                   x3

                    noon at x0     noon + x1/c     noon + x2/c     noon + x3/c

To all other inertial observers, the clocks appear to be unsynchronized.

The relativity of simultaneity is clearly seen using the following method

to synchronize two clocks: a flash of light is sent out from a source, M′

situated midway between identical clocks, A′ and B′, at rest in the frame, F′

                             F′        c                              c  

                               A′                     M′                   B′

                             Flash of light from M′, the mid-point between A′ and B′

The two clocks are synchronized by the (simultaneous) arrival of the flash of

light (traveling at c) from M′.  We now consider this process from the

viewpoint of observers in an inertial frame, F, who observe the F′-frame to be

moving to the right with constant speed V.  From their frame, the

synchronizing flash reaches A′ before it reaches B′:
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                       F    F′   V         original position of M’

                                    A′ c   V                V           c  B′        V

                                                               M′

  They conclude, therefore, that the A′-clock starts before the B′-clock; the

clocks are no longer synchronized.  This analysis rests on the fact that the

speed of light does not depend on the speed of the source of light.

The relativity of simultaneity leads to two important non-intuitive

results namely, length contraction and time dilation.  

4.2  Length contraction

Let a rod be at rest in the F-frame, and let its proper (rest) length be L0.  

                F

                                                                                   x

                                                     Lo

Consider an F′-frame, moving at constant speed V in the +x direction.  The

set of observers, at rest in F′, have synchronized clocks in F′, as shown
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              F′         V   All clocks “read the same time” in F′

                                                                            V

                                                                                  x′

The observers in F′ wish to determine the length of the rod, L′, relative to the

F′ frame.  From their perspective, the rod is moving to the left (the −x′

direction) with constant speed, V.  We define the length of a rod, measured in

any inertial frame, in terms of the positions of the two ends of the rod

measured at the same time.  If the rod is at rest, it does not matter when the

two end positions are determined; this is clearly not the case when the rod is

in motion.  The observers in F′ are distributed along the x′−axis, as shown.

They are told to measure the length of the rod at 12 noon.  This means that,

as the rod passes by, each observer looks to see if either end of the rod is in

his (immediate) vicinity.  If it is, the two critical observers A′ and B′ (say) raise

their hands.  At any time later, the observers in F′ measure the distance

between the observers A′ and B′, and the chief observer states that this is the

length of the rod, in their frame.  This procedure can be carried out only if

the clocks in F′ are synchronized.  We have seen, however, that the

synchronized clocks in F′ are not seen to be synchronized in a different

frame, F, such that F′ moves at speed V, relative to F.  The question is: how

does the length L′ of the moving rod, determined by the observers in F′,

appear to the observers at rest in the F frame?  We have seen that the clock

A′ starts before clock B′, according to the F observers.  Therefore “left end

of the rod coincides with the A′ clock, reading noon” occurs before “right
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end of rod coincides with B′ clock, reading noon”, according to the F

observers:

         F          F′      V            position of left end at t′ = noon

                               A′               B′           not yet t′ = noon

         F                    F′      V

                                         A′                B′         an intermediate position

         F                             F′       V       position of right end at t′ = noon

                                                   A′       L′  B′       

                                                                            according to observers in F

                                                  L0, in F     

The length of the rod, L′, as determined by observers at rest in F′, shown

from the viewpoint of observers in the F frame, is less than its proper length,

L0.

We see that the measurement of length contraction does not involve

physical changes in a moving rod; it is simply a consequence of the

synchronization of clocks in inertial frames, and the relativity of simultaneity.
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4.3  Time dilation

The proper time interval between two events is the interval measured

in the frame of reference in which they occur at the same position.  Intervals

that take place at different positions are said to be improper.

Consider a pulse of light that reflects between two plane mirrors, M1

and M2, separated by a distance D:

                        D           Pulse of light traveling between M1 and M2,

                                      at the invariant speed of light, c

The time interval, ∆t, for the light to make the round-trip is ∆t = 2D/c.

Consider a reference frame, F, (the laboratory frame, say), and let the origin

of F coincide with the location of an event E1.  A second event E2, occurs at a

different time and location in F, thus

              F

              O

                E1                     E2  

1st event at x=t=0 in F     2nd event; different place, different time in F
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Let us introduce a second inertial frame, F′, moving with speed V relative to

F, in the +x direction:

        F′ F          V

  M2

         D

                          2nd event, at the “same place”, O′, in F′

  M1     E1                   E2               x  

            O′ O                                               x′

Let F′ be chosen in such a way that its origin, O′, coincides with the first

event E1 (in both space and time), and let its speed V be chosen so that O′

coincides with the location of the second event, E2.  We then have the

situation in which both events occur at the same place in F  (at the origin,

O′).  The interval between E1 and E2 in F′ is therefore a proper interval.

The mirrors, M1 and M2, are at rest in F′, with M1 at the origin, O′.  These

mirrors move to the right with speed V.  Let a pulse of light be sent from the

lower mirror when O and O′ coincide (at the instant that E1 occurs).

Furthermore, let the distance D between the mirrors be adjusted so that the

pulse returns to the lower mirror at the exact time and place of the event, E2.

This sequence of events, as observed in F, is as shown:
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          F        V                                           V                                      V

     M2

                F′                                          F′                                     F′

          D

                                                  Distance = V.∆t

    M1

    Event E1 ,                                At time ∆t/2, later,                  Event E2

 light leaves M1                         light reflects from M2       light arrives at M1

                                                                                             at time ∆t

The sequence, observed in F′ is

                    F′

                              D     The mirrors are at rest in F′, and the events

                   O′               E1 and E2 occur at the same place, therefore

                                      the time interval ∆t′ = 2D/c is a proper interval.

                   E1 and E2, both take place at the origin, O′

The geometry of the sequence of events in the F frame is Pythagorean.

Recall, that in a right-angled triangle, we have

                                     c                b

                                      a                       a2 + b2 = c2.
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In F, the relevant distances are:

                            c∆t/2                                     c∆t/2

                                                   D

                                  V∆t/2                        V∆t/2                 

where ∆t is the round-trip travel time.  We therefore have

(V∆t/2)2 + D2 = (c∆t/2)2,

or,

(∆t)2[c2 − V2] = 4D2,

so that, on taking the square root,

∆t = 2D/√(c2 − V2) = {1/√[1 − (V/c)2]}(2D/c) = γ(2D/c),

where γ is the factor first introduced, on empirical grounds, by Fitzgerald. In

this discussion, we see that it emerges in a natural way from the two

postulates of Einstein.

We can now compare the interval, ∆t, between E1 and E2 in F with the

interval, ∆t′, between the same events as determined in F′.  If we look at the

sequence of events in F′, in which the mirrors are at rest, we have

 2D = c∆t′,

and therefore

∆t′ = 2D/c.
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Substituting this value in the value for ∆t in F, we obtain

∆t = {1/√[1 − (V/c)2]}∆t′

or

∆t = γ∆t′ , γ > 1,

which means that ∆t (moving) > ∆t′ (at rest).

A moving clock runs more slowly than an equivalent clock at rest.

Notice that at everyday speeds, in which V/c is typically less than 10-6, (and

therefore (V/c)2 is less than 10-12, an unimaginably small number), ∆t and ∆t′

are essentially the same.  Einstein’s result then reduces to the classical result

of Newton.  However, in Modern Physics, involving microscopic particles

that have measured speeds approaching that of light, values of γ > 1000 are

often encountered.  The equations of Newtonian Physics, and the

philosophical basis of the equations, are then fundamentally wrong.

Although we have used an “optical clock” in the present discussion, the

result applies to clocks in general, and, of course, to all inertial frames (they

are equivalent).

A formal discussion of Einstein’s Theory of Special Relativity is given

in the Appendix.; it is intended for those with a flair for Mathematics.

4.4  Experimental evidence for time dilation and length contraction

At the top of the Earth’s atmosphere, typically 30,000m above sea-

level, various gasses are found, including oxygen.  When oxygen nuclei are

bombarded with very high energy protons from the Sun, and from more

distant objects, entities called muons are sometimes produced.  These muons
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are found to have speeds very close to that of light (> 0.999c).  Experiments

show that the life-time of the muon, in its rest frame, is very short, a mere 2 ×

10 − 6 seconds.  After that brief existence, the muon transforms into other

elementary particles.  In Newtonian Physics, we would therefore expect the

muon to travel a distance d = V∆t, where V ≈ c ≈ 3 x 108 m/s, and ∆t = 2 ×

10 − 6 s, so that d ≈ 600 m.  We should therefore never expect to observe

muons on the surface of the Earth, 30,000 m below.  They are, however,

frequently observed here on Earth, passing through us as part of the general

cosmic background.  Although the lifetime of the muon is 2µs in its rest

frame, in the rest frame of the Earth, it is moving very rapidly, and therefore

the interval between its creation and decay is no longer ∆t but rather

∆tE =  γ∆tµ = 2 x 10 − 6 sec / √ [1 − (V/c)2  ]

where V is the speed of the muon relative to Earth, and ∆tµ is the lifetime of

the muon in its rest frame.  ∆tE is its lifetime in the Earth’s frame.

We see that if γ ≥ 50, the muon will reach the Earth.  (For then,

∆tE ≥ 10 − 4 s , and therefore HE ≥ 30,000m).  A value of γ = 50 corresponds

to a muon speed V = 0.9995c, and this is consistent with observations.

The detection of muons on the surface of the Earth is direct evidence for

time dilation.  

Alternatively, we may consider the observation of muons at the Earth’s

surface in terms of length contraction, as follows:

If we view the Earth from the rest frame of the muon, 30,000m above the

Earth, it is moving toward the muon with very high speed, V corresponding
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to a value γ ≥ 50.  According to Einstein, the distance to the Earth is

contracted by a factor of γ ≥ 50, so that the muon-Earth distance from the

perspective of the muon is Hµ = 30000/γ ≤ 30000/50  ≤ 600m.  The Earth

therefore reaches the muon before it decays.

This is direct evidence for length contraction.

Schematically, we have:

                  Fµ                                                       Fµ

                          muon at rest in Fµ, seen to          muon at rest in Fµ,

                          be rushing toward Earth             Earth   rushing up

                   V                                                FE  

                               HE    =  30km                             V     Hµ  ≤ 600m

          FE                  Earth at rest in FE                                Earth

                         Earth

In FE, fixed to the Earth, a muon                   In Fµ, fixed to the muon,    

moving at high speed V toward                    the Earth is seen to be moving

the Earth, is seen to be created                     upwards at very high speed, V,

at HE = 30km.                                            at a contracted distance

                                                                Hµ = √(1 − (V/c)2) HE.
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4.5  Space travel

The distance between any two stars is so great that it is measured in

“light-years”, the distance light travels in one year.  In more familiar units:

1 light-year = 9.45 × 1015 meters ≈ 6 trillion miles!

Alpha Centauri, our nearest star, is 4.3 light-years away; this means

that, even if a spaceship could travel at a speed close to c, it would take more

than 4.3 years to reach the star.

Imagine that it were technically possible to build such a near-light-speed

craft; we ask how long the journey would take to a star, 80 light-years away,

as measured by observers on the Earth.  Let ELV be the event “craft leaves

Earth” and EARR the event “craft arrives at star”.  To observers in the rest

frame of the Earth, it travels a distance 756 × 1015 meters at a speed of

0.995c, (say), in a time

    ∆tE =  756 × 1015 (meters) / 0.995 × 9.45 × 1015 (meters per light-year)

         = 80.4 years.

Very few passengers would be alive when the craft reached the star.  If the

survivors sent a radio signal back to the Earth, saying that they had arrived, it

would take another 80 years for the signal to reach the Earth. (Radio waves

travel at the invariant speed of light).  

Let us calculate the time of the trip from the perspective of the

travelers.  The spacecraft-fixed frame is labeled FSC  In this frame, the two

events, ELV and EARR occur at the same place, namely the origin of FSC.  The

trip-time, ∆tSC, according to the travelers is a “proper” time interval, and is
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less than the trip-time according to Earth-fixed observers by a factor        

√(1 − (V/c)2), where V = 0.995c.  We then find

∆tSC = ∆tE√(1 − (0.995)2) = ∆tE × √(0.01)

      = 80.4 × 0.1

      = 8.04 years.

To the travelers on board, the trip takes a little more than 8 years.

The passengers and crew of the spacecraft would have plenty of time to

explore their new environment.  Their return trip would take another 8.04

years, and therefore, on arrival back on the Earth, they would have aged

16.08 years, whereas their generation of Earth-bound persons would have

long-since died. (The society would have aged 160 years).  

This discussion assumes that the biological processes of the travelers

take place according to time on the spacecraft clocks.  This is certainly

reasonable because heart-beats represent crude clocks, and metabolic rates of

life processes are clock-like.  According to Einstein, all “clocks” are affected

by the motion of one inertial frame relative to another.

The twin paradox is not a paradox at all.  Consider a twin, A, in the

rest frame of the Earth, and let A observe the round-trip of his twin, B, to a

distant star at near-c speed.  A concludes that when B returns to Earth, they

are no longer the same age; B is younger than A.  According to the Principle

of Relativity, B can be considered at rest, and the Earth, and twin A, travel

away and return, later.  In this case, B concludes that A has been on the trip,

and therefore comes back younger.  This cannot be!  The paradox stems
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from the fact that the twin, B, who leaves the Earth, must accelerate from

the Earth, must slow down at the star, turn around, accelerate away from the

star, and slow down on reaching Earth.  In so doing, the B-twin has shifted

out of inertial frames and into accelerating frames. Special Relativity does not

hold throughout the entire journey of the twin in the spacecraft  The A-twin

is always at rest in the inertial frame of the Earth.  There is a permanent

asymmetry in the space-time behavior of the twins.

The time in which a space traveler is in non-inertial frames can be

made very short compared with the total travel time. The principles of Special

Relativity are then valid, and the discussion given above, in which a spacecraft

travels to a distant star, 80 light-years away, is essentially correct.

5.  NEWTONIAN DYNAMICS

. . . for the whole burden of (natural) philosophy seems to consist of this

—from the phenomena of motions to investigate the forces of nature, and

then from these forces to demonstrate the other phenomena.

                                                                 NEWTON, the PRINCIPIA

Although our discussion of the geometry of motion has led to major  

advances in our understanding of measurements of space and time in different

inertial systems, we have yet to come to the real crux of the matter, namely, a

discussion of the effects of forces on the motion of two or more interacting

particles.  This key branch of Physics is called Dynamics.  It was founded by

Galileo and Newton and perfected by their followers, notably Lagrange and

Hamilton.  The Newtonian concepts of mass, momentum and kinetic energy
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require fundamental revisions in the light of the Theory of Special Relativity.

In spite of the conceptual difficulties inherent in the classical theory, its success

in accounting for the dynamical behavior of systems, ranging from collisions

of gas molecules to the motions of planets has been, and remains, spectacular.

5.1  The law of inertia

Galileo (1564-1642) was the first to develop a quantitative approach to

the study of motion of everyday objects.  In addition to this fundamental

work, he constructed one of the first telescopes and used it to study our

planetary system.  His observation of the moons of Jupiter gave man his first

glimpse of a miniature world system that confirmed the concepts put forward

previously by Copernicus (1473 -1543).

Galileo set out to answer the question:  what property

of motion is related to force?  Is it the position of the moving object or its

velocity or its rate of change of velocity, or what?  The answer to this

question can only be obtained from observations, this is a basic feature of

Physics that sets it apart from Philosophy proper.  Galileo observed that force

Influences changes in velocity (accelerations) of an object and that, in the

absence of external forces (e.g. friction), no force is needed to keep an object

in motion that is traveling in a straight line with constant speed.  This

observationally based law is called the Law of Inertia.  It is, perhaps, difficult

for us to appreciate the impact of Galileo's new ideas concerning motion.  The

fact that an object resting on a horizontal surface remains at rest unless

something we call force is applied to change its state of rest was, of course,
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well-known before Galileo’s time.  However, the fact that the object continues

to move after the force ceases to be applied caused considerable conceptual

difficulties to the early Philosophers.  The observation that, in

practice, an object comes to rest due to frictional forces and air resistance was

recognized by Galileo to be a side effect and not germane to the fundamental

question of motion.  Aristotle, for example, believed that the true or natural

state of motion is one of rest.  It is instructive to consider Aristotle's

conjecture from the viewpoint of the Principle of Relativity:  is a natural state

of rest consistent with this general Principle?  First, we must consider what is

meant by a natural state of rest; it means that in a particular frame of

reference, the object in question is stationary.  Now, according to the general

Principle of Relativity, the laws of motion have the same form in all frames of

reference that move with constant speed in straight lines with respect to each

other.  An observer in a reference frame moving with constant speed in a

straight line with respect to the reference frame in which the object is at rest,

would conclude that the natural state of motion of the object is one of

constant speed in a straight line and not one of rest.  All inertial observers, in

an infinite number of frames of reference, would come to the same

conclusion.  We see, therefore, that Aristotle's conjecture is not consistent

with this fundamental Principle.

5.2  Newton’s laws of motion

During his early twenties, Newton postulated three laws of motion that

form the basis of Classical Dynamics.  He used them to solve a wide variety
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of problems, including the motion of the planets.  They play a fundamental

part in his famous Theory of Gravitation.  The laws of motion were first

published in the Prlncipia in l687; they are:

1.  In the absence of an applied force, an object will

remain at rest or in its present state of constant

speed in a straight line (Galileo's Law of Inertia)

2.  In the presence of an applied force, an object will

be accelerated in the direction of the applied force

and the product of its mass by its acceleration is

equal to the force.

and,

3.  If a body A exerts a force of magnitude |FAB| on a body

B, then  B exerts an equal force of magnitude |FBA| on

A.  The forces act in opposite directions so that:

FAB  =  FBA .

The 3rd. Law applies to “contact interactions”.  For non-contact interactions,

it is necessary to introduce the concept of a “field-of-force” that “carries the

interaction”.

We note that in the 2nd. law, the acceleration lasts only while the

applied force lasts.  The applied force need not, however, be constant in time;

the law is true at all instants during the motion. We can show this explicitly by

writing:
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F(t) = ma(t)

where the time-dependence of the force, and the resulting acceleration, is

emphasized.

The "mass" appearing in Newton's 2nd law is the so-called inertial

mass.  It is that property of matter that resists changes in the state of motion

of the matter.  Later, in discussions of Gravitation, we shall meet another

property of matter that also has the name "mass"; it is that property of matter

that responds to the gravitational force due to the presence of other "masses";

this "mass" is the so-called "gravitational mass".  The equivalence of inertial

and gravitational mass was known to Newton.  Einstein considered the

equivalence to be of such fundamental importance that he used it as a starting

point for his General Theory of Relativity, one of the greatest creations of the

human mind.

In 1665 - 66, Sir Isaac Newton, the supreme analytical mind to emerge

from England, deduced the basic law governing the interaction between two

masses, M1 and M2.  The force depends on the product of the two masses,

and the square of the distance between them, thus

          Mass, M1                                                   Mass, M2

                        Distance between centers, R

The gravitational force between the masses is given by:

                                     M1 × M2

                     Fgrav  ∝   
                                         R2   
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If the masses are initially 1 meter apart, and we increase the separation to 2

meters, the force decreases by 1/(2)2 = 1/4.

(It took Newton many years to prove that the distributed mass of a sphere

can be treated as a “point” mass at its center.  The problem involves a three-

dimensional integral using his newly-invented Calculus).

5.3  General features of inverse square-law forces

In the early 1700’s, Coulomb deduced the law of force that governs

the interaction between two objects that possess the attribute of “electric

charge”.  He found the following: the force between two charges Q1 (at rest)

and Q2 depends on the product of the two charges, Q1 and Q2, and on the

square of the distance between them:

Charge Q1     Charge Q2

    Distance between centers, R

      Q1  ×  Q2

         Felect   ∝    
                    R2  

In the 19th-century, experiments showed that charges in motion, relative to

an observer, generate an additional component of the force called the

Magnetic Force.  The complete force between moving charges is therefore

known as the Electromagnetic Force.  

We see that there is a remarkable similarity between the forms of the

Gravitational and the Electromagnetic forces.  They both depend on the
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symmetries M1 × M2 and Q1 × Q2, and they both vary as the inverse square

of the distance between the objects.  This latter feature is not by chance.  

Let us introduce a model of these interactions in which we postulate that the

force between one object and another is “carried”, or mediated, by entities,

generated by their sources; let them travel in straight lines between the

objects.  The mediators are capable of transferring momentum between the

interacting objects.  Consider the case in which a stationary charge Q is the

source of mediators that travel, isotropically, from the charge at a uniform

rate:

             Area. A at 1m.

                     Charge  Q
                  Area. 4A at 2m.

      1m

   2m  

It is a property of the space in which we live that the shaded area, A, situated

1 meter from the charge Q, projects onto an area 4A at a distance 2 meters

from Q.  Therefore, the number of mediators passing through the area A at 1

meter from Q passes through an area 4A at a distance 2 meters from Q.  If
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the force on a second charge Q′, 1 meter from Q, is due to the momentum

per second transferred to the area A as a result of the mediators striking that

area, then a charge Q′, 2 meters from the source, will experience a force that

is 1/4 the force at 1 meter because the number of mediators per second

passing through A now passes through an area four times as great.  We see

that the famous “inverse square law” is basically geometric in origin.

Not surprisingly, the real cases are more subtle than implied by this

model.  We must recognize a fundamental difference between the

gravitational and the electromagnetic forces, namely:

the gravitational force is always attractive, whereas the electromagnetic

force can be either attractive or repulsive.  This difference comes about

because there is only “one kind” of mass, whereas there are “two kinds” of

charge, which we label positive and negative.  (These terms were introduced

by the versatile Ben Franklin).  The interaction between like charges is

repulsive and that between unlike charges is attractive.  

We can develop our model of forces transmitted by the exchange of

entities between objects that repel each other in the following way:

Consider two boxes situated on a sheet of ice.  Let each box contain a person

and a supply of basketballs.  If the two occupants throw the balls at each

other in such a way that they can be caught, then a stationary observer,

watching the exchange, would see the two boxes moving apart.  (This is a

consequence of a law of motion that states that the linear momentum of a

system is conserved in the absence of external forces):
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If the observer were so far away that he could see the boxes, but not the balls

being exchanged, he would conclude that an unexplained repulsive force

acted between the boxes.

The exchange model of an attractive force requires more imagination; we

must invoke the exchange of boomerangs between the occupants of the

boxes, as shown

       Boxes move together

These models are highly schematic.  Nonetheless, they do indicate that

models based on the exchange of entities that carry momentum, can be

constructed.  Contemporary theories of the Nuclear Force, and the Quark-

Quark Force of Particle Physics, involve the exchange of exotic entities

(mesons and gluons, respectively).

Newton deduced the inverse square law of gravitation by combining

the results of painstaking observations of the motions of the planets (Brahe
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and Kepler), with an analysis of the elliptical motion of a (terrestrial) object,

based on his laws of motion.  This was the first time that the laws of motion,

discovered locally, were applied on a universal scale.

6.  EQUIVALENCE OF MASS AND ENERGY: E=mc2   

6.1  Relativistic mass

In Newtonian Physics, the inertial mass of an object is defined,

operationally, by the second law:

m = F/a,

where a is the acceleration of the mass m, caused by the force F.  For a given

particle, the mass is constant; it has the same value in all inertial frames.  

In Einsteinian Physics, the inertial mass, m, of an object depends on the

speed of the frame in which it is measured.  If its mass is m0 in its rest frame

then its mass m in an inertial frame moving at constant speed V is

m (the relativistic mass) = γm0 (the rest mass),

where γ is the same factor found in discussions of length contraction, and

time dilation.  The validity of this equation has been demonstrated in

numerous modern experiments.

The structure of atoms has been understood since the early 1930’s.

An atom consists of a very small, positively charged nucleus, surrounded by

electrons (negatively charged).  The nucleus contains protons (positively

charged) and neutrons (electrically neutral) bound together by the nuclear

force.  The diameter of a typical nucleus is less than 10-12 centimeters.  The

electrons orbit the nucleus at distances that can be one hundred thousand
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times greater than the size of the nucleus.  The electrons are held in orbit by

the electromagnetic force.  The total positive charge of the nucleus is exactly

balanced by the total negative charge of the planetary electrons, so that the

atom is electrically neutral.  An electron can be removed from an atom in

different ways, including ionization in an electric field and photo-ionization

with light.  A free electron has the following accurately measured properties:

mass of the electron               = 9.1083 x 10-31 kilograms (kg),

and

electric charge of the electron  = 1.60206 x 10 -19 Coulomb. (C).

Here, “mass” refers to the mass measured in a frame of reference in which

the electron is at rest; it is the “rest mass”.

In 1932, a particle was observed with the same mass as the electron and with

a charge equal in magnitude, but opposite in sign, to that of the electron. The

particle was given the name “positron”; it is the “anti-particle” of the

electron.  The concept of anti-particles was introduced by Dirac, using purely

theoretical arguments, a few years before the experimental observation of the

positron.

In the 1940’s, it was found that an electron and a positron, when relatively at

rest, can form a “positronium atom” that consists of a bound state of an

electron and a positron, orbiting about their center-of-mass.  Such an “atom”

exists for a very short interval of time, namely 10-10 seconds.  It then

spontaneously decays into two gamma-rays (high energy electromagnetic
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radiation).  The two gamma-rays are observed to travel back-to-back.  (This

observation is consistent with the law of conservation of linear momentum;

the momentum is zero before the decay (the particles are initially at rest), and

therefore it must be zero after the decay).  Each gamma-ray has a measured

energy of 0.511 MeV (Million electron-volts).

In Modern Physics, it is the custom to use the electron-volt (eV) as the unit of

energy.  An electron-volt is the energy acquired by an electron when

accelerated by a potential difference of one volt.  Pictorially, we have:

                                                                                 (back-to-back)

              +  −                                                    0.511 MeV    0.511 MeV

                   -                            ∗                    <∼∼  ∼∼>
            Matter          ⇒         Annihilation         ⇒         Radiation

Electron-positron annihilation is a prime example of the conversion of matter

into electromagnetic radiation.  (This is the basic process in PET scanning in

Nuclear Medicine [Positron Emission Tomography]).  

From the measured electron and positron masses, and the measured energies

of the two gamma-rays, we can obtain one of the most important results in

our on-going quest for an understanding of the laws of Nature, and the

associated workings of the physical universe.  We begin by noting one of the
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standard results of Classical (Newtonian) Physics, namely, the expression for

the kinetic energy (energy of motion), E, of an object of mass m, moving

with a velocity v:

E = (1/2)mv2. (A result derived in standard texts on Mechanics).

We note that the ratio, energy/mass is

E/m =(1/2)v2, (the ratio is proportional to (velocity)2).

We are therefore led to study the ratio:

gamma-ray energy/electron mass,

to obtain the resulting velocity-squared.

The gamma-ray energy is:

  energy, E  = 0.511 x 106 (eV) x 1.602 x 10-19 (Joule/eV)

                                    = 0.8186 x 10-13 Joule.

(A note on “units”:  in the Physical Sciences, units of measured quantities are

often given in the MKS system, in which lengths are given in meters, masses

are given in kilograms, and time is given in seconds.  In this system, the unit

of energy is the Joule (named after James Prescott Joule, a Manchester

brewer and distinguished scientist of the 19th-century)).

Our required conversion factor is:  1 electron-volt = 1.602 x 10-19 Joule.

In the MKS system, the ratio gamma-ray energy/ electron mass is therefore

E/m = 0.8186 x 10-13 Joule / 9.1083 x 10-31 kilogram,

                        =  0.89874 x 1017 (meters/second)2,

a velocity, squared.

We can find the velocity by taking the square root of the value of E/m, thus:
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√(8.9874 x 1016) = 2.9974 × 108 meters/second.

This is a truly remarkable result; it is the exact value of the measured velocity

of light, always written, c.

We therefore find that the ratio

E (gamma-ray)/m (electron) = c2

or,

E = mc2.

This is Einstein’s great equation that shows the equivalence of energy and

mass.  (Here, m is the “relativistic mass” equal to γm0).  It is important to

note that Einstein derived this fundamental relation using purely theoretical

arguments, long before experiments were carried out to verify its universal

validity.  The heat that we receive from the Sun originates in the conversion

of its mass into radiant energy.  A stretched spring has more mass than an

unstretched spring, and a charged car battery has more mass than an

uncharged battery!  In both cases, the potential energy stored in the systems

has an equivalent mass.  We do not experience these effects because the mass

changes are immeasurably small, due to the 1/c2 factor.  However, in nuclear

reactions that take place in nuclear reactors, or in nuclear bombs, the mass

(energy) differences are enormous, and certainly have observable effects.

7.  AN INTRODUCTION TO EINSTEINIAN GRAVITATION

7.1  The principle of equivalence

The term “mass” that appears in Newton’s equation for the

gravitational force between two interacting masses refers to
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 “gravitational mass”; Newton’s law should indicate this property of matter

        FG = GMGmG/r2, where MG and mG are the gravitational

masses of the interacting objects, separated by a distance r.

The term “mass” that appears in Newton’s equation of motion,         

F = ma, refers to the “inertial mass”; Newton’s equation of motion should

indicate this property of matter:

     F = mIa, where mI is the inertial mass of the particle moving

with an acceleration a(r) in the gravitational field of the mass MG.

Newton showed by experiment that the inertial mass of an object is

equal to its gravitational mass, mI = mG to an accuracy of 1 part in 103.

Recent experiments have shown this equality to be true to an accuracy of 1

part in 1012.  Newton therefore took the equations

      F = GMGmG/r2 = mIa

and used the condition mG = mI to obtain

      a = GMG/r2.

Galileo had previously shown that objects made from different

materials fall with the same acceleration in the gravitational field at the surface

of the Earth, a result that implies mG ∝ mI.  This is the Newtonian Principle of

Equivalence.  

Einstein used this Principle as a basis for a new Theory of Gravitation.

He extended the axioms of Special Relativity, that apply to field-free frames,

to frames of reference in “free fall”.  A freely falling frame must be in a state

of unpowered motion in a uniform gravitational field .  The field region
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must be sufficiently small for there to be no measurable gradient in the field

throughout the region.  The results of all experiments carried out in ideal

freely falling frames are therefore fully consistent with Special Relativity.  All

freely-falling observers measure the speed of light to be c, its constant free-

space value.  It is not possible to carry out experiments in ideal freely-falling

frames that permit a distinction to be made between the acceleration of

local, freely-falling objects, and their motion in an equivalent external

gravitational field.  As an immediate consequence of the extended Principle

of Equivalence, Einstein showed that a beam of light would be observed to be

deflected from its straight path in a close encounter with a sufficiently massive

object.  The observers would, themselves, be far removed from the

gravitational field of the massive object causing the deflection.

Einstein’s original calculation of the deflection of light from a distant

star, grazing the Sun, as observed here on the Earth, included only those

changes in time intervals that he had predicted would occur in the near field

of the Sun.  His result turned out to be in error by exactly a factor of two.

He later obtained the “correct” value for the deflection by including in the

calculation the changes in spatial intervals caused by the gravitational field.

7.2  Rates of clocks in a gravitational field

Let a rocket be moving with constant acceleration a, in a frame of reference,

F, far removed from the Earth’s gravitational field, and let the rocket be

instantaneously at rest in F at time t = 0.  Suppose that two similar clocks, 1

and 2, are attached to the rocket with 1 at the rear end and 2 at the nose of
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the rocket.  The clocks are separated by a distance l.  We can choose two

light sources, each with well-defined frequency, f0, as suitable clocks.  f0 is the

frequency when the rocket is at rest in an inertial frame in free space.

                   F   (an inertial frame, no gravitational field)

                  y            2        constant acceleration, a, relative to F

                                          Clocks at rest in rocket

                        l

                               1        Pulse of light emitted from 1 at t = 0

                          acceleration begins at t ≥ 0

                                                                             x

Let a pulse of light be emitted from the lower clock, 1, at time t = 0, when

the rocket is instantaneously at rest in F.  This pulse reaches clock 2 after an

interval of time t, (measured in F) given by the standard equation for the

distance traveled in time t:

ct = (l + (1/2)at2),

where (1/2)at2 is the extra distance that clock 2 moves in the interval t.

Therefore,

t = (l/c) + (a/2c)t2  ,

  ≈ (l/c) if (at/2) << c

At time t, clock 2 moves with velocity equal to v = at ≈ al/c, in F.
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An observer at the position of clock 2 will conclude that the pulse of light

coming from clock 1 had been emitted by a source moving downward with

velocity v.  The light is therefore “Doppler-shifted”, the frequency is given by

the standard expression for the Doppler shift at low speeds (v << c):

f′ ≈ f0[1 − (v/c)]

   = f0[1 − (al/c2].

The frequency f′ is therefore less than the frequency f0.  The light from clock

1 (below) is “red-shifted”.  Conversely, light from the upper clock traveling

down to the lower clock is measured to have a higher frequency than the

local clock 1; it is “blue-shifted”.

The principle of equivalence states that the above situation, in a closed

system, cannot be distinguished by physical measurements, from that in

which the rocket is at rest in a uniform gravitational field.  The field must

produce an acceleration of magnitude |a|, on all masses placed in it.

           y′              G is a non-accelerating frame with a uniform

            G                 2                   gravitational field present.

                                              Blue shift

                       Red shift                  Rocket at rest in G

                               1                     Gravitational field

                                                                          Massive body

                                                                                x′

The light from the lower clock, reaching the upper clock will have a

frequency lower than the local clock, 2, by f0gl/c2, (replacing |a| by |g|), where
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g ≈ 10 m/s2, the acceleration due to gravity near the Earth.  The light sources

are at rest in G, and no oscillations of the pulses of light are lost during

transmission; we therefore conclude that, in a uniform gravitational field, the

actual frequencies of the stationary clocks differ by f0gl/c2.  Now, gl is the

difference in the “gravitational potential” between the two clocks.  It is the

convention to say that the upper clock, 2, is at the higher potential in G.

(Work must be done to lift the mass of clock 1 to clock 2 against the field).  

Consider the case in which a light source of frequency fS

(corresponding to clock 1) is situated on the surface of a star, and consider a

similar light source on the Earth with a frequency fE (corresponding to clock

2).  Generalizing the above discussion to the case when the two clocks are in

varying gravitational fields, such that the difference in their potentials is ∆φ,

we find

fE = fS(1 + ∆φ/c2)

                (gl = ∆φ, is the difference in gravitational potential of the clocks in

                              a constant field, g, when separated by l).

For a star that is much more massive than the Earth, ∆φ is positive, therefore,

fE > fS, or in terms of wavelengths, λE and λS, λS > λE.  This means that the

light coming from the distant star is red-shifted compared with the light from

a similar light source, at rest on the surface of the Earth.

As another example, radioactive atoms with a well-defined “half-life”

should decay faster near clock 2 ( the upper clock) than near clock 1.  At the



48

higher altitude (higher potential), all physical processes go faster, and the

frequency of light from above is higher than the frequency of light from an

identical clock below.  Einstein’s prediction was verified in a series of accurate

experiments, carried out in the late 1950’s, using radioactive sources that

were placed at different heights near the surface of the Earth.

7.3  Gravity and photons

Throughout the 19th-century, the study of optical phenomena, such as

the diffraction of light by an object, demonstrated conclusively that light

(electromagnetic in origin) behaves as a wave.  In 1900, Max Planck,

analyzed the results of experimental studies of the characteristic spectrum of

electromagnetic radiation emerging from a hole in a heated cavity (so-called

“black-body radiation”).  He found that current theory, that involved

continuous frequencies in the spectrum, could not explain the results.  He did

find that the main features of all black-body spectra could be explained by

making the radical assumption that the radiation consists of discrete pulses of

energy E proportional to the frequency, f.  By fitting the data, he determined

the constant of proportionality, now called Planck’s constant; it is always

written h.  The present value is:

h = 6.626 × 10−34 Joule-second in MKS units.

Planck’s great discovery was the beginning of Quantum Physics.

In 1905, Einstein was the first to apply Planck’s new idea to another

branch of Physics, namely, the Photoelectric Effect.  Again, current theories

could not explain the results.  Einstein argued that discrete pulses of
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electromagnetic energy behave like localized particles, carrying energy E =

hf and momentum p = E/c.  These particles interact with tiny electrons in the

surface of metals, and eject electrons in a Newtonian-like way.  He wrote

EPH = hfPH and EPH = pPHc

The rest mass of the photon is zero. (Its energy is all kinetic).

If, under certain circumstances, photons behave like particles, we are

led to ask: are photons affected by gravity?  We have

EPH = mPH
I c2 = hfPH,

or

mPH
I = EPH /c

2 = hfPH /c
2.

By the Principle of Equivalence, inertial mass is equivalent to gravitational

mass, therefore Einstein proposed that a beam of light (photons) should be

deflected in a gravitational field, just as if it were a beam of particles.  (It is

worth noting that Newton considered light to consist of particles; he did not

discuss the properties of his particles.  In the early 1800’s, Soldner actually

calculated the deflection of a beam of “light-particles” in the presence of a

massive object!  Einstein was not aware of this earlier work).

Let us consider a photon of initial frequency fS, emitted by a massive

star of mass MS, and radius R.  The gravitational potential energy, V, of a

mass m at the surface of the star, is given by a standard result of Newton’s

Theory of  Gravitation; it is

V(surface) = − GMSm/R.
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It is inversely proportional to the radius of the star.  The negative sign

signifies that the gravitational interaction between MS and m is always

attractive.

Following Einstein, we can write the potential energy of the photon of

“mass” hfPH/c2 at the surface as

V (surface) = − (GMS /R)(hfPH /c
2).

The total energy of the photon, ETOTAL is the sum of its kinetic and potential

energy:

ETOTAL = hfPH
STAR  +  (−) GMShfPH

STAR /Rc2 ,

          = hfPH
STAR (1 − GMS /Rc2).

At very large distances from the star, at the Earth, for example, the photon is

essentially beyond the gravitational pull of the star.  Its total energy remains

unchanged (conservation of energy).  At the surface of the Earth the photon

has an energy that is entirely electromagnetic (since its potential energy in the

“weak” field of the Earth is negligible compared with that in the gravitational

field of the star), therefore

hfPH
EARTH = hfPH

STAR (1 − GMS /Rc2)

so that

fPH
EARTH/fPH

STAR = 1 − GMS /Rc2,

and

∆f/f ≡ (fPH
STAR − fPH

EARTH) /fPH
STAR = GMS/Rc2 .

We see that the photon on reaching the Earth has less total energy than

it had on leaving the star.  It therefore has a lower frequency at the Earth.  If
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the photon is in the optical region, it is shifted towards the red-end of the

spectrum.  This is the gravitational red-shift.  (It is quite different from the

red-shift associated with Special Relativity)

Schematically, we have:

                                              fPH
STAR                         To Earth      fPH

EARTH

                  Radius R

                      Mass MS           Blue light emitted           Light red-shifted

                                                                                far from field of star

                  Massive Star

7.4  Black holes

In 1784, a remarkable paper was published in the Philosophical

Transactions of the Royal Society of London, written by the Rev. J. Michell.

It contained the following discussion:

To escape to an infinite distance from the surface of a star of mass M

and radius R, an object of mass m must have an initial velocity v0 given by

the energy condition:

        initial kinetic energy of mass ≥ potential energy at surface of star,

or

        (1/2)mv0
2 ≥ GMm/R (A Newtonian expression).

This means that

v0 ≥ √(2GM/R).
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Escape is possible only when the initial velocity is greater than (2GM/R)1/2 .

On the Earth, v0 ≥ 25,000 miles/hour.

For a star of given mass M, the escape velocity increases as its radius

decreases.  Michell considered the case in which the escape velocity v0

reaches a value c, the speed of light.  In this limit, the radius becomes

RLIMIT = 2GM/c2    

He argued that light would not be able to escape from a compact star of mass

M with a radius less than RLIMIT; the star would become invisible.  In modern

terminology, it is a black hole.

Using the language of Einstein, we would say that the curvature of

space-time in the immediate vicinity of the compact star is so severe that the

time taken for light to emerge from the star becomes infinite.  The radius

2GM/c2 is known as the Schwarzschild radius; he was the first to obtain a

particular solution of the Einstein equations of General Relativity.  The

analysis given by Michell, centuries ago, was necessarily limited by the

theoretical knowledge of his day.  For example, his use of a non-relativistic

expression for the kinetic energy (mv2/2) is now known to require

modification when dealing with objects that move at speeds close to c.

Nonetheless, he obtained an answer that turned out to be essentially correct.

His use of a theoretical argument based on the conservation of energy was

not a standard procedure in Physics until much later.

A star that is 1.4 times more massive than our Sun, has a

Schwarzschild radius of only 2km and a density of 1020 kg/m3.  This is far



53

greater than the density of an atomic nucleus.  For more compact stars

(RLIMIT < 1.4 MSUN), the gravitational self-attraction leads inevitably to its

collapse to a “point”.  

Studies of the X-ray source Cygnus X-1 indicate that it is a member of

a binary system, the other member being a massive “blue supergiant”  There

is evidence for the flow of matter from the massive optical star to the X-ray

source, with an accretion disc around the center of the X-ray source.  The X-

rays could not be coming from the blue supergiant because it is too cold.

Models of this system, coupled with on-going observations, are consistent

with the conjecture that a black hole is at the center of Cygnus X-1.  Several

other good candidates for black holes have been observed in recent studies of

binary systems.  The detection of X-rays from distant objects has become

possible only with the advent of satellite-borne equipment.

I have discussed some of the great contributions made by Einstein to

our understanding of the fundamental processes that govern the workings of

our world, and the universe, beyond.  He was a true genius, he was a

visionary, and he was a man of peace.
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          Appendix

          The following material presents the main ideas of Einstein’s Special Relativity

in a mathematical form.  It is written for those with a flair for Mathematics.

A1.  Some useful mathematics: transformations and matrices

Let a point P[x, y] in a Cartesian frame be rotated about the origin

through  an angle of 90°; let the new position be labeled P′[x′, y′]

                                          +y

                           P′[x′, y′]                     
                                                             P[x, y]

                        -x                                         +x

                                            -y

We see that the new coordinates are related to the old coordinates as follows:

x′ (new) =          −y (old)

and

y′ (new) =  +x (old)

where we have written the x’s and y’s in different columns for reasons that

will become clear, later.

Consider a stretching of the material of the plane such that all x-values are

doubled and all y-values are tripled:
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                                                 3y      P′[x′, y′] = P′[2x, 3y]

                                                                    y            P[x, y]

                                                                                x      2x

The old coordinates are related to the new coordinates by the equations

y′ =        3y

and

x′ =  2x

Consider a more complicated transformation in which the new values are

combinations of the old values, for example, let

x′ = 1x  + 3y

and

y′ = 3x  + 1y

We can see what this transformation does by putting in a few definite values

for the coordinates:

[0, 0] → [0, 0]

[1, 0] → [1.1 + 3.0, 3.1 + 1.0] = [1, 3]

[2, 0] → [1.2 + 3.0, 3.2 + 1.0] = [2, 6]

[0, 1] → [1.0 + 3.1, 3.0 + 1.1] = [3, 1]

[0, 2] → [1.0 + 3.2, 3.0 + 1.2] = [6, 2]

[1, 1] → [1.1 + 3.1, 3.1 + 1.1] = [4, 4}

[1, 2] → [1.1 + 3.2, 3.1 + 1.2] = [7, 5]
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[2, 2] → [1.2 + 3.2, 3.2 + 1.2] = [8, 8]

[2, 1] → [1.2 + 3.1, 3.2 + 1.1] = [5, 7]

and so on.

Some of these changes are shown below

                   y

                                  y′  

                                                  New axes and grid-lines are oblique

                                                                 x′

      x

This is a particular example of the more general transformation

x′ = ax + by

and

y′ = cx + dy

where a, b, c, and d are real numbers.

In the above examples, we see that each transformation is characterized by

the values of the coefficients, a, b, c, and d:

For the rotation through 90°:

a = 0, b = −1, c = 1, and d = 0;
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for the 2x3 stretch:

a = 2, b = 0, c = 0, and d = 3;

and for the more general transformation:

a = 1, b = 3, c = 3, and d = 1.

In the 1840’s, Cayley recognized the key role of the coefficients in

characterizing the transformation of a coordinate pair [x, y] into the pair    

[x′, y′].  He therefore “separated them out”, writing the pair of equations in

column-form, thus:

 x′        a    b     x     
       =
 y′        c    d     y   

 
This is a single equation that represents the original two equations.  We can

write it in the symbolic form:

  P′ = MP ,

which means that the point P with coordinates x, y (written as a column) is

changed into the point P′ with coordinates x′, y′ by the operation of the       

2 x 2 matrix operator M.

The matrix M is

                                     a    b  
M  =             .

 c    d   

The algebraic rule for carrying out the “matrix multiplication” is obtained

directly by noting that the single symbolic equation is the equivalent of the

two original equations.  We must therefore have
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x′ = a times x + b times y

and

y′ = c times x + d times y.

We multiply rows of the matrix by columns of the coordinates, in the correct

order.

2 x 2 matrix operators will be seen to play a crucial role in Einstein’s

Special Theory of Relativity.

A2.  Galilean-Newtonian relativity revisited

The idea of matrix operators provides us with a useful way of looking

at the equations of classical relativity, discussed previously.  Recall the two

basic equations:

t′  =  t

and

x′  =  x − Vt  .  

where, the event E[t, x] in the F-frame has been transformed into the event

E′[t′, x′] in the F′-frame.  We can write these two equations as a single matrix

operator equation as follows

 t′         1   0     t    
      =                     ,
x′       −V   1    x    

or, symbolically

E′  =  GE,

where
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           1    0   
G  =              , the matrix of the Galilean transformation.
          −V   1   

If we transform E → E′ under the operation G, we can undo the

transformation by carrying out the inverse operation, written G−1, that

transforms E′ → E, by reversing the direction of the relative velocity:

t  =  t′

and
x  = x′ + Vt′  

or, written as a matrix equation:

t          1    0    t′
     =                  
x        +V   1    x′

where

  1    0   
G−1 =              

 +V   1   

is the inverse operator of the Galilean transformation.  Because G−1 undoes

 the effect of G, we have

 G−1G = “do nothing” = I , the identity operator,

where
1    0      

I =               .
0    1      

We can illustrate the space-time path of a point moving with respect to

the F- and F′-frames on the same graph, as follows
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   x - axis                            E[t, x] and E′[t′, x′]
                 x  - axis

  x
  D = Vt

  x′                 t  - axis
   (the world line
of O′ relative to O)

             t′            
                             D = Vt

      O, O’                                                       t - axis
    t

The origins of F and F′ are chosen to be coincident at t = t′ = 0.  O ′

moves to the right with constant speed V, and therefore travels a distance   

D = Vt in time t.  The t′ - axis is the world line of O′ in the F-frame.  Every

point in this space-time geometry obeys the relation x′ = x − Vt; the F′-frame

is therefore represented by a semi-oblique coordinate system.  The

characteristic feature of Galilean-Newtonian space-time is the coincidence of

the x-x′- axes.  Note that the time intervals, t, t′ in F and F′ are numerically

the same (Newton’s “absolute time”), and therefore a new time scale must be

chosen for the oblique axis, because the lengths along the time-axis,

corresponding to the times t, t′ of the event E, E′ are different.

A3.  Is the geometry of space-time Pythagorean?

Pythagoras’ Theorem is of primary importance in the geometry of

space.  The theorem is a consequence of the invariance properties of lengths

and angles under the operations of translations and rotations.  We are

therefore led to ask the question − do invariants of space-time geometry exist

under the operation of the Galilean transformation and, if they do, what are



61

they?  We can address this question by making a simple, direct calculation, as

follows.  The basic equations that relate space-time measurements in two

inertial frames moving with relative speed V are

x′ = x − Vt and t′ = t.

We are interested in quantities of the form x2 + t2 and x′2 + t′2.  These forms

are inconsistent, however, because the “dimensions” of the terms are not the

same; x, x′ have dimensions of “length” and t, t′ have dimensions of “time”.

This inconsistency can be dealt with by introducing two quantities k, k′ that

have dimensions “length/time” (speed), so that the equations become

x′ = x − Vt (all lengths) and k′t′ = kt (all lengths).

(Note that kt is the distance traveled in a time t at a constant speed k).  We

now find

x′2 = (x − Vt)2 = x2 − 2xVt + V2t2, and k′2t′2 = k2t2,

so that

    x′2 + k′2t′2 = x2 − 2xVt + V2t2 + k2t2.

           ≠ x2 + k2t2 unless V = 0 (no motion!).

Relative events in an semi-oblique space-time geometry therefore transform

under the Galilean operator in a non-Pythagorean way.

A4.  Einstein’s space-time symmetry: the Lorentz transformation

We have seen that the classical equations relating the events E and E´

are

         E´ = GE, and the inverse E = G–1E´ where
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                                              1    0                            1    0       
                                 G  =                   and  G–1  =                  .  

                          –V    1                            V    1       

These equations are connected by the substitution V ↔ –V; this is an

algebraic statement of the Newtonian Principle of Relativity.  Einstein

incorporated this principle in his theory (his first postulate), broadening its

scope to include all physical phenomena, and not simply the motion of

mechanical objects.  He also retained the linearity of the classical equations in

the absence of any evidence to the contrary.  (Equispaced intervals of time

and distance in one inertial frame remain equispaced in any other inertial

frame).  He therefore symmetrized the space-time equations (by putting space

and time on equal footings) as follows:  

                                                     −V replaces 0, to symmetrize the matrix

                              t´            1   –V       t             
                                      =                          .

                              x´          –V     1      x              

Note, however, the inconsistency in the dimensions of the time-equation that

has now been introduced:

                          t´ =  t – Vx.

The term Vx has dimensions of [L]2/[T], and not [T].  This can be corrected

by introducing the invariant speed of light, c (Einstein's second postulate,

consistent with the result of the Michelson-Morley experiment):

                                 ct´ = ct – Vx/c     (c′ = c, in all inertial frames)
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so that all terms now have dimensions of length.  (ct is the distance that light

travels in a time t)

Einstein went further, and introduced a dimensionless quantity γ

instead of the scaling factor of unity that appears in the Galilean equations of

space-time.  (What is the number “1” doing in a theory of space-time?).  This

factor must be consistent with all observations.  The equations then become

                                 ct´ =      γct –  βγx

                                  x´ =  –βγct +    γx , where β=V/c.

These can be written

                                E´  = LE, 

where

                                                γ   –βγ        
                                  L =                      ,

                           –βγ      γ         

and                             E = [ct, x] .

L is the operator of the Lorentz transformation. (First obtained by Lorentz, it

is the transformation that leaves Maxwell’s equations of electromagnetism

unchanged in form between inertial frames).

The inverse equation is E = L−1E′ , where

                                                γ    βγ           
                                 L–1 =                   .
                                              βγ      γ           

This is the inverse Lorentz transformation, obtained from L by changing β →

–β (V →  –V); it has the effect of undoing the transformation L.  We can

therefore write
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                              LL–1 = I.

Carrying out the matrix multiplication, and equating elements gives

                        γ2 – β2γ2 = 1

therefore,

                                  γ = 1/√(1 – β2) (taking the positive root).

As V → 0, β → 0 and therefore γ → 1; this represents the classical limit in

which the Galilean transformation is, for all practical purposes, valid.  In

particular, time intervals have the same measured values in all Galilean frames

of reference, and acceleration is the single Galilean invariant.

A5.  The invariant interval

Previously, it was shown that the space-time of Galileo and Newton is

not Pythagorean under G.  We now ask the question: is Einsteinian space-

time Pythagorean under L ?  Direct calculation leads to

                       (ct)2 + x2 = γ2(1 + β2)(ct´)2 + 4βγ2x´ct´

                                       +γ2(1 + β2)x´2

                                       ≠ (ct´)2 + x´2 if β > 0.

Note, however, that the difference of squares is an invariant:

                        (ct)2 – x2 = (ct´)2 – x´2

because

                        γ2(1 – β2) = 1.

Space-time is said to be pseudo-Euclidean.  The “difference of squares” is

the characteristic feature of Nature’s space-time.  The “minus” sign makes

no sense when we try and relate it to our everyday experience of geometry.
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The importance of Einstein’s “free invention of the human mind” is clearly

evident in this discussion.

The geometry of the Lorentz transformation, L, between two inertial

frames involves oblique coordinates, as follows:

           x -axis      tan−1 β

                                 x′  - axis

                  X                                          E[cT, X] and E′[cT′, X′]

                           X′

                                                                (cT)2 − X2 = (cT′)2 − X′2

                                                                            ct′ - axis

Common O, O′                           cT′                      angle = tan−1 β

                                                          cT                   ct - axis

The symmetry of space-time means that the ct - axis and the x - axis fold

through equal angles.  Note that when the relative velocity of the frames is

equal to the speed of light, c, the folding angle is 450, and the space-time axes

coalesce.

A6.  The relativity of simultaneity: the significance of oblique axes

Consider two sources of light, 1 and 2, and a point M midway between

them.  Let E1 denote the event “flash of light leaves 1”, and E2 denote the
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event “flash of light leaves 2”.  The events E1 and E2 are simultaneous if the

flashes of light from 1 and 2 reach M at the same time.  The oblique

coordinate system that relates events in one inertial frame to the same events

in a second (moving) inertial frame shows, in a most direct way, that two

events observed to be coincident in one inertial frame are not observed to be

coincident in a second inertial frame (moving with a constant relative velocity,

V, in standard geometry).  Two events E1[ct1, x1] and E2[ct2, x2], are

observed in a frame, F.  Let them be coincident in F, so that t1 = t2 = t, (say).

The two events are shown in the following diagram:

      x - axis

            x1                             E1

                                                          Coincident events in F

          x2                               E2

             O       F - frame

                                 ct1 = ct2 = ct                 ct - axis

Consider the same two events as measured in another inertial frame, F′,

moving at constant velocity V along the common positive x - x′ axis.  In F′,

the two events are labeled E1′[ct1′, x1′] and E2′[ct2′, x2′].  Because F′ is

moving at constant velocity +V relative to F, the space-time axes of F′ are
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folded inwards through angles tan−1(V/c) relative to the F axes, as shown.  The

events E1′ and E2′ can be displayed in the F′ - frame:

             inclined at tan−1(V/c) relative to the x - axis of F

                               x′ - axis

                                    x1′             E1′[ct1′, x1′] in F′

                                                                                Not coincident in F′

                                                      E2′[ct2′, x2′] in F′

                         x2′

                                                                ct′ - axis inclined at tan−1(V/c)

                                                                relative to the ct - axis of F

             O’           ct1′    ct2′

                           t1 < t2  in F   ct1 = ct2 (E1 and E2 are coincident in F)

We therefore see that, for all values of the relative velocity V > 0, the events

E1′ and E2′ as measured in F′ are not coincident; E1′ occurs before E2′.

(If the sign of the relative velocity is reversed, the axes fold outwards through

equal angles).

A7.  Length contraction: the Lorentz transformation in action

The measurement of the length of a rod involves comparing the two

ends of the rod with marks on a standard ruler, or some equivalent device.  If

the object to be measured, and the ruler, are at rest in our frame of reference

then it does not matter when the two end-positions are determined - the
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“length” is clearly-defined.  If, however, the rod is in motion, the meaning of

its length must be reconsidered.  The positions of the ends of the rod relative

to the standard ruler must be “measured at the same time” in its frame of

reference.

Consider a rigid rod at rest on the x′-axis of an inertial reference frame

F´.  Because it is at rest, it does not matter when its end-points x1´ and x2´ are

measured to give the rest-, or proper-length of the rod, L0´ = x2´ – x1 .́

Consider the same rod observed in an inertial reference frame F that is

moving with constant velocity –V  with its x-axis parallel to the x´-axis.  We

wish to determine the length of the moving rod;  We require the length       

L = x2 – x1 according to the observers in F.  This means that the observers in

F must measure x1 and x2 at the same time in their reference frame.  The

events in the two reference frames F, and F´ are related by the spatial part of

the Lorentz transformation:

         x´ = –βγct + γx

and therefore

           x2´ – x1´ = –βγc(t2 – t1) + γ(x2 – x1).

where

                       β = V/c and γ = 1/√(1 – β2).

Since we require the length (x2 – x1) in F to be measured at the same time in

F, we must have t2 – t1 = 0, and therefore

        L0´ = x2´ – x1´ = γ(x2 – x1) ,
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or

        L0´(at rest) = γL (moving).

The length of a moving rod, L, is therefore less than the length of the same

rod measured at rest, L0 , because γ > 1.

A8.  Time dilation: a formal approach

Consider a single clock at rest at the origin of an inertial frame F´, and

a set of synchronized clocks at x0, x1, x2, ... on the x-axis of another inertial

frame F.  Let F´ move at constant velocity +V relative to F, along the

common x -, x´- axis.  Let the clocks at xo, and xo´ be synchronized to read t0

and t0´ at the instant that they coincide in space.  A proper time interval is

defined to be the time between two events measured in an inertial frame in

which they occur at the same place.  The time part of the Lorentz

transformation can be used to relate an interval of time measured on the

single clock in the F´ frame, and the same interval of time measured on the

set of synchronized clocks at rest in the F frame.  We have

          ct = γct´ + βγx´

or

            c(t2 – t1) = γc(t2´ – t1´) + βγ(x2´ – x1´).

There is no separation between a single clock and itself, therefore x2´ – x1´ =

0, so that

c(t2 – t1)(moving) = γc(t2´ – t1´)(at rest) ,

or
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      c∆t (moving) = γc∆t′ (at rest).

Therefore, because γ > 1, a moving clock runs more slowly than a clock at

rest.

A9.  Relativistic mass, momentum, and energy

The scalar product of a vector A with components [a1, a2] and a vector

B with components [b1, b2] is

A⋅B = a1b1 + a2b2.

In geometry, A⋅B is an invariant under rotations and translations of the

coordinate system.

In space-time, Nature prescribes the differences-of-squares as the

invariant under the Lorentz transformation that relates measurements in one

inertial frame to measurements in another.  For two events, E1[ct, x] and

E2[ct, −x], the scalar product is

E1⋅E2 = [ct, x].[ct, −x]

        = (ct)2 − x2 = invariant in a space-time geometry,

where we have chosen the direction of E2 to be opposite to that of E1,thereby

providing the necessary negative sign in the invariant.

In terms of finite differences of time and distance, we obtain

      (c∆t)2 − (∆x)2 ≡ (c∆τ)2 = invariant,

where ∆τ is the proper time interval.  It is related to ∆t by the equation

    ∆t = γ∆τ.

In Newtonian Mechanics, the quantity momentum, the product of the

mass of an object and its velocity, plays a key role.  In Einsteinian Mechanics,
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velocity, mass, momentum and kinetic energy are redefined.  These basic

changes are a direct consequence of the replacement of Newton’s absolute

time interval, ∆tN, by the Einstein’s velocity-dependent interval

∆tE = γ∆τ.

The Newtonian momentum pN = mNvN = mN∆x/∆tN is replaced by the

Einsteinian momentum

pE
+ ≡ m0vE = m0∆[ct, x]/∆τ

     = m0[c∆t/∆τ, ∆x/∆τ]

     = m0[γc, (∆x/∆t)(∆t/∆τ]

     = m0[γc, γvN].

We now introduce the vector in which the direction of the x-component is

reversed, giving

pE
−  = m0[γc, −γvN].

Forming the scalar product, we obtain

  pE
+⋅pΕ

− = m0
2(γ2c2 − γ2vN

2)

      = m0
2c2,

because vE
+⋅vE

− = c2.

Multiplying throughout by c2, and rearranging, we find

m0
2c4 = γ2m0

2c4 − γ2m0
2c2vN

2 .

We see that γ is a number and therefore γ multiplied by the rest mass m0 is a

mass; let us therefore denote it by m:

m = γm0, the relativistic mass.
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We can then write

(m0c
2)2 = (mc2)2 − (cpE)2.

The quantity mc2 has dimensions of energy; let us therefore denote it by the

symbol E, so that

      E = mc2, Einstein’s great equation.

The equivalence of mass and energy appears in a natural way in our search

for the invariants of Nature.

The term involving m0 is the rest energy, E0,

      E0 = m0c
2.

We therefore obtain

E0
2 = E2 − (pEc)2 = E′2 − (pE′c)2, in any other inertial frame.

It is the fundamental invariant of relativistic particle dynamics.

This invariant includes those particles with zero rest mass.  For a

photon of total energy EPH and momentum pPH, we have

0 = EPH
2 − (pPHc)2,

and therefore

EPH = pPHc.

No violations of Einstein’s Theory of Special Relativity have been

found in any tests of the theory that have been carried to this day.
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