Solution for Chapter 26
(compiled by Xinkai Wu)

A. Arm waving [Xinkai Wu/02]
(a). Take the frequency to be f ~ 2Hz, then the wavelength is A ~ ¢/f ~

1 x 108m. The major contribution to the gravitational wave comes from the

mass quadrupole moment and is given by eq. (26.112): hy ~ hy ~ Ccfl M”

and we take M ~ 10kg, v ~ Lf ~ 1m x 2Hz ~ 2m/s(where L is the size of the
arm), and 7 ~ A ~ 10%m, this gives hy ~ hy ~ 107°L.

(b). The total power ‘Z—Jf is given by eq. (26.113). Restoring G, ¢, we get
% ~ c% ML2§’6 ~ 107%9J/s, and the number of gravitons emitted per second
is 5o 7 4E ~ 10716, which means that in your entire lifetime (~ 3 x 10° sec)

you have a probability of less than one part in a million to emit a single graviton.

B. Exercise 26.4 Behavior of hy and hy under rotations and boosts [Kip
Thorne and Xinkai Wu/02]

(a) Quantities with a tilde denote those in the new basis, and those without
tilde in the old basis. In terms of real numbers, the change of basis €, + i€, =
(e; +iey)e™ is

€; = e;cosy — eysiny, €, = e,cosy + eysiny

Plugging the above transformation matrix into eq.(26.41) we find the compo-
nents of Riemann in the new basis

Rfojo = COSQIJZJRzOzO + Sin21/1Ry0y0 — 20051/15@'717,/}]?101!0
1. 1.
= cos2Y | — —hy | —sin2¢ | — —hy
2 2
on the other hand Rjzoz0 = — %Z.h thuse we get

hy = (cos2¢)hy — (sin2u)hy

Similarly, by looking at Rzoz0, we find

hy = (cos2¢)hy + (sin2i)h,
Translated into complex numbers, this is just
hy +ihy = (hy + ihy)e?™¥
(b) The desired boost is a boost along the z direction, which gives

o = Eycoshf + €,sinhf, &, = €ysinhf3 + €,coshf3



with €, €, unchanged. And the corresponding transformation for the coordi-
nates is

t = tcoshf — zsinhf3, 2 = —tsinhB3 + zcoshf3
which gives £ — Z = (coshf3 + sinhf3)(t — z)
with z,y unchanged.

Look at components of Riemann in the new basis using the above transfor-
mation matrix, we find

Ro.5 = (coshB — sinhfB)?Ruom0 = e >’ Ryomo
—1\ 5 0
= | —= —h 1

G )
From the coordinate transformation we find 8h+ = (coshﬁa%~ — sinhﬁ%) h4 an
since h. is a function of ¢ — z and thence of t — Z, this gives 8;—; = (cosh +
sinhﬂ)ih = eﬁw. similarly a;th; = 256 h* Combining with eqn. (1) we
get Ran = 71 i f; But in the tilded coordmate R 5.5 = ’21 aatf;* Therefore
hy =hy.

By looking at R,3,5 one can show the invariance of hy in a similar manner.

C. Exercise 26.5 Energy-momentum conservation in geometric optics limit
[Alexander Putilin/00 and Kip Thorne/02]

1

TS = = Tom <hralis +halics >
In geometric optics limit:
h_ Qe(mi0.9) L Qu(mi6,0)
+ = hx=—""7T—"7"7
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The wave vector k = —V'7, is null, and we have V,;E =0, Vir = %(ﬁ E)r.
Consider the contribution of h4
2 42
167rTf[3 <Q—>TTQTT5 <Q—>k kg

where the dot means 9/97,. Thus

. kB < Q
a3 2 +
167 T Gy 5 = (< Q>3 > , kP + kfjﬁkﬁ

The second term vanishes by the geodesics equation for the rays. In the first

term, < Qi > is constant along a ray, i.e. < Qi >3 kP = 0, so it can be
removed from the derivative. Thus

o kB
167TTGW|B =< Q+ > 7“—2 5



But the transport law Vir = %(ﬁ - k)r implies that (k?/r?)3 = 0. Therefore
1677y 5 = 0.
The proof for the x polarization is identical.

D. Exercise 26.6 Transformation to TT gauge [Alexander Putilin/00]
(a) Consider gauge transformation generated by £u: hap — hig = hap —

50(,,8 - fﬁ,a» or, haﬁ - Biyﬂ = Baﬁ - ga,ﬁ - gﬁ,a + naﬁfp #. Then

_ B — ,
Wag” = hog’ =€ 5" = 62" + 600"
7B 5
= oy —&ap
= _5a,ﬁﬁ

where to get the last expression we’ve used the fact that Ba ﬁ’ﬁ = 0, since ﬁag
is in Lorentz gauge.
If we want h/,p to remain in Lorentz gauge, we see that the generators &,

should satisfy wave equation: & ﬁﬁ =0

The general solution of this eduation can be written as a sum of plane waves:

d*k . )
Ea(t,x) —/(27T)3 [Aa(k)el(k'x*“’t) +Ba(k)el(k»x+wt)i|

The first term describes the wave propagating in k direction and second one
in —k direction. In our cases we need only the first term (since we consider a
gravitational wave propagating in some particular direction). So

a3k -
fa(t,X) — / WAa(k)ei(k-x—wt)

3 3 tk-x —ik-x
At time t = 0: &,(0,x) = [ % a(k)e®* or Ay (k) = [d3x&,(0,x)e" k>,
We see that £, (z) are completely determined by four functions of three spatial
coordinates: £,(0,x). These functions give initial conditions for wave equation
at t =0.

(b) Consider a plane gravitational wave propagating in z-direction.

hag = ﬁag(t —2)= Bag(T), T=t—2

hagp is in Lorentz gauge, i.e.

Eaﬁﬁ = Eat ! + Bozz’z = 7?L04t775 + EOCZ,Z = 75;26 - E/az
0 (prime denotes derivatives w.r.t. 7)
Integrating: B zi—fzat + const. Constant is irrelevant and we can set it to
zero, thus hy, = —has.

These four gauge conditions reduce the number of independent components
of haﬁ from 10 to 6: htt7 htxy hty, h;cx, hxy, I’Lyy



Now make additional gauge transformation with

bu=balr) =balt—2),  £,5° =0

hap = hG" = Eap — Ep.a + Nap "
gu o= _gt,t + Ez,z = _fé - g,’z

We want to choose &, so that TLZ%“’ satisfy additional constraints: h*" =
hpe = hpe = 0, h2e" + hiew = 0.

hiet = hy — 2+ (§+E) = hue + €. — &
his® = hip —&o — ot = hua — &,

his = huy — &y — €y = hiy — &,

hpe = Rap — 2650 — & — €L = haw — & — &,
B;ﬁw = Byy - 52 - f,/z

W = ey

This gives the system of equations:

glx = Bt:v

E’y = Bty

5/ _ Btt + %(hm + Byy)
=

2

5/ _ _Btt + %(ﬁw + Byy)

[\

These equations have unique solutions (up to an additive constant) given by
simple integrations.

E. Exercise 26.7 Quadrupolar wave generation in linearized theory [Xinkai
Wu/02]

(a) For a slow-motion source, the size of the source is much smaller than the
wavelength. Only keeping the leading order when expanding |x — x|, which is
7, eq. (26.128) becomes eq. (26.129).

(b) Taking the divergence of both sides of the linearized Einstein equation
(24.106) we get

—Bm,’ao‘” = 167TTW7”
the r.h.s. vanishes by virtue of the Lorentz gauge condition BW,” = 0, thus
we conclude 7" = 0, i.e. TH , = 0. (Another way to see this is, Bianchi
identity combined with Einstein equation implies the covariant divergence of
the stress-energy tensor always vanishes; in the linearized theory we can ignore
the connection coefficients, which means the coordinate divergence, just like the
covariant divergence, of the stress-energy tensor vanishes.)



(c) Let’s first evaluate the Lh.s.: [T%z72*] oo = T jgaiz.

The terms on the r.h.s. are: straightforward differentiation gives [T'" 27 2*],,,; =
Tim gk 42T gk oTRm 2319 Ik and —2[TWak+Ted] ) = —2(TY 2k 4
T' 27 +2T79%). When the three terms on the r.h.s. are added up, there’re some
cancellations and we find the r.h.s. to be Tlm’mlxj:z:k.

Now using the 7", = 0 one finds T% o, = T'™
—T R -7 K/ _[_Tlm,m]l = Tlm,ml

Thus we conclude l.h.s. = r.h.s.

(d)

00  _
mi» because T0 5 =

2 . 2 j
S Lpt-r) = ;/ﬁ(t—nX’)ﬂf”x'dex'
5 _
- / T oot —r.x)2" e v,
- :
2 .
R / (7% 2" g0t = r,x') AV,
4 . /
= — 1-1‘7 (t—T,X)de/
T

where to reach the last expression we’ve used the result of part (c¢) and the fact
that the integrals of total derivatives vanish. Comparing the expression above
with (26.129), we conclude

- 2 d%L(t—r)
hjw(t,x) = — ng

(e) Since the expression for the trace-reversed metric perturbation obtained
in the previous part has the “speed-of-light-propagation” form, namely, it’s a
function of (¢ — r) [with the 1/r essentially consant on lengthscale of order a
wavelength], and since Bjk and h, only differ in their trace which doesn’t matter
in the TT projection, we get by eq.(26.96)

Pnt—n]"
) by
i = ()™ =2 []kr]

which is the desired eq. (26.111).

F. Exercise 26.10 Propagation of waves through an expanding universe
[Alexander Putilin/00 and Kip Thorne/02]

ds? = b2 [—dn? + dx? + x2(db? + sin?d¢?)], where b = bon?.

(a) We can prove that curves of constant 8, ¢, n — x satisfy geodesic equation
by explicit calculation of connection coefficients. But the easier way is to use
symmetry. Spherical symmetry implies that a radial curve n = n(¢), x = x(¢),
0, ¢ = const must be a geodesic for some parameter (. Since geodesic is null we

dn\? dx )2 d d
have — (%) + (d%) =0, rTZ = (T)c(’ = 1 — x = const along geodesic.



(b) Symmetry also helps here. Spherical symmetry guarantees that Vi€,
cannot point in x or ¢ direction. So Vi€; = a€; + bk. k = k"ey + kxey =
k" (€;+€5), k" = kX since Ef =0. But €;-Vzé; =a = 1Vz(6;-¢;) = 1Vz(1) =0
gives a = 0. and Ve, = bk = bE"(€; + €%).

KO8, = kOT ;& = bE(& + &)

Take a dot product of this eqn with €:

bkn = k‘aFMéAT]Xﬂ = kafxéd = k"(Fiéﬁ + Ff(éfc)7 SO b = rf(éfl + F)Zé)z.'

Now we need only to calculate two connection coefficients to verify that

I.;. = F)”céfc =0,sothat b=0 = Vie; =0. The proof that Vﬁéli =0 is very

X0n
similar.
(c) The general solutions are
i Q+(T7‘797¢) he — QX(TT797¢)
+ = 77 X = 7

where k = —V7, and Vir = %(6 k)r.

To fix 7, recall that it is the proper time of the ray’s emission. If 7, is the
coordinate time of emission, then 7, = [ bdn = [ bon*dn = %bon3. But
along the ray n — x = 7., so

1
= Zbo(n—x)3
=3 o(n—x)

To determine r proceed as follows

2
E:—ﬁrr:}kn:kxzu
bon*

(FB = = K0 = = (V) + (V5 R,
2(n —x)*(n +2x)
bon°x

(after some calculations)

Then

Ver==(V-k)r=k"(r, +ry)

0 0 1 2
(Gt an) 7= (3+3)r
changing variables: a =n — x,b =71+ x, we get:
0 1 2
o (b—a+b+a>r

r(a,b) = Cla)e ®(Fatms) = C(a)(b - a)(b + a)?
= r(x,n) =Cn—x)xn

N =

reduces to




where C(n — x) is an arbitrary function.
Consider the region 1 = 19, x << 19. In this region we should have:

r(x,n) =r

where dr? = ds* = b2dx?® = bjngda®, r = bongx, = C(no)xmg = bongx, =
C(no) = bo. So finally we get

7= bon*x

Notice that a bundle of rays which subtends solid angle AQ = sinfAOAp has
cross section area b2x2AQ = (bon?x)2AN = r2AQ; i.e. its cross section area is
o 2. This is true quite generally and is an easy way to compute 7.

To determine @4, Q«, compare them to the solution of gravitational wave
eqn. in the near zone: n & ny,x << (1, =t —1)

he o= =Bt 1)) e % o] o

he = Zlipe-n] =2 [igm)]
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G. Exercise 26.11 Gravitational waves emitted by a linear oscillator [Alexan-
der Putilin/00]

Since the mass is moving along z-direction the second moment of mass dis-
tribution has only zz-component.

L.(t) = mz*(t) = ma®cos*Qt
or
I(t) = ma*cos®Qt €, @ &,

and we have

Pnt—nm]"
TT _ jk\t — T
hjk =92 [jr]

which gives

hTT gmaQ —4Q200829(t — r) [é'z é,Z]TT
r 2

4 Q2 2
= - ycos 2@t — 1) 6. ®&.)"T




To perform TT-projection notice that €, = cosfle; — sinféy, and thus
@, ® &, = cos’0¢; @ & — cosfsinf(€r @ €5 + €5 ® €7) + sin20€é ® €

TT-projection on (€, é'q;) plane gives:

1
el = Zsin0 (508 -0 8)
S0
2mO2a? | oL 2m02a? |
RTT = — . sin*0cos(2Q(t — 1)) (eé ®e;—€;® %) =— . sin?0cos(29(t —r))e’t
It follows immediately from the result above that:
2 Q2 2
hy(t,r,0,90) = — mr a sin*0cos(2Q(t — 1))
hy(t,r,0,0) = 0
In conventional units
2 Q2 2
hy(t,r,0,0) = — Gmiélasmzf)cos(QQ(th))
re

H. Exercise 26.13 Light in an interferometric gravitational wave detector
in TT gauge [Xinkai Wu/02]
(a) This expression for ¢ gives

& b
g_i’ — [—1—%h(t—w)}

Ignoring quadratic (and higher) order terms in h, we find

k2 =— (%) +[1 = h(t)] (%)
= —wi[l+h(t—x) —h®)]+[1 - h{#)|wi[1+h(t—2)] =0

(b) Setting = 0, we get % = —wp.

(c)
- 1
(Vik), = K'V  k, = k'Y V0,0 = k'Y, V0 = kF'V k= §V,,(k”ku) =0
(d) The null geodesic of the photon is given by 0 = ds? = —dt?+[1+h(t)]dz?,

which gives 2£ = 1— 1h(t). Now p, = —9¢/0x = —wo[1+ Sh(t — )], and along
the null geodesic we have

dp, (0  dxr 0 B 1. dr\ 1. 1 B



up to linear order in h. Thus we see p, is indeed conserved along the geodesic.
(e) The observer at rest has 4-velocity @ = (1,0,0,0), thus the photon’s
energy measured by him is w = —k - @ = —kq,u® = —k; = —0¢/0t = wo[l +
Ih(t—z) — ih(t)]. % = 22 4 e dr Gince 2% ig already of order h, we can
approximate % as unity, and thus getting Cfl—‘;’ ~ ( % + a%)w. And this is
dw (8 . 0 )
dt ot Oz
1.

1. 1.
= wol5h(t —2) = Sh(t) = Sh(t — )]
= - %woh(t)

as desired.



