Solution for Chapter 23
(compiled by Xinkai Wu)

A. Ex 23.2 Causality [A. Dvoretskii/April 2000]

Consider two different reference frames - primed and unprimed. Assume
without loss of generality that event P; occurs at a point (0,0) in spacetime in
both frames and event P, at a point (¢,0) in the unprimed frame (i.e. at the
same spacial point) and at a point (¢',x’) in the primed frame.

Now using the invariance of the interval

As2 = As? = 42 — _2 4 72

SO

t = +£/12 + 22
The transformations from one frame to another are continuous and in the

limit of very small transformations ¢’ ~ ¢, so we must use the + sign.
Therefore,

= +22>0
and so the temporal order of events is the same in all inertial frames. Of
course, were this not true, causality would be violated.
It’s also obvious that ¢’ > ¢ and that apart from that there are no limits on
the values of the spacial and temporal separation of the two events: ¢’ and z’
can be made arbitrarily large.
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Figure 1: Causality

See Fig. 1 for the spacetime diagrams. As the velocity of the primed frame
increases, the time of event Py, t5, moves up the ¢’ axis.



Clearly t§, > t2 (c.f. dashed hyperbola of events all at same interval from
Py). Similiar diagram can be drawn for velocity in the opposite direction. The
diagram shows that for t5, to < t, and ¢, can be made arbitrarily large.

B. Ex. 23.4 Index manipulation rules from duality [A. Dvoretskii/April
2000]
(a) Let’s expand a given dual basis vector in the original basis

= frieg

Now to find the coefficients f*? multiply both sides of the equation by &%
and use the duality relation to obtain

et . g = fuﬁ(;g = fro

But
oo = g(@,e7) = g0 = O

This proves the first relation.
& = g'les

The proof of the second relation is similar.

(b) Using the result above

FW =F(e", &) = F(g"“e,, &)

Now use the linearity of the tensor to write

P gioR (5, ) = "y

The proof of the second relation is similar.

(c) Consider for example the first identity
F=F"¢, ®eé,

Now consider

F(e*, &) = F* (e, - &) (e, - &%) = F‘“’éz‘zsff = For
So all the components of the tensors on the left-hand side and the right hand

side are equal which proves the identity. Similar proof can be given in the other
cases.

C.

Ex. 23.6 Part (a) and (b) Connection coefficients for circular coordinates
[A. Dvoretskii/April 2000]

First let’s consider the Coordinate basis



Hence

The metric tensor is given by

1 0

g:(o w2)

The only non-zero Christoffel symbols are then

Pops = (—1/2)9p,w = —@
LPopw = Lpmep =@
and the connection coefficients are
Fw¢¢ = —w, F¢w¢ = F¢¢w = 1/w
(a) Orthornomal basis

—

é;% = 8w,e¢ = 1/w8¢
In this basis the metric tensor is of course just

g=((1) (1))

The commutation coefficients are readily computed from

(€, €3] = [0, (1/@)0s] = —(1/w")0s = —(1/w)é;

Hence, the only non-zero commutation coefficients are

cﬁé‘z’ =—-1/w, 70(;;1%‘7; =1/w
And the Christoffel symbols and the connection coefficients are

r.

wq;(i; :qu;q; = —l/w

o _r?  —
Tjoy=T% =1/

Ex.23.5 Part (b) Transformation matrices for circular polar bases [Xinkai
Wu/02]



By chain rule, we have

of  Ox of 0Oy Of of ., Of
0w  Ow Ox + 0w Oy COSQS(?J: + sing Jy
of - of of
(9_(;5 = —wsznqﬁ%—l—wcosqﬁa—y
for any function f. Combining this with
-9 - _190
“ T 9T % 9
a 9]
€y = %, ey = —y

we get the transformation matrix
L%, = cosp, LY, = sing, LI(Z) = —sing, Lyq; = cos¢p
inverting which gives

L&;'c = cosQ, L‘Z’m = —sing, LUZ = sinao, L‘Z’y = cos¢p

D. Ex. 23.9 Index gymnastics [Kip and Xinkai Wu/02]
(a) First notice that Pogu® = us+uqugu® = 0, using the fact that @ = —1.
Thus

PagP? = Pag(g”, + uuy) = Poy

(b) PagAﬁuo‘ = 0 because Pygu® = 0, thus PagAﬁ is orthogonal ot 1.
PagAﬁ =A,+ UQUgAﬁ = A, if u5A5 =0.

(c) In the fluid’s local rest frame, gag = 7ap, and uq = —6%0, Thus Pog is
diagonal in this frame, with Pyg = ngg —uouo = 1—1=0, P;; = Py = P33 = 1.

(d)
(Vitl)o = 1 tap = —aail’ = aq

where we've used eq. (23.53) and the fact that P,g, 0ag, and wqg are all
orthogonal to 4. Thus we see Vzu = d. Also

¢ = uﬁ“a;ﬁua = §(u0¢“a);ﬁuﬁ =0

a U= agu

because u,u® = —1 is a constant.

(e) Contracting eq. (23.53) with g®#, using @ - @ = 0, tracelessness of 0,z
and Wy, and ¢*?Pug = ¢*Pgap +@? =4 — 1 =3, we get V - i = 6.

(f) Notice that the term aqug in (23.53) is not orthogonal to @ on its second
slot. We can get rid of it by projecting with Pf. Thus ua;gpf = %GPM +0ay+



Wa~ Where in the second term we have used Pang,Yﬁ = Pyy. Now 04p is the
symmetric, traceless part of this tensor: ooy = %(ua;ﬁPf +uy,gPf)— tu’ pFory-
Similarly wa. is the antisymmetric part: way = %(qa;ﬁPf — uv;ﬁPg ).

(g) (i) The four velocity is given by @ = (v,~vv?), where v = 1/v/1 — vivd.
So to first order in v’, we have u® = 1, and w? = v7. (i) § = u® o = U 4,
to first order in v7, this becomes 6 = v’ 5 = v (since u® = 1 to first or-
der of v/, u® ; = 0). (iii) Using the expression of 04, given in the previous
part and noticing that ,to first order in v/, Pj; = g;i, and in the brackets
we can take Pﬁk = 6ﬁk(since the u;.5 terms is already linear in v7) ,we get
ok = 5(Vj k4 Vk,;) — 309;k,which is the fluid’s nonrelativistic shear. (iv)Similar
to part (iii), we get wj, = % (vjx — vk;), which is the nonrelativstic rotation.

E. Ex. 23.10 Integration—Gauss’s law [Xinkai Wu/02]

E - d¥ = EdY;, where d%; = €(€j,d0d/00, dpd/d¢). By the antisymmetry
of €, only d¥, doesn’t vanish, and is given by e,o4dfd¢ = +/det||g;r||d8do =
R2sinfdfdé. On the r.h.s. of eq. (23.55), dX was already worked out in the
text: dX = r?sinfdrdfd¢. Thus eq. (23.55) becomes

/ E" R%sinfd0do = / Pe 12 sinfdrdodep
r=R r<R €0

F. Ex. 23.11 Stress energy tensor for a perfect fluid [A. Dvoretskii/00 and
Kip/02]

(a) If the components of two tensors are equal in a given frame, then they
will be equal in any frame, so we just need to verify that

T=(p+P)i®i+ Pg

reduces to

T = p, TV = p§i*

in the rest frame. It’s a trivial exercise given the simple form of @ in the rest
frame

i=(1,0,0,0)

(b) If the observer is moving with a speed v much smaller than the speed of
light with respect to the rest frame of the fluid, then the momentum density in
this frame can be written as

0 y
T =p iilertialvi

which is the definition of the tensorial inertial mass density. In the limit of

small v the momentum density can be written as



T% = (p + P)u'u? = (p+ P)v’
to first order in v, and so
ij _ ij
Pinertial — (p+P)3
(c) First notice that
v? v?
p=po(l+u)=pn(1l— 7)(1+u) =pn(1+u— 3)

which we’ll use frequently in the following derivation.

1
7% = (p+Pulu’ —P=(p+P)1+ 51;2)2 -P

= p(1+v?) =pn(l+u-— ?)(1 + v?)

1
= pN T 5PNU2 + pNu

as desired.
_ _ 02 02 02
T° = (p+Plu’ = {pN(1+u—7)+P] (1—|—7)1)J(1—|—7)

2 2
= pn(l4+u-— %)(1 +0°)! + Pvl = py(1 +u+ %)v] + Pv?

_ 1, P _
= pnv! + (u+ =v°+ — ) pyv?
2 PN

since T% = T79, this gives the desired expression for 7%. And keeping only the
term linear in v, this gives

T — pyod
as desired.
2
Tk = (p+ P)yu'uf + Pg?* = | pn(1 4+ u — %) + P| (1 +0*)wioF + Pgi*
= pnviv® + Pyt
as desired.

(d) as in (b)

707 — i

1ilertialvi = (p+ P);

G. Ex. 23.14 Stress-energy tensor for a point particle [A. Dvoretskii/00]



We want to prove that

P (Go) = /S P (Op° (O)5(Q, P(C))dSdc

The § function vanishes everywhere except at the point Q in the 3-surface S at
which the particle’s worldline pierces S. The value of ( at that point is (p, so
the only nonzero contribution to the ( integral comes from (y. The right hand
side reduces to

RIS = p° (o)™ (Go) / 5(Q. P(0)dSsde

Let z* be the coordinates of Q ( not necessarily Lorentzian ) and y*(¢) - co-
ordinates of P in the same coordinate system. Since the expression is frame
invariant we can choose the coordinate system any way we like. To simplify the
calculation we make it satisfy the following requirements:

e The surface X is given by the eqn. 2% = 0.
e The world line of the particle intersects ¥ at =7 = 0.

e The coordinate system is a local Lorentz one at the point of intersection
zH = 0.

Then the surface element d¥g has only its zero component non-vanishing:
dYo = d*x = detda?da?®, d¥; =0, j=1,2,3
and the d-function can be written as a product
8(Q,P(¢)) = d(zo — 40(¢))0° (x = ¥(€)) = 8(y0()3* (x — y(¢))

The resulting integral can be easily calculated.

RHS = p™(GQ)r°(G) / 50(0))5 (x — y(0))dxdc =
1

= @G [ SN =5 () Go) g
d_<|<fo

But dd‘_i)ko = p°({p) by definition of momentum, so

RHS = p*((o)

H. Ex. 23.15 Proper Reference Frame [A. Dvoretskii/April 2000]

(a) It’s fairly straightforward to obtain the transformation law in differential
form. The hats on the right-hand side are dropped to simplify notation, and to
avoid confusion we use primes for the inertial coordinates(left hand side)



dx' = dx + ar’dz® + (Q x dx)z° + (Q x x)d2’
dz® = dz’(1+a-x)+2'a-dx
Squaring and only keeping terms linear in x get
dx"? = dx*® + 2a - dx2%dz® + 2(Q x x) - dxda®
(d:col)2 = (dz®)*(1 + 2a-x) + 2a - dxz"dzx”®

Given this it’s easy to see that the new metric is indeed

ds® = —(da®')? + (dx')® = —(1 + 2a - x)(dz°)? + 2(Q x x) - dxdz® + dx>

(b) Recall that the components of the metric in the proper frame are (again
dropping the hats for simplicity of notation)

goo = —(1 + 2aj:1:j), goi = Eiijj{Ek, gjk = 5jk

And to linear order in 7, the inverse metric ¢g"” is given by taking 27 — —a7
in gu. And to computate the connection coeflicients along the world line, we
only need the inverse metric at #/ = 0, which is just n**. We have

1
r* a0 = 77”1/5 (gV0,0c - gaO,V)

which gives
0 0 - i k
I 00 — 07 I 5O = aj, FJ 00 — G,j, Fl jo = 61'ka
Also it’s not hard to see that I'*; all vanish. The above results can be verified

by, say, GRtensor, which is straightforward and we omit here.

(¢) Using the connection coefficients we obtained in the previous part, we
find

R - 77 Y, Y P
Vﬁeo—F 006y = 1" go€i = a'e; = a
and
> o " - 0 — 7 >
Vg€ = IV 0 =17 jo€0 + 17 o€
R ko N I
= ajéy+ € Q%€ = (a-€;)U+€eU,Q,¢€;,...)

(d) Now we are away from the world line, 27 # 0. However, we see that at
our order of approximation , I'* 5 and I'* ;; are still given by the expressions
worked out in part (b). Plugging them into eq. (23.95), we readily get

d?x
(dx)?

=—a—2Qxv



