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A. Exercise 21.1 Two-fluid Equation of Motion [by Xinkai Wu/02]
We’ll first write things in components and in the end convert back to vec-

tor/tensor notation.
Vlasov eq.

∂fs
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∂fs
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= 0

Also we’ll make use of the following definitions
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Multiplying the Vlasov eq. by vk, integrating over velocity space, using integra-
tion by parts at various places and the fact that ∂aj

∂vj = 0, also using the explicit
expression eq. (21.3) for the acceleration due to external EM field, we get
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ms
(Ek + (us ×B)k) = 0 (1)

Now using the continuity equation,

∂ns
∂t

= − ∂

∂xj
(nsujs)

one immediately sees that eq. (1) reduces to eq. (21.11) after converting to
vector notation.

B.

Exercise 21.3 Dielectric Tensor for Longitudinal, Electrostatic Waves [by
Alexei Dvoretskii/99]

With all the hints given, it’s very straightforward.
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Therefore

χzz =
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=
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εzz = 1 + χzz = 1 +
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Using the standard procedure in Chapter 20 we then find Lij to be diagonal,

with matrix elements on the diagonal being
(
−k2 + ω2

c2 εxx,−k
2 + ω2

c2 εyy,
ω2

c2 εzz

)
.

And then detL = 0 immediately gives εzz = 0, which is the desired eq. (21.20).

Exercise 21.10 Correlations in a Tokamak Plasma [by Xinkai Wu/00]
Plugging the relevant numbers for the Tokamak plasma as given in table

19.1 into the expression (21.74) for the two-point correlation function, we find:
(a) ξ12(λD) ∼ 10−9

(b) ξ12(n−1/3) ∼ 10−6

C.Exercise 21.4 Landau Contour Deduced Using Laplace Transforms [by
Xinkai Wu/00]

(a) This part is nothing but a definition of Laplace transformation.
(b) The z-dependence is eikz, giving ∂/∂z → ik. Also integration by parts

gives ∫ ∞
0

dte−pt∂Fs1/∂t = −Fs1(v, 0) + p

∫ ∞
0

dte−ptFs1(v, t)

Noticing the above facts, we get by Laplace transforming the Vlasov equation:

0 = −Fs1(v, 0) + pF̃s1(v, p) + vikF̃s1(v, p) + (qs/ms)F ′s0Ẽ(p)

where s = p, e
Laplace transforming ∇ ·E = ρ/ε0 gives us a second equation:

ikẼ(p) =
∑
s

(qs/ε0)
∫ ∞
−∞

dv[Fs0(v)/p+ F̃s1(v, p)] =
∑
s

(qs/ε0)
∫ ∞
−∞

dvF̃s1(v, p)

Where to get the last equality we’ve used the fact that the unperturbed charge
density is zero, i.e. the contribution from Fs0(v) vanishes.

Combining these two equations we easily get (21.41).
(c) Setting ip = ω, and plugging (21.41) into (21.42), we immediately get

(21.26) without that overall minus sign(I guess that sign is a typo).

D.
Exercise 21.5 Ion Acoustic Dispersion Relation [by Xinkai Wu/02]
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Recall the definitions of Debye length and plasma frequency for species s:

ωps =
(
ne2

ε0ms

)1/2

λDs =
(
ε0kBTs
ne2

)1/2

and the Maxwellian distribution is

Fs(v) = n

(
ms

2πkBTs

)1/2

exp

[
− msv

2

2kBTs

]
Now consider the integral

Is(
ωr
k

) ≡
∫
P

F ′s(v)
v − ωr/k

dv

For ωr
k >>

√
kBTs
ms

, Is ≈ nk2

ω2
r

(see eq. (21.37)), and this is the formula we are

going to use for Ip. For ωr
k <<

√
kBTs
ms

, Is ≈ − nms
kBTs

(as can be easily seen by
ignoring the ωr/k in the denominator in the integral), and this is the formula
we’ll use for Ie.

In our problem, the total F (v) is given by F = Fe + me
mp
Fp, and thus the

total I(ωr/k) is given by I = Ie + me
mp
Ip.

Now that we have the explicit (approximate) expressions for F and I, it’s
then just a matter of straightforward substitution to find ωr and ωi using eq.’s
(21.34) and (21.35) (which are the real and imaginary parts of eq. (21.33)) so
we don’t bother to write down the details here. The expression for ωr/k in eq.
(21.39) comes from eq. (21.34), and that for ωi/ωr comes from (21.35) (after

approximating Fe(ωr/k) as n
(

me
2πkBTe

)1/2

in the numerator of (21.35), which

is justified by our assumption ωr
k <<

√
kBTe
me

). Two more things to mention:
the λD’s in eq. (21.39) are λDe, the electron Debye length; and the r.h.s. of eq.
(21.35) should be multiplied by an overall minus sign.

Exercise 21.6 Dispersion Relations for a Non-Maxwellian Distribution Func-
tion [by Xinkai Wu/00]

This problem is quite instructive in that it clarifies what approximations we
are making when considering Langmuir waves and ion acoustic waves, respec-
tively.

Now the distribution function is given by F (v) = Fe(v) + (me/mp)Fp(v),
where Fe(v) = nv0e/[π(v2

0e + v2)], and Fp(v) is obtained by replacing v0e with
v0p. Note that these distribution functions are normalized so that n is the
electron(and also proton) density.

We then plug this F (v) into the general expression (21.30) for ε(ω, k). Let’s
first assume that Im(ω/k) > 0. Thus we take the Landau contour to be the real
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axis in the v-plane. Closing the contour in the lower half plane and evaluating
the residues carefully we get:

ε(ω, k)
= 1 + e2n{ε0k2mev

2
0e[1− iω/(kv0e)]2}−1 + e2n{ε0k2mpv

2
0p[1− iω/(kv0p)]2}−1

Obviously the above expression for ε(ω, k) can be analytically continued to
the whole ω-plane. Note that so far no approximation has been made.

(a) For Langmuir waves, Te ∼ Tp,(i.e.mev
2
0e ∼ mpv

2
0p), and ω/k >> v0e >>

v0p, thus we can ignore the third term in ε(ω, k), namely the contribution from
the protons. Then by letting ε(ω, k) = 0, we easily get ω = ωpe − ikv0e

(b) For ion acoustic waves, Te >> Tp,(i.e.mev
2
0e >> mpv

2
0p), and v0e >>

ω/k >> v0p. Thus we have to include both electron and proton contribution.
We expand the electron contribution to the first power of ω/(kv0e) , and the
proton contribution to the leading order of v0pk/ω. When solving ε(ω, k) = 0 for
ω(k), we will assume ωi << ωr, which we expect for the case of weak damping.

Im(ε(ω, k)) = 0 =⇒ ωi = −(mp/me)[ω4
r/(kv0e)3]

Plugging the above relation into the equation Re(ε(ω, k)) = 0, we turn the
equation Re(ε(ω, k)) = 0 into:

0 = 1 + [ωpe/(kv0e)]2{1 + (mp/me)[2ωr/(kv0e)]4 − (me/mp)(kvoe/ωr)2}

The ratio of the second to the third term in {....} is ∼ (mp/me)2[ωr/(kv0e)]6,
which will be very small when Te is very high(i.e. v0e very large compared with
ωr/k). Thus we can neglect the second term. After making this approximation,
we readily get ωr, and in turn ωi. The ω we get is precisely the same as given
in (21.45), excpet that we use v0e instead of v0(which is just a difference in
notation).
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