
Solution for Chapter 18

March 12, 2003

A.

Exercise 18.1 Derivation of MHD Equations [by Guodong Wang/99]
(a).

j ×B =
1

µ0
(∇×B) ×B = − 1

µ0
B× (∇×B) =

1

µ0
(B · ∇)B − ∇(B2)

2µ0
(1)

−∇ · TM = −∇ · (B2g

2µ0
− B ⊗B

µ0
) = −∇(B2)

2µ0
+

1

µ0
(B · ∇)B, (2)

where we have used ∇ ·B = 0. Compare Eqns. (1) and (2), we have

j×B = −∇ · TM . (3)

(b) First we have

∂

∂t
(
B2

2µ0
) + ∇ · (E×B

µ0
) =

1

µ0
[B · ∂B

∂t
+ ∇ · (E×B)] =

1

µ0
[−B · (∇×E) + ∇ · (E×B)] = − 1

µ0
E · (∇×B) = −j ·E (4)

Then similar to Eq. (BT-12.51)

(v · ∇)P = ∇ · (ρvh) +
∂(ρu)

∂t
− ρT

ds

dt
(5)

Combining Eq. (4) and Eq. (5) and the mass conservation equation with v· Eq.
(BT 18.12), we obtain the energy conservation law

∂

∂t
[(

1

2
v2 + U + Φ)ρ +

B2

2µ0
] +∇ · [(1

2
v2 + h + Φ)ρv +

E×B

µ0
] = ρT

ds

dt
− j2

κe
. (6)

(c).

∂(ρs)

∂t
+ ∇ · (ρsv) =

∂(ρs)

∂t
+ ∇ · (ρsv) − s

∂ρ

∂t
− s∇ · (ρv)

= ρ
∂s

∂t
+ ρv · ∇s = ρ

ds

dt
(7)

In the case ds/dt is not zero, according to the first law

ρT
ds

dt
= j · E′ =

1

κeµ2
0

(∇×B)2 =
j2

κe
. (8)

That is Eq. (BT-18.18). Combinging with Eq. (6), we get the energy conserva-
tion law (BT-18.17).
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Exercise 18.2 Diffusion of Magnetic Field [by Xinkai Wu/02]
As we assume the plasma has sufficient inertia to remain at rest, we can set

v = 0 in all the equations.
(a) The sum of the rate of change of the manetic energy and that of heat

production via Ohmic heating is given by

∂

∂t

B2

2µ0
+ j ·E =

1

µ2
0κe

[

B · ∇2B + (∇×B) · (∇×B)
]

where we have used equation (18.9) for ∂B

∂t and equations (18.6) and (18.7) for
j and E, respectively.

Now writing out the components in Cartesian coordinates explicitly and
using ∇ ·B = 0, we readily reduce this sum to

1

µ2
0κe

∂k [Bj(∂kBj − ∂jBk)] = −∇ ·
(

E×B

µ0

)

which is a total derivative and vanishes upon integration over the whole space,
namely the reduction of magnetic energy as the field decays is compensated by
the Ohmic heating of the plasma.

(b) The magnetic field satisfies the diffusion equation:

∂Bz

∂t
− 1

µ0κe
∇2Bz = 0

and the initial condition is

Bz(t = 0) = B0 for $ < R, and 0 elsewhere

with R being the radius of the cylinder. The boundary condition is given by

Bz($ = R) = Bz outside = 0; Bz($ = 0) = finite

where we have used the fact that since there is no surface current(we’ve turned
off the solenoid current that generated the initial magnetization) Bz is contin-
uous across the boundary. Also we approximate the magnetic field outside the
cylinder as zero because we assume that the decay is slow(as a consequence of
large κe) and thus EM radiation into the vacuum can be neglected. Solving
the above boundary value problem is straightforward (see e.g. Mathews and
Walker), and we find

Bz($, t) =

∞
∑

i=1

cie
−

ξ2
i

µ0κeR2
t
J0(

ξi$

R
)

with J0(ξ) being the zeroth Bessel function, and ξi being the location of its ith
zero, 0 < ξ1 < ξ2 < ..... So for large time, when the field has decayed to a small
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fraction of its original value, all the higher (i.e. i > 1) modes have decayed
away, and we have

Bz($, t) ≈ c1e
−

ξ2
1

µ0κeR2
t
J0(

ξ1$

R
) = 1.6B0e

− 2.42

µ0κeR2
t
J0(

2.4$

R
)

where we have used ξ1 ≈ 2.4 and c1 ≈ 1.6B0.

B.

Exercise 18.3 The Earth’s Bow Shock [by Xinkai Wu/00]
2. The Earth’s Bow Shock
(a) The momentum flux ∼ ρv2 while the magnetic pressure generated by the

earth’s dipole field ∼ B2/2µ0 ∼ (B2
E/2µ0)(rE/r)6, noticing that for a dipole

field B ∼ r−3 . Balancing these two terms and plugging in the numbers:
BE ∼ 3 × 10−5T , rE ∼ 6 × 106m
we get r ∼ 8.5rE ∼ 5 × 107m
(b) B&T eqn (18.23) gives: E1 + vsB1 = E2 + vsB2 and eqn (18.21) gives:

ρ1(v1 − vs) = ρ2(v2 − vs)
In the infinite conductivity limit and applied to both sides of the shock front,

eqn (18.5) gives:
E1 = −v1B1 and E2 = −v2B2

Combining the above equations we get
B2/B1 = ρ2/ρ1 = (v1 − vs)/(v2 − vs)
Namely the magnetic field strength will increase by the same ratio as the

density on crossing the shock front.
Intuitively we expect the compression to decrease as the field is increased,

because increasing the field means increasing the magnetic pressure, which will
in turn resist compression. To be more rigorous, let’s look at a limiting case
of equation (18.24): When B gets very large, the magnetic pressure term dom-
inates and this equation gives B1 ≈ B2, i.e. ρ1 ≈ ρ2., which means there’s
almost no compression.

Exercise 18.5 Force-Free Equilibria [by Guodong Wang/99]

∇ · (∇×B) = 0 = ∇ · (αB) = ∇α · B (9)

Where we haved used ∇ · B = 0.
Eq. (9) implies ∇α · B

B = 0, which means α is constant along the direction
of B. correspondingly α must be constant everywhere if the field lines travel
everywhere.

C. Exercise 18.10 Rotating Magnetospheres [by Guodong Wang/02]
We use Cylindrical cooordinates throughout this problem.
(a).

0 = ∂tB = −∇×E (10)
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Since the system is axisymmetric, So ∂φ ≡ 0. Intergrating Eq. (10) along circle
φ ∈ [0, 2π] for any given $, z so that r = ($, φ, z), Then

Eφ · 2π$ = 0 ⇒ Eφ = 0. (11)

The magnetosphere is perfectly conducting, then

E = −v ×B (12)

so v = veφ, we can write it as v = Ω(r)× r. If the magnetosphere’s conducting
fluid is rotating, it is obvious that Ω is its angular velocity.

(b).
0 = ∂tB = −∇×E = ∇× [(Ω × r) ×B] (13)

Note that Ω = (0, 0, Ω), Ω × r = (0, $Ω, 0), (Let φ = 0 since the field is
axisymmetric.)

⇒ −E = (Ω× r) ×B = ($ΩBz , 0,−$ΩB$) (14)

⇒ 0 = ∇× [(Ω × r) ×B] = [(∂z($ΩBz) + ∂$($ΩB$)]eφ (15)

Combining Eq. (15) with ∇ · B = 1
$ ∂$($B$) + ∂zBz = 0, we obtain

(B · ∇)Ω = 0. (16)

(c). At the surface,vn = 0, [Et] = 0, [Bn] = 0. So

$Ω∗Bn = Et, (17)

here the left side is the tangential electric field on the star’s surface and the
right side is the tangential electrice field in the magnetosphere and Bn = B · r

r .
Plugging in Eq. (14), we get

$Ω∗Bn = $ΩBn (18)

So Ω∗ = Ω.

D.

Exercise 18.11 Solar Wind [by Xinkai Wu/02]
(a) Write the velocity as v = vφeφ + vP , and the magnetic field as B =

Bφeφ +BP , where the term with subscript P means the part of the vector that
lies in the (r, θ) plane. Then we see that the φ-component of E = −v×B comes
purely from vP ×BP . The vanishing of this implies that vP ∝ BP ∝ (B−Bφeφ).
Absorbing the Bφ part into the Ω× r, we get

v =
κB

ρ
+ (Ω × r)

Multiplying both sides of the above equation by ρ and then taking its divergence
we get

0 = ∇ · (ρv) = ∇ · (κB) + ∇ · (ρΩ× r)

= B · ∇κ
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where we’ve used the mass conservation equation together with the stationarity,
∇ · B = 0, and ∇ · (ρΩ × r) = 0(since ρΩ × r only has φ-component and by
axisymmetry derivative w.r.t. φ vanishes). Thus we seeκ is constant along a
field line. And the proof for the constancy of Ω is the same as that given in
part (b) of Exercise 18.10.

(b) The divergence of a vector C in the spherical coordinates is given by
1
r2

∂
∂r (r2Cr) upon using axisymmetry. Taking C to be ρv and using ∇· (ρv) = 0

we find that ρvrr
2 is a constant, while taking C to be B and using ∇ · B = 0

we find that Brr
2 is a constant.

(c) Using the result of part (a), we have vr = κ
ρ Br, and vφ = κ

ρ Bφ + Ωr.
Combining these we readily get

vr

vφ − Ωr
=

Br

Bφ

(d) The e.o.m. in the stationary case is given by

ρ(v · ∇)v = −ρ∇Φ −∇P +
(∇×B) ×B

µ0

Let’s consider the φ-component of the above equation. Then the gravity and
pressure terms have no contribution because of axisymmetry. And we find (using
the connection coefficients in spherical coordinates we learned in Chapter 10),

ρvr
1

r

∂

∂r
(rvφ) =

Br

µ0r

∂

∂r
(rBφ)

Multiplying both sides of the above equation by r3 and using the constancy of
ρvrr

2 and Brr
2 we find that

Λ ≡ rvφ − rBrBφ

µ0ρvr

is constant.
(e) Define the radial Alfven speed to be ar = Br

(µ0ρ)1/2
, and the radial Alfven

Mach number to be MA = vr

ar
. Then we have 1

µ0ρ =
a2

r

B2
r

=
v2

r

M2

AB2
r
. And thus we

have

Λ = rvφ − rBrBφ

vr

v2
r

M2
AB2

r

= rvφ − rBφvr

BrM2
A

= rvφ −
rvφ − Ωr2

M2
A

where to get to the last line we’ve used the result of part (c) to eliminate vr

Br
.
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Plugging the above expression for Λ into the r.h.s. of (18.87) we see that it
indeed reduces to the l.h.s.: vφ. Based on previous parts, we know Br ∝ 1

r2 ,

ar ∝ Br√
ρ ∝ 1

r2
√

ρ , and thus

MA =
vr

ar
∝ vrr

2√ρ ∝ ρvrr
2

√
ρ

∝ ρ−1/2

As ρ varies when one goes outward radially, MA will eventually become unity
at some critical radius rc.

(f) Equation (18.87) tells us that at this critical rc, Λ = Ωr2
c . Then the

timescales for the sun to lose its mass and spin are

τm =
msun

dm/dt
≈ msun

4πρvrr2

τL =
L

dL/dt
≈ msunΩr2

sun

4πρvrr2Λ
=

msunΩr2
sun

4πρvrr2Ωr2
c

=

(

rsun

rc

)2

τm

thus we see that the sun loses its spin faster than it loses its mass by a ratio of
(rc/rsun)2 ≈ 400.

(g) Plugging in the numbers, we find τc ∼ 3×1019s ∼ 103billion years, which
is much larger than the lifetime of the sun. So there’s no need to worry about
sun’s stopping spinning (actually I don’t know what harm it will bring about
even if the sun does stop spinning)!

Exercise 18.6 Hartmann Flow [by Guodong Wang/99]
The force balance equation is given by equation (18.34)

∇P = j ×B + η∇2v

the x component of which is, using B = B0ez and P = −Qx + p(z),

−Q = jyB0 + η
d2vx

dz2

Now using equation (18.5) j = κe(E + v ×B) and E = E0ey we find

jy = κe(E0 − B0vx)

Combining the above two equations, we get

d2vx

dz2
− κeB

2
0

η
vx = − (Q + κeB0E0)

η

(b) A special solution to this equation is

v0 =
Q + κeB0E0

κeB2
0
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and the general solution is thus given by

vx = v0 + C1cosh

(

Hz

a

)

+ C2sinh

(

Hz

a

)

where H = B0a
(

κe

η

)1/2

. Using the boundary condition vx(z = ±a) = 0 we

find

C1 =
−v0

cosh(H)
, C2 = 0

and thus

vx =
Q + κeB0E0

κeB2
0

[

1 − cosh(Hz/a)

coshH

]
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