
Solution for Chapter 14

(compiled by Xinkai Wu)
February 12, 2003

(Kip has not yet given comments on the solution set; a revised version may
appear after Kip comments, probably on Thursday.)

A.
1. Exercise 14.1 part (ii): Spreading of a laminar wake around a sphere [by

Alexander Putilin/00 ]
Now with the cylinder replaced by the sphere, the cross section perpendicular

to the flow is two dimensional and momentum conservation then implies:

∆v · w2 = const

namely ∆v ∝ w−2.
The x component of the Navier-Stokes equation gives the same relation in

the sphere case as in the cylinder case, w ∝ x1/2.
Combining these we get ∆v ∝ x−1.
AND Exercise 14.4 part (ii): Turbulent wake behind a sphere [by Alexei

Dvoretskii/99]
The turbulent wake works in much the same way as its laminar counterpart,

except that we should replace the intrinsic molecular viscosity ν with the kine-
matic turbulent viscosity νt ∼ ∆v̄w. The x component of the Navier-Stokes
equation then gives the familiar relation

w ∼
(νtx
V

)1/2

∼
(

∆v̄wx
V

)1/2

regardless of whether it’s a cylinder or a sphere.
Now for the sphere, conservation of momentum implies that ∆v̄ ∼ w−2.
Combining these we find w ∼ const · x1/3. Using the fact that when x ∼ d,

w ∼ d, we determine that const ∼ d2/3 and thus w ∼ d2/3x1/3. Also we get
∆v̄ ∼ const ·x−2/3. Using the fact that when x ∼ d, ∆v̄ ∼ V , we can determine
the const and find ∆v̄ ∼ V (d/x)2/3.

2. Exercise 14.2 Spreading of a 2-dimensional laminar jet [by H.W. Lee
and Kip Thorne]

This problem is pretty much parallel to the analysis in Section 13.4, except
that the width w of the jet and its speed vx now scale w.r.t. x differently from
those in Section 13.4. (because now the ambient fluid is at rest and we have a
nozzle ejecting fluid out.)

(i): This arguement goes the same as that on Page 20 of Section 13.4. The
Navier-Stokes equation reads

(v ·∇)v =
−∇P
ρ

+ ν∇2v
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The y component of the N-S equation shows that the pressure difference
∆P ∼ ρv2

xw
2/x2. Recall that we’ll use the x component of the N-S equation

to find the velocity profile. So we plug the above expression for ∆P into the
x component of the N-S equation and find there the ratio between the ∇P

ρ

term and the (v · ∇)v term (which is of the same order as the ν∇2v term)
is ∼ w2

x2 << 1. Thus the pressure gradient term is indeed negligible for our
purpose.

(ii) The balance between the x components of the (v ·∇)v term and the
ν∇2v term gives the familiar result

w ∼
(
νx

vx

)1/2

Now the conservation of momentum along the x direction requires

v2
xw = const, i.e. vx ∼ w−1/2

Combining these we find

w ∼ x2/3, vx ∼ x−1/3

(iii) Give the stream function the following trial form

ζ = axpf(ξ)

where the normalization a and the index p are to be determined, and f(ξ) is a

function of the dimensionless number ξ ≡ bx−2/3y with b ≡
(
F

48ρν2

)1/3

.
Then we find

vx =
∂ζ

∂y
= axpf ′

ξ

y

vy = − ∂ζ

∂x
= axp−1

(
2
3
ξf ′ − pf

)
Plugging these expressions into the x component of the N-S equation and

throwing away terms subleading in the small parameter ξ2/(b2x2/3) (i.e. y2/x2,
recalling that the jet is assumed to be very “thin”), we get

1
3
a2b2x−

7
3 +2p

[
(−2 + 3p)f ′2 − 3pff ′′

]
= ab3νx−2+pf ′′′

thus to have a self-similar solution we must satisfy

− 7
3

+ 2p = −2 + p, i.e. p =
1
3

and the N-S equation becomes

f ′′′ +
a

3bν
(f ′2 + ff ′′) = 0
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which can rewritten as

f ′′′ +
a

3bν
(ff ′)′ = 0

Integrating once we get

f ′′ +
a

3bν
ff ′ + C1 = 0

We have the boundary conditions vy(y = 0) = 0⇒ f(0) = 0 and ∂vx
∂y (y = 0) =

0⇒ f ′′(0) = 0, using which tells us C1 = 0.
Integrating again gives

f ′ +
a

6bν
f2 − C2 = 0

solving which gives

f =

√
6bν
a
C2 Tanh

[√
C2a

6bν
(ξ + C3)

]

The boundary condition f(0) = 0 gives C3 = 0. Using this result we find

vx = (C2a)bx−1/3Sech2

(√
C2a

6bν
ξ

)
Now using the normalization condition

F =
∫ +∞

−∞
ρv2
xdy

we find

C2a =
(

3F
4ρ
√

6ν

)2/3 1
b

which when plugged into the expression for vx gives the final answer

vx =
(

3F2

32ρ2νx

)1/3

Sech2(ξ) =
(

3F2

32ρ2νx

)1/3

Sech2

([
F

48ρν2x2

]1/3

y

)

AND Exercise 14.5 part (i): Spreading of a 2-dimensional turbulent jet [by
H.W. Lee and Kip Thorne]

By now the following analysis should be very familiar to us:

x component of the N-S equation gives w ∼
(
νtx
vx

)1/2

; Conservation of mo-

mentum gives vx ∼ w−1/2; and we take νt ∼ vxw. Combining these three facts
we easily get

w ∼ x, vx ∼ x−1/2
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B. Exercise 14.3 Reynolds stress and weak turbulence theory [by A. Dvoret-
skii/99]

(i) Let’s write the Navier-Stokes equation

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇P + νρ∇2v

Decompose the velocity into a steady and a small fluctuating part

v = v̄ + δv

And insert into the Navier-Stokes equation.

ρ
∂

∂t
δv + ρ(v̄ · ∇)v̄ + ρ(v̄ · ∇)δv + ρ(δv · ∇)v̄ + ρ(δv · ∇)δv = −∇P + νρ∇2v̄ + νρ∇2δv

Taking the time average and using δv = 0 get

ρ(v̄ · ∇)v̄ = −ρ(δv · ∇)δv−∇P̄ + νρ∇2v̄

The first term on the right-hand side can be rewritten as −∇ · TR where
TR = ρδv⊗ δv.

(ii) To find the evolution of this tensor we take its time derivative

∂TR

∂t
= ρ

∂δv
∂t
⊗ δv + ρδv⊗ ∂δv

∂t

Since ∂δv
∂t involves averages of double products of velocity fluctuations, the

time derivative of the velocity tensor will contain tensors that are time averages
of triple products of velocity fluctuations. If we were to consider the time
evolution of those tensors, because of the non-linearity of the equations, we’d
have to cosider such tensors of higher and higher rank. To close the sequence
it would be necessary to truncate it by specifying a priori the tensors of some
rank.

(iii) We can rewrite the time-averaged Navier-Stokes equation as

−∇P̄ = ρ(δv · ∇)δv− νρ∇2v̄ + ρ(v̄ · ∇)v̄

and plug it back in into the full Navier-Stokes, note that P = P̄ + δP , equation
(14.23) then follows immediately.

(iv) Multiplying by δv and taking the time average we get

v̄ · ∇(
1
2
ρδv2) + Tij

R v̄i,j +∇ ·
(

1
2
ρδv2δv + δPδv

)
= νρδv · (∇2δv)

Regroup terms
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v̄ · ∇(
1
2
ρδv2) +∇ ·

(
1
2
ρδv2δv + δPδv

)
= νρδv · (∇2δv)−Tij

R v̄i,j

The terms on the left hand side are the convective time derivative and the
divergence of the flow of turbulent energy density typical of conservation laws.
On the right hand side are possible sources of energy or its dissipation. In this
case the first term is energy dissipation due to molecular viscosity and the second
term is due to energy exchange between the ordered and turbulent motion.

(v) This can be seen if we take the Navier-Stokes equation and perform a
similar transformation to get the law of ordered motion energy conservation

∇ · ((1
2
ρv̄2)v̄) +∇ · (P v̄) = νρv̄ · ∇2v̄− v̄ · ∇TR

For incompressible fluid the full divergence ∇ · (v̄TR) = 0 and so we can
rewrite

∇ · ((1
2
ρv̄2)v̄) +∇ · (P v̄) = νρv̄ · ∇2v̄ + Tij

R v̄i,j

We see that, indeed, the last term describes the exchange of energy between
ordered and turbulent motion.

C.
1. Exercise 14.7 Excitation of earth’s normal modes by atmospheric turbu-

lence [by Alexander Putilin/00]
(i) (a) Let’s first do this via dimensional analysis. Pressure has the dimension

of ρv2. Thus we just need to use Q and f to construct a quantity with dimension
v2. Noting that the dimension of Q is length2/time3, and that of f is 1/time.
Requiring

v2 ∼ length2

time2 ∼ Q
αfβ

we can solve for the indices α and β and find them to be α = 1, β = −1. Thus
we see

P (f) ∼ ρQ

f

(b) Now let’s use the eddy size and speed analysis. P ∼ ρv(k)2. Recall B.T. eqn.
(14.19) gives v(k) ∼ (Q/k)1/3, and we also know that f ∼ v(k)k. Combining
the above two facts we get k ∼ Q−1/2f3/2 and v ∼ (Q/f)1/2. So we finally get
P ∼ ρQ/f .

(ii) If we also take dissipation (due to viscosity) into account, then besides
the energy cascade rate Q we will have another dimensioned constant: the
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energy dissipation rate S ∼ (length/time)3. Then using dimensional analysis to
construct P , we need P ∼ ρv2 ∼ ρQαfβSγ with

v2 ∼ (length/time)2 ∼ QαfβSγ

we see that the solution isn’t unique (two equations for the three indices α, β, γ).
To have β = −2/3(i.e. P (f) ∼ 1/f2/3), we just need to set α = 2/3, γ = 2/9.

(iii) The eddy viscosity: νt ∼ 1
3vll. l is the length scale of the largest

eddies, l ∼ 5km. vl is turnover velocity of the largest eddies, vl ∼ πlfmin,
fmin ∼ 0.5mHz. This gives νt ∼ l2fmin ∼ 104m2

s . The molecular viscosity is
ν ∼ 10−5m2

s , so νt/ν ∼ 109, some 9 orders of magnitude more.
The cascading energy per unit area per unit time Wturb ∼ ρQH, where

H ∼ 10km ∼height of atmosphere.
Q ∼ v3

l l
−1 ∼ 2m2/s3, thus Wturb ∼ 2× 104erg/cm2 · s.

This energy dissipates into heat at the smallest lengthscale, so the fraction
of solar energy required to maintain the turbulence is

Wturb

Wsolar
∼ 2%

(iv) From part (i), k−2/3 ∼ τQ1/3, or x2/3 ∼ f−1Q1/3, where x is the
characteristic spatial scale of the pressure fluctuations, and f is the frequency.
This gives x ∼ f−3/2

We know that at minimal frequency fmin ∼ 0.5mHz, x ∼ l ∼ 5km. Then
at f ∼ 1mHz, x ∼ 5km · 2−3/2 ∼ 2km.

The characteristic spatial scale of the normal modes is their wavelength
λ ∼ wave speed

f ∼ 5× 103km.

On the surface area λ2, there are N = (λ/x)2 roughly independent regions
of turbulent pressure, thus the pressure fluctuation is reduced by the factor
1/
√
N ∼ x/λ ∼ 1/2500, so the averaged pressure is P ∼ ∆P x

λ ∼ P (f)xλ . At
f = 1mHz: P (f) ∼ ρQ

f ∼ 2Pa, thus P ∼ 10−3Pa.
(v) Assume that fluctuating turbulence pressure excites the mode with res-

onant frequency f ∼ 1mHz and resonance parameter Q ∼ ring down time
period ∼

a few days
103s ∼ 100.
The force due to the pressure is “remembered” by the mode for ∼ Q oscil-

lations and since it adds up randomly the amplitude of the oscillation can be
estimated as

ξ ∼ λP
µ

√
Q

where P = rms pressure ≈ 10−3Pa (calculated in part (iv)), µ ∼ 1012dyne/cm2,
and λ ∼ 5 × 103km is the wavelength. P/µ gives the characteristic strain due
to the pressure P . And the acceleration is a ∼ (2πf)2λ ∼ 10−9cm/s2.

To derive more accurate estimate we should remember that the turbulent
pressure excites not just one mode, but a number of modes in some frequency
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range around f . It gives smaller value of a, closer to the experimental one.

2. Exercise 14.8 Effect of drag [by R.D.Blandford]

R =
du

ν
≈ 100(

d

1mm
)(

u

1ms−1
)

When R > 10 we can assume that the drag coefficient
C0 ≈ 1 and so
Fdrag ≈ ρu

2d2.

In absense of drag the range is D ≈ u2

g .
When drag dominates FdragD ≈ mu2 and therefore D ≈ m

ρd2 . Therefore,

we can define critical velocity uc = (mgρd2 )
1
2 . For velocities higher than uc the

drag is comparable to gravity.
The table below compares the different types of balls

Ball m(g) d(mm) u(m/s) R uc(m/s)
Golf 46 43 60 2.6× 105 16

Baseball 140 75 40 3× 105 16
T. Tennis 2.5 38 13 5× 104 4

We see that drag is very important in all the cases when the ball is hit hard.

D.
1. Exercise 14.10 Feigenbaum sequence [by Kip Thorne]

xn+1 = 4axn(1− xn)

where 0 ≤ a ≤ 1 and 0 ≤ x ≤ 1

Range converges to critical value
0 ≤ a ≤ 1/4 stable point x∗ = 0
1/4 ≤ a ≤ 3/4 stable point x∗ = 1− 1

4a a1 = 3
4

3/4 ≤ a ≤ 0.862 period 2 a2 = 0.862...
0.862 ≤ a ≤ 0.885 period 4 a3 = 0.885...
0.885 ≤ a ≤ 0.890 period 8 a2 = 0.890...
0.892 ≤ a period ∞ chaos sets in a2 = 0.892...

The values of αj = aj−aj−1
aj+1−aj are:

α1 = 4.5, α2 = 4.8, α3 = 4.6, the limit is 4.669201

2. Exercise 14.12 Strange attractors [by Kip Thorne]
(i)
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xn+1 = a(1− 2|xn −
1
2
|), a > 0

xn+1 =

{
2a(1− xn), xn ≥ 1

2

2axn, xn <
1
2

We immediately see that xn+1 ≤ a for all n = 1, 2....

A) a < 1
2 case:

For n ≥ 2, xn ≤ a < 1
2 . Hence

xn+1 = 2axn. This is a geometric sequence that converges to zero which is
the stable fixed point.

B) a > 1
2 case:

We have a fixed point xp satisfying xp = 2a(1 − xp) or xp = 2a
1+2a . To test

the stability of the fixed point, let ε > 0 be a small positive number. Since
xp >

1
2 then xp + ε > 1

2 .

xn+1 = 2a(1− xp − ε) = xp − 2aε

xn+k = xp + (−1)k(2a)kε

So the deviations grow and the fixed point is unstable.
Because xn+1 ≤ a, we have 2a(1− xn) > 2a(1− a) and hence

2a(1− a) ≤ x ≤ a.

(ii) acrit = 1
2 , for a = 0.8

xmin = 0.32
xmax = 0.8

(iii) Numerical calculations show that n(ε) ∼ − log2(ε) is satisfied.

8


