Solution for Chapter 12
(compiled by Xinkai Wu)

A.

Ex. 12.3 Earth’s atmosphere [by Alexei Dvoretskii/99]

(i) Isothermal air

Let’s use the ideal gas equation to express the density of air as a function of
pressure in the equation of hydrostatic equilibrium

pkT
Hwmp
VP = pg,
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we get
apP HMpGe
- — _ptpJe
dz kT
and hence
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where
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Taking the following numerical values
k=138x10"2Js7!, g. = 10ms™2, m, = 1.7 x 10" %"kg, pu =29, T = 300K
we get

H =~ 8km

(ii) Isentropic air
We have the following three equations for the three unknowns P, p, T

dP
dz PYe
P = constxp?
kT
p =2
Hmyp
which can be easily solved to give
dI' v —=1 gepmy
dz 5y k

Using v ~ 1.4 we find the lapse rate to be ~ 10K /km.



Ex. 12.5 Jupiter and Saturn [by Alexei Dvoretskii/99]
Plugging the relation P = Kp? into equation (12.12) in the text, one finds

1 d (7"2@) _ 2nG
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which can be easily solved by letting p(r) = f(r)/r. And the two linearly
independent solutions are

sm(ar)’ cos(on’)7 with o = [2rG
r r K

Taking the solution that is finite at r = 0, we get

p(r) = ?sin(ar)

The edge of the planet is where the density becomes zero, which gives

T K 2GR?
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I.e. we see that such polytropic planets should all have roughly the same size
(assuming K is the same for all such planets), Rg = Ry = 7 x 10*km. And the
constant C can be found by normalizing to the mass of the planet

M= /R 47Tr2drgsin(ozr) _ oK
0 r G
whence
M
U=
And the central pressure is
TGM?

PO) = Kpt(0) = T

Using the numerical values given, we get
Pj(0) = 4.4 x 10'?Pa, Ps(0) =4 x 10" Pa
The gravitational binding energy is given by
1
U=- i/drp(r)q)(r)

Integrating the following equation using the p(r) we obtained above and the
boundary conditions 42 = 0 as r — 0 and ®(r = R) = — %(Which comes
from ®(r = 00) =0)
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we get
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which when plugged into the integral for U gives
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The numerical values are
U; =29x10%J, Usg=26x10*J

To find the moments of inertia again let’s use spherical symmetry. Obviously,

1 MR? 6
Lig=1yy=1..= 3 /47Tr2drp(r)r2 =3 (1 — §> =0.13 x MR?

and

I = I+ 1, =0.26 x MR?

the numbers are then

I; =26 x10%kg-m? I; =7.7x10"kg - m?

B

Ex. 12.8 Rotating plantes, stars, and disks [by Xinkai Wu/00]
(i) For a stationary flow, Euler equation becomes

VP
(V-V)V—‘rT-FV(I):O

Taking the curl of both sides and noticing that

vP 1 1 dP
Vx( ):——QVpXVP:——Z—Vprpzo
p p p* dp

by virtue of the barotropic equation of state P = P(p).
Thus we get

Vx[v-V)v]=0

By axisymmetry the only nonvanishing component of v is vy (w, 2).

2
v
(V- V)V]i = vpvisk = vpvip = V(i g + Lijgvy) = vpligpvp = bim ( w¢>



namely (v - V)v only has a nonvanishing w-component. So we get

0= AV X [(v- VIV]}o = (v V)V = — = <—¢>

which tells us that vy = vg(w), namely the “angular velocity” 22 only depends
on w.

(ii) Denote the angular momentum per unit mass as | = v(w, z)w.

We already know that Vsx VI =0 (i.e. the surfaces of constant entropy and
constant angular momentum coincide), and we want to show that VB x VI = 0,
which means that the surfaces of constant B and constant angular momentum
also coincide.

1
VB = V(§v2+h+¢>)

P
(using 1st law of thermodynamics Vh=TVs+ V—)
p

1 VP
= §Vv2 +TVs+ - + Vo
. . VP
(using Euler equation (v-V)v+ e + Vo =0)
1
= Vv’ —(v-V)v+TVs
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So we only have to show the cross product of the first two terms of the above
expression with VI vanishes. Evaluating them explicitly in cylindrical coordi-
nates

1 o v P ov
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v v
Vi = (wa—w + v) ey + <wa) e,

A straight forward computation shows that the above two expressions crossed
into each other do give zero. This completes our proof of VB x VI = 0.

and

Ex. 12.9 Crocco’s theorem [by Xinkai Wu/00]

1
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dh=Tds + L s vh=1vsy YL
p p
Thus
v, vP
(VB); = v; 2 4 (TVs + -+ V<I>>
ox? p ;

Now by Euler equation for steady flow
vP

vP a’Ui
= (7 + V@) = —Uj B
hence
ov; ov;
(VB)Z = (TVS) +”U38 jz — Jax]

where the last two terms in the above equation can be readily verified to be
equal to (v X w);. This completes our proof of

VB=TVs+vXxw

C

Ex. 12.11 Cavitation [by Xinkai Wu/02]

We can model this as a steady flow of an ideal fluid and use the conservation
of Bernoulli constant along a streamline where we compare the location next to
the hydrofoil with that far away from it

%UQ + h(s,P) = h(s, Py)

:>’U_\/2 SPO \/2P07
setting P = 0 gives

v=1/2Py/p

Taking Py = 1 atmosphere + pg.h with h = 3m, we get

v=16m/s

D
Ex. 12.12 Collapse of a bubble [by Alexei Dvoretskii/99]
Incompressibility implies that V - v = 0, which in spherical coordinates is



so indeed we see that
v=F(t)/r?

The radial component of Euler’s equation (gravity is not important in this prob-
lem)

ov ov 10P

ot + Yor = p Or
combined with the fact that v = F(t)/r? gives

1 dFJr 8v+1 oP 0
T
r2 dt or p Or

Integrating this from R to infinity and using the boundary conditions v(r =
o0) =0, P(r =00) = Py, and P(r = R) =0, we get

—1dF 1, P,

T LR =0

R oa T2t =
Substituting F' = R?v and % = v% gives

Rat w2 B

2dr T2 T
which can be readily integrated by separation of variables, with the initial con-
dition v(Rp) = 0. So we finally get

1/2
Bo\'
R

The stress created by collapsing bubbles will be of order pv? ~ P, (%)3.
Therefore, already fo R = R/10 the stress is of order 10* atmospheres which
can inflict damage on the hydrofoil.




