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1 Problem A.(BT-11.1)

[by Alexander Putilin/01]
We have the wave equation (BT-11.12):

ρ
∂2ξ

∂t2
= (K +

1

3
µ)∇(∇ · ξ) + µ∇2ξ (1)

Writing ξ as

ξ = ∇ψ + ∇×A (2)

and substituting in (1) we get

∇

[

ρ
∂2

∂t2
ψ − (K +

4

3
µ)∇2ψ

]

+ ∇×

[

ρ
∂2

∂t2
A− µ∇2A

]

= 0 (3)

Since ψ and A are independent each of the two terms in (3) vanishes. Thus
we get separate equations for scalar and vector potentials.

1.1

∂2ψ

∂t2
− c2L∇

2ψ = α(t) (4)

where cL =
√

K+ 4

3
µ

ρ and α(t) is arbitrary function of time.

Notice that ψ is not defined uniquely by (2). If we make the transformation
ψ → ψ+ω(t) with arbitrary ω(t), ∇ψ will not change. Using this gauge freedom
we can set α(t) = 0. To see that it is possible substitute ψ → ψ+ω(t) into (4).
Then

∂2ψ

∂t2
− c2L∇

2ψ = α(t) − ω′′(t) = 0 (5)

if we choose ω(t) =
∫ t
dt′

∫ t′
dt′′α(t′′).

1.2

∂2A

∂t2
− c2T∇

2A = ∇α(t,x) (6)

where cT =
√

µ
ρ and α is arbitrary. As in the previous case we can remove

∇α term using gauge transformation A → A +∇ω. Under this transformation
(6) becomes
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∂2A

∂t2
− c2T∇

2A = ∇

[

α(t,x) −
∂2ω

∂t2
+ c2T∇

2ω

]

= 0 (7)

We should choose ω such that

(

∂2

∂t2
− c2T∇

2

)

ω = α (8)

(8) is just a wave equation with source term. It always has solution.

2 Problem A.(BT-11.2)

[by Guodong Wang/03]
Including the effect of gravity into equation (BT-11.12),

ρ
∂2ξ

∂t2
= (K +

1

3
µ)∇(∇ · ξ) + µ∇2ξ + ρg (9)

Consider small pertubations to the displacement and density, Substituing ρ →
ρ0 + δρ, ξ → ξ0 + ξ into Eq. (9), Keeping the small pertubations to the first
order, we obtain the static equation

0 = (K +
1

3
µ)∇(∇ · ξ0) + µ∇2ξ0 + ρ0g (10)

which describe the static displacement ξ0 produced by gravity g, and the wave
equation

ρ0

∂2ξ

∂t2
= (K +

1

3
µ)∇(∇ · ξ) + µ∇2ξ + δρg (11)

Recalling Eq. (BT-11.10), δρ ' −ρ0∇ · ξ, Eq.(11) can be written as

ρ0

∂2ξ

∂t2
= (K +

1

3
µ)∇(∇ · ξ) + µ∇2ξ − ρ0∇ · ξg. (12)

The first term and the second term on the right side of Eq.(12) are of the same
order of magnitude. The ratio of the third to the second term is of the order of
ρ0g
µk ∼ λ

µ/ρ0g . For short wavelength modes, λ � µ/ρ0g, the third term can be

ignored and equation (12) reduces to Eq. (BT-11.12).
Taking µ ∼ 100GPa (see BT table 10.1), ρ0 ∼ 3g/cm3, µ/ρ0g ∼ 1000km.

So only for λ & 1000km, the gravitational terms are important.

3 Problem B.(BT-11.4)

[by Alexander Putilin/01]
We need to find sound velocities of 5 types of elastic waves. Consider them

in turn.
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3.1 Longitudinal waves along a rod.

The correspoding formula has been derived in BT. (BT-11.28)

c1 =

√

E

ρ
(13)

3.2 Longitudinal waves along a sheet

Choose coordinate system so that z-axis is orthogonal to the sheet, x- and y-axes
are parallel and wave is propagating in x-direction. Since wave is longitudinal
it means

ξy = 0 (14)

No force acts on the face of the sheet, i.e. Tzi = 0.

=⇒ Tzz = −Kθ− 2µΣzz = 0, Σzz = −
K

2µ
θ (15)

Tracelessness of Σ implies

Σxx + Σyy + Σzz = 0 (16)

But Σyy = ξy,y − 1

3
θ = − 1

3
θ. (Cf.(14))

Plugging into (16) we get

Σxx =
1

3
θ +

K

2µ
θ =

2 − ν

3(1− 2ν)
θ (17)

Recall that

K =
E

3(1 − 2ν)

µ =
E

2(1 + ν)

Find the relation between θ and ξx,x

Σxx = ξx,x −
1

3
θ ⇒ θ =

1 − 2ν

1 − ν
ξx,x (18)

Then

Txx = −Kθ − 2µΣxx = −
E

1− ν2
ξx,x (19)

Equation of motion is

ρ
∂2ξx
∂t2

= Txx,x + Txy,y + Txz,z = −
E

1− ν2

∂2ξx
∂x2

(20)
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It gives the sound velocity

c2 =

√

E

ρ(1 − ν2)
,

c1
c2

=
(

1 − ν2
)1/2

(21)

3.3 Longitudinal waves along a rod embedded in incom-
pressible medium.

Orient the x-axis of a Cartesian coordinate system along the rod. Incompress-
ibility of the medium means that there is no strain in transverse direction, i.e.
ξy = ξz = 0.

⇒ θ = ξx,x, Σxx = ξx,x −
1

3
θ =

2

3
ξx,x (22)

Using (22) we get

Txx = −Kθ − 2µΣxx = −E
1 − ν

(1 + ν)(1 − 2ν)
ξx,x (23)

c3 =

√

E

ρ

1 − ν

(1 + ν)(1 − 2ν)
,

c1
c3

=

(

1 − ν

(1 + ν)(1 − 2ν)

)

−1/2

(24)

3.4 Shear waves in an extended solid.

The sound velocity has been calculated in BT. (BT-11.20)

c4 =

√

µ

ρ
=

√

E

ρ2(1 + ν)
(25)

c1
c4

= [2(1 + ν)]
1/2

(26)

3.5 Torsional waves along a rod.

This has been also calculated in BT. (BT-11.34)

c5 = c4 =

√

µ

ρ
,

c1
c5

= [2(1 + ν)]
1/2

(27)

4 Problem B.(BT-11.5)

[by Alexander Putilin/01]
We start with the wave equation (BT-11.37)

∂4η

∂z4
+

Λ

D

∂2η

∂t2
= 0 (28)
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We are looking for the standing-wave solution of the form

η(t, z) = e−iωtf(z) (29)

Substituting into (28) we get the O.D.E. for f(z)

d4f

dz4
=

Λω2

D
f (30)

It has the general solution

f(z) = A sin kz +B cos kz + C sinh kz +D cosh kz (31)

where A,B,C,D are constants and

ω2 =
D

Λ
k4 (32)

To define the spectrum of k we should impose boundary conditions. We
have two different cases.

4.1 Ends are free.

The appropriate boundary conditions are:

f(0) = f(l) = 0 - ends are fixed (33)

f ′′(0) = f ′′(l) = 0 longitudinal stress vanishes (34)

(because Tzz = −Exd2η
dz2 by Eq. (BT-10.62) with interchange of x and z)

=⇒ B = C = D = 0, kl = πn, n = 1, 2, 3, . . . (35)

So the frequency spectrum is

ωn =

√

D

Λ
k2 =

√

D

ρA

(πn

l

)2

(36)

4.2 Clamped ends.

In this case the boundary conditions are:

f(0) = f(l) = 0 (37)

f ′(0) = f ′(l) = 0 (38)

They can be nontrivially satisfied only if

cosh (kl) cos (kl) = 1 (39)
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so the spectrum is

ωn =

√

D

ρA

(αn

l

)2

, (40)

where αn are solution of the eqn.

cosh (α) cos (α) = 1 (41)

If α � 1, then coshα � 1 and cosα � 1 i.e. αn ≈ π(n + 1

2
). Actually this

formula gives good approximation for all n = 1, 2, 3, . . . .

=⇒ ωn ≈

√

D

ρA

[

π

l
(n+

1

2
)

]2

, (42)

The ratios of eigen-frequencies are

ω1 : ω2 : ω3 : · · · ≈ 9 : 25 : 49 : . . .

The ratios are noninteger and the frequencies don‘t make up any harmonic
chord. A xylophone with clamped ends would sound hollow.

5 Problem C.(BT-11.7)

[by Alexander Putilin/01]
Assume that the wave is propagating along the z-direction and z = 0 is a

boundary between two media. ( z < 0 corresponds to medium 1, and z > 0 to
medium 2 ) The longitudinal displacement is given by

ξ(z) =

{

eikz + re−ikz z < 0

teik′z z > 0
(43)

where k = ω
c1

, k′ = ω
c2

, ω is frequency, c1,2 are sound velocities.

c1,2 =

√

K1,2 + 4

3
µ1,2

ρ1,2
(44)

r is the ratio of the reflected wave amplitude to the incident amplitude, t is
the corresponding ratio for the transmitted wave amplitude. (We‘ve chosen the
incident wave to have unit amplitude).

The time dependence is given by the factor e−iωt in both cases.

θ = ξ(z),z = ξ′(z), Σzz = ξ,z −
1

3
θ =

2

3
ξ′ (45)

T ≡ Tzz = −Kθ − 2µΣzz = −(K +
4

3
µ)ξ′(z) (46)
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T =

{

−(K1 + 4

3
µ1)(ike

ikz − ikre−ikz) z < 0

−(K2 + 4

3
µ2)ik

′teik′z z > 0
(47)

Matching the displacement and the stress on the boundary (z = 0) we get
the equations:

1 + r = t (48)

(K1 +
4

3
µ1)ik(1 − r) = (K2 +

4

3
µ2)ik

′t (49)

which give ( after simple algebra ):

t =
2Z1

Z1 + Z2

(50)

r =
Z1 − Z2

Z1 + Z2

(51)

Z1,2 = ρ1,2c1,2

Conservation of energy flux.

We want to show that (Incident Flux)=(Transmitted Flux)+ (Reflected Flux).
We have the formula for the flux

F = ρω2c〈ξ2〉 (52)

Thus conservation of energy flux reduces to

ρ1c1(1 − |r|2) = ρ2c2|t|
2, or Z1(1 − |r|2) = Z2|t|

2 (53)

Substituting t and r from (50),(51) we see that (53) is an identity.

6 Problem D.(BT-11.8)

[by Alexander Putilin and Kip Thorne/01] Energy release E = 105.2+1.44MJ ,
for M = 8.5 it gives

E ≈ 1017.5J ≈ 3 · 1017J (54)

This should be equal to the elastic energy

Eel ≈ µΣ2(V T )2λ (55)

where Σ is the typical strain, µ ∼ 30GPa is the shear modulus, V ∼ 3km/s, T ∼
100s, λ ∼ V

ν ∼ 3km is the wavelength, ν ∼ 1Hz is the frequency and (V T )2λ is
the volume of the earthquake region. Equating (54) and (55) we get

Σ ∼

√

E

µ(V T )2λ
∼ 10−4 (56)
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This is a reasonable estimate. Since the Earth crust is inhomogenous and has
a lot of defects, relatively small strain is sufficient to produce a slippage. (For
a perfect crystal the corresponding strain would be ∼ 10−2.

The typical displacement in the vicinity of the fault is

ξ ∼ V TΣ ∼ 30m (57)

Now let’s estimate the amplitude (and acceleration) of elastic waves far away
from the earthquake region. The energy density of the waves is (neglecting
the density stratification) ρω2ξ2, where ρ ∼ 5 · 103kg/m3, ω = 2πν ∼ 6s−1,
ξ is the wave amplitude. The total energy is ρω2ξ2(V olume). There are two
types of waves: Rayleigh waves that propagate near the surface and S,P waves
propagating in the bulk.

For surface waves: Volume ∼ 2πrV Tλ while for bulk waves Volume ∼ r2V T .
r is the distance between the earthquake and the observation point. Assume
quite arbitrary that surface waves carry 1/3 of all the released energy and bulk
waves the remaining 2/3. Then the amplitudes of surface and bulk waves and
corresponding accelerations can be estimated as

ξ2surf ∼
E

6πrV Tλρω2
asurf ∼ ξsurfω

2 (58)

ξ2bulk ∼
2E

3r2V Tλρω2
abulk ∼ ξbulkω

2 (59)

If the observer is in the next state

r ∼ 500km, asurf ∼ 40cm/s2, abulk ∼ 10cm/s2 (60)

If the observer is in the next continent,

r ∼ 104km, asurf ∼ 10cm/s2, abulk ∼ 0.5cm/s2 (61)

Note added by Kip: these conclusions could be modified by attenuation of
the waves with distance. The wave amplitude attenuates ∝ e−πr/λQ, where Q
is the quality factor. The Q’s vary strongly depending on the nature of the rock
through which they propagate. They can range from ∼ 20 for alluvial materials
near the earth’s surface to ∼ 3000 in the mantle at depths of a few hundred km.
Even for the largest Q ∼ 3000, the intercontinental attenuation is significant,
exp[-π104km/3km × 3000] ∼ 0.03. The surface waves are typically subject to
somewhat greater attenuation than the bulk waves, so they may not dominate at
great distances in the manner suggested by the above estimates. For some mea-
surements of Q’s see, e.g., http://rses.anu.edu.au/seimology/ar99/atten.html
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