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11.1 Overview

In the previous chapter we considered elastostatic equilibria in which the forces acting on
elements of an elastic solid were balanced so that the solid remained at rest. When this
equilibrium is disturbed, the solid will undergo acceleration. This is the subject of elastody-
namics. In this chapter (Secs. 11.2 and 11.3), we derive the equations of motion for elastic
media, paying particular attention to the underlying conservation laws. We do this in a
manner which will allow us easily to modify our equations when we consider fluid dynamics
in the following chapter. The simplest examples of elastodynamics involve waves. We will
show that there are two distinct wave modes that propagate in a uniform, isotropic solid,
longitudinal waves and shear waves, and both are nondispersive (their phase speeds are
independent of frequency).

A major use of elastodynamics is in structural engineering (Sec. 11.4). Here we discuss
the types of waves that propagate on bars, rods and beams and find that the boundary
conditions at the surfaces make the waves dispersive. We also return briefly to the problem
of bifurcation and show how, by changing the parameters controlling an equilibrium, a linear
wave can be made to grow exponentially in time, thereby rendering the equilibrium unstable.

A second application of elastodynamics is to seismology (Sec. 11.5). The earth is mostly
a solid body through which waves can propagate. The waves can be excited naturally by
earthquakes or artificially using man-made explosions. Understanding how waves propagate
through the earth is important for locating the sources of earthquakes, for diagnosing the
nature of an explosion (was it an illicit nuclear bomb test?) and for analyzing the structure
of the earth. We briefly describe some of the wave modes that propagate through the
earth and some of the inferences about the earth’s structure that have been drawn from
studying their propagation. In the process, we gain some experience in applying the tools of
geometric optics to new types of waves, and we learn how rich can be the Green’s function
for elastodynamic waves, even when the medium is as simple as a homogeneous half space.
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Finally (Sec. 11.6), we return to physics to consider the quantum limit of our classical
approach. We contrast the classical description of waves with their quantum mechanical
counterparts, specialising to quantised vibrations in an elastic solid, phonons.

11.2 Conservation Laws

Prior to stating the fundamental laws of elastodynamics, we should first explain a general
approach to classical physics which unifies many of the topics we treat in this course. This
approach is based on conservation laws, and is the Newtonian version of the special rela-
tivistic ideas we developed in Sec. 1.12.

In non-relativistic continuum mechanics, three basic quantities are conserved: mass,
momentum and energy. The most elementary conservation law involves mass. Consider a
continuous substance with mass density ρ(x, t), and a small elementary volume V, fixed in
space (i.e., fixed in some Newtonian reference frame). If the matter moves, then there will
be a flow of mass, a mass flux across each element of surface dΣ on the boundary ∂V of V.
Provided that there are no sources or sinks of matter, the total rate of change of the mass
residing within V will be given by the net rate of mass transport across ∂V. Now the rate at
which mass moves across a unit area is the mass flux, ρv, where v(x, t) is the velocity field.
We can therefore write

∂

∂t

∫

V

ρdV = −

∫

∂V

ρv · dΣ. (11.1)

(Remember that the surface is fixed in space.) Invoking Gauss’ theorem, we obtain

∂

∂t

∫

V

ρdV = −

∫

V

∇ · (ρv)dV. (11.2)

As this must be true for arbitrary small volumes V, we can abstract the differential equation
of mass conservation:

∂ρ

∂t
+ ∇ · (ρv) = 0. (11.3)

(Even if this equation is not familiar in the context of continuum mechanics, its analogue, the
equation of electrical charge conservation, ought to be familiar.) Writing the conservation
equation in this manner where we monitor the changing density at a given location in space,
rather following a moving element, is called the Eulerian approach.

Equation (11.3) is our model. It says that there is a quantity, in this case mass, with a
certain density, in this case ρ, and a certain flux, in this case ρv, and this quantity is neither
created nor destroyed. The temporal derivative of the density (at a fixed point in space)
added to the divergence of the flux must then vanish. Of course, not all physical quantities
have to be conserved. If there were sources or sinks of mass, then these would be added to
the right hand side of Eq. (11.3).

The next quantity to treat in this manner is momentum. If we just consider the me-
chanical momentum, its density is ρv, and it is a vector field. The momentum dp crossing
a small element of area dΣ, from the back side of dΣ to the front (in the “positive sense”;
cf. Fig. 1.13b) during unit time is given by dp = (ρv · dΣ)v. This is also a vector and it



3

is a linear function of the element of area dΣ. This then allows us to define a second rank
tensor, the momentum flux, by the equivalent relations

dp = (ρv · dΣ)v = Tm( , dΣ) , Tm = ρv ⊗ v. (11.4)

This tensor is manifestly symmetric. We are now in a position to write down a conservation
law for momentum by direct analogy with Eq. (11.3), namely

∂ρv

∂t
+ ∇ · Tm = f , (11.5)

where f is the net rate of increase of momentum in a unit volume, i.e. the force per unit
volume acting on the material.

We have used the symbol Tm for the mechanical momentum flux because, as well as being
the momentum crossing unit area in unit time, it is also a piece of the stress tensor (force
per unit area): the force that acts across a unit area is just the rate at which momentum
crosses that area; cf. the relativistic discussion in Sec. 1.12

Now consider what happens in an elastic medium. When the medium is deformed, elastic
forces produce on it a force per unit volume f = −∇ · Tel [cf. Eqs. (10.31) and (10.35)],
where the subscript el labels the elastic contribution to the stress [Eq. (10.34)]. We can
therefore combine this with Tm to obtain a combined conservation law with no extraneous
forces (sources or sinks of momentum),

∂ρv

∂t
+ ∇ · T = 0, where T = Tm + Tel = ρv ⊗ v −KΘg− 2µΣ . (11.6)

Here T = Tm +Tel is the total stress tensor. Mechanical plus elastic momentum is therefore
conserved. (A conservation law for energy can also be derived, but we will not need it in
our treatment of elasticity and will defer its introduction to the following chapter on fluid
dynamics where it will be crucial.)

We conclude this section with two remarks. The first is that in going from Newtonian
physics (this chapter) to special relativity (Chap. 1), mass and energy get combined (added)
to form a conserved mass-energy or total energy; that total energy and the momentum are the
temporal and spatial parts of a spacetime 4-vector, the 4-momentum; and correspondingly,
the conservation laws for mass [Eq. (11.3)], nonrelativistic energy [Chap. 12], and momentum
[Eq. (11.6)] get unified into a single conservation law for 4-momentum, which is expressed as
the vanishing 4-dimensional, spacetime divergence of the 4-dimensional stress-energy tensor
(Sec. 1.12). The second remark is that there may seem something tautological about our
procedure. We have argued that the mechanical momentum will not be conserved in the
presence of forces such as elastic forces. Then we argued that we can actually associate a
momentum flux, or more properly a stress tensor, with the strained elastic medium, so that
the combined momentum is conserved. It is almost as if we regard conservation of momentum
as a principle to be preserved at all costs and so every time there appears to be a momentum
deficit, we simply define it as a bit of the momentum flux. (An analogous accusation could
be made about the conservation of energy.) This, however, is not the whole story. What is
important about our formulation of the theory of elasticity is that the elastic force density
can be expressed as the divergence of a stress tensor. An erroneous formulation would not
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necessarily have this property and there would not be a differential conservation law. So the
fact that we can create elastostatic, thermodynamic, viscous, electromagnetic, gravitational
etc contributions to some grand stress tensor (that go to zero outside the regions occupied
by the relevant matter or fields), as we shall see in the coming chapters, is significant and
affirms that our physical model is complete at the level of approximation to which we are
working.

11.3 Basic Equations of Elastodynamics

In this section we shall use the laws of mass and momentum conservation to derive a vectorial
equation that governs the dynamical displacement ξ(x, t), and shall show how that equation
can be converted into two wave equations, one for “longitudinal” waves and the other for
“transverse” waves. Our method of analysis is a special case of a very general approach to
deriving wave equations in continuum mechanics. That general approach is sketched in Box
11.1. We shall follow that approach not only here, for elastic waves, but also in Part IV for
waves in fluids, Part VI for waves in plasmas and Part V for general relativistic gravitational
waves.

11.3.1 Equation of Motion

We derive the elastodynamic equation of motion by multiplying the law of mass conservation
[Eq. (11.3)] by v and subtracting from the law of momentum conservation [Eq. (11.6)] to
obtain

ρ

[

∂

∂t
+ (v ·∇)

]

v = −∇ ·Tel. (11.7)

The operator appearing on the left hand side of (11.7),

∂

∂t
+ (v ·∇) ≡

d

dt
, (11.8)

is known as the convective derivative and crops up often in continuum mechanics. Its physical
interpretation is very simple. Consider first the partial derivative (∂/∂t)x. This is the rate
of change of some quantity [the velocity v in Eq. (11.7)] at a fixed point in space in some
reference frame. In other words, if there is motion, ∂/∂t compares this quantity at the same
point in space for two different points in the solid. By contrast, the convective derivative
operator, (d/dt) follows the motion and takes the difference in the value of the quantity
at successive instants at the same point in the moving matter. It therefore measures the
rate of change of the physical quantity following the material rather than at a fixed point in
space. This convective derivative is the Newtonian limit of relativity’s proper time derivative
along the world line of a bit of matter, d/dτ = uα∂/∂xα = (dxα/dτ)∂/∂xα [Secs. 1.4 and
1.6]. In Eq. (11.7), dv/dt ≡ [∂/∂t + (v ·∇)]v is the acceleration of the solid and therefore,
Eq. (11.7) can be interpreted as Newton’s second law for a fixed mass of the solid. Note that
the velocity itself is the convective derivative of the displacement

v =
dξ

dt
. (11.9)
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Box 11.1
Wave Equations in Continuum Mechanics

In this box, we make an investment for future chapters by considering wave equations
in some generality.

Most wave equations arise as approximations to the full set of equations that govern
a dynamical physical system. It is usually possible to arrange those full equations as a
set of first order partial differential equations that describe the dynamical evolution of a
set of n physical quantities, VA, with A = 1, 2, ..., n: i.e.

∂VA

∂t
+ FA(VB) = 0 . (1)

[For elastodynamics there are n = 7 quantities VA: {ρ, ρvx, ρvy, ρvz, ξx, ξy, ξz}; and the 7
equations (1) include mass conservation, momentum conservation, and ∂ξj/∂t = ξj.]

Now most dynamical systems are intrinsically nonlinear (Maxwell’s equations in
vacuo being a conspicuous exception) and it is usually quite hard to find nonlinear
solutions. However, it is generally possible to make a perturbation expansion in some
small physical quantity about an equilibrium and just retain terms that are linear in
this quantity. We then have a set of n linear partial differential equations that are much
easier to solve than the nonlinear ones—and that usually turn out to have the character
of wave equations (i.e., to be “hyperbolic”). Of course the solutions will only be a good
approximation for small amplitude waves. [In elastodynamics, we justify linearization
by requiring that the strains be below the elastic limit, we linearize in the strain or
displacement, and the resulting linear wave equation is ρ∂2ξ/∂t2 = (K + 1

3
µ)∇(∇ · ξ) +

µ∇2ξ.]

Boundary Conditions

In some problems, e.g. determining the normal modes of vibration of a building
during an earthquake, or analyzing the sound from a violin or the vibrations of a finite-
length rod, the boundary conditions are intricate and have to be incorporated as well
as possible, to have any hope of modeling the problem. The situation is rather similar
to that familiar from elementary quantum mechanics. The waves are often localised
within some region of space, like bound states, in such a way that the eigenfrequencies
are discrete, for example, standing wave modes of a plucked string. In other problems
the volume in which the wave propagates is essentially infinite as happens with unbound
states (e.g. waves on the surface of the ocean or seismic waves propagating through the
earth). The only boundary condition is essentially that the wave amplitude remain finite
at large distances. In this case, the wave spectrum is usually continuous.
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Box 11.1, Continued

Geometric Optics Limit and Dispersion Relations

The solutions to the wave equation will reflect the properties of the medium through
which the wave is propagating, as well as its boundaries. If the medium and boundaries
have a finite number of discontinuities but are otherwise smoothly varying, there is a
simple limiting case: waves of short enough wavelength and high enough frequency that
they can be analyzed in the geometric optics approximation (Chap. 6).

The key to geometric optics is the dispersion relation, which acts as a Hamiltonian
for the propagation. Recall from Chap. 6 that although the medium may actually be
inhomogeneous and might even be changing with time, when deriving the dispersion
relation we can approximate it as precisely homogeneous and time-independent.

In such a situation we can resolve the waves into plane-wave modes, i.e. modes in
which the perturbations vary ∝ exp i(k · x − ωt). Here k is the wave vector and ω is
the angular frequency. This allows us to remove all the temporal and spatial derivatives
and converts our set of partial differential equations into a set of homogeneous, linear
algebraic equations. When we do this, we say that our normal modes are local. If,
instead, we were to go to the trouble of solving the partial differential equation with its
attendant boundary conditions, the modes would be referred to as global.

The linear algebraic equations for a local problem can be written in the form
MABVB = 0, where VA is the vector of dependent variables and the elements MAB of the
matrix ||MAB|| depend on k and ω as well as on parameters pα that describe the local
conditions of the medium. This set of equations can be solved in the usual manner by
requiring that the determinant of ‖MAB‖ vanish. Carrying through this procedure yields
a polynomial, usually of n’th order, for ω(k, pα). This polynomial is the dispersion rela-
tion. It can be solved (analytically in simple cases and numerically in general) to yield
a number of complex solutions for ω, with k regarded as real. (Of course, we might just
as well treat the wave vector as a complex number, but for the moment we will regard it
as real.) Armed with these solutions, we can solve for the associated eigenvectors. The
eigenfrequencies fully characterize the solution of the local problem, and can be used to
solve for the temporal evolution from some given initial conditions in the usual manner.
(As we shall see several times, especially when we discuss Landau damping in Chap. 21,
there are some subtleties that can arise.)

What does a complex value of the angular frequency ω mean? We have posited that
all small quantities vary ∝ exp[i(k · x − ωt)]. If ω has a positive imaginary part, then
the small quantities will grow exponentially with time. Conversely, if it has a negative
imaginary part, it will decay. Now polynomial equations with real coefficients have
complex conjugate solutions. Therefore if there is a decaying mode there must also be a
growing mode. Growing modes correspond to instability, a topic that we shall encounter
often.
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Now, in elastodynamics, it is more convenient to work with the displacement ξ than the
velocity v. If the strains in the solid are much smaller than unity, and we have already
established that they are typically . 10−3 for elastic deformations, then the density can be
treated as effectively constant. More specifically, the equation of mass conservation (11.3)
can be integrated with respect to time to obtain for the fractional change of density due to
an elastic strain

δρ

ρ
' −∇ · ξ = −Θ . 10−3 in magnitude, (11.10)

where we have used Eq. (10.9); so for most purposes in elasticity theory we can set

ρ = constant. (11.11)

We can make a similar approximation to the equation of motion (11.7). If the displace-
ment ξ varies over some characteristic timescale T and some characteristic lengthscale L,
then the ratio of the second term ρv ·∇v to the first term ρ∂v/∂t is O(ξ/L), which is of
order the strain. Again, for a conventionally elastic material, this is a small number, . 10−3

in magnitude, so we need only retain the first term. Substituting Eq. (10.32) for the elastic
force density, we then obtain

ρ
∂2ξ

∂t2
= −∇ · Tel

= (K +
1

3
µ)∇(∇ · ξ) + µ∇2ξ, (11.12)

which is a linear wave equation for the elastic displacement ξ. Remember that we have
assumed that the elastic moduli are constant. If their variation is significant, then extra
terms will appear. Equation (11.12) is the first of many wave equations we shall encounter
in elastodynamics, fluid mechanics, and plasma physics.

11.3.2 Elastodynamic Waves

Continuing to follow our general procedure for deriving and analyzing wave equations as
outlined in Box 11.3, we next derive dispersion relations for the two types of waves (longi-
tudinal and transverse) that are jointly incorporated into the general elastodynamic wave
equation (11.12).

Recall from Chap. 6 that, although a dispersion relation can be used as a Hamiltonian
for computing wave propagation through an inhomogeneous medium, one can derive the
dispersion relation most easily by specializing to monochromatic plane waves propagating
through a medium that is precisely homogeneous. Therefore, we seek seek a plane-wave
solution, i.e. a solution of the form

ξ(x, t) ∝ ei(k·x−ωt) , (11.13)

to the wave equation (11.12) with ρ, K and µ regarded as homogeneous (constant). (To
deal with more complicated perturbations of a homogeneous medium, we can think of this
wave as being an individual Fourier component and linearly superpose many such waves
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Fig. 11.1: Displacements in an isotropic, elastic solid, perturbed by a) a longitudinal mode, b) a
transverse mode.

as a Fourier integral.) Since our wave is planar and monochromatic, we can remove the
derivatives in Eq. (11.12) by making the substitutions ∇2 → −k2 and ∂/∂t → −iω. (More
generally we can also use the substitutions ∇ → ik, ∇· → ik·, ∇× → ik×.) We thereby
reduce the partial differential equation (11.12) to a set of algebraic equations:

ρω2ξ = µk2ξ + (K +
1

3
µ)k(k · ξ) . (11.14)

(This reduction is only possible because the medium is uniform or in the geometric op-
tics limit of near uniformity; otherwise, we must solve the second order partial differential
equation (11.12) using standard techniques.)

11.3.3 Longitudinal sound waves

How do we solve this equation? The sure way is to write it as a 3 × 3 matrix equation for
the vector ξ and set the determinant to zero (Box 11.3). This is not hard for small or sparse
matrices. However, some wave equations are more complicated and it repays us to think
about the waves in a geometric, coordinate-independent way before resorting to brute force.

The quantity that oscillates in the elastodynamic waves (11.14) is the vector field ξ. The
nature of its oscillations is influenced by some scalar constants (ρ, µ, K, ω) and by just one
quantity that has directionality: the constant vector k. It seems reasonable to expect the
description (11.14) of the oscillations to simplify, then, if we resolve the oscillations into a
“longitudinal” component along k and a “transverse” component perpendicular to k:

ξ = ξL + ξT , ξL = ξLk̂ , ξT · k̂ = 0 . (11.15)

Here k̂ ≡ k/k is the unit vector along the propagation direction. It is easy to see that
the longitudinal mode has nonzero expansion Θ ≡ ∇ · ξ 6= 0 but vanishing rotation φ =
1
2
∇ × ξ = 0, and can therefore be written as the gradient of a scalar potential, ξL = ∇ψ.

By contrast, the transverse mode has zero expansion but nonzero rotation and can thus be
written as the curl of a vector potential, ξT = ∇×A; cf. Exercise 11.1.

For the longitudinal mode the algebraic wave equation (11.14) reduces to the following
simple relation [as one can easily see by inserting ξ ≡ ξL = ξLk̂ into Eq. (11.14) , or,
alternatively, by taking the divergence of (11.14), which is equivalent to taking the scalar
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product with k]:

ω2 =
K + 4

3
µ

ρ
k2 . (11.16)

This relation between ω and k is the longitudinal mode’s dispersion relation.
As we discussed in great detail in Sec. 6.2, associated with any wave mode is its phase

velocity, Vph = (ω/k)k̂ and its phase speed Vph = ω/k. The dispersion relation (11.16)
implies that for longitudinal elastodynamic modes, the phase speed is

cL =
ω

k
=

(

K + 4
3
µ

ρ

)1/2

. (11.17)

As this does not depend on the frequency ω, the mode is non-dispersive. As the wave
properties do not depend on the direction of propagation through the medium, the phase
speed is also isotropic, naturally enough, and the group velocity is equal to the phase velocity,
Vg = Vph = cLk̂.

Elastodynamic longitudinal modes are similar to sound waves in a fluid. However, in
a fluid, as we shall see in subsequent chapters, the sound waves travel with phase speed
Vph = (K/ρ)1/2 [the limit of Eq. (11.17) when the shear modulus vanishes]. This fluid sound
speed is lower than the cL of a solid with the same bulk modulus because the longitudinal
displacement necessarily entails shear (note that in the left half of Fig. 11.1 the motions are
not an isotropic expansion), and in a solid there is a restoring shear stress (proportional to
µ) that is absent in a fluid.

Because the longitudinal phase velocity is independent of frequency, we can write down
general planar longitudinal-wave solutions to the elastodynamic wave equation (11.12) in the
following form:

ξ = ξLk̂ = [A(k̂ · x− cLt) +B(k̂ · x + cLt)]k̂ , (11.18)

where A,B are arbitrary functions. The two terms in Eq. (11.18) describe waves propagating
in opposite directions, with arbitrary profiles determined by the functions A and B.

11.3.4 Transverse shear waves

To derive the dispersion relation for a transverse wave we can simply make use of the transver-
sality condition k ·ξT = 0 in Eq. (11.14); or, equally well, we can take the curl of Eq. (11.14)
(multiply it by ik×), thereby projecting out the transverse piece, since the longitudinal part
of ξ has vanishing curl. The result is

ω2 =
µ

ρ
k2 . (11.19)

This dispersion relation implies that the transverse waves propagate with a speed cT given
by

cT =

(

µ

ρ

)1/2

. (11.20)

As K > 0, the shear wave speed is always less than the speed of longitudinal waves.
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These transverse modes are known as shear waves because they are driven by the shear
stress; cf. Fig. 11.1. There is no expansion and therefore no change in volume associated
with shear waves. They do not exist in fluids, but they are close analogs of the transverse
vibrations of a string.

Longitudinal waves can be thought of as scalar waves, since they are fully describable
by a single component ξL of the displacement ξ: that along k̂. Shear waves, by contrast,
are inherently vectorial. Their displacement ξT can point in any direction orthogonal to k.
Since the directions orthogonal to k form a two-dimensional space, once k has been chosen,
there are two independent states of polarization for the shear wave. These two polarization
states, together with the single one for the scalar, longitudinal wave, make up the three
independent degrees of freedom in the displacement ξ.

11.3.5 Energy of Elastodynamic Waves

Elastodynamic waves transport energy, just like waves on a string. The energy density is the
sum of the kinetic energy density and the elastic energy density computed using Eq. (10.39).
For the longitudinal mode this becomes

UL =

〈

1

2
ρξ̇2 +

1

2

(

K +
4

3
µ

)

Θ2

〉

, (11.21)

where 〈...〉 denotes an average over one period or wavelength of the wave. If we now substitute
∇ · ξ for Θ, and the dispersion relation (11.16) into Eq. (11.21), then we find that the two
terms are equal and so there is equipartition of energy between the kinetic and the elastic
energy density just as in a simple harmonic oscillator. Therefore,

UL = ρω2〈ξ2
L〉 . (11.22)

Similar formulae holds for the shear-wave energy density and the total energy density,

UT = ρω2〈ξT · ξT 〉 , U = UL + UT = ρω2〈ξ · ξ〉 . (11.23)

How fast is the energy transported? Just as electromagnetic waves transport electromag-
netic energy, via the Poynting flux FEM = UEMc, at the same speed as the waves propagate
(the speed of light c), so elastodynamic waves have an associated energy flux of

FL,T = UcL,T , (11.24)

corresponding to a propagation speed equal to that of the wave itself, cL,T . One derivation
of this was given, quite generally, for any dispersionless wave, in Ex. 6.7; another derivation
will be given when we study fluid sound waves in Chap. 15.

****************************

EXERCISES
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Exercise 11.1 Example: Scalar and Vector Potentials for Elastic Waves in a Homogeneous
Solid
Just as in electromagnetic theory, it is sometimes useful to write the displacement ξ in terms
of scalar and vector potentials,

ξ = ∇ψ + ∇×A . (11.25)

(The vector potential A is, as usual, only defined up to a gauge transformation, A → A+∇ϕ,
where ϕ is an arbitrary scalar field.) Show that the scalar and vector potentials satisfy the
following wave equations in a homogeneous solid:

∂2ψ

∂t2
= c2L∇

2ψ ,
∂2A

∂t2
= c2T∇

2A . (11.26)

Thus, the scalar potential ψ generates longitudinal waves, while the vector potential A
generates transverse waves.

Exercise 11.2 Problem: Influence of gravity on wave speed
Modify the wave equation (11.12) to include the effect of gravity. Assume that the gravita-
tional field is constant. By comparing the orders of magnitude of the terms involving small
perturbations to the displacement, stress and density verify that the gravitational terms can
be ignored for short wavelength elastodynamic modes.

****************************

11.4 Waves in Rods, Strings and Beams

Let us now illustrate some of these ideas using the type of waves that can arise in some
practical applications. In particular we discuss how the waves can be modified when the
medium through which they propagate is not uniform but instead is bounded. Despite this
situation being formally “global” in character (cf. Box 11.3), elementary considerations
enable us to derive the relevant dispersion relations without much effort.

11.4.1 Compression waves

First, consider a longitudinal wave propagating along a light, thin, unstressed rod. Introduce
a Cartesian coordinate system with the z-axis parallel to the rod. When there is a small
displacement ξz independent of x and y, the restoring stress is given by Tzz = −E∂ξz/∂z,
where E is Young’s modulus (cf. end of Sec. 10.4). Hence the restoring force density can be
evaluated from the divergence of the stress tensor as fz = E∂2ξz/∂z

2. The wave equation
then becomes

∂2ξz
∂t2

=

(

E

ρ

)

∂2ξz
∂z2

, (11.27)

and so the sound speed for compression waves in a long straight rod is

cC =

(

E

ρ

)
1

2

. (11.28)
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z

a

d z

ω∼

Fig. 11.2: When a wire of circular cross section is twisted, there will be a restoring torque.

Referring to Table 10.1 (on page 10-19), we see that a typical value of Young’s modulus in
a solid is ∼ 100 GPa. If we adopt a typical density ∼ 3× 103 kg m−3, then we estimate the
longitudinal sound speed to be ∼ 5 km s−1. This is roughly 15 times the sound speed in air.

11.4.2 Torsion Waves

Next consider a wire with circular cross section of radius a subjected to a twisting force. Let
us introduce an angular displacement φ that depends on z. We can calculate the total torque
by integating over a circular cross section. For small twists, there will be no expansion and
the only components of the shear tensor are

Σφz = Σzφ =
$

2

∂φ

∂z
. (11.29)

The torque contributed by an annular ring of radius $ and thickness d$ is $ · Tφz · 2π$d$
and we substitute Tφz = −2µΣφz to obtain the total torque

G =

∫ a

0

2πµ$3d$
∂φ

∂z
. (11.30)

Now the moment of inertia per unit length is

I =
π

2
ρa4 , (11.31)

so equating the net torque per unit length to the rate of change of angular momentum, also
per unit length, we obtain

∂G

∂z
= I

∂2φ

∂t2
, (11.32)

or
∂2φ

∂z2
=

(

ρ

µ

)

∂2φ

∂t2
. (11.33)
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The speed of torsional waves is thus

cT =

(

µ

ρ

)
1

2

. (11.34)

Note that this is same speed as that of shear waves in a uniform medium. This might have
been anticipated as there is also no change in volume in a torsional oscillation and so only
the shear stress acts to produce a restoring force.

11.4.3 Strings

This example is surely all too familiar. When a string under tension T is plucked there will
be a restoring force proportional to the curvature of the string. If ξx ≡ η is the transverse
displacement, then the wave equation will be

T
∂2η

∂z2
= Λ

∂2η

∂t2
, (11.35)

where Λ is the mass per unit length. The wave speed is thus

cS =

(

T

Λ

)1/2

(11.36)

11.4.4 Flexural Waves on a Beam

Now consider the small amplitude displacement of a rod or beam that can be flexed. In
Sec. 1.6 we showed that such a flexural displacement produces a net elastic restoring force
per unit length given by D∂4η/∂z4, and we considered a situation where that force was
balanced by the beam’s weight per unit length, W = Λge [cf. Eq. (10.69)]. Here D is the
flexural rigidity [Eq. (10.66)], η = ξx is the transverse displacement of the neutral surface
from the horizontal, Λ is the mass per unit length, and ge is the earth’s acceleration of
gravity. The solution of the resulting force-balance equation, −D∂4η/∂z4 = W = Λge, was
the quartic (10.70), which defined the equilibrium beam shape. When gravity is absent and
the beam is allowed to move, the acceleration of gravity ge gets replaced by a dynamical
acceleration of the beam, ∂2η/∂t2; the result is a wave equation for flexural waves on the
beam:

−D
∂4η

∂z4
= Λ

∂2η

∂t2
. (11.37)

(This derivation of the wave equaiton is an elementary illustration of the Principle of Equiv-
alence—the equivalence of gravitational and inertial forces, or gravitational and inertial
accelerations—which we shall discuss in Part VI as an underpinning for general relativity
theory.)

The wave equations we have encountered so far in this chapter have all described non-
dispersive waves, for which the wave speed is independent of the frequency. Flexural waves,



14

by contrast, are dispersive. We can see this by assuming that η ∝ exp[i(kz−ωt)] and thereby
deducing from Eq. (11.37) the dispersion relation

ω2 =
D

Λ
k4 . (11.38)

Before considering the implications of this dispersion, we shall complicate the equilibrium
a little. Let us suppose that, in addition to the net shearing force per unit length, the beam
is also held under a tension force T as well. We can then combine the two wave equations
(11.35), (11.37) to obtain

−D
∂4η

∂z4
+ T

∂2η

∂z2
= Λ

∂2η

∂t2
, (11.39)

for which the dispersion relation is

ω2 = c2Sk
2

(

1 +
k2

k2
c

)

, (11.40)

where cS =
√

T/W is the wave speed when the bending moment D is negligible so the beam
is string-like, and

kc =
√

T/D (11.41)

is a critical wave number. If the average strain induced by the tension is ε, then to order
of magnitude kc ∼ ε1/2a−1. where a is the thickness of the beam. [Notice that kc is also of
order 1/λ, where λ is the lengthscale on which a pendulum’s support wire (“beam”) bends
as discussed in Ex. 10.10.] For short wavelengths, k � kc, the shearing force dominates and
the beam behaves like a tension-free beam; for long wavelengths k � kc it behaves like a
string.

A consequence of dispersion is that waves with different wave numbers k propagate with
different speeds, and correspondingly the group velocity Vg = dω/dk with which wave packets
propagate differs from the phase velocity with which a wave’s crests and troughs move (see
Sec. 6.2). For the dispersion relation (11.40), the phase and group velocities are

Vφ ≡ ω/k = cS(1 + k2/k2
c)

1/2 ,

Vg ≡ dω/dk = cS(1 + 2k2/k2
c)(1 + k2/k2

c)
−1/2 . (11.42)

As we discussed in detail in Sec. 6.2 and Ex. 6.2, for dispersive waves such as this one, the
fact that different Fourier components in the wave packet propagate with different speeds
causes the packet to gradually spread; we explore this quantitatively for longitudinal waves
on a beam in Ex. 11.3.

11.4.5 Buckling (once more)

We conclude this discussion by returning to the problem of buckling, which we introduced
in the last chapter. The problem we discussed there was a playing card compressed until
it wants to buckle. As promised, we can treat this as a dynamical problem by treating the
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tension T of the previous section as negative, T = −F where F is the force applied to the
two ends of the playing card in Fig. 10.10. Then the equation of motion (11.39) becomes

−D
∂4η

∂z4
− F

∂2η

∂z2
= Λ

∂2η

∂t2
. (11.43)

We seek solutions for which the ends of the playing card are held fixed (as shown in Fig.
10.10), η = 0 at z = 0 and z = `. Solving Eq. (11.43) by separation of variables, we see that

η = A sin
(nπ

`
z
)

e−iωnt , (11.44)

where ωn (of course) satisfies the same dispersion relation as for waves on a long, stretched
beam [Eq. (11.40)], with T → −F and k → nπ/`:

ω2
n =

1

Λ

(nπ

`

)2
[

(nπ

`

)2

D − F

]

. (11.45)

Consider the lowest-order normal mode, n = 1, for which the playing card is bent in the
manner of Fig. 10.10 as it oscillates. When the compressional force F is small, ω2

1 is positive,
so ω1 is real and the normal mode oscillates sinusoidally, stably. But for F > π2D/`2,
ω2

1 is negative, so ω1 is imaginary and their are two normal-mode solutions, one decaying
exponentially with time, η ∝ exp(−|ω|t), and the other increasing exponentially with time,
η ∝ exp(+|ω|t), signifying an instability against buckling.

Notice that the onset of instability occurs at identically the same compressional force,
F = Fcrit ≡ π2D/`2, as the bifurcation of equilibria [Eq. (10.87)], at which a new, bent,
equilibrium state for the playing card comes into existence. Notice, moreover, that the card’s
n = 1 normal mode has zero frequency, ω1 = 0, at this onset of instability and bifurcation
of equilibria; the card can bend by an amount that grows linearly in time, η = A sin(πz/`)t
with no restoring force or exponential growth. This zero-frequency motion leads the card
from its original, straight equilibrium shape, to its new, bent equilibrium shape.

This is an example of a very general phenomenon, which we shall meet again in fluid
mechanics (Part IV): For mechanical systems without dissipation (no energy losses to friction
or viscosity or radiation or ...), as one gradually changes some “control parameter” (in
this case the compressional force F ), there can occur bifurcation of equilibria. At each
bifurcation point, a normal mode of the original equilibrium becomes unstable, and at its
onset of instability the mode has zero frequency and represents a motion from the original
equilibrium (which is becoming unstable) to the new, stable equilbrium.

In our simple playing-card example, we see this phenomenon repeated again and again
as the control parameter F is increased: One after another the modes n = 1, n = 2, n = 3,
... become unstable. At each onset of instability, ωn vanishes, and the zero-frequency mode
[with n − 1 nodes in its eigenfunction, Eq. (11.44)] leads from the original, straight-card
equilibrium to the new, (n− 1)-noded, bent equilibrium.

Buckling is a serious issue in engineering. Whenever one has a vertical beam supporting
a heavy weight (e.g. in the construction of a tall building), one must make sure that the
beam has a large enough flexural rigidity D to be stable against buckling. This is generally
achieved not by making the beam uniformly thick, but rather by fashioning its cross section
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into an I or H shape. And whenever one has a long pipe exposed to night-to-day cooling-
to-heating transitions (e.g. an oil or natural gas pipe, or the long vacuum tubes of a laser
interferometer gravitational wave detector), one must make sure the pipe has enough flexural
rigidity to avoid buckling in the heat of the day, when it wants to expand in length.1 It can
be overly expensive to make the pipe walls thick enough to achieve the required flexural
rigidity, so instead of thickening the walls everywhere, engineers often weld “stiffening rings”
onto the outside of the pipe to increase its rigidity. Notice, in Eq. (11.45), that the longer is
the length ` of the beam or pipe, the larger must be the flexural rigidity D to avoid buckling;
the required rigidity scales as the square of the length.

****************************

EXERCISES

Exercise 11.3 Derivation: Dispersion of Flexural Waves
Verify Eqs. (11.40) and (11.42). Sketch the dispersion-induced evolution of a Gaussian wave
packet as it propagates along a stretched beam.

Exercise 11.4 Problem: Speeds of Elastic Waves
Show that the sound speeds for the following types of elastic waves in an isotropic material

are in the ratio 1 : (1− ν2)−1/2 :
(

1−ν
(1+ν)(1−2ν)

)1/2

: [2(1 + ν)]1/2 : [2(1 + ν)]1/2. Longitudinal

waves along a rod, longitudinal waves along a sheet, longitudinal waves along a rod embedded
in an incompressible medium, shear waves in an extended solid, torsional waves along a rod.

Exercise 11.5 Problem: Xylophones
Consider a beam of length l, whose weight is neglible in the elasticity equations, supported
freely at both ends (so the slope of the beam is unconstrained at the ends). Show that the
frequencies of standing flexural waves satisfy

ω =
(nπ

l

)2
(

D

ρA

)1/2

,

where A is the cross-sectional area and n is an integer. Now repeat the exercise when the
ends are clamped. Hence explain why xylophones don’t have clamped ends.

****************************

11.5 Body Waves and Surface Waves–Seismology

In Sec. 11.3 we derived the dispersion relations ω = cLk and ω = cTk for elastodynamic
waves in uniform media. We now consider how the waves are modified in an inhomogeneous,

1Much of the thermal expansion is dealt with by bellows.
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Fig. 11.3: Potential energy curves (dashed) for nearest neighbors in a crystal lattice. (a) At atmo-
spheric (effectively zero) pressure, the equilibrium spacing is set by the minimum in the potential
energy which is a combination of hard electrostatic repulsion by the nearest neighbors (upper solid
curve) and a softer overall attraction associated with all the nearby ions (lower solid curve). (b)
At much higher pressure, the softer, attractive component is moved inward and the equilibrium
spacing is greatly reduced. The bulk modulus is given by the curvature of the potential energy
curve and is considerably increased.

finite body, the earth. The earth is well approximated as a sphere of radius Re ∼ 6000
km and mean density ρ̄ ∼ 6000 kg m−3. The outer crust comprising rocks of high tensile
strength rests on a denser but more malleable mantle, the two regions being separated by
the famous Moho discontinuity. Underlying the mantle is an outer core mainly comprised
of liquid iron, which itself surrounds a denser, solid inner core; see Table 11.1 and Fig.11.4
below.

The pressure in the Earth’s interior is much larger than atmospheric and the rocks are
therefore quite compressed. Their atomic structure cannot be regarded as a small pertur-
bation from their structure in vacuo. Nevertheless, we can still use linear elasticity theory
to discuss small perturbations about this equilibrium. This is because the crystal lattice
has had plenty of time to re-establish a new equilibrium with a much smaller lattice spacing
(Figure 11.3). The density of lattice defects and dislocations will probably not differ ap-
preciably from the density on the earth’s surface. Hooke’s law should still apply below the
elastic limit, though the elastic moduli are much greater than those measured at atmospheric
pressure.

We can estimate the magnitude of the pressure P in the Earth’s interior by idealizing
the earth as an isotropic medium with negligible shear stress so its stress tensor is like that
of a fluid, T = Pg (where g is the metric tensor). Then the equation of static equilibrium
takes the form

dP

dr
= −geρ , (11.46)

where ρ is density and ge(r) is the acceleration of gravity at radius r. This equation can be
approximated by

P ∼ ρ̄geRe ∼ 300GPa ∼ 3× 106atmospheres , (11.47)

where ge is now the acceleration of gravity at the earth’s surface r = Re, and ρ̄ is the earth’s
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mean density. This agrees well numerically with the accurate value of 360GPa at the earth’s
center. The bulk modulus produces the isotropic pressure P = −KΘ [Eq. (11.34)]; and since
Θ = −δρ/ρ [Eq. (11.10)], the bulk modulus can be expressed as

K =
dP

d ln ρ
. (11.48)

[Strictly speaking, we should distinguish between adiabatic and isothermal variations in
Eq. (11.48), but the distinction is small for solids; cf. Sec. 10.6b. It is significant for gases.]
Typically, the bulk modulus inside the earth is 4-5 times the pressure and the shear modulus
in the crust and mantle is about half the bulk modulus.

11.5.1 Body Waves

Virtually all our direct information about the internal structure of the earth comes from
measurements of the propagation times of elastic waves generated by earthquakes. There
are two fundamental kinds of body waves: the longitudinal and shear modes of Sec. 11.3.
These are known in seismology as P-modes and S-modes respectively. The two polarizations
of the shear waves are designated SH and SV, where H and V stand for “horizontal” and
“vertical” displacements, i.e., displacements orthogonal to k that are fully horizontal, or that
are obtained by projecting the vertical direction ez orthogonal to k̂.

We shall first be concerned with what seismologists call high-frequency (of order 1Hz)
modes. This leads to three related simplifications. As typical wave speeds lie in the range
3–14 km s−1, the wavelengths lie in the range ∼ 1−10 km which is generally small compared
with the distance over which gravity causes the pressure to change significantly – the pressure
scale height. It turns out that we then can ignore the effects of gravity on the propagation
of small perturbations. In addition, we can regard the medium as effectively homogeneous
and infinite and use the local dispersion relations ω = cL,Tk, Finally, as the wavelengths are
short we can trace rays through the earth using geometrical optics (Sec. 6.3).

Zone R ρ K µ cP cS
103km 103kg m−3 GPa GPa km s−1 km s−1

Inner Core 1.2 13 1400 160 11 2
Outer Core 3.5 10-12 600-1300 - 8-10 -
Mantle 6.35 3-5 100-600 70-250 8-14 5-7
Crust 6.37 3 50 30 6-7 3-4
Ocean 6.37 1 2 - 1.5 -

Table 11.1: Typical outer radii (R), densities (ρ), bulk moduli (K), shear moduli(µ),
P-wave speeds and S-wave speeds within different zones of the earth. Note the absence of shear
waves in the fluid regions. (Adapted from Stacey 1977.)

Despite these simplifications, the earth is quite inhomogeneous and the sound speeds vary
significantly with radius; see Table 11.1. Two types of variation can be distinguished, the
abrupt and the gradual. To a fair approximation, the earth is horizontally stratified below
the outer crust. However, there are several abrupt changes in composition in the crust and
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i

Fig. 11.4: An incident shear wave polarized in the vertical direction (SVi), incident from above on
a boundary, produces both a longitudinal (P) wave and a SV wave in reflection and in transmission.
If the wave speeds increase across the boundary (the case shown), then the transmitted waves, SVt,
Pt, will be refracted away from the vertical. A shear mode, SVr, will be reflected at the same angle
as the incident wave. However, the reflected P mode, Pr, will be reflected at a greater angle to the
vertical as it is has a greater speed.

mantle (including the Moho discontinuity) where the density, pressure and elastic constants
apparently change over distances short compared with a wavelength. Seismic waves incident
on these discontinuities behave like light incident on the surface of a glass plate and can
be reflected and refracted. In addition, as there are now two different waves with different
phase speeds, it is possible to generate SV waves from pure P waves and vice versa at a
discontinuity (Fig. 11.4). However, this wave-wave mixing is confined to SV and P; the SH
waves do not mix with SV or P.

The junction conditions that control this wave mixing and all other details of the waves’
behavior at a discontinuity are: (i) the displacement ξ must be continuous across the bound-
ary (otherwise there would be infinite strain and infinite stress there); and (ii) the net force
acting on an element of surface must be zero (otherwise the surface, having no mass, would
have infinite acceleration), so the force per unit area acting from the front face of the bound-
ary to the back must be balanced by that acting from the back to the front. If we take the
unit normal to the horizontal boundary to be ez, then these boundary conditions become

[ξj] = [Tjz] = 0, (11.49)

where the notation [X] signifies the difference in X across the boundary and the j is a vector
index. (For an alternative, more formal derivation of [Tjz] = 0, see Ex. 11.6.)

One consequence of these boundary conditions is Snell’s law for the directions of propaga-
tion of the waves: Since these continuity conditions must be satisfied all along the boundary
and at all times, the phase φ = k ·x−ωt of the wave must be continuous across the boundary
at all locations x on it and all times, which means that the phase φ must be the same on the
boundary for all transmitted waves and all reflected waves as for the incident waves. This is
possible only if the frequency ω, the horizontal wave number kH = k sinα, and the horizontal
phase speed cH = ω/kH = ω/(k sinα), are the same for all the waves. (Here kH = k sinα
is the magnitude of the horizontal component of a wave’s propagation vector and α is the
angle between its propagation direction and the vertical; cf. Fig. 11.4.) Thus, we arrive at
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Snell’s law: For every reflected or transmitted wave J , the horizontal phase speed must be
the same as for the incident wave:

cJ
sinαJ

= cH is the same for all J. (11.50)

It is straightforward though tedious to compute the reflection and transmission coeffi-
cients (e.g. the strength of transmitted P-wave produced by an incident SV wave) for the
general case using the boundary conditions (11.49); see, e.g., Eringen and Suhubi (1975).
The analysis is straightforward but algebraically complex.

Gradual variation in the wave speeds, due to gradual variations of the elastic moduli and
density inside the earth, can be handled using geometrical optics:

In the regions between the discontinuities, the pressures and consequently the elastic
moduli increase steadily, over many wavelengths, with depth. The elastic moduli generally
increase more rapidly than the density so the wave speeds generally also increase with depth,
i.e. dc/dr < 0. This radial variation in c causes the rays along which the waves propagate
to bend. The details of this bending are governed by Hamilton’s equations, with the Hamil-
tonian Ω(x,k) determined by the simple nondispersive dispersion relation Ω = c(x)k (Sec.
6.3). Hamilton’s equations in this case reduce to the simple ray equation (6.44), which (since
the index of refraction is ∝ 1/c) can be rewritten as

d

ds

(

1

c

dx

ds

)

= ∇

(

1

c

)

. (11.51)

Here s is distance along the ray, so dx/ds = n is the unit vector tangent to the ray. This
ray equation can be reexpressed in the following form:

dn/ds = −(∇ ln c)⊥ , (11.52)

where the subscript ⊥ means “projected perpendicular to the ray;” and this in turn means
that the ray bends away from the direction in which c increases (i.e., it bends upward inside
the earth since c increases downward) with the radius of curvature of the bend given by

R =
1

|(∇ ln c)⊥|
=

1

|(d ln c/dr) sinα|
. (11.53)

Here α is the angle between the ray and the radial direction; see the bending rays in Fig. 11.5.
Figure 11.5 shows schematically the propagation of seismic waves through the earth. At

each discontinuity in the earth’s material, Snell’s law governs the directions of the reflected
and transmitted waves. As an example, note from Eq. (11.50) that an SV mode incident on
a boundary cannot generate any P mode when its angle of incidence exceeds sin−1(cT i/cLt).
(Here we use the standard notation cT for the phase speed of an S wave and cL for that of
a P wave.) This is what happens at points b and c in Fig. 11.5.

11.5.2 Edge waves

One phenomenon that is important in seismology but is absent for many other types of wave
motion is the existence of “edge waves”, i.e., waves that propagate along a discontinuity
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Fig. 11.5: Seismic wave propagation in a schematic earth model. A SV wave made by an earth-
quake, E, is partially reflected and refracted at the crust-mantle boundary a and the mantle-
outer-core boundary b; it then curves upward in accord with geometric optics, returning to the
outer-core-mantle boundary at c and the mantle-crust boundary at d, and then hits the earth’s
surface. At the crust-mantle interfaces a and d, there are a reflected SV wave and reflected and
transmitted P waves (arrows), as well as the transmitted SV wave. At the mantle-outer-core inter-
faces b and c, the angle of incidence of the SV wave is so large that it is not possible to generate
any P waves, so there are only the transmitted SV wave and a reflected SV wave. The earthquake
E also generates an SV wave traveling almost radially inward, through the crust-mantle interface
at q, to the mantle-outer-core interface at r. Because the outer core is liquid, it cannot support
an SV wave, so only a P wave is transmitted into the outer core at r. That P wave propagates
to the interface with the inner core at s, where it regenerates an SV wave (shown) along with
the transmitted and reflected P waves. The SV wave refracts back upward in the inner core, and
generates a P wave at the interface with the outer core t; that P wave propagates through the
liquid outer core to u where it generates an SV wave along with its transmitted and reflected P
waves; that SV wave travels nearly radially outward, through v to the earth’s surface.
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Fig. 11.6: Rayleigh waves in a semi-infinite elastic medium.

in the elastic medium. An important example is surface waves, which propagate along the
surface of a medium (e.g., the earth) and that decay exponentially with depth. Waves with
such exponential decay are sometimes called evanescent.

The simplest type of surface wave is called a Rayleigh wave. We shall now analyze
Rayleigh waves for the idealisation of a plane semi-infinite solid. This discussion must be
modified to allow for both the density stratification and the surface curvature when it is
applied to the earth. However, the qualitative character of the mode is unchanged.

Rayleigh waves are an intertwined mixture of P and SV waves; and, in analyzing them,
it is useful to resolve their displacement vector ξ into a sum of a (longitudinal) P-wave
component, ξL, and a (transverse) S-wave component, ξT .

Consider a semi-infinite elastic medium and introduce a local Cartesian coordinate system
with ez normal to the surface, with ex lying in the surface, and with the propagation vector k
in the ez-ex plane. The propagation vector will have a real component along the horizontal,
ex direction, corresponding to true propagation, and an imaginary component along the ez

direction, corresponding to an exponential decay of the amplitude as one goes downward
into the medium. In order for the longitudinal (P-wave) and transverse (SV-wave) parts of
the wave to remain in phase with each other as they propagate along the boundary, they
must have the same values of the frequency ω and horizontal wave number kx. However,
there is no reason why their vertical e-folding lengths should be the same, i.e. why their
imaginary kz’s should be the same. We therefore shall denote their imaginary kz’s by −iqL
for the longitudinal (P-wave) component and −iqT for the transverse (S-wave) component,
and we shall denote kx by k.

Focus attention, first, on the longitudinal part of the wave. Its displacement must have
the form

ξL = AeqLz+i(kx−ωt), z ≤ 0 . (11.54)

Substituting into the general dispersion relation ω2 = c2Lk
2 for longitudinal waves, we obtain

qL = (k2 − ω2/c2L)1/2 . (11.55)

Now, the longitudinal displacement field is irrotational (curl-free), so we can write

ξL
x,z = ξL

z,x (11.56)

or

ξL
z =

iqLξ
L
x

k
(11.57)
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As the transverse component is solenoidal (divergence-free), the expansion of the combined
P-T wave is produced entirely by the P component:

Θ = ∇ · ξL = ik

(

1−
q2
L

k2

)

A . (11.58)

Now turn to the transverse (SV-wave) component. We write

ξT = B expqT z+i(kx−ωt), z ≤ 0 , (11.59)

where (by virtue of the transverse dispersion relation)

qT =

(

k2 −
ω2

c2T

)1/2

. (11.60)

As the transverse mode is solenoidal, we obtain

ξT
z =

ikξT
x

qT
(11.61)

and for the rotation

φy =
1

2
ey ·∇× ξT = −

1

2
qT

(

1−
k2

q2
T

)

B . (11.62)

We must next impose boundary conditions at the surface. Now, as the surface is free,
there will be no force acting upon it, so,

T · ez|z=0 = 0, (11.63)

which is a special case of the general boundary condition (11.49). (Note that we can evaluate
the stress at the unperturbed surface location rather than at the displaced surface as we are
only working to linear order.) The normal stress is

−Tzz = KΘ + 2µ(ξz,z −
1

3
Θ) = 0 , (11.64)

and the tangential stress is
−Txz = 2µ(ξz,x + ξx,z) = 0 . (11.65)

Combining Eqs. (11.58), (11.62), (11.64) and (11.65), we obtain

(k2 + q2
T )2 = 4qLqTk

2 . (11.66)

Next we substitute for qL, qT from (11.55) and (11.60) to obtain the dispersion relation

ζ3 − 8ζ2 + 8

(

2− ν

1− ν

)

ζ −
8

(1− ν)
= 0 , (11.67)

where

ζ =

(

ω

cTk

)2

. (11.68)
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Fig. 11.7: Solution of the dispersion relation (11.67) for different values of Poisson’s ratio, ν.

The dispersion relation (11.67) is a third order polynomial in ω2 with generally just one
positive real root. From Eqs. (11.67) and (11.68), we see that for a Poisson ratio characteristic
of rocks, 0.2 . ν . 0.3, the phase speed of a Rayleigh wave is roughly 0.9 times the speed
of a pure shear wave; cf. Fig. 11.7.

Rayleigh waves propagate around the surface of the earth rather than penetrate the
interior. However, our treatment is inadequate because their wavelengths, typically 1–10 km
if generated by an earthquake, are not necessarily small compared with the pressure scale
heights in the outer crust. Our wave equation has to be modified to include these vertical
gradients.

This vertical stratification has an important additional consequence. If, ignoring these
gradients, we attempt to find an orthogonal surface mode just involving SH waves, we find
that we cannot simultaneously satisfy the surface boundary conditions on displacement and
stress with a single evanescent wave. We need two modes to do this. However, when we
allow for stratification, the strong refraction allows an SH surface wave to propagate. This
is known as a Love wave. The reason for its practical importance is that seismic waves are
also created by underground nuclear explosions and it is necessary to be able to distinguish
explosion-generated waves from earthquake waves. Now, an earthquake is usually caused
by the transverse slippage of two blocks of crust across a fault line. It is therefore an
efficient generator of shear modes including Love waves. By contrast, explosions involve
radial motions away from the point of explosion and are inefficient emitters of Love waves.
This allows these two sources of seismic disturbance to be distinguished.

11.5.3 Green’s Function for a Homogeneous Half Space

To get insight into the combination of waves generated by a localized source, such as an
explosion or earthquake, it is useful to examine the Green’s function for excitations in a
homogeneous half space. Physicists define the Green’s function Gjk(x, t;x

′, t′) to be the
displacement response ξj(x, t) to a unit delta-function force in the ek direction at location x′

and time t′, F = δ(x−x′)δ(t− t′)ek. Geophysicists sometimes find it useful to work, instead,
with the “Heaviside Green’s function,” GH

jk(x, t;x
′, t′), which is the displacement response

ξj(x, t) to a unit step-function force (one that turns on to unit strength and remains forever
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Fig. 11.8: The Heaviside Green’s function (displacement response to a step-function force) in a
homogeneous half space; adapted from Figs. 2 and 4 of Johnson (1974). The observer is at the
surface. The force is applied at a point in the x−z plane, with a direction given by the second index
of GH ; the displacement direction is given by the first index of GH . In (a), the source is nearly
directly beneath the observer so the waves propagate nearly vertically upward; more specifically,
the source is at 10 km depth and 2 km distance along the horizontal x direction. In (b), the
source is close to the surface and the waves propagate nearly horizontally, in the x direction; more
specifically, the source is at 2 km depth and is 10 km distance along the horizontal x direction. The
longitudinal and transverse speeds are cH = 8 km/s and cS = 4.62 km/s, and the density is 3.30
g/cm3. For a force of 1 dyne, a division on the vertical scale is 10−19 cm. The moments of arrival
of the P-wave, S-wave and Rayleigh wave from the moment of force turnon are indicated on the
horizontal axis.

constant afterwards) at x′ and t′: F = δ(x − x′)H(t − t′)ek. Because δ(t − t′) is the time
derivative of the Heaviside step function H(t − t′), the Heaviside Green’s function is the
time integral of the physicists’ Green’s function. The Heaviside Green’s function has the
advantage that one can easily see, visually, the size of the step functions it contains, by
contrast with the size of the delta functions contained in the physicists’ Green’s function.

It is a rather complicated task to compute the Heaviside Green’s function, and geophysi-
cists have devoted much effort to doing so. We shall not give details of such computations,
but merely show the Green’s function graphically in Fig. 11.8 for an instructive situation:
the displacement produced by a step-function force in a homogeneous half space with the
observer at the surface and the force at two different locations: (a) a point nearly beneath
the observer, and (b) a point close to the surface and some distance away in the x direction.

Several features of this Green’s function deserve note: (i) For the source nearly beneath
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Fig. 11.9: Surface displacements associated with three simple classes of free oscillation. a)Radial
modes. b) l=2 spheroidal mode. c) Torsional mode.

the observer [graphs (a)], there is no sign of any Rayleigh wave, whereas for the source close
to the surface, the Rayleigh wave is the strongest feature in the x and z (longitudinal and
vertical) displacements but is absent from the y (transverse) displacement. (ii) The y (trans-
verse) component of force produces a transverse displacement that is strongly concentrated
in the S-wave. (iii) The x and z (longitudinal and vertical) components of force produce x
and z displacements that include P-waves, S-waves, and (for the source near the surface)
Rayleigh waves. (iv) The gradually changing displacements that occur between the arrival
of the turn-on P-wave and turn-on S-wave are due to P-waves that hit the surface some
distance from the observer, and from there diffract to the observer as a mixture of P- and
S-waves, and similarly for gradual changes of displacement after the turn-on S-wave.

The complexity of seismic waves arises in part from the richness of features in this
homogeneous-half-space Green’s function, in part from the influences of the earth’s inho-
mogeneities, and in part from the complexity of an earthquake’s or explosion’s forces.

11.5.4 Free Oscillations of Solid Bodies

In computing the dispersion relations for body (P- and S-wave) and surface (Rayleigh-wave)
modes, we have assumed that the wavelength is small compared with the earth’s radius and
therefore can have a continuous frequency spectrum. However, it is also possible to excite
global wave modes in which the whole earth “rings”. If we regard the earth as spherically
symmetric, then we can isolate three fundamental types of oscillation, radial, spheroidal and
torsional.

If we introduce spherical polar coordinates for the displacement, then it is possible to
separate and solve the equations of elastodynamics to find the normal modes just like solving
the Schrodinger equation for a central potential. Each of the three types of modes has a
displacement vector ξ characterized by its own type of spherical harmonic.

The spheroidal modes have radial displacements proportional to Y m
l (θ, φ)er (where θ, φ

are spherical coordinates, Y m
l is the scalar spherical harmonic of order l and m, and er is

the unit radial vector; and they have nonradial components proportional to ∇Y m
l ). These

modes are called “spheroidal” because (when one ignores the tiny nonsphericity of the earth
and ignores Coriolis and centrifugal forces due to the earth’s rotation), their eigenfrequencies
are independent of m, and thus can be studied by specializing to m = 0, in which case the
displacements become

ξr ∝ Pl(cos θ) , ξθ ∝ sin θP ′
l (cos θ). (11.69)

These displacements deform the earth in a spheroidal manner for the special case l = 2. [In



27

Eq. (11.69) Pl is the Legendre polynomial and P ′
l is the derivative of Pl with respect to its

argument.] The radial modes are the special case l = 0 of these spheroidal modes. It is often
mistakenly asserted that there are no l = 1 modes because of conservation of momentum. In
fact, l = 1 modes do exist: for example, the central regions of the earth can move up, while
the outer regions move down. The l = 2 spheroidal mode has a period of 53 min. and can
ring for about 1000 periods. (We say that its quality factor is Q ∼ 1000.) This is typical for
solid planets.

Toroidal modes have vanishing radial displacements, and their nonradial displacements
are proportional to the vector spherical harmonic er × ∇Y m

l . As for spheroidal modes,
spherical symmetry of the unperturbed earth guarantees that the eigenfrequencies will be
independent of the azimuthal quantum number m, so m = 0 is representative. For m = 0
the only nonzero component of the vector spherical harmonic er×∇Y m

l is in the φ direction,
and it gives

ξφ ∝ sin θP ′
l (cos θ) . (11.70)

In these modes alternate zones of different latitude oscillate in opposite directions (clockwise
or counterclockwise at some chosen moment of time), in such a way as to conserve total
angular momentum.

When one writes the displacement vector ξ for a general vibration of the earth as a
sum over these various types of normal modes, and inserts that sum into the wave equation
(11.12) (augmented, for greater realism, by gravitational forces), spherical symmetry of the
unperturbed earth guarantees that the various modes will separate from each other, and
for each mode the wave equation will give a radial wave equation analogous to that for a
hydrogen atom in quantum mechanics. The boundary condition T · er = 0 at the earth’s
surface constrains the solutions of the radial wave equation, for each mode, to be a discrete
set, which one can label by the number n of radial nodes that they possess (just as for the
hydrogen atom). The frequencies of the modes increase with both n and l.

For small values of the quantum numbers, the modes are quite sensitive to the model
assumed for the earth’s structure. For example, they are sensitive to whether one correctly
includes the gravitational restoring force in the wave equation. However, for large l and n,
the spheroidal and toroidal modes become standing combinations of P waves, SV waves, SH
waves, Rayleigh and Love waves, and therefore they are rather insensitive to one’s ignoring
the effects of gravity.

11.5.5 Seismic Tomography

Observations of all of these types of seismic waves clearly code much information about the
earth’s structure and inverting the measurements to infer this structure has become a highly
sophisticated and numerically intensive branch of geophysics. The travel times of the P and
S body waves can be measured at various points over the earth’s surface and essentially allow
cL and cT and hence K/ρ and µ/ρ to be determined as functions of radius inside the earth.
Travel times are . 1 hour. Using this type of analysis, seismologists can infer the presence
of hot and cold regions within the mantle and then show how the rocks are circulating under
the crust.
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It is also possible to combine the observed travel times with the the earth’s equation of
elastostic equilibrium

dP

dr
=
K

ρ

dρ

dr
= −ge(r)ρ , (11.71)

where the local gravity is given by

ge =
4πG

r2

∫ r

0

r′2ρ(r′)dr′ , (11.72)

to determine the distributions of density, pressure and elastic constants. Measurements
of Rayleigh and Love waves can be used to probe the surface layers. The results of this
procedure are then input to obtain free oscillation frequencies which compare well with the
observations. The damping rates for the free oscillations furnish information on the interior
viscosity.

****************************

EXERCISES

Exercise 11.6 Derivation: Junction Condition at a Discontinuity
Derive the junction condition [Tjz] = 0 at a horizontal discontinuity between two media by
the same method as one uses in electrodynamics to show that the normal component of the
magnetic field must be continuous: Integrate the equation of motion ρdv/dt = −∇ ·T over
the volume of an infinitesimally thin “pill box” centered on the boundary, and convert the
volume integral to a surface integral via Gauss’s theorem.

Exercise 11.7 Example: Reflection and Transmission of Normal, Longitudinal Waves at a
Boundary
Consider a longitudinal elastic wave incident normally on the boundary between two media,
labeled 1,2. By matching the displacement and the normal component of stress at the
boundary, show that the ratio of the transmitted wave amplitude to the incident amplitude
is given by

t =
2Z1

Z1 + Z2

where Z1,2 = [ρ1,2(K1,2 +4µ1,2/3)]1/2 is known as the acoustic impedance. (The impedance is
independent of frequency and just a characteristic of the material.) Likewise, evaluate the
amplitude reflection coefficent and verify that wave energy flux is conserved.

Exercise 11.8 Example: Earthquakes
The magnitude M of an earthquake is a quantitative measure of the strength of the seismic
waves it creates. Roughly speaking, the elastic wave energy release can be inferred semi-
empirically from the magnitude using the formula

E = 105.2+1.44MJ

The largest earthquakes have magnitude ∼ 8.5.
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One type of earthquake is caused by slippage along a fault deep in the crust. Suppose that
most of the seismic power in an earthquake with M ∼ 8.5 is emitted at frequencies ∼ 1Hz
and that the quake lasts for a time T ∼ 100s. If V is an average wave speed, then it is
believed that the stress is relieved over an area of fault of length ∼ V T and a depth of order
one wavelength. By comparing the stored elastic energy with the measured energy release
make an estimate of the minimum strain prior to the earthquake. Is this reasonable? Hence
estimate the typical displacement during the earthquake in the vicinity of the fault.
Make an order of magnitude estimate of the acceleration measurable by a seismometer in
the next state and in the next continent. (Ignore the effects of density stratification, which
are actually quite significant.)

****************************

11.6 The relationship of Classical Waves to Quantum

Mechanical Excitations.

In the previous chapter, we explored the limits of the continuum approximation and showed
how we must acknowledge that solids are composed of atoms in order to account for the
magnitude of the elastic constants and to explain why most solids yield under comparatively
small strain. A quite different demonstration of the limits of the continuum approximation
is provided by studying the normal modes of vibration of a solid lattice.

Consider a solid of finite size and solve the wave equation (11.12) for small amplitude
normal modes, each with its own eigenfrequency ωN and its eigenfunction ξN . For simplicity,
suppose that the shape of the body is a cube and that its surfaces are free so that the normal
component of the stress tensor vanishes there. As described in Sec. 11.3, there are scalar
longitudinal and vector transverse modes. A general, small amplitude oscillatory disturbance
can be decomposed into a linear superposition of these modes,

ξ(x, t) =
∑

N

aN exp (−iωN t)ξN(x), (11.73)

where, as usual, we implicitly take the real part and aN is the amplitude of mode N . It turns
out to be convenient to normalize the eigenfunctions so that

∫

ρ|ξN |
2dV = M , (11.74)

where M is the mass of the body; aN then measures the mean physical displacement in mode
N .

Classical electromagnetic waves in vacuo, are described by linear Maxwell equations,
and, after they have been excited, will essentially propagate forever. This is not so for
elastic waves, where the linear wave equation is only an approximation. Nonlinearities, and
most especially impurities and defects in the homogeneous structure of the body’s material,
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will cause the different modes to interact so that their amplitudes psi change slowly with
time according to a damped simple harmonic oscillator differential equation of the form

äN + (2/τN)ȧN + ω2
NaN = F ′/M, (11.75)

where the second term on the left hand side is a damping term that will cause the mode
to decay as long as τN > 0, and F ′ is a fluctuating or stochastic force attributable to the
coupling between different modes. Equation (11.75) is the Langevin equation that we studied
in Chap. 5, and the strength and spectrum of the fluctuating forces F ′ is determined by the
fluctuation-dissipation theorem, Eq. (5.111). If the modes are thermalized at temperature
T , then the fluctuating forces maintain an average energy of kT in each one.

Now, what happens quantum mechanically? The ions and electrons in an elastic solid
interact so strongly that it is very difficult to analyze them directly. A quantum mechanical
treatment is much easier if one makes a canonical transformation from the coordinates and
momenta of the individual ions or atoms to new, generalized coordinates xN and momenta
pN which represent weakly interacting normal modes. These coordinates and momenta must
now be viewed as Hermitian operators, and they are related to the quantum mechanical
amplitude ân by

x̂N =
1

2
(âN + â†N), (11.76)

p̂N =
MωN

2i
(âN − â†N ), (11.77)

where the dagger denotes the Hermitean adjoint. We can transform back to obtain an
expression for the displacement of the i’th ion

x̂i =
1

2
ΣN [âNξN(xi) + â†Nξ

∗
N(xi)] (11.78)

The Hamiltonian can be written in terms of these coordinates as

Ĥ = ΣN

(

p̂2
N

2M
+

1

2
Mω2

N x̂
2
N

)

+ Ĥint , (11.79)

where the first term is a sum of simple harmonic oscillator Hamiltonians for individual modes
and Ĥint is the perturbative interaction Hamiltonian which takes the place of the combined
damping and stochastic forcing terms in the classical equation (11.75). When the various
modes are thermalized, the mean energy in mode N takes on the standard Bose-Einstein
form ~ωN [1/2 + {exp(~ωN/kT ) − 1}−1] [Exercise 3.2, augmented by a “zero-point energy”
of 1

2
~ω], which reduces to kT in the classical (~ → 0) limit.
As the unperturbed Hamiltonian for each mode is identical to that for a particle in a

harmonic oscillator potential well, it is sensible to think of each wave mode in a manner
analogous to such a particle-in-well. Just as the particle-in-well can reside in any one of a
series of discrete energy levels lying above the “zero point” energy of ~ω/2, and separated
by ~ω, so each wave mode with frequency ωN must have an energy (n + 1/2)~ωN , where n
is an integer. The operator which causes the energy of the mode to decrease by ~ωN is the
annihilation operator for mode n

α̂N =

(

MωN

~

)1/2

âN , (11.80)
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and the operator which causes an increase in the energy by ~ωN is its Hermitian conjugate,
the creation operator α̂†

N . In the case of wave modes, it is useful to think of each increase or
decrease in the energy as the creation or annihilation of an individual quantum or “particle”
of energy, so that when the energy in mode N is (n+1/2)~ωN , there are n quanta (particles)
present. These particles are called phonons. Phonons are not conserved, and because they
can co-exist in the same state (the same mode), they are bosons. They have individual
energies and momenta which must be conserved in their interactions with each other and
with other types of particles, e.g. electrons.

The important question is now, given an elastic solid at finite temperature, do we think
of its thermal agitation as a superposition of classical wave modes or do we regard it as a
gas of quanta? The answer depends upon what we want to do. From a purely fundamen-
tal viewpoint, the quantum mechanical description takes precedence. However, for many
problems where the number of phonons per mode ∼ kT/~ωN � 1, the classical description
is amply adequate and much easier to handle. We do not need a quantum treatment to
compute the normal modes of a vibrating building excited by an earthquake or trying to
understand how to improve the sound quality of a violin. Here the difficulty is in accommo-
dating the boundary conditions so as to determine the normal modes. All this was expected.
What comes as more of a surprise is that often, for purely classical problems, where ~ is
quantitatively irrelevant, the fastest way to procede formally is to follow the quantum route
and then take the limit ~ → 0. We shall see this graphically demonstrated when we discuss
nonlinear plasma physics in Chap. 22.
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