
Solution for Chapter 10

(compiled by Xinkai Wu)

A. 10.3 Order of magnitude estimates
(i) Steel wire [C.Y.Mou/90]

z=L

z=0

Figure 1: Steel wire

The weight of the wire creates stress inside,

Tzz,z + ρg = 0 ⇒ Tzz = ρgz

The maximum stress is at z = L, T max
zz = ρgL = εE, where ε is the strain

and E is the Young’s modulus.
Typically the wire would break if the strain ε > 10−3. Hence, the maximum

length of a wire is :

L =
T max

zz

ρg
=

εE

ρg
≈ 10−3Esteel

ρg

Plugging in E = 210GPa, ρ = 7.8 g
cm3 for steel we get L ≈ 3× 103m,i.e. for

a steel wire to break under its own weight it would have to be several kilometers
long.

(ii) Non-spherical asteroid

R

Rα

M

Figure 2: Non-spherical asteroid
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Consider first an asteroid of mass M that has a roughly spherical shape with
radius R and deviation from sphericity of order αR. Then the typical stress due
to self-gravity is

T ≈ F

S
≈ GM

R2
× ρ (αR)

3 × 1

(αR)2
≈ αGρ2R2

If the stress exceeds the elastic limit the asteroid will deform under it be-
coming more spherical. The maximum size for a non-spherical asteroid is then
given by

Rmax =

√

Tmax

αG
× 1

ρ

For non-spherical asteroids, we can take α ≈ 1. Further, taking ρ = ρEarth =
5g/cm3, typical maximum strains ε ≈ 10−3 and maximum stress Tmax = εE ≈
108Pa, it’s then easy to find

Rmax ≈ 200km

We conclude that the biggest non-spherical asteroids are several hundred
kilometers in size.

(iii) Hellium Balloon [N. Niorris/85]
First, let’s recognize that the best geometry for the tank is spherical. It

maximizes the volume to surface area ratio, and therefore means the lightest
tank for a given volume of helium.

Further suppose that the tank has an inner radius of R and thin walls of
thickness d. Then the mass of the tank is Mt = 4πρtR

2d = 3ρtVtd/R, where Vt

is the tank volume.
Treating the helium in the tank and in the balloon as an ideal gas so PV/T =

KBoltzman× (number of Helium molecules), we can write

Vb =
PtVt

Tt
× Tb

Pb

The lifting bouyant force on the balloon is Fb = Vb(ρair − ρHe)g ≈ Vbρairg,
with g being the acceleration of gravity (assuming that the gas in the balloon
is at the same T and P as the surrounding air).

The balloon will lift the tank if the ratio κ = Fb

Mtg
is greater than one.

Using the expressions above:

κ =
Pt

Pb

Tb

Tt

(

R

3d

)

ρair

ρt

Obviously, the more compressed the gas in the tank is, the bigger the bouyant
force. The stress in the tank material is of order σ = PtR/d and so, the
maximum pressure the tank can hold is

P max
t ≈ 10−3E

d

R
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and so

κ = 0.3× 10−3 E

Pb

Tb

Tt

ρair

ρt

Using E = 2× 106atm for steel, ρair

ρt
= 1.7× 10−4, we get

κ ≈ 0.1× Tb

Tt

Therefore if the helium in the tank was initially at room temperature it
won’t be possible to lift the tank with a balloon. It may become feasible if the
helium in the tank is cooled to a very low temperature, then is warmed when
released into the balloon.

B.

Parts of 10.1 and 10.2: Cylindrical coordinates [by Xinkai Wu and Kip
Thorne/02]

10.1a

eφ

eω∼

eω∼

∆

eφ
eω∼

eφ

eω∼

eω∼
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eω∼
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Figure 3: Cylindrical coordinates

It should be evident that ez is the same everywere (its length is one every-
where and it always points in the same direction, so ∇kez = 0 for all k. It
should also be evident that all the basis vectors are unchanged as we move in
the z direction; each of them maintains its direction and length: ∇zej = 0 for
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all j. Therefore, we need only consider the behavior of eφ and e$ in the $-φ
plane.

Figure 3 shows the computation of ∇φe$ ≡ ∇eφ
e$ at two different locations

in the $-φ plane. In each case we examine e$ at the tail and the tip of eφ. We
drag e$ from the tip back to the tail (obtaining the dashed vector), then take
its difference from the tail value of e$ to obtain ∇φe$ ≡ ∇eφ

e$. From the
diagrams, it should be evident that ∇φe$ always points in the φ direction and
it has a length that is shorter at larger radii, scaling in fact as 1/$. In other
words:

∇φe$ =
eφ

$

which gives, by the definition ∇kej = Γijkei, Γφ$φ = 1
$ . By a similar construc-

tion one can deduce that

∇φeφ =
−e$

$

which gives, by the definition ∇kej = Γijkei, Γ$φφ = − 1
$ — a value that can

also be deduced from the antisymmetry of the connection coefficients on their
first two indices, Γ$φφ = −Γφ$φ.

When we move in the $ direction rather than the φ direction, the basis
vectors e$ and eφ remain unchanged, so Γjk$ = 0. Therefore the only nonzero
connection coefficients are Γ$φφ = −Γφ$φ = 1/$.

The pictorial derivation in Fig. 3 does not fully capture the meaning of
the derivative in ∇eφ

e$. The derivative is really defined by the usual limiting
process where one takes differences not at the tip and tail of eφ but rather at
the tail and at some distance ε � 1 up the vector eφ from tail toward tip; and
one then divides the difference by ε and takes the limit as ε → 0. However, the
cruder pictorial derivation in Fig. 3, which ignores the limiting process, is easier
to do quickly and illustrates quite clearly what is going on.

10.2

∇ · ξ = ξi;i = ξi,i + Γijiξj

=
∂ξ$

∂$
+

1

$

∂ξφ

∂φ
+

∂ξz

∂z
+ Γφ$φξ$

=
∂ξ$

∂$
+

1

$

∂ξφ

∂φ
+

∂ξz

∂z
+

ξ$

$

10.5 Torsion pendulum [by Xinkai Wu/02]
We’ll use cylindrical coordinates ($, φ, z), with the fixed end of the wire at

z = 0 and the end with masses attached at z = l. Also we ignore the mass of
the wire itself.

(i) The balance of vertical elastic force in the wire and the masses’ weight
gives the longitudinal strain:

ε =
3mg

πa2E
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(ii) Take a cross section of the wire at z. The restoring torque there due to
the elastic force is

M =

∫ a

0

$Tφz2π$d$

while we know that

Tφz = −2µΣφz = −µ
∂ξφ

∂z

In the last step of the above equation we’ve used the expression for Σφz in Box.
10.2 and the fact there’s no φ-dependence due to cylindrical symmetry.

It’s not hard to guess that ξφ = $ z
l φ0 with φ0 being the angular displace-

ment at z = l. This just corresponds to a rigid rotation of the fibre, in the plane
at height z, through an angle δφ = z

l φ0. (You can also verify explicitly that
ξr = 0; ξφ = $ z

l φ0; ξz = zε satisfies the required balance of force inside the wire
∇ ·T = 0). This gives for the restoring torque

M = − πµa4

2l
φ0

The moment of inertia is I = 3mb2. And then the equation of motion
M = Iφ̈0 gives us the period

P = 2π

(

6mlb2

πµa4

)1/2

Using ε = 3mg
πa2E to eliminate m in favor of ε we find

P = 2π

(

l

g

)1/2 (
2b2Eε

a2µ

)1/2

(iii) Inverting the above expression we get

lb2

a2
=

P 2gµ

8π2Eε

Take P = 1day and consider steel wire with E = 210GPa, µ = 81GPa, ε ≈
10−3, we get

lb2

a2
≈ 4× 1011m

This is a very hard parameter value to achieve, though not totally impossible.
For example, one could set l ≈ 10m, a ≈ 0.01mm = 10 microns, and b ≈ 2m. In
practice, experimenters performing very high precision mechanical experiments
typically use torsion-pendulum periods of order an hour rather than a day.

C.
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10.9 Elastica [by Xinkai Wu/02]
(i) Consider the part of the wire between one end and the point a distance

z′ from this end. The total force (the force applied at the end and the stress
force applied by the rest of the wire) exerted on this part must vanish. The ez

component of this immediately gives

Fcosθ =

∫

Tz′z′dx′dy′

while the ex component gives

Fsinθ =

∫

Tx′z′dx′dy′

Now consider the infinitesimal segment between z′ and z′ + dz′. The total
torque exerted on this segment is

Fsinθdz′ + M(z′)−M(z + dz′)

where M =
∫

x′Tz′z′dx′dy′ (and by using Tz′z′ = −Eξz′,z′ = −Ex′ dθ
dz′

and

performing the integral, one gets M = −D dθ
dz′

with the flexural rigidity D =
Eba3

12 ).
This total torque must vanish, which gives

Fsinθ =
dM

dz′

Combining the above results immediately gives

d2θ

dz′2
= − Fsinθ

D
= − sinθ

l2

where we have defined the characteristic length l ≡
√

D
F . For rubber, E =

0.002GPa, and if we take a = 1cm, b = 0.5cm, and apply a force F = 10N , we
get l ≈ 9mm.

(ii) Mathematica gives a solution

θ(z′) = 2 · am(
1√
2

z′

l
|2)

where am(u|m) is the inverse function of the elliptic integral of the first kind
F (φ|m), namely φ = am(u|m) ⇔ u = F (φ|m). (Recall that F (φ|m) =
∫ φ

0
1√

1−msin2t
dt).

(iii) Now to get the shape of the wire we need to find z(x).
In the previous part we obtained θ(z′), whose inverse is just

z′ =
√

2l

∫ θ/2

0

1√
1− 2sin2t

dt =
√

2l

∫ θ/2

0

1√
cos2t

dt
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(note that this solution has θ(z′ = 0) = 0.) so we get

dz′ =
l√
2

1√
cosθ

dθ

therefore we have

cosθ =
dx

dz′
=
√

2cosθ
1

l

dx

dθ

sinθ =
dz

dz′
=
√

2cosθ
1

l

dz

dθ

Integrating the second equation using the initial condition θ(z = 0) = 0 gives

cosθ =

(

z√
2
− 1

)2

Using this result we get

dx

dz
=

dx/dθ

dz/dθ
=

cosθ

sinθ
=

(

z√
2
− 1
)2

±
√

1−
(

z√
2
− 1
)4

Integrating the above equation numerically using Mathematica, we get the
plot for x(z), z ∈ [0, 2

√
2l](which corresponds to positive θ), see Fig. 4
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z
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Figure 4: Elastica x(z) in units of l; z ∈ [0, 2
√

2l]

As x continues increasing, z will decrease(which corresponds to negative θ),
and we see that z(x) is a periodic function as that in (b) of Fig. 10.7 of the
text, with period ≈ 2× 1.7l, and the crest height is zmax = 2

√
2l.
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(iv) If anyone of you have a slender wire good for this experiment and would
like to give me a demonstration, I’d be very glad to see it!

10.10 Foucault pendulum [by Xinkai Wu/00]
(i) Balance of forces on the mass along the wire gives

F = (mgcosθ0 + mlθ̇2
0)ez′

where the second term in the above expression is the centripetal force. Using
energy conservation

1

2
m
(

lθ̇0

)2

= mgl (cosθ0 − cosθmax
0 )

we can write the second term as

mlθ̇2
0 = 2mg (cosθ0 − cosθmax

0 )

Therefore

F = mgcosθ0 + 2mg (cosθ0 − cosθmax
0 ) = mg (3cosθ0 − 2cosθmax

0 )

For small amplitudes, cosθ0 ≈ 1 and the centripetal force can be neglected,
therefore F ≈ mgez′ .

(ii) See Fig. 5. We have

θ(z′) = θ0 − φ(z′)

where θ(z′) is the angle between the tangent of the wire at z′ and the vertical
direction, and φ(z′) is the angle between the tangent of the wire at z′ and the
direction of F.

Then using the result of Ex. 10.9, we have

d2φ

dz′2
=

Fsinφ

D
≈ Fφ

D

note the relative minus sign on the r.h.s. of the above equation w.r.t. to that
in Ex. 10.9: this is a consequence of the fact that now F is pulling, instead of
compressing the wire.

F

D
=

Tz′z′ab

Ea3b/12
=

Eεab

Ea3b/12
=

12ε

a2
=

1

λ2

where ε ≡ ξz′,z′ and λ ≡ a
(12ε)1/2

.

Solving this differential equation and only keeping the decaying solution
(because as z′ becomes large, θ(z′) → θ0), one finds

φ = const · e−z′/λ

and therefore

θ(z′) = θ0 − const · e−z′/λ
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θ

θ

φ

0

x

z

F

Figure 5: Foucault pendulum

The constant is fixed by the boundary condition θ(z′ = 0) = 0 and we get

θ(z′) = θ0

(

1− e−z′/λ
)

(iii)

dx

dz
= tanθ ≈ θ = θ0

(

1− e−z′/λ
)

≈ θ0

(

1− e−z/λ
)

where in the last step we’ve used z′ ≈ z. And the boundary condition is
x(z = 0) = 0. This gives

x(z) =
[

z − λ
(

1− e−z/λ
)]

θ0

Using the fact that l >> λ, we get

x(l) ≈ (l − λ)θ0

The equation of motion for the mass is:

mẍ(l) = m(l − λ)θ̈0 = −Fsinθ0 ≈ −mgθ̈0

namely, θ̈0 +
g

l − λ
θ0 = 0

where we’ve used F ≈ mg and sinθ0 ≈ θ0.
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This e.o.m. gives a period

P = 2π

(

l − λ

g

)1/2

(iv) now

δP = 2π
1

2
√

g(l − λ)
δλ

with δλ =
b− a

(12ε)1/2

⇒ δP

P
=

(

b− a

l − λ

)(

1

48ε

)1/2

≈
(

b− a

l

)(

1

48ε

)1/2

D.

10.12 Paraboloidal mirror [[by Alexei Dvoretskii/00]
(i) The equation for a paraboloid with focal length f is

z =
r2

4f

and for a sphere of radius R,

z = R−
√

R2 − r2

Choosing R = 2f and expanding for r
R << 1, we get

z =
r2

4f
+

r4

64f3

The vertical displacement of the mirror is therefore η(r) = r4

64f3

(ii) Because of the cylindrical symmetry the laplacian has the simple form

∇2 =
1

r

∂

∂r
r

∂

∂r

The pressure that must be applied is then given by

F = D∇2∇2η =
D

f3

(ii) The total force is

FπR2 = πR2 D

f3
= NSzr
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Therefore the force applied at each lever is

Szr =
πDR2

Nf3

The associated bending torque is just

M = SzrR =
πDR3

Nf3

(iv) The radial displacement is found from

ξr = −z
∂η

∂r
= − r3z

16f3

(v) The associated expansion and strain are

Θ =
1

r

∂

∂r
rξr =

−r2z

4f3

Σrr =
2∂ξr

3∂r
− ξr

3r
= − 5r2z

48f3

Σφφ =
2ξr

3r
− ∂ξr

3∂r
= − r2z

48f3

Σzz = − ∂ξr

3∂r
− ξr

3r
=

r2z

12f3

Using

T = −KΘg− 2µΣ

we see that the maximum stress is Trr at the rim

Tmax =
R2h

8f3

(

K +
5

6
µ

)

After straightforward manipulation

Tmax =
3− 2ν

256(1− 2ν)(1 + ν)
E

(

2R

f

)3
h

R
=

(3− 2ν)R2hE

32(1− 2ν)(1 + ν)f3

Now, if the mirror is not to break then it should be that Tmax ≤ 10−4E. ν = 0.25
for glass. Then there’s a limit on how “fast” and thick a mirror can be at the
same time

(

2R

f

)3
h

R
≤ 1.5× 10−2

Ex. 10.4 Fracture of a pipe [by Xinkai Wu/02]
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(i) This part is straightforward, and similiar to (actually simpler than) what
you did in Ex. 10.7, so we omit the details here.

(ii) Cylindrical symmetry together with translational symmetry along the z
direction implies that ξφ = 0, ξz = 0, and there is no φ or z dependence in the
only nonzero displacement ξr. (note that in this problem, we use r instead of
$ to denote the radius)

One easily finds the strain tensor:

Srr =
∂ξr

∂r

Sφφ =
ξr

r

and all other components vanish.
From the above strain tensor one finds the expansion and the non-vanishing

components of the shear:

Θ =
∂ξr

∂r
+

ξr

r

Σrr =
2

3

∂ξr

∂r
− 1

3

ξr

r

Σφφ =
−1

3

∂ξr

∂r
+

2

3

ξr

r

Σzz = − 1

3

(

∂ξr

∂r
+

ξr

r

)

(the shear tensor can also be obtained using the formulas in Box 10.2)
Eq. (10.35) gives

fi = KΘ;i + 2µΣij;j

Let’s compute Σij;j :

Σij;j = Σir,r + ΓiφφΣφφ + ΓφrφΣir

this gives the only non-vanishing component of Σij;j

Σrj;j =
∂Σrr

∂r
− Σφφ

r
+

Σrr

r

=
2

3

∂

∂r

(

∂ξr

∂r
+

ξr

r

)

=
2

3

∂Θ

∂r

Therefore

fr =

(

K +
4µ

3

)

∂Θ

∂r
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and

fr = 0⇒ ∂Θ

∂r
= 0

namely Θ is a constant, independent of the location r.
This gives us the equation

dξr

dr
+

ξr

r
= constant

solving which gives

ξr(r) = Ar +
B

r

with A and B are constants to be fixed by boundary condition.
(iii) Using

Tij = −KΘgij − 2µΣij

we find that the off-diagonal Tij ’s vanish, and

Trr =

(

−2K − 2µ

3

)

A + 2µ
B

r2

which combined with the boundary condition Trr(R1) = p, Trr(R2) = 0 fixes
the constants

A =
p

2K + 2µ
3

R2
1

R2
2 −R2

1

, B =
p

2µ

R2
1R

2
2

R2
2 −R2

1

thus

Trr = p
R2

1

R2
2 −R2

1

(

R2
2

r2
− 1

)

also we find

Tφφ = −p
R2

1

R2
2 −R2

1

(

R2
2

r2
+ 1

)

Tzz =

(

−K +
2µ

3

)

p

K + µ
3

R2
1

R2
2 −R2

1

= −ν
2pR2

1

R2
2 −R2

1

where we’ve used the eq. (10.44) for ν. Note that Tzz is independent of r.
And we find the force inside the pipe walls along the z direction to be

Fz = Tzzπ
(

R2
2 −R2

1

)

= −2πνpR2
1

(iv) the skew angle is given by

φ = −2
∂ξr

∂r
= 2p

R2
1

R2
2 −R2

1

1

µ

(

R2
2

2r2
− 1

2K
µ + 2

3

)

= 2p
R2

1

R2
2 −R2

1

1

µ

(

R2
2

2r2
− 1

5

)
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where to get the last line we’ve used the fact that K/µ = 2(1+ν)
3(1−2ν) and ν = 0.3

for our case.
So we see that the skew angle takes its maximus value at r = R1

φmax =
2p

µ

λ
2 − 1

5

λ− 1

where we’ve defined λ ≡ R2

2

R2

1

.

As λ increases, φmax decreases, thus we find the smallest allowable λ

λ =

1
5 −

µφmax

2p

1
2 −

µφmax

2p

Plugging in the numbers we find

λ = 1.21

and the minimum wall thickness

d = R2

(

1− 1√
λ

)

= 2.73mm
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