Solution for Chapter 9
(compiled by Xinkai Wu)

1. Ex. 9.2 The holographically reconstructed wave [by Kip Thorne, Jaemo
Park, and Alexei Dvoretskii/99]
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Figure 1: holographically reconstructed wave

(a) See Fig. 1, in which r = |r| = [Rn—1r'| ® R —n-r'. Using the
Helmholtz-Kirchhoff formula, we get
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If the mirror wave had been absent and the photographic plate replaced
by a window, then by using Helmholtz-Kirchhoff with ¢y = O we would have

ikR—ikr!-n

gotten ¢p = ik [dS/ (2dme) O — which is the same as wg) (to within
a multiplicative constant).

The direction of propagation for different terms can be obtained by finding
the stationary phase points for rapidly oscillating terms (note the last factor in
the expressions for wg), g), g’) are rapidly oscillating, except in the direction
of output wave). We find

for g), it’s n = nyp, i.e. the wave propagates along the mirror wave direc-
tion.

for 53) , 1 = e,, i.e. the wave propagates along e,, the direction perpendic-
ular to the hologram.

for 1/)5,3), 2sinfy = sinf. (Here we assume that both n and ng are in the
y-z plane, and 0 and 6y are the angles between them and e, respectively. We’ll
make the same assumption in part (b) and (c).) Note that if 8y < 7/6, then
there exists a solution to this equation and the secondary image actually exists.

(b) Now if all angles are small (paraxial optics), then
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The field at the object can be obtained by propagating back to point (0,0, —z)

ik —tkz
W = & /dS’Oe—e’ky b 9, ~ 0
2m z
i.e. ¥p(2) x ¥F(—2), we see that indeed the secondary image resides in front
of the hologram and is turned inside out. See Fig. 2.
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Figure 2: the secondary image



The angles in the wave scattered from the object and in the secondary wave
are related by

—stnf; = sin26y — sinb,
and for 6; =~ 0, if 6y is not small, then

Ab;
cos26

AG; = cosO,A0;, = Ab, = > Ab;

i.e. the image is stretched.
(c) If light with wavenumber k is shined at the original angle 6y for recon-
struction, then
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So again by looking for a stationary phase condition we see that the direction
of propagation will be given by sin 8 = sinfy (1 — %") . (the sign of § is indicated
in Fig. 3)
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Figure 3: plane-parallel white light

0o = m/4, ko = kgreen, and sinf = sinfy (1 - Ag:‘een)'
(1) A= Agreen, sin@ =0, 0 =0

_ : _ 1 Are ~ _1 700nm\ A~
(2) A = Areas sind = 5 (1= 2} ~ 5 (1 1892) ~ —0.28. Thus
0~ —16.4°.

2. Ex 9.3 Compact disks [by Alexei Dvoretskii/99]

To record information on a CD, pits are burned in it by using a laser with
A =~ 0.5um. Because of diffraction it’s not possible to focus the light much
better than that.

So in the best case 1 bit can be written per 0.25um?.



Estimate: Disc area: (2, — r2 ~ 3[(6ecm)? — (2em)?] =~ 100cm?.
out inner

and thus in principle the total amount of information that can be stored is
I= Ollggﬂf:g =4 x 10'%bit. Taking 5 per cent of this, we get I = 2 x 10%bits.
Now for Encyclopedia Britannica:
1 page ~ lkbyte ~ 10*bit
1 volume ~ 10%pages ~ 107bit.
i.e. approximately 200 volumes could be stored on a CD.

3. Ex. 9.4 Nonlinear susceptibility for an isotropic medium [by Alexei
Dvoretskii/99]

For an isotropic medium its susceptibility tensors should be symmetric in all
indices. The only isotropic symmetric tensor available to us is the metric tensor
gij, the Levi-Civita tensor being antisymmetric.

Therefore, all susceptibility tensors with an odd number of indices are zero
(Xijk = 0, Xijkim = 0, ...) and the susceptibility tensors with an even number of
indices must be proportional to symmetrized sums of products of metric tensors.

Thus Xi; = x09ij

For x;jki, it should be a linear combination of g;;jgri; 9ikgji; gugjx- And
since these tensors can be obtained from each other by permutations of indices
their only combination symmetric w.r.t. all permutations is their sum. Hence

Xa
Xijkl = ?(gijgkl + gixgji + gugjr)

In general, a (2n)th rank susceptibility tensor will decompose for an isotropic

medium into a symmetric sum of products of n metric tensors with (22""72!! terms.
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(9ij9k19mn + ik Gj1Gmn + GitgjkGmn
+9ij9kmGin + GijGkngim + 9ikgimTin
+9ikGingim + JitgimGkn + GilGinGkm
+9im9jkgin + JimGji9kn + JimGingkl
+9in9jk9im + GingjtGkm + JingimJik)

4. Ex. 9.6 Dispersion relation for an anisotropic medium [by Xinkai Wu/02]
(a) It’s known that P; = €gXx;;£; when nonlinear effects are unimportant.
Hence we have

D; = eoE; + Py = e B + eoxij Ej = eoeij Ej

if we define €;; = 6;5 + Xxi;-



(b) This is very straightforward (recall that by definition D = ¢oE + P).

V- D=¢V-E+V-P
using the first identity in eq. (9.15)
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Also the last identity in eq. (9.15) reads
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The other two sourceless equations remain the same as in eq. (9.15)
(c) Taking the curl of the third identity in eq. (9.37), we get
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using the fourth identity in eq. (9.37)
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(d) Consider the plane wave E;(x,t) = E;e!®*~%!) where E; is a constant
amplitude. Plugging this plane waveform into eq. (9.38), one readily get

2
Lz’jEj = 0, where Lz'j = k,‘zk] — k25z-j + ‘Z—2€i]‘

(e) Consider waves propagating in the x-z plane, k = k(sinfe, + cosfe,).
Then it’s straightforward (and we omit the details here) to find that ||L;;|| =
k?-[the matrix given in eq. (9.41)], where k = n%. Computing the determinant
of this matrix and pulling out some factors, one find that the dispersion relation

(9.40) reduces to
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(f) Solving the dispersion relation we found above, we find two solutions

(i) » = no.

In this case, solving for the eigenvectors, one finds there’s no constraint on
E,, while E; and E, must satisfy

sin20E, + sinfcosE, =0
2
(") - sith‘)] E, =0
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2
the determinant of the coefficient matrix for the above 2 equations is sin26 [(Z—“) — 1] ,

sinfcosOE, +

which is nonzero if we consider sinf # 0 and n, # n,. Hence E, = 0, E, = 0.
And E is along the y-direction.
This is the polarization described in eq. (9.30) and associated text.
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Solving for the eigenvectors, one finds that (again assuming sinf # 0 and
ne # No) Ey =0, and
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This is the polarization described in eq. (9.31) and associated text.



