Solution for Chapter 8
(compiled by Xinkai Wu)

A.
1. Exercise 8.2 Lateral coherence of solar radiation [by Yu Cao]

Maximum separation between slits

~ lateral coherence length [

~ Aba

5x 107 "m
~ 0.5° x 7/180°
~  50um

number of visible fringes

~ number of fringes within central peak of diffraction envelope

2X A
10pm / 50um
~ 10

where in the above equations, 2)\/10um is the angular diameter of the central
peak of the diffraction pattern created by a single slit of width 10um.

2. Exercise 8.4 Longitudinal coherence of radio waves

For a broad band source like this, the coherence length is ~ the longest wave-
length that contains significant power, not the bandwidth which is based on the
shortes wavelength at significant power. Here we take the lowest frequency (cor-
responding to the longest wavelength) to be the lower end of the audio range,
f ~ 100H z, which gives us a coherence length of ¢/ f ~ 3x108/100 ~ 3x 103km.

B. Exercise 8.7 Complex random processes [by Xinkai Wu/99]
(a)

Co(€) = T(x)T*(x + &) = limL%oLin / U (X)W (x + &)d"x

When using Parseval’s theorem, let A(x) = ¥p(x), and B(x) = ¥, (x +£).
Then we have B(k) = e’ (k). By Parseval’s theorem, we get
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Using this, we find
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which is the desired eq. (8.34).
Doing the inverse Fourier transform, one gets eq. (8.35)

Cy(€) = @ / Sy (k)e *ednk

Now let’s prove that Cg(—¢) = C3 ().

Co(=¢§) = ¥(x)¥*(x-¢)
: 1 * m
= lim ﬁ/\IIL(x)\IIL(x—f)d x

/ d'n£ ei(kfk') I3
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Thus we can write Sy as
ItlJ b
S¢(—ak, —w) = const x Lu(oyw)

where F, = /Iw(a, w)dQpdw
To find the constant, we use the fact that Cg(0,0) =1, then

1 1 I, (o, w)dQqdw
1=Cy(0,0) = )7 /Sq/(k)d?’k = (271_):,)const-/(14_),S

(2;lr) const
= const = (27)*
So we get
I,(a,w)
Fy
Combining eq. (8.36) and eq. (8.35), we have

Se(—ak, —w) = (27)3

y2(ka,7) = Cyg(a,7)= / Sy (ak,w)e *a-TdQ dy
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which is eq. (8.28)
Combining eq. (8.36) and eq. (8.34), we have
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which is eq. (8.29).

C.
1. Exercise 8.5 Microwave background radiation [by Xinkai Wu/99]
(a)
+oo .
(T) o F,(w)e™ dw

— 00

[note F,(—w) = F,(w)]

+o0 .
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For a Wien spectrum,
+oo . +oo .
/ Fw(w)ezwrdw o / w3efhw/kTe'Lw‘rdw
0 0

“+oo
— / w3ew(i‘rf%)dw
0

integrate by part several times
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. 1
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Thus
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where s = ;7 = 0.83mm, s = cr. Thus we have
|s4 — 63(2)82 + sg|
(s2+ )"
(b) Using Mathematica, we find that for a Planck spectrum:
4
-3+ (ﬂ':—o) [2 + cosh (271'%)] cscht (71':—0)
(1/70)*

V= ly| o

Y () o

where 79 = kiT
The plots of the visibility V' for Wien and Planck spectrum are given in Fig.
1. As can be seen, they are quite similar to each other.

2. Exercise 8.8 Interferometry from space [by Xinkai Wu/02]
(a) Now that we only consider a single polarization, the specific intensity for
a black body is half that given in chapter 2:

I _ (h/C2)1/3 -~ I/ZkBTb
[ V]b - ehl’/kBTb _ 1 ~

c2
where we only consider the low-frequency part hv << kgTp.
Equating the above expression to 2wl, with I, being the specific intensity
of the astronomical source, we find the brightness temperature for this source
(2m)3¢?I,  (2m)3c2F,

T = =
b kpw? kpw?AQ




Figure 1: Microwave background radiation: x-axis is 7 in unit of 10~2sec, y-
axis is |'y||(7')|; the solid line is for Wien spectrum, and the dashed line is for
Plank spectrum

(b) The smallest source angular size o, the telescope can resolve is given by
the first zero of the sinc function,

kaa, =7 = a, = 0.5;

The corresponding solid angle subtended by the source is
AQ = ma?

Plugging the above expressions into the formula for the brightness tem-
perature we found in part (a), we get the maximum brightness temperature
measurable

2F,,a?
T = ——“=
® 7~ (05)%kp
with a being the spatial separation of the telescopes. This maximum tempera-
ture has no w dependence.
Taking F,, = 1072°Wm2Hz"!, a = 6R. = 6 x 6378km, we get

T, = 8.5 x 10K



1. Exercise 8.10 Antireflection coating
(a) [by Xinkai Wu/99]

See Fig 2.
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Figure 2: Anti-reflection coating

Notation of the amplitude reflection and transmission coefficients:

Mg, N, Ng: Tefraction indices of the air, coating, and glass, respectively.
r1,t1: air to coating

r1,t): coating to air

r9,t2: coating to glass

Then similar to the derivation in the text, we have the following equations:

Yr = 119 + 19
Yo = t19; + 10
dpe— ke = ryrp,eihd
Yy = tz"/)aeikd

where k = 2e¥ — 2T — 2Mic jg the wavenumber in the coating (X, is the

wavelength in the coaéing, and Avac is the wavelength in the vacuum).
Solving these equations, we get

o rrFra(tat) — r7))e2ikd
Yr = 1 — riroe2ikd Wi
- t1t2eikd
Py = Wwi



All the amplitude reflection and transmission coefficients here are real be-
cause both interfaces are perfectly sharp, and we have eq. (8.43)

tltll — 7‘17”1 =1

Ty =—T1
Using the above reciprocity relations, one finds

%_ 7‘1+T‘2621kd % _ t]thlkd
Y Lrirgekd’ oy 14 rirpe?ikd

(1)

Now for a given wavelength A, if we take d = %, then 2kd = , e*kd = —1.
We also have n. = ,/nang, which implies 7; = ry as one can explicitly verify

using eq. (8.54):

Ng —N¢ Vna_\/ng

'S = =
! Ng + N¢ V/Na + /Mg
, . Ne— Ny VTa — /Mg
2 == =

Ne +Ng VNa + /Ny

So in this case we have

ﬂ_ TL — T2 _
Y 1—rirg

namely there’s no reflection, and thus we have perfect transmission by energy
conservation.

(b) [by unknown author]

For blue light, Ay = 400nm.

ng = 1.0, ng = 1.6, thus n, = /Mg & 1.3.

So to avoid reflection of blue light, the thickness of the coating should be

R~ )ZT“; ~ 75nm. Using the amplitude reflection coefficient in eq. (1)

. || _ (r1+rac0s9)? 4 r3sin’e

R= -
lpi|> (14 riracosg)? + rirysine
where ¢ = 2kd.
For red light, Ayec ~ 600nm,
6= 400nm g
=~ "600nm 3"

Also,

Ng — Ne 1.0-1.3
=1y = =~ ~ —0.13
e . T 1.0+1.3

where we neglect the variation of the refraction index w.r.t. to frequency.



r1,T2 << 1, so

R = (11 + r2c050)? + r3sin’é = 2ri(1 + cosp) ~ 0.017

2. Exercise 8.13 Electron intensity interferometer [by Xinkai Wu/02]

To make a intensity interferometer for electron, just replace the photodetec-
tors in Fig. 8.12 of the text with Ampere meters.

Photons are bosons so they tend to exhibit a positive intensity correlation;
electrons are fermions and thus are expected to exhibit a negative intensity
correlation. Now let’s show that this is indeed the case.

Setting the multiplicative constant K to unity, then I = |¢|2. The intensity
correlation is derived as follows:

Write

Y(t) =) et
i

where 1); can be thought of as the field (wave function) for an individual particle
with energy Aw; and the sum is over all the particles.

Then
IMIt+7) = POy + )¢t +7)
= Z ¢;¢k¢:nwne_ime+iw"Te—iwjt+’iwkt—iwmt+iwnt
jkmn
= > U m + Y ke T @)
jm jk

where in the last line, the first term comes from the case j = k,m = n and is
equal to

Sy pitm =T
j m

while the second term comes from the case j = n,k = m. Uptill now, we
have been general, not specifying whether the particle is boson or fermion.

Now if the particle is boson, then the ;’s commute and the second term is
equal to

DY Y e
j k
=V @O+ U+
P—]
= [¢* @+ 90

=T |y’




Thus we find that for bosons,
—— 2 2
IO +7) =1 [1+ ]y ()]

which is, of course, eq. (8.61) in the text.
Setting 6I(t) = I(t) — I, we see that
SI(t)OI(t+ 1) 2
——— =n)|
1(t)

which is eq. (8.62) in the text.

If the particle is fermion, then the v;’s (being regarded as wave functions
for individual particles) anticommute, thus the second term in the last line of
eq.(2) becomes

S wie T (<)Y viue
j k

= GO+ 7) (-1 E+ )

= (1) [F*(E+ )9 (D)

= (-1 |y (m)|°

so we conclude that for fermions,

—— 2 2
IO+ =1 [t =y ()]
and correspondingly

SI(t)6I(t+ 7) 2
— =~

1(t)
which exhibits the fermions’ avoidance of each other (refusal to be in the same
state), by contrast with the bosons’ desire to be in the same state as exhibited
by their positive correlation function.



