Solution for Chapter 7
(compiled by Xinkai Wu)

A.
1. Exercise 7.1 Pointillist painting [by unknown author /93]
The idea here is to consider the resolving (or conversely, blurring) ability
of the eye. The resolution limit of two point sources is given by Rayleigh’s
criterion, namely, the two dots begin to look blurred when

0a =10,

where 6,4 is the angular radius of the Airy disk: 64 = 1.22% ~ % with d being
the pupil’s diameter; and 65 =~ 7 is the angular separation between the two dots
with s being the size of the dots and [ the distance from the painting to the
observer.

This gives the necessary distance to see color blending

ds
l~ — I
X or larger

Taking d ~ 4mm, s =~ 0.4mm, and A =~ 550nm (the peak response wave-
length of eye), we get

l =~ 3m or larger

2. Exercise 7.2 Thickness of a hair [by Xinkai Wu/00]

Use a laser pointer as the source of coherent illumination, and examine the
diffraction pattern formed on the wall.

By Babinet’s principle, the diffraction pattern produced by the hair is the
same as that produced by a slit, which is given by eq. (7.13)
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where a is the thickness of the hair.
Using the above expression, we find that a is related to Af (one half the

angular difference between the two central zeros of the diffraction pattern cor-
responding to kéﬂ = +r) by
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Denoting the linear difference between the first and second zeros as d, the
distance from the hair to the wall as L, we have

d
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And thus
A
(/L)
Now A =~ 6 x 10~ "m, and we measured d ~ 1.5¢m, L =~ 2.3m, thus we find

6 x 107

“ 15 x 10-2/2.3) ~ JoHm

B.
1. Exercise 7.3 Diffraction grating [Unknown author/93]
Notation:
A=FT = Fourier Transform of A(z)
A®B= / Ay
A®B / A(0")B(6 — 0")db’

Convolution Theorem:

Define

“+o0
Z §(z — 2na)

fo=H(z+a/2) — H(z—a/2)
fs=H(z+ Na) — H(z — Na)
where H(z) is the step function: H(z) =1 when z > 0; H(z) = 0 when z < 0.

Now note that Fig 7.4b is:

ET.({f1 ® f2} x f3)

But it can also be rewritten as

t(@) 0.8 FT((fl X f3) ® fg) = FT(f1 X fg) X FT(fg)

Now
too  (N-1)/2 (N-1)/2
T.(f1 X f2) / Z §(z — 2na)e**lde = Z g2nak?
=% e (N-1)/2 n=—(N=1)/2
_ sin(Nak0)
sin(akb)



and

a/2 kad
FT.(f2) oc/ e**0df « sinc (T) [see eq. 7.13 of text]
—a/2
Thus
kaf\ sin?(Nakf)
I o sine? [ ~o2 | L ATART)
o stne ( 2 ) sin?(ak0)

2. Exercise 7.5 Light scattering by particles [by unknown author/93]

(a) Away from the incident direction, the amplitude is the same as that of
the diffraction by the aperture (Babinet’s principle)

Thus we can use eq. (7.18)

P(6) x /dee*"kx'e x jinc (g) except at 6 =0

So we see that the opening angle is

1.22x2 A 1

~N — ~ —

Af ~
a a ka
The light that goes through the aperture (a total power of F'A) gets diffracted
to form, in the Fraunhofer region, the spreading beam with angular size A#.
Thus the total diffracted power is

P,=FA

(b) Return to the particle. The total power that is diffracted into the outgo-
ing spreading beam is Ps = F'A (same as for the aperture). In addition, because
the particle has a >> )}, its absorption can be analyzed in the geometric optics
limit: it absorbs all the photons that impinge on its area A. So the total power
absorbed is P,,s = FA = P,. Thus

Pups + P, =2FA

namely, the total ‘extinction®’ cross section is 2A4.

C.

1. Exercise 7.6 Zone plate [by Alexei Dvoretskii/99]

(a) See Fig. 1. At z = f/3 the integral over the first zone fop 2mp'dp’ explimp'?]
winds around the circle 3/2 times, giving a net positive real contribution [recall
that p = |x'|/rF o< 1/4/2; thus as z is reduced by a factor of 3, p? is increased
by a factor of 3.] Two of the three semicircles in Fig. 1 (A and B) cancel each
other, and the net contribution comes from semicircle c¢. The integral over each
successive open(unblocked) zone will give this some contribution until the zone
plate ends or irregularities cause a die out of the coherence.
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Figure 1: Zone Plate

If we take z = f/5, the integral for each open zone winds around the cir-
cle 5/2 times and gives a real net positive contribution. Similarly for z =
f17, /9, ...

(b) The shadow is a phenomenon similar to the occultation by the moon for
radio waves and near the edge of the disk, the intensity pattern will look like
that in Fig. 7.9 in the text.

Now let’s consider the formation of the bright spot at the center. The
complex wave amplitude at the center is given by

vp = —i/ 27 pdp ei””zwg
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= —i/ 2mpdp €'P Yo +i/ 2mpdp €'P Yo
0 0

(using the fact: —i/ 2mpdp ei“p27/JQ =1g)
0
D/2’I‘F
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In the above equations, the integrals with co as the upper limit only have a
formal meaning, and what is meant is that when integrating to co we must take
into account the averaging over rings discussed on page 18 of the text.
Thus we see,

Wp|® = vl

i.e. the bright spot at the center has the same energy flux as the original
incoming radiation.



Now let’s compute the diameter a of this bright spot. It is given by the
consideration that waves arriving at its edge from opposite sides of the disk
have a A/2 difference in their path length.

This path length difference is given by

D+a 2 D—a\?® Da
fry 2 — 2 ~ —
ol \/ 2%+ ( 2 ) \/ 24+ ( 2 ) P
where z is the distance from the disk to the screen.
Setting 6l = A/2 we find

X

D

Thus the total power in this central spot is

Az )2
P — | F
where F' is the incident flux.

2. Exercise 7.11 Wavelength scaling at a caustic [same unknown author
as Ex 7.5]

Assuming that the wave is non-dispersive, we have the following expression
for the (dimensionless) phase

o(s,z) =k <ATS3 - Bxs)

where the parameters A and B have no k-dependence. Defining a = kA, b = kB,
we bring ¢(s,z) into the standard form

o(s,z) =k (%53 - bws)

And wehave a occ k oc AL, box ko AL
The wave amplitude at the caustic is given by eq. (7.45) and (7.46) of the
text:

1 : 1
— - ip(s,2=0) =
w(x—O)oc)\r/dse x 173
where we’ve suppressed the numerical constants (e.g. m, Ai(0)) and other \-
independent quantities(e.g. 7).
Thus the peak magnification at the caustic is given by

1 1

—4/3
X 33,273 € 3223 XA /

M(z = 0) o [¢(z = 0)[*




Now §z, the spacing of the fringes at a given position z, is given by
) (2z3/2/3> =

—bz\ % —boz
1/2¢. _
:>z/5Z—<—a1/3) /3 =

b —-3/2 -1 —3/2
:>5$oc(a1/3> o<<>\_1/3) oA

D. Exercise 7.10 Convolution via Fourier optics [by Xinkai Wu/00]

From eq. (7.32) of the text, we see that by letting u = f, v — o0, Yp(xF) =
const - Yg(xp/f). Namely, up to a multiplicative constant, what one gets at
the back focal plane is the Fourier transform of the wave amplitude at the front
focal plane.

(a) The configuration for computing

9® h(zo,y0) = // g(z,y)h(z + zo,y + yo)dzdy

is shown in Fig. 2. And here is how it works:

Send in a planar wave 1) = e'*?;

Place the sheet with transmission function ¢t = g(z, y) at the front focal plane
Pr;

Place the sheet with transmission function ¢ = h(z,y) also at plane Pj,
right next to the first sheet, but displaced in the minus = and y directions by
zo and yo respectively, which gives a transmission function A(z + zg,y + o).
Thus after passing through both sheets, the wave amplitude is proportional to
the total transmission function g(z, y)h(z + zo,y + o).

At the back focal plane P,, put a projection plane, with a pinhole on the opti-
cal axis. We know that at P, we get the the Fourier transform F.T.[g(z,y)h(z+
To, Y + Yo)] which is equal to [[ g(z,y)h(z + 0,y + yo)e 0=~ 0s¥dzdy. At the
pinhole, 6, = 0, = 0, and the wave amplitude there is the desired convolution
I 9(z,y)h(z+x0, y+yo)dady (we can measure the wave intensity at the pinhole
by using a photon detector; also by letting the wave interfere with a reference
beam, we can measure its phase. This way we don’t lose any information in the
convolution).

(b) The configuration is given in Fig. 3. We now have a cylindrical lens
L (lens with finite radius of curvature along z direction and infinite radius of
curvature along y direction). The following is how we compute

9 ® hj(zg) = /gj(x)hj(x+ zo)dr j=1,2,..

simultaneously.
Send in a planar wave v = e**;
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Figure 2: Ex. 7.10 (a)

At the front focal plane P;, we put a thin sheet with transmission function
t(z,y) with t(z,y;) = g;(z). Right next to it we put a second sheet with
transmission function t'(z,y) where t'(z,y;) = h;j(x). And we displace it in
the minus z direction by o so that ;. 4cca(2;¥j) = hj(z + 20). By the
same reasoning as in part (a), after passing through these two sheets, the wave
amplitude is

’l/J(IL‘, y) ~ t($7 y)t:ﬁsplaced(x’ y)
Le. ¥(z,y;) ~ g;(x)h;(z + o)
At the back focal plane P, we put a projection plane with a slit along the y
direction at z = 0.
The cylindrical lens L Fourier transforms v (z,y) in z direction while leaving
the y direction unchanged. So the output at plane P, along the slit (at z = 0)
at different values of y; gives

/gj(w)hj(x—i—xg)dx ji=12,..



Figure 3: Ex. 7.10 (b)



