Solution for Chapter 6
(compiled by Xinkai Wu, revised by Kip Thorne)

A.
1. Ex. 6.2 Gaussian Wave-Packet and its Spreading [by Xinkai Wu/02]
Taylor expanding Q(k) to O((k — ko)?) and noticing that Vy, = 42|, one
finds Q = wo + Vyk + (dV,/dk)k?/2.
(a) Plugging the Taylor expansions of A(k),a(k),w(k) into the expression
for 9 (z,t), one gets eqn. (6.16)
(b) Using Mathematica, one finds the following integral formula

/oo dr exp[—(a®k? + ibk + ick?)] = ( m )1/2%1, [_M]

oo a? +ic 4(a* + c?)

where a, b, c are real, and a > 0.

In our case, a® = m, b=—(z—xzg—Vgt),c= %%t. So we find
b%a? (z — z0 — Vyt)?
[¢] < exp [_4(a4 T 62)] = exp [—ZLQ ]
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(c) At t =0, we find L = 4. Recalling that L ~ Az(the width of the wave

packet), we obtain the “uncertainty principle” AzAk ~ 1.
(d) L(t = 0) = 2. Solving L(t) = 2L(0), we find t = % Now let’s
consider a wave packet travelling from Hawaii to California. F%r the spreading to

dV,

be less than a factor of 2, we must have, | ¢ ﬁt < /3, where we’ve used the

fact the the initial width of the wave packet Az = ﬁ. The dispersion relation
for waves on the surface of a deep body of water should be used: w = /gk (see
eqn.(6.5) in the text). Aslo t = V% with D being the distance between Hawaii
and CA which we take to be 3 x 103km. ky = i—: and let’s take \g = 100m. We
find it’s necessary that

DXy
Az > ~ 4km = 40\
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2. Ex. 6.4 Gravitational Waves from a Spinning, Deformed Neutron Star
[by Xinkai Wu/02]

(a) Using the expression for the phase ¢(x,t) = worezp[(r«(r) — t)/7], We
find,
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and we see that the frequency is slowly decreasing.
(b) We have
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We are working with a weak gravitational field, thus we can neglect the O [(%) 2]
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term and say that w = %k

k. In general, we have

(c) For this simple dispersion relation, Vg = V,, = %

% = g—f+vg-v¢:—w—{—Vg-k:—Vph-k—i—Vg-k: (Vg—Vpp)-k
The above equation makes it clear that if there’s no dispersion, i.e. Vg =V,
then % = 0, the phase is constant along the ray. Now the ray is given by
‘fi—’; =V, =V, whose tangent is always normal to the surfaces of equal phase.
The surfaces of equal phase are just spheres so we conclude {6, ¢} = constant
along the ray. Also the phase ¢ is a function of ¢ — r, and we’ve shown above
that the phase is a constant along the ray, thus ¢t —r, = constant. We have seen
explicitly that both the frequency and the phase are functions of ¢t — r,, which
tells us ¢t — r, can be regarded as the retarded time for these waves.

(d) Let’s reproduce eqn. (6.35) below
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Carrying out the partial differentiations, we get
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Using ~ —537 = iy N 1, we find
-

A
Lh.s. of eqn (6.35) = -— —
A =M A
rhs. of eqn (6.35) = — . 1+ 1_TM M-
T

[A simpler way of deriving the Lh.s. as suggested by Kip is: in part (c) we
already showed that along the ray {t — r., 0, ¢} are constants, i.e. % acting on
them gives zero. As a result, the Lh.s. of the propagation equation for A is just
dA _ Ad_T:_éVg:_ A

T

dt r dt nr’

Thus the propagation law (6.35) is satisfied to leading order.

B.
Ex. 6.8 Geometric Optics for the Schrodinger equation [by Kip Thorne/99]
(a) We write ¢ as

Y= (A+hB+..)e5/h

Note that 7 is playing the role of the two-lengthscale expansion parameter
€ [compare the above equation with eq. (6.31)]. Then
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Plugging the above results into the Schrodinger equation and collecting the
leading order, O(h°), terms, we get the Hamilton-Jacobi equation

oS 1 2
—+ — (VS V=0
ot + 2m (VS)"+
which is the dispersion relation, because using S = h¢,w = —%, k = Vo, we
get
w=Qk,x,t) = hk2+V
N Y o9m T h

(b)The equations of motion can be derived from Hamilton’s equation for this
Q(k,x,t). Alternatively, it can be derived as follows:



Taking the gradient of the Hamilton-Jacobi equation gives

S 5V (v8)°] + vV =0
using p = VS
op
- 4+ — V=0
= ET + V +V
Op 1
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noting Vxp=VxVS=0
op (P _
=2+ (2-v)p=-wv (1)
Now we define the time derivative along the ray as
d 0 0
Py +V, - V= o + —.V

where we’ve used that fact that V, = Vi) = 'fn—k =2 (recalk = V¢ = ;VS =
#P)-
Using the above expression for %, we immediately find

dx P
d 7  m

Also, we see that eqn (1) is just

dp

a ="V

(c) Collecting O(h') terms in the Schrodinger equation and noticing that by
virtue of the Hamilton-Jacobi equation terms containing B cancel, one finds
0A
ot

which is the propagation equation for the wave amplitude A.
By [egn.(2) - A* + c.c.] we get,
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We can also write the above equation as

U (02) o



This equation is nothing but the familiar probability conservation equation
in quantum mechanics, with |A|2 = |1/)|2 being the probability density and
|A]? P = | [? P being the probability flux.

C.

1. Ex. 6.10 Matrix Optics for a Simple Refracting Telescope [by Xinkai
Wu/00]

(a) Denote the focal length of the first lens as fi, that of the second lens as
f2, and the distance between them as S. The whole system being axisymmetric,
we can assume that the rays are in the  — z plane. Let the transverse position
of the ray right on the front surface of the first lens be z’ and its slope be Z';
the transverse position of the ray on the back surface of the second lens be =
and its slope be .

The transfer matrix of the whole system is as follows (a thin converging lens
followed by a straight section, then followed again by a thin converging lens):

(60,

This gives

1—- 2 )z + 853
TR PR ey

f2

To convert parallel rays into parallel rays, £ must be independent of z’, i.e.
J21 must vanish:

S 1 1
A R
=S=f+/f

which is the familiar result one learns in optics.
(b) When S = f; + fo is satisfied,
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Thus M = ;—1
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2. Ex. 6.11 Rays bouncing between two mirrors [by unknown author /unknown
year :)]



(a) The transfer matrix between xx4+1 and xi, is given by

3 D6 D6

_ ( -2 2d(1——)2> (A B)
z(1-%) + % ¢ D
note that detJ = 1.

Now let’s find the recursive relations:
Xi42 and x; are related by J?, and we find

J

Xpt2 = (A% + BC)xy + B(A + D)%y,

Also, using J, we find

Xg41 = Axy + Bxy,

Combining the above two equation to eliminate X, we find

Xk+2 — 2ka+1 + X = 0
4d  2d?

Whereb:].—E—f-ﬁ

This difference equation can be written as
(Kn+2 = Xpt1) — (K41 — Xi) = =2(1 = b)Xk41

which is obviously a difference-equation analogue of the simple-harmonic-oscillator
equation with 2(1 — b) being the “spring constant”.

(b) Plugging the trial solution x;, = Acoskl + Bsinkl into the difference
equation, one finds

AReS+BImI=0
with S = ¥t (62“ — 2bett + 1)

For A and B to be independent constant vectors, we must have S = 0, which
gives

b= cosl,i.e. | = cos'b
Thus, the difference equation has the general solution
xy, = Acos(kcos 'b) 4+ Bsin(kcos 1b)

(c) Let t = £, then b = 1 — 4t + 2t2 = 2(¢t — 1)? — 1, which is a parabola.
Easily seen, if 0 < t < 2 (i.e. 0 < d < 2R), then —1 < b < 1, thus cos™!b is real,



and the solution is oscillatory. When ¢ > 2 (i.e. d > 2R), b > 1, then cos'b
becomes imaginary, and our solution exhibits exponential divergence.

(d) Let’s take A = e;,B = e,. Easily seen this choice gives the desired
circular Harriet delay line pattern, with a angular step cos~'b. So

1
0:cos_1b$t:d/R:1:b\/$zlicosg

D.

1.Ex. 6.6 Propagation of Sound Waves in a Wind [by Shuyun Qi]

(a) Let R be the ground’s frame and R’ be the rest frame of a thin layer of air
at height 2z, which moves at the velocity u = Sze, w.r.t. frame R. Coordinate
transformation between frames R and R’ gives x’ = x—ut. In frame R, w' = ck’
is the dispersion relation. The phase of the wave is frame-independent:

¢ = —-Wwt+k -x'=-uw't+k - (x—ut)
= —(w+k - -ut+k - -x
—wt+k-x
Thus
k=¥

w=w+k u=w+k-u
=clk'| +k-u=clk| + Szk, = Q(k,x,t)

which is the dispersion relation as seen in the ground’s frame.
b)dke — _02 _ (g9 k; is conserved along a ray. Using the dispersion
dt oz g Y. g 1%
relation found in part (a), we readily get

w k

E —SZ = EC
ie. ]:)—z —uy(z) = :—zc

When |,‘c"—z —uy(2)| < ¢, we have k < |k;|. Since k = \/k2 + k2, this means
that k, is an imaginary number, i.e. the wave will exponentially decay in the 2

direction. So we see that sound waves will not propagate when |- — u,(2)| < c.
(c) Consider the Hamilton-Jacobi equations:
dk, 0N

FTER M

= k;is constant along a ray path




and
dk, o0

— =—— =-S5k,
dt 0z
= k, = —Sk,t + const
denote as 6 the initial angle between k and the = direction
k.(t =0) = kytant = k, = —k, (St — tanb)

and
d—x—a—Q—k—wc+Sz
dt_akz_ k
d:_ 09 _k
dt ok, k'

z(t=0)=0; 2(t=0)=0

Let & = St — tanb, then £(t = 0) = —tanf and k, = —k,&. We have

dz _1dz_cf € \
¢ Sdt S\ \/1+¢&) |kl

k
= 2(§€) = % (|sec€| —/1+&2 ﬁ
Since (¢t = 0) > 0, we get k,(t = 0) > 0 = —k&(t = 0) > 0 = kytand > 0,
namely, k, and tanf(thus secf) have the same sign, |’,::| = |:zz|.

Thus
2(¢) = © ( sech — ﬂ\/l + &2
S |sec|
Also we have

dz 1dx c | sech 1

—_— = —_—— = — — ]_ 2

&~ Sdt Sl|secl9|(1/—1+§2 v +§>+sec9
c| secd 1

= z(§) = {—|m€| 5 [ln(£+ V1+€) -1 +£2] + sec §

S

sech 1 1
_ Milnﬂsecéﬂ — tanf) + Etanﬁ sec 0}

2(€),z(€) as given above describes the ray in a parametric form.

When 0 < 7, 2(§) = S(secld — 4/1+4£2), and z — 0 when ¢ is sufficiently
large.

When 6 > %, 2(§) = S(secd + /1 +&2), 2(§) — &€ when { — oo;
and z(€) — § [5£2 + sech £ + const] when £ — oo . Thus for large ¢, z ~
52—202 + secl z + const, which is a parabola propagating to infinity. See Fig.1 for



0>17/2

0<1m/2

Figure 1: Ex 6.6 Sound wave in a wind

a sketch of the rays.

2. Ex. 6.13 Point-mass gravitational lens [by Xinkai Wu/02]
(a) Under the impulse approximation, the deflection is given by eqn (6.95)
4GM
T be?
The angle between the observer-lens line and the deflected ray if the ray is
to meet the observer’s eye is given by

b: impact parameter

b
=D
Thus
L AGM _ b (4GMD 12
*= b2 D o c?

And we find the angular radius of the Einstein ring

g _ b _ (4GM Yz
P~ D \ D&

(b) Now suppose the ray from the source before deflection has an angle 3
w.r.t. the observer-lens line, then

4GMD

B+6=0=b"+DBb=—
C

in terms of 4, this is
6%+ B0 — 0% =0



Solving the above quadratic equation gives two solutions (taking the absolute
values) corresponding to two images:

2
0, =4/6%+ ('B) + (ﬂ) > 0 image outside Einstein ring

2 2
B _ (B
6 =4/6% + (§> — (5) < 0g image inside Einstein ring

(c) [this part by Roger Blandford/02]
In units in which g =1,

B=6-1/8
which implies
0+ = B/2++/1+5%/4 (3)
nb also from Eq. [3)],
6.6 ——1

Evaluate the magnification M from the Jacobian Eq. 6.92 using polar coordi-
nates, 8,¢ — 0, ¢

6 do 1.,
M=5a ="
Hence
1 63
oMo 1T 1T@ g6y "
M. 1-g % 6
+ 0%

using Eq. [4] We then obtain #+ = +R*!/4  inspecting the signs. Alternatively,
evaluating directly,

R BVI+B/4+1+5%/2
BV1+B2/4—1-p2/2
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