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Optics

Prior to the opening up of the electromagnetic spectrum and the development of quantum
mechanics, the study of optics was only concerned with visible light. Reflection and re-
fraction were first described by the Greek philosophers and further studied by the medieval
scholastics and used in the design of crude magnifying lenses and spectacles. However, it was
not until the seventeenth century that there arose a strong commercial interest in developing
the telescope and the compound microscope. Naturally, the discovery of Snell’s law and the
observation of diffractive phenomena, stimulated serious speculation about the physical na-
ture of light. The corpuscular and wave theories were propounded by Newton and Huygens,
respectively. The corpuscular theory initially held sway, but the studies of interference by
Young and the derivation of a wave equation for electromagnetic disturbances by Maxwell
seemed to settle the matter in favor of the undulatory theory, only for the debate to be
resurrected with the discovery of the photoelectric effect. After quantum mechanics was de-
veloped in the 1920’s, the dispute was abandoned, the wave and particle descriptions of light
became “complementary”, and Hamilton’s optics-inspired formulation of classical mechanics
was modified to produce the Schrödinger equation.

Physics students are all too familiar with this potted history and may consequently re-
gard optics as an ancient precursor to modern physics that has been completely subsumed
by quantum mechanics. However, this is not the case. Optics has developed dramatically
and independently from quantum mechanics in recent decades, and is now a major branch
of classical physics. It is no longer concerned primarily with light. The principles of optics
are routinely applied to all types of wave propagation: from all parts of the electromagnetic
spectrum, to quantum mechanical waves, e.g. of electrons and neutrinos, to waves in elas-
tic solids (Part III of this book), fluids (Part IV), plasmas (Part V) and the geometry of
spacetime (Part VI). There is a commonality, for instance, to seismology, oceanography and
radio physics that allows ideas to be freely transported between these different disciplines.
Even in the study of visible light, there have been major developments: the invention of the
laser has led to the modern theory of coherence and has begotten the new field of nonlinear
optics.

An even greater revolution has occured in optical technology. From the credit card white
light hologram to the laser scanner at a supermarket checkout, from laser printers to CD’s
and DVD’s, from radio telescopes capable of nanoradian angular resolution to Fabry-Perot
systems that detect displacements smaller than the size of an elementary particle, we are
surrounded by sophisticated optical devices in our everyday and scientific lives. Many of
these devices turn out to be clever and direct applications of the fundamental principles that
we shall discuss.
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The treatment of optics in this text differs from that found in traditional texts in that
we shall assume familiarity with basic classical and quantum mechanics and, consequently,
fluency in the language of Fourier transforms. This inversion of the historical development
reflects contemporary priorities and allows us to emphasize those aspects of the subject that
involve fresh concepts and modern applications.

In Chapter 6, we shall discuss optical (wave-propagation) phenomena in the geometric

optics approximation. This approximation is accurate whenever the wavelength and wave
period are short compared with the lengthscales and timescales on which the wave ampli-
tude and the waves’ environment vary. We shall show how a wave equation can be solved
approximately in such a way that optical rays become the classical trajectories of particles,
e.g. photons, and how, in general, ray systems develop singularities or caustics where the
geometric optics approximation breaks down and we must revert to the wave description.

In Chapter 7 we will develop the theory of diffraction that arises when the geometric
optics approximation fails and the waves’ energy spreads in a non-particle-like way. We shall
analyze diffraction in two limiting regimes, called “Fresnel” and “Fraunhofer,” in which the
wavefronts are approximately spherical or planar, respectively. Insofar as we are working
with a linear theory of wave propagation, we shall make heavy use of Fourier methods and
shall show how elementary notions of Fourier transforms can be used to design powerful
optics instruments.

Most elementary diffractive phenomena involve the superposition of an infinite number of
waves. However, in many optical applications, only a small number of waves from a common
source are combined. This is known as interference and is the subject of Chapter 8. In this
chapter we will also introduce the notion of coherence, which is a quantitative measure of
the similarity of the combining waves and their capacity to interfere constructively.

The final chapter on optics, Chapter 9, is concerned with nonlinear phenomena that arise
when waves, propagating through a medium, become sufficiently strong to couple to each
other. These nonlinear phenomena can occur for all types of waves (we shall meet them
for fluid waves in Part IV and plasma waves in Part V). For light (the focus of Chapter 9),
they have become especially important; the nonlinear effects that arise when laser light is
shone through certain crystals are beginning to have a strong impact on technology and on
fundamental scientific research. We shall explore several examples.



Chapter 6

Geometric Optics
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CA 91125

6.1 Overview

Geometric optics, the study of “rays,” is the oldest approach to optics. It is an accurate
description of wave propagation whenever the wavelengths and periods of the waves are far
smaller than the lengthscales and timescales on which the wave amplitude and the medium
supporting the waves vary.

After reviewing wave propagation in a homogeneous medium (Sec. 6.2), we shall begin our
study of geometric optics in Sec. 6.3. There we shall derive the geometric-optic propagation
equations with the aid of the eikonal approximation, and we shall elucicate the connection
to Hamilton-Jacobi theory. This connection will be made more explicit by demonstrating
that a classical, geometric-optics wave can be interpreted as a flux of quanta. In Sec. 6.4
we shall specialize the geometric optics formalism to any situation where a bundle of nearly
parallel rays is being guided and manipulated by some sort of apparatus. This is called the
paraxial approximation, and we shall illustrate it using the problem of magnetically focusing
a beam of charged particles and shall show how matrix methods can be used to describe
the particle (i.e. ray) trajectories. In Sec. 6.5, we shall turn from scalar waves to the vector
waves of electromagnetic radiation. We shall deduce the geometric-optics propagation law
for the waves’ polarization vector and shall explore the classical version of “geometrical” (or
“adiabatic” or “Berry”) phase. Finally, In Sec. 6.6, we shall discuss the formation of images
in geometric optics, illustrating our treatment with gravitational lenses. We shall pay special
attention to the behavior of images at caustics, and its relationship to catastrophe theory.
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Fig. 6.1: A monochromatic plane wave in a homogeneous medium.

6.2 Waves in a Homogeneous Medium

6.2.1 Monochromatic, plane waves

Consider a monochromatic plane wave propagating through a homogeneous medium. Inde-
pendently of the physical nature of the wave, it can be described mathematically by

ψ = Aei(k·x−ωt) , (6.1)

where ψ is any oscillatory physical quantity associated with the wave. If, as is usually the
case, the physical quantity is real (not complex), then we must take the real part of Eq. (6.1).
In Eq. (6.1), A is the wave’s complex amplitude, t and x are time and location in space,
ω = 2πf is the wave’s angular frequency, and k is its wave vector (with k ≡ |k| its wave
number, λ = 2π/k its wavelength, λ̄ = λ/2π, its reduced wavelength and k̂ ≡ k/k its wave-

vector direction). The quantity in the exponential, φ = k · x − ωt, is the wave’s phase.
Surfaces of constant phase are orthogonal to the propagation direction k̂ and move with the
phase velocity

Vph ≡
(

∂x

∂t

)

φ

= − (∂φ/∂t)x
(∂φ/∂x)t

=
ω

k
k̂ ; (6.2)

cf. Fig. 6.1. Lest there be confusion, Eq. (6.2) is short-hand notation for the Cartesian-
component equation

Vph j ≡
(

∂xj

∂t

)

φ

= − (∂φ/∂t)x
(∂φ/∂xj)t

=
ω

k
k̂j . (6.3)

The frequency ω is determined by the wave vector k in a manner that depends on the wave’s
physical nature; the functional relationship ω = Ω(k) is called the wave’s dispersion relation.

Some examples of plane waves that we shall study in this book are: (i) Electromagnetic
waves propagating through a dielectric medium with index of refraction n (this chapter),
for which ψ could be any Cartesian component of the electric or magnetic field or vector
potential and the dispersion relation is

ω = Ω(k) =
c

n
k =

c

n
|k| , (6.4)

with c the speed of light in vacuum. (ii) Sound waves propagating through a solid (Part III)
or fluid (liquid or vapor; Part IV), for which ψ could be the pressure or density perturbation
produced by the sound wave, and the dispersion relation is the same as for electromagnetic
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waves (6.4), but with c now the sound speed under some fiducial condition at which (by
convention) we set n = 1. (iii) Waves on the surface of a deep body of water (depth � λ̄;
Part IV), for which ψ could be the height of the water above equilibrium and the dispersion
relation is

ω = Ω(k) =
√

gk =
√

g|k| , (6.5)

with g the acceleration of gravity. (iv) Flexural waves on a stiff beam or rod (Part III),
for which ψ could be the transverse displacement of the beam from equilibrium and the
dispersion relation is

ω = Ω(k) =

√

EJ

Λ
k2 =

√

EJ

Λ
k · k , (6.6)

where EJ is the rod’s “flexural rigidity” and Λ is its mass per unit length. (v) Alfvén waves
(bending oscillations of plasma-laden magnetic field lines) in a magnetized, nonrelativistic
plasma, for which ψ could be the transverse displacement of a magnetic field line and the
dispersion relation is

ω = Ω(k) = a · k, (6.7)

with a = B/
√
µoρ (SI units), a = B/

√
4πρ (Gaussian units) the Alfvén speed, B the (homo-

geneous) magnetic field, µo the magnetic permitivity of the vacuum, and ρ the plasma mass
density.

6.2.2 Wave packets

Waves in the real world are not precisely monochromatic and planar. Instead, they occupy
wave packets that are somewhat localized in space and time. Such wave packets can be
constructed as superpositions of plane waves:

ψ(x, t) =

∫

A(k)eiα(k)ei(k·x−ωt)d3k , (6.8)

where A is the modulus and α the phase of the complex amplitude A = Aeiα, and the
integration element is d3k ≡ dkxdkydkz in terms of components of k on Cartesian axes
x, y, z. Suppose, as is often the case, that A(k) is sharply concentrated around some specific
wave vector ko [see Ex. 6.2 for an example]. Then in the integral (6.8), the contributions
from adjacent k’s will tend to cancel each other except in that region of space and time where
the oscillatory phase factor changes little with changing k. This is the spacetime region in
which the wave packet is concentrated, and its center is where ∇k(phasefactor) = 0:

(

∂α

∂kj
+

∂

∂kj
(k · x− ωt)

)

k=ko

= 0 . (6.9)

Evaluating the derivative with the aid of the wave’s dispersion relation ω = Ω(k), we obtain
for the location of the wave packet’s center

xj −
(

∂Ω

∂kj

)

k=ko

t = −
(

∂α

∂kj

)

k=ko

= const . (6.10)
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This tells us that the wave packet moves with the group velocity

Vg = ∇kΩ , i.e. Vg j =

(

∂Ω

∂kj

)

k=ko

. (6.11)

When, as for electromagnetic waves in a dielectric medium or sound waves in a solid
or fluid, the dispersion relation has the simple form ω = Ω(k) ∝ k = |k|, then the group
and phase velocities are the same and the waves are said to be dispersionless. Denoting the
proportionality constant by c/n as in Eq. (6.4), we have

Vg = Vph =
c

n
k̂ . (6.12)

If the dispersion relation has any other form, then the group and phase velocities are different,
and the wave is said to exhibit dispersion; cf. Ex. 6.2. Examples are (see above): (iii) Waves
on a deep body of water [dispersion relation (6.5)] for which

Vg =
1

2
Vph =

1

2

√

g

k
k̂ . (6.13)

(iv) Flexural waves on a rod or beam [dispersion relation (6.6)] for which

Vg = 2Vph = 2

√

EJ

Λ
k2k̂ . (6.14)

(v) Alfvén waves in a magnetized plasma [dispersion relation (6.7)] for which

Vg = a , Vph = (a · k̂)k̂ . (6.15)

Notice that the group speed |Vg| can be less than or greater than the phase speed, and if
the homogeneous medium is anisotropic (e.g., for a magnetized plasma), the group velocity
can point in a different direction than the phase velocity; see Fig. 6.2

It should be obvious, physically, that the energy contained in a wave packet must remain
always with the packet and cannot move into the region outside the packet where the wave
amplitude vanishes. Correspondingly, the wave packet’s energy must propagate with the

group velocity Vg and not with the phase velocity Vph. Similarly, when one examines the
wave packet from a quantum mechanical viewpoint, its quanta must move with the group

velocity Vg. Since we have required that the wave packet have its wave vectors concentrated
around ko, the energy and momentum of each of the packet’s quanta are Ẽ = ~Ω(ko) and
p = ~ko.

****************************

EXERCISES

Exercise 6.1 Practice: Group and Phase Velocities

Derive the group and phase velocities (6.12)–(6.15) from the dispersion relations (6.4)–
(6.7).
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Fig. 6.2: (a) A Wave packet of waves on a deep body of water. The packet is localized in the spatial
region bounded by the thin ellipse. Its center moves with the group velocity Vg, and its surfaces of
constant phase (the wave’s oscillations) move twice as fast and in the same direction, Vph = 2Vg.
This means that the wave’s oscillations arise at the back of the packet and move forward through
the packet, disappearing at the front. The wavelength of these oscillations is λ = 2π/ko, where
ko = |ko| is the wavenumber about which the wave packet is concentrated [Eq. (6.8) and associated
discussion]. (b) An Alfvén wave packet. Its center moves with a group velocity Vg that points
along the homogeneous magnetic field [Eq. (6.15)], and its surfaces of constant phase (the wave’s
oscillations) move with a phase velocity Vph that can be in any direction k̂. The phase speed is the

projection of the group velocity onto the phase propagation direction, |Vph| = Vg · k̂ [Eq. (6.15)],
which implies that the wave’s oscillations remain fixed inside the packet as the packet moves.

Exercise 6.2 Example: Gaussian Wave-Packet and its Spreading

Consider a one-dimensional wave packet, ψ(x, t) =
∫

A(k)eiα(k)ei(kx−ωt)dk with disper-
sion relation ω = Ω(k). For concreteness, let A(k) be a narrow Gaussian peaked around
ko: A ∝ exp[−κ2/2(∆k)2], where κ = k− ko. Expand α as α(k) = αo − xoκ assuming,
for simplicity, that the quadratic term is negligible. Similarly expand ω ≡ Ω(k) to
quadratic order, and explain why the coefficients are related to the group velocity Vg

at k = ko by Ω = ωo + Vgκ + (dVg/dk)κ
2/2.

(a) Show that the wave packet is given by

ψ ∝ exp[i(αo +kox−ωot)]

∫ +∞

−∞

exp[iκ(x−xo−Vgt)] exp

[

−κ
2

2

(

1

(∆k)2
+ i

dVg

dk
t

)]

dκ .

(6.16)
The term in front of the integral describes the phase evolution of the waves inside the
packet; cf. Fig. 6.2.

(b) Evaluate the integral analytically (with the help of Mathematica or Maple, if you wish).
Show, from your answer, that the modulus of ψ is given by

|ψ| ∝ exp

[

−(x− xo − Vgt)
2

2L2

]

, where L =
1

2∆k

√

1 +

(

dVg

dk
∆k t

)2

(6.17)

is the packet’s half width.

(c) Discuss the relationship of this result, at time t = 0, to the uncertainty principle for
the localization of the packet’s quanta.
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(d) Equation (6.17) shows that the wave packet spreads due to its containing a range of
group velocities. How long does it take for the packet to enlarge by a factor 2? For
what initial widths can a water wave on the ocean spread by less than a factor 2 while
traveling from Hawaii to California?

****************************

6.3 Waves in an Inhomogeneous, Time-Varying Medium:

The Eikonal Approximation

Suppose that the medium in which the waves propagate is spatially inhomogeneous and
varies with time. If the lengthscale L and timescale T for substantial variations are long
compared to the waves’ reduced wavelength and period,

L � λ̄ = 1/k , T � 1/ω , (6.18)

then the waves can be locally planar and monochromatic. The medium’s inhomogeneities
and time variations may produce variations in the wave vector k and frequency ω, but
those variations should be substantial only on scales & L � 1/k and & T � 1/ω. This
intuitively obvious fact can be proved rigorously using a two-lengthscale expansion, i.e. an
expansion of the wave equation in powers of λ̄/L = 1/kL and 1/ωT . Such an expansion,
in this context of wave propagation, is called the eikonal approximation or geometric optics

approximation. When the waves are those of elementary quantum mechanics, it is called
the WKB approximation. We shall derive the eikonal approximation’s wave-propagation
laws via the two-lengthscale expansion in Sec. 6.3.4; but first we shall motivate, describe
and discuss those geometric optics laws (Sec. 6.3.1), give examples of them (Sec. 6.3.2), and
describe their relationship to wave packets and enumerate phenomena, such as wave packet
spreading, that they miss (Sec. 6.3.3).

6.3.1 Principal conclusions of the Eikonal approximation

Motivated by the mathematical form, Eq. (6.1) of plane waves in a homogeneous, time-
independent medium, we write the waves in the eikonal-approximation form

ψ(x, t) = A(x, t)eiφ(x,t) . (6.19)

Here A is the waves’ (slowly varying) complex amplitude and φ is their (rapidly varying)
phase, and we define the wave vector (field) and angular frequency (field) by

k(x, t) ≡ ∇φ , ω(x, t) ≡ −∂φ/∂t . (6.20)

The eikonal approximation includes, in addition to L � 1/k and T � 1/ω, also the re-
quirement that A, k and ω vary slowly, i.e., vary on lengthscales and timescales long com-
pared to λ̄ = 1/k and 1/ω. This requirement guarantees that the waves are locally planar
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(φ ' k · x − ωt + constant), and because they are locally planar, their frequency and wave
vector (6.20) must be related by essentially the same dispersion relation as for a homogeneous
medium:

ω = Ω(k;x, t) . (6.21)

The dependence of Ω on x and t is induced by the slow variations of the medium. For
example, in the case of Alfvén waves, the plasma density ρ and magnetic field B will vary
slowly in space and time, producing corresponding slow variations of the Alfven velocity
a(x, t) = B(x, t)/

√

4πρ(x, t) and thence slow variations of the dispersion relation Ω(k;x, t) =
a(x, t) · k [Eq. (6.7)].

Although the waves described by Eq. (6.19) are classical and our analysis will be clas-
sical, their propagation laws in the eikonal approximation can be described most nicely in
quantum mechanical language.1 Quantum mechanics insists that associated with any wave,
in the geometric optics regime, there are quanta: the wave’s associated quantum mechanical
particles. If the wave is electromagnetic, the quanta are photons; if it is gravitational, they
are gravitons; if it is sound, they are phonons. When we multiply the wave’s k, and ω by
Planck’s constant, we obtain the particles’ momentum p = ~k and energy Ẽ. Although the
19th century theory of classical waves was unaware of these quanta, once quantum mechan-
ics had been formulated the quanta became a powerful conceptual tool for thinking about
classical waves.

As for wave packets in a homogeneous medium, so also for the wave (6.19) in the in-
homogeneous, time-varying case, the wave’s quanta, their energy, their amplitude, and any

wave packets in which they may be concentrated, all propagate with the group velocity Vg.
We embody this group velocity in the following equation of motion for the quanta:

dxj

dt
= Vg j =

(

∂Ω

∂kj

)

x,t

=

(

∂(~Ω)

∂pj

)

x,t

. (6.22)

Here pj = ~kj is the momentum of the quantum, and this wave-theory expression for the
group velocity [cf. Eq. (6.11)] can be regarded as one of Hamilton’s equations for a quantum’s
motion, with H(p;x, t) ≡ ~Ω(k;x, t) playing the role of the quantum’s Hamiltonian. The
world lines with velocity Vg along which a quantum moves are regarded classically as rays

along which the waves propagate (see Fig. 6.3 for two examples). The second of Hamilton’s
equations

dpj

dt
= −

(

∂(~Ω)

∂xj

)

p,t

, i.e.
dkj

dt
= −

(

∂Ω

∂xj

)

k,t

(6.23)

describes how the quantum’s momentum p and the wave’s wave vector k = p/~ vary along
the ray. Here, as in Eq. (6.22) d/dt is the time derivative along the ray and can be written
as

d

dt
=

∂

∂t
+ Vg j

∂

∂xj
. (6.24)

1This is intimately related to the fact that quantum mechanics underlies classical mechanics; the classical
world is an approximation to the quantum world.
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k
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Fig. 6.3: (a) The rays and the surfaces of constant phase φ at a fixed time for light passing through
a converging lens [dispersion relation Ω = ck/n(x)]. In this case the rays (which always point along
Vg) are parallel to the wave vector k = ∇φ and thus also parallel to the phase velocity Vph, and the
waves propagate along the rays with a speed Vg = Vph = c/n that is independent of wavelength.
(b) The rays and surfaces of constant phase for Alfvén waves in the magnetosphere of a planet
[dispersion relation Ω − a(x) · k]. In this case because Vg = a ≡ B/

√
4πρ, the rays are parallel

to the magnetic field lines and not parallel to the wave vector, and the waves propagate along the
field lines with speeds Vg = B/

√
4πρ that are independent of wavelength; cf. Fig. 6.2 (b). As a

consequence, if some electric discharge excites Alfvén waves on the planetary surface, then they will
be observable by a spacecraft when it passes magnetic field lines on which the discharge occurred. As
the waves propagate, because B and ρ are time independent and thence ∂Ω/∂t = 0, the frequency
and energy of each quantum is conserved, and conservation of quanta implies conservation of wave
energy. Because the Alfvén speed generally diminishes with distance from the planet, conservation
of wave energy typically requires the waves’ energy density and amplitude to increase as they climb
upward.

The third of Hamilton’s equations

dẼ

dt
=

(

∂(~Ω)

∂t

)

x,p

, i.e.
dω

dt
=

(

∂Ω

∂t

)

x,k

(6.25)

describes how the quantum’s energy Ẽ = ~ω and the wave’s angular frequency ω vary along
the ray.

Turn next to the manner in which the field ψ = Aeiφ is transported along the ray. The
transport of the phase φ is determined by the transport of ω = −∂φ/∂t [Eq. (6.25)] or
equally well by the transport of k = ∇φ [Eq. (6.23)]; having computed ω(x, t) or k(x, t) by
integrating the Hamilton equations along the ray, one can then compute φ via a simple time
or spatial integral. The transport equation for the amplitude A can be deduced from the law
of conservation of quanta. [That the number of quanta in the wave is conserved, even if the
wave’s medium is varying in time (albeit slowly, T � 1/ω), can be proved in three different
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ways: (i) it is a direct consequence of the classical wave’s Eikonal approximation; (ii) it is a
consequence of the theory of adiabatic invariants, discussed in standard texts on analytical
mechanics, e.g. Goldstein (1980); (iii) it is a consequence of the quantum mechanical laws
for creation and annihilation of quanta. ]

Denoting by ε = T 00 the waves’ energy density and by εVg j = T 0j their energy flux (an
expression which embodies the fact that the energy is carried by the quanta, with velocity
Vg), we can write the number density and flux of quanta as

S0 =
ε

~ω
, Sj =

εVg j

~ω
, (6.26)

where we have used the fact that each quantum carries an energy ~ω. Then the law of
conservation of quanta and the corresponding (equivalent) law for the evolution of energy
are

∂S0

∂t
+
∂Sj

∂xj
= 0 ,

∂(ε/ω)

∂t
+
∂(εVg j/ω)

∂xj
= 0 . (6.27)

The latter equation can be rewritten as a law for transporting ε/ω along a ray by using
d/dt = ∂/∂t + Vg ·∇ for the time derivative moving with the quanta:

d(ε/ω)

dt
+ (ε/ω)∇ ·V = 0 . (6.28)

If ∂Ω/∂t = 0, then ω is conserved along a ray [Eq. (6.25)] and particle conservation implies
energy conservation. If ∂Ω/∂t 6= 0, then energy is exchanged between the medium and the
wave but ε/ω is still conserved. If one knows how to express the energy density ε in terms of
the waves’ amplitude A (an expression that will depend on the physical nature of the waves),
then by inserting that expression into Eq. (6.27) one obtains a law for the propagation of
the waves’ amplitude along the ray.

6.3.2 Examples of Propagation Laws

As a simple example of these geometric-optics propagation laws, consider a scalar wave
propagating radially outward from the origin at the speed of light in flat spacetime. Setting
the speed of light to unity, the dispersion relation is Eq. (6.4) with c = n = 1: Ω = k. It
is straightforward [Exercise 6.3] to integrate Hamilton’s equations and learn that the rays
have the simple form {r = t + constant, θ = constant, φ = constant, k = ωer} in spherical
polar coordinates, with er the unit radial vector. The Hamilton equation dω/dt = 0 [Eq.
(6.25)] says that ω is conserved along a ray, so it must be a function of retarded time, t− r.
Integrating ∂φ/∂t = −ω(t−r), or equally well ∇φ = k = ω(t−r)er, we infer that the phase
φ must also be a function of retarded time. The law of conservation of quanta in this case
reduces to the propagation law d(rA)/dt = 0 [Exercise 6.3] so rA is also a constant along
the ray and is therefore a function of retarded time. Putting this all together, we conclude
that

ψ =
A(t− r)

r
eiφ(t−r) . (6.29)

This is not only the general solution to the scalar wave equation −∂2ψ/∂t2 +∇2ψ = 0 in the
geometric optics approximation; it is an exact solution without any approximation at all.
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As another example of the geometric-optics propagation laws, consider flexural waves on
a spacecraft’s tapering antenna. The dispersion relation is Ω = k2

√

EJ/Λ [Eq. (6.6)] with
EJ/Λ ∝ d2, where d is the antenna diameter (cf. Chaps. 10 and 11). Since Ω is independent
of t, as the waves propagate from the spacecraft to the antenna’s tip, their frequency ω is
conserved [Eq. (6.25)], which implies by the dispersion relation that k = (EJ/Λ)−1/4ω1/2 ∝
d−1/2, whence the wavelength decreases as d1/2. The group velocity is Vg = 2(EJ/Λ)1/4ω1/2 ∝
d1/2. Since the energy per quantum ~ω is constant, particle conservation implies that the
waves’ energy must be conserved, which in this one-dimensional problem, means that the
energy flux must be constant along the antenna. On physical grounds the constant energy
flux must be proportional to A2Vg, which means that the amplitude A must increase ∝ d−1/4

as the flexural waves approach the antenna’s end. A qualitatively similar phenomenon is
seen in the “cracking” of a bullwhip.

Fig. 6.3 sketches two other examples: light propagating through a lens, and Alfvén waves
propagating in the magnetosphere of a planet. Below we shall explore a variety of other
applications, but first we shall sketch derivations of the propagation laws (Sec. 6.3.4) and
their relationship to wave packets and how they can fail (Sec. 6.3.3).

6.3.3 Relation to Wave Packets; Breakdown of the Eikonal Ap-

proximation

The form ψ = Aeiφ of the waves in the eikonal approximation is remarkably general. At some
initial moment of time, A and φ can have any form whatsoever, so long as the two-lengthscale
constraints are satisfied [A, ω ≡ −∂φ/∂t, k ≡ ∇φ, and dispersion relation Ω(k;x, t) all vary
on lengthscales L long compared to λ̄ = 1/k and timescales T long compared to 1/ω]. For
example, ψ could be as nearly a plane wave as is allowed by the inhomogeneities of the
dispersion relation. At the other extreme, ψ could be a moderately narrow wave packet,
confined initially to a small region of space (though not too small; its size must be large
compared to its mean reduced wavelength). In either case, the evolution will be governed
by the above propagation laws.

Of course, the eikonal approximation is an approximation. Its propagation laws make
errors, though when the two-lengthscale constraints are well satisfied, the errors will be
small for sufficiently short propagation times. Wave packets provide an important example.
Dispersion (different group velocities for different wave vectors) causes wave packets to spread
(widen) as they propagate; see Ex. 6.2. This spreading is not correctly reproduced by the
geometric optics propagation laws, because it is a fundamentally wave-based phenomenon
and is lost when one goes to the particle-motion regime. In the limit that the wave packet
becomes very large compared to its wavelength or that the packet propagates for only a short
time, the spreading is small (Ex. 6.2). This is the geometric-optics regime, and geometric
optics ignores the spreading.

Many other wave phenomena are missed by geometric optics. Examples are diffraction
(Chap. 7), nonlinear wave-wave coupling (chap. 9 and Parts III and IV), and parametric
amplification of waves by rapid time variations of the medium—which shows up in quantum
mechanics as particle production (i.e., a breakdown of the law of conservation of quanta). In
Part VI, we shall study such particle production in inflationary models of the early universe.
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6.3.4 Derivation of Propagation Laws

One can best get the flavor of the origin of the geometric-optics propagation laws by focusing,
initially, on a specific, simple type of wave. We choose one whose wave equation is

− ∂

∂t

(

n2

c2
∂ψ

∂t

)

+∇2ψ = 0 , (6.30)

where the index of refraction varies slowly in space and time, n = n(x, t), and c is a constant,
fiducial velocity. As we shall see, this wave equation gives rise to the dispersionless dispersion
relation Ω(k) = (c/n)k [Eq. (6.4)]. As was discussed in the last section, this dispersion
relation holds for electromagnetic waves in a dielectric medium or sound waves in a solid or
fluid, but in these cases the wave equation (6.30) must be augmented by terms proportional
to ∇ lnn. As we shall see in Sec. 6.4 below and in Part VI, Eq: (6.30) holds true without
∇ lnn modifications for electromagnetic or gravitational waves propagating through a slowly
changing Newtonian gravitational field Φ(x, t), in which case c is the speed of light in vacuum
and n = 1− 2Φ(x, t)/c2.

We begin our derivation by rewriting the geometric-optics expression ψ = Aeiφ for the
wave [Eq. (6.19)] in a slightly different form:

ψ = (A+ εB + . . .)eiφ/ε . (6.31)

Here ε is a bookkeeping device that tells us how the terms it multiplies scale with 1/kL
and 1/ωT . In particular, because the phase φ has the form k · x− ωt when the medium is
homogeneous, it must scale linearly with k and ω; hence the factor 1/ε in the exponential.
Similarly, since the amplitude A is constant when the medium is homogeneous, it must be
left unchanged when k and ω are doubled; hence the absence of any factor ε multiplying A.
The quantity B is the first small correction to A caused by finiteness of the wavelength, so
it is halved when k and ω are doubled; hence its factor ε. We set the numerical value of ε to
unity, and thereby we can delete it from all equations—after we have used it to make sure
that our bookkeeping on the orders of terms has been carried out properly. The use of this
bookkeeping device is common in two-lengthscale computations.

Equation (6.31) is called the eikonal approximation, and the phase φ is called the eikonal

after the Greek word for image.
By inserting the eikonal approximation (6.31) into the wave equation (6.30) and then

collecting terms in powers of ε, we obtain the following: The O(ε−2) terms [i.e. the terms
that are of order (kL)2 and (ωT )2 and thus are huge] are

ε−2

(

n2ω2

c2
− k2

)

Aeiφ/ε = 0 ; (6.32)

and the much smaller, O(ε−1) terms are

ε−1

[(

n2ω2

c2
− k2

)

B + i

(

∂(n2ω)

c2∂t
A+

2n2ω

c2
∂A

∂t
+ A∇ · k + 2(k ·∇)A

)]

eiφ/ε = 0 . (6.33)

The next-order terms, i.e. those of O(ε0), turn out to govern the evolution of the “post-
geometric-optics correction factor” B, but they are rarely of much use because, when B is
important, the eikonal approximation tends to break down severely.
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The leading-order Eq. (6.32) can be satisfied only if the frequency and wave vector are
related by the standard dispersionless dispersion relation

ω = Ω(k,x, t) ≡ c

n(x, t)
k (6.34)

[Eq. (6.4)]. In the next-order Eq. (6.33), the term proportional to B vanishes by virtue of
the dispersion relation, and the rest can be regarded as a differential equation for the waves’
amplitude:

dA

dt
≡ ∂A

∂t
+ Vg ·∇A = −1

2

(

c

nk
∇ · k +

∂ ln(ωn2)

∂t

)

A . (6.35)

Eq. (6.35) implies that, in the geometric optics limit, the value of A at any location P in
spacetime is influenced only by A at earlier locations along the ray that passes through P,
and not by the value of A at any other locations. In this sense, the amplitude propagates
along the wave’s rays, as was discussed above. When n is time independent and hence so
is ω [Eq. (6.34)], the last term vanishes and the ∇ · k term enforces a “1/r” falloff of the
amplitude A, thereby guaranteeding energy conservation; cf. Eq. (6.40) below and associated
discussion.

With this simple case as a model, we now go back and study a scalar wave equation with
the much more general form

∂2ψ

∂t2
+ Ω2(−i∇,x, t)ψ = F (−i∇, i∂/∂t,x, t)ψ . (6.36)

Here Ω2 is a polynomial of order N in −i∇ with coefficients that vary slowly in space x

and time t, and F is a polynomial of order N − 1 or smaller in −i∇ and is first order
in i∂/∂t. (The generalization to other wave equations, e.g. vectorial or tensorial ones, is
straightforward.) When one inserts the eikonal approximation (6.31) into the general wave
Eq. (6.36), one obtains at leading order in ε the dispersion relation ω = Ω(k,x, t), where Ω
is the function appearing in Eq. (6.36). The next order terms have the form

−2iω
∂A

∂t
− 2iΩ(k,x, t)

∂Ω(k,x, t)

∂kj

∂A

∂xj

= terms proportional to A . (6.37)

Using the dispersion relation ω = Ω(x, t,k), we bring this into the “propagate A along a
ray” form

dA

dt
≡ ∂A

∂t
+ Vg ·∇A = terms proportional to A , (6.38)

where the group velocity as always is

Vg j = ∂Ω/∂kj . (6.39)

The laws of quantum mechanics guarantee that the terms on the right side of A’s propagation
law (6.38) have just the right form to enforce conservation of quanta, Eq. (6.27). We shall
verify this below for the special case of sound waves in a time-varying fluid, but first we must
derive Hamilton’s equations for the rays.
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We begin our derivation of Hamilton’s equations by inserting the definitions ω = −∂φ/∂t
and k = ∇φ into the general dispersion relation ω = Ω(k,x, t) for an arbitrary wave, thereby
obtaining

∂φ

∂t
+ Ω(∇φ,x, t) = 0 . (6.40)

This equation is known in optics as the eikonal equation. It is formally the same as the
Hamilton-Jacobi equation of classical mechanics2 if we identify ~Ω with the Hamiltonian
and ~φ with Hamilton’s principal function. This suggests that we follow the same procedure
as is used to derive Hamilton’s equations of motion. We take the gradient of Eq. (6.40) to
obtain

∂2φ

∂t∂xj
+
∂Ω

∂kl

∂2φ

∂xl∂xj
+
∂Ω

∂xj
= 0 , (6.41)

where the partial derivatives of Ω are with respect to its arguments (k,x, t); we then use
∂φ/∂xj = kj and ∂Ω/∂kl = Vg l to write this as dkj/dt = −∂Ω/∂xj . This is the second of
Hamilton’s equations (6.23), and it tells us how the wave vector changes along a ray. The
equation for the ray’s tangent vector, dxj/dt = ∂Ω/∂kj , is the first of Hamilton’s equations,
(6.22). The third Hamilton equation, dω/dt = ∂Ω/∂t [Eq. (6.25)] is obtained by taking the
time derivative of the eikonal equation (6.40).

Turn, finally, to the evolution law for energy, Eq. (6.27) and its relationship to conserva-
tion of particles and to the propagation law for amplitude. We shall not attempt a general
derivation but instead shall focus on a simple example, sound waves in a fluid. Suppose that
the fluid is gradually warmed, keeping its density ρ fixed. The warming raises the fluid’s
pressure and lowers its index of refraction for sound waves, so n is independent of x but
slowly decreasing in t. Sound waves in the fluid will then have oscillatory velocities given by
v = ∇ψ, where ψ(x, t) obeys the simple wave equation (6.30); see Chap. 15. As we show in
Ex. 6.7 and in Chap. 15, the waves’ energy density and flux are given by

ε =
ρ

2

〈

(

n2

c2

)(

∂ψ

∂t

)2

+ (∇ψ)2

〉

, (6.42)

F = εVg = −ρ
〈(

∂ψ

∂t

)

∇ψ

〉

, (6.43)

where the average 〈. . .〉 is over a wave period. Now let us examine the evolution of the waves’
energy. Differentiating Eq. (6.42) with respect to time, taking the divergence of Eq. (6.43),
adding them together, and using the wave equation (6.30), we obtain

∂ε

∂t
+ ∇ · F = −

(

ρn2

c2

)

∂ lnn

∂t

〈

(

∂ψ

∂t

)2
〉

, (6.44)

which can be simplified further by using the equipartition of energy between the two contri-
butions to the energy density in Eq. (6.42):

∂ε

∂t
+ ∇ · F = −ε∂ lnn

∂t
. (6.45)

2See, for example, Goldstein (1980).
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This equation shows that the wave energy is not conserved; if it were, the right hand side
would vanish. The medium does work on the waves as it gradually decreases their index of
refraction. By inserting the eikonal approximation ψ = <(Aeiφ) (where < means take the
real part) into expressions (6.42) and (6.43) for ε and F, and putting these in turn into the
energy evolution law (6.45), we can obtain an evolution law for the wave amplitude A. Not
surprisingly, this evolution law is identical to the law (6.35) of propagation along the rays,
which we obtained directly from the wave equation in the eikonal approximation.

Although the fluid’s wave energy is not conserved, the number of quanta (phonons) in
the wave is conserved: The density and flux of quanta are ε/~ω and F/~ω = εVg/~ω, and
their evolution law [just a rewrite of energy evolution (6.45)] is

∂

∂t

( ε

~ω

)

+∇ ·
(

εVg

~ω

)

= − ε

~ω

d ln(ωn)

dt
= 0 . (6.46)

That the second expression vanishes, i.e. that ωn is constant along a ray, follows from
Hamilton’s equations (6.22)–(6.25) with Ω = [c/n(t)]k; it also should be clear from a simple
physical argument: The product ωn is equal to ck by the dispersion relation, and therefore
it is proportional to the wave number k. Now, imagine a standing wave, inside our spatially
homogeneous medium, made from two waves of the same frequency and wave number that
travel in opposite directions. It should be clear that the wavelength of this standing wave
cannot change with time, and therefore its reciprocal, the wave number k, cannot change,
and therefore nω = ck cannot change.

6.3.5 Fermat’s principle

The Hamilton equations of optics allow us to solve for the paths of rays in media that vary
both spatially and temporally. When the medium is time independent, the rays x(t) can be
computed from a variational principle named after Fermat. This Fermat’s principle is the
optical analogue of Maupertuis’ principle of least action in classical mechanics.3 In classical
mechanics, this principle states that, when a particle moves from one point to another
through a time-independent potential (so its energy, the Hamiltonian, is conserved), then
the path q(t) that it follows is one that extremizes the action

J =

∫

p · dq , (6.47)

(where q, p are the particle’s generalized coordinates and momentum), subject to the con-
straint that the paths have a fixed starting point, a fixed endpoint, and constant energy.
The proof, which can be found in any text on analytical dynamics, carries over directly to
optics when we replace the Hamiltonian by Ω, q by x, and p by k. The resulting Fermat
principle, stated with some care, has the following form:

Consider waves whose Hamiltonian Ω(k,x) is independent of time. Choose an initial
location xinitial and a final location xfinal in space, and ask what are the rays x(t) that connect

3Goldstein (1980).
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these two points. The rays (usually only one) are those paths that satisfy the variational
principle

δ

∫

k · dx = 0 . (6.48)

In this variational principle k must be expressed in terms of the trial path x(t) using Hamil-
ton’s equation dxj/dt = −∂Ω/∂kj ; the rate that the trial path is traversed (i.e., the magni-
tude of the group velocity) must be adjusted so as to keep Ω constant along the trial path
(which means that the total time taken to go from xinitial to xfinal can differ from one trial
path to another); and, of course, the trial paths must all begin at xinitial and end at xfinal.

Notice that, once a ray has been identified via this action principle, it has k = ∇φ, and
therefore the extremal value of the action

∫

k · dx along the ray is equal to the waves’ phase
difference ∆φ between xinitial and xfinal. Correspondingly, for any trial path we can think
of the action as a phase difference along that path and we can think of the action principle
as one of extremal phase difference ∆φ. This can be reexpressed in a form closely related
to Feynman’s path-integral formulation of quantum mechanics: We can regard all the trial
paths as being followed with equal probability; for each path we are to construct a probability
amplitude ei∆φ; and we must then add together these amplitudes. The contributions from
almost all neighboring paths will interfere destructively. The only exceptions are those paths
whose neighbors have the same values of ∆φ, to first order in the path difference. These are
the paths that extremize the action (6.48); i.e., they are the wave’s rays.

Fermat’s principle takes on an especially simple form when not only is the Hamilto-
nian Ω(k,x) time independent, but it also has the simple dispersion-free form Ω = kc/n(x)
— a form valid for propagation of light through a time-independent dielectric, and sound
waves through a time-independent, inhomogeneous fluid, and electromagnetic or gravita-
tional waves through a time-independent, Newtonian gravitational field. In this case, the
Hamiltonian dictates that for each trial path, k is parallel to dx, and therefore k · dx = kds,
where s is distance along the path. Using the dispersion relation k = nΩ/c and noting that
Hamilton’s equation dxj/dt = ∂Ω/∂kj implies ds/dt = c/n for the rate of traversal of the
trial path, we see that k · dx = kds = Ωdt. Since the trial paths are constrained to have Ω
constant, Fermat’s principle (6.48) becomes a principle of extremal time: The rays between
xinitial and xfinal are those paths along which

∫

dt =

∫

n(x)

c
ds (6.49)

is extremal—or, equivalently, since c is a constant, they are the paths of extremal optical

path length
∫

n(x)ds.
We can use Fermat’s principle to demonstrate that, if the medium contains no opaque

objects, then there will always be at least one ray connecting any two points. This is because
there is a lower bound on the optical path between any two points given by nminL, where
nmin is the lowest value of the refractive index anywhere in the medium and L is the distance
between the two points. This means that for some path the optical path length must be a
minimum, and that path is then a ray connecting the two points.

From the principle of extremal time, we can derive the Euler-Lagrange differential equa-
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Fig. 6.4: Illustration of Snell’s law of refraction at the interface between two media where the
refractive indices are n1, n2. As the wavefronts must be continuous across the interface, and the
wavelengths are inversely proportional to the refractive index, we have from simple trigonometry
that n1 sin θ1 = n2 sin θ2.

tion for the ray. For ease of derivation, we write the action principle in the form

δ

∫

n(x)

(

dx

ds
· dx
ds

)1/2

ds, (6.50)

where the quantity in the square root is identically one. Performing a variation in the usual
manner then gives

d

ds

(

n
dx

ds

)

= ∇n . (6.51)

This is equivalent to Hamilton’s equations for the ray, as one can readily verify using the
Hamiltonian Ω = kn/c [Ex. 6.3].

Equation (6.51) is a second order differential equation requiring two boundary conditions
to define a solution. We can either choose these to be the location of the start of the ray and
its starting direction, or the start and end of the ray. A simple case arises when the medium
is stratified, i.e. when n = n(z), where (x, y, z) are Cartesian coordinates. Projecting
Eq. (6.51) perpendicular to ez, we discover that ndy/ds and ndx/ds are constant, which
implies

n sin θ = constant (6.52)

where θ is the angle between between the ray and ez. This is Snell’s law of refraction. Snell’s
law is just a mathematical statement that the rays are normal to surfaces (wavefronts) on
which the eikonal φ is constant (cf. Fig. 6.4).

****************************

EXERCISES

Exercise 6.3 Derivation and Practice: Spherical Solution to Vacuum Scalar Wave Equation
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Derive the spherical solution (6.29) of the vacuum scalar wave equation −∂2ψ/∂t2 +
∇2ψ = 0 from the geometric optics laws by the procedure sketched in the text. Use
the propagation law (6.35) for the amplitude, which [as is briefly discussed after Eq.
(6.45)] follows from the law of conservation of quanta.

Exercise 6.4 Problem: Gravitational Waves From a Spinning, Deformed Neutron Star

Gravitational waves, propagating through the external, nearly Newtonian gravitational
field Φ = −GM/r of their source, obey the wave equation (6.30) with n = 1−2Φ/c2 =
1 + 2GM/c2r. Here M is the source’s mass, and the wave field ψ is a dimensionless
“strain (distortion) of space” h+(x, t) which we shall study in Chapter 26. For a
spinning, deformed neutron star residing at the origin of spherical polar coordinates
(r, θ, ϕ) with its spin along the polar axis, a particular geometric-optics solution of this
wave equation has amplitude and phase with the following forms:

A =
A(1 + cos2 θ)e2iϕ

r[1 + (r∗ − t)2/τ 2]
, φ = ωoτe

(r∗−t)/τ , where r∗ ≡ r + 2M ln
( r

2M
− 1
)

.

(6.53)
Here and throughout this problem, for simplicity of notation, we adopt units in which
G = c = 1 (cf. Chapter 24). The quantity A is a constant characterizing the strength
of the waves, ωo is some constant frequency, and τ � 1/ωo is a long timescale on
which the waves’ frequency and amplitude change. We restrict attention to times
t > r∗, so the amplitude is slowly dying and (as you shall see) the frequency is slowly
decreasing—due to gradual spindown of the star.

(a) What are ω(x, t) and k(x, t) for these gravitational waves?

(b) Verify that these ω and k satisfy the dispersion relation (6.4).

(c) For this simple dispersion relation, there is no dispersion; the group and phase velocities
are the same. Explain why this means that the phase must be constant along the rays,
dφ/dt = 0. From this fact, deduce that the rays are given by {t− r∗, θ, φ} = constant.
Explain why this means means that t − r∗ can be regarded as the retarded time for
these waves.

(d) Verify that the waves’ amplitude satisfies the propagation law (6.35).

Exercise 6.5 Derivation: Hamilton’s Equations for Dispersionless Waves

Show that Hamilton’s equations for the standard dispersionless dispersion relation (6.4)
imply the same ray equation (6.51) as we derived using Fermat’s principle.

Exercise 6.6 Problem: Propagation of Sound waves in a Wind

Consider sound waves propagating in an isothermal atmosphere with constant sound
speed c in which there is a horizontal wind shear. Let the (horizontal) wind velocity
u = uxex increase linearly with height z above the ground according to ux = Sz, where
S is the constant shearing rate. Just consider rays in the x− z plane.
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(a) Give an expression for the dispersion relation ω = Ω(k,x, t). [Hint: in the local rest
frame of the air, Ω should have its standard sound-wave form.]

(b) Show that kx is constant along a ray path and then demonstrate that sound waves will
not propagate when

∣

∣

∣

∣

ω

kx
− ux(z)

∣

∣

∣

∣

< c . (6.54)

(c) Consider sound rays generated on the ground which make an angle θ to the horizontal
initially. Derive the equations describing the rays and use them to sketch the rays
distinguishing values of θ both less than and greater than π/2. (You might like to
perform this exercise numerically.)

Exercise 6.7 Example: Self-Focusing Optical Fibers

Optical fibers in which the refractive index varies with radius are commonly used to
transport optical signals. Provided that the diameter of the fiber is many wavelengths,
we can use geometric optics. Let the refractive index be

n = n0(1− α2r2)1/2 (6.55)

where n0 and α are constants and r is radial distance from the fiber’s axis.

(a) Consider a ray that leaves the axis of the fiber along a direction that makes a small
angle θ to the axis. Solve the ray transport equation (6.51) to show that the radius of
the ray is given by

r =
sin θ

α

∣

∣

∣
sin
( αz

cos θ

)
∣

∣

∣
(6.56)

where z measures distance along the fiber.

(b) Next consider the propagation time T for a light pulse propagating along a long length
L of fiber. Show that

T =
n0L

c
[1 +O(θ4)] (6.57)

and comment on the implications of this result for the use of fiber optics for commu-
nication.

Exercise 6.8 Example: Geometric Optics for the Schrödinger equation

Consider the non-relativistic Schrödinger equation for a particle moving in a time-
dependent, 3-dimensional potential well.

−~

i

∂ψ

∂t
=

[

1

2m

(

~

i
∇
)2

+ V (x, t)

]

ψ . (6.58)



19

(a) Seek a geometric optics solution to this equation with the form ψ = AeiS/~, where
A and V are assumed to vary on a lengthscale L and timescale T long compared to
those, 1/k and 1/ω, on which S varies. Show that the leading order terms in the
two-lengthscale expansion of the Schrödinger equation (leading order in a bookkeeping
parameter ε) give the Hamilton-Jacobi equation

∂S

∂t
+

1

2m
(∇S)2 + V = 0 . (6.59)

Our notation φ ≡ S/~ for the phase φ of the wave function ψ is motivated by the fact
that the geometric-optics limit of quantum mechanics is classical mechanics, and the
function S = ~φ becomes, in that limit, “Hamilton’s principal function,” which obeys
the Hamilton-Jacobi equation.4

(b) From this equation derive the equation of motion for the rays (which of course is
identical to the equation of motion for a wave packet and therefore is also the equation
of motion for a classical particle):

dx

dt
=

p

m
,

dp

dt
= −∇V , (6.60)

where p = ∇S.

(c) Derive the propagation equation for the wave amplitude A and show that it implies

d|A|2
dt

+ |A|2∇ · p
m

= 0 (6.61)

Interpret this equation quantum mechanically.

Exercise 6.9 Example: Energy Density and Flux, and Adiabatic Invariant, for a Disper-

sionless Wave

(a) Show that the standard dispersionless scalar wave equation (6.30) follows from the
variational principle

δ

∫

dtdx

{

ρ

[

n2

2c2

(

∂ψ

∂t

)2

− 1

2
(∇ψ)2

]}

= 0 , (6.62)

where ρ is a constant (the mass density in the case of sound waves traveling through
a fluid).

(b) The quantity in square brackets is known as the Lagrangian density, L. For any
scalar-field Lagrangian L(ψ,∇ψ,x, t), there is a canonical, relativistic procedure for
constructing a stress-energy tensor:

Tµ
ν = − ∂L

∂ψ,ν
ψ,µ + δµ

νL . (6.63)

4See, e.g., Chap. 10 of Goldstein (1980).
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Show that, if L has no explicit time dependence (e.g., for the Lagrangian of Eq. (6.62)
if n = n(x) does not depend on time t), then the field’s energy is conserved, T 0ν

,ν = 0.
A similar calculation shows that if the Lagrangian has no explicit space dependence
(e.g., if n is independent of x), then the field’s momentum is conserved, T jν

,ν = 0.

(c) Show that expression (6.63) for the field’s energy density ε = T 00 and its energy flux
Fi = T 0i agrees with Eqs. (6.42) and (6.43).

(d) Now, regard the wave amplitude ψ as a generalized coordinate. Use the Lagrangian
L =

∫

Ld3x to define a momentum Π conjugate to this ψ, and then compute a wave

action

J ≡
∫ 2π/ω

0

∫

Π(∂ψ/∂t)d3x dt , (6.64)

which is the continuum analog of Eq. (6.47). Note that the temporal integral is over
one wave period. Show that this J is proportional to the wave energy divided by the
frequency and thence to the number of quanta in the wave. [Comment: It is shown
in standard texts on classical mechanics that, for approximately periodic oscillations,
the particle action (6.47), with the integral limited to one period of oscillation of q,
is an adiabatic invariant. By the extension of that proof to continuum physics, the
wave action (6.64) is also an adiabatic invariant. This means that the wave action
(and thence also the number of quanta in the waves) is conserved when the medium
[in our case the index of refraction n(x)] changes very slowly in time—a result asserted
in the text, and a result that also follows from quantum mechanics. We shall study
the particle version of this adiabatic invariant, Eq. (6.47) in detail when we analyze
charged particle motion in a magnetic field in Chap. 19.]

****************************

6.4 Paraxial Optics

It is quite common in optics to be concerned with a bundle of rays that are almost parallel.
This implies that the angle that the rays make with some reference ray can be treated as
small—an approximation that underlies the first order theory of simple optical instruments
like the telescope and the microscope. This approximation is called paraxial optics, and it
permits one to linearize the geometric optics equations and use matrix methods to trace
their rays.

We shall develop the paraxial optics formalism for waves whose dispersion relation ω = Ω
has the simple, time-independent, nondispersive form Ω = kc/n(x). Recall that this applies
to light in a dielectric medium — the usual application. As we shall see below, it also applies
to charged particles in a storage ring.

We start by linearizing the ray propagation equation (6.51). Let z measure distance along
a reference ray. Let the two dimensional vector x(z) be the transverse displacement of some
other ray from this reference ray, and denote by (x, y) = (x1, x2) the Cartesian components
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of x, with the transverse Cartesian basis vectors ex and ey transported parallely along the
reference ray. Under paraxial conditions, |x| is small compared to the z-lengthscales of the
propagation. Now, let us Taylor expand the refractive index, n(x, z).

n(x, z) = n(0, z) + xin,i(0, z) +
1

2
xixjn,ij(0, z) + . . . , (6.65)

where the subscript commas denote partial derivatives with respect to the transverse coor-
dinates, n,i ≡ ∂n/∂xi. The linearized form of Eq. (6.51) is then given by

d

dz

(

n(0, z)
dxi

dz

)

= n,i(0, z) + xjn,ij(0, z) . (6.66)

It is helpful to regard z as “time” and think of Eq. (6.66) as an equation for the two
dimensional simple harmonic motion of a particle (the ray) in a quadratic potential well.

We are usually concerned with aligned optical systems in which there is a particular
choice of reference ray called the optic axis, for which the term n,i(0, z) on the right hand
side of Eq. (6.66) vanishes. If we choose the reference ray to be the optic axis, then Eq. (6.66)
is a linear, homogeneous, second-order equation for x(z),

(d/dz)(ndxi/dz) = xjn,ij (6.67)

which we can solve given starting values x(z′), ẋ(z′) where the dot denotes differentiation
with respect to z, and z′ is the starting location. The solution at some point z is linearly
related to the starting values. We can capitalize on this linearity by treating {x(z), ẋ(z)}
as a 4 dimensional vector Vi(z)—with V1 = x, V2 = ẋ, V3 = y, V4 = ẏ—and embodying the
linear transformation from location z′ to location z in a transfer matrix Jab(z, z

′):

Va(z) = Jab(z, z
′) · Vb(z

′). (6.68)

The transfer matrix contains full information about the change of position and direction of
all rays that propagate from z′ to z. As is always the case for linear systems, the transfer
matrix for propagation over a large interval, from z ′ to z, can be written as the product of
the matrices for two subintervals, from z′ to z′′ and from z′′ to z:

Jac(z, z
′) = Jab(z, z

′′)Jbc(z
′′, z′). (6.69)

6.4.1 Axisymmetric, Paraxial Systems

If the index of refraction is everywhere axisymmetric, so n = n(
√

x2 + y2, z), then there is
no coupling between the motions of rays along the x and y directions, and the equations of
motion along x are identical to those along y. In other words, J11 = J33, J12 = J34, J21 = J43,
and J22 = J44 are the only nonzero components of the transfer matrix. This reduces the
dimensionality of the propagation problem from 4 dimensions to 2: Va can be regarded as
either {x(z), ẋ(z)} or {y(z), ẏ(z)}, and in both cases the 2 × 2 transfer matrix Jab is the
same.
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u v

Lens
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Fig. 6.5: Simple converging lens used to illustrate the use of transfer matrices.The total transfer
matrix is formed by taking the product of the straight section transfer matrix with the lens matrix
and another straight section matrix.

Let us illustrate the paraxial formalism by deriving the transfer matrices of a few simple,
axisymmetric optical elements. In our derivations it is helpful conceptually to focus on rays
that move in the x-z plane, i.e. that have y = ẏ = 0. We shall write the 2-dimensional Vi as
a column vector

Va =

(

x
ẋ

)

(6.70)

The simplest case is a straight section of length d extending from z ′ to z = z′ + d. The
components of V will change according to

x = x′ + ẋ′d (6.71)

ẋ = ẋ′ (6.72)

so

Jab =

(

1 d
0 1

)

, (6.73)

where x′ = x(z′) etc. Next, consider a thin lens with focal length f . The usual convention
in optics is to give f a positive sign when the lens is converging and a negative sign when
diverging. A thin lens gives a deflection to the ray that is linearly proportional to its dis-
placement from the optic axis, but does not change its transverse location. Correspondingly,
the transfer matrix in crossing the lens (ignoring its thickness) is:

Jab =

(

1 0
−f−1 1

)

. (6.74)

Similarly, a spherical mirror with radius of curvature R (again adopting a positive sign for
a converging mirror and a negative sign for a diverging mirror) has a transfer matrix

Jab =

(

1 0
2R−1 1

)

. (6.75)

As a simple illustration let us consider rays that leave a point source which is located a
distance u in front of a converging lens of focal length f and solve for the ray positions a
distance v behind the lens (Fig. 6.5). The total transfer matrix is the product of the transfer
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matrix for a straight section, Eq. (6.73) with the product of the lens transfer matrix and a
second straight-section transfer matrix:

Jab =

(

1 v
0 1

)(

1 0
−f−1 1

)(

1 u
0 1

)

=

(

1− vf−1 u+ v − uvf−1

−f−1 1− uf−1

)

(6.76)

When the 1-2 element (upper right entry) of this transfer matrix vanishes, the position
of the ray after traversing the optical system is independent of the starting direction. In
other words, rays from the point source form a point image. When this happens, the planes
containing the source and the image are said be conjugate. The condition for this to occur
is

1

u
+

1

v
=

1

f
(6.77)

This is the standard thin lens equation. The linear magnification of the image is given by
M = J11 = 1− v/f , i.e.

M = −v
u
, (6.78)

where the negative sign indicates that the image is inverted. Note that the system does not
change with time, so we could have interchanged the source and the image planes.

6.4.2 Converging Magnetic Lens

Since geometric optics is the same as particle dynamics, these matrix equations can be
used for paraxial motions of electrons and ions in a storage ring. (Note, however, that the
Hamiltonian for such particles is dispersive, since the Hamiltonian does not depend linearly
on the particle momentum, and so for our simple matrix formalism to be valid, we must
confine attention to a mono-energetic beam.) Quadrupolar magnetic fields are used to guide
the particles around the storage ring. Since these magnetic fields are not axisymmetric, to
analyze them we must deal with a four-dimensional vector V.

The simplest, practical magnetic lens is quadrupolar. If we orient our axes appropriately,
the magnetic field can be expressed in the form

B =
B0

r0
(yex + xey) . (6.79)

Particles traversing this magnetic field will be subjected to a Lorentz force which will curve
their trajectories. In the paraxial approximation, a particle’s coordinates will satisfy the two
differential equations

ẍ = − x

λ2
, ÿ =

y

λ2
, (6.80)

where the dots (as above) mean d/dz = v−1d/dt and

λ =

(

pr0
qB0

)1/2

(6.81)

with q the particle’s charge (assumed positive) and p its momentum. The motions in the x
and y directions are decoupled. It is convenient in this case to work with two 2-dimensional
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Fig. 6.6: Quadrupolar Magnetic Lens. The magnetic field lines lie in a plane perpendicular to the
optic axis. Positively charged particles moving along ez are converged when y = 0 and diverged
when x = 0.

vectors, {Vx1, Vx2} ≡ {x, ẋ} and {Vy1, Vy2} = {y, ẏ}. From the elementary solutions to the
equations of motion (6.80), we infer that the transfer matrices from the magnet’s entrance
to its exit are Jx ab, Jy ab, where

Jx ab =

(

cos φ λ sinφ
−λ−1 sinφ cosφ

)

(6.82)

Jy ab =

(

coshφ λsinhφ
λ−1sinhφ coshφ

)

(6.83)

and φ = L/λ with L the distance from entrance to exit.
The matrices Jxab, Jy ab can be decomposed as follows

Jxab =

(

1 λ tanφ/2
0 1

)(

1 0
− sin φ/λ 1

)(

1 λ tanφ/2
0 1

)

(6.84)

Jy ab =

(

1 λtanhφ/2
0 1

)(

1 0
sinhφ/λ 1

)(

1 λtanhφ/2
0 1

)

(6.85)

Comparing with Eqs. (6.73), (6.74), we see that the action of a single magnet is equivalent
to the action of a straight section, followed by a thin lens, followed by another straight
section. Unfortunately, if the lens is focusing in the x direction, it must be de-focusing
in the y direction and vice versa. However, we can construct a lens that is focusing along
both directions by combining two magnets that have opposite polarity but the same focusing
strength φ = L/λ:

Consider the motion in the x direction first. Let f+ = λ/ sinφ be the equivalent focal
length of the first converging lens and f− = −λ/sinhφ that of the second diverging lens. If
we separate the magnets by a distance s, this must be added to the two effective lengths of
the two magnets to give an equivalent separation, d = λ tan(φ/2) + s + λtanh(φ/2) for the
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two equivalent thin lenses. The combined transfer matrix for the two thin lenses separated
by this distance d is then

(

1 0
−f−1

− 1

)(

1 d
0 1

)(

1 0
−f−1

+ 1

)

=

(

1− df−1
+ d

−f−1
∗

1− df−1
−

)

(6.86)

where

1

f∗
=

1

f−
+

1

f+
− d

f−f+
(6.87)

=
sin φ

λ
− sinhφ

λ
+
d sinφ sinhφ

λ2
. (6.88)

Now if we assume that φ� 1 and s� L, then we can expand as a Taylor series in φ to
obtain

f∗ '
3λ

2φ3
=

3λ4

2L3
. (6.89)

The effective focal length of the combined magnets, f∗ is positive and so the lens has a net
focussing effect. From the symmetry of Eq. (6.88) under interchange of f+ and f−, it should
be clear that f∗ is independent of the order in which the magnets are encountered. Therefore,
if we were to repeat the calculation for the motion in the y direction we would get the same
focusing effect. (The diagonal elements of the transfer matrix are interchanged but as they
are both close to unity, this is a fairly small difference.)

The combination of two quadrupole lenses of opposite polarity can therefore imitate the
action of a converging lens. Combinations of magnets like this are used to collimate particle
beams in storage rings and particle accelerators.

****************************

EXERCISES

Exercise 6.10 Problem: Matrix Optics for a Simple Refracting Telescope

Consider a simple refracting telescope that comprises two thin converging lenses and
that takes parallel rays of light from distant stars which make an angle θ with the optic
axis and converts them into parallel rays making an angle −Mθ where M � 1 is the
magnification (Fig. 6.7).

(a) Use matrix methods to investigate how the output rays depend on the separation of
the two lenses and hence find the condition that the output rays are parallel when the
input rays are parallel.

(b) How does the magnification M depend on the ratio of the focal lengths of the two
lenses?
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Fig. 6.7: Simple refracting telescope.

x2
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x3

Fig. 6.8: An optical cavity formed by two mirrors, and a light beam bouncing back and forth
inside it.

Exercise 6.11 Example: Rays bouncing between two mirrors

Consider two spherical mirrors each with radius of curvature R, separated by distance d
so as to form an “optical cavity,” as shown in Fig. 6.8. A laser beam bounces back and
forth between the two mirrors. The center of the beam travels along a geometric-optics
ray.

(a) Show, using matrix methods, that the central ray hits one of the mirrors (either one)
at successive locations x1,x2,x3 . . . (where x ≡ (x, y) is a 2D vector in the plane
perpendicular to the optic axis), which satisfy the difference equation

xk+2 − 2bxk+1 + xk = 0

where

b = 1− 4d

R
+

2d2

R2
.

Explain why this is a difference-equation analogue of the simple-harmonic-oscillator
equation.

(b) Show that this difference equation has the general solution

xk = A cos(k cos−1 b) + B sin(k cos−1 b) .

Obviously, A is the transverse position x0 of the ray at its 0’th bounce. The ray’s 0’th
position x0 and its 0’th direction of motion ẋ0 together determine B.

(c) Show that if 0 ≤ d ≤ 2R, the mirror system is “stable”. In other words, all rays
oscillate about the optic axis. Similarly, show that if d > 2R, the mirror system is
unstable and the rays diverge from the optic axis.
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(d) For an appropriate choice of initial conditions x0 and ẋ0, the laser beam’s successive
spots on the mirror lie on a circle centered on the optic axis. When operated in this
manner, the cavity is called a Harriet delay line. How must d/R be chosen so that the
spots have an angular step size θ? (There are two possible choices.)

****************************

6.5 Polarization and the Berry Phase

In our geometric optics analyses thus far, we have either dealt with a scalar wave (e.g., a
sound wave) or simply supposed that individual components of vector or tensor waves can be
treated as scalars. For most purposes, this is indeed the case and we shall continue to use this
simplification in the following chapters. However, there are some important wave properties
that are unique to vector (or tensor) waves. Most of these come under the heading of
polarization effects. In Part VI we shall study polarization effects for (tensorial) gravitational
waves. Here and in several other chapters we shall examine them for electromagnetic waves.

An electromagnetic wave in vacuo has its electric and magnetic fields E and B perpen-
dicular to its propagation direction k̂ and perpendicular to each other. In a medium, E and
B may or may not remain perpendicular to k̂, depending on the medium’s properties. For
example, an Alfvén wave has its vibrating magnetic field perpendicular to the background
mmagnetic field, which can make an arbitrary angle with respect to k̂. By contrast, in the
simplest case of an isotropic dielectric medium, where the dispersion relation has our stan-
dard dispersion-free form Ω = (c/n)k, the group and phase velocities are parallel to k̂, and
E and B turn out to be perpendicular to k̂ and to each other—as in vacuum. In this section,
we shall confine attention to this simple situation, and to linearly polarized waves, for which
E oscillates linearly back and forth along a polarization direction f̂ that is perpendicular to
k̂

E = Aeiφ f̂ , f̂ · k̂ ≡ f̂ ·∇φ = 0 . (6.90)

In the eikonal approximation, Aeiφ ≡ ψ satisfies the geometric-optics propagation laws
of Sec. 6.3, and the polarization vector f̂ , like the amplitude A, will propagate along the
rays. The propagation law for f̂ can be derived by applying the eikonal approximation to
Maxwell’s equations, but it is easier to infer that law by simple physical reasoning: (i) If
the ray is straight, then the medium, being isotropic, is unable to distinguish a slow right-
handed rotation of f̂ from a slow left-handed rotation, so there will be no rotation at all: f̂

will continue always to point in the same direction, i.e. f̂ will be kept parallel to itself during
transport along the ray. (ii) If the ray bends, so dk̂/ds 6= 0 (where s is distance along the
ray), then f̂ will have to change as well, so as always to remain perpendicular to k̂. The
direction of f̂ ’s change must be k̂, since the medium, being isotropic, cannot provide any
other preferred direction for the change. The magnitude of the change is determined by the
requirement that f̂ · k̂ remain zero all along the ray and that k̂ · k̂ = 1. This immediately
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Fig. 6.9: (a) The ray along the optic axis of a circular loop of optical fiber, and the polarization
vector f̂ that is transported along the ray by the geometric-optics transport law d f̂/ds = −k̂(f̂ ·
dk̂/ds). (b) The polarization vector f̂ drawn on the unit sphere. The vector from the center of the
sphere to each of the points A, B, ..., is the ray’s propagation direction k̂, and the polarization
vector (which is orthogonal to k̂ and thus tangent to the sphere) is identical to that in the physical
space of the ray [drawing (a)].

implies that the propagation law for f̂ is

df̂

ds
= −k̂

(

f̂ · dk̂
ds

)

. (6.91)

We say that the vector f̂ is parallel-transported along k̂. Here “parallel transport” means:
(i) Carry f̂ a short distance along the trajectory keeping it parallel to itself in 3-dimensional
space. This will cause f̂ to no longer be perpendicular to k̂. (ii) Project f̂ perpendicular to
k̂ (by adding onto it the appropriate multiple of k̂. (The techniques of differential geometry
for curved surfaces, which we shall develop in Part VI when studying general relativity, give
powerful mathematical tools for analyzing this parallel transport.)

6.5.1 Berry Phase

We shall use the polarization propagation law (6.91) to illustrate a quite general phenomenon
known as the Berry (or geometric or adiabatic or anholonomic) phase.5

Consider linearly polarized, monochromatic light beam that propagates in an optical
fiber. The fiber’s optic axis is the principal ray along which the light propagates. We can
imagine bending the fiber into any desired shape, and thereby controlling the shape of the
ray. The ray’s shape in turn will control the propagation of the polarization via Eq. (6.91).

If the fiber and ray are straight, then the propagation law (6.91) keeps f̂ constant. If the
fiber and ray are circular, then the propagation law (6.91) causes f̂ to rotate in such a way
as to always point along the generator of a cone as shown in Fig. 6.9 (a). This polarization
behavior, and that for any other ray shape, can be deduced with the aid of a unit sphere

5Berry (1990).
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Fig. 6.10: (a) The ray along the optic axis of a helical loop of optical fiber, and the polarization
vector f̂ that is transported along the ray by the geometric-optics transport law d f̂/ds = −k̂(f̂ ·
dk̂/ds). The ray’s propagation direction k̂ makes an angle θ = 73o to the vertical direction. (b) The
trajectory of k̂ on the unit sphere (a circle with polar angle θ = 73o), and the polarization vector
f̂ that is parallel transported along that trajectory. The polarization vectors in drawing (a) are
deduced from the parallel transport law of drawing (b). The lag angle αlag = 2π(1− cos θ) = 1.42π

is equal to the solid angle contained inside the trajectory of k̂ (the θ = 73o circle).

on which we plot the ray direction k̂ [Fig. 6.9 (b)]. For example, the ray directions at ray
locations C and H [drawing (a)] are as shown in drawing (b). Notice, that the trajectory
of k̂ around the unit sphere is a great circle. This is because the ray in physical space is a
closed circle. If, instead, the fiber and ray were bent into a helix (Fig. 6.10 below), then the
trajectory on the unit sphere would be a smaller circle.

On the unit sphere we also plot the polarization vector f̂ — one vector at each point
corresponding to a ray direction. Because f̂ · k̂ = 0, the polarization vectors are always
tangent to the unit sphere. Notice that each f̂ on the unit sphere is identical in length and
direction to the corresponding one in the physical space of drawing (a).

For the circular, closed ray of Fig. 6.9 (a), the parallel transport law keeps constant the
angle α between f̂ and the trajectory of f̂ [drawing (b)]. Translated back to drawing (a),
this constancy of α implies that the polarization vector points always along the generators
of the cone whose opening angle is π/2− α, as shown.

For the helical ray of Fig. 6.10 (a), the propagation direction k̂ rotates, always maintaining
the same angle θ to the vertical direction, and correspondingly its trajectory on the unit
sphere of Fig. 6.10 (b) is a circle of constant polar angle θ. In this case (as one can see, e.g.,
with the aid of a large globe of the Earth and a pencil that one transports around a circle
of latitude 90o − θ), the parallel transport law dictates that the angle α between f̂ and the
circle not remain constant, but instead rotate at the rate

dα/dφ = cos θ . (6.92)



30

Here φ is the angle (longitude on the globe) around the circle. (This is the same propagation
law as for the direction of swing of a Foucault Pendulum as the earth turns, and for the same
reason: the gyroscopic action of the Foucault Pendulum is described by parallel transport
of its plane along the earth’s spherical surface.)

In the case θ ' 0 (a nearly straight ray), the transport equation (6.92) predicts dα/dφ =
1: although f̂ remains constant, the trajectory of k̂ turns rapidly around a tiny circle about
the pole of the unit sphere, so α changes rapidly—by a total amount ∆α = 2π after one
trip around the pole. For an arbitrary helical pitch angle θ, the propagation equation (6.92)
predicts that during one round trip α will change by an amount 2π cosα that lags behind
its change for a tiny circle (nearly straight ray) by the lag angle αLag = 2π(1− cos θ), which

is also the solid angle ∆Ω enclosed by the path of k̂ on the unit sphere:

αLag = ∆Ω . (6.93)

For the circular ray of Fig. 6.9, the enclosed solid angle is ∆Ω = 2π steradians, so the lag
angle is 2π radians, which means that f̂ returns to its original value after one trip around
the optical fiber, in accord with the drawings in the figure.

By itself, the relationship αLag = ∆Ω is merely a cute phenomenon. However, it turns out
to be just one example of a very general property of both classical and quantum mechanical
systems when they are forced to make slow adiabatic changes described by circuits in the
space of parameters that characterize them. In the more general case one focuses on a phase
lag, rather than a direction-angle lag. We can easily translate our example into such a phase
lag:

The apparent rotation of f̂ by the lag angle αLag = ∆Ω can be regarded as an advance of
the phase of one circularly polarized component of the wave by ∆Ω and a phase retardation
of the other circular polarization by the same amount. This implies that the phase of a
circularly polarized wave will change, after one circuit around the fiber’s helix, by an amount
equal to the usual phase advance ∆φ =

∫

k · dx (where dx is displacement along the fiber)
plus an extra geometric phase change ±∆Ω, where the sign is given by the sense of circular
polarization. This type of geometric phase change is found quite generally when classical
vector or tensor waves propagate through backgrounds that change slowly, either temporally
or spatially; and the phases of the wave functions of quantum mechanical particles with spin
behave similarly.

****************************

EXERCISES

Exercise 6.12 Derivation: Parallel-Transport

Use the parallel-transport law 6.91 to derive the relation 6.92.

6.6 Caustics and Catastrophes—Gravitational Lenses

Albert Einstein’s General relativity theory (Part VI of this book) predicts that light rays
should be deflected by the gravitational pull of the Sun. Newton’s law of gravity and his
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corpuscular theory of light also predict such a deflection, but through an angle half as great
as relativity predicts. A famous measurement, during a 1919 solar eclipse, confirmed the
relativistic prediction, thereby making Einstein world famous.

The deflection of light by gravitational fields allows a cosmologically distant galaxy to
behave like a crude lense and, in particular, to produce multiple images of a more distant
quasar. Many examples of this phenomenon have been observed. The optics of these gravi-
tational lenses provides an excellent illustration of the use of Fermat’s principle and also the
properties of caustics.6

6.6.1 Formation of Multiple Images by a Gravitational Lens

The action of a gravitational lens can only be understood properly using general relativity.
However, when the gravitational field is weak, there exists an equivalent Newtonian model
which is adequate for today’s astronomical applications. In this model, curved spacetime
behaves as if it were flat but endowed with a refractive index given by

n = 1− 2Φ

c2
(6.94)

where Φ is the Newtonian gravitational potential, normalized to vanish far from the source
of the gravitational field and chosen to have a negative sign (so, e.g., the field at a distance
r from a point mass M is Φ = −GM/r). We will justify this index-of-refraction model in
Part VI.

First, let us understand the order of magnitude of the effect. Consider a ray which passes
by a point mass M with an impact parameter b. The ray trajectory is given by solving
Eq. (6.67), d/dz(ndx/dz) = (x ·∇)(∇n), where x(z) is the ray’s transverse position relative
to an optic axis that passes through the point mass, and z is distance along the optic axis.

The ray will be bent through a deflection angle α, cf. Fig. 6.11. An equivalent way
of expressing the motion is to say that the photons moving with speed c are subject to a
Newtonian force and are accelerated kinematically with twice the Newtonian acceleration.
The problem is therefore just that of computing the deflection of a charged particle passing
by an oppositely charged particle. The deflection, under the impulse approximation, is given
by

α =
4GM

bc2
=
−4Φ(r = b)

c2
, (6.95)

where b is the ray’s impact parameter. For a ray passing close to the limb of the sun, for
which the potential will be indistinguishable from the spherical potential from a point, this
deflection is 1.75 arc seconds.

Now let us consider a galaxy as the gravitational deflector. We can use the virial theorem
to make an order of magnitude estimate of Φ and relate it to the mean square velocity
of the constituent stars (measured in one dimension) σ. This quantity can be measured
spectroscopically. We find that Φ ∼ −σ2. Therefore, an order of magnitude estimate of the
angle of deflection is α ∼ σ2/c2. If we do a more careful calculation for a simple model of a

6Blandford & Narayan (1992).



32

G
Q

u v

α

θθ(v/u)

Fig. 6.11: Geometry for a gravitational lens. Light from a distant quasar, Q treated as a point
source, passes by a galaxy G and is deflected through an angle α on its way to earth ⊕. The galaxy
is a distance u from the quasar and v from earth.

galaxy in which the mass density varies inversely with the distance from the center, then we
obtain

α ∼ 4πσ2

c2
(6.96)

For typical galaxies, σ ∼ 300 km s−1 and α ∼ 1 − 2 arc sec. The paraxial approximation
therefore is fully justified. Now a cosmologically distant galaxy lies at a distance D ∼
3 × 1025m from earth and so the tranverse displacement of the ray due to the galaxy is
∼ Dα ∼ 3 × 1020m, which is still within the galaxy. This means that light from a quasar
lying behind the galaxy can pass by either side of the galaxy. We should then see at least
two distinct images of the quasar separated by an angular distance ∼ α.

The imaging is illustrated in Fig. 6.11. First trace a ray backward from the observer, in
the absence of the intervening galaxy, to the quasar. We call this the reference ray. (We
will ignore the fact that the universe is expanding and possesses a curved spacetime. This
introduces unimportant corrections.) Now interpose a galaxy a distance v from the observer
and a distance u from the quasar. Consider a virtual ray that propagates at an angle θ, a
2D vector on the sky, to the reference ray in a straight line from the earth to the galaxy
where it is deflected toward the quasar. (A virtual ray is a path that will become a real ray
if it satisfies Fermat’s principle.) The optical phase for light propagating along this virtual
ray will exceed that along the reference ray by an amount ∆φ called the phase delay. There
are two contributions to ∆φ: First, the geometrical length of the path is longer than the
reference ray by an amount (u+ v)vθ2/2u (cf. Fig. 6.11), and thus the travel time is longer
by an amount (u+ v)vθ2/2uc. Second, the light is delayed as it passes through the potential
well by a time

∫

(n− 1)ds/c = −2
∫

Φds/c, where ds is an element of length along the path.
We can express this second delay as 2Φ2/c

3 where Φ2 =
∫

Φds is the two dimensional (2D)
Newtonian potential. Φ2 can be computed from the 2D Poisson equation

∇2Φ2 = 4πGΣ (6.97)

where Σ is the surface density of mass in the galaxy integrated along the line of sight.
Therefore, the phase delay ∆φ is given by

∆φ = ω

(

(u+ v)v

2uc
θ2 − 2Φ2(θ)

c3

)

. (6.98)

We can now invoke Fermat’s principle. Of all possible virtual rays, parametrized by the
angular coordinate θ, the only ones that correspond to real rays are those for which the
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Fig. 6.12: Contour plots of the phase delay ∆φ(θ) for four different gravitational lenses. a) In
the absence of a lens Φ2 = 0, the phase delay (6.98) has a single minimum corresponding to a
single undeflected image. b) When a small galaxy with a shallow potential Φ2 is interposed, it
pushes the phase delay ∆φ up in its vicinity [Eq. (6.98) with negative Φ2], so the minimum and
hence the image are deflected slightly away from the galaxy’s center. c) When a galaxy with a
deeper potential well is present, the delay surface will be raised so much near the galaxy’s center
that additional stationary points will be created and two more images will be produced. d) If the
potential well deepens even more, five images can be produced.

phase difference is stationary, i.e. those for which

∂∆φ

∂θj
= 0 , (6.99)

where θj (with j = x, y) are the Cartesian components of θ. Differentiating Eq. (6.98) we
obtain a 2D vector equation for the location of the images.

θj =
2u

(u+ v)vc2
∂Φ2

∂θj
. (6.100)

Referring to Fig. 6.11, we can identify the deflection angle

αj =
2

vc2
∂Φ2

∂θj
(6.101)

We can understand quite a lot about the properties of the images by inspecting a contour
plot of the phase delay function ∆φ(θ) (Fig. 6.12). When the galaxy is very light or quite
distant from the line of sight, then there is a single minimum in the phase delay. However,
a massive galaxy along the line of sight to the quasar can create two or even four additional
stationary points and therefore three or five images. Note that with a transparent galaxy, the



34

additional images are created in pairs. Note in addition that the stationary points are not
necessarily minima, which is inconsistent with Fermat’s original statement of his principle,
but there are images at the stationary points nevertheless.

Now suppose that the quasar is displaced by a small angle δθ′. This is equivalent to
moving the lens by a small angle −δθ′. Equation (6.100) says that the image will be displaced
by a small angle δθ satisfying the equation

δθi − δθ′i =
2u

(u+ v)vc2
∂2Φ2

∂θi∂θj
δθj . (6.102)

By combining with Eq. (6.98), we can rewrite this as

δθ′i = Hijδθj , (6.103)

where the matrix Hij is

Hij =

(

uc/ω

(u+ v)v

)

∂2∆φ

∂θi∂θj

. (6.104)

Now consider a small rectangular area of source dθ′1dθ
′

2 (measured in sterradians). Its image
will have area dθ1dθ2. The ratio of the image area to the source area is just the magnification,
M , the ratio of the flux observed from the source to that which would have been observed
in the absence of the lens. However, from Eq. (6.103) we see that the magnification is just
the determinant of the inverse of the matrix Hij. Equivalently,

M =
1

‖Hij‖
. (6.105)

The curvature of the phase delay surface (embodied in ||∂2∆φ/∂θi∂θj ||) is therefore a quan-
titative measure of the magnification. Small curvature implies large magnification of the
images and vice versa. Furthermore images associated with saddle points in the phase delay
surface have opposite parity to the source. Those associated with maxima and minima have
the same parity as the source. These effects have been seen in observed gravitational lenses.
There is an additional immediate contact to the observations and this is that the phase delay
function at the stationary points is equal to ω times the extra time it takes a signal to arrive
along that ray. To order of magnitude, the time delay difference will be ∼ vα2/c ∼ 1 yr.
Now many quasars are intrinsically variable, and if we monitor the variation in two or more
images, then we should be able to measure the time delay between the two images. This,
in turn, may allow us to measure the distance to the quasar and consequently provide an
accurate unit of length for the universe. These measurements are currently being made.

6.6.2 Catastrophe Optics — Formation of Caustics

Many simple optical instruments are carefully made so as to form point images from point
sources. However, naturally occuring optical systems, and indeed precision optical instru-
ments when examined in detail, bring light to a focus on a 2D surface in 3D space, called
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Fig. 6.13: The formation of caustics by a circularly symmetric lens. Light from a distant source
is refracted at the plane of the lens. The envelope of the refracted rays forms a caustic surface C.
An observer at a point A outside the caustic will see a single image of the distant source, whereas
one at point B between the caustics will see three images. If the observer at B moves toward the
caustic, then he will see two of the images approach each other, merge and then vanish. If the
source has a finite angular size, the angular size of the two images will increase as they merge, and
the energy flux from the two images will also increase. In this example, the caustic terminates in
a cusp point. THIS DIAGRAM MUST BE REDRAWN.

a caustic.7 Caustics are quite familiar and can be formed when sunlight is refracted or re-
flected by the choppy water on the surface of a swimming pool. The bright lines one sees
on the pool’s bottom are intersections of 2D caustics with the pool’s 2D surface Another
good example is the cusped curve (called a nephroid) formed by light from a distant source
reflected off the cylindrical walls of a teacup onto the surface of the tea. What is surprising
is that caustics formed under quite general conditions exhibit a surprising universality.

For simplicity let us consider the problem of the refraction of light by an axisymmetric,
converging lens, for example a gravitational lens (c.f. Fig. 6.13). Consider a set of rays from
a distant source with impact parameter s at the lens. Let these rays pass through a point
of observation a distance d from the lens with radial coordinate x = s − θd << d. As we
have just shown the true rays will be those for which the total phase φ(s, x) is stationary
with respect to variations of s. Now, if x is small enough and d is large enough, then there
will typically be three rays that pass through any point of observation. In the case of a
gravitational lens, the astronomer would see three images of the source. However, when x
is large and the astronomer is well away from the optic axis, there will only be one ray and
one image. There is therefore an axisymmetric surface, called a caustic where the number
of images changes from one to three.

Now let us consider the behavior of the phase φ as we cross this caustic. From Fig. 6.13,
it is clear that the two disappearing images approach one another and then vanish. Alge-
braically, this means that, by changing the parameter (often called a control variable) x,
the variation of φ(s, x) with s (often called a state variable) changes locally through a set of
curves like those in Fig. 6.14, where a maximum and a minimum smoothly merge through

7See, for example, Berry (1982).
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Fig. 6.14: Optical phase for three different observer locations measured by the transverse coordi-
nate x. The true rays are refracted at the values of s corresponding to the maxima and minima of
the phase.

a point of inflexion and then vanish. It is clear that close enough to the caustic, φ(s, x),
for given s, has the form of a cubic. By changing the origins of s and x, this cubic can be
written in the form of a Taylor series for which the leading terms are:

φ(s; d, x) =
1

3
as3 − bxs + . . . (6.106)

where the factor 1/3 is just a convention and we have dropped a constant. Note that, by
changing coordinates, we have removed the quadratic terms. Now, for any given lens we
can compute the coefficients a, b accurately through a careful Taylor expansion about the
caustic. However, their precise form does not interest us here as we are only concerned with
scaling laws.

Now, invoking Fermat’s Principle and differentiating Eq. (6.106) with respect to s, we
see that there are two true rays and two images for x > 0, (passing through s = ±(bx/a)1/2),
and no images for x < 0. x = 0 marks the location of the caustic at this distance behind
the lens. We can now compute the magnification of the images as the caustic is approached.
This is given by

M ∝ ds

dx
=

1

2

(

b

ax

)1/2

. (6.107)

Notice that the magnification, and thus also the total flux in each image, scales inversely
with the square root of the distance from the caustic. This does not depend on the optical
details (i.e. on the coefficients in our power series expansions). It therefore is equally true
for reflection at a spherical mirror, or refraction by a gravitational lens, or refraction by the
rippled surface of the water in a swimming pool. This is just one example of several scaling
laws which apply to caustics.

The theory of optical caustics is a special case of a more general formalism called catas-

trophe theory, and caustics are examples of catastrophes. In this theory, it is shown that
there are only a few types of catastrophe and they have many generic properties. The key
mathematical requirement is that the behavior of the solution should be structurally stable.
That is to say, if we make small changes in the physical conditions, the scaling laws etc are
robust.
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The catastrophe that we have just considered is the most elementary example and is
called the fold. The next simplest catastrophe, known as the cusp, is the curve where two
fold surfaces meet. (The point cusp dsiplayed in Fig. 6.14, is actually structurally unstable
as a consequence of the assumed strict axisymmetry. However if we regard s, x as just 1D
Cartesian coordinates, then Fig. 6.14 provides a true representation of the geometry.) In
total there are seven elementary catastrophes. Catastrophe theory has many interesting
applications in optics, dynamics, and other branches of physics.

Let us conclude with an important remark. If we have a point source, the magnification
will diverge to infinity as the caustic is approached, according to Eq. 6.107. Two factors
prevent the magnification from becoming truly infinite. The first is that a point source is
only an idealization, and if we allow the source to have finite size, different parts will produce
caustics at slightly different locations. The second is that geometric optics, on which our
analysis was based, pretends that the wavelength of light is vanishingly small. In actuality,
the wavelength is always nonzero, and near a caustic its finiteness leads to diffraction effects,
which limit the magnification to a finite value. Diffraction is the subject of the next chapter.

****************************

EXERCISES

Exercise 6.13 Example: Point-mass gravitational lens

Consider a point massM that is located a distanceD from us and acts as a gravitational
lens to produce multiple images of a very small, distant source of light.

(a) Use Eq. (6.95) to show that when the source lies on the continuation of the observer-lens
line, it will produce a thin-ring image at the observer of angular radius

θE =

(

4GM

Dc2

)1/2

. (6.108)

(This ring is known as the Einstein ring.)

(b) Show that when the source is displaced from this line, there will be just two images,
one lying within the Einstein ring, the other lying outside. Find their locations.

(c) Denote the ratio of the fluxes in these two images by R. Show that the angular radii
of the two images can be expressed in the form θ± = ±θER

±1/4.

Exercise 6.14 Challenge: Catastrophe Optics of an Elliptical Lens

Consider an elliptical gravitational lens where the potential at the lens plane varies as

Φ2(θ) = (1 + Aθ2
1 + 2Bθ1θ2 + Cθ2

2)
q; 0 < q < 1/2.

Determine the generic form of the caustic surfaces and the types of catastrophe en-
countered. Note that it is in the spirit of catastrophe theory not to compute exact
expressions but to determine scaling laws and to understand the qualitative behavior
of the images.
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