Solution for Chapter 5

(compiled by Xinkai Wu, revised by Kip Thorne)

Ex. 5.3 Wiener’s Optimal Filter [by Alexei Dvoretskii]

(a). Let’s ﬁrst show N(t) = 0. One can do this with the help of ergodicity:
N({t) =< N(t) >= [T K@t —t) < y(t') > dt' = [TC Kt —¢)y(@)dt' = 0.
One can also prove this directly by integrating N(t) over time, whose detail we
omit here.

Knowing N(t) = 0, we readily get

+oo +oo
N2(D) = 0% = / Sn(f)df = / B (f)S, (£)df.

By ergodicity N2(t) =< N?(t) >. Now let’s show < N%(t) >=< N? >

“+oo +oo
<N¥(t)> = < K(t—t")y(t")at K(t—t"y")dt" >
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In the above equations we use f(t' —¢") to denote < y(t')y(t") > because it’s a
stationary process.
On the other hand, we have

+o0 +oo
<N?> = K(t)y(t')dt / K" )y(#")dt" >

- /+°° [ awark@xense - )

Using the trivial fact that f(t' —t") = f(t" —t'), we see that < N? >=<
N2 (t) >=N2(t) = [o " IR (S, (f)df -

[A much simpler proof by Kip: N(t) = fj;: y(t)dt' = f+°° K@t"My(t"+
t)dt"” where we’ve made a change of variable ¢ : t' t But yisa statlonary
random process, so its statistical properties are independent of the origin of
time: p1(y,t) = p1(y,0). Thus, the statistical properties of N(¢) must be the
same as those of N. In particular, < N2(t) >=< N2 >]



. (b) Using Parseval’s theorem, and the fact K (t), s(t) are both real (thus
K(—f)=K*(f),3(—f) = 5(f)), we have
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s= [ k@sta—; [ K@) +ead = [ KD +eods
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We have
S _ LTEGE(S) +eo)df
2 S1/2 0o . = 1/2
SRR ()28, ()]

Taking a small variation K(f) — K(f) 4+ 6K(f), one readily gets

S \__ 5 oo (3 K()S,()
5(<N2>1/2)_<N2>1/2 l/o dféK(f)( g 2<N2>)+c.c.

We see that for § (ﬁ) to vanish for any 6K (f), we must have

2 = cons g(f)
Kf) = const x 5 %)

To show that this choice of K (f) actually delivers a maximum to the ratio
ﬁ, one could do a second variation calculation. Our physical intuition
should make it obvious, though, because a filter with such a kernel favors such
frequencies for which the signal to noise ratio is high and suppresses theose for

which the opposite is true.
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Ex. 5.4 Alan Variance of Clocks [by Xinkai Wu]

(a) We just need to find the relation between the Fourier transform of dif-
ferent random processes.

&)T(f) — 215;7— qz(f) (efi21rf-2‘r _9e—i2mfT | 1)
= gé(f)e_ﬁ"f"(cos%rﬁ' -1)

Also, since ¢(t) is obtained by integrating w(t) once, we have

- -1
Combining the above two results, and using the fact that the spectral density
is basically given by the modulus squared Fourier transform, we find

2

Se.(5) = % [%] Su(f)
o« f2S.(f) for f << 1/2nT
o« f728,(f) for f>>1/2nT



[An alternative way of finding Sg_(f): As discussed in Section 5.5 of the text,
®.(t) can be regarded as obtained from w(t') using a filter K (¢ — t'). Then

.2 .2
Sa,(f) = | ()| Su(). To find | K (1)
system. We find, using eqn (5.109) and (5.110), ®,(t) = ezpli2nf (t47)]V2(cos2mfT-1)

wTi2wf

we feed w(t') = exp[i2n ft'] into our

2 [cos27rf-r—1

2
o2 o fr ] . Thus we arrive at eqn

.2
whose modulus square gives ‘K (f )‘ =

(5.111)]
(b) Using the expression for Sg_(f) obtained in the previous part, and mak-
ing the change of variable z = 2x f7 in the integral, one finds

oy = |:aSw(]-/27—)1:|1/2
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where o — /'+°° dzz [cosz - 1]2 Sw(z/27T)
0 T z Sw(1/27)
As one can verify, % [%2_1]2 integrates to one, and has a profile shown in
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Figure 1: Ex. 5.4 (b)

Fig.1, which isn’t too much different from a delta function located at z = 2.4
(which isn’t too much away from z = 7). Thus we see « is a dimensionless
number of order unifty and has very weak 7-dependence which we can ignore.

(c¢) If w has a white-noise spectrum S,,(1/27) ~ const, then o, o 1/4/T,
and the clock stability is better for long averaging time; if w has a flicker-noise
spectrum S, (1/27) « 7, then o, is independent of averaging time; if w has a
random-walk spectrum S,,(1/27) oc 72, then o, /7, and the clock stability is
better for short averaging time.

Ex. 5.5 Cosmological Density Fluctuations [by Roger Blandford]



(a) It’s quite straightforward to show this,

Er) = <éx)(x+r)>= limv_,oo% /V dxd(x)é(x + )

= I l L —ik-x § 1 1 —ik'-(x4+r) ¥ /
= limyoeor; /V X g / ke by (1) 5 5 / dK'e Sy (K)

[per forming the integral in x gives a delta function in (k + k)]
) 1 1 ikr§ z
= llmvﬁwvm /dk € 5V(k)5v(—k)
[6(x) is real = by (—k) = 6% (k); also let k — —k in the integral]

dk —ikrys |SV(k)|2 dk —ik-r
= /(27036 limy 4 % —/(271.)36 P(k)

The universe is isotropic, namely, §(x) = 6(|x|) = oy (k) = by (k) = P(k) =
P(k). And we can perform the momentum integral in spherical coordinates.
Using the fact [ dfsinfexp(—ikrcos) = 2sinc(kr), one finds

&(r) = /000 %kzsinc(kr)P(k)

(b) The mass measured within a sphere of radius R is given by

3
) = — dré
RO = g [ dnien)
= / dré(x+r)K(r)
%
3 .
where K(r) = e for r < R, and vanishes elsewhere.

One can regard K(r) as a filter.
By derivation similar to that in the previous part, one finds the variance

1 dk < oo
ledn(k)l

0? =< 63(x) >= limy 0

By Parseval’s theorem, |dz (k)| = |6y (k)|?

nates, one finds K (k) = W (kR), where W (z)
above results, we get

3(sincz—cosz

K (k)|2. Using spherical coordi-
= ), Combining the

x2

o2 = / TR e bW (k)
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3.
Ex. 5.7 Noise in a L-C-R Circuit [by Alexei Dvoretskii]



(a) Vag = R4 — F', where ¢ is the current in the circuit and ¢ is the charge
on the capacitor. When we disconnect the resistor R from the rest of the circuit,
¢ = 0, and thus the spectral density of V., is the same as that of F’, namely
Sap(f) = 4RKT.

(b) Now let’s place the resistor back into the circuit, and ¢ is no longer zero.
Using L§+ C~'q = —Rg+ F’ we can find the Fourier transform of ¢ (and thus
that of V,z) in terms of the Fourier transform of F’. So we get

2

2mifR Ser(f)

‘c—l — L(2nf)? +2mifR

lusing S (f) = 4RKT, (2rfo)” = -]

(27 f)2R? }
L2[(2nfo)? — (2 f)2]” + (27 f)*R?

Sap(f) =

= Sap(f) = 4RET {1 —

(¢) Vay = &, thus

1 1

Sar(f) = =5 ARKT
)=z |C-1 — L(2nf)? + 2xifR|?

(d) Vgy = —Lg, thus

1
12 4
S (f) = L2 ]) |C-1 — L(2nf)? + 27rifR|24RkT

(e) Similar to Ex 5.3, the number U is given by

“+oo
U= K (t)Vas(t)dt,

—00

1
with K(t) = — for —7 <t <0, and 0 elsewhere
T

We also introduce the random process U(t) = [ TRt — 1) Vap(t)dt.
Then easily seen U = 0, and

|2

K(f)

(AV)? = T2 = / h Sus(F)df

~ 2 . 2
Using the fact that ‘K(f)‘ - [M} , [Again, just like in Ex. 5.4, an

T fr
.2
alternative way of finding ‘K ‘ is: note U(t) = % o Vap(t')dt', thus

t
- ) 2
‘K ‘ ‘ ft exp[i2w ft'|dt'| = [%};ﬁ)} ] and plugging in the expres-




sion for S,z(f) we found in part (b), we get (define z = nf)

4RET < sin? * in?
(AU)? = / san.rdx _/ sm;g ; de
T o Z o [22—(n7f0)%" (25)" + 22
_ 2RT ), RO\, g 1 _(RY
N T T ¢ “\"\ Io 2L
Note in the above expression E:_—C = m, where Q@ = % is the quality

factor of the circuit. In our case, @ >> 1, and 77 fy >> 1, thus B¢ << 1. So

-
approximately (AU)? ~ 2BAT

4.
Ex. 5.8 Thermal Noise in a Sapphire Crystal [by Alexei Dvoretskii]
(a) Assume we are in the classical regime kT" >> hf. Then Sg/(f) = 4RKT,

with B = ReZ = Re (—5-) = 22, Thus Spi(f) = *25T. And

—i2nfz(f)
Sa:(f) = SF’(f) - 2
m(? = (2nf)?) + 4L
8mkT

Tx

. 2
m(w? - (2nf)2) + 7idm|

m(& + 2iv w?z) = Re (\/éFseiwt)
T

let t = Re (:coei“’t)

—1
we get xg = \/_2—7:1qu
F,
thus z(t) = —=—*— sinwt
2mw

T*Fs .
)

(c) After filtering, signal z(t) = v/2zssin(wt) with z, = ‘f((w/2ﬂ') o
noise o, = ‘f((w/Qﬂ')‘ v/ Sz(f)Af, where S,(f = w/2m) = %’?ﬁ So we see,

1/2
if z; = 0, then F, = 2:_”—*‘"\/ ];Z;}rﬁi = (8:1]?) .

(d)

2 (2mkT\'? kT \'? 1
hs ~ 2 m—A =22 2,2 -
mw?l \ 7.7 ml2w (w?)1/2(rQ)1/2

~1.5x 10726




Ex. 5.9 Solution of Fokker-Planck Equation for an Oscillator [by Alexander
Putilin]

(a) Equation of motion: Z+ %:i:—i—wQa: = F'/m. Substitute: z = X; (t)coswt+
Xo(t)sinwt into this e.o.m., we get

.. 2 . . 2 .. 2 . . 2 F'
coswt (Xl + — X1 4+ 2wXs + —wX2> + sinwt <X2 + — X9 — 2wXq — —wX1> = —
Ty Ty T m

*

{X1, X2} evolve on a time scale 7. means that X, ~ %X X, ~ % with
Tx

?
i = 1,2. And since 7. >> w™!, we can neglect the first two terms in the
brackets. Thus the Langevin equation reduces to:

—2w(X1 + X1 /) sinwt + 2w(Xs + X /T )coswt = F' /m

(b) Multiply the Langevin equation by coswt and integrate from ¢ = 0 to
t = At where w™! << At << 7t

N 1 N 9
2w/ (X2 + —X2> cos®wtdt — 2w/ (X1 + —X1> coswtsinwtdt
0 0

Tx Tx

1 A
== / F'(t)coswtdt
m Jo

cos®wt and coswtsinwt are fast oscillating functions, so we use their average
value inside the integrals, i.e. change cos?wt — cos2wt = %, coswtstnwt —

coswtsinwt = 0. Thus we get

At . 1 1 1 At
w/ <X2 + —Xg) dt ~w (AXQ + —X2At> = —/ F'(t)coswtdt
0 T Tx 0

* m

1 1 At
i.e. AXg=——X3At+ —/ F'(t)coswtdt
0

Tw mw
Similarly, multiplying the Langevin equation by sinwt and integrating, we get

1 1 At
AX; = ——X;At — — F'(t)sinwtdt
Tx mw 0

(c) Taking ensemble average:

4 1 At
AXy = —X 1At — —/ F'(t)sinwtdt
0

Ty mw
AX; X,
F’ t - 0 = A = — =
(t) 1= Ay -
AX —-X
similarly we have Ay = 2 _ 2
At Tx
_X.
thus AJ = J
Tx



By =

(AX,)?

AX;AXy
now consider Bj = ——3——F

At
1 At
AL dt1dtasinwty sinwty < F'(t1)F'(t2) > +0 [(At))
0
1

m2w?2 At

using Wiener-Khintchine theorem

At
/ dtydtysinwty sinwtoCri(t) — ta)
0

1 At +o00
22 AL /0 dt1dtysinwty sinwts /0 Sri(f)cos[2m f(t1 — t2)]df
8kT
Fluctuation-Dissipation theorem gives Sp:(f) = 4RKT = - m

8kT At
mw?r, At J,

“+oo
using / cos[2wf(t; — t2)]df = %J(tl —t3)
0

4kT /At b sinPut 4kT At 2kT
_— sinfwty 8 ————  — = —
mw?T. At J, ! YU mwln At 2T meln

+o0
dt1dtasinwt; sinwts / cos[2m f(t1 — t2)|df
0

Similar calculation gives:

Thus we conclude

mw2T, At mw2t,

A .
Biy = By = mwtr. AL ), dtcoswtsinwt ~ 0

4kT At 2kT
Byo 7/ dtcos’wt ~
0

2kT

mw?T,

Bji = ik

ter plugging the expressions for A; an i into the Fokker-Planc
d) Af luggi h i for A; and Bjy i he Fokker-Planck
equation for P, = Pp(Xj, t|X](O)), we get

ot * " 1. 0X,

0 1 0 kT

Py= (X;Py) + V2P,

Mw2T,

If you don’t have so much time, you can just verify that Eq. (5.171) is a
solution of this equation, and that it has the required form at ¢t = 0: P»(X,0) =
§(X —X(). If you do have some time, you could derive the solution as follows.

Make Fourier transform:

PQ(X, t) = / ((2152 e—'iK-Xﬁ)Q(K,t)



The Fokker-Planck equation becomes

9 -
p - -
ot > Ta

~1_ 8 5 kT
K;——Py —
ToK; *

. K?P,
mwe Tk

Make a change of variable, K — K’ = ¢~*/™K. Then

0 0 0 0 1 0
K =Ki—, —|g=— — K
T0K] ~ 7oK, < = et 0K
And the F-P equation reduces to
0 - kT 2 ~
—Py(K',t) = — ——K"“e2/™ Py(K', t
6t 2( ) ) meT* € 2( ) )

which is easily integrated to give

W2T,

- . kT ! ’
Py(K',t) = P,(K',0)exp [— K'Q/ dt'e* /T*]
m 0

B = kT
namely, P»(K,t) = Pz(eft/T*K,O)exp [_ 5 (1 _ ef2t/-r*) Kz]
mw

Using the initial condition P5(X,0) = §(X — X@), ie. Py(K',0) = ™K' X
we finally find

Py(K,t) = e~ 20 K KX
)

T _
where o2 = k—2 (1 — e_Qt/T*) and X = X0 ¢t/
mw

Making an inverse Fourier transform (which is easy because P»(K,t) is Gaus-
sian), we find

S 2
1 X -X
Po(X,t) = 5 oseap l‘ |20|]

(e) At small times ¢t << T, the probability distribution P»(X,t) is con-
centrated around the initial value X = X(©. The variance of the distribution
Vo2 x V/t, which is the usual relation for random-walk processes. When ¢ be-
comes large (¢t >> 74), the system “forgets” about its initial configuration and
evolves into the thermal equilibrium state with X = 0 and 02 = XL

mw? "’ _
When the signal acts for a short time 7 << 7, the thermal noise is 02 =
1 [y dto?(t) = ;2L =, while the amplitude of the signal is z, = 7zs, where

F is the strength of the signal force (see part (b) of the previous exercise).
Then the minimal detectable force is given by the relation z, = v/ 02, namely,
F, = ,/%2ETZ In the opposite limit # >> 7, (Ex 5.8), F, = ,/821—’?.
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