Solution for Chapter 3

(compiled by Xinkai Wu, revised by Kip Thorne)

1

Ex. 3.1 Canonical Transformation [by Xinkai Wu]

(a) With the generating function given by eqn. (3.15)

$$p_j = \sum_{i=1}^W rac{\partial f_i}{\partial q^j} P_i, \quad Q^j = f_j$$

(b) Let's first show the useful identity:

$$[Q, P]_{q,p} \equiv \frac{\partial Q}{\partial q} \frac{\partial P}{\partial p} - \frac{\partial P}{\partial q} \frac{\partial Q}{\partial p} = 1$$

(which says canonical transformations preserve the Poisson bracket). The proof of this identity is

$$\begin{split} \frac{\partial Q}{\partial q} \frac{\partial P}{\partial p} - \frac{\partial P}{\partial q} \frac{\partial Q}{\partial p} &= & \left[\left(\frac{\partial Q}{\partial q} \right)_P + \left(\frac{\partial Q}{\partial P} \right)_q \frac{\partial P}{\partial q} \right] \frac{\partial P}{\partial p} \\ & - \frac{\partial P}{\partial q} \left[\left(\frac{\partial Q}{\partial P} \right)_q \frac{\partial P}{\partial p} \right] \\ &= & \left(\frac{\partial Q}{\partial q} \right)_P \frac{\partial P}{\partial p} \\ &= & \frac{\partial^2 F}{\partial P \partial q} \frac{\partial P}{\partial p} \quad (using \ Q = \left(\frac{\partial F}{\partial P} \right)_q) \\ by \ differentiating \ both \ sides \ of \qquad p = \left(\frac{\partial F}{\partial q} \right)_P \ w.r.t. \ p, \ we \ get \end{split}$$

Then regarding (Q, P) as functions of (q, p), noting H(Q, P) = H(q, p), using the Hamilton's equations for the old variables (q, p), and using chain rules, one readily find

$$\begin{split} \frac{dQ}{dt} &= \frac{\partial H}{\partial P} \left[Q, P \right]_{q,p} = \frac{\partial H}{\partial P} \\ \frac{dP}{dt} &= -\frac{\partial H}{\partial Q} \left[Q, P \right]_{q,p} = -\frac{\partial H}{\partial Q} \end{split}$$

namely, canonical transformations preserve the form of Hamilton's equations. (c) dPdQ=|J|dpdq, where $J=det\left(\frac{\partial(P,Q)}{\partial(p,q)}\right)$ is the Jocobian of the canonical transformation. Easily seen $J=[Q,P]_{q,p}=1$. Thus dpdq=dPdQ.

(d). Consider the "vector field" (0, p) in phase space. Using Stokes theorem, we find

$$\oint pdq = \oint (0,p) \cdot (dp,dq) = \iint \left(\frac{\partial p}{\partial p} \right) dpdq = \iint dpdq$$

and similarly $\oint PdQ = \iint dPdQ$. We've already shown in part (c) that dpdq = dPdQ, thus we conclude $\oint pdq = \oint PdQ$.

(e) $d^3q = dxdydz = r^2sin\theta dr d\theta d\phi \neq d^3Q = dr d\theta d\phi$; while $d^3p = dp_x dp_y dp_z = dp_r dp_\theta dp_\phi = \frac{1}{r^2sin\theta} dP_1 dP_2 dP_3 = \frac{1}{r^2sin\theta} d^3P \neq d^3P$ (recall that $P_1 = p_r$, $P_2 = rp_\theta$, $P_3 = rsin\theta p_\phi$). And we see that $d^3qd^3p = d^3Qd^3P$.

Ex. 3.3 Estimating Entropy [by Alexei Dvoretskii]

Let's express the answers in units of the Boltzmann constant k

- (a) The electron's energy levels are given by $E_n = -13.6 eV/n^2$, with degeneracy $g_n = 2n^2$. The entropy of the electron is given by $S = -k \sum_n g_n \rho_n l n \rho_n$, where $\rho_n = exp(-E_n/kT)/Z$ (the ensemble of electrons only exchanges energy with the bath and is a canonical ensemble). At room temperature, $kT \approx 0.025 eV$ gives $\rho_n = exp(544/n^2)/Z$. Thus all ρ_n 's with n > 1 are neglegible compared with ρ_1 , and we have $\rho_1 \approx 1/2$, and $S \approx -kg_1\rho_1 l n \rho_1 = kln 2 = 0.7k$
- (b) The number of states available to each molecule can be estimated as $\Gamma \approx \frac{\Delta V(\Delta P)^3}{h^3} \approx \frac{\frac{1}{n}(mkT)^{3/2}}{h^3}$, with n being the number density of the molecules. For wine(basically water), $n = \rho_{H_2O}/m_{H_2O} \approx 3 \times 10^{28} m^{-3}$; at room temperature $(mkT)^{3/2} \approx 10^{-69} kg^3 m^3/s^3$. Thus $\Gamma \approx 100$. So we find the entropy per molecule is $S/Nk \approx ln\Gamma \approx 5$. A glass of wine(roughly 200g) has $N \approx 6 \times 10^{24}$, thus its entropy is $S \approx 3 \times 10^{25} k$.
- (c) Similar to (b), we only need to scale the answer of (b) by the ratio of the volume of the Pacific ocean and the volume of a glass of water. The average depth of the Pacific ocean is roughly 10^3m , its area is about $\frac{1}{3}4\pi R_{earth}^2 \approx 10^{14}m^2$, giving a volume $V_{pacific} \approx 10^{17}m^3$, while $V_{glass} \approx 2 \times 10^{-4}m^3$, thus $V_{pacific}/V_{glass} \approx 5 \times 10^{20}$. So $S_{pacific} \approx 5 \times 10^{20} \cdot 3 \times 10^{25}k \approx 10^{46}k$.
- (d) Let's use the Debye model of solids. The Debye sphere will contain 3N vibrational modes (2N transversal and N longitudinal) and therefore the entropy of the ice is (using additivity of entropy) $S=3N\bar{S}_{mode}$, where \bar{S}_{mode} is the average entropy per mode. \bar{S}_{mode} can be calculated using the Debye mode density spectrum $D(\nu)=\frac{3\nu^2}{\nu_D^2}d\nu$ and the expression for the entropy of a bosonic mode $S=k[(\eta+1)ln(\eta+1)-\eta ln\eta]$, with $\eta=\frac{1}{e^{h\nu/kT}-1}$. Let's estimate the Debye temperature.
- $\frac{\hbar \nu_D}{k} = \theta_D = \frac{\hbar c_s}{k} (6\pi^2 n)^{1/3} \approx 170 K, \text{ where } c_s \sim 2 \times 10^3 m/s \text{ is the sound speed in ice.}$ $\frac{\theta_D}{T} \approx \frac{170 K}{276 K} \approx 0.6 < 1, \text{ so we can make a rough estimate } \bar{S}_{mode} \approx k ln \eta \approx k ln \frac{kT}{\hbar \bar{\nu}}, \text{ where } \bar{\nu} \text{ is a properly averaged frequency. Take roughly } \bar{\nu} = \frac{1}{2} \nu_D, \text{ then } \bar{S}_{mode} \approx k ln 3 \approx k. \text{ Thus } S \approx 3Nk. \text{ Take the ice cube to be } 2cm \text{ on each side, we find } N \approx 3 \times 10^{23} \text{ and } S \approx 1 \times 10^{24} k.$
- (e) The main contribution to the universe's entropy is from the microwave background radiation because there are $\sim 10^9$ times as many of them as protons, neutrons, or electrons(radiation-dominated universe). The theory of the big

bang suggests there should be a comparable amount of neutrinos, but the big bang neutrinos haven't not yet been detected.

Due to the planck exponential cut-off, only the photon modes with $\hbar\omega \sim kT$ $(T\sim 3K)$ will be excited. The number of such modes in the universe is roughly $N=D(\omega)\frac{kT}{\hbar}V_{universe}$, where $D(\omega)=\frac{\omega^3}{\pi^2c^3}$ is the density of modes. Thus $N\approx (\frac{kT}{\hbar c})^3\frac{1}{\pi^2}V_{universe}$. Taking $V_{universe}\approx \frac{4}{3}\pi R^3$ with $R\approx 10^{10}light\ years$, we find $N\approx 10^{69}$. Each excited mode will on average have a few photons, and each photon will have an entropy $\approx 3.6k$ (see. e.g. Cosmological Physics by Peacock). Therefore $S_{universe}\approx 10^{69}\sim 10^{70}k$.

2.

Ex 3.2 Derivation of the Bose-Einstein and Fermi-Dirac Distribution [by Xinkai Wu]

$$ho_n = const imes exp\left(rac{ ilde{\mu}n - ilde{E}_n}{kT}
ight) = const imes exp\left(rac{(ilde{\mu} - ilde{E}_s)n}{kT}
ight)$$

(a) For a fermion mode,

$$1 = \rho_0 + \rho_1 = const \times \left[1 + exp\left(\frac{\tilde{\mu} - \tilde{E_s}}{kT}\right) \right]$$
$$\Rightarrow const = \frac{1}{1 + exp\left(\frac{\tilde{\mu} - \tilde{E_s}}{kT}\right)}$$

Thus we get

$$ho_0 = rac{1}{1 + exp\left(rac{ ilde{\mu} - ilde{E}_s}{kT}
ight)}, ~~
ho_1 = rac{exp\left(rac{ ilde{\mu} - ilde{E}_s}{kT}
ight)}{1 + exp\left(rac{ ilde{\mu} - ilde{E}_s}{kT}
ight)}$$

And

$$\eta \equiv < n > = \sum_{n} n \rho_{n} = 0 \cdot \rho_{0} + 1 \cdot \rho_{1} = \frac{1}{exp\left(\frac{\tilde{E}_{s} - \tilde{\mu}}{kT}\right) + 1}$$

(b) For a boson mode,

$$1 = \sum_{n} \rho_{n} = const \times \left[\sum_{n=0}^{+\infty} exp\left(\frac{(\tilde{\mu} - \tilde{E}_{s})n}{kT}\right) \right]$$
$$= \frac{const}{1 - exp\left(\frac{\tilde{\mu} - \tilde{E}_{s}}{kT}\right)}$$
$$\Rightarrow const = 1 - exp\left(\frac{\tilde{\mu} - \tilde{E}_{s}}{kT}\right)$$

Thus

$$ho_n = \left[1 - exp\left(rac{ ilde{\mu} - ilde{E}_s}{kT}
ight)
ight] exp\left(rac{n(ilde{\mu} - ilde{E}_s)}{kT}
ight)$$

And

$$\begin{split} \eta &\equiv < n > = \sum_{n} n \rho_{n} = \left[1 - exp \left(\frac{\tilde{\mu} - \tilde{E}_{s}}{kT} \right) \right] \sum_{n=0}^{+\infty} n exp \left[\frac{n(\tilde{\mu} - \tilde{E}_{s})}{kT} \right] \\ using the formula & \sum_{n=0}^{+\infty} n e^{na} = \frac{e^{a}}{(1 - e^{a})^{2}} \\ &\Rightarrow \eta = \frac{1}{exp \left(\frac{\tilde{E}_{s} - \tilde{\mu}}{kT} \right) - 1} \end{split}$$

3

Ex. 3.4 Additivity of Entropy for Statistically Independent Systems [by Alexei Dvoretskii]

$$\begin{split} S &= -k \int \rho l n \rho d \Gamma \\ using \; \rho &= \prod_a \rho_a \\ &= -k \int \left(\prod_a \rho_a\right) \sum_b l n \rho_b \left(\prod_a d \Gamma_a\right) \\ for \; each \; term \; in \; the \; sum \; let's \; integrate \; out \; all \; the \; other \; subsytems \\ &= -k \sum_\beta \int \rho_\beta l n \rho_\beta d \Gamma_\beta \cdot \prod_{\alpha \neq \beta} \int \rho_\alpha d \Gamma_\alpha \\ but \; \int \rho_\alpha d \Gamma_\alpha = 1, \; so \\ &= -k \sum_\beta \int \rho_\beta l n \rho_\beta d \Gamma_\beta = \sum_\beta S_\beta \end{split}$$

4

Ex. 3.7 Probability Distribution for the Number of Particles in a Cell.[by Alexei Dvoretskii]

(a) For the ergodic hypothesis to hold, we need the measurements to be separated from one another by time intervals τ such that $\tau >> \tau_{ext}$, where τ_{ext} is the characteristic time for the system to exchange particles with the bath.

(b) Let's denote the index n as (N, s), where N labels the number of particles and s labels the state with a given N. The grand partition function is

$$Z = \sum_{N,s} exp\left(\frac{-\tilde{E}_{N,s} + \tilde{\mu}N}{kT}\right) = \sum_{N=0}^{+\infty} e^{\tilde{\mu}N/kT} Z_N$$

$$where \ Z_N \equiv \sum_{s} e^{\frac{-\tilde{E}_{N,s}}{kT}}$$

For the system discussed in Ex. 3.6,

$$Z_N = rac{a(V,T)^N}{N!}, \ with \ a(V,T) = rac{V}{h^3} \int exp\left(-rac{(p^2+m^2)^{1/2}}{kT}
ight) 4\pi p^2 dp$$

For Z_N of the above form, we find,

$$Z = \sum_{N=0}^{+\infty} e^{\tilde{\mu}N/kT} \frac{a(V,T)^N}{N!} = exp\left[a(V,T)e^{\tilde{\mu}/kT}\right]$$

And thus the mean number of particles is given by (see eqn. (3.70))

$$ar{N} = kT \left(rac{\partial lnZ}{\partial ilde{\mu}}
ight)_{V,T} = a(V,T) e^{ ilde{\mu}/kT}$$

(note this gives $Z = e^{\bar{N}}$) Now

$$egin{aligned} p_N &= \sum_s
ho_{N,s} = \sum_s rac{1}{Z} exp\left(rac{- ilde{E}_{N,s} + ilde{\mu}N}{kT}
ight) = rac{e^{ ilde{\mu}N/kT}}{Z} Z_N \ &= rac{e^{ ilde{\mu}N/kT}}{Z} rac{a(V,T)^N}{N!} = rac{\left[e^{ ilde{\mu}/kT}a(V,T)
ight]^N}{ZN!} = e^{-ar{N}} rac{ar{N}^N}{N!} \end{aligned}$$

(c) Those are well-known properties of Poisson distribution:

$$< N > = \sum_{N=0}^{+\infty} e^{-\bar{N}} \frac{\bar{N}^N}{N!} N = \sum_{N=1}^{+\infty} e^{-\bar{N}} \frac{\bar{N}^N}{N!} N = \sum_{N=0}^{+\infty} e^{-\bar{N}} \frac{\bar{N}^{N+1}}{N!} = \bar{N}$$

$$< N^2 > = \sum_{N=1}^{+\infty} e^{-\bar{N}} \frac{\bar{N}^N}{N!} N^2 = \sum_{N=0}^{+\infty} e^{-\bar{N}} \frac{\bar{N}^{N+1}}{N!} (N+1)$$

$$= \sum_{N=0}^{+\infty} p_N \bar{N} N + \sum_{N=0}^{+\infty} p_N \bar{N} = (\bar{N})^2 + \bar{N}$$

And thus

$$\Delta N \equiv <(N-\bar{N})^2>^{1/2} = (< N^2>-(\bar{N})^2)^{1/2} = \bar{N}^{1/2}$$

Ex.3.5 Entropy of Thermalized Mode of a Field [by Xinkai Wu]

(a). Recal from Ex. 3.2 that $\eta = 0 \cdot \rho_0 + 1 \cdot \rho_1 = \rho_1$, and thus $\rho_0 = 1 - \rho_1 = 1 - \eta$. Thus $S_S = -k(\rho_0 ln\rho_0 + \rho_1 ln\rho_1) = -k[\eta ln\eta + (1-\eta)ln(1-\eta)]$. In the classical regime $\eta << 1$, $S_S \approx -k[\eta ln\eta + (1-\eta)(-\eta)] \approx -k\eta(ln\eta - 1)$.

(b). From Ex. 3.2 one readily gets $\rho_n = \frac{1}{1+\eta} \left(\frac{\eta}{1+\eta}\right)^n$. And thus

$$egin{aligned} S_S &= -k \sum_n
ho_n ln
ho_n = -k \sum_n
ho_n \left[-ln(1+\eta) + nln \left(rac{\eta}{1+\eta}
ight)
ight] \ &= k ln(1+\eta) - k \eta ln \left(rac{\eta}{1+\eta}
ight) = k [(\eta+1) ln(\eta+1) - \eta ln \eta] \end{aligned}$$

In the classical regime $\eta << 1$, $S_S \approx k[(\eta+1)\eta-\eta ln\eta] \approx -k\eta(ln\eta-1)$. (c) See Fig.1 and Fig. 2 (in both figures, x-axis is η and y-axis is $\sigma = S_S/\eta k$).

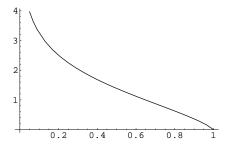


Figure 1: entropy per particle: fermion case

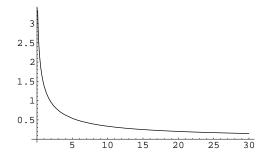


Figure 2: entropy per particle: boson case

For fermions, let $x=1-\eta$, we get $\sigma_f=-[ln(1-x)+\frac{x}{1-x}lnx]$. In the degenerate regime, $\eta\approx 1$, namely $x\to 0$, we see that $\sigma_f\to 0$.

For bosons, let $x = 1/\eta$, we get $\sigma_b = -x \ln x + (1+x) \ln (1+x)$. In the classical-wave regime, $\eta >> 1$, namely $x \to 0$, we see that $\sigma_b \to 0$.