Solution for Chapter 3

(compiled by Xinkai Wu, revised by Kip Thorne)

1.
Ex. 3.1 Canonical Transformation [by Xinkai Wu]
(a) With the generating function given by eqn. (3.15)
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(b) Let’s first show the useful identity:
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(which says canonical transformations preserve the Poisson bracket). The proof
of this identity is
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Then regarding (@, P) as functions of (g, p), noting H(Q, P) = H(g,p), using
the Hamilton’s equations for the old variables (g, p), and using chain rules, one
readily find

dQ _OH . o _0H
dt P ' ‘eP 9P
dpP O0H O0H
@~ ag 9P ="5g

namely, canonical transformations preserve the form of Hamilton’s equations.

(c) dPdQ = |J|dpdq, where J = det (%((1; ’3))) is the Jocobian of the canonical

transformation. Easily seen J = [Q, P|, , = 1. Thus dpdg = dPdQ.




(d). Consider the ”vector field” (0, p) in phase space. Using Stokes theorem, we

find
)[pdqu(ﬂ,p) - (dp, dq) = // (g—i) dpdq=/ dpdg

and similarly § PdQ = [[ dPdQ. We’ve already shown in part (c) that dpdg =
dPdQ, thus we conclude § pdg = § PdQ.

(e) d*q = dzdydz = r*sinfdrdfd¢ # d*Q = drdfde¢; while d*p = dp,dp,dp, =
dprdpedpy = — Lt dP,dPydP; = —1—-d3P #* d3P(recall that P, = p,, Po =

r23inf r25ind

Tpg, Ps = rsinfpy). And we see that d°qd®p = d3Qd3P.

Ex. 3.3 Estimating Entropy [by Alexei Dvoretskii]

Let’s express the answers in units of the Boltzmann constant &

(a) The electron’s energy levels are given by E, = —13.6eV/n?, with degeneracy

gn = 2n°. The entropy of the electron is given by S = —k > gnpnlnp,, where

pn = exp(—E,/kT)/Z(the ensemble of electrons only exchanges energy with

the bath and is a canonical ensemble). At room temperature, kT =~ 0.025eV

gives p, = exp(544/n?)/Z. Thus all p,’s with n > 1 are neglegible compared

with p;, and we have p; ~ 1/2, and S =~ —kg1p1lnp; = kin2 = 0.7k

(b) The number of states available to each molecule can be estimated as ' =~

AV(AP)® __ L(mkT)3/?
3 ~ h3

, with 7 being the number density of the molecules. For
wine(basically water), n = pm,0/mmo ~ 3 x 102*m~3; at room tempera-
ture (mkT)3/? ~ 10-%kg®>m3/s%. Thus T' =~ 100. So we find the entropy per
molecule is S/Nk = InT' = 5. A glass of wine(roughly 200g) has N ~ 6 x 10%,
thus its entropy is S ~ 3 x 10%°k.

(c) Similar to (b), we only need to scale the answer of (b) by the ratio of the
volume of the Pacific ocean and the volume of a glass of water. The aver-
age depth of the Pacific ocean is roughly 103m, its area is about 34w RZ, . ~
104m2, giving a volume Viacific = 1017m3, while Vyjass & 2 X 10~4m3, thus
Vpacific/Vglass & 5 % 1020, S0 Spacific & 5 x 1020 - 3 x 10%k ~ 10%k.

(d) Let’s use the Debye model of solids. The Debye sphere will contain 3N vi-
brational modes(2N transversal and N longitudinal) and therefore the entropy
of the ice is (using additivity of entropy) S = 3NS,0de, Where S04 is the av-
erage entropy per mode. S,,,4. can be calculated using the Debye mode density

spectrum D(v) = %’;dv and the expression for the entropy of a bosonic mode
D

S = k[(n + 1)in(n + 1) — niny), with n = 77— . Let’s estimate the Debye
temperature.

hvp = gp = Be:(6a2n)'/3 ~ 170K, where ¢, ~ 2 x 10%m/s is the sound
speed in ice. %2 ~ 119K ~ 0.6 < 1, so we can make a rough estimate

Simode = klnn ~ kln’;—g, where 7 is a properly averaged frequency. Take roughly

7 = 1vp, then Smode ~ kin3 ~ k. Thus S ~ 3Nk. Take the ice cube to be 2cm
on each side, we find N =~ 3 x 1022 and S ~ 1 x 10%*%.

(e) The main contribution to the universe’s entropy is from the microwave back-
ground radiation because there are ~ 10° times as many of them as protons,
neutrons, or electrons(radiation-dominated universe). The theory of the big



bang suggests there should be a comparable amount of neutrinos, but the big
bang neutrinos haven’t not yet been detected.

Due to the planck exponential cut-off, only the photon modes with fiw ~ kT
(T' ~ 3K) will be excited. The number of such modes in the universe is roughly
N = D(w)kTTVumverse, where D(w) = w‘;’% is the density of modes. Thus
N~ (’%)3W%Vumverse. Taking Vuniverse & %TFRB with R = 10'°light years, we
find N ~ 10%°. Each excited mode will on average have a few photons, and each
photon will have an entropy ~ 3.6k(see. e.g. Cosmological Physics by Peacock).
Therefore Syniverse =~ 1089 ~ 1070k,

2.

Ex 3.2 Derivation of the Bose-Einstein and Fermi-Dirac Distribution [by Xinkai
Wu]
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(a) For a fermion mode,
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(b) For a boson mode,
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Ex. 3.4 Additivity of Entropy for Statistically Independent Systems [by Alexei
Dvoretskii]

S = —k/plnpdl"

using p =[] pa

a

o/ () 1)

for each term in the sum let's integrate out all the other subsytems
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4.

Ex. 3.7 Probability Distribution for the Number of Particles in a Cell.[by Alexei
Dvoretskii]

(a) For the ergodic hypothesis to hold, we need the measurements to be sepa-
rated from one another by time intervals 7 such that 7 >> 7.5, where Tey; is
the characteristic time for the system to exchange particles with the bath.



(b) Let’s denote the index n as (N, s), where N labels the number of particles
and s labels the state with a given N. The grand partition function is
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where Zny = Ze

For the system discussed in Ex. 3.6,

_av, )N _V (P> +m*)'/? 2
ZnN = —NT with a(V,T) = ﬁ/ezp (_T 4mp*dp

For Zx of the above form, we find,
= . a(V,T)N ;
Z= Z e“N/kTT = exp [a(V, T)e"/kT]

And thus the mean number of particles is given by (see eqn. (3.70))
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(c) Those are well-known properties of Poisson distribution:
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Ex.3.5 Entropy of Thermalized Mode of a Field [by Xinkai Wu]

(a). Recal from Ex. 3.2that n=0-pg+1-p1 = p1,and thus pp =1—p; =1—n.
Thus Ss = —k(polnpo + p1lnp1) = —kninn + (1 — n)in(1 —n)]. In the classical
regime 7 << 1, Sg = —k[plnn + (1 —n)(—n)] =~ —kz(lnn —1).

(b). From Ex. 3.2 one readily gets p, = ﬁ (%) . And thus

Sg = —kzn:pnlnpn = —k%:pn |:—ln(1 + 1)+ nin (1_7_7)]

= kin(1+4n) — knin (%) = k[(n+ 1)In(n + 1) — ninn]

3

In the classical regime n << 1, Ss ~ k[(n + 1)n — ninn] ~ —kn(inn — 1).
(c) See Fig.1 and Fig. 2 (in both figures, x-axis is  and y-axis is 0 = Sg/nk).
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Figure 1: entropy per particle: fermion case
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Figure 2: entropy per particle: boson case

For fermions, let z = 1—1, we get 0y = —[In(1 —z)+ 12, Inz]|. In the degenerate

regime, 7 =~ 1, namely z — 0, we see that oy — 0.
For bosons, let x = 1/7, we get o, = —zlnz + (1+ z)In(1+ z). In the classical-
wave regime, 7 >> 1, namely z — 0, we see that o, — 0.



