Solution for Chapter 2

(compiled by Xinkai Wu, revised by Kip Thorne)

A.

Ex. 2.3 Observation of Cosmic Microwave Radiation from a Moving Earth
[by Alexander Putilin]
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from Fig. 1, we see the intensity peak is at x,, = 2.82, which corresponds to
U = 1.6 x 101571, A, = 0.19cm.

b. From chapter 1, we already know that the photon’s energy as measured in
the mean rest frame is hv = —p’- ¥y, then (2.43) follows immediately.

c. Let n be the direction at which the receiver points, and v be the earth’s
velocity w.r.t. to the microwave background, then in the earth’s frame, uy =
(1/v/1—v2,—v/v/1—-v2), § = (hv,—hvn). Plugging the above expressions
into (2.43), we find(let 6 be the angle between v and n)
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For small v, we can keep only terms linear in v and find T’ = Ty(1+vcosf) which
exhibits a dipolar anisotropy. And the maximal relative variation AT/T =
(T(O=0)—T( =mn))/To =2v/c=4x1073.

B.

Ex. 2.8 Vlasov Implies Conservation of Particles and of 4-Momentum [by
Alexander Putilin]
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(b). In a Lorentz frame,
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note S° = n, the number density of particles
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C.

Ex. 2.7 Equation of State for Electron-Degenerate Hydrogen [by Alexander
Putilin]

Mean occupation number of electron gas:
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Gas is degenerate if ji, — m, >> kT. In this limit n(E) looks like Fig.2

The width of the ”transition” region where n(E) goes from 0 to 1 is ~ kT, so in

n

Figure 2: Ex. 2.7

the limit fi, —m. >> kT we can approximate n(E) by step function: n(E) =1
for E < fie; n(E) =0 for E > [i.
The number density n is given by
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where pp = /3% m2.
The energy density p = p, 4+ p.. Protons are nonrelativistic so p, = myn =
8mm,p3./3h3. while
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In both cases p. << pp, provided that pr << m,, i.e. protons remain non-
relativistic. Thus
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Now turn to pressure. Electron’s pressure
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Using Mathematica we find
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Proton pressure P, = nkT << P, in both cases. Thus
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D.

Ex. 2.9 Solar Heating of the Earth: The Greenhouse Effect [by Alexander
Putilin]

(a). The energy per unit time per unit frequency emmited by the surface ele-
ment dA of the sun into the solid angle d{2 centered around unit vector f is (see
Fig. 3) dE/dt = I,dAcos8dQddv. And the total energy flux is thus
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The value of the above integral is 7*/15, thus we find
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Figure 3: Ex. 2.9a
(b)(See Fig. 4). Similarly, the flux arriving at the earth is given by
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From Fig.4, we see sinfy = Rg /7. Thus
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(c) (See Fig. 5) Radiated power (dE /dt) ) = oT44mR%, while absorbed
radiate
power (dE/dt) peorbed F, f::oﬂ/ 2 R%cos0d) = TF.R3. Then in thermal
equilibrium, (dE/dt) - (dE/dt) immediately tells us
radiated absorbed
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(d) If we take albedo A into account, (dE/dt) = (1 — A)wR%F., while

absorbed

(dE / dt) remains the same. Thus we get
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(e) Due to Greenhouse Effect, (dE/dt) = 57% - 4nR%0Tg, and then

(dE /dt)

Ex. 2.10 Olber’s Paradox and Solar Furnace [by Alexander Putilin]
Place an observer at some spot on the earth and choose some arbitrary direction
i. (See Fig.6)

radiated

= (dE / dt) gives us Tg = 293K.

radiated absorbed

Figure 6: Olber’s Paradox

Since the universe is assumed to be flat, it must be infinite in space and time
so the observer will see some star in that direction.

Vlasov equation then gives I, (f)/v® = I,/v3|at the star's surface- And since
there’s no gravitational and Doppler shifts in a flat stationary universe: I, (i) =
I, (at the star's surface).



The energy flux received by the observer is (see Ex. 2.9)
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the summation is over all the visible stars and T; is the temperature of the i-th

star.

The hotter stars will dominate in this sum, so that T ~ Thoster stars = 10°K.

When the earth come into thermal equilibrium F = oTé, so its surface temper-

ature will be Ty = T ~ 10*K.

We are protected from being from fried because the universe is not stationary

but rather is expanding (and has finite lifetime). The stars first formed when

the universe was about 2 billion years old (at a redshift ~ 5). When we look

out beyond that point, we see no more stars or galaxies. This means that only

a small fraction of our sky is actually covered by stellar surfaces.

Now let’s talk about solar furnace(see Fig. 7). We can use a lens of large
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diameter D and small focal length f << D to focus the sun’s rays. At the spot
where the rays are focused, the specific intensity I, is the same as at the surface
of the sun:

Figure 7: Solar Furnace
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And the energy flux F = [ I,cos0dSddv, where the integration over the solid
angle is almost over the whole upper hemisphere: 0 < 6 < 7/2. Thus we find
F = O'Té. So at equilibrium the temperature of the spot is T' = T,.

The effect of the lens is that it enlarges the image of the sun so that the image
is spread over almost all the sky.



E.

Ex. 2.11 Diffusion Coefficient Computed in the ”Collision-Time” Approxima-
tion [by Xinkai Wu]
a. let’s use dp to denote dp,dp,dp,
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b. Similar to eqn (2.116) of the text,
dN . . .
— = scattering — out term + scattering — in term
dt collision

where the scattering-out term is given by —ANy/7(interpreting 1/7 as the scat-
tering probability per unit time), and the scattering-in term is given by
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We use A in the above integral because we assume that when a particle gets
scattered, its direction is randomized and its energy is thermalized at the scat-
tering centers’ temperature. Since Aj is independent of the direction of the
momentum, we can take it out of the integral, and thus
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scattering — in term = Ny / 70(2; n) QY = Ny /7?
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thus we conclude that the collision term is (Np — N)/7.
c. The mean free path of the particle is A ~ 77 ~ 74/3kT/m. For the diffu-
sion approximation to be reasonably accurate, we must have A << L, namely

74/3kT/m << L.

d.(see Fig. 8) Similar to what is done in the text, let’s take the density gradient
to be along the z axis. Consider particles exchanged between two layers sepa-
rated by a mean free path .

The flux to the right is ~ an(0)7, and the flux to the left is ~ an(\)v, where
o is a dimensionless constant of order 1/4(the 1/4 comes from the averaging
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L2 cos0d)) [i=a'? d9).

The net flux to the right is: S% = an(0)v — an(A\)v = _0“_’)‘%- Comparing this
with S = —DVn, we see D ~ aT\ ~ aT?’kT kT
e. The law of particle conservation reads
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Combining this with the Boltzmann eqn. - = T)w”ision = =07 we get
eqn. (2.136).

g. Plugging N' = Np + N} into (2.136), and noting that we are considering
steady state solution, we get
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neglecting the 2nd term on the l.h.s. gives
i ONG
N, = —Pi %o
m Oz;

Using the form of Ny given in eqn. (2.131) and noting that its x dependence
comes soly from that of n, we get (2.137).

As a check, ﬁle) ~ WLM ~ % ~ 2 << 1 (see part c).

h. The particle flux is S; = [ W] pj%. Only N; contributes to S; because Np
is isotropic in p. Using the expression for A; worked out in part g, we find
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thus we have shown § = —DVn, with D = ’%f'.

Ex. 2.12 Neutron Diffusion in a Nuclear Reactor [by Xinkai Wu]

Denote the distribution function by N'(E,t). (As will become clear in a moment,
it helps to think of N'(E,t) as n(z,t), where n(z,t) is some density function in
the coordinate space.)

Use ns,Nq, 05,0, to denote the density of scattering centers(i.e. moderator
atoms), absorbing centers(i.e. 238U atoms), the scattering cross section, and
the absorption cross section, respectively.

A neutron with speed 4/2E/m has a probability of getting scattered per unit
time \/2E /m nsos, and a probability of getting scattered per unit time /2F/m n,o,.
Now we must find the energy decrement during each scattering. We can first
go to the center-of-mass frame, get the final velocities of the particles, then
transform back to the lab frame, and average over the 47 solid angle using the
fact that the scattering cross section is isotropic in the center-of-mass frame.
Chapter VI of Glasstone and Edlund does this for us and the result is:
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where A is the atomic number of the moderator atom.

Thus we find that the rate of slowing down, i.e. the neutron’s ”velocity” in

energy-space, is given by
dE [2FE
3, — —\/ — NsOs E
dt m ns0st

Note the "flux” in energy-space is given by (N (E,t)dE/dt).
Thus we find the following ”number conservation law” for N'(E,t):
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The term on the r.h.s. is a ”sink” term corresponding to the absorption by
238 U.

We consider steady state thus the first term on the 1.h.s. vanishes.

In general 04,0, both depend on E, and in the following we’ll make this E-
dependence explicit.

We are interested in the critical energy region between F; = Tev and Ey = 6eV
where o, is non-zero.

Define the ratio between the "flux” at energy E and that at energy E; as:

_ N(B)dE/dt _ N(E)E*’0,(E)
~ N(B)E/d)| e, N(B)EY 0, (E)

Divide both sides of the "number conservation law” by the constant (N (E)dE/dt)|g, -
The equation becomes

On 1 n.o.(E)
OE  €E n,o4(E)



In the critical energy region, o, (F) is approximately a constant o445 ~ 2000 barns,
also 05(E) is approximately a constant os..¢. Thus we can integrate the above
differential equation over the critical region and get
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Thus 7n(E2) > 1/2 requires
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When we use carbon as moderator, £ = 0.158, and 0.t = 4.8 barns(see table
3.79 of Glasstone and Edlund). And one must have

Pa 17x1073
Ng



