Solution for Chapter 1

(compiled by Xinkai Wu, revised by Kip Thorne)

A.

1.1 Geometrized Units [by Alexei Dvoretskii]

[Gh
(a) tp = 5 tp= 5.36 x 107 *s; tp = 1.61 x 10 °m

() m% =e(®+Y xB)

hw

() p= 711

How tall I am: 5.9 x 10~ 9s; How old I am: 2.5 x 10%cm

1.5 Numerics of Component Manipulations [by Xinkai Wu]

T(A, A) = TP A, Ap = —9;

denote T(A,_) as B, then B =T*f A, —
B=1, B! = -4, B2= B3 =,

denote A® T as S, then S¥87 = A°TPY —
§000 _ 3 GO0l _ gO010 _ 9 gOII _ _

S§100 — ¢, §101 = g110 — 4 S — 92 qll other components vanish

1.6 Meaning of Slot Naming Index Notation [by Alexei Dvoretskii]

A, BPY means A2 B

Ao B?* means B(_ A)

Sapy = Typa means S = Tyith siots 1 and 3 interchanged
AyB* = g, A¥ B” means A-B= g(f_f, é)

1.15 Vectorial Identities for th Cross Product and Curl [by Alexei Dvoretskii]
a. (V X (V X A))l = Ei]‘k(v X A)k;j = fijkfklmAm;lj
= (616, — 00 0]) Amyty = Ajsij — Aigjj = Ajiji — Aigj
(V(V-A)-V?A), =V x (VxA)=V(V-A)-V?A



In the above equations all indices (slots) that follow the semicolon are gradient
indices.

b. (A X B) . (C X D) = eijkAjkailmCle = ejkielmiAjBkCle
= (878 — 67,6%)A;BLC\D,,, = A;jByC;Dy, — A;jByCyD;
=(A-C)(B-D)-(A-D)(B-C)

c. using the identity demonstrated at the
beginning of the problem
Ex(FxG)=E-GF—-(E-F)G
we eastly get
(AxB)x(CxD)=[(AxB)-D]C—-[(AxB)-C|D

B.

1.7 Frame-Independent Expressions for Energy, Momentum, and Velocity [by
Alexei Dvoretskii]

a. The energy E measured by the observer is the time- component p° of the par-
ticle’s 4-momentum p in the observer’s frame. In that frame, 7= (p°, p), U=

(1,0), and thus —p - U= p° —E

b. p% = (m#@)? = m?u?, using 4> = —1 one gets the desired result.

. In part a we showed (in the observer’s frame) ' U= —p° and by definition
ﬁﬁ —(p°)?+p?. Thus we have |(5-U)2+5-p1'/? = |(p°)?— (p°)>+p?|*/? = |p|
d. p=m~yv, E = my, where v = 1/+/1 — v2, thus we have |v| = |p|/E

e. From the previous parts we already know p'"- U= —p° and v = p/E = p/p°.
So we have
ﬁ+ (ﬁ [-j)(j — (pO,p) —po(]_,[]) — (Oap) — (0 V) —
5 U p° p° ’

1.18 341 Split of Charge-Current 4-Vector [by Xinkai Wu]

In the rest frame of an observer with 4-velocity w, the charge-current 4-vector
J = (pa,j), @ = (1, 0) and the 4-vector fw = (0,j). As can be easily verified, in
this frame pgz = —J- w, and jw =J+ (J w)w. Inverting these two expressions
gives J= jf, + pgw. These relations are written in a frame-independent way,
thus valid in any Lorentz frame.

C.

1.8 Doppler Shift Derived without Lorentz Transformations [by Alexei Dvoret-
skii]
The case of photon:



In frame F, U = (v,yv) with vy = 1/4/1 — v2, and p = (EF, Ern). Then using
Eq. (1.69), we find the photon energy as measured by the emitting atom to be
E=—§-U=Epy(l1-v-n),ie Ep/E=1/[y(1-v-n).

The case of a particle with finite rest mass m:

Now U is same as in the photon case, but ' = (EF, |pn), where |p| = /E% — m2.

And we find E = —5- U = y(Ep — /EZ —m?2 v - n).

1.16 Reconstruction of F [by Alexei Dvoretskii]

Just like in the derivation of (1.107), we only need to show (1.108) holds in the
rest frame of the observer w(since it’s written in a frame-independent way, it’s
true in any Lorentz frame if it’s true in the observer’s rest frame). In this frame,
w® =1,w9 =0, and E} =0, E% = E;, B = 0, B, = B;. Both sides of (1.108)
are manifestly antisymmetric in (a, 8), thus we only need to check the (05) and
(ij) components. ' _

FY% = E;, while ther.h.s. of (1.108) is given by wOEZv—ij%—I—GOwa'VBfE, using
the component forms of w and Eﬁ, Bg given above one easily finds 7.h.s. = Ej.
Fi = ¢;3, By, while the r.h.s. of (1.108) is given by w®E’, — wiEL + eij,yéwVng.
Again, using the component forms of W and E@,Eﬁ one easily finds r.h.s. =
eijkBk.

D.

1.11 Spacetime Diagrams [by Alexei Dvoretskii]

The spacetime diagrams are Fig. 1 through Fig. 6. In these figures, we use
t',z' to denote £, Z, and 0 = tan"!8.

a. (See Fig. 1) Events A and B are simultaneous in F'. However because of the
slope a t = const line has in frame F, A will occur before B in frame F(A is the
event that’s ”farther back”).

b. (See Fig. 2) Events A and B occur at the same spatial location in F' but not
in F.

c. (See Fig. 3) If P; and P, have a timelike separation, then P» lies inside the
light cone and 6§ < 45°. Hence in a boosted frame with 5 = tanf < 1 the two
events will occur at the same spacial location. In F, v/—As? = A1 = At

d. (See Fig. 4) Analogously P, will lie outside of the light cone and hence the
angle 6(between PI—PQ) and the x-axis) is less than 45°. By boosting into F with
tand = B < 1 we see that P, P, is parallel to the Z axis, i.e. in F these two
events are simultaneous. And we have VAS? = |Ag|.

e. (See Fig. 5. In the figure, the hyperbola is given by t* — z? = #2.) Let’s con-
sider how much time will elapse as measured by observers in F and F between
O and P. (Af)? = (At)? — (At)%tan?0 = (At)%(1 — B?), and thus Af = At/~,
i.e. time is slowed in a boosted frame.

f. (See Fig. 6. In the figure, the hyperbola is given by z? — t*> = z2.) By
analogous reasoning, (AZ)? = (Az)? — (Az)?tan?0 = (Azx)?%(1 — B?), thus
AZ = Ax/v,i.e. objects in a boosted frame are contracted along the boost.



since there are no boosts along y and z, the length along those axes is un-
changed.

X

Figure 1: 1.11a

Figure 2: 1.11b

1.13 Twins Paradox [by Xinkai Wu]
a. Since 42 = —1, we have 0 = d(@-@)/dr = 2@-dii/dT = 2ii-a@. In the observer’s
rest frame i = (1,0), thus 0 = @-@ = @ = (0,a). So we get @-a = a?, namely,
la| = va-a.
b.
Denote 2%, z! coordinates in Methuselah’s ref. frame as ¢, z, and the proper
time of Florence as 7. We have
dt o dz 1
ar Vg
du® du!
du’ _ o dul_
dr dr
Using what we learned from part a, we have
0=ad-i=—a"u’ +a'u', ?=3-d=—(a")?+ (a")?

which tells us that for 7 € [Oa TFlo’re'nce/4] U [3TFl0'rence/47 TFlm'ence]a a® =
gula al = guoa and for 7 € [TFlorence/4u 3TFlorence/4]a a® = _gula al = _gUO.



light cone

Figure 3: 1.11c

light cone

X

Figure 4: 1.11d

Then it’s easy to integrate the acceleration twice and find #(7),z(7). The an-
swer is(we only give the 7 € [3TFiorence/4, TFiorence] Part here b/c this is all we
need)

fO’f' TE [3TFlorence/4a TFlorence]

1 . 4 1
t(T) = gs’t’ﬂh [g(T - TFlorence)] + 751nh(ZgTFlorence)

Q=R

1
x(T) = QCOSh [g(T - TFlorence)] -

Thus we get(restoring c)

4e . . 9Tm
TMethuselah = t(T = TFlorence) = ?SZ’flh(%)

Note that as Triorence increases, Thsethuselah Erows exponentially. A few nu-
merical values are given below:

TFiorence = 10 years gives Trethuselah = 25 years
Triorence = 50 years gives Tarethuselah = 7-6 X 10° years
TFlorence =80 years gives TMethuselah =1.7x 109 years
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Figure 6: 1.11f

1.14 Around the World on TWA [by Xinkai Wu]

The 1972 Science papers of Hafele and Keating explain the experiment well.
Let’s summarize it as follows.

We analyze this problem in the non-rotating inertial frame whose origin co-
incides with the earth’s center. Denote the proper time as measured by the
eastward clock, the westward clock, and the clock in the ground laboratory as
Te, Tw, Tg, Tespectively. For a clock moving with a speed v in this frame, to lead-
ing order of relativistic corrections, its proper time is related to the coordinate
time by dr = [1 — g(R — h)/c* — v?/2c?|dt, where R is the earth’s radius, h is
the clock’s altitude, and g the surface value of the acceleration of gravity. The
2nd term in this expression is a general relativistic effect while the 3rd terms is
a special relativistic one.

For the clock in the ground lab, v, = QRcosAgey, with Q being the angular
velocity of the earth’s rotation, and A, the clock’s latitude. For the eastward
clock, v = (QRcos). + vcost.)ey + vsinbf.eg, with A being the eastward
clock’s latitude, v being its speed w.r.t. the ground, and 6. being the an-
gle between its velocity and the eastward direction. For the westward clock,
Vy = (QRcosAy + vcosy,)es + vsinbyeg, with Ay, being the westward clock’s
latitude, and 6,, being the angle between the its velocity and the eastward di-
rection. Note that cosf, > 0 while cosf,, < 0



Using the above facts and eliminating dt, we find

ghe  QPR*(cos® e — cos®)y) +1v*  QRvcos)ccost.
c? 2¢2 c?

dre = |1+ dry
and d7y, given by the same formula with the subscript e replaced by w.
Integrating the above expressions gives the relation between 7, and 74, 7, and
Tg- In the real experiment v, he, Ae,0c(and hy, Aw,0) changes with time so
one must perform the integral numerically. For pedagogical purpose, here we
consider the simplified case, where Ay = Ac = A\, =0, 8. = 0,0,, = 7, and
he, hy, are constants. We find

1 2 2R
Te — Tg = c72 |:ghe_y2_QRV:| L
1 v? 2R
Tw — Tg = 672 |:ghw_2+QRl/:| L

Take v = 893km/hour(based on the fact that it took about 45 hours to fly
around the earth), h, = h,, = h = 10km, we find

2 292 QRv 27R
gh2mR _ 178ns, Ve 2R 55ns, ——r “T _ 908ns
2 v 2¢2 v 2 v

(so we see that general relativistic effect is comparable to the special relativistic
effect).

So we get: 7, — 7y = —85ns, T, — 74 = 331ns.(the experimental data gives
Te — Tg = —59 + 10ns, 7, — 74 = 273 &+ Tns).

One remark: the defference between the aging of the two flying clocks is given
by

Ty — Te = 2—5- 2R = 416ns
c

(the experimental result is 332 + 17ns). Note that the velocity-independent
general relativistic effect(and also all v-dependence) cancels out in 7, — 7e.

E.

1.21 Clobal Conservation of 4-Momentum in a Lorentz Frame [by Alexei Dvoret-
skii]
The parallelepiped has eight faces, two perpendicular to each of the axes.

/ TS, =  AzAyAz(T(t + At) — T(t))
ov

+AzAYA(T (2 + Az) — T*(z))
+ATAZALT® (y + Ay) — T*(y))
+AYAZALT (z + Az) — TO%(x))



The first term gives the change of the energy in a 3d volume AzAyAz in time
At. The other three terms give the flow of energy out of the 3d volume through
the faces in time At.

The conservation law states that if the energy contained in a 3d volume in-
creased/decreased then it flowed into/out of the volume. It’s not created of
destroyed in the volume itself, i.e. it’s conserved.

1.22 Stress-Energy Tensor for a Perfect Fluid [by Alexei Dvoretskii]

The stress-energy tensor should be a symmetric tensor made from 4, g, p, and P,
so it must be of the form: T%% = Au*uf + Bg®?, where A, B are scalars to
be determined. In the local rest frame, T7% = P§i* tells us B = P; and then
T% = p tells us A = p+ B = p+ P; note T% = 0 is satisfied automatically.
Thus we’ve derived the stress-energy tensor given in (1.142).



