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BOOK I . -~
Vst oabre Foundation

Preface

The subjects of relativity, gravitation, and cosmology are frequently
discussed areas of modern physics among the broad audience. Numer-
ous popular books on these subjects are available for the general reader
with no background in physics. At the same time a number of textbooks
and monographs for advanced graduate students and young researchers in
the area is available as well.

However, intermediate books, allowing senior undergraduate students
or junior PhD students to enter this exciting area of physics in a smooth and
pedagogical way, are quite rare. It is generally assumed that new concepts
of both physics and mathematics involved in the subject are too complex
to allow a simple and pedagogical introduction.

The only way to master the subject seems to be a hard and time-
consuming effort to put together the intelligible pieces of advanced text-
books into an understandable set of notes, as experienced by ourselves and
many of our colleagues as well. This approach has the advantage of making
young students with the capability and perseverance to go through such a
learning process very well trained for future research tasks. However, at the
same time, it severely limits the number of people who ever really master the
subject. .

This book is an attempt to bridge the gap between a regular university
curriculum, consisting typically of courses in calculus and general physics,
and the more advanced books in tensor calculus, relativity, and cosmology.
The book has evolved from a set of lecture notes originally compiled by
one of the authors, M. Dalarsson, but has been improved and completed
with a few exciting new topics over the past 10 years.

It is the intention of the book to give to the readers a high level of detail
in derivations of all equations and results. The more lengthy and tedious
algebraic manipulations are in general outlined in such detail that they can



vi Preface
be followed by an interested senior undergraduate student or a junior PhD
student with very little or no risk of ever getting lost.

It is our experience that a common showstopper for a young university
student trying to master a subject are phrases in the literature claiming that
something can be derived from something else by some “straightforward
although somewhat tedious algebra.” If a student cannot readily reproduce
such a “straightforward” algebra, which most often is the case, the usual
reaction under the time pressure of the studies is to accept the claim as
a fact. And from that point, throughout the rest of the course, the deeper
understanding of the subject is lost.

There are a number of advanced books on relativity, gravitation, and
cosmology, and we have benefited from some of those as well as from
unpublished notes produced by some of our distinguished colleagues. Some
of these sources are listed in the bibliography at the end of the book, as well
as a few other books that may be recommended as suitable further reading.
However, in an introductory book such as this one, it is possible neither
to include an extensive list of all original references and major textbooks
and monographs on the subject nor to mention all the people who have
contributed to our understanding of this exciting subject.

We hope that our readers will find that we have, at least partly, fulfilled
the objective of bridging the gap between the regular university curriculum
and the more advanced literature on this exciting subject, and that they will
enjoy reading this book as much as we did writing it.

M. Dalarsson and N. Dalarsson
Stockholm, Sweden, January 2003
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» Chapter 1

Introduction

The tensor calculus is a mathematical discipline of relatively recent origin.
It is fair to say that, with few exceptions, the tensor calculus was developed
during the twentieth century. It is also an area of mathematics that was
developed for an immediate practical use in the theory of relativity, with
which it is strongly interrelated. Later, however, the tensor calculus has
proven to be useful in other areas of physics and engineering such as clas-
sical mechanics of particles and continuous media, differential geometry,
electrodynamics, quantum mechanics, solid-state physics, and quantum
field theory. Recently, it has been used even in electric circuit theory and
some other purely engineering disciplines.

In the early twentieth century, at the same time when the tensor calculus
was developed, a number of major breakthroughs in modern science were
made. In 1905 the special theory of relativity was formulated, then in
1915 the general theory of relativity was developed, and in 1925 quantum
mechanics took its present form. In the years to come quantum mechanics
and the special theory of relativity were combined to develop the relativistic
quantum field theory, which gives at least a partial explanation of the three
fundamental forces of nature (strong, electromagnetic, and weak).

The remaining known fundamental force of nature, the force of gravity,
is different from the other three fundamental forces. Although very weak
on the small scale, gravity dominates the other three forces over cosmic dis-
tances. This dominance, due to gravity being a long-range force that cannot
be screened, makes it the only available foundation for any cosmology. The
other three fundamental forces are explained through particle interactions
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in the flat space-time of special relativity. However, gravity does not allow
for such an explanation. In order to explain gravity, Einstein had to con-
nect it with the geometry of space-time and formulate a relativistic theory
of gravitation. For a long time, general relativity was separate from the
other parts of physics, partly because of the mathematical framework of
the theory (tensor calculus), which was not extensively used in any other
discipline during that time.

The tensor calculus today is used in a number of other disciplines as
well, and its extension to other areas of physics and engineering is a result
of the simplification of the mathematical notation and in particular the
possibility of natural extension of the equations to the relativistic case.

Today, physics and astronomy have joined forces to form the discipline
called relativistic astrophysics. The major advances in cosmology, includ-
ing the first attempts to formulate quantum cosmology, also increase the
importance of general relativity. Finally, a number of attempts have been
made to unify gravity with the other three fundamental forces of nature,
thus introducing the tensor calculus and Riemannian geometry to the new
exciting areas of physics such as the theory of superstrings.

In the first two parts of the book a pedagogical introduction to the tensor
calculus is covered. Thereafter, an introduction to the special and general
theories of relativity is presented. Finally an introduction to the modern
theory of cosmology is discussed.

Part 1 -

Tensor Algebra




» Chapter 2

Notation and Systems
of Numbers |

Introduction and Basic Concepts

In order to get acquainted with the basic notation and concepts of the tensor
calculus, it is convenient to use some well known concepts from linear
algebra. The collection of N elements of a column matrix is often denoted
by subscripts as xj,x2,...,xy. Using a lower index i = 1,2,...,N, we
can introduce the following short-hand notation:

x; (=12,...,N). 2.1)

Sometimes, the same collection of N elements is denoted by corresponding
superscripts as x!, x2, ..., x. Using here an upper index i = 1,2,...,N,
we can also introduce the following short-hand notation:

¥ (i=12,...,N). 2.2)

In general the choice of a lower or an upper index to denote the collection
of N elements of a column matrix is fully arbitrary. However, it will be

“shown later that in the tensor calculus lower and upper indices are used to

denote mathematical objects of different natures. Both types of indices are
therefore essential for the development of tensor calculus as a mathematical
discipline. In the definition (2.2) it should be noted that i is an upper index
and not a power of x. Whenever there is a risk of confusion of an upper
index and a power, such as when we want to write a square of x’, we will

5
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use parentheses as follows:
ox=GH? (=1,2,...,N). (2.3)

A collection of numbers, defined by just one (upper or lower) index, will be
called a first-order system or a simple system. The individual elements of
such a system will be called the elements or coordinates of the system.
The introduction of the lower and upper indices provides a device to
highlight the different nature of different first-order systems with equal
numbers of elements. Consider, for example, the following linear form:

ax + by + cz. 2.4)
Introducing the labels a; = {a, b, ¢} and X’ = {x,y, 7}, the expression (2.4)
can be written as

3
aix' + ax® + a3x3 = Zaixi, (2.5)
i=1
indicating the different nature of the two first-order systems. In order to

emphasize the advantage of the proposed notation, let us consider a bilinear
form created using two first-order systems x’ and ¥ (i=123).

1.1 1.2
anx'y +apxy + ai3x1y3 + azlxzyl + a22x2y2 + 02312}’3

3 3
+ a3y + anx®y? + asx’y? = >, > agx'y/ (2.6)
i=1 j=1
Here‘we see that the short-hand notation on the right-hand side of Eq. (2.6)
1s quite compact. The system of parameters of the bilinear form

a; (i,j=1,23), 2.7
is labeled by two lower indices. This system has nine elements and they

can be represented by the following 3 x 3 square matrix:

aiy 4z as
azy ax ax|. 2.8)
a1 asz as
A system of quantities determined by two indices is called a second-order
system.

Depending on whether the indices of a second-order system are upper
or lower, there are three types of second-order systems:

aj, a, d¥ (,j=1,2,....N). 2.9)

Section 2.2 Symmetric and Antisymmetric Systems 7

A second-order system in N dimensions has N? elements. In a similar way
we can define the third-order systems, which may be of one of four different

types:
G,y al, a® (j=1,2,....N). (2.10)
The most general system of order K is denoted by
Gisp,ix iz, . igk =1,2,...,N), (2.1

and, depending on the position of the indices, it may be of one of several
different types. The Kth-order system in N dimensions has NX elements.

Symmetric and Antisymmetric Systems
Let us consider a second-order system in three dimensions
aj (i,j=1,2,3). (2.12)

The system (2.12) is called a symmetric system with respect to the two
lower indices if the elements of the system satisfy the equality

azj = aﬁ (l,} = 1,2, 3) (213)

Similarly, the system (2.12) is called an antisymmetric system with respect
to the two lower indices if the elements of the system satisfy the equality

ay = —a; (,j=1,2,3). (2.14)

The equality (2.14) indicates that an antisymmetric second-order system in
three dimensions has only three independent components and that all the
diagonal elements are equal to zero:

an=0 (J=123). (2.15)
Thus it is possible to represent an antisymmetric second-order system in
[ three dimensions by the following 3 x 3 matrix:
0 a2 a3
—apz 0 ax|. (2.16)

—a;3 —azx3 O

In general, a system of an arbitrary order and type will be symmetric
with respect to two of its indices {(both upper or both lower), if the

corresponding elements remain unchanged upon interchange of these two
indices. The system will be totally symmetric with respect to all upper
(lower) indices, if an interchange of any two upper (lower) indices leaves
the corresponding system elements unchanged. Elements of a totally
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symmetric third-order system with all three lower indices satisfy the
equality

Qjjk = a,-kj = ajk,- = ajik = afcij = akji- (2.17)

Analogously to the above, a system of an arbitrary order and type will be
antisymmetric with respect to the two of the indices (both upper or both
lower), if the corresponding elements change signs upon interchange of
these two indices. The system will be totally antisymmetric with respect to
all upper (lower) indices, if an interchange of any two upper (lower) indices
changes signs of the corresponding system elements. Elements of a totally
antisymmetric third-order system with all three lower indices satisfy the
equality

Aijx = —Qjgj = Qg = —qjig = Apgj = —Ai. (2.18)

2.3] Operations with Systems

Under.cenail-l conditions, it is possible to perform a number of algebraic
operations with systems. The definition of these operations depends on the
order and type of the systems.

2.3.1 Addition and Subtraction of Systems

The addition and subtraction of systems can be performed only with
systems of the same order and same type. The addition (subtraction) of
systems is performed in such a way that each element of one system is
added (subtracted) to (from) the corresponding element of the other system
(the one with the same indices in the same order). For example, the systems

Ap,, and Bzm can be added since they are of the same order and of the same
type. The sum of these two systems is given by

D] =AY +BY, 2.19)

an<.1 itis a system of.the same order and type as the two original systems.
This definition is easily extended to addition and subtraction of an arbitrary

number of systems.
23.2 Direct Product of Systems

A; systimfobtained by multiplying each element of one system by each
element of another system, regardless of their order and type, is called

Section 2.3 Operations with Systems 9

a direct product or just a product of these two systems. Thus, for example,
a product of two first-order systems a’ and b' is a second-order system

d=abl. (2.20)
Fori,j = 1,2, 3, this operation can be written in the following matrix form:
al albl alb2 a1b3
[(=|a|[p! ¥ B]=|a®' o o). (221
63 a3 bl a3 b2 (13 b3
In general, the set of upper (lower) indices of a system, created as a product

of several other systems, is a collection of all upper (lower) indices of all
of the constituent systems. For example, we have

ik = AIB{Cy 222

2.3.3 Contraction of Systems

This operation is applicable to systems with at least one pair of indices of
opposite type, i.e., at least one upper index and one lower index. The actual
pair of indices of opposite type is then made equal to each other and a sum
over that common index is performed. Thus, for example, by contraction

of a third-order system ag, we obtain
- N L o - -
a’=Zaj§'=a‘ll+a'22+---+afVN. 2.23)
=1

The contraction of a system of order k gives a system of order k—2,
which is easily seen from the example (2.23). The contraction of a mixed
second-order system bj‘. gives a zeroth-order system

N ‘
b= bl =bl+b5+---+by, (2.24)
j=1

which is equal to the trace of the matrix [b;].

2.3.4 Composition of Systems

The composition of systems is a complex operation consisting of a product
of two systems and a contraction with respect to at least one of the indices of
opposite type from each of the systems. The product of the two first-order
systems a* and b; is a mixed second-order system a*b;. By contraction
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of this system, we obtain the composition of the systems a* and bj in
the form

N
c=y abj=a'b+abr+ - +dby. (2.25)
j=1

For N = 3, the result (2.25) can be written in the following matrix form:

N b!
S db=[a @ S|P |. (2.26)
j=1 b

2.4] Summation Convention

At the very beginning of the development of the general theory of relativity,
in order to simplify derivations of various results and expressions in the
tensor calculus, the summation convention over the repeated indices was
introduced. According to this convention, when the same index in an
expression appears twice, it is understood that the summation over that
index is performed and no summation sign is needed. Thus, for example,
we may write

N
Z aix! = ajxj , (2.27)
j=1
N N
D> apxixt = agxixt, (2.28)
j=1 k=1
N N
Dprat = D;;;"a«f". (2.29)
j=1 k=1

The repeated indices, over which a summation is understood, are usu-

ally called dummy indices. When using the summation convention, the
following rules should be kept in mind:

1. Itis required to know exactly which range of values all indices can
take. If nothing else is specified, it is assumed that all indices in one
€expression or equation cover the same range of integers.

Section 2.5 Unit Symmetric and Antisymmetric Systems 1

2. Whenitis required to represent any of the three diagonal elements a} ,

a% or ag, in order to avoid confusion with the summation convention,
al(M = 1,2,3) could be used instead of @7, (m = 1,2,3). Insucha
case the capital letters are only used for this purpose and are otherwise
not used as indices.

3. In order to avoid confusion, whenever there are two or more pairs
of dummy indices in the same expression, they should always be
denoted by different letters and never by the same letters.

Unit Symmetric and Antisymmetric

Systems

The unit symmetric system, called the §-symbol, is the symmetric second-
order system, defined as follows:

; (2.30)

1, fori=j

0, fori#j
Thus the §-symbol 8}' for (i,j = 1,2,3) is a system of nine elements such
that the diagonal elements, with indices i and j equal to each other, are equal
to unity while the off-diagonal elements are equal to zero. The matrix of
this system is the following:

{aj]: é z g : 2.31)

The §-symbol is often called the substitution operator, since by composition
with the §-symbol it is possible to change the index label of any system.
For example, it is possible to write

8ia; =8la1 + 87ay + 8 a3 = a;. (2.32)

The validity of the result (2.32) is obvious from the definition of the
&-symbol (2.30). Since SM — 1 for M = 1,2,3, the trace of the 8-symbol
in three dimensions is given by
j 1
S =581 +8+8 =3 (2.33)

The use of the §-symbol may be illustrated by the following example. If a
system of three independent coordinates is given by x' = {x,y,z}, these
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coordinates, by definition, satisfy

ax' 1, fori=j _
ﬁ—{o, fori;éj}' (234

The equation (2.35) can be simplified using the §-symbol as follows:

— =4 2.
ax 7 (2.35)
Another important system is the unit antisymmetric system, that is, the
totally antisymmetric third-_'order system in three dimensions, called the
e-system. It is denoted by e or e;ix and is defined for (i,j,k = 1,2,3) in
the following way:

+1, if ijk is an even permutation of 123
e’ = {1, ifijk is an odd permutation of 123 . (2.36)
0, fi=ji=kj=kori=j=k

Let us now write down all 3! = 6 permutations of 123 in order:

(123) zeroth permutation

(132) first permutation

(312) second permutation 2.37)
(321) third permutation )
(231) fourth permutation

(213) fifth permutation

The thfee cyclic permutations (123), (312), and (231) are even permuta-
tions and the corresponding e-symbol elements are given by

8123 — 312 231 _ 1. (2.38)

Similarly, for the odd permutations the e-symbol elements are given by
€% =3 = 283 = g (2.39)

and all other elements of the e-symbol are equal to zero. This indicates that
the e-symbol has only six nonzero elements out of a total of 27 elements.
Since the e-system in three dimensions is a third-order system, it is not pos-
sible to r_epresent it by a two-dimensional matrix, but a three-dimensional
scheme is required. However, for better visibility a following schematic

Section 2.5 Unit Symmetric and Antisymmetric Systems 13

representétion is also possible:

e finl2] 13121t {22723[31] 32 [33]
i=1{010 0 0/0]1]0]-1]0
i=2{0(0/-1} 0/0]0]|1| 0|0
i=3[{ 0] 1] oj-1]|0|0]0] O|O

The most general Nth-order e-symbol is defined as follows:

(7] = (2.40)

+1, i1ip...iy an even permutation of 12.. . N
12N =1 1 jjiy... iy an odd permutationof 12...N . (2.41)
0, any pair of indices equal to each other

Using the e-symbols it is possible to write down the expression for the
determinant of a matrix {a}-], for (i,j = 1,2,3), as follows:

a = det [aﬂ = ekm”a,taﬁ,ai. (2.42)

In order to verify that the expression (2.42) is indeed equal to the determi-
nant of the matrix [a;], we use the expression for the determinantof a3 x 3
matrix as follows:

4 4 9

a=det|a} a d? | (2.43)
a @ &

a= ai (a%ag — aga%) — aé(a%ag — a?a%) + a% (a%a% — a?ag)

= a}a%ag —dladadd +dlala3 - a%a%a? + a%a%a? —aldia} (2.44)

From the definition of the e-symbol (2.36) we see that the result (2.44) can
be written in the form

a=é"aldlal, (2.45)
which is identical to (2.42).

The determinant of a matrix [aJ’:], in a general case when (i,j=
1,2,...,N), has the form
a= eil'-2““""’al‘llai22 - ai\;, (2.46)
The definition (2.46) clearly indicates the advantage of the system notation,
since the expression for the determinant of an N x N matrix in the expanded
form, even for relatively small values of N, is quite complex.
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Vector Spaces

Introduction and Basic Concepts

In general, a mathematical space is a set of mathematical objects with
an associated structure. This structure can be specified by a number of
operations on the objects of the set. These operations must satisfy certain
general rules, called the axioms of the mathematical space.

In order to specify the operations and axioms used to define a vector
space, it is first important to introduce some general concepts. The set
of values (al,az,. .. ,aN) of some N variables {xl,xz, s ,xN) is called
| a point. A set of all such points for all possible real values of the given
N variables is called a real N-dimensional space. A vector in such a space
is an ordered pair of points, such that it is specified which point is the first
point (the origin of the vector) and which point is the last point (end of
the vector). For example, if the point P(al,d?,...,a") is the origin of the
F vector and the point Q(b!,b%,...,b") is the end of the vector, then the
vector fQ is the vector of displacement from the point P to the point Q.
The system of values ’

d=p-a, F=p*-a, ..., N = -d 3.1

or in a more compact notation

d=b-d (=12,...,N), 3.2)

is called the system of coordinates of the vector P_Q in the
N-dimensional space.

15
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The vector Pb in the N-dimensional space is thus fully determined
lvhen we know all of the N coordinates of the point of origin P, i.e.,

d (=12,...,N), (3.3)

d all of the coordinates of the vector P_Q, given by (3.2). However, in
rhany cases only the coordinates (3.2) are used to specify a vector, and
it is assumed that they can be measured from an arbitrary point in the

&;dimensional space as an_origin. Such a vector is called a free vector.
arbitrary vector PQ = C will therefore usually be identified with the
system of coordinates

¢ (=12,...,N). (3.4

If we adopt a common point of origin for all vectors, defined in the
[J—dimensional space, then the position of every point in that space is
etermined by its position vector with respect to the adopted common
point of origin.
The point with coordinates (0,0, . ..,0) is called the origin of coordi-
lmates. Itis customary to adopt it as the common point of origin for all vectors
in an N-dimensional space, although it is not mandatory. The equality of
'wo vectors a and b requires the equality of all of their components

d=V @(=12,...,N). (3.5)

Definition of a Vector Space

A general N-dimensional space in which the operation of addition
(subtraction) is defined by the equation

. d=d+b (i=12,...,N), (3.6)
and the operation of scalar multiplication is defined by the equation
d=A" (i=12,...,N), 3.7

for an arbitrary scalar A, is called the vector space in N dimensions. The
two vector operations satisfy the following axioms:

1. The commutativity of addition:

I , d+b=b+d (i=12....N) 38
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2. Thé associativity of addition:
@+b)+c=d+ @ +c) (=12,...,N) 3.9)
3. The existence of a null-vector (! such that
d+0=0+d (=12...,N) (3.10)
4. The distribution laws for scalar multiplication:
AMd +b) =rd +Ab (i=12,...,N) (3.11)
A+v)d =rd +vd (=12,...,N) (3.12)
5. The associativity of scalar multiplication:
(W) =A(wd) (i=12,...,N) (3.13)
6. The existence of a unit-scalar 1 which satisfies

ld=d (=12,...,N). (3.14)

The foregoing definition of the N-dimensional vector space implies
certain properties of objects in it. The colinear or parallel vectors in the
N-dimensional vector space are the vectors @ and b which are linearly
dependent, i.e., such that

d=r (i=1,2...,N). (3.15)
A straight line in the vector space is defined by the equation
©¥=d+a (i=1,2,...,N), (3.16)
where A is the variable parameter. The vector & determines one point on
the straight line, while the vector b determines the set of coefficients of the
direction of the straight line. A plane in the vector space is defined by the
equation

d=d+i+vd (=12,....N), (3.17)

where A and v are variable parameters. The vector a determines one point
on the plane, while the vectors b and ¢ are the direction vectors of the plane.
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. 18
@ The Euclidean Metric Space

If the distance between two arbitrary points P(a!,a?,...,a") and
QL b%,...,bY) of a vector space is defined by the equation

s=P0= [(bl —a )+ -+ 1V = aN)Z]”z, (3.18)

of two_infinitesimally close points P(y!,y%,...,y¥) and Q(y! +dy!,

l such a vector space is called the Euclidean metric space. In the case
Y +dy?, ., yN +dy"), the distance ds is given by

ds® = (ay")? + (@) + -+ + ()2, (3.19)

'OI'

I The expression (3.20) is called the square of the line element ds or the metric
of the Euclidean metric space. The Euclidean metric space is a special case
of the general vector space. Thus the operations of addition (subtraction)
and scalar multiplication, satisfying the axioms (3.8)~(3.14), are defined
l in the Euclidean metric space. However, in a metric space there is another

operation with vectors called the scalar product, defined as a composition
I of vectors @’ and &/, i.e.,

ds* = §gdy*dy’ (k,j=1,2,...,N). (3.20)

8ja'b! = a'b! + % + - + VBV, 321

' The Euclidean metric space in N dimensions is usually denoted by Ey.

The Riemannian Spaces

In the previous section, we have concluded that in a Euclidean metric space
I Ey, the metric is defined by

ds® = Sgdy*dy) (kj=1,2,... N, (3.22)

l where y* are Descartes rectangular coordinates. If, instead of the Descartes

coordinates yk, we introduce N arbitrary generalized coordinates x* , by
means of the equations

I Y=yl N k= 1,2,...,N), (3.23)
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then, due to the relations

8y"

T aam

the metric can be written as follows:

af & (m=12,.. . N), (3.24)

W 0y 3y~ 9y’ n
2 _ s " gmZ) = §pi —— —dx™dx". 3.25)
ds” = 3 ax”‘dx ax" % ax™ gx™ (
If we introduce a notation
ay* dy’
8mn = Skfax_"@}?’ (3.26)

the metric can be written in the form
ds* = gundx™dx® (m,n=1,2,...,N). (3.27)

From (3.26) it is clear that g,,,, in general, is not equal to the 8—sym})ol
and that (3.27) cannot be reduced to the sum of squares of differentials
of N coordinates. Thus (3.27) is a general homogeneous quadratic form.
Let us now, as an example, consider the usual three-dimensional Descartes
system of coordinates y* = {x, y, z} and the system of spherical coordinates
x* = {r,0, ¢}, defined by the equations

y' = x!sinx® cos x*

y? = x! sinx? sinx’ (3.28)
y? = x! cosx?.

The components of the system g, in spherical coordinates are obtained
using the definition (3.26) as follows:

(B (2 (2
B11 =\ 541 ax! ax!

. . . 232
= (smx2 cosx3)2 + (smx2 smx3)2 + (cosx“)* =1

2
822 = 9x2 + ax2 dx2

= (x! cosx? cosx>)? + (x! cosx? sinx>)? + (—x! sinx?)? = (xl)2
ay! 2 ay? 2 3y’ 2
o= (3) () (2
= (~x'sinx?sinx®)2 + (x'sinx? cosx*)? = (x! sinx?)2.  (3.29)
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Similar considerations show that

| mn =0 form#n. (3.30)
Thus the metric (3.27) becomes
I ds? = (@x)? + @H (@D’ + (P sinx?2@)?, (33D

or using the usual notation for the spherical coordinates
ds? = dr® + r2d6? + r? sin® 0dy?, (3.32)

which is the well-known expression for the metric in spherical coordinates.
The expression (3.31) or (3.32) is a homogeneous quadratic form and
I it is not a sum of squares of differentials of the three coordinates.
In general a space of N dimensions, in which a metric is defined with
respect to the Descartes system of rectangular coordinates (3.22), does
Inot cease to be a Euclidean metric space when the metric is expressed
with respect to some other generalized system of coordinates (3.27) and
is no longer a sum of squares of differentials of N coordinates. The space
remains the same Euclidean metric space and ouly the system of coordinates
is changed.
Let us now consider a case when the Descartes coordinates y*(k =
1,2,...,N) can be expressed in terms of a number M (M < N) of arbitrary
Ivariables X*a=12,...,M):

v =yl 2 M) (e=1,2,...,N). (3.33)

In such a way we define an M-dimensional subspace, denoted by Ry,
embedded in the original N-dimensional Euclidean metric space Ey. The
metric of the Euclidean metric space has the form

l ds® = §ydy*dy!  (k,j=1,2,...,N), (3.34)

and because of the relation

ay*

& = Zax®, 3.35
Y =23 (3.35)
the metric of the sybspace Ry can be written in the form
l ds® = gepd®dxP (o, =1,2,...,M), (3.36)
'where
ay* 8y
s 3.37
8ap = Ny xP 3-37)

In (3.37) and below the Greek indices run from 1 to M while the Latin
indices run from 1 to N.
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Thus the square of the distance between two infinitesimally close points
in the subspace Ry is defined by the homogeneous quadratic differential
form (3.36). Let us now consider the M-dimensional subspace Ry inde-
pendently of the original N-dimensional Euclidean metric space Ey, in
which it is embedded. Now we would like to know whether it is possible
to find M independent variables and use them as coordinates, such that
the metric form (3.36) can be written as the sum of squares of differen-
tials of these coordinates. If this is possible, the M-dimensional space Ry
is in its own right a Euclidean metric space. If this is not possible the
M-dimensional space Ry is called the Riemannian space.

Let us, for example, consider the points on a sphere of a unit radius in
the three-dimensional Euclidean metric space E3, defined by the Descartes
rectangular coordinates yi = {x, ¥, z}. The metric has the usual form

ds? = sydyFdy!  (k,j =1,2,3). (3.38)

Let us now define a two-dimensional subspace R; of the Euclidean metric
space E3, in which the position of the points on the unit sphere is specified
by the polar angles x* = {0, ¢}. The relations (3.33) in this case have
the form

y! = sinx! cos x2
y = sinx! sinx? (3.39)
y> = cosxl.

The components of the system gqg are obtained using the definition (3.37)
as follows:

T 732\ (83
g11=(—1) + a1 + P
ax dx axt /.

Leosx?)? + (cosx! sinx?)? + (—sinx!))? = 1

. Z(Lyl): w2\ (Y
2=\ 922 ax2 ax2

1 1

= (cosx

cosx?)? = (sinxl)2
g12 =g =0. (3.40)

= (—sinx!sinx%)2 + (sinx

Thus we obtain the metric of the subspace R; in the form

ds® = (dx")? + (sinx')?(@x?)?, (341
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or

ds? = d6? + sin? 6d¢’. (3.42)

It turns out that it is not possible to find two real variables {u, v} such that
the metric (3.42) can be written in the form

ds? = du® + dv*. (3.43)

Thus the surface of the unit sphere, as a two-dimensional subspace R; of the
original Euclidean metric space E3, does not have the internal Euclidean
metric. In other words, there are no Euclidean coordinates on the surface
of the unit sphere.

It can, therefore, be concluded that in a Euclidean metric space there are
some subspaces with a non-Euclidean metric. Such subspaces are called the
Riemannian spaces. In principle, the metric geometry can be generalized
by defining the metric of a space in advance by choosing the functions
gmn in an arbitrary way, with only requirements that the system g,,» be
symmetric and doubly differentiable. The metric does not even have to be
positively defined.

Thus a space, with a metric which is not positively defined but in which
the components of the system g,,, are constants, is sometimes called a
pseudo-Euclidean space. Analogously, a space which is not positively
defined and in which the components of the system gm, are arbitrary
functions of coordinates is sometimes called a pseudo-Riemannian space.

» Chapter 4

Definitions of Tensors

Transformations of Variables

Tensors, as mathematical objects, were originally introduced for an
immediate practical use in the theory of relativity. The main subject of
the theory of relativity is the behavior of physical quantities and the
laws of nature with respect to the transformations from one system of
coordinates to another. It was therefore important to introduce a new class
of mathematical objects that are defined by their transformation laws with
respect to the transformations from one system of coordinates to another.
Such mathematical objects are called fensors. The systems that we call
tensors have linear and homogeneous transformation laws with respect to
the transformations of coordinates. In order to define the main types of
tensors, let us consider an arbitrary transformation of variables x* into
some new variables z*, defined by

F=ZaNA2 L) *k=1,2,...,N). “.1)
From (4.1) we may write
azk

dZf = ———dx"™ (k,m=1,2,...,N). 4.2

= (k,m ) 4.2)

The differentials of the coordinates dz' are linear and homogeneous
functions of the differentials of the old coordinates dx™. The differentials
of coordinates are by definition treated as the components of a special type
of tensors, called contravariant vectors.

23
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Let G be a zeroth-order system. The system of N quantities 0G/ ax'is
| transformed according to the transformation law
aG  9x™ 3G
8zk ~ azk oxm
. The components 3G/dz¢ are linear and homogeneous functions of the

components dG/dx™. The components of the system dG/9x™ are by
l definition treated as the components of a special type of tensors, called

(k,m=1,2,...,N). 4.3)

covariant vectors.

p Contravariant Vectors

Generally speaking, any system of quantities, defined with respect to the
systems of coordinates {x*} and {z*} by N quantities A* and A* respectively,
which is transformed according to the transformation law

Akz——Am (k,m:l,Z,‘..,N) (4'4)

is called a contravariant vector. The contravariant vectors are always
denoted by one upper index.

I_?] Covariant Vectors

On the other hand, any system of quantities, defined with respect to the
I systems of coordinates {x*} and {z*} by N quantities By and By, respectively,
which is transformed according to the transformation law
ax™
azk

is called a covariant vector. The covariant vectors are always denoted by
I one lower index.

By=—B, (G,m=12,... N (4.5)

4.4| Invariants (Scalars)

Let us now form a zeroth-order system by composition of one contravariant
and one covariant vector

I F=A"B, (m=12,...,N), (4.6)

with respect to a system of coordinates {x*}. Then, with respect to a new
system of coordinates {z¥} this system has the value

- k k

F =AkBk = aiAmaan — 92" 9x"

axm gk on = 3im g A B @7
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where the upper bar over the quantities 7, A¥, and By, denotes that they are
defined with respect to the new coordinates {z*}.
On the other hand, by definition of the §-symbol, we have

gg%:a; (k,m,n=1,2,...,N), (4.8)
and the result (4.7) becomes
F =§"A"B, = A™Bpn, (4.9)
or
F =A*B, = A™B, =F. (4.10)

The result (4.10) shows that the quantity F' has the same value in all systems
of coordinates. Such a quantity is, therefore, called an invariant or a scalar.
A composition of one contravariant and one covariant vector is therefore
called the scalar product since it behaves as a scalar with respect to an
arbitrary transformation of coordinates.

Contravariant Tensors

Let us consider a system of N2 products of components of two contravariant
vectors B™ and D", denoted by

A™ — B"pD", “.11)

with respect to a system of coordinates {x*}. In some other system of
coordinates {z*} this system will have values in accordance with (4.4), i.e.,

oo,

Ak — Bipk — =
ax™ Jx" ox™ Jx"

(4.12)
In analogy with (4.12), any second-order system, defined with respect to
the systems of coordinates {x*} and {7} by N? quantities A™" and A/,
respectively, that is transformed according to the transformation law
- J 87~
k= 97 9% (4.13)
ax™ 9x™

is called a second-order contravariant tensor. The second-order contra-
variant tensors are always denoted by two upper indices.
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A third-order contravariant tensor is a system of N* quantities, denoted
y A™P, which is transformed according to the transformation law
—o 070 8 3
AR = == pgmrp,
IAn ox™ gx" axPA “.14)
alogously with the definitions (4.13) and (4.14), it is possible to define
contravariant tensors of arbitrary order. By convention, any contravariant
Iensor is denoted by a number of upper indices only.

E Covariant Tensors

system defined with respect to the systems of coordinates {x*} and (%}
by N? quantities A,,, and Ajk, respectively, that is transformed according
lo the transformation law

ax™ ox"

jk = Tzlﬁ mn (415)

s called a second-order covariant tensor. Second-order covariant tensors
are always denoted by two lower indices.

A third-order covariant tensor is a system of N> quantities, denoted by
mnp» Which is transformed according to the transformation law

A — ax™ 3x™ 9xP
l ik = ahzia‘zj-az—kAmnp- (4.16)

nalc?gously with the definitions (4.15) and (4.16), it is possible to define
covariant tensors of an arbitrary order. By convention, any covariant tensor
l denoted by a number of lower indices only.

E Mixed Tensors

t us consider a system, defined with respect to the systems of coordi-
nates {x*} and {z*} by N* quantities A™ and A}, respectively, which is
sformed according to the transformation law
il _ 971 97 9xP ax*

= ax‘m@a—zl{gzﬁgs" “.17)

mn : . .
l-.e system ApT is called a fourth-order mixed tensor, 1.e., a second-order

contravariant and second-order covariant tensor. The indices m,n are

.ntravarian't i.ndices_and indices p,s are covariant indices. In analogy
th (4.17) it is possible to define mixed tensors with arbitrary numbers
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of contravariant and covariant indices. There are two more types of
fourth-order mixed tensors

AZ,S, AT (4.18)
Using the transformationlaw (4.17) it is easy to construct the transformation

laws for arbitrary mixed tensors. The contravariant and covariant tensors
can, of course, be treated as special cases of mixed tensors.

Symmetry Properties of Tensors

A second-order covariant tensor Aj is called a symmetric tensor if its
components satisfy the equality

Ap =Ay (hk=12,...,N), (4.19)

and the tensor Aj is called an antisymmetric tensor if its components satisfy
the equality

Ap=—Ay (k=12 ,N). (4.20)

Analogously, a second-order contravariant tensor A is called a symmetric
tensor if its components satisfy the equality

A =AY (jk=1,2,...,N), (4.21)

and the tensor A’ is called an antisymmetric tensor if its components satisfy
the equality

At =AY (jk=12,..,N). 422)

It is important to note that the symmetry properties of tensors are
independent of the coordinate system in which the tensor components are
defined. In other words, a tensor that is symmetric (antisymmetric) with
respect to one coordinate system remains symmetric (antisymmetric) with
respect to any other coordinate system.

In order to show that it is the case, let us assume that an arbitrary
second-order contravariant tensor, defined with respect to the coordinate
system {x*} by N2 components A", satisfies the equality

A™ =A" (m,n=1,2,...,N), (4.23)

which means that it is a symmetric tensor in the coordinate system
{x}. In some other coordinate system {z*}, this tensor is given by the
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components

ax™ ax™
However, by means of an interchange of the dummy indices m <> n, which

is just a change of notation that does not affect the result of summation,
and using (4.23) we obtain

. 09 8
k= 92 0 (4.24)

gk = 97 02 _ 02 97

ax™ ox™ ax™ gx"

which shows that the tensor A in the new coordinate system {z¥} is indeed
symmetric as well.

In general, if a tensor of an arbitrary order and type is symmetric (or
antisymmetric) upon interchange of one pair of its indices (both lower or
both upper indices) in one system of coordinates {x*}, it remains symmetric
(or antisymmetric) upon interchange of the corresponding pair of indices
in any other system of coordinates {z¥}. In other words, the symmetry

properties of tensors are independent of the coordinate system, in which
the tensor components are defined.

A" = AN (4.25)

Symmetric and Antisymmetric Parts

of Tensors

Let us consider a second-order covariant tensor A,,,. This tensor can

always be written as a sum of one symmetric and one antisymmetric tensor
as follows: '

1 1
Amn = E(Amn + Anm) + E(Amn — Anm), (4.26)
or
) Amn = A(mn) + A[mn]~ (4.27)
The symmetric tensor defined by the expression
1
A(mn) = E(Amn +Anm) (4-28)

is called the symmetric part of the tensor A,y,, while the antisymmetric
tensor defined by the expression

1
Afmn) = 5@ = Apm) (4.29)

is called the antisymmetric part of the tensor Amn.
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Analogously to (4.27), it is possible to use an arbitrary non-symmetric
third-order covariant tensor A, to create a totally symmetric and totally
antisymmetric part as follows:

1
A(mnp) = y(Amnp + Ampn + Apmn + Apnm + Anpm +Anmp) 4.30)

1
A[mnp] = E(Amp - Ampn + Apmn - Apnm + Anpm - Anmp) (431)

From (4.30) and (4.31) it is easily seen that any interchange of indices m, n,
and p leaves A(mnp) unchanged, while it reverses the sign of Apmnpj. The
expressions (4.30) and (4.31) can be rewritten in a more compact form by
introducing a special label for the permutations of the indices m, n, and p,
as follows:

mj(m,n,p) (j=0,1,2,3,4,5). (4.32)

The components of the system (4.32) are the 3! permutations of the three
indices m, n, and p, which can be listed as follows:

mo(m, n,p) = mnp

w1(m,n,p) = mpn

wo(m,n,p) = pmn 4.33)

n3(m,n,p) = pnm

t4(m,n,p) = npm

s(m, n,p) = nmp.
Using (4.32) and (4.33), the expressions (4.30) and (4.31) can be rewritten
in the following more compact form:

31—-1

A = 37 D Aryto) (4.34)
| &
311 )
Apmnp) = 57 D (=1 Asemnp), (4.35)
| L

valid for the third-order covariant tensor Apyp.
The expressions (4.34) and (4.35) are easily generalized to thc-a case
of the Nth-order nonsymmetric tensor, where the totally symmetric and
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totally antisymmetric parts are given by

Nt-1
I 1
A(iyiy...iy) = N Z Azj(iyiy...in) (4.36)
|
NI—1
' A[iliZ-.J‘N] = —]W Z (—I)JAﬂj(iliz...iN)- (4.37)
e

Il__o] Tensor Character of Systems

iometimes we do not readily know the transformation laws for all sys-
ems encountered in different expressions. In order to be able to determine
hether a given system is a tensor or not, we need some criteria for determi-
nation of the tensor character of systems. These criteria can be based on
e following statement:
If an expression A*By, is invariant with respect to the coordinate trans-
formations and we know that A¥ transforms as a contravariant vector (or
lhat By, transforms as a covariant vector), then we know that the system By,
$ a covariant vector (or that the system A* is a contravariant vector).
In order to prove the foregoing statement, let us begin with the
'ssumption that the expression A* By is an invariant, i.e.,

A'B; — A*B; = 0. (4.38)

we then know that A/ is a contravariant vector, we know that it
ansforms as

.
A = Ak
o (4.39)
Substituting (4.39) into (4.38) we obtain
7 = 9 -
l ﬁA B; — A*B; = A* (ﬁgj - Bk) =0. (4.40)

ls }t,he equality (4.40) is valid for an arbitrary contravariant vector A*,
¢ have

97 _
l ﬁBj — By =0, (4.41)
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or

B; = Z—jBk. (4.42)
The expression (4.42) s the transformation law for a covariant vector By,
and it shows that By is indeed a covariant vector. In the same way it can
be shown that, if the expression A,,,B" D" is invariant with respect to the
coordinate transformations and we know that B™ and D" are two different
contravariant vectors, then A,,, is the second-order covariant tensor. This
is valid even if, as a special case, the expression A,,,B™B" is an invariant
for an arbitrary contravariant vector B¥, provided that it is known that A,
also satisfies the condition of symmetry

Apn =Apm (mn=12,...,N). (4.43)

These conditions can be generalized to tensors of an arbitrary order and
used as the criteria for determination of the tensor character of systems.
As an example of these rules, let us consider a mixed second-order
system 8]‘ Let us take the numbers 8} as the coordinates of a second-order
mixed tensor with respect to an arbitrary coordinate system {x*}, which
is always possible. The question is whether they will keep their values,
i.e., whether they will remain the coordinates of a §-symbol, after the
transformation to some new coordinate system {z*}. Thus we may write

'i_(gmgig_xj
1770 gxm 94"

or, since {z¥} is a system of mutually independent coordinates, we have

(4.44)

The result (4.45) shows that the §-symbol is indeed a second-order mixed
tensor, which has the same coordinates in all coordinate systems.
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Relative Tensors

Introduction and Definitions

The tensors defined in the previous chapter are sometimes also called
the absolute tensors, since there are systems of quantities which, upon
the transformations of coordinates, transform according to the similar but
somewhat more general laws. Such systems are called relative tensors or
pseudotensors. Thus a fifth-order system, three times contravariant and
twice covariant,

A;;;Zia (i1, iz, 13,j1,/2 = 1,2,...,N) (CRY

is defined as a relative tensor or pseudotensor of weight M, if it transforms
according to the transformation law ’

iz _ |01y, 92 922 02 pxmax
2 3zs| ™M™ gxmi gxm2 §xm3 9z 972 '
In (5.2) we may introduce a notation .
ox"
=|— 5.3
P (5:3)

for the Jacobian of transformation of the original coordinates {x*} into the
new coordinates {z*}. In analogy with the definition (5.2), it is possible to
define the relative tensors of an arbitrary weight, order, and type. The
concept of relative tensors includes the absolute tensors, defined in the
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previous chapter, as a special case. The absolute tensors can be treated as
relative tensors of weight zero.
In particular, the relative tensors of weight M =41 are called the
tensor densities, while the relative tensors of weight M = —1 are called
Ithe tensor capacities.

'.Z Unit Antisymmetric Tensors
A

s an important example of relative tensors, we consider the e-symbol in
three dimensions with three upper indices, i.e.,

I e (i,j,k=1,2,3). (5.4)

If we assume that % s a relative tensor of an unknown weight M, then it
ansforms according to the transformation law

axn M ijk azr azs azt

—_— eV ———,

dzm axi 3xl axk

l)n the other hand, by definition of the Jacobian of fhe transformation A,
we have

ot 2
2t —

(5.5)

l al ol
9zl 82 83 o
A ax" a2 a2 a2 ax! 9x axk 5
T ogn| Tlor a2 wa| TCkgagasa OO
a4l
zl 372 a3

The Jacobian of the inverse transformation is given by

l Al =

37" 97! 922 92
Tl = e 6.7
ax’ dxi 0x/ 9xk
I,et us now, for the moment, consider the following system:
st _ ik
A™ = e alala; (5.8)

or an arbitrary mixed system a”. In the expanded form this system
ooks like

rst _ . r t _ r. st r st t
I=A = diaya; — ayayd, + djajd), — ayaa) + ayaial — dyald. (5.9)

rom (5.9), we see that the system A™ is a fully antisymmetric system with
respect to its three indices, in the space of three dimensions. However,
arbitrary third-order antisymmetric system in three dimensions has
nly one independent component, i.e., A!23, whereas the other five
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nonzero components are determined by the conditions of full antisymmetry.
Thus we may write

Arst =A123erst_ (5.10)

In other words, any fully antisymmetric third-order system in three dimen-
sions is proportional to the corresponding e-symbol. Using (5.8) and (5.10)
we obtain

ik r s t __ _rst ik 1 23
ela;aa = e el a;a5ay. .11

Using (5.11) we may write

ra,8 q,t 19,2 9,3
32702 82 oy jpe 02 927 92

- — = -— 5.12
axi 9x/ dxk dxt 9x/ dxk (5.12)
or using (5.7)
. 8zr azs azt
=2 = AT 5.13
. ¢ adowaxk ¢ ©-13)
Substituting (5.13) into (5.5) we obtain
érst — AMerstA~1‘ (5.14)

From (5.14) we see that if we choose M = +1, the components of the
system ™' remain unchanged upon the coordinate transformations. Thus
the system e¥* is a third-order relative contravariant tensor with the weight
M = +1 (tensor density). The transformation law of the unit antisymmetric
system eV is therefore given by

ax"| wdd 97 9 | ;97 9 3
azm ox! 3x/ dxk xt ox/ oxk

=Srst
e =

(5.15)

In a similar way, we can consider the e-symbol with three lower indices
in three dimensions

e (4,j,k=1,2,3). (5.16)

Again, if we assume that ¢;j, is a relative tensor of an unknown weight M,
then it transforms according to the transformation law

M 9xi oy axk

Ox [ g 2280 03 : (5.17)

azm

Crst =

Using an analog of Equation (5.11) in the form

. ik
ejxa.al af = ers,eijka'laéa3, (5.18)
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we obtain
axi 9x/ gxk axi ax axk (5.19)
Ciik —— —— —— = €rst€ijk T =5 —=» .
Kazrazs 9z " a7l 922 323
or

Ciify———— = er_yIA. (5'20)

Substituting (5.20) into (5.17) we obtain
ere = AMe,g A (5.21)

From (5.21) we see that if we choose M = —1, the components of the
l system e,; remain unchanged upon the coordinate transformations. Thus

the system e;j is a third-order relative contravariant tensor with the

weight M = —1 (tensor capacity). The transformation law of the unit
I antisymmetric system e is therefore given by

ax"
az™m

-1 ; ; i i a.k
axt 9x/ axk _ ox' 9x/ ax
e S = A leijk“z_—’—z" (5.22)

Crst =

In general, the transformation law of an arbitrary tensor is defined by

l 1. Order—the number of indices
2. Type—the position and order of indices

l 3. Weight—the exponent of the Jacobian of transformation.

te] Vector Product in Three Dimensions

Let us consider two vectors of the same type, e.g., two contravariant vectors
l denoted by A* and B', in a three-dimensional space (i = 1, 2, 3). Using the
relative tensor e;jx, we can define a first-order system

' Ci=epdB* (i,j,k=1,2,3), (5.23)
which is a first-order covariant relative vector with the weight M = —1,
since itis defined as a composition of one relative tensor of weight M = —1

with two absolute vectors. The expression (5.23) can be expanded into
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three equations:
C, =A’B — A’B?
C, =A’B' —A'B? (5.24)
C3; =A'B? — A%B.

The transformation law for the vector C; is given by

G=a1c,% (5.25)
7 14 az] ’ :
where the Jacobian of the transformation is given by
A= (5.26)
T azm|” ’

In a similar way we may define a relative contravariant vector C of the
weight M = +1, starting with two absolute covariant vectors A; and B; as
well as the relative tensor &%, i.e.,

C' = ABy  (i,j,k =1,2,3). (5.27)
The expression (5.27) can be expanded into three equations:
C' = A2B; — A3B)
C? = A3B; — A1B3 (5.28)
C3 = A1B;, — A2B;.
The transformation law for the vector C* is given by

_ 37
¢ =ACP—. 5.29
" (5.29)
The product (5.23) or (5.27) is called the vector product of two contravariant
or two covariant vectors in three dimensions, respectively. This definition
includes the usual definition of the vector product of two vectors (assumed
to be the position vectors) given by their Descartes rectangular coordinates:

- - -

L. 1 2 3
C=AxB=A1 Ay Aj3|. (5.30)
By B; B

In the definition (5.30), I, 5, and 3 are the unit vectors of the three mutually
orthogonal axes of the Descartes coordinate system. It should be noted
that, in the Descartes coordinate system, the contravariant and covariant
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coordinates of the vector product have the same numerical values, i.e.,

d = skc,. (5.31)

Mixed Product in Three Dimensions

The mixed product of three contravariant vectors A/, B/, and ¢/ is formed
by a composition of the vector product

D; = ejmBC™  (j,k,m =1,2,3) (5.32)
with the vector A/. It has the form ‘
V = AD; = ey’ B C™  (jkym =1,2,3), (5.33)
or, in the Descartes coordinate system,
Al A2 A3
v=|B' B B3. (5.34)
ct ¢ ¢?

From the definition (5.33) it is evident that the zeroth-order system V
is a relative invariant of the weight M = —1, or the scalar capacity,
since it is composed of three absolute contravariant vectors and the tensor
capacity eji,. The transformation law for this system is

V=aA"ly. (5.35)

In a similar way, the mixed product of three covariant vectors A;, Bj,
and C; is formed by composition of the vector product

DI =e#mBC, (o k,m=1,2,3) (5.36)
with the vector Aj, and it has the form
G=AD) = e™ABLC  (jokom =1,2,3), (5.37)

or, in the Descartes orthogonal coordinates,

Al Ay Az
G=|B1 B, Bs|. (5.38)
Ci G G

From the definition (5.37) it is evident that the zeroth-order system G is a
relative invariant of the weight M = 41, or the scalar density, since ip is
composed of three absolute covariant vectors and the tensor density /<™.
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The transformation law for this system is
G = AG. (5.39)

Unlike absolute scalars, the systems V and G, as relative scalars, in
general change with respect to the transformations of coordinates. The
behavior of these systems with respect to a special class of the orthog-
onal transformations of Descartes coordinates will be discussed in the next
section.

5

Orthogonal Coordinate Transformations

In order to highlight some important properties of the vector products
and mixed products in three dimensions, we will consider the orthog-

b i onal transformations of Descartes coordinates rotation, translation, and

inversion.

5.5.1 Rotations of Descartes Coordinates

Let us observe two Descartes coordinate systems K and X’ with a common
z-axis, denoted by 3 = 3’, perpendicular to the plane of the paper. The
system K’ is obtained as a result of a rotation in the positive sense of the
system K about a common 3-axis for some angle 6, as shown in Figure 1.

The relation between the coordinates of a position vector of a given
fixed point P, with respect to the coordinate systems K’ and K, is given by

Z! cos® sind O [x!
72| = | —sin® cos6® O] |x2], (5.40)
23 0 0 1]
or
k _ ak,j S
7= ij (j,k=1,2,3). (5.41)
The transformation (5.41) is a linear transformation with the Jacobian
3Zk k
A=|25| = |Aj’ —1. (5.42)

Thus the Euclidean metric, given by the analog of Equation (3.18) in three
dimensions, is invariant with respect to the rotations of the Descartes
coordinates. This can easily be shown by using the distance between
the point P(x!, x2, x3) from the origin 0(0, 0, 0), which in the coordinate




40 Chapter 5 Relative Tensors
- 4
2
>
P
|
i’/
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Figure 1. Rotations of Descartes coordinate systems

system K is given by
s=[h?+ 6+ (x3)2]1/2. (5.43)
In the coordinate system K’ the distance between these points is given by
§ = [(z‘)2 + @+ (z3)2]1/2 : (5.44)

Substituting (5.40) into (5.44) we obtain

(5.45)

or

s =8. (5.46)

Thus the distance between the points in the Descartes coordinate system is
invariant with respect to the rotation of coordinates about the 3-axis. The
metric form of the space is also invariant with respect to the rotation of
coordinates about the 3-axis, i.c., we have

ds’? = ds*. (5.47)

It is easily shown that the foregoing results are valid for arbitrary rotations
of coordinates in the Descartes coordinate systems.

172
l S = [(x1 cos 6 + x?sin )% + (—x' sin 6 + x2 cos 6)% + (x3)2]
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5.5.2 Translations of Descartes Coordinates

Let us consider two Descartes coordinate systems K and K’ in three
dimensions, where the coordinates in the system K’ are denoted by {z*}
and the coordinates in the system K are denoted by {x*}. The translation
of the coordinates is given by the equation

F=xF+d *k=1273), (5.48)

where af is some constant translation vector. The Jacobian A of this

transformation is given by

== |a;<{ -1 (5.49)

Thus the metric form of the three-dimensional space in Descartes coordi-

nates is invariant with respect to the translation of the coordinate systems,
since we have

A =dx* (k=1,2,3). (5.50)
From (5.50) we have
ds”? = Spdzldet = Spdnladxt = ds®  (jk=1,2,3), (5.51)

which proves the invariance of the metric form with respect to the
coordinate translations.

5.5.3 Inversions of Descartes Coordinates

Let us again consider two Descartes coordinate systems K and K’ in three
dimensions, where the coordinates in the system K’ are denoted by {z*)
and the coordinates in the system K are denoted by {x*}. The inversion of
the coordinates is given by the equation

F=—xf =8 (k=1,2,3). (5.52)
It can be shown that the inversion of Descartes coordinates cannot be
achieved by means of any rotation of the original coordinate system K.
The metric form is invariant with respect to the inversion, since we have
ds'? = Spdzld? = Spd(—x))d(—xF) = Spdxldx® = ds?.  (5.53)
The Jacobian of this transformation is equal to
azx

A= .
ax/

= |8k =-1. (5.54)
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5.5.4 Axial Vectors and Pseudoscalars in Descartes Coordinates

Thus, as a conclusion of this section, we note that rotation, translation, and
inversion constitute a group of orthogonal transformations which leave
the metric form invariant. Furthermore, the transformation laws of rela-
tive vectors and scalars (e.g., vector products and mixed products in three
dimensions), with respect to rotations and translations of coordinates, are
the same as those for the absolute vectors and scalars. However, rela-
tive vectors and scalars (e.g., vector products and mixed products in three
dimensions) do not transform like absolute vectors and scalars, with respect
to the inversion of coordinates.

As we have concluded before, the transformation law of an absolute
contravariant vector in three dimensions is given by

a7

axk
with respect to the coordinate transformations from {x*} to {Z*}. An
example of this type of vector is the polar vector of the position of a certain
point in a three-dimensional space. However, the vector product of two
absolute covariant vectors A; and B; is a relative contravariant vector ¢/,
which transforms according to the transformation law

97 ok Gk =1,2,3). (5.56)

axk

Substituting (5.42) or (5.49), into (5.56), we see that the vector product
is transformed in the same way as the absolute vectors (5.55), with respect
to rotations and translations. On the other hand, the vector product reverses
sign with respect to the inversion of coordinates and does not transform as
the polar vectors. This difference between the vector product, as the relative
vector, and the polar vectors, being the absolute vectors, was noted in
the three-dimensional vector algebra before the development of the tensor
calculus. In the three-dimensional vector algebra, the vector product is
called the axial vector, as opposed to the position vector which is called
the polar vector. From the tensor point of view this difference is easily
understood, since it relates to the definition of the position vector as an
absolute vector and the vector product as a relative vector.

The mixed product in three dimensions, as a relative scalar, is invariant
with respect to rotation and translation but it reverses sign with respect to

inversion. In the three-dimensional vector algebra these scalars are usually
called pseudoscalars.

Al AR (jk=1,2,3), (5.55)

d=A

» Chapter 6

The Metric Tensor

Introduction and Definitions

{\s we pave seen in the previous chapters, in the Euclidean metric space it
is possible to reduce the metric form to a sum of squares of the differentials
of the coordinates, i.e., we may write

ds* = s dy’ dy*  (jk=1,2,...,N). (6.1)

If, i.nstead of the Descartes orthogonal coordinates {y*}, we introduce the
arbitrary generalized coordinates {x*} by means of the equations

F=yal 2 A k=12, .N), (6.2)
we may write
9
dyk = gm—dx"’ (k,m=1,2,...,N), (6.3)

and the metric form can be written as follows:

ds® = gmdx™dx" (m,n=1,2,...,N), (6.4)
where
dy/ oyt
&mn = Sjkébr_'"B—x" 6.5)

is a symmetric second-order system. The square of the infinitesimal line
element ds is by definition an invariant in all coordinate systems and dx™
is an absolute vector. Thus, using the criteria for the tensor character of

43
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systems and the fact that g, is a symmetric system, we conclude that gy,
is an absolute second-order covariant tensor. This tensor is called the metric
tensor. The determinant of the matrix associated with the metric tensor is
givcn' by

2
Byk
ox"

a*

xn

3y ay*

k__

9x™ ox" —|J|

g = |gmnl = (6.6)

ax"'

where the multiplication rule for determinants has been used.

Thus the determinant of the metric tensor is equal to the square of
the Jacobian of the transformation from the given Descartes coordinates
to the arbitrary generalized coordinates. Assuming that the Jacobian of
the transformation from the given Descartes coordinates to the arbitrary
generalized coordinates is a nonzero real number, the determinant of the
metric tensor is always a positive quantity, i.e., we have g > 0.

As an example, using the results (3.29), the matrix form of the metric
tensor in the system of spherical coordinates x* = {r, 8, ¢} is given by

‘ 1 0 0
(gmn] = |0 (x1)? 0 . (6.7)
0 0 (x'sinx?)?

and the determinant of the metric tensor is given by

10 0 ,
g=10 2 0 =[(x1)2sinx2] = (Psin0)?.  (6.8)
0 0 (x! sin x%)2

As a system, the determinant g is a relative scalar invariant of the weight
M = 2, which is easily shown as follows:

2
- ayk Byk ax™ 3yk ax™ ax™
a7 3xm 97 ax™| i ogd a7
or
g=gA? (6.10)

which proves that the determinant g is indeed a relative scalar invariant of

the weight M = 2. From (6.10) we see that /& is arelative scalar invariant
of the weight M =1, i.e.,

V2 = JzA. (6.11)

Section 6.1 Introduction and Definitions 45

Let us use G™ to denote the cofactor of the element &mn in the determinant
|gmn]. Then according to the determinant calculation rules, we have

g = gmnG™. (6.12)

The adjunct matrix to the matrix {g,,,], which is denoted by adj [gmn], is
by definition the transposed matrix of the cofactors, i.e., (™7 = [G™].
The matrix, inverse to the matrix {gy,], is therefore given by

adj[gmn] [G™T

inv [gma] = = . .1
g P . (6.13)

By definition, a product of a matrix with its own inverse is equal to a unit
matrix. Thus we may write

[gmn] [Gm"]T =1, (6.14)

or, using the system notation,

(G G .
8mn P gmn? =8y, (6.15)
Introducing the notation

g = Gn?k, (6.16)

the expression (6.15) becomes
gmng™ = 8k, (6.17)

From (6.17), we see that the system g™ is a second-order contra-
variant tensor, which is usually called the contravariant metric tensor.
Analogously to the covariant metric tensor, the contravariant metric tensor
is also a symmetric tensor, i.e., we have

g =g"". (6.18)
Using (6.17) and the multiplication rules for the determinants we find
lgmnl |87 = [ok] = 1, (6.19)
or
gt =L -1 (6.20)
lgmnl &
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The “determinant of the contravariant metric tensor is a relative scalar
invariant of the weight M = —2, which is easily shown using (6.10),

l = lA‘Z, 6.21)
4 g
or
‘gmn‘ — lgmn| A—Z' (6.22)

Since the antisymmetric unit system eIV js a relative contravariant
tensor of the weight M = +1, itis possible to form an absolute contravariant
antlsymmetnc tensor /12 using ,/g, as follows: €1
1\ r”'ﬁc E ('& %/
8i1i2...i1\1 — _____,'81112...11\] ': (623)
N T N1

On the other hand, since the antisymmetric unit system e;q, . iy, is a relative
covariant tensor of the weight M = —1, it is possible to form an absolute

unit covariant antisymmetric tensor &;,...iy» USIing /g, as follows:

Eiyiy. iy = \/_emz AN (6.24)

The absolute tensors defined by (6.23) and (6.24) are called the Ricci
antisymmetric tensors in the space of N dimensions.

V- A

3.2| Associated Vectors and Tensors

In a metric space, the contravariant and covariant tensors can be trans-
formed to each other using the metric tensors gm, and g™". In general
the upper indices can be lowered and the lower indices can be made
to be upper indices, using the metric tensors. For example, a covariant
vector

Apm = g8mnA”, (6.25)

derived from a contravariant vector A” using the metric tensor gy, is called
the associated vector to the contravariant vector A”. In the same way, a
contravariant vector

AT = gmna (6.26)

derived from a given covariant vector A, using the metric tensor g™, is
called the associated vector to the vector A,,.
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For the associated vectors, the following rules are valid:

1. The association relation of two vectors is reciprocal. If a vector
An = gmnA”" is associated to the vector A", then the associated
vector to the vector A4,, is the vector A”. This can be shown as
follows:

& Am = " gm Ak = 81Ak = A" 6.27)

2. The absolute square of a contravariant vector A™ or a covariant
vector A, is the scalar (inner) product of a vector and its associated
vector, 1.e.,

& Am = &g A" = 87AF = A" (6.28)

3. From the preceding rule it is evident that the absolute squares of the
associated vectors are equal to each other.

4. The scalar product of the vectors A* and By is equal to the scalar
product of the vectors Ay, and B™, and it is invariant with respect to
an arbitrary coordinate transformation. This can be shown as follows:

& Am = g™ gmAX = 87AF = A", (6.29)

These rules allow us to consider the vectors A,, and A™ as the covariant
and contravariant coordinates of the same vector, which we may denote by
A. From (6.29) we see that, in the metnc space, it is possible to define the
scalar product of two vectors Aand B regardless of their type, i.e.,

A-B=A*B; = ApB™ = gmuA™B". (6.30)

The analogous rules apply to the tensors of an arbitrary order and type.
By composition with the metric tensors g,,, and g™", the upper indices are
lowered and the lower indices are turned to the upper indices, respectively.
All tensors, created from each other by composition with one or more metric
tensors, are called associated tensors. Thus, for an arbitrary second-order
covariant tensor am,, we can create three associated second-order tensors
am™, ay, and a},,, as follows:

mn __ gmk gnj aij
am = g™ay, ~(6.31)
GZ = gnkamk-

It should be noted that the tensors a]; and aj,, associated to the tensor

amn, as defined in (6.31), are in general not equal to each other. They are
equal to each other only when the covariant tensor ay,, is symmetric, i.e.,
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when a,,, = anm. If we apply (6.31) to the metric tensor itself, we first
l'rol'e that the definition of the associated contravariant metric tensor turns

o identity:
g = g™ gy = g™ = g™ (6.32)

Secondly, since the metric tensor is a symmetric tensor, there is a unique

ed metric tensor equal to the corresponding §-symbol,
I gr =g gm =8, (633)

I.n agreement with the Equation (6.17).

Arc Length of Curves: Unit Vectors

Let us consider a Riemannian metric space in N dimensions, described by a

ystem of N generalized coordinates {x'}. If these coordinates are functions

Ff an arbitrary parameter ¢, then a curve in this Riemannian space may be
specified by N parameter equations

*=x0 k=12,...,N). (6.34)

The square of an infinitesimal arc length element of the curve between the
|points x* and x* + dx* is given by

ds® = gundX™" dx" (m,n=1,2,...,N). (6.35)
'The infinitesimal arc length element itself is given by

ds =/ gmndxmdx®* (m,n=12,...,N), (6.36)

Iand its derivative with respect to the parameter is given by

dS dxm dxn
as_ [, @&xTax =1,2,...,N). (6.37)
dt Bmn= 0t "t (m,n )

IThe arc length of a curve from some reference point, with a parameter
value of #, to some arbitrary point, with a parameter value of ¢, is then

quual to
t dx™ dxn
= N ———dt. 6.38)
l s /,0 Emn” ot ds at (
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From (6.35) we see that we may write
dxm dxn - -
B = g A" = A =3 K =1, (6.39)
where A" is a vector defined by the expression
dx™
AT = e (m=1,2,...,N). (6.40)

From (6.39) we see that vector A™ has the absolute square equal to unity.

Thus the absolute value of the vector A™, denoted by |A[ is also equal
to unity:

Al =VA-A=1. (6.41)

A vector with the absolute value equal to unity is called a unit vector. The
vector A™ is a unit contravariant vector. As x™ are the coordinates of a point

on a given curve and s is the length of the arc of that curve, the vector A™
is the tangent unit vector to this curve.

Angles between Vectors

Let us now consider two polar unit vectors A” and u™ with a common
origin and with the end points A and B, as shown in Figure 2.
From Figure 2 we see that ’

"=pm"—A" (m=1,2,...,N). (6.42)

0 AT A

Figure 2. The angle 8 between unit vectors A™ and nm
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Using the cosine theorem, the absolute square of the vector €™ can be
written in the form

le]? = |l + A% = 2|l Al cosf = 2 — 2cos6 = 2(1 — cos ).
(6.43)

On the other hand, by definition, the absolute square of the vector ¢™ has
the form

lel? = gmne™e" = gma(u™ — ™) — A7), (6.44)
or

lel? = gmntt" 1" + grnA™ A" — 28mn A" 1" (6.45)
Since A and u are unit vectors, we have
gmalt" 1" = gmnd A" = 1, - (6.46)
and the result (6.45) becomes
lel? = 2(1 — gmad™u"). (6.47)

Comparing the results (6.43) and (6.47) we find that the cosine of an angle
between two unit vectors is given by the expression

cos 6 = gma A" u". (6.48)

If we have two arbitrary contravariant vectors A™ and B™, then they define
two directions with unit vectors

A" B"
"= — = (6.49)
A 1 M B
The angle between these two directions is, according to (6.48), given by
A™MB"
cosf = gmnF. (6.50)

From (6.50) we also see that the orthogonality condition for two contra-
variant vectors A™ and B" has the form

gmnA™B" =0 (m,n=1,2,...,N). (6.51)

The angle formed by two curves at their intersection is an angle between
their tangent unit vectors at the intersection point. For two curves given by
the parameter equations x™ = ¥™(¢) and x* = ¢"(z), the angle formed by
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these curves at their intersection point is given by
g dy™ do”
o ———
cosf = dt _dt , (6.52)
\/ dym™ dg[x"\/ do™ do™
S T V8™

where gmn, dy™ /dt, and dp™ /dt are all calculated at the intersection point

of the two curves. From (6.51) we see that the orthogonality condition for
the two curves at their intersection point is given by

gmn¥"¢" =0 (m,n=1,2,...,N). (6.53)

Schwarz Inequality

Let us consider two arbitrary contravariant vectors, denoted by A™ and B™,

and let us form a linear combination of these two vectors as follows:

A"+ aB™ = C™, ‘ (6.54)

where « is an arbitrary real absolute scalar parameter. The linear combina-
tion C™ itself is also a contravariant vector. The absolute square of the
vector C™ is given by the positive definite form

ICI? = gmnC™C™

ICI? = gmn(A™ + «B™)(A" + aB")

ICI> = gmnA™A" + 208,mnA™B" - a2 g,mnB™ B
IC1* = |A]? + 2agmA™B" +a? |B|? .

(6.55)

For the quadratic form (6.55) to be nonnegative for all values of the
parameter ¢, the following inequality must be satisfied:

(gmnA™B™? — |A|? B? < 0. (6.56)
Using the notation A = |A| and B = |B|, the inequality (6.56) gives
|gmnA™B"| < AB. 6.57)

The inequality (6.57) is known as the Schwarz inequality and it is of
importance in a number of branches of mathematics and physics.
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I Orthogonal and Physical Vector

Coordinates

In this section we consider an important special case when the
three-dimensional Euclidean metric space is defined by some set of orthog-
onal curvilinear coordinates {x*} (k = 1,2,3). For such a system of
curvilinear coordinates, in every point of space the following conditions
are satisfied:

g2 =823 =g31=0. (6.58)
Thus, we may write
gmn = Wyy8mn  (m,n, M =1,2,3), (6.59)

where Ay = hp(x¥) are some functions of coordinates {x*}. In this case
the metric of the space can be written in the form

ds* = (hdx')? + (hdx®)? + (hydx*)?, (6.60)
and the matrix of the metric tensor is a diagonal 3 x 3 matrix
(h)> 0 0
leml=| 0 ()* 0 |. (6.61)
0 0 ()
Let us now, as an example, consider the vector of generalized velocities in
this coordinate system. The contravariant coordinates of the velocity vector
are given by
dxm
=a
where dx™ are the coordinates of a contravariant polar vector in any system

of coordinates and dt is an absolute scalar parameter. Using (6.61) we can
calculate the covariant coordinates of the velocity vector as follows:

m

(6.62)

Vm = gmnV" = hy8mnV". (6.63)

As the generalized coordinates do not neccessarily have the dimen-
sion of length (e.g., they can be the angular coordinates), the functions
hy = hpr(x%) are not neccessarily dimensionless (e.g., they may have the
dimension of length). From (6.63) it follows that the dimensions of the con-
travariant and covariant coordinates of the velocity vector are not the same,
and they are not the same as the expected dimension of the velocity
vector (i.e., length/time). The coordinates of the velocity vector that do
have the dimension of velocity (i.e., length/time) are called the physical
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coordinates of the velocity vector. The physical coordinates can, in the
special case under consideration, be obtained from the contravariant or
covariant coordinates using the formulae

1
Vimy = hyv™ = mv,,,. (6.64)

As an illustration, let us consider the velocity vector in the spherical
coordinates, where

t=r, #= 6, = @, (6.65)

and

h1 =1, h=r, h3 =rsiné. (666)

The contravariant coordinates of the velocity vector in the spherical
coordinate system are given by

v1=£, v2=d—9, v3=d—(p.
dt dt dt
The associated covariant coordinates of the velocity vector in the spherical
coordinate system are given by
%, vy = r2'2—f, v3=r2 sinZQ‘Z—‘:’. (6.68)
From the results (6.67) and (6.68) we see that neither all the contravariant
nor the covariant coordinates of the velocity vector have the dimension of
velocity (i.e., length/time).
The physical coordinates of the velocity vector in the spherical coordi-
nate system, i.e., the projections of the velocity vector to the directions

of the curvilinear axes in a given space point, according to the definition
(6.64) have the form

(6.67)

¥

v =

va) = %:-, V@Q) = rz—f, ’ v3) = rsian—dgte. (669)
In a similar way, we can construct the physical coordinates of an arbitrary
vector with respect to an arbitrary orthogonal system of coordinates in
three dimensions. This approach can also be extended to an arbitrary

N-dimensional space, but it is most commonly used in three or sometimes
four dimensions. i
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Tensors as Linear Operators

Second-order tensors can be described as linear operators acting on vectors
in metric spaces. An operator in the N-dimensional metric space is defined
by the way it acts on different vectors in the space. For example, in
the expression

B"=0"A" (m,n=1.2,...,N), (7.1)

the tensor O} represents a linear operator, which in a unique way relates a
vector B™ to the original vector A™. This operator is called a linear operator
since it satisfies the conditions of linearity and homogeneity, i.e.,

Oy(A" +B") =0yA" + OB 12)
- O (BA™) = BOJA",
where A" and B" are arbitrary contravariant vectors and § is an arbitrary
absolute scalar.
Eigenvectors of an operator O are defined as those vectors S” that
retain the direction and only change the absolute value as a result of the
action of the operator O} . In other words, for the eigenvectors S”, we have

orst=a8" (m,n=12,...,N), (7.3)

or
©OF =a8H8" =0 (myn=12,...,N). (7.4)
55
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Thé system of homogeneous linear Equations (7.4) has a non-trivial
solution for S” only if its determinant is equal to zero, i.e.,

det(O™ — A8™) = 0. (1.5)

The N solutions for the parameter A of the algebraic Equation (7.5) are
called the eigenvalues of the operator O7. The Equation (7.5) is sometimes
called the secular equation.

As an example of the concepts we have just defined, let us consider
atensor Oy, defined in a three-dimensional metric space by the matrix

1 0 5
[0M=10 -2 of. (1.6)
5 0 1

Substituting (7.6) into (7.5) we obtain the equation for the parameter A in
the form

0 —2-x2 0 |=o0. (1.7

By expanding the determinant in (7.7) we obtain

(I =M[(=2 =11 = )]+ 5[=5(=2 — 1)]
= (1 =MIA+2)A - DI+25( +2)] (7.8)
=(A+2R25- -1} =0.
The solutions of the Equation (7.8) for the parameter A are the following:

A+2=0 = A=-2

(7.9)
25-(A—1)?=0 = A=1%£5
Thus the three eigenvalues of the operator O are equal to
As =—-2, Aip=—4, Ag = +6. (7.10)

The corresponding eigenvectors S”, P", and Q" are obtained from the
matrix equations

1 0 s][s st ,
-2 0| |8?|=-2|s2]1, (7.11)
5 0 1]|s3 S3
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1 0 S5][P] TP
-2 0f|P2|=-4|P2], (7.12)
5 0 1]|P3] | P3|
1 0 5[0 Q!
-2 0||Q*|=+6|0?|. (7.13)
_5 0 1 Q3_ _Q3_

By solving the matrix Equations (7.11)—(7.13), we obtain the normalized
(unit) eigenvectors of the operator O as follows:

17 0
[s"]=|s?*|=|1], (7.14)
_.S3_ 0
P17 ] 1
Pl={P|=—| 0 |, 7.15
[P"] 5 7|5 (7.15)
ol 1 -
={0*l=—1|0]. 7.16
[0"] 83 vAr (7.16)

It is easy to show by direct substitution that the eigenvectors (7.14)—(7.16)
satisfy the above matrix Equations (7.11)—(7.13), respectively. It should
also be noted that the eigenvectors S”, P" and Q", which correspond to
different eigenvalues, are orthogonal to each other. In other words, it
is easy to show by direct calculation that these eigenvectors satisfy the
orthogonality conditions

™17 1P = 1s"171Q" = [P [0 = 0, (7.17)

where the notation M7 is used for a transposed matrix of an arbitrary
matrix M. Furthermore, the three eigenvectors are normalized so that their
absolute values are equal to unity. In other words, they are unit vectors of
the three independent directions. Thus, it can be shown by direct calculation
that the eigenvectors satisfy the normalization conditions

™75 = (P17 1P"1 = 10M71Q" = 1. (7.18)

The set of normalized eigenvectors orthogonal to each other is called the
set of orthonormal eigenvectors.
In general, the eigenvectors of an operator O, corresponding to the

~ different eigenvalues, are mutually orthogonal if the tensor O™ = g""‘O;cl
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.

is symmetric. This can be shown by using the definitions

O;lnS" = AsS™
. m (7.19)
O™P" = ApP
or
O7'S"Ppy = gk O™ S" Py = O™ Sy Py = AsS™ Py (.20,

O P"Sp = gk O™ P"Syp = O™ P Sy = ApP™Sp.

Using the symmetry of the tensor 0™, i.e., the equality O™ = OF" we
can interchange the dummy indices m <> k to see that the left-hand sides
of both of the Equations (7.20) are equal to each other. Furthermore, we
note the equality S™P,, = P™S,,. With these properties, we can subtract
the second equation from the first equation in (7.20) to obtain

0= (As — Ap)S"Pp,. : (7.21)

From the result (7.21) we see that whenever the two eigenvalues are not
equal to each other, i.e., whenever As # Ap, the two corresponding
eigenvectors are indeed orthogonal to each other:

S™P,y = gmnS™P" = 0. (71.22)

The eigenvectors of an operator are in general determined up to an arbi-
trary multiplication constant. However, in most cases it is convenient to
have normalized eigenvectors of an operator, i.e., to use unit vectors as
eigenvectors. Thus we require, as a convention, that the eigenvectors should
satisfy the normalization conditions

S"Sm = gmaS™S" = 1. (7.23)

This implies that the eigenvectors of an operator O} in the three-
dimensional metric space (e.g., S™, P™, and Q™ above) define three
mutually orthogonal directions, provided that the corresponding eigen-
values are not equal to each other, i.e., As # Ap # Ag. These three
directions are sometimes called the main directions of a second-order
tensor O}

If the roots of the secular Equation (7.5) are not distinct, we have adegen-
eracy. Inthe three-dimensional case, if two roots are equal to each other, the
second-order tensor has only one main direction and a plane perpendicular
to it, where all directions are main directions of the tensor. If all three eigen-
values of a second-order tensor are equal to each other, such a tensor does
not distinguish any particular directions in the three-dimensional metric

space. In other words, all directions in the three-dimensional metric space
are the main directions of such a tensor.

Part 11

Tensor Analysis




» Chapter 8

Tensor Derivatives

Differentials of Tensors

In the curvilinear coordinates the differential of a covariant vector A™,
denoted by dA™, is not a vector. It is easily shown using the transformation
law of covariant vectors (4.5). If a covariant vector is defined with respect
to the systems of coordinates {x*} and {z} by N coordinates A,, and A,
respectively, then it transforms according to the transformation law

- ax"
A

m = 3zm

A, (mn=1,2,...,N). (8.1)

Using (8.1) we obtain

- ax" ox"
dAny = FmdAntd (Bz_”') A, (8:2)
or
< 9 P,
dAm = 5 4An + A P 8.3)

The result (8.3) clearly shows that dA, does not transform as a vector,
except in a special case when
92x"
azmazk -
ie., in the case of a linear orthogonal transformation of Descartes
coordinates into some new Descartes coordinates. As the differential of

(8.4)

61
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a covariant vector

0A .,
- ax"
is a system that is not a covariant vector, while the system dx" is a covariant
vector, the second-order system 0A,,/9x" is not a tensor. The observation

that the differential dA,, is not a vector is related to the definition of the
differential, i.e.,

dA,, d* (mn=1,2,...,N) (8.5)

dAp = A + &5y — An(®)  (k,m =1,2,...,N). 8.6)

By definition (8.6), dA,, is a difference between two covariant vectors with
the origins in different, infinitesimally close points of the metric space. On
the other hand, the multiplier in the transformation law (8.1) is of the form

ax"

agn = @), 8.7
and itis in general a function of coordinates. The multiplier (8.7) is different
in different points of the metric space, except in the special case of linear
transformations. It is therefore evident that vectors, in general, transform
differently in different points of the metric space, and consequently the
differential (8.6) cannot transform as a covariant vector. In order to con-
struct a differential of a covariant vector in curvilinear coordinates, which
is a covariant vector itself, it is required that both vectors on the right-hand
side of (8.6) be situated in the same point of the metric space. This can
be achieved by moving one of the infinitesimally close vectors entering
the right-hand side of the Equation (8.6) to the same point where the other
vector is situated.

The operation of moving one of the infinitesimally close vectors to the
point where the other vector is situated must be performed in such a way that
in the Descartes coordinates the resulting difference is reduced to the ordi-
nary differential dA,,. Since dA,, is a difference of the components of the
two infinitesimally close vectors, the components of a vector to be moved
to the point where the other vector is situated must remain unchanged. This
can only be achieved by a parallel displacement of the vector between the
two infinitesimally close points, using the Descartes coordinates.

Let us therefore consider an arbitrary contravariant vector with the
coordinates A™ at a point of the metric space with coordinates x™. The
coordinates of this contravariant vector at the point of the metric space
with coordinates x™ 4 dx™ are denoted by A™ + dA™. An infinitesimal
translation of the vector A™ to the point of the metric space with coordinates
x™ + dx™ generates a translated vector denoted by A™ at the point of
the metric space with coordinates x™ + dx™. Thus the differential of the
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contravariant vector A™ can be written in the form
dA™ = A" (F + ) — AT )
dA™ =A™ + diky — Am(K + dik) T D
+Am G 4 ad) - ameh) LG
dA™ = DA™ (x* + dx*) + 6A™.

(8.8)

In Equation (8.8) we have introduced a differential DA™ between the two
vectors A™(x* + dx*) and A™(x* 4 dxk) situated at the same point xk 4 axk
of the metric space, which itself behaves as a contravariant vector with
respect to the coordinate transformations, as follows:

DA™ = A™(x* 4 ax*) — A" + dxk). (8.9)

Furthermore, in Equation (8.8)we have introduced an increment §A™, due
to the parallel translation of the vector A™ to the point of the metric space
with coordinates x™ + dx™, as follows:

SA™ = AMGK + diky — AT (). (8.10)

As 8A™ is a difference between the translated vector A™ at the point x +dx
and the nontranslated vector A™ at the infinitesimally close point x¥, the
system SA™ is not a vector. The difference §A™ vanishes in the Descartes
coordinates and DA™ reduces to dA™, as required.

In order to calculate the increment §A™, we note that it is a function of
the coordinates of the contravariant tensor A™ themselves. This functional
dependence must be linear, since a sum of two vectors must transform
according to the same transformation law as each of the vectors. Further-
more, it also has to be a linear function of the coordinate differentials. Thus,
we may write

SA™ = —F,’,’I‘,A"dxp, 8.11)

where ' is a system of functions of coordinates, which are usually called
the Christoffel symbols of the second kind. Composition with the metric
tensor gives the Christoffel symbols of the first kind, as follows:

Cimnp = 8k lhp- (8.12)

The system I';, is dependent on the coordinate system and in Descartes
coordinates all of its components vanish, i.e., F,’{;, = 0. It is therefore clear
that I', is not a tensor, since a tensor that is equal to zero in one coordinate
system must remain equal to zero in any other coordinate system. In a
Riemannian space it is not possible to find a coordinate system to satisfy
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the condition
F:clp:O (k>n9p:1529--'aN) (813)

in the entire metric space.

.

8.1.1 Differentials of Contravariant Vectors

Substituting the result (8.11) into the definition (8.8), we obtain the result
for the differential of a contravariant vector A™, as follows:

aA™

m __ m m __ P m an P
DA™ = dA 8A™ = o dx? + T A%dx?, (8.14)
or
aA™ DA™
Mo —— +TMA" ) dxP = ——dxP. 8.15
ba (Bxl’ +h ) Dx? (8.15)

8.1.2 Differentials of Covariant Vectors

In order to derive an expression analogous to the result (8.15) for covariant
vectors, let us consider an absolute covariant vector A,, and an absolute
contravariant vector B™. The composition of these two vectors gives an
absolute scalar A,,B™. As the scalars are invariant with respect to the parallel
translation, we can write

3(AB™) = B"8Ay + AméB™ =0, (8.16)
or

B™8Am = —A,,0B™ = —{-A,,l"fanmdxp, 8.17)

where we have made an interchange of the dummy indices m <> n on the
right-hand side of Equation (8.17), such that it can be rewritten as

B"6An = BT, Andx”. (8.18)

As the equality (8.18) is valid for an arbitrary contravariant vector B™, we
have

8Am = +T7 Andx?. (8.19)

On the other hand, analogously to the case of the contravariant vectors, we
may write

A,
DAm = dAm - 8Am = 87N - F;HA"dxp, (820)
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or
0A,, n DA,,
= _— P = ——dxP
DAp, (BxP r,,,pA,,) i = S ®21)

Covariant Derivatives

8.2.1 Covariant Derivatives of Vectors

From Equation (8.15), we conclude that in the tensor analysis the differen-
tial of a contravariant vector dA™, which does not have a tensor character,
is replaced by the tensor differential DA™. Comparing the results (8.5)
and (8.15), we see that, following the same approach, we need to replace
the partial derivative of a contravariant vector with respect to a coordinate,
which does not have a tensor character either, by the covariant derivative
of a contravariant vector with respect to a coordinate, as follows:

dA™ DA™

o D’ (8.22)

where the covariant derivative of a contravariant vector is defined by
(8.15), as follows:

DA™ 3A™ M oan

iy + I, AN (8.23)
In the Descartes coordinates, where l",’l’l’) = 0, the covariant derivative
reduces to the corresponding partial derivative.

From the result (8.21), we see that the covariant derivative of a covariant

vector is defined by the expression

DAn Am _,

D = w  Lmhn ®29
The results (8.23) and (8.24) show that the covariant differentiation of both
contravariant and covariant vectors gives the corresponding second-order

xi”  tensors. In general, by covariant differentiation we preserve the tensor

character of an arbitrary tensor, but we increase its order by one. It
should be noted that for both contravariant and covariant vectors the
order is increased by one additional covariant index. Because this opera-
tion always increases the number of covariant indices of an arbitrary

tensor by one, the corresponding derivative has been named the covariant
derivative.
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8.2.2 Covariant Derivatives of Tensors

Let us consider a special case of a second-order contravariant tensor,
obtained as a product of two contravariant vectors A™ and B™, denoted
by C™ = A™B". By parallel translation, we obtain

S(A™B") = A™SB" + B"SA™. (8.25)
Using the definition (8.11), this expression becomes
S(A™B") = -A”'r,';PBkde — BT AR dx?
S(A™B") = —(r,’;PA'"B" + rkmpA"B") dx? (8.26)
sC™ = — (T, C™ + T CH) da?.

Because of the linear character of the operation of parallel translation, the
result (8.26) is also valid for an arbitrary contravariant tensor C™". As the
differential of a contravariant tensor C™" is by definition given by

DC™ = dC™ — 5C™, (8.27)
substituting from (8.26), we obtain
pem — (7 4 omk pm i) oo (8.28)
T\ o kp kp ’ '

From (8.28), the covariant derivative of a second-order contravariant tensor

C™" is defined as
pcm e
oo = 5t r,';pc'"" + r,;';,c"". (8.29)

The same approach can be used for a second-order covariant tensor Cpp, =
ApB,, where we may write

8(AmBr) = BudAm + AmdB,
8(AmBn) = +BuT 5, Ardr? + Aplk, Brdx

5(AmBy) = (anpAan + rﬁpAmBk) dxP

(8.30)

8Comn = (rf,,pck,, + Fﬁpc,,,k) dxP.

Again, because of the linear character of the operation of parallel transla-
tion, the result (8.30) is also valid for an arbitrary covariant tensor Cyn. As
the differential of a covariant tensor C,,, is by definition given by

DCmn = den - ‘SCmm (831)
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substituting from (8.30), we obtain

3Cmn
IxP

DCpn = ( — TryCin — r,’;,,cmk) dr?. (8.32)

From (8.32), the covariant derivative of a second-order covariant tensor
Cn 18
DCpn  3Cpin
DxP~ 3xP
By simple consideration of Equations (8.29) and (8.33), it is easy to define
the covariant derivative of a mixed second-order tensor C' as
DCy  3Cy
Dx?  3xP
Analogously to the definitions (8.29), (8.33), and (8.34), it is possible to
define covariant derivatives of tensors of an arbitrary order and type. As an

example, let us write down the covariant derivative of a mixed third-order
tensor C):

— T, Cln — Ty Cone (8.33)

+T7Cx — ry.Cr. (8.34)

DCn aCT
k nk
_Dx;l’ = 5w +T5Co — TapCit — F;kC,'l';. (8.35)
The example (8.35) clearly represents the general method for construction

of the covariant derivatives of arbitrary tensors.

Properties of Covariant Derivatives

There are a number of important rules and special cases that apply to
covariant differentiation. These rules and special cases are frequently used
in tensor calculations, and the most important ones are listed next.

1. The covariant derivation is a linear operation and the following
linearity condition is fulfilied:

D . m DA™ DB™

2. The covariant derivative of a product of two tensors is defined in the
same way as the usual derivative of a product of two functions. As
an example, for the product A™C,,,, we may write

DA™ mDPCmn

b (A" Cpp) = Conn + A
DxP ™I pxp ™ DxP

(8.37)
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3. The covariant derivative of the metric tensor is equal to zero. In order

to prove this proposition, let us observe that for a covariant vector
DA,,, in the same way as for any other vector, we have

DA, = gmnDA". (8.38)
On the other hand, using A, = gm,A", Wwe may write
DAp = D(gmnA™) = gmnDA" + A" Dgpmp. (8.39)

As A" is an arbitrary vector, by comparison of Equations (8.38)
and (8.39) we immediately conclude that

Dgun =0 = Dg™=0. (8.40)

In other words, with respect to the operation of covariant differen-
tiation, the metric tensor can be treated as a constant, regardless of
the coordinate dependence of its components.

. The covariant derivative of the §-symbol is equal to zero. In order to

prove this proposition, we use the earlier results
Dgu =0, Dg™ =0. (8.41)
Using (6.17) and (8.41), we may write
D8y = D(§™gm) = g™ Dgne + guDg™ = 0. (842)

Using (8.34), it is also possible to prove this proposition by direct
calculation:

Dsm 98
DxP  3xP

+ F/f;}gﬁ - rﬁpal'c" = 1","’;, — 1",’,’1‘, =.O. (8.43)

. The covariant derivative of an invariant scalar function is equal to its

ordinary partial derivative, and we may write

D¢ _ 3¢
DxP  axP’

The partial derivative of a scalar function is therefore transformed
as a regular covariant vector. In order to prove this proposition,
let us observe a scalar ¢ = A™B,,, where A™ is some absolute
contravariant vector and B,, is some absolute covariant vector. The
covariant derivative of the scalar function ¢ is given by

D¢ D DA™ DB

== =~ _(A™B,) = —B,, + A"—" 8.45)
DxP ~ DxP (A"Brm) Dot DxP (

(8.44)
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or

D¢  dA™ OB
o = ﬁB'” + A B, +A’”WZ‘ —-Ti,A™B,.  (8.46)

By interchanging the dummy indices k <> m, we see that the second

term on the right-hand side of Equation (8.46) is cancelled by the
fourth term, and we obtain

D¢y  aA™ aB,, d ¢

—— = —B,+ A" - _~_(4mB )= 2% .

D = aw T G T e ATE e 4D
which proves the proposition (8.44).

Absolute Derivatives of Tensors

Let us assume that a curve C in the N-dimensional metric space is given
by means of N parameter equations

=x"s) (m=1,2,...,N), (8.48)

where s is some scalar parameter. Let us now consider a covariant vector
A defined along the curve C as a function of the parameter s.

The absolute derivative of the vector A,, with respect to the parameter
s is defined using (8.21) as follows:

DA dA dx?
dsm = (ax: -0 "'I’PA") ds’ (8.49)
or
DA,, DA, dxP
& e (850

In the same way we define the absolute derivative of a contravariant vector
A™, as follows;

DA™ DA™ dx?
= — S
ds Dxp ds @D
The definitions of the absolute derivatives (8.50) and (8.51), for covariant

and contravariant vectors, respectively, are easily generalized to the case

of an arbitrary tensor. For example, the absolute derivative of a tensor C
is given by

Dc™ DC™ dxP
nk nk
—mk Tk 7T 52
ds DxP ds (8.52)
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[N

where the covariant derivative of the tensor Cy, is given by Equation (8.35),
ie.,

DCcr. aCh
kD TG~ TpCR Tl G5
X

The properties of the absolute derivative are the same as the properties of
the covariant derivative and will not be repeated in this section.

» Chapter 9

Christoffel Symbols

Properties of Christoffel Symbols

In order to define various tensor derivatives in the previous chapter, we
have introduced a system I’,’l”p, called the Christoffel symbol of the second
kind. The objective of this chapter is to specify this system and outline its
most important properties.

Let us first prove that the Christoffel symbols are symmetric with respect
to their lower indices. In order to prove this statement we note that if A, is
an arbitrary covariant vector, then the quantity

DA DA
Zm _ P 9.1)
Dxp Dx™

is a second-order covariant tensor. Let us now assume that the vector A,,
can be given by the expression

D¢ _ 9%

A - - s
™ Dxm axm

(9.2)

where ¢ is some arbitrary scalar. Then the expression (9.1) can be written
in the form

DAn DAP 0Anm k aAp k
DxP  Dx™ . oxP oAk — e + I'pnArs 9.3)

7
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or -
DAm DA,y:92¢ ¥ + (Fk _rk ) 99 ©9.4)
DxP  Dx™ 3xP3x™  3x™3xP pm_ " mpJ axk’ )

The first and second term in Equation (9.4) cancel each other and we obtain

DA, DAp (4 = &\ ¢
5o~ = (T =) g ©

“As the left-hand side of Equation (9.5) is a second-order covariant tensor,

we conclude that the right-hand side of Equation (9.5), i.e.,
(r" —r* ) 99 9.6)
x

is also a second-order covariant tensor. However, we know by definition of
the Christoffel symbols that they are identically equal to zero in all points
of the Euclidean metric space described by the Descartes coordinates. Thus
the second-order covariant tensor (9.6) is identically equal to zero in the
Descartes coordinates. But a tensor that is identically equal to zero in one
coordinate system must be equal to zero in any other coordinate system.
Thus we conclude that

DA, DA,
DxpP Dxm™

= (k. — Thp) % =0. ©.7)

As the vector Ay, given by

Do _ 39

- Dxm ~ 3xm’ ©8)

Apm
is an arbitrary covariant vector and ¢ is an arbitrary scalar function, we
conclude from Equation (9.7) that

Flp(m = anp (kvmyp = 1721- .- 7N)v (9-9)

and the Christoffel symbols of the second kind are indeed symmetric with
respect to their lower indices. From (9.9) it is evident that, for the Christoffel
symbols of the first kind, we have

l-‘n,pm = 1—‘n,mp (m, n,p = 1, 2, e ,N) (910)

Let us now derive the transformation law of Christoffel symbols with
respect to the transformations of coordinates. If a contravariant vector
is defined with respect to the systems of coordinates {x*} and {Z*} by
N coordinates A™ and A™, respectively, then it transforms according to
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the transformation law
-~ azm™ .
Am = =y
™, A, 9.11)
Using (9.11) we may write

dA™ 3 [a7" o) B8 o
E;WHW'=QW6#7 O-12
or, after calculating the derivative in the parentheses,
BA™  Bxkazmoaal  gxk 3%m .
S S T AR Y
927 9zP ax axk 9z axkafo ’ ©.13)
The tragsfomgﬁop law (9.13) is just a direct confirmation of the fact that
the parFlal.derlvatflve of a contravariant vector is not a tensor, as we have
shqwn }ndlrectly in the previous chapter. On the other hand, the covarjant
derivative of the contravariant vector is a mixed second-order tensor and it
transforms according to the transformation law
DA™  3x* 97" DA/
D7~ 327 ox) Dek' G149

Here we recall' the definitions of covariant derivatives of contravariant
vectors (8.23), in the coordinate system {z*},

D? — 3z + A", ©-15)
and in the coordinate system {x*}, i.e.,

DA 3A

_ J 4l
D = 3k +T, A% 9.16)
Substituting (9.15) and (9.16) into (9.14), we obtain
JA™ o axkzm Al axk gom
— gy pman I 0k oA oxX 0T
0zP A zP Ox 9xk + azP Wr”‘ A ©-17)

Substituting (9.13) into (9.17) we obtain

axk9zm Al gxk §2m
—_— —_— " A m an
922 0xX 9x* ' 9zP axkoxi A+,

_oxk37maAl  gxk g i

9 o oxk | g g LA (9.18)
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The first term on the left-hand side cancels the first term on the right-hand
side in Equation (9.18), and by using
9z

n
A, (9.19)

A./ = 8; Al, An = ax

we obtain from (9.18)

gxk 9§2,m I Vik axk 9z N
ST A= Al 920
L9zP 9x% 0% 9x az0 ox

. - l .
As Equation (9.20) is valid for an arbitrary contrawngnt vector A , t'h1s
tensor can be omitted. After omitting A’ and multiplying the remaining
equation by

azP ax

& 7 9.21)
axk 9z
we finally obtain
; i a2,m
p o BT, | B O ©022)
b= zm oxl axk™ "~ 3zm dxkax

Equation (9.22) is the required transformation law for the Chn'stf)ffel sym-
bols, and it shows that the system I‘{k behaves as a tensor only with respect
to the linear transformations of Descartes coordinate systems, when we
have
G
axkax!
In general, as we have concluded before, the Christoffel symbol is not a
tensor.

(9.23)

Relation to the Metric Tensor

For practical calculation of the Christoffel symbol we need to find .its
relation to the metric tensor. In order to find this relation, we start with

the identity ; i 8t
Djx';" = a;:,;,, — Tk p8kn — Drpimk =0, (9.24)
or
aég:pn = Tamp + Cmp- (9.25)
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The permutations of indices in Equation (9.25) give the equation
ag,
S = P + T = 0, 926)
and, with reversed signs, the equation
dg
—Ex”?" = ~Tpum — Tnpm = 0. 9.27)

By adding together Equations (9.25), (9.26), and (9-27) and using the
symmetry property (9.10), we obtain

1 (3gmn agpm _ agnp)

AN

The result (9.28) is a definition of the Christoffel symbol of the first kind as

a function of the metric tensor. The Christoffel symbol of the second kind
is then given by

1 O8kn | Opk  Ogn
r” — mkl-v — gk Pk p . 2
=8 Ly =38 ( o ox"  gxk ©-29)
The result (9.29) is a definition of the Christoffel symbol of the second
kind as a function of the metric tensor. Using the definition (9.29), we

can calculate the contracted Christoffel symbol of the second kind . as
follows:

mnp =

(9.28)

ad
Frrznm — l ( mk ©8kn mk 08mk _mk agnm) ) (9.30)

2\® oxm T8 ox*
Because of the symmetry of the metric tensor and the symmetry of the
Christoffel symbol with respect to the interchange of its lower indices, the

first term in the parentheses of Equation (9.30) cancels the third term, and
we obtain

rm 21 Mk——ag"nk.
i} dxn

The determinant of the metric tensor is given by the expression (6.12) as
follows:

(9.31)

g = gmG™, (9.32)

where G™ is a cofactor of the determinant |g,,| that corresponds to

the element g,,,. The differential of the determinant g is, in view of
Equation (9.32), equal to

9
dg = —% dgy = G dgy, 9.33)
0gmk
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Using now the definition of the contravariant metric tensor (6.16), i.e.,

Gk = gg™k (9.34)

oQ

g

e

ey

. Y
FY - E
E x o .
ol o 3ot
/ p e
a

i

in Equation (9.33), we obtain

(SR N
LAY

&

7

wl 7

7 7 08mk
g e dg =gy = oo =g (9.35)

axn

Substituting (9.35) into the result (9.31), we obtain
rm 1 dg 0lng

D
«

= — = 9.36
e 2g axn dxn ©:36)
If we now recall the result (6.17) in the form
g™ gnk = 87, 9.37)
we may contract it to obtain
e =" =N (k,m=12,...,N). (9.38)
Thus by differentiation with respect to the coordinate x", we have
d mk mk agmk ag mk
_— Rt =0, 9.39
P (& gme) =& " + 8mk 9-39)
or
98mk g™
kO — ) 9.40
g axm mk ax” ( )

Thus there is an alternative expression for the contracted Christoffel symbol
of the second kind obtained by substituting (9.40) into (9.31):

1 8g""‘
It is also of interest to calculate the quantity gk"l";c"n, since it frequently
appears in various calculations in the tensor analysis. This quantity is, by
definition, given by

1 dgi | 98n  O08kn

knym kn _mi kn _mi

e = | == - —=. 9.42
8y =878 Tim=758"¢ <8x"+axk ol (942)
Using the symmetry of the metric tensor and interchanging the dummy
indices k <>n, we see that the first two terms in the parentheses of
Equation (9.42) are equal to each other. Thus we may rewrite (9.42)
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as follows:

ax" 2 axl

The first term on the right-hand side of Equation (9.43) can be rewritten as
follows:

kn og 13
germ = ghngml (_ _ gkn)' ©.43)

gkn mlagkl — d !

I
g =8 ﬁ(gm gkz) —geu

ax"
= kni(B”') _ 508" g™
g axn k ) axn - ax” . (9.44)

Combining the results (9.31) and (9.36), we may write
1 08 1 3g  dln/g

25 oxl Tagod ~ axl (9.45)

and the second term on the right-hand side of Equation (9.43) becomes

1 mi knagkn mlaln\/g mn_1 aﬁ
258 T TTE T T e (©.46)
Substituting (9.44) and (9.46) into (9.43) we obtain
mn
gknrlrcnnz_(aagn + mnia\/g)
X V& x"
1 agmn a./2
- = _ 4 mn_’ NS
V8 (\/§ ax" & ax" )’ ©47)

and using the rule for the derivative of the product ,/gg™", we finally obtain
the expression for the quantity g** I as follows:

knym 1 9 mn
8 = ‘ﬁg;,;(«/!?g )- (9.48)
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Differential Operators

10.1| The Hamiltonian V-Operator

In the ordinary three-dimensional Euclidean metric space the Hamiltonian
V-operator is defined by the expression

a
Vi =0 = —5x—m— m=12,3). (10.1)

However, by acting with this operator on an arbitrary vector or tensor
we obtain a system that does not have the tensor character, as shown
by, e.g., Equation (9.13). In an arbitrary N-dimensional generalized
curvilinear coordinate system, instead of V,,,, we therefore use the covariant
Hamiltonian operator D,,, defined by

D
~ Dx™

Using the operator D,,, we define the operators called gradient, divergence,
curl, and Laplacian in the following four sections.

m=1,2,...,N). (102)

m

Gradient of Scalars

The gradient of a scalar function ¢ is a covariant vector with its covariant
coordinates defined as follows:
D¢ a¢

=% (10.3)

D¢ = —
m® Dxm ax™

79
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The contravariant coordinates of the gradient of a scalar ¢ are obtained as
follows:

DO _ 09 10.4)
D¢ =g Dx"_g axn (

In the orthogonal curvilinear coordinates, with the metric form given
by (6.60), i.e.,

ds” = (idx")? + (hadx®)? + (h3dx*)?, (10.5)
the physical coordinates of the gradient of a scalar ¢ are given by

! 1 99 =1,2,3 10.6)

The definition (10.6) gives the correct physical coordinatf:s of the gradient
in the well-known cases of cylindrical and spherical coordinate sy§tems. As
an illustration, let us consider the spherical coordinates where, using (6.65)

and (6.66), we may write

HM=r, x2=0, x3:(p. (10.7)
h=1, hy=r, hs3=rsinf.

The gradient of a scalar function ¢ is then, according to (10.6), given by

0% 139, ——1 -a—¢-_é (10.8)
grad ¢ = T 730% ¥ rong g 7

er, € ¢ i i ical coordinates.
where e, eg, and ¢, are the unit vectors in spherical co

Divergence of Vectors and Tensors:

The divergence of an arbitrary contravariant vector A™ is a scalar optained
by the composition of the covariant Hamiltonian operator D,, with that
contravariant vector A™, i.e.,
m
D,A" = o™ + I A" (10.9)

ax™m

Using here the result (9.36), we may write

m
Dpar = 247 I8 4 (10.10)
X

axm 0

Section 10.3 Divergence of Vectors and Tensors 81

Since n is a dummy index in the second term on the right-hand side of
Equation (10.10), it can be changed to m. Thus we may write

DA™ = w + ia‘/_Am

ax™m /g 9x™
1 IA™ 3 /g
D Am - — —_— *Am . .
m 7 (‘@axm o ) (10.11)

Finally, the expression for the divergence of the contravariant vector A™ is
given by

1 9
DpA™ = — ——(/2A™). 10.12
m N («/g ) ( )
If a vector is defined by its covariant coordinates Apm, then the divergence
of such a vector is written in the form

D"Ap = g™ DyA,, = D, (g™ Am), (10.13)

where we have used the property that the metric tensor behaves as a scalar

with respect to covariant differentiation. In such a case, using (10.12), we
obtain

1 9
DAy = ——— ALY . 10.14
S (v28"™A,) (10.14)
Analogously to the case of a contravariant vector (10.12), it is possible to
define the divergence of an arbitrary tensor with respect to one of its upper
indices. Thus, the divergence of the tensor T, is defined by

19
DT = ﬁ@(ﬁT;"). (10.15)

In the orthogonal curvilinear coordinates, with the metric form given

by (10.5), we have V& = hihphs, and the physical coordinates of the
divergence of a contravariant vector A™ are given by

1 a Agm)
DA™ = — | hihphs—=), 10.16
™ hyhyhs 9xm ( R (10.16)
where the physical coordinates of the contravariant vector A™ are given by

Aem) = huA™  (m,M = 1,2, 3). (10.17)

The definition (10.16) gives the correct physical expressions for the
divergence in the well-known cases of cylindrical and spherical coordinate
systems. As an illustration, let us again consider the spherical coordinates
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defined by (10.7). The physical expression for the divergence of the vector
A in the spherical coordinates is given by

.= 190
divA = r—z‘g(rzAr) +

24y

)
— (sinfAg) +

. .1
rsinf 906 rsinf 96 (10.18)

Curl of Vectors

In an arbitrary N-dimensional metric space the curl of a vector function A,
is a second-order covariant tensor F,,,, defined by the expression

Fpn = DpAn — DpAm (myn=1,2,...,N). (10.19)

' In the special case of a three-dimensional metric space, it is possible to
construct a contravariant vector C* related to the tensor (10.19) using
l the three-dimensional totally antisymmetric Ricci tensor e¥, defined
according to the general definition (6.23) as follows:

1
ghmn — —_mn (ko mon=1,2,3). (10.20)
NG

Thus the curl in the three-dimensional metric space is defined by

1
Cck = Zgmp,  — DA, = — DA, 10.21)

2 VE

In the orthogonal curvilinear coordinates, with the metric form given -

by (10.5), we have ,/g = h1hzh3, and the physical coordinates of the curl
of a covariant vector A, are given by

. hy )
1A = hgCF = —= " — (hyA 10.22
curlg K PSS e (hnAw) (10.22)

where the physical coordinates of the covariant vector A, are given by

A
Aw = Zﬁ (N = 1,2,3). (10.23)

As the expression (10.22) is somewhat more complex and generally not
readily understood, we expand it for the three components of the curl in
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three dimensions:
curl) A = 1 (8(h3A(3)) _ 9mAw)
hahs ax? FY%)
2 1 (3(mAg) 3(h3Agz)
curl))A = — [ - _ 34(3)
@ = ( 3 el ) (10.24)
curl(3);i = _1_ (M — M
hihy ax! a2 )

The expressions (10.24) are usually structured into a determinant defined
as follows:

mi  m3  h

a 3 9
hyhohs | 3xt 3x2 | (10.25)
hAa)y mAp) hAg

The definition (10.25) gives the correct physical expressions for the
components of the curl of a vector function in the well-known cases of
cylindrical and spherical coordinate systems. As an illustration, we can

write down this determinant for the spherical coordinates defined by (10.7).
Thus we may write

) é reg rsinf éy
A a3 9
wdd=—erlo % 3% | (10.26)
Ar rAp rsinf A,

or

J . 9A
curl A = — e
rsin® [ae (sin0 4, 39 ]e’

171 34, @ 1T A
—l— —_— —_— 4 il 7 S Y

r [sin@ dp or (TA‘”)] ot r [ar (rs) = a_g] b
(10.27)

10.5| Laplacian of Scalars and Tensors

The Laplacian of a scalar function in the three-dimensional vector analysis
is defined by the expression

A¢ = div (grad ). (10.28)
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In the tensor analysis this expression becomes

9
A¢ = DpD"¢ = Dy, (8" Dn) = D (gm"a‘%) . (10.29)

From (10.29) we see that the Laplacian of the scalar function ¢ is a
divergence of a vector given by its covariant coordinates
¢
D,¢ = o (10.30)
Using here the definition (10.14) of the divergence of a vector defined by
its covariant coordinates, we may write

1 9 mn 99 ) (10.31)

2= ez (VB3
In the orthogonal curvilinear coordinates, with the metric form given
by (10.5), we have ,/g = hyhoh3 and the Laplacian of the scalar function ¢

becomes
1 3 3¢)
=————\ hihoh3g™ — |, (10.32)
¢ hihohs ox™ ( 12038 ox" )
where
h)72 0 0
™=\ 0 )2 0 . (10.33)
0 0 (h3)~2

Substituting (10.33) into (10.32) we obtain
1 a (h2h3 8_¢ )
¢= hyhohs [ ax1 \ hy ax1/)
f L (e 8 (Y] g
ax2 \ hy 9x2 ax3 \ h3 8x3

The definition (10.34) gives the correct physical expre§sions fox: the
Laplacian in the well-known cases of cylindrical and spherical coordinate
systems. As an illustration, in the spherical coordinates defined by (10.7),
the expression for the Laplacian becomes

2
14 209 1 i ; 98_¢>+___1 M
=ﬁ5<r 5?)+r2sineaa SNY%6 ) T 2 sin?0 g2

(10.35)
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10.6] Integral Theorems for Tensor Fields

In the three-dimensional vector analysis there are two important integral
theorems, called the Stokes theorem and the Gauss theorem. These
theorems remain valid in the tensor analysis and their formulation is
generalized in such a way that they can be applied to integrals in arbitrary
N-dimensional metric spaces. These theorems in the tensor notation will
be discussed in the rest of this section.

10.6.1 Stokes Theorem

In the usual three-dimensional vector notation the Stokes theorem is
defined as

f A-dP = / curl A - dS. (10.36)
C S

The integral on the right-hand side of Equation (10.36) is a surface integral
over a surface § bound by a closed contour C. The integral on the left-hand
side of Equation (10.36) is a line integral round the closed contour C running
along the boundaries of the surface S. In the tensor notation the formulation
of the Stokes theorem has the following form:

1
%Amdxm = —/Fm,,dSm”, (10.37)
c 2 /s

where F,, is the curl tensor of the vector A,,, defined by Equation (10.19),
ie.,

Fo = DpAp — DyAm. (10.38)
On the other hand,

dS™ = dx™ dx" (10.39)

is the contravariant tensor of an infinitesimal element of the surface S.

From the definition (10.37) we see that the Stokes theorem in tensor
notation is valid for arbitrary generalized metric spaces. Let us now
prove that Equation (10.37) is equivalent to Equation (10.36) in the
three-dimensional metric space. We first note that in the three-dimensional
space we have

ApdX™ =A-d¥ (m=1,2,3). (10.40)

From (10.40) we see that the integrals on the left-hand sides of Equa-
tions (10.36) and (10.37) are indeed equivalent to each other. In order to
prove that the right-hand sides of Equations (10.36) and (10.37) are also
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equivalent to each other, it is convenient to introduce a three-dimensional
covariant surface vector as follows:

1 1
asSy = Eek,,,,,dx’"dx" = Eﬁemndxmdx". (10.41)
In the Descartes coordinates, where /g = 1, the components of this vector
are given by
dSy = dx*dx3, dS, = dx'dx’, dS; = dx'dx®. (10.42)

Furthermore, analogously to (10.21), it is convenient to introduce the con-
travariant curl vector, denoted by C* and related to the tensor F, by the
expression

1 .. . 1 .. Nk

Ct = se¥'Fy = DA = 7§eklejAl = (cutld) . (1043)
Using (10.43) we may write

curl A - dS = (curl A)*dSy = LM epmuDjAidx™dx". (10.44)

On the other hand, the e-symbols satisfy the identity
e epmn = 8181 — 875! . (10.45)
Substituting (10.45) into (10.44) we obtain
curl A -df =} (8,61 - 5151) DiidX"dx"
curl A - d§ = 1 (DpAp — DpAp) dx™dx" (10.46)
curl A - dS = 1F,,,ds™.

From (10.46) we see that the integrals on the right-hand sides of
Equations (10.36) and (10.37) are also equivalent to each other in the
three-dimensional metric space.

10.6.2 Gauss Theorem

In the usual three-dimensional vector notation the Gauss theorem is defined
by means of the equation

f A-dS = f div AdSQ. (10.47)
S Q

The integral on the right-hand side of Equation (10.47) is a volume integral
over a volume 2 bound by a closed surface S. The integral on the left-hand
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side of Equation (1047
enclosing the volume Q. The volume ele

the weight M = —1_ If the volume element s de
systems of coordinates {xk

according to the Jacobj the

fined with respect to the
} and’{z"} by d2 and aQm, respectively, then
Orem 1t transforms as follows: ’
aQ =

ax’

Therefore, in the te :
» 1 nsor formulation of the Gay
i ; ss theore

Invariant volume element /842 to obtain M, we use the

m -
f;A dSy, —/SszAmJng. (10.49)

arbitrary generalized metri
and (10.48) in the Descart
evident.

The Gauss theorem can be extended to the case of

w'lnt’lll at least one upper index. As an €xample, for a mixe,
77", the Gauss theorem is gjven by

a7z
k

dQ = A"1g0. (10.48)

c spaces.. The equivalence of Equations ( 10.47)
€s coordinates, where V&=landD, =v, is
m

an arbitrary tensor
d third-order tensor

™ =
f; © aSpy LD,,,T,:"”\/ng. (10.50)
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Geodesic Lines

In Euclidean metric spaces the shortest distance between two given points
is a straight line. However, even the simplest example of a two-dimensional
Riemannian space on the surface of a unit sphere shows clearly that in the
Riemannian spaces there are in general no straight lines. It is therefore of
interest to find the curves of minimum (or at least stationary) arc length
connecting the two given points in a Riemannian space.

In Riemannian spaces, we in general do not impose the requirement to
find the lines of minimum arc length, and we replace it by the requirement to
find lines with a stationary arc length between the two given points. We can
illustrate this on the simple example of the two-dimensional Riemannian
space on the surface of a unit sphere. For both arcs on the same circle,
connecting the two given points on the unit sphere, we can only say that
their length is of a stationary character, but we cannot say that they are of
minimum length.

The curves with stationary arc length between two given points A and B
are called the geodesic lines, and they are determined by the solutions of the
corresponding geodesic differential equations. In order to construct these
differential equations, we will use the variational calculus and Lagrange
equations, which will be derived in the next section.

11.1| Lagrange Equatiohs

Let us observe two fixed points A and B in an arbitrary metric space. Their
coordinates are given by the parameter equations

2" =x"(S4), x™ =x"(Sp), 11.D

89
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(< N
A R C J B
c’

Figure 3. Curves connecting the fixed points A and B

where s is the arc-length parameter. Between the fixed points A and B we

* can draw a family of curves of various arc lengths, as shown in Figure 3.

Within the family of curves, which connect the two fixed points A and
B as shown in Figure 3, there is a single curve C with a stationary arc
length, which we call the geodesic line. All other curves between the two
fixed points A and B, e.g., C’' and C”, do not have a stationary arc length
and they deviate from the geodesic lines by some variations 8x™ (s) for all
values of the parameter s. It should be noted that points A and B are fixed
and common for all the curves connecting these two points. Therefore, the
variations §x™ at these two points are equal to zero:

8x™(S4) = 6x™(Sp) = 0. (11.2)

Let us now define a function,

dxm
L=L(x'", ——,s), (11.3)
ds

along each of the lines connecting the points A and B. This function may
depend on the coordinates x™ and their first derivatives with respect to
the parameter s, as well as on the parameter s itself, as indicated in the
definition (11.3). This function is usually called the Lagrange function or
Lagrangian. The integral of this function between the points A and B is

given by
Sp dx™
I=/ L (x”‘,——,s) ds, (11.4)
Sa ds

and it is usually called the action integral. According to the Hamiltonian
variational principle, the integral (11.4) has a stationary value along the
geodesic line C. Using the variational principle, we can derive the differ-
ential equation satisfied by the Lagrangian function (11.3). The variation
of the action integral (11.4) along the geodesic line C is equal to zero, and

we may write
SB dx™
8l = / SL (x"’, ——,s) ds=0. (11.5)
s ds

A
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By definition of the variation we have

ax™ dx™ dax™
SL=L{x"+&", — +8—,s ) —L[x" —.s). .
(x + éx PR + o s) (x R s) (11.6)
Since the variations of the coordinates and their derivatives with respect
to the parameter are small, we can expand the first term on the right-hand
side of Equation (11.6) into a Taylor series and keep only the zeroth- and
first-order terms. Thus we obtain

dx™ oL oL dx™ dx™
8L=L<x”‘,'—,s)+—8x"‘+ 3-——L<xm,—,5)

ds xm 3(d:ic_;") ds ds
= I e : (*;)s% 11.7)

Since the differentiation with respect to the parameter is independent from
the variation, the order of these two operations can be interchanged. Thus
we may write

aL oL d
8L = —8x" + —————(8x™), 11.
axmax + 3(!11") ds( X ) (11.8)
ds
or
oL L d oL
SL = —8xX" — i —9— 8x"ds + — ™. (119
dxm ds 3(@) ds a(g_ubcﬁ)
ds ds
Substituting (11.9) into (11.5) we obtain
by . 5
B JL
az:f OL _d) oL W lsmgey Ot s o
s, |oxm ds a(dL"') 3(@)
ds ds Sa
(11.10)

The second term of Equation (11.10), which is calculated at the boundary

points of the geodesic lines A and B, vanishes due to the condition (11.2).
Thus we obtain

S8 | 3L 4 8L
51=/ — — = | ——= | { 8x"ds = 0. (11.11)
Sa ox ds 9 %)
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Since the variations §x™ are arbitrary and in general different from zero,
the result (11.11) requires that the following equations be satisfied:

aL d oL

v lig)

=0 (m=12,...,N) (11.12)

The system of N Equations (11.12) is a system of differential equations
that must be satisfied by the Lagrangian function (11.3) along the geodesic
line C. These equations are usually called the Lagrange equations.

Geodesic Equations

In order to construct the geodesic equations that define the curve with a
stationary arc length, we may choose the arc length itself as the action
integral with zero variation. Using the expression (6.38) we write

k n
dx ﬁds (11.13)

From (11.13) we see that the Lagrangian function is given by the expression

dxk dxn
—_— 11.14
L= \8m ds ds’ ( )

and it is equal to unity along the geodesic line C, where
ds® = gimdx*dx®  (k,n=1,2,...,N). (11.15)

Along the geodesic line, where the metric condition (11.15) is fulfilled, we
have

1
oL 1 dkan\?_  ax dx’
_ 1 akax @ _ = 11.16
a(dLm) 5 (gkn I ds) ngl ds 8Eml ds ( )
ds
and
! 2 805 dx! dxk
d| oL d (g &) _, 4= + B O (111)
ds | a(4r) Tds \"Mds ) TSas? T axk ds ds
ds
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By interchanging the dummy indices k <> I, we may rewrite the second
term on the right-hand side of the result (11.17) as follows:

dgm dx! dx" (agmz 08 mi ) dx! dk
)

axk ds ds dxk axt ) ds ds (11.18)
Substituting (11.18) into (11.17) we obtain
d aL d%xt dgm 0 it dx*
ds | ofamy | "z T3 (axn’: z;g;k) o a9
(%) :
On the other hand we have
AL L, dxk dx"\ 3glk dx! dxk
axm - 2 \%" a5 as ax™ ds ds (11.20)
Using the metric condition (11.15), we obtain
L 10gy dx! dxt
— —_ (11.21)

axm 2 ox™ ds ds

Substituting (11.19) and (11.21) into the Lagrange Equations (11.12), we
obtain

dle +1 0gm  dgmx  dgu\ dx' dx*
Ak T o aam

ml — o =0 (11.22)

Now, using the definition of the Christoffel symbols of the first kind (9.28),
ie.,

ik = % (% + %‘;"- - %), (11.23)
we obtain from (11.22)
d2xl ! dxk
maT +lekd = =0. (11.24)

The composition of Equation (11.24) with the contravariant metric tensor
&™" gives the most commonly used formulation of the geodesic equations,

as follows:
d%xn o dx! dxk

F_F ”‘ds ds - (11.25)
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If a set of parameter equations of some curve C in a generalized
N-dimensional metric space is given by

=xX"s) (m=1,2,...,N), (11.26)

then the tangent vector to this curve is defined by

umZ:lﬁ m=12,...,N). (11.27)
A)

Using (11.27), Equation (11.25) can be written in the form

du”
ds

+ Mk = 0. (11.28)

Using Equation (11.22) we can also write

gmi (11.29)

ds + 2\ axk ax! 2 gxm

dut 1 (agml agmk) whk — li)_gﬁuluk -0
Interchanging the dummy indices ! <> k in the second term on the left-hand
side of Equation (11.29), we obtain

dit 9 18
g,,,l—u + ———gmluluk — —ﬂuluk =0.
s

11.30
d dxk 2 3x™ ( )

On the other hand, using the definition u, = g,,u, we may write

du,, d N dit  dgm I al dgm Ik
—ds——g;(gmlu)‘gml“E'F d u—gmlds+ U
11.31)

Substituting (11.31) into (11.30), we obtain

dup, 1agl,k:

0, 11.32
ds 2 0xm ( )

or

d’xm 1 0gn dx' dx*
ds2  20xMmds ds

(11.33)
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The equation (11.33) is an alternative form of the geodesic equations, which
does not explicitly involve the Christoffel symbols. Using the geodesic
Equations (11.25), we may also write

au™ dnk ou" dx*
=t F";‘"IES— = (87 + F,’;cul) — =0 (11.34)

or, using the definition of the covariant derivative of a contravariant
vector (8.23),

Du*  ouw”

Dxk — axk
we find that the absolute derivative of the tangent vector (11.27) with respect
to the parameter s is equal to zero:

Du” = (11.36)
ds — ’

This means that if we translate the vector «™ along the geodesic line from
the point x™ to the point x™ + dx™, it will coincide with the tangent vector
u™ + du™ at the point x™ + dx™. This is a specific property of the tangent
vector ™ along the geodesic line. In the Descartes coordinates, where
'}, = 0, the geodesic differential equation becomes

+ i, (11.35)

dzy"
=0. 11.37
ds? ( )
The solution of this equation is a set of linear equations
Y'=d's+ b, (11.38)

which represent the parameter equations of a straight line, which confirms
our earlier statement that the geodesic lines in the Euclidean metric spaces
are straight lines.
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The Curvature Tensor

Definition of the Curvature Tensor

In the Riemannian space the parallel translation of a vector between two
given points is a path-dependent operation, i.e., it gives different results
along different paths. In particular, if a vector is parallelly translated along
a closed path back to the same point of origin, it will not coincide with the
original vector. Let us therefore derive a general formula for the change
of a vector after a parallel translation along some infinitesimally small
closed contour C. This change, denoted by AA,,, is obtained using the
result (8.19), in the following manner:

AAp, = f 8Am =‘¢ P ApdxP. (12.1)
C C

Using the Stokes theorem, this line integral over the closed contour C can
be transformed into a surface integral over a surface S bound by the closed
contour C, i.e., '

Ady = % ?fc [Di (T240) = D, (rrean)] as, (122)

b}

where we use the covariant operator 29 - >

Dy = —. (12.3)
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Let us also, for the sake of simplicity, introduce the non-tensor operator
3
TRk
Using the definition of the covariant derivative of a second-order covariant

tensor (8.33), we may then write

O = (12.4)

DCrmp = 3tCmp — Ty Cip — T, Cou

(12.5)
Dpka = 8pCm}’c - Finpclk - F]Icpcml.
Subtracting the two Equations (12.5) from each other we obtain
Dy Crrip — DpCrac
= 3Comp — Tyt Cip — Ty Cont — 3pConkc + Ty Cit + T, o
= 3Crmp — 8 Conk + TpppCik — o Cip + T, Ot — T4 Gt (12.6)

Using here the symmetry of the Christoffel symbols with respect to their
lower indices, we see that the last two terms in Equation (12.6) cancel each
other. Thus, using the symmetric surface tensor dS¥ = dSP*, we may write

(DkComp - DyCi) dS*

= (%Cmp — 8 Coe + Tl Cut - [kCip) dS*. 12.7)

By interchanging the indices k <> p in one of the last two terms in paren-
theses and using the symmetry of the surface tensor dS*¥, we see that these
two terms cancel each other. The result (12.7) therefore becomes

(DrCop — Dpka)dSk” = (% Cpp — Bpka)dSkp (12.8)
Applying (12.8) with Cy,, = F,';,pA,, in Equation (12.2), we obtain

DAp = %i [ak (r, ") = (F,’;kA,,)] s, (12.9)

or

1
Ay = 5 yfc (3T pAn — BTl An + T BeAn — [y dpAn ) dS*.
(12.10)

On the other hand, the change of the vector A, along the contour C is due
to the parallel translation (8.19) and is given by

8An =T, Al = 3pA, =Tl A. (12.11)
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Substituting (12.11) into (12.10), we obtain

1
Adp =3 fc (akr,';, n— 3T An + T TLA; — r,’;,krflpA,) ds*.
(12.12)

As the labels of the dummy indices are irrelevant, we can interchange the
indices n < [ in the last two terms of the integral (12.12). Thus we obtain

1
Alm =5 ?gc (T — 8Tl + DT — ThuTh ) Ands™ - (12.13)

Introducing here the notation
Roy = 0Ty = 0p s + Do T — Thg T, (12.14)
the result (12.13) becomes

1
_ - kp
AA, = 3 7€ankpAndS . (12.15)

Since the closed contour C is infinitesimally small, it is possible to replace
the integrand of the integral (12.15) by its value at some point enclosed by
the contour C, and to bring it outside the integral. Thus, we finally obtain a
general formula for the change of a vector after a parallel translation along
some infinitesimally small closed contour C in the form

1
AAy, = 5 ';,kPA,,ASkP. (12.16)

The mixed fourth-order tensor defined by the expression (12.14) is called
the curvature tensor of a given metric space. The tensor character of the
curvature tensor is evident from (12.16), since A, is a covariant vector,
ASKP is a contravariant surface tensor, and AA,, is a difference of two
covariant vectors at the same point on the contour C. The curvature tensor
plays the key role in the theory of gravitational field and is very important
in tensor analysis in general.

The formula, analogous to (12.16), for a contravariant vector A™ can
be obtained using the fact that a scalar A™B,, is invariant under parallel
translations. Thus we may write

A(A™B,;) = AA™Bp, + A™AB,,
= AA"B, + A™AB,, = 0. (12.17)
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Using here the result (12.16) we obtain

1 1
AA"B, + A™ ER:‘nkanASkp = (AA" + ER:‘nkpA”‘AS"P) B, =0.
(12.18)

As the covariant vector B,, is arbitrary, we obtain the formula

n 1 n m K,
AA" = >R ATASY. (12.19)

In a given Euclidean space the curvature tensor is identically equal to
zero, since it is possible to choose the coordinates where I',, = 0 and
therefore ankp = 0, in the entire metric space. Because of its tensor char-
acter, the curvature tensor is then equal to zero in any other coordinate
system defined in the Euclidean metric space. It is related to the obser-
vation that, in the Euclidean metric space, the parallel translation is not a
path-dependent operation and the parallel translation along a closed curve C
does not change the translated vector.

The reverse argument is valid as well. If the curvature tensor is equal
to zero in the entire metric space, i.e., Rf‘nk o = 0, then such a space is
Euclidean. Indeed, in any metric space, it is possible to construct a local
Descartes system in an infinitesimally small portion of that space. On the
other hand, if ankp =0 in the entire space, then the parallel translation
is a unique path-independent operation by which this infinitesimally small
portion of a given space can be translated to any other portion of that space.
Thus we may construct Descartes coordinates in the entire space and the
given space is Euclidean.

As a summary, the criterion for determining the character of a space
is that a metric space described by a metric tensor g, is Euclidean if and

only if R}, i = 0.

Properties of the Curvature Tensor

From the definition of the curvature tensor
Ry = T, — 3T + Th i — Thy Tp, (12.20)

it is €asily seen that it is antisymmetric with respect to the interchange of
the last two lower indices k& <> p, such that we have

Rl = =R (12.21)
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It is also possible to show that the curvature tensor satisfies the following
identity:
Ry + Rk + Ripm = O (12.22)
In order to prove the cyclic identity (12.22), letus rewrite (12.20) as follows:
! I
Ry = Wy — 0Tt + Do Ul — | R
1 l
R;mk = O ;k — oy + I‘pkr‘;'m — I‘pml‘l';( (12.23)
!
R = 8T = 9Ly + DTy = Ty Ui
By inspection of Equations (12.23), using the symmetry of the Christoffel
symbols with respect to the interchange of the two lower indices, we see
that for each term in these three equations there is a counterterm with
the opposite sign. Thus, by adding together the three equations (12.23)
we obtain the cyclic identity (12.22). In addition to the mixed curvature

tensor (12.20), it is sometimes useful to define the covariant curvature
tensor by

Runkp = EmiRoyps (12.24)
or, using the definition (12.20),
Ry = iy — 8midpTly + Taplomik = Ty Tmpp. (12.25)
In order to obtain a more symmetric form of the covariant curvature
tensor (12.24), we use Equation (9.25) in the form
9p8mi = Limp + T ip
Ogmi = Timk + Umik

and the definition of the Christoffel symbol of the first kind (9.28) in
the form

(12.26)

1
1-‘m,np = E(apgmn + 8ngpm - amgnp)- (12.27)
Using (12.26) and (12.27) we can calculate
gmlakl"f,,, = 3mlak (glsrs,np) = (gmzakg“) Fs,np + anakrs,np

=- (gls 3kgm1) Csnp + 0klmnp = —Ff,pakgml + T mynp

1
= _Fip (Fl,mk + I-‘m,lk) + ‘2‘ (3kapgmn + akangpm - akamgnp) .
(12.28)
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By interchanging the indices k <> p in (12.28) we also obtain
gmidpT e = —Trge (Cimp + Timtp)
+2 5 (3pOk8mn + 3pOngion — BpOmguk) (12.29)
Lubsntutlng (12.28) and (12.29) into (12.25) we obtain

I Rmnip = —Tpp (Cimc + Do) + T (Thmp + Do)
+ % (% Bp&mn + 3Bn8pm — OkOmgnp)
' - % (30 8mn + 3pOngiom — Opdmgnk)
+ T T — T T, (12.30)
|
| Runiep = %(ak Ongpm + OpOmgnk — % Bm8&np — IpOngim)

+ T Tmp — T T - (12.31)

tnally we obtain the alternative expression for the covariant curvature
nsor in the form

1
I Rmnkp = (akangpm + 9, amgnk akamgnp ) angkm)
+ gy (F,,kl" F,’IPF;",,,() (12.32)

l?;om the expression (12.32) we see that the covariant curvature tensor is
tisymmetric with respect to the interchange of both the first two indices
(m <> n) and the last two indices (k <> p). Thus we have

Rmnkp = ~Rnmkp, Rmnkp = —Bmnpk- (1233)

From the expression (12.32) we also see that the covariant curvature tensor

tsymmetric with respect to the interchange of the first two indices and the
st two indices (mn < kp), i.e.,

Rmnkp = ‘Rkpmn- (12.34)

l’urthermore we note that the cyclic property (12.22) also remains valid
after the contraction with the covariant metric tensor, such that we have

I Rmnkp + Rmpnk + Rmkpn =0. (12.35)
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Using (12.33) and (12.34), it can also be shown that the cyclic properties
analogous to (12.35) are valid not only for the last three, but also for any
three indices of the covariant curvature tensor.

12.3| Commutator of Covariant Derivatives

In the Descartes coordinates, with Dy = 3, itis allowed to change the order
of the covariant differentiation with respect to the two different coordinates.
In other words, we may write

OmA? = 0 HAP = DiDmAP = DpDiAP (12.36)
or

(DD — DmDi)AP = (93m — ImdR)A? = 0, (12.37)

where AP is an arbitrary contravariant vector. Since A? is an arbitrary con-
travariant vector, it can be omitted and we can write the corresponding
operator expression as follows:

DD — DDy = [Dp, D] = [0, 3] =0. (12.38)

The quantity [D,,, D¢}, introduced in (12.38), is called the commutrator of
the two operators D, and Dy. This commutator is equal to zero in the
Descartes coordinates. Let us now calculate the commutator [D,,, D] in
the arbitrary curvilinear coordinates. In order to calculate this commutator,
we first calculate

DyDpAP = Dy (3mAP 4 T2, A™)
DiDpAP = 3, (3mAP + 5, A™)

(a,,,Al 4+ Tl A" 4+ T} (3AP + T A") (12.39)
DyDpAP = aka AP + TP A" + A"3 TP

+ T8 8mAl + TOTL A" —TL 8AP — T} THA™
Analogously, we may write
DnDiAP = 30k AP + T 8,A™ + A", [0 + T2 A"
+ 1P Ip,A" — kaa,AP . A" (12.40)

If we now form the difference between the expressions (12 39) and (12.40),
we see that several terms cancel each other, i.e., the first term cancels the
first term, the second term cancels the fourth term, the fourth term cancels
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the second term, the sixth term cancels the sixth term, and the seventh term
cels the seventh term. Thus we obtain

(DeDp = DuDA? = (8Th, — 0nTf, + TG L, — T2, ) 4™
! (12.41)

ow, substituting the definition of the curvature tensor (12.14), i.e.,

l Roym = T, — 0% +TL, P —TLI? (12.42)

ml>

nto Equation (12.41), we obtain
I (DiDm — DuDi)AP = RE, A", (12.43)

n lipe with the criterion for determining the character of a space, discussed
rher, we conclude from (12.43) that the change of the order of the covari-

t differentiation is allowed only in the Euclidean metric spaces with the
€10 curvature tensor, i.e., with R’ dem = 0-

4| Ricci Tensor and Scalar

om th‘.: curvature tensor (12.14), by contraction of the single contravariant
ndex with the second covariant index, it is possible to construct a covariant
lcond-order tensor, called the Ricci tensor, as follows:

Ron = R, = —Roon- (12.44)
I;ing here the definition of the curvature tensor (12.14) we may write
Ren = 8015, — 8Th, + Ty T8 — T8, TL (12.45)

's easily verified that the Ricci tensor can only be defined as in (12.44).
t

us for. example consider the alternative contracted tensor R’,:m , which
an be written as follows: "

— skpl
I R = 8 Ripny = 8P guRL = gP*R s = 0. (12.46)

rom the definition (12.46) we see that Rkkmn is a scalar product of the

etric menig ten.sor gPF and the antisymmetric covariant curvature
sor I_kam,,, which is by definition equal to zero. Using the symmetry
roperties (12.33) and (12.34) in the definition of the Ricci tensor

| Ron = R,y = 8% R, (12.47)
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and interchanging the dummy indices & <> p, we may write
Run = & Rupiom = 8 Ruiom = 8" Riump = Rium. (12.48)
Thus the Ricci tensor is symmetric with respect to its two indices, i.e.,
Ruyn=Ryn (m,n=1,2,...,N). (12.49)
Using the Ricci tensor (12.44), we can define the Ricci scalar as follows:
R = g™ Rmn = g™ & Rionnp.- (12.50)

The Ricci tensor and Ricci scalar are extensively used in the general theory
of relativity and in cosmology.

12.5| Curvature Tensor Components

The components of the curvature tensor are related to each other by means
of the symmetry relations (12.33)—(12.35). Thus the components of the
curvature tensor are not all independent, and the number of the independent
components of the curvature tensor in the N-dimensional space is equal to

N2(N2 -1)
n= —mm————.
12

As this general result for the N-dimensional metric space will not be
extensively used and its derivation involves long and complex combina-
torial manipulations, it will not be considered in detail here. We will only
consider the two simplest special cases, a two-dimensional metric space
(N = 2) and a three-dimensional metric space (N = 3).

In a two-dimensional metric space, the indices of the covariant curvature
tensor Rypnp, 1.€., (k, m, n, p) can assume the values 1 and 2. Thus the com-
ponents of the covariant curvature tensor can be presented by the following
rectangular scheme:

(12.51)

np=11 | np=12 | np=21 | npp=22
km =11 0 0 0 0
[Riunnp] ={ km=12 0 Rz | —Rinp 0 (12.52)
km =21 0 —Rnpiz | Ron 0
fm =22 0 0 0 0

From the scheme (12.52) we see that out of possible 2* = 16 components,
the 12 components with k = m or n = p or both are equal to zero because
of the antisymmetry of the covariant curvature tensor. The remaining four




I 106 Chapter 12 The Curvature Tensor

nonzero components with k # m and n # p are related by antisymmetry
relations as well. Thus, according to the expression (12.51), we see that in
a two-dimensional metric space there is just one independent component
of the covariant curvature tensor, i.e.,
44 -1) ]
= — —
12
The Ricci scalar is then defined by

(12.53)

R =" " Rimnp = 2 8" g*Ry21p — 2 g"%e* R

(12.54)

The quantity R/2 is equal to the Gauss curvature of a surface, or the inverse
of the product of the main radii of the curvature.

Let us now consider a special case of the surface of the unit sphere, with
the metric of the form

2
I R=2 (8“822 - gl2g21) Ri212 =2 |g™|Riz12 = §R1212-

ds® = d6? + sin? 0dg? (12.55)
or
ds* = (dx")? + (sinx")2(dx?)2. (12.56)
Thus, the covariant metric tensor can be written in the matrix form
1 0
(gmn] = [0 ( sinxl)_z] , (12.57)

'and the contravariant metric tensor can be written in the matrix form

1 0
mny __
[g ] = [O (sinxl)—z] . (1258)
lIn this case, the quantity R/2 should be equal to unity. In order to show

that, we need to calculate the only independent component of the curvature
tensor, i.e.,

1
Ry = —53131822 + g1 (T,, - r1T3)

l +82(TLI2, — T4 T2). (12.59)
On the other hand, the Christoffel symbols of the first kind are defined by

1
I Crnp = 5 (Bp8mn + 3n8om — Omgnp). (12.60)

Section 12.5 Curvature Tensor Components 107

Substituting (12.56) into (12.60), we obtain

'iin=0
FLiz2=T121=0
1 1 1
120 = —=01822 = —sinx cosx
| 2 (12.61)
I'211=0
1 L 1 1
12 =T221 = +§31822 = +sinx’ cosx
I222=0
The Christoffel symbols of the second kind are defined as
I = g"Tnp, (12.62)
and in our example, they are given by
r} =¢"T+8%T21 =0
Tl =T} =gl + 8" =0
-1 1
Féz = gllrl,zz + glzf‘z,zz = —sinx" cosx (12:63)

T3 =g+ 2T =0

. 1y—1 1
1"%2 = F%1 = g211"1,12 + g22F2,1z = +4(sinx")" " cosx

T3, = g* T2 + 8" T2 =0.

Substituting the results (12.63) into (12.59), we obtain

1
Ri212 = —53131g22 +gn(T3)? -
Rizi2 = (sinx")? — (cosx1)? + (sinx!)2(sinx!) "2 (cos x1)?
Ri212 = (sinx)2. (12.64)

Finally the Gauss curvature of the unit sphere is given by
I—;- = LR = (sinx")2(sinx2 = 1, (12.65)
g

which proves that the Gauss curvature of the unit sphere is indeed equal to

unity.
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In the case of three-dimensional space (N = 3), in which the curvature
l tensor has a total of 33 = 27 components, according to (12.51) there are
six independent components of the covariant curvature tensor:
909 -1
n=-——-
12

There are also six independent components of the Ricci tensor R,,,. Using
' the suitable Descartes coordinates in a given point, it is always possible

=6. (12.66)

to make three of these six components equal to zero. In particular, it is

possible to diagonalize the Ricci tensor and define the curvature in any

given point of & three-dimensional space by three independent quantities.

In four-dimensional space there are 20 independent components of the
covariant curvature tensor:

16(16 — 1)

n=————=

12

The case of a four-dimensional space is particularly important in the general
theory of relativity and in cosmology.

= 20. (12.67)

Part III

Special Theory of Relativity




» Chapter 13

Relativistic Kinematics

13.1| The Principle of Relativity

For the description of the motion of particles, it is necessary to have a
system of reference. By a system of reference we mean a coordinate system
to which we attach a clock. The coordinate system is used to determine
the positions of particles in space and the clock is used to mesure the
times at which the positions of particles in space are measured. There are
systems of reference where the free motion of a particle, i.e., the motion of
a particle on which there is no action of any external forces, is such that the
particle has a constant velocity. Such systems of reference are called inertial
systems.

If two systems of reference are translated with a constant velocity with
respect to each other and one of them is an inertial system, then the
other system of reference is also an inertial system. Any free motion in
that system of reference will also be along a straight line with constant
velocity.

Using these definitions, we can write down the statement of the special
principle of relativity as follows:

All laws of nature are equal in all inertial systems of reference. In other words, the
equations that express the laws of nature are invariant with respect to the trans-

formations of spatial coordinates and time from one inertial system of reference
to another. :

111
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3.2] Invariance of the Speed of Light

Let us consider two bodies interacting with each other, and let us assume
that on one of the bodies some event has occurred (explosion, distance
increase, or some other change). Then this event will be noticed at
the position of the other-body after the lapse of some time. If the distance
between these two bodies is divided by this time interval, we obtain the
maximum speed of interaction.

In nature, the motion of bodies with a speed higher than the maximum
speed of interaction is not allowed, since by means of such a body it would
be possible to achieve the interaction with a speed higher than the max-
imum speed of interaction. Based on the special principle of relativity, we
conclude that the maximum speed of interaction is invariant with respect

to the transformations of spatial coordinates and time from one inertial
I system of reference to another. Thus, it is a universal constant of nature.

It is shown that this universal constant is equal to the speed of light in the
vacuum, and its numerical value is given by

¢ =2.99776 x 10%m/s. (13.1)

The principle of invariance of the speed of light is therefore stated as

l one of the basic principles of relativistic mechanics. According to this
principle the speed of light is independent of the motion of the light source,
1.e., of the choice of the system of reference in which the motion of light
is described. In the next section, the mathematical formulation of this
principle is presented.

!3.3 The Interval between Events

An event in nature is determined by four coordinates. These include the
three space coordinates of the position where the event has taken place
and the time coordinate when the event has taken place. Each event is
represented by a point, called the world point of the event, with the
I coordinates
| The first coordinate is a time coordinate defined by %0 = ct, and it has the
dimension of length. The other three coordinates are the spatial Descartes
I coordinates

X" = {xo,xl,xz,x3} (m=0,1,2,3). (132)

X ={xyz} (@=123). (13.3)
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We will from now on use Latin indices for the coordinates of the
four-dimensional space-time (13.2), and Greek indices for the usual
three-dimensional spatial coordinates (13.3).

The set of all world points constitutes a four-dimensional manifold
called the world. To each particle in such a world, there corresponds a
line called the world line. The world line of a particle at rest is a line
parallel to the time axis.

In order to express the principle of invariance of the speed of light
mathematically, let us now consider two systems of reference denoted
by K and K’, which move with respect to each other along the common
x-axis with some constant velocity V. These coordinate systems are shown
in Figure 4. The times in coordinate systems K and K’ are denoted by
tand ¢, respectively. Let one event consist of a signal sent at time #;, with a
constant velocity equal to the speed of light, from the point with coordinates
{x1,¥1,21} in the coordinate system K. Let the other event consist of the
same signal being received at time 7, and at the point with coordinates
{x2,¥2, 22} in the coordinate system K.

In the coordinate system K, the coordinates of these two events are
related by the following equation:

Ao —t) - -1 — -y~ @—2)?=0.  (134)

Because of the principle of invariance of the speed of light, in the coordi-
nate system K’ the coordinates of these two events are related by the

z 7

Figure 4. The coordinate systems K and K’
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analogous equation
2 2
Ay — ) — 5 —x)P — 0h =YD = (G —Z)?=0.  (135)

If the coordinates (¢1,x1,y1,21) and (#2,x2, y2,72) are the coordinates of
any two events, then the quantity

12
s12 = [c2(t2 —) = —x)— (- - (- Zl)z] (13.6)

is called the interval between these two events. Analogously to (13.6)3 the
square of the interval between two infinitesimally close events is determined
by the metric

ds® = *di* — dx? — dy? — dz® = guadx™dx", (13.7)

where (m,n = 0, 1,2,3), and the contravariant space-time coordinates in
this four-dimensional metric space are given by

am = 0, x 3% ) = (et x,y, 7). (13.8)

The components of the covariant metric tensor g,, are given by the
following matrix:

1 O 0 0
0 -1 0 0
— 13.9
[gmn] = 0 0 -1 0 ( )
0 0 0 -1

From (13.9) we conclude that the world is a four-dimensional pseud(?—
Euclidean metric space. The determinant of the metric tensor gn, is
g = —1. The matrix of cofactors of the matrix (13.9) is

-1 0 00
0 100

= 13.10

[™1=106 01 0 (13.10)
0 0 01

Using (6.13), the inverse matrix to the matrix [g,] is given by
dj G’
(g™ = inv [gp] = 2D Bl _ (G (13.11)

8
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We conclude that the components of the contravariant metric tensor g™
are the same as the components of the covariant metric tensor (13.9), i.e.,

1 0 0 o0
0 -1 0 o0
mny _
™=, 0 —1 o (13.12)
0 0 0 -1
From (13.9) and (13.12) we see that
&gt = 8" (k,m,n=0,1,2,3). (13.13)

The covariant space-time coordinates in this four-dimensional metric space
are given by

Xm = gmnX" = {X0, X1, %2, x3} = {ct, —x, —y, —z}. (13.14)
Using (13.8) and (13.14) we see that

Imx™ = g™ = 22 — X2 — y? — 2% (13.15)

Using expressions (13.4) and (13.5) and the principle of invariance of
the speed of light, we conclude that an interval that is equal to zero in
one inertial system of reference is also equal to zero in any other inertial
system of reference. On the other hand, the quantities ds and ds’ are two
infinitesimally small quantities of the same order. Thus we may write

ds = ads’, (13.16)

where the coefficient @ may depend only on the absolute value of the relative
velocity V of the two inertial systems of reference K and K. It may not
depend on the spatial coordinates or time because of the assumption of
the homogeneity of space and time in the inertial systems of reference.
It may not depend on the direction of the relative velocity V of the two
inertial systems of reference K and K’ either, because of the assumption of
the isotropic nature of space and time in the inertial systems of reference.
Thus, as we may write (13.16), we may also write

ds' = ads. . 13.17)

From the equations (13.16) and (13.17) we obtain a® = 1 or @ = +1. On
the other hand, from the special case of the identity transformation with
ds = ds’ we conclude that a = +1, so that we always have

ds’ = ds. (13.18)

Thus we obtain the mathematical formulation of the principle of invariance
of the speed of light (13.18), which implies the invariance of the interval
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with respect to the transformations from one inertial system of reference
to another.

Lorentz Transformations

The objective of the present section is to derive the formulae for trans-
formations of coordinates from one inertial system of reference to
another. In other words, if we know the coordinates of a certain event
x™ = {ct',x/,y,7'} in some inertial system of reference K’, we need the
expressions for the coordinates of that event z” = {ct,x,y,z} in some
other inertial system of reference K. As x™ is a contravariant vector, it is
transformed according to the transformation law

m 8zm n m._n
I =X = Ayx", (13.19)
The transformation (13.19) is a linear transformation and the coefficients
A} areindependent of coordinates. The system A] is amixed second-order
' tensor in the pseudo-Euclidean metric space defined by the metric (13.7),
since it is defined with respect to the linear transformations (13.19).
In order to calculate the components of the tensor A}, we now introduce
an imaginary time coordinate

t=ict (i=+—1), (13.20)
| and an imaginary metric '
do =ids (i=~/~1). (13.21)

' Thus the metric of the space becomes
do? = dt® + dx* + dy* + d2, (13.22)

and we thereby define the four-dimensional Descartes coordinates. The
linear transformation (13.19) must keep the metric ds or do invariant. As
we have argued before, the only transformations of Descartes coordinates
that keep the metric form invariant are the transformations of translation,
rotation, and inversion.

Paralle] translation of four-dimensional Descartes coordinates is not a
suitable candidate for the transformation (13.19), since it merely changes
the origin of the spatial coordinates and the origin for measurement of time.
Similarly, the inversion of the four-dimensional Descartes coordinates is
not suitable either, since it merely changes the sign of the spatial coordinates
and time.
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v

Figure 5. Rotations in the tx plane

Thus we conclude that the only suitable candidate for the transformation
(13.!9) is a rotation of four-dimensional Descartes coordinates. We are
lo?klng for the formulae for transformation from the coordinate system
K’ to the coordinate system K as shown in Figure 4. In that case we have
y =Y andz = 7’ and we are only interested for the rotation in the Tx plane
as shown in Figure 5. ’

FromFigure 5, we immediately obtain the remaining two transformation

. formulae:

x=x'cos¢y — t'sinyr

T =x'siny + ' cos . (13.23)
According to Figure 4, the coordinate system.X” is moving with respect to
the coordinate system K with a constant velocity V. If we then consider

the motion of the origin of the coordinate system K’ we then have x’ = 0.
Then from (13.23) we obtain

X
t = e — =
an F =i (13.24)

Now, using the trigonometric formulae

cosy = L tan

y sin =
Vivary T ey B9
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we obtain
iV/c
cosy = ————1—-, siny = —/ (13.26)
V2 1 _ V2
1-= vi—=
Substituting (13.26) into (13.23), we obtain
U+i(Vie)Y (VA
T = = =
J1-5 J1-%
I ’ / Y
v x —i(V/e)r v x' + Vi (13.27)
V2 /1 %4
1 - < c?
/ —
y=y Y=y
z=17 z=17

The results (13.27) are the well-known formulae for transformations of
coordinates from one inertial system of reference to another. They are called
the Lorentz transformations. In the special case when V < c, the L'orentz
transformations are reduced into the so called Gallilei transformations of
nonrelativistic mechanics

/

t=1
. /
x=x+V (13.28)
y=y
z=17.

Although the Gallilei transformations are closer to our everyday exper-
ience than the Lorentz transformations, they are not in accordance with
the principle of relativity and they do not leave the metric form of the
four-dimensional space-time invariant. 7

Using (13.27), it is easy to construct the tensor of Lorentz transforma-
tions A} in the following matrix form:

1 V/e 0 0
-5 18
Ve L_ 00
(A= T"2 J= . (13.29)
0 0 10
Y 0 0 1]

|
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The inverse of the tensor A7, denoted by (A;,")_l, is given in the matrix
form

[ L ——=L 0 0]
f-g e
q_ |- L g
[(A;")“ ] = /1—{§ 1_5_22 , (13.30)
0 0 1 0
|0 0 0 1]

and itis obtained from the tensor (13.29) by reversing the sign of the relative
velocity V, i.e., by putting V — —V. Thus we may write
ox™
az"

It is easily shown, by direct multiplication of the matrices (13.29) and
(13.30), that

=AHV) = A™(-V). (13.31)

AR(AD= = 5, (13.32)

Velocity and Acceleration Vectors

In the special theory of relativity, the time differential dt is not a scalar
invariant, and the usual definition of the three-dimensional velocity

o

W=—r @=123), (13.33)

is less useful, since it does not behave as a vector with respect to the
transformations from one inertial system of reference to another. Therefore
we introduce a four-velocity, as a contravariant vector

Dx™  dx™
= = i 201.2.3) (13.34)
ds ds
On the other hand, by definition, we have
ds? = 8mndx™dx"™ = 2di? + Zapdx®dxP
= c?d? —dx? - @y? — a2, (13.35)
and the square of the intensity of the three-dimensional velocity is given
by

dx? + dy? + d7?
V2 = d.:; = —gaﬁvavﬂ. (13.36)
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From (13.35) with (13.36), we obtain

2 a8
i = (1 - v_z) ey (1 + gﬂ_> L s
c c
Substituting (13.37) into (13.34), we obtain
dxm
"= ——— m=0,1,2,3). (13.38)

cdt‘/l—z—i

The temporal zeroth component of the four-velocity is then given by

1
W = , (13.39)

U= —. (13.40)

From (13.39) and (13.40) we conclude that the components of four-velocity
are not independent of each other, but satisfy the equality

_ Gmadx"dx"
T ds? h

U™ = guntd"u"

1, (13.41)

since we have
ds® = gundx™dx". (13.42)

The four-acceleration of a particle is defined as a contravariant vector

Du™  du™
wn =" M n=0,1,2,3). (13.43)
ds ds
Here, using (13.38), we may write
1 m
wh— L du (13.44)

[T 2 dt’
c 1—;—2

or

1 m
= d_ 1 & (13.45)

—cz\/l—%a\/l %7
C C
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The temporal zeroth component of the four-acceleration is then given by

W0 — 1 d 1

o (13.46)
/1 - 2’—2 1-— cﬁ2

and the three spatial components of the four-acceleration are given by

o 1 d W

W =-——
—— 13.47)
2 2 dt 2 (
-5 i-%

From (13.41), we conclude that the vector of four-acceleration is always

othogonal to the vector of four-velocity. This can be shown by differenti-
ating (13.41) with respect to the metric, i.e.,

d du™ 4
EE (gmnumun) = gmn‘gun + gmnum% =0,
du™ du” au™
8mn s u' +gnmd—sum = 2gmn ds =0, (13.48)

m.n
EmnW U = wnun =0.

Thus the vectors w” and u” are indeed orthogonal to each other.
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Relativistic Dynamics

Lagrange Equations

Letus consider a free particle, i.e., a particle that is not under the influence of
any forces. The equations describing the motion of this particle are obtained
using the variational principle. The action integral is defined by (11.4), i.e.,

Sp dx" Se
I= f L (x", —) ds = / L™, u™)ds, (14.1)
Sa ds Sa

where u” is the four-velocity of the particle. The equations of motion of the
particle are obtained using the variational principle, i.e., the condition that
the variation of the action integral is equal to zero, 6/ = 0. The Lagrange
equations of motion of the particle are given by (11.12) in the form

oL d (oL

o s (aw) =0 (n=0,1,2,3). (14.2)
Let us now define the form of the Lagrangian function for a free particle.
The Equation (14.2), derived using the variational principle applied to the
action integral (14.1), are equal in all inertial systems of reference and the
action integral is a scalar invariant with respect to the Lorentz transforma-
tions (13.29). Thus, the Lagrange function L itself is also a scalar invariant.
Because of the homogeneity of the four-dimensional space-time in the
inertial frames of reference, the Lagrange function cannot be a function of
space-time coordinates x”. Thus we may write

L=LW") n=0,1273). (14.3)

123
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The only invariant that can be created using the four-velocity vector u” is
given by
ul = g’ =1 (k,n=0,1,2,3). (14.4)

Thus the action integral of a free particle is s'm_lply pr.oportional to the arc
length in the four-dimensional space-time manifold, 1.e.,

Sp 5B dxk dx™
= — ds = —mc/ gn————4ds, (14.5)
I'=—me [s,, s, Vo ds ds

where m is a mass parameter of the free particle. From (14.5) we see that
the Lagrangian function is given by the expression

= —mcy/ gknuku". (14.6)

Using the Lagrangian (14.6) we may write
_%'_ = _a__ [—mc(gkjukuj)1/2]
= —%mc(gkjukuj)"l/z(gk,,uk + gnjuj). 14.7)

Here, using gkjuk u/ = 1 and the symmetry of the metric tensor g = &jn»
we obtain

EE— = —lmc 2gk,,uk = —mcgknuk = —MCly. (14.8)
ou™ 2
Thus we may write
_doL (14.9)
ds du" ds
Using the Lagrangian (14.6) we may also write
AL . (14.10)
ax"
Substituting (14.9) and (14. 10)into the Lagrange equation (14.2), we obtain
d d
mc% = = (meup) =0. (14.11)

The equations of motion of a free particle are then given in the following
form:
du®

wn 3 -—-d—— = 0 (n = 0, 1’21 3) (14'12)
A
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From Equation (14.12) we see that a free particle moves along a straight
line with constant velocity.

Let us now investigate the nonrelativistic limit of the action inte-
gral (14.5) when the particles are moving with low velocities (v < ¢). If
we substitute (13.37) into (14.5) we obtain

i V2 ]
I= —mczf 1— —dt =/ Lr(x*,v*)dt (14.13)
A c Iz

where L7 is a Lagrangian defined with respect to the nonscalar time
variable ¢, given by

2 v
Lre® v = —m[1— & = —mA 1+ 8222 (14.14)
C C

In the nonrelativistic limit of particles moving with low velocities (v < ¢),
we may use the approximation

v2 2
l—-—=~1~- 14.15
c? 2c? ( )
Substituting (14.15) into (14.13) we obtain
tp ) 1
I= / (—mc + —mvz) d. (14.16)
A 2

Thus the nonrelativistic approximation of the Lagrangian Ly can be written
as follows:

1

Lr(x* V%) =~ Emv2 — mc?. (14.17)
As the nonrelativistic Lagrangian is defined up to an arbitrary additive con-
stant, the second term in (14.17) does not contribute to the nonrelativistic
equations of motion and can be dropped in the nonrelativistic applica-
tions. Its physical significance in the special theory of relativity will be

discussed later in this chapter. Thus the action integral (14.5) has the proper
nonrelativistic limit.

Energy—-Momentum Vector

14.2.1 Introduction and Definitions

In nonrelativistic mechanics there are a number of constants of motion.
These include the energy and the momentum of the particle. The objective
of the present section is to define the energy and the momentum of a particle
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in the framework of the special theory of relativity. Let us start with the
action integral (14.13), in the form

7:3
I:j Ly (x*,v%)dr. (14.18)
t,

A

The Lagrange equations of motion of a particle, analogous to Equa-
tion (11.12), defined in terms of the Lagrangian L1 with the nonscalar
time variable ¢ as the parameter, are given by

oLr d

_4d(dLr) _, (@ =1,2,3) (14.19)
e dt\awe )" FT LS '

Let us now calculate the total time derivative of the Lagrangian Ly as
follows:
dLt _ oLy dx* oLt dv®
dt— x* dt = e dt
Using here the equations of motion (14.19) and the definition of the three-
dimensional velocity (13.33), we obtain :

(14.20)

dLr d (oLt\ , OLt 740 d (oLt
— =—|— — === . 21
a  dr (Bv“) Ve a Ta e (1421)
The result (14.21) can be rewritten in the form
d (oLr
— | —v* =Ly} =0. 14.22
di (ava Y T) (14.22)
Thus the quantity
L
&= a—Tv"‘ — L7 = Constant (14.23)
av¥

is a constant of motion. The quantity (14.23) can be recognized from non-
relativistic mechanics as the total energy of the particle. Let us also define
the momentum p®, conjugate to the coordinate x®, as follows:

I L _2% (14.24)
where
{P"} = {px,Py,Pz},  {Pa} = {~Px, =Py, ~P2}- (14.25)
Substituting (14.24) into (14.23) we obtain
E=—pyV® — Ly = —gopp™VP —Lr =p -V — Lr. (14.26)
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Using the definition (14.14) of the Lagrang;an Lz, we can calculate
_ _8LT 5 0 g,ﬁva:vﬂ 12
Do = W = mc m (l + T) s (14.27)
or
& e —1)2
Pa = mczé (1 + g‘";#) Cizg,ﬁﬁ(v:vﬂ). (14.28)
Using the symmetry of the metric tensor 88 = 8pw> We obtain
g\ ~12
Pa = m% (1 + gicv;qvﬁ) / 2 gupv”. (14.29)
Using v, = gopv#, we finally obtain
Po= g (14.30)

Substituting (14.30) and (14.14) into (14.26), we obtain the total energy of
the particle as follows:

Il
=3
| Y

GMICM
3
—
q
[\S)
Folld
I % o
g
+
3
(o}
N
—

|

(o} ’ <
[\ ] (3]

c2
mc? ) v? 2 v2 mc?
_ c 2 V2
2 -z
Thus the total energy of the particle is given by
mc?

E =

‘/—_—Z_? (14.32)

The particle at rest with v = 0 has the so-called rest energy & given by

Eo = mc®. (14.33)
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The Kinetic energy of the particle is obtained if the rest energy (14.33) is
subtracted from the total energy (14.32). Thus we obtain

1
£k =& — & = mc? ———V2—1 ) (14.34)
vi—-2a

For the particles moving with low velocities (v < ¢), we may write

1 v2
—_— x4 —. 14.
Jioz e (1433
c2
Substituting (14.35) into (14.34) we obtain
Ex = 1m2. (14.36)

In the same approximation (v < c¢), the components of the momentum of
the particle are given by

¥ =m". (14.37)

The approximate results (14.36) and (14.37) are the well-known non-
relativistic expressions for the kinetic energy and the momentum of a
moving particle, respectively.

14.2.2 Transformations of Energy-Momentum

The results for the momentum of the free particle (14.30) and the energy
of the free particle (14.32) were derived from the Lagrangian Lr, defined
with respect to the nonscalar time variable ¢, in a noncovariant way. Now
we want to define the energy and momentum as the constants of motion
using the covariant Lagrangian L given by (14.6). In analogy with the
definitions (14.24), we now define the energy—momentum four-vector p,
with the following covariant and contravariant components:
oL aL
Pn=——— =mcup, > p' = —— =mcu" (14.38)
ou duy,
From Equation (14.11) we see that the four components of the
energy—momentum of a free particle satisfy the equations
d n
P _0 (n=0,1,23). (14.39)
ds
Thus for a free particle the four components of the energy—momentum four-
vector are conserved. Using (13.39) here, we obtain the temporal zeroth
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component of the energy—momentum vector, which is proportional to the
-energy & of the particle, in the form

P=me® =25 =2 (14.40)

where the energy of the particle is given by (14.32). Further-
more, using (13.40), we obtain the three spatial components of the
energy—momentum four-vector, which are equal to the components of the
three-dimensional momentum of the particle p® given by (14.30), i.e.,

Va
P = meu® = —2 (14.41)

2
v
-5
From the results (14.40) and (14.41), we see that the energy and momentum
of a particle are not two independent quantities as in nonrelativistic mechan-
ics. Inrelativistic mechanics they are components of the same four-vector. It
should be noted that the constant of motion analogous to the nonrelativistic

- result (14.23), is identically equal to zero:

—u"—L=—pu"~L=0. (14.42)

The energy—momentum vector as a four-vector transforms with respect

, to the transformations from one inertial system of reference to another,

according to the transformation law’
P = Akp™, (14.43)

where p* are the components of the energy-momentum tensor in the
inertial system of reference K, while p’* are the components of the
energy—momentum tensor in the inertial system of reference K’ moving
along the common x-axis with a velocity V with respect to X. Here, using
the explicit form of the tensor Af, given by (13.29), we obtain

1

_ ' ’
5———1_V—2(5 + Vpl)
c2
1 LV
Dx = _:E (Px + C-zg) (14.44)
2
/
Py =py
Pz =pz
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Using (14.38) with (13.41) we obtain
P'pn = m2cPutu, = m>c?. (14.45)
From (14.45) we may write

52
» c_2 +papa = m202' (14'46)

From the results (14.25) for the components of the three-dimensional
momentum vector, we may write

P*Pa = 8apP"P® = b B = —p*. (14.47)
Substituting (14.47) into (14.46), we obtain
52
— —p? =mc* (14.48)
C

The relation between the energy and the three-dimensional momentum of

a particle then becomes
E = cy/p* + m3c2. (14.49)

The function (14.49) is usually called the Hamiltonian of the particle and
is denoted by H. Thus we may write

H= cﬁ—l- m2c? = ‘/;202 + m2c4, (14.50)

being the most usual definition of the Hamiltonian of a particle.

14.2.3 Conservation of Energy—~Momentum

The conservation law of the momentum of a particle is a consequence of the
homogeneity of space and the conservation law of the energy of a particle is
a consequence of the homogeneity of time. Because of the homogeneity of
space-time, the mechanical properties of a free particle remain unchanged
after the translation of a particle from a point with coordinates x” to a point
with coordinates x® + A", where A" is an infinitesimally small constant
four-vector. Thus the Lagrange function must be invariant with respect to
this translation and its variation must be zero. Therefore we may write

oL aL
L= —5xk=—2ak=0. 14.51
ok axk ( )
Here, using the equations of motion (14.2), we obtain
d | aL
SL=—|—[rk=0. 14.52
ds [auk] ( )
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Since A" is a nonzero infinitesimal four-vector, the expression (14.52) gives

_ d| oL —0
=15 =0 (14.53)
Using (14.38) we now obtain
d aL du, dp,
The expression (14.54) then gives
dp" 1 dap"
—_— = — =0 g
i - \/I_—Vi 7 = p" = Constant. (14.55)
p)
Thus we obtain the three-dimensional momentum conservation law
dp R
i 0 = p = Constant, (14.56)
and the energy conservation law
d&
7 =0 = £ = Constant. (14.57)

Angular Momentum Tensor

In relativistic mechanics the angular momentum tensor is defined by the
expression

My, = xppi — x3pn (k,n=0,1,2,3). (14.58)

Only the spatial components of the angular momentum tensor with (k, n =
1,2,3) have a physical meaning and coincide with the usual definition
of the angular momentum in nonrelativistic mechanics. In nonrelativ-

istic mechanics it is customary to form an axial three-dimensional angular
momentum vector

M’ = %emﬁMaﬂ = evafﬂxapg (a,8=1,2,3), (14.59)
or, in the classical vector notation,
i3 3
M=|x1 x x3)=Fxp. (14.60)
P1 P2 p3

The conservation law of the angular momentum tensor (14.58) is a con-
sequence of the isotropic nature of the four-dimensional space-time.
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The three-dimensional angular momentum conservation law is a con-
sequence of the isotropic nature of the three-dimensional space. Because
of the isotropic nature of the four-dimensional space-time, the mechanical
properties of a free particle remain unchanged after rotations in the four-
dimensional space-time. Let us consider the special case of a rotation for
some angle 6 about the 3-axis in three-dimensional space. Then the rela-
tion between the coordinates z” in the rotated inertial system of reference
K’ and the coordinates x* in the original inertial system of reference K is
given by

=0 (j,n=0,1,2.3). (14.61)

Using (5.40) we may rewrite (14.61) in the matrix form

2° i 0 0 0] [x°
1 . .
| _ |0 cos® sind O} fx
21710 —sin® cosd O} |x2]" (14.62)
2 0 0 0 1 !

If we now consider the rotation for some infinitesimal angle 36 =~ 0, then
we have

cosdf ~ 1, sindf ~ 6. (14.63)

Substituting (14.63) into (14.62) we obtain

2 1 0 o 0]
1 1
21 10 1 0 0f]x
2|70 -8 1 0|22 (14.64)
z 0 0 0 1)}
or
=248 =3+ 8Q%ggxd = X"+ 8Q%x (14.65)

where § Q}‘ is amixed tensor defined by the following antisymmetric matrix:

(14.66)

(=]

I~

5o
OO OO
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Here, using (13.9) and (13.12), we obtain the covariant coordinates x; of
the four-dimensional space-time in matrix form:

1 0 o o[ x0

1 o -1 0o offx —x!
[xk]=[gjk][X’]= 0 0 -1 0 ;‘2 = _iz . (14.67)

0 0 0 —1][s3 3

‘We can also calculate the components of the antisymmetric contravariant
tensor 82 in matrix form as follows:

o] = [¢*] [s7]. (14.68)

or
1 0o o olfo 0 o0 0
1 1o -1 0o oflo o s o
[59 ]_ 0 0 -1 ollo —s¢ o of (49
o 0o o -1{lo o o o

Thus we finally obtain the matrix form of the antisymmetric contravariant
tensor Q2™ as follows:

[m"k] -

For an arbitrary infinitesimal rotation, the contravariant tensor §Q" has a
more complex form compared to the simple matrix (14.70), but it is always
an antisymmetric tensor. Thus we always have

(14.70)

cooo
ooo
|
co o
cooco

8Q™* = —8Q"  (k,n=0,1,2,3), (14.71)

and the most general infinitesimal rotation of the coordinates is given by
the transformation relations

D =x" 48", 8" = 8Q%x. 14.72)

The most general infinitesimal rotation of four-velocity vector is given by
the following transformation relations:

Wt ="+ 8w, Su" = S uy. (14.73)

The Lagrange function of a particle L(x", ™) must be invariant with respect
to this infinitesimal rotation, i.e., we must have L = 0. Let us now cal-
culate the variation of the Lagrangian L with respect to the infinitesimal
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rotations (14.72) and (14.73), i.e.,

oL oL
6L = 5—;6 + 3 n5 = 0, (1474)
or
L= asz”" + : — Q™ u = 0. (14.75)
Substltutmg the equatlons of motion (14.2) into (14.75) we obtain
d [ dL oL
=™ | — | — —u | =0. 14.76
8L = 6% [ds (8u")xk+ Bu”uk] (14.76)

Using the definition of the energy—momentum four-vector (14.38) and the
definition of the four-velocity (13.34), we obtain

d dx d
SL = —8Q™ [ 5"xk +Ppn— dk] =% (652""pnxk) =0. (1477
Using here the antisymmetry of the tensor 8Q™  the Equation (14.77)
becomes

1

1 aM,
5L = ——asz""— (Puxi — prn) = 50Q*— nk

Tds

From (14.78), as a direct consequence of the isotropic nature of space-time,
we obtain the conservation law of the angular momentum tensor, i.e.,

=0. (14.78)

daM, aM,
d"" =0=> —™ — 0= M, = Constant. (14.79)
s
The spatial part of this conservation law for (n,k = 1,2,3), i.e.,
M = ¢"*Px,pg = Constant, (14.80)

is the usual conservation law of the three-dimensional angular momentum
vector.

» Chapter 15

iINSTITUTO DE FISICA

Electromagnetic Fields

BIBLLOTECA
JUAN B. DE OYARZABAL

15.1} Electromagnetic Field Tensor

The electromagnetic field in the four-dimensional space-time is described
by a four-vector

A" = A"(b), (15.1)

which is called the potential of the electromagnetic field. The temporal
component of this four-vector is defined by

¥ (x5

c

AY = (15.2)

where ¥ (x*) is the electric scalar potential. The three spatial components
of this four-vector,

A% = A%y, (15.3)

constitute the so-called magnetic vector potential. Thus we may write
n 1
A = _‘(/f’AX7Ay7AZ
c

1
Ap = gnkAk = {Zw, —Ax, —Ay, “Az} . (15.4)

135
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The action for a particle with mass m and charge g moving in the
electromagnetic field defined by A™ (x*) is then given by

1=1Is+1Ip, (15.5)

where Is is the action for a free particle given by

Sp
I =—mcf \/ gkntkunds, (15.6)
S 5,

and Ip is the action describing the interaction of the charged particle
with the electromagnetic field defined by the four-vector A™(x*). The
simplest invariant action that can be constructed using four-vectors A" (x¥)
and ", describing the electromagnetic field and the motion of the particle,
respectively, is given by

AY:] Sp
Ip = —61/ gknAku"ds = —q[ Anuds. 15.7)
Sa S,

A

Substituting (15.6) and (15.7) into (15.5) we obtain

Sp
I = —/ (mc,/gk,,uku" + qAnu”) ds. (15.8)
s,

A

The Lagrangian of the charged particle moving in the electromagnetic field
defined by A”(x¥) is then given by

L = —mc/ gtk — qAnu”. (15.9)

Using (15.9) we obtain
oL 0A, ,
P P L (15.10)
and
d (9oL d
— | — } = —— (mcwy + qAy) . (15.11)
ds (3uk) ds (met + gdi)
Substituting (15.10) and (15.11) into the Lagrange Equations (14.2) gives
d 0A, ,
— Ar) = g—u", 15.12)
75 ek + qAik) = g u (
or
duk aAn aAk) n
=gl —-= . (15.13)
" T 1 (axk axn )
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In (15.13) we define the covariant electromagnetic field tensor Fy, as
follows:

_ 04, 0A;
T axk axn

By definition (15.14), the covariant electromagnetic field tensor Fy, is an
antisymmetric tensor and it satisfies

Fin = 0rA, — OpAy. (15.14)

Fin=—Fu (k,n=0,1,2,3). (15.15)

Substituting (15.14) into (15.13) we obtain the equations of motion of a
charged particle in the electromagnetic field

duk

— = qFpu". .
me— = = qFiau (15.16)

Using the definition of four-momentum py = mcuy in (15.16), we may
write

4
% = gFinid". (15.17)

Let us now demonstrate that the three spatial Equations (15.17) in the
three-dimensional vector notation are equal to the well-known expression
for the Lorentz force. Equation (15.17) for the three spatial components
(¢ = 1,2, 3) has the form

. ,
e o qFani™ = qF 01 + qFpuP. (15.18)

ds
Using here (13.37), (13.39), and (13.40), we obtain
d
%‘" = gcFa0 + qFapVP. (15.19)

We then define the three-dimensional electric field vector denoted by

E, and the three-dimensional magnetic induction vector denoted by B as
follows:

E, E®
FaO = _a" Fao =
C (5
Faﬂ = —eaﬂvBDa Fuﬂ = _edﬂva, (15.20)

where
{Ea} = {ExyEy’ Ez}’ {Ea} = {~E,, '“Ey’ —Ez}

15.21
{Ba} = {Bx’By’Bz}y {B.} = {—B;, —‘By’ —B.}. ( )
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Substituting (15.20) into (15.19) we obtain

-‘{-jpt—“ = gEq — geap,VPB". (15.22)
Using here py ={—Px, — Dy, —p.t, V= {v, vy,vz} and the expres-
sions (15.21) for the components of the vectors E and B, Equation (15.22)
gives

dj

- ‘(%{ =—qE; —q (Vsz - Vsz)
d

~ = —qEy — q (v:Bx — wBy) (1523)
d

- '% = —qE; — q(vxBy — vyBy).

Thus we obtain the familiar expression for the Lorentz force in the three-
dimensional vector notation, as follows:

dp s L=
?I: =gE + 4 x B. (15.24)

Using the definitions (15.20), the covariant electromagnetic field tensor
Fy, can be written in the following matrix form:

0 Ex/c Ey/c E;/c
—Ex/c 0 -B; By

[(Fin] = _Ejc B, 0 -B (15.25)
—E;/c —By B, 0
The mixed electromagnetic field tensor F ,’§ is given by
F¥ = g¥Fi,  (j,k,n=0,1,2,3). (15.26)
and can be written in the following matrix form:
0 Ey/c Ey/c E;/c
F= = | o b (1527)
E;Jc B, —B. O
The contravariant electromagnetic field tensor F*" is given by
=g9Fg" = Fig"  (j,k,,n=0,1,2,3), (15.28)
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and it can be written in the following matrix form:

0 —Ec —Eyjc —Ejc

EJc 0  -B B

Fkn — Fk In — X Z y

[F*] = [FF1lg™ Ejc B, o s (15.29)
E;/c —B, B 0

As the next step, let us now calculate the electric field vector E in terms of
the potentials of the electromagnetic field (15.1). By definition (15.14) of
the tensor Fy,, we have

0Ag 0Aq
Ea = CFa() = (5x—a‘ - —8;6) . (1530)
Using now ¥ = cAg and x° = ¢t we obtain
Ay JA,
Ey=—— .
« =23 Py (15.31)
or
oy  3A“ A%
E* =g = — —— = (grad ¢y)* — —. 15.32
8055~ 5, = (Ead ) — — (15.32)

The contravariant components of the four-dimensional gradient of a scalar
function  are given by

kna_'p__{la'/f

e Py —grad, ¥, —grad, ¥, —grad, w} (15.33)

Using (15.33_) for (¢ = 1, 2, 3), we obtain the relation between the electric
field vector E and the potentials of the electromagnetic field (15.1), in the
three-dimensional vector notation

- oA

E = 5 grady. (15.34)

Let us now calculate the magnetic induction vector B in terms of the

potentials of the electromagnetic field (15.1). By definition (15.14) of the
tensor Fp,, we have

Fap = daAp — 9pAa = (5385 — 8555 ) 8 Ax

(15.35)
= evaﬂe”‘”aaAt = eaﬂve"‘”aaA, = —eaﬂ\,Bv
where we have used the identity (10.45) in the form
eyape’’t = 5:6; - 8%8;. (15.36)
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From (15.35) we obtain
B = —¢"773,A;. (15.37)
Using (15.37) and the definition of the curl of the vector A, we may write
a(—A,) 3(-Ay))7| 094, 094, -
B, = — — = — — — =curl, A
x [ 3y oz | ay 8z oM
3(—Ay) 3(-Ap)T 0Ax 04, -
By = — - =— - —=culA
Y [ 4z ox | 9z ax oy
I(-A 9(—Ay) ] 94 3A -
B, =— (=4y) _3CAD] _ 94y 0Ac curl,LA.  (15.38)
x ay | 0x dy

Equations (15.38), written in the three-dimensional vector notation give
B = curlA. (15.39)

The result (15.39) is the familiar relation between the magnetic induc-
tion vector B and the magnetic vector potential of the electromagnetic
field (15.3).

The temporal zeroth component of Equation (15.16) gives

d
mcz—u9 = qcFoqu®, (15.40)
ds
or
d mc? d mc? 5
bt DL L A = gcFo®. (1541
a\ 2| a|\ o T (15.41)

=K gE . (15.42)

Equation (15.42) is the statement that the change of the kinetic energy £k of
a charged particle in the electromagnetic field is equal to the work done by
the electric field E. The work done by the magnetic field is identically equal
to zero, since the force of the magnetic field gv x B is always perpendicular
to the direction of the velocity v.

5.2| Gauge Invariance

From the result (15.24) we see that, by measurements of the forces acting
on a charged particle in the electromagnetic field, we can measure the
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components of the three-dimensional electric field vector E and the three-
dimensional magnetic induction vector B. Thus the components of the
electromagnetic field tensor are observable physical quantities that are
uniquely defined. On the other hand, the components of the potential of the
electromagnetic field (15.1) are not uniquely defined. From the definition
of the electromagnetic field tensor (15.14) we see that its components are
invariant with respect to the gauge transformations of the potential of the
electromagnetic field:

- 3
A=A+ 22 (15.43)
axn
where ¢ is an arbitrary scalar function. Substituting (15.43) into (15.14),
we obtain

- 0A, 0Ar 04, 0A;

Fon = "o "ok o e (15.44)
Thus we need to impose an additional condition on the components of the
potential of the electromagnetic field in order to make it more precisely
defined. Such a condition is usually called the gauge condition or simply
the gauge of the theory. In relativistic electrodynamics the most commonly
used gauge is the Lorentz gauge, which requires that the components of
the potential of the electromagnetic field satisfy the equation

A, 9A" 3A0  jA“ - 1oy
=— =divA + —— =0. 15.45
x, x  9x0 + ox® va+ 2 ( )

When the Lorentz gauge (15.45) is adopted, then using (15.43) we obtain

A, DA, 3%

0x, Ix, annax” ’

(15.46)

As both potentials A(x*) and A(x*) satisfy the Lorentz condition (15.45),
the arbitrary function ¢ (x*) must satisfy the wave equation of the form
32%¢ 2 1 8%¢

- P = — a2z = 0. (15.47)

Thus ¢ (x*) is no longer an arbitrary scalar function but a solution to the
wave Equation (15.47). It should be noted here that, even when we impose
the Lorentz condition (15.45), the components of the potential of the elec-
tromagnetic field are still not uniquely defined and only the class of the
allowed gauge transformations (15.43) is significantly reduced.
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|- Lorentz Transformations and Invariants

The potential of the electromagnetic field A¥, as a four-vector, transforms
with respect to the transformations from one inertial system of reference
to another according to the transformation law

A = AkA™ (k,n=0,1,2,3), (15.48)

where AF are the components of the energy—momentum tensor in the
inertial system of reference K, while A” are the components of the
energy—-momentum tensor in the inertial system of reference K’ moving
along the common x-axis with a velocity V with respect to K. Using here
the explicit form of the tensor Aﬁ given by (13.29), we obtain

Y=
Ay = —— (A; + Zzw’) (15.49)
J1-% ¢

I The transverse components of the vector A remain unchanged, and only the
longitudinal component is affected by the transformation from the inertial
I system of reference X to the inertial system of reference X', moving along
the common x-axis with a velocity V with respect to K.

The electromagnetic field tensor Fy, transforms from one inertial system
' of reference to another, according to the law

Fj=AfAF, (ki Ln=0,1,2,3), (15.50)

where Fj; are the components of the energy—momentum tensor in the
inertial system of reference K while F; are the components of the
energy-momentum tensor in the inertial system of reference K’ moving
along the common x-axis with a velocity V with respect to K. Using here
the explicit form of the tensor Aﬁ given by (13.29), we obtain

Fou = ASATF, = ASALFY, + ALADF),
Fop = AEATF, = AJAZF), + ALAZF,
Fo3 = AEALF,, = AJASF), + AJA3F;,
Fay = ASASF,, = AZAYFS,

Fy = MATF, = MALF, + A3AOFS,
Fio = MXASF, = ALAZF, + ASASF),.

(15.51)
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Introducing here the notation

! = 2(1 v2)—1 (15.52)
y— 1__V~2 V C2 — 1> .
(:2
we may write
1%
A=Al =y, Aé:A?:;y, AZ=A}=1. (15.53)

Substituting (15.53) into (15.51), we obtain
2
For=y2(1- %) Fyy = Fyy
Fop = yFo+ 5vFi,

Fos = yFig + ¢y Fiy
Fp3 =Fp,

(15.54)

Py =yFy + ¢vFy
Fi = yFiy + ¢vFpy.

Now, using the explicit form of the tensor Fy, given by (15.25), we have

y
15.55
BB (15.55)
By =y (B; + %Eg)
B, =y (B~ %E})

Thus, we finally obtain the transformation laws for the three-dimensional
electric_field vector E and the three-dimensional magnetic induction
vector B in the form

, E, — VB, E,+ VB,
Ex=E, Ey=—2—"% E=-‘“_2 (15.56)
1= ¥ 1 =¥
c c
B + Z‘E, B — XE/
B,=B, B=2_—_¢* pg=_°‘ < (15.57)
1-¥ 1= ¥
C C

The longitudinal components of the vectors E and B remain unchanged,
and only the transverse components are affected by the transformation from
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the inertial system of reference K to the inertial system of reference K,
moving along the common x-axis with a velocity V with respect to K.

In order to find the invariants of the electromagnetic field, following the
discussion leading to Equation (7.5), we write the secular equation for the
electromagnetic field tensor in the form

det (F* — 285y =0, (15.58)

where A is by definition a scalar invariant. Using here (15.27) and
introducing for simplicity a vector ¢ = E/c, we obtain

—A ex ey e
ex —A B, -B,
ey —B, -\ B,
e, By, —B, -\

=0. (15.59)

Expanding the expression (15.59) and adding together the terms of the
same order in the scalar parameter A, we obtain

— AM~A(A* + B2) — B,(AB; — B:B,) — By(B,By + ABy)]
— ex[ex(x? + B2) — B(—Aey — Bye,) — By(—e,By + Ae;)]
+ eylex(AB; — ByBy) + A(—Aey — Bre;) — By(eyBy + ¢,B;)]

— ez[ex(B;Byx + ABy) + A(—eyBy + re;) + B (eyBy 4 ¢;B;)] = 0 )
: (15.60

or
A*+A2B2 + A2B? — ABB,B; + \”B? + AB,B,B,
— )»zei — eiB)% — AexeyB; — exBre;B; — eyByeyBy + AeyBye,
+ AexeyB; — exByeyBy — )\263 — AByeye; — e%Bi ~ eyBye;B;

— exBre,B, — AexBye, + AByeye, — A%e’ — eyBye, B, — €2B2 Tlg'a)

After regrouping and cancellation of all terms equal in magnitude but with
opposite signs, we obtain

2p2 2p2
M 422 (B2 4+ B2+ B2 — 2 — & — &) — (2B + €2B2

+€2B2 + 2e:B,0,By + 2exBre B, +2e,Bye.B,) =0.  (15.62)
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In the three-dimensional vector notation, (15.62) becomes

MEA2B2—et) - @-B)? =0, (15.63)
Using here 2 = E /c, we obtain
E2\ (E-B\
A 422 (32 - —2) - (—) =0. (15.64)
C C

Equation (15.64) can also be written in terms of the electromagnetic field
tensor Fy, as follows:

1 1. 2
PRENE (-Z-Fk,,F"“) - (gefkl”ijFl,,) =0. (15.65)
Since A is an invariant absolute scalar, the quantity
1 kn 2 E2 :
EFk"F =B — — = Invariant (15.66)
C

is an absolute invariant of the electromagnetic field. The quantity

- -

1. E-B
geﬂd" FyFp = — = Relative invariant (15.67)

is a relative invariant, since B = curl A is a relative axial vector. How-
ever, from (15.65) we see that the square of the quantity (15.67) is also
an absolute invariant of the electromagnetic field. These are the only two

scalar invariants that can be constructed using the electromagnetic field
tensor Fp,.
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» Chapter 16

Electromagnetic Field
Equations

16.1] Electromagnetic Current Vector

Let us consider a system consisting of a number of charged particles moving

in an electromagnetic field specified by the electromagnetic potential four-
vector

An =A% (k,n=0,1,2,3). (16.1)

As the action of the system is an additive quantity, the total action of the
interaction between the charged particles and the electromagnetic field is
a sum of terms (15.7), given by

SB
Ip=-) qu f Andx", (16.2)
M 54

where M is just a label for the Mth particle and not a tensor index. An
explicit summation sign is therefore required in Equation (16.2). In elec-
tromagnetic field theory it is usually assumed that there is a continuous

distribution of charges in three-dimensional space, with the charge density
defined by

d
oo 94

= 16.3
dV’ ( )

147
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where the differential 4V is an infinitesimal volume element of the three-
dimensional space. In such a case Equation (16.2) can be written as follows:

0
fadV/ A, Eﬁ—. (16.4)
Sa

Let us now introduce the four-dimensional volume element, defined by
the expression

d2 = d® dV = dx® dx' dx? dx>. (16.5)

Since four-dimensional space in the special theory of relativity is a pseudo-
Euclidean space, the four-dimensional volume element (16.5) is a scalar
invariant. Substituting (16.5) into (16.4), we obtain

1 dx"
lp=—- —A,dQ. 16.6
o=—7 [ oG 166)
Since the action integral (16.6) and the four-dimensional volume element
(16.5) are both scalar invariants and A, is a covariant four-vector, the system
defined by
dx" ’
J'=0—, (16.7)
dt
is a contravariant four-vector called the electromagnetic current vector.
The temporal component of the four-vector (16.7) is proportional to the
charge density o and is given by

J'=co. (16.8)

The spatial components of the four-vector (16.7) constitute a three-
dimensional current density vector. It is the flux of the charge g through
the element of the surface IT that surrounds the volume domain V of the
three-dimensional space in which the charges are distributed.

43 q

J =0V = i (16.9)

The components of the electromagnetic current vector can therefore be
structured in the form

I = {co, Jx, Iy, T2}

In = gud* = {co, —Jx,—Jy, —T;} (16.10)
Substituting (16.7) into (16.6) we obtain
1
Ip= —lf T A, dQ = —f LodQ, Lo=-J"An,  (16.11)
cJa clJa
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where Lo is the interaction Lagrangian density. Because of the
electric-charge conservation law, the charge density o and the current
density J satisfy the continuity equation. According to the electric-charge
conservation law, the negative increment of the electric charge ¢ within a
three-dimensional volume V is equal to the total flux of electric charges
through the boundary surface IT of the volume V in the unit of time. Thus
in the three-dimensional vector notation, we may write

d

= adV:/ J-dTl. (16.12)
dt 1 n

Using the three-dimensional Gauss theorem and regrouping, we obtain

) .
/(—U+divJ)dV=O. (16.13)
v \ ot

From (16.14), we obtain the differential continuity equation in the form
‘ 3 A
3—‘; +div] =0. (16.14)
In tensor notation, the result (16.14) becomes
aJ"

ox"

The continuity equation (16.15) is therefore related to the conservation law
of the total charge in the entire system, defined by

1
q=/adV=—/JOdV, (16.16)
\%4 cJv

where V is the entire available volume of the system. Since there is no flux
of electric charges through the boundary surface IT of the volume V of the
entire system, the surface integral in (16.12) vanishes and we see that the
time derivative of the quantity (16.16) is equal to zero.

=0 (n=0,1,2,3). (16.15)

Maxwell Equations

The objective of this section is to derive the differential equations satisfied
by the electromagnetic field tensor and its components. From the definition
of the electromagnetic field tensor (15.14), i.e.,

0A, 0Ag
axk  xn

Fi, = = kA, — Ak, (16.17)
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we see that it satisfies the cyclic equation
3ijn + OpFjx + 0 Fnj = 0j0rAp, — 0j0nAx

(16.18)
+ 3,0jAK — 0n0kAj + 3kanAj — Ox0jAn = 0

Thus the first differential equation satisfied by the electromagnetic field
tensor is ]

aF  OFy  OFy _

axi | oxn  axk
When all three indices j, k, and n are equal to each other (j = k = n),
Equation (16.19) is a trivial identity since Fg, = 0 for k = n. When two
of the indices j, k, and n are equal to each other (j = k orj = nor k=n),
Equation (16.19) is also a trivial identity due to the antisymmetr}f of the
electromagnetic field tensor F, = —Fyu. The only equations pf interest
are the four equations obtained for j # k # n. Thus we may write

aFy  0Fyp  0F12 _

0. (16.19)

ax2 dx! ax0 0

0Fy dFyp dF13 0

ox3 axl 8x0 (16.20)
3Fp | OFy  9F2 _ 0

ax3 ox2 ax0

F;p  0F3 | 0F2 —0

ax3 dx2 axl
Using here the components of the covariant electromagnetic field tensor
(15.25), we obtain
0E, OE, 0B,
9y ox | or
0E, O0E; 0B,
9z ox | ot
dEy, OE; 0Bx
Bz oy | ot
0B, 9B, 9B
0z ay ox
In the three-dimensional vector notation the result (16.21) gives. the first
pair of Maxwell equations, ie.,

-

curll E + %—B =0, divB=0. (16.22)
t

- (16.21)

=0.
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Thus Equation (16.19) is the four-dimensional form of the first pair of
Maxwell equations.

In order to derive the second pair of Maxwell equations we need to define
the action of the electromagnetic field. The total action for a system consist-
ing of a continous distribution of charged particles in the electromagnetic
field is given by

I=1Is+1Ip+ I, (16.23)

where Iy s the action for the free particle distribution that does not include
the electromagnetic fields or potentials. Its explicit form is therefore not
needed in the present section. The term Ip is the action describing the
interaction of the charge distribution with the electromagnetic field and it
is given by (16.11). The term IF is the action of the free electromagnetic
field that is an integral of an invariant scalar function called the Lagrangian
density L over the entire three-dimensional volume V in the time interval
[#4, tg]. Thus the action of the electromagnetic field is of the form

g 1
1p=/ Lr(Ap, Ay dV dt = —/ Lr(Ap, 0An)dQ2.  (16.24)
\4 c Jo

7}

The invariant Lagrangian density function £r cannot depend on the poten-
tials A, as they are not uniquely defined. It may only depend on the
space-time derivatives of the potentials d;A,, or in other words on the
electromagnetic field tensor Fj,. Thus we may write

1 1
Ip =~ f Lr(OkAn) d2 = ~ f LF(Frn) dQ. (16.25)
cJo cJa

Furthermore, because of the linearity of the electromagnetic field equations,
the invariant Lagrangian density function Lr must be at most a quad-
ratic function of the electromagnetic field tensor. The only field invariant
that satisfies this condition is given by (15.66). The invariant Lagrangian
density Lr is therefore given by

1
LrFin) = —mF""F;m = ~ 5 (16.26)

The invariant (15.66) can be multiplied by an arbitrary constant, and we
have chosen this constant to be equal to (—2449) ™! in order to secure the cor-
rect physical dimensions. In (16.26) the quantities 1o and €g = (noc?)™!
are the vacuum magnetic permeability and the vacuum electric permitivity,
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respectively. Substituting (16.26) into (16.25) we obtain

1 tg E2 B2
Ir = — / FFi,dQ = / / (60— - —) dvde. (16.27)
deuo Jo vy 2 240

Substituting (16.11) and (16.27) into (16.23) we obtain the total action of
the system in the form

1 1 1
I=Ig— — / ([L()JnA,, + —F""F;m) dQ = ~ / L£dQ. (16.28)
cuo Jo 4 cJa

During the derivation of the equations of motion of a charged particle in the
electromagnetic field (15.16) in the previous chapter, we assumed that the
electromagnetic field is defined by four given functions forming the four-
vector A, = A,(xF). We have therefore only varied the Lagrangian (15.9)
with respect to the quantities describing the motion of the particle, i.e.,
the space-time coordinates x* and coordinates of the four-velocity #*. On
the other hand, in the present derivation of the electromagnetic field equa-
tions, we assume that the motion of the charged particles or a continuous
distribution of charges in space is defined by given space-time coordinates
x* and coordinates of the four-velocity uF. We will therefore calculate the
variations of the action (16.28) with respect to the quantities describing
the electromagnetic field, i.e., the electromagnetic potential four-vector A,
and the electromagnetic field tensor Fi,. Thus the variation of the first term
in (16.28) is zero and this term does not contribute to the derivation of the
electromagnetic field equations. It can therefore be omitted from the action
of the system. Furthermore, the electromagnetic current four-vector J”, as
a function of a given charge distribution and its motion in space, is also not
varied. The variation of the action (16.28) is then given by

s1=1 f $£dQ2 =0, (16.29)
cJQ

with
1
L (An, RAn) = —J"A, — —FFFy,,. (16.30)
4po
From Equation (16.29) we may write

1 oL ol
8 = — —38A —8 (A dQ =0. 16.31
c /Q [aAn "t 3 @ean° ")] 163D
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Since we have §(3;A,) = 9;(84,), we may write

1 oL aL
== | == g | 22
c fn {aAn * [ 9 (akAn)] ] HAnds2

+1/a[ L sa,la=0
2 )% Ty |42 =0. (16.32)

Applying the Gauss theorem to the second integral on the right-hand side
of Equation (16.32), it is reduced to the integral over the hypersurface that
encloses the given domain 2 of the four-dimensional space-time. On the
other hand, the variation of the electromagnetic field variables is assumed

to be zero on the boundary of the domain 2, and this integral vanishes.
Equation (16.32) then becomes

31—1/{35—3[ oL 84,dQ =0
A e e nd2 =0, (16.33)

Since the variation A, is arbitrary, from (16.33) we obtain the electromag-
netic field equations in the following form:

oL — Ok [—aﬁ—] =0. (16.34)
3An 3(3kAn) '
Now, using the expression (16.30), we obtain
9L ==-J", (16.35)
04,
and
oL 0L 3F; aL 3

= 9F, = — ———(3;A; — 3/4;
3 (0kAn)  BFj 8 (3kAn) aFﬂa(akAn)(J 1= 8147

_E(ajgca;._af }’)= L L _dL

= - =2
0F; OFy, OFy 0F,
0 1 . 1 9 )
=2 —— FF, =_~*( il g,
3F ( 410 ”) 200 0Fg \I Ff’)
1 ' 1 1
Z—‘Fﬂ 8k5n—6kn =___Fkn_ nk - kn
2u0 (J L ’) 2#0( 5 /LoF
(16.36)
Substituting (16.35) and (16.36) into the field Equations (16.34), we obtain
n 1
g (__F"") -0, (16.37)
Ho



154 Chapter 16 Electromagnetic Field Equations

or, after regrouping,

3Fkn N
=pgd" (k,n=0,1,2,3). (16.38)
dxk
The temporal component of Equation (16.38) gives
O 1 N
LA ~divE = ugt® = poco, (16.39)
ax% c Ix¥ c
or
L7 2 g
divE = uoc o = = (16.40)
The three spatial Equations (16.38) give
dFO*  JFhe
— 4 —— = uoJY, (16.41)
530 T axf O
or
1 9E® Baw9Bow _i?fi L

= _— = o, 42
IR i R Tl

In the three-dimensional vector notation Equation (16.42) is given by
L 19E 5
- —=— = uJ. (16.43)
curl B 297 Lo
The Equations (16.40) and (16.43) are the second pair of Maxwell equa-

tions. Thus the complete system of electromagnetic field equations in the
four-dimensional notation is given by

dF, OFy 0Fy aFt o (16.44)
ov o T axk 0 ek MY
with the continuity equation
n
g’ 0. (16.45)
X

The four-dimensional formulation of Maxwell Equations (1.6{14) with
(16.45) is quite compact and it nicely emphasizes the relativistic nature
of these equations.

I Electromagnetic Potentials

The objective of the present section is to formulate the differential equa-
tions for the electromagnetic potentials A, = A,,(xk) and to outline
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their solutions. In order to derive the differential equations for the
electromagnetic potentials, we substitute the definition of the electromag-
netic field tensor (15.14) into Equation (16.38). Thus we obtain

(A" — 97Ak) = 8,8%A™ — 379, AF = pot". (16.46)

Using the Lorentz gauge (15.45), the second term on the left-hand side
vanishes, and we obtain the differential equation for the potentials of the
electromagnetic field in the form

924"
nga—x—k‘ = /,L()Jn. (16.47)
By expanding Equation (16.47) we obtain
1 924"
Rl V24" = poJ”. (16.48)
or
1 824"
VA"~ 5 — =", (16.49)

The solution of this equation has the form

T — R x¥) -
Ko [T70C—RX) g,
4 Jy R
where the integral is over the domain V where the sources of the electromag-

netic field are distributed. The quantity R in (16.50) is the three-dimensional
distance between the position of the sources and the position where the

potential is calculated, i.e.,
R =/|x* —x¥|2. (16.51)

Thus, for a given electromagnetic current four-vector J”(x¥), we can
calculate the electromagnetic potential four-vector A™(x*) using the

result (16.50). The electromagnetic field tensor is then obtained using the
definition (15.14).

ARy = (16.50)

Energy-Momentum Tensor

We have shown earlier that the momentum conservation law is a con-
sequence of the homogeneity of space and the energy conservation law is a
consequence of the homogeneity of time. In the four-vector language, due
to the homogeneity of space-time, the physical properties of a free field

-~
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remain unchanged with respect to the space-tirpe trans}ations. Tjhus, .the
energy—momentum tensor of the electromagnfatlc field is a ﬁeld'mvanant
defined with respect to the space-time translations. The Lagrangian of the
free electromagnetic field is given by (16.26), i.e.,

1
L (Fin) = LF (Fn) = _%FMF""' (16.52)

Furthermore, it is assumed that there are no sources of the‘ electromagnetic
field, i.e., that the electromagnetic current four-vector is equal to .zero,
J" = 0. Thus the interaction Lagrangian L¢, defined l?y (16.11), vanishes.
The second pair of Maxwell Equations (16.38) then gives

In order to define the energy—momentum tensor .of the electromagnfftic
field, let us first calculate the space-time derivatives of the Lagrangian
density £ as follows:

aL aL 16.54)
= —8Aj + ——— 0 (%A4)). (16.
I 3A; T 3(3eAy) /
Using the electromagnetic field Equations (16.34), we obtain
aL aL 6.55)
= | 0pAj + ——— % (344)), (16.
= [a(akA,-)] Wt Sy Y
or
aL
= ———34j | . (16.56)
anﬁ 3k |:3 (akAj) n ]}
On the other hand, by definition we may write
3L =85 L. (16.57)
From (16.56) and (16.57) we obtain
EM —M——a,,Aj - 354 = TF =0, (16.58)
3(dka))

where T is the mixed energy—momentum tensor of the electromagnetic
n
field, defined by
k AL

_ 8., — 8L (16.59)
" 3(3kA))
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Substituting (16.36) and (16.52) into (16.59) we obtain
Tk = —iF"fa,,Aj + %Sﬁlfﬂﬁ};. (16.60)
The result (16.60) can be put into a more convenient form by writing
FY8,4; = F¥(3,4; — 3,4,) + FY3;A,, (16.61)
or
FY3,A) = FF,; + 8(FYA,) — A,0F9. (16.62)

The third term on the right-hand side of Equation (16.62) vanishes because
of the result (16.53). The second term on the right-hand side of Equa-

tion (16.61) makes no contribution to the conservation law (16.58), since
we have

W (FYA,) = 8,8,V¥ = 0. (16.63)

The expression (16.63) vanishes as a product of the symmetric tensor 09
and the tensor V! that is antisymmetric with respect to its two upper indices.
Thus the second term does not contribute to the field invariants
obtained from the energy-momentum tensor (16.60). Therefore we may
replace F¥ d»A;j by F kjF,,j in (16.60) to obtain the final result for the
eénergy-momentum tensor of the electromagnetic field in the form

| 1 ;
T = —__Fhip . — Skpilp. 16.64
" wo Tt dpo ™ (106

The contravariant energy—momentum tensor is then given by

1 . .
T = —-M—F"’F}' + g F'Fy, (16.65)
0

and the covariant energy—momentum tensor is given by
T = ~iFan- + Lg,,kpﬂp-,. (16.66)
wo XY T ap, !

Using the differential form of the energy—momentum conservation law
(16.58), we may write down the integral form as follows:

i 1 f a1 5
W T™dV = — dVv + 0. TFP%dV = 0. (16.67)
v v ot v

C
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Applying the three-dimensional Gauss theorem to the second integral in
(16.67), we obtain

1d
f WT™*dvV = —— [/ T"OdV] +7§ TP dm, =0 (16.68)
v cdt v mn

where IT is the closed surface surrounding the volume V. If we let the
field domain V grow to infinity (V — 00), the surface integral in (16.67)
vanishes and we have

a1 dp”
WT™*ay = — —/ T"OdV] = =0. 16.69
/V k dt[c v dt ( )

Thus we obtain the definition of the conserved energy—momentum vector
of the electromagnetic field:

C

1
pt=- / T 4V = Constant. (16.70)
v
The energy of the electromagnetic field is then
E=cp’= / T gv, (16.71)
v

and the components of the three-dimensional momentum of the electro-
magnetic field are given by

1
p% = - f T%° 4V = Constant. (16.72)
cJy

In order to calculate the energy (16.71) we first use (16.65) with (16.27)
to calculate

1 €@F? B?
70 — _ — Ol (2 — ). 16.73
Ho ¢ ( 2 2w ( )

Using the definitions of the mixed and contravariant electromagnetic field
tensors, (15.27) and (15.29), respectively, we obtain

qo__1( E e0E2_B_2)
T omo\ & 2 2uo

€0E2 B?
= oE? — —-——, 16.74
€0 ( 2 211«0) ( )

or
TOO GOEZ B2

— 16.75
BT ( )
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Substituting (16.75) into (16.71) we obtain the expression for the total
energy of the electromagnetic field,

5~/ (€°E2+ B )dV av
AT a0 )= fv edv, (16.76)

where ¢ is the electromagnetic energy density given by
2 2
g=70_ 07 B
2 210
In order to calculate the momentum ( 16.72) we first use (16.65) with 16.27)
to calculate

(16.77)

1 o €E? B?
T"‘°=—‘F°1F?‘— a0 (_9____
s T -8 > 2] (16.78)
Using g*0 = 0, we obtain
1 1 1
TaO - FOﬂFa — _ FOﬂ FYe — _ 0 o
—#0 i Tl«o 8pv _ILO F,F%. (16.79)
Using (15.20) in the form
0 1 va vew .
F, = —;E,,, F™ = —¢"**B,,, (16.80)
we obtain
1 1
TotO - _ vaw — oV
_C,U«oe E,B, +——CM0e E,B,. (16.81)

Here, using the notation D = Goﬁ' and (cuo) ™! = cep, the result (16.81)
becomes

7% = ¢(D x B)~. (16.82)

Substituting (16.82) into (16.72) we obtain the expression for the total
momentum of the electromagnetic field:

p= / D x Byav = f Pav, (16.83)
14 1%
where P is the electromagnetic momentum density given by
= 1 0 = =
P= ;T =D x B. (16.84)

In order to calculate the spatial components of the electromagnetic
energy-momentum tensor in terms of the three-dimensional electric field
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vector E and magnetic induction vector B, we use F¥ = —F/* and (16.26)
to rewrite the definition (16.64) as follows:
1 . 1
k=_ F-ij—-—Sk Z_BZ]
Tn ®o |: Y 2% )

1
_ 1 [@f, — 8k - BZ)] , (16.85)

Ho 2

where we introduced the vector é=E/c and the tensor ©X =F,;F/*
to simplify the calculations. The contravariant electromagnetic energy—
momentum tensor is then given by

Tnk — gn]r]k — i [@"k — _;.g”k(ez - B2):| (16.86)
Ko

We can now use the matrix forms of the covariant and contravariant elec-
tromagnetic field tensors, (15.25) and (15.29), respectively, to calculate the
components of the tensor ©F:

0 ex ey e; 0 —ex —ey —g
o = —-e 0 —-B, B ec 0 -B, B
[H]=|= 5 o Bl|e B o A
—e; —B, B, 0 e, —By, By 0
" &2 eyB; —e;B, e;By — exB; exBy—eyBy

—eyB, +e.B, €2 — B} — B exey+B:By exe;+B:B;
—e:Bx +e:B; eyex +ByB; €2 — B2 —B. eye;+ BB,
| —exBy +¢,Bx eex + BB ee,+ BB, > —B:-B2
¢? @ x B)x ¢ x B), @ x B),
—(@ x I§)x e + BJZt - B? exeéy + BB,  exe; + B:B;
—(e x E)y eyex + ByB; eg + Bg —B?  eye;+ ByB,
| @ x B), eex+ BB, e;ey + BB, e+ B2 —B?
(16.87)

The spatial part of the tensor @ is then given by the following matrix:
e,ZC + B,zc - B? exey + BBy exe; + BB,
[@g] = | eyex+BB: 2 +B2—B2 eye,+ BB, |. (1688)
e.ex + BB, ey + BBy e? + Bg —B?
The contravariant components of the three-dimensional system (16.88) are
obtained from

0°F = ghr @, (16.89)
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or, in the matrix form,

—ef - B% + B? —exey — ByBy, —eye, — B,B,

[0/] = | —eyex —ByB.  —€2 B2+ B* —eye, — BB,
—ezex ~B:Bx  —eey—B.B, —e¢!—B2+B?
(16.90)
From the matrix (16.90) we obtain
0% = %P — p*pP _ guPp2
E“EB
=——>— —B*Bf — g*fR2, (16.91)
C

Substituting the result (16.91) into the spatial part of Equation (16.86),
we obtain

1 1
Totﬂ — E [_eaeﬂ _BaBﬂ _ gaﬂB2 _ _igaﬂ(ez _BZ)]

1 1

=—— [e"‘eﬁ + B*Bf + —g® (2 + 32)] ) (16.92)
M0 2

Thus we finally obtain the spatial spatial components of the electromagnetic

energy—momentum tensor in terms of the three-dimensional electric field

vector E and magnetic induction vector B, as follows:

T% — _7%F, (16.93)

where we define the Maxwell stress tensor T®F by the equation
(+75] o B 1 « pp ap 2 B 2
7% = E*EP + —B*BF + ¢ €@E -+ — ). (16.94)
Ko K“o

Using the results (16.77) with (16.84) and (16.93) we may write the explicit
matrix form of the electromagnetic energy—momentum tensor as follows:

e P P2 p3

ke pt g _g12 _gI3
[T ]= P2 _qn _gn2 o3
'P3 —T31 __7'32 _7—33

From the definition (16.94) we see that the three-dimensional Maxwell
stress tensor is a symmetric tensor. By examination of (16.95) we conclude
that the complete four-dimensional electromagnetic energy—momentum
tensor is also a symmetric tensor, i.e., we have

(16.95)

T =T T = Ty, (16.96)
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If the electromagnetic field is defined in a domain V with the boundary
surface IT, the expression

aTp
F* = / ——dV = ?f 7% drig (16.97)
y xP n

defines the force due to the electromagnetic field pressure on the boundary
surface IT.

Part IV

General Theory of Relativity




» Chapter 17

Gravitational Fields

17.1|. Introduction

The special theory of relativity discussed in the last four chapters is based
on the concept of inertial frames of reference. An inertial frame of reference
is defined as a system of reference where a free particle, i.e., a particle on
which there is no action of any external forces, moves along a straight line
with constant velocity. On the other hand, the gravitational interaction, as
one of the fundamental interactions in nature, is a long-range interaction
that cannot be screened. The concept of inertial frames of reference is,
therefore, not compatible with gravitational phenomena. The only way
to define an approximately inertial frame of reference is to visualize it
as being far away from any matter. Given the influence of the force of
gravity on the observations of various physical phenomena, both on Earth
and in the universe as a whole, the concept of inertial frames of reference
as a foundation for the formulation of the laws of nature is clearly not
sufficient. Since the force of gravity is an unscreened long-range force,
it can be considered as an intrinsic property of space-time and related to
space-time geometry. ‘

In the absence of matter we can define the inertial frames of reference
where the geometry of space-time is pseudo-Euclidean. The space-time
metric is then given by '

ds? = gudd*dx” = Pdi* ~ dx* — dy? — d’, 17.1)

165
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such that the components of the metric tensor gy, are constant and given
by the following matrix:

1 0 0 0
0 -1 0 o0
0 0 0 -1

In the presence of matter it is not possible to find the four space-time
coordinates » such that the metric of the space-time manifold is reduced to
the pseudo-Euclidean expression (17.1). Thus the geometry of space-time
in the presence of matter must be a pseudo-Riemannian geometry, where
the components of the metric tensor g, are functions of the coordinates x/,
i.e., we have

8n = 8a(x))  (j,k,n=0,1,2,3). (17.3)

The components of the metric tensor of the given space-time manifold
(17.3) can therefore be considered as the gravitation field potentials; and
the gravitational effects are described by the metric itself.

From (17.2) we note that the determinant g=—1 of the pseudo-
Euclidean metric tensor of special theory of relativity is a negative constant
number. In the general theory of relativity g = g(x') < 0is a negative defi-
nite function of space-time coordinates. In the ordinary positive-definite
Riemannian metric spaces, we have frequently used the function ,/g to
define the absolute tensors and invariants. In the pseudo-Euclidean and
pseudo-Riemannian space-times of the theory of relativity with g < 0, this
function is not a real function and it is generally replaced by /—g, which
is a real function. In the pseudo-Euclidean special theory of relativity we
have ./—g = 1, so the relative tensors and invariants were transformed as
the absolute scalars and invariants, and the explicit appearance of the factor
+/—g was not necessary.

In the presence of gravity it is not possible to reduce the metric of
space-time to the pseudo-Euclidean expression (17.1) in the entire space.
It is important to note that the gravitational effects are understood as a
deviation of the space-time metric from the pseudo-Euclidean metric (17.1).
The metric (17.3) is therefore a function of the local distribution of matter
as a source of the gravitational field and cannot be fixed arbitrarily in the
entire space. The metric tensor, as the gravitation field potential, is in this
context a solution of the gravitational field equations, which will be derived
in the next chapter.

Although we cannot transform away the gravity in the entire space, we
can select the local frames of reference falling freely in the gravitational
field where the gravitational effects are locally transformed away. In a
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small laboratory falling freely in a gravitational field, the laws of nature are
therefore the same as those observed in an inertial frame of reference in the
absence of gravity. The laboratory has to be small since the gravitational
fields are functions of coordinates and vary in magnitude and direction in
different points in space. The force of gravity can therefore be considered
as uniform and transformed away by a suitable choice of local frame of
reference only in a sufficiently small space domain.

Thus we are in most cases able to cover the space-time with a patchwork
of local inertial frames of reference. The concept of local inertial frames
of reference is very useful in the general theory of relativity.

Time Intervals and Distances

In the general theory of relativity, the choice of the generalized coordinates
used to describe the four-dimensional space-time manifold is not restricted
in any way. Thus the coordinates x/ are in general not equal to the distances
and time intervals between events in the same way as in the special theory
of relativity. Therefore, given a set of generalized coordinates x/, we need to
relate-these coordinates to the actual distances and time intervals between
the observed events.

In the general theory of relativity we denote the proper time by 7. Let
us now consider two infinitesimally separated events that take place at
exactly the same point in space. Then we have dx! = dx? = dx3 =0, and
we may write

2
ds? = gmdx*dx" = Pdt? = g (dxﬂ) . (17.4)

Thus we obtain the relation between the element of the proper time dt and
the coordinate differential dx° as follows:

1
dv = /500 dx®, (17.5)

or for the proper time between any two events occuring at the same point
in space,

1
T=- / V200 dx°. (17.6)

In the special theory of relativity the element d! of spatial distance is
defined as the distance between two infinitesimally separated events taking
place at the same time. In the general theory of relativity we cannot use
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this definition, since the proper time is a different function of coordinates
at different points in space. In order to find the element dl of the spa-
tial distance, we consider two infinitesimally close points A and B with
coordinates x’ and ¥ + dx/, respectively. Let us suppose that a light signal
is directed from point A to point B and then back from point B to point A
along the same path. The time required by the light signal to travel from
point A to point B and back, observed from one point in space and multi-
plied by ¢, is double the distance between the two points. For the two events
representing the departure of the light signal at one point and the arrival at
the other point, we know from (13.4) that the square of the interval ds* is

equal to zero. Thus we may write L:q‘\/! %
ds® = gndd’dx™ = goo(dx®)? + 2g0adx®dx® + gapdx®dx? = 0. (17.7)
The equation (17.7) is a quadratic equation with respect to dx0 and its
solutions are given by
B 20 dx® de +
800

1
@)1 = gTo‘/ (80eg0s — g008ap) dx*dxP.  (17.8)

The coordinate time required by the light signal to travel from point A to
point B and back is then given by

2
(@) — (@) =~/ (s0ug0s — 80gap) *dx.  (17.9)
800

Using (17.5) we obtain the proper time required by the light signal to travel
from point A to point B and back, multiplied by c, as follows:

edt = /g | (@) — (@x)-

2
= — 02808 — 8008 dx"‘dxﬂ. (1710)
= (802808 op)

Thus the spatial element dI between the two points A and B is a half of the
proper time interval (17.10) multiplied by c, i.e.,

1
dl = =cdr = [(—gus + M) dxdxP. (17.11)
2 800
Thus the square of the space metric dI? can be written in the form
AP = Yopdi®dxP  Yup = —gap + g";‘;"ﬁ. (17.12)

1t should be noted that the metric tensor g, in general depends on the time
coordinate. The space metric di? is therefore also time dependent, and in

Section 17.3 Particle Dynamics 169

general it does not make sense to integrate the element of the spatial distance
dl, as such an integral would depend on the world line chosen between the
two end points. Only when the metric tensor gy, is not time dependent and
the distance can be defined over a finite portion of space does the integral
of the element of the spatial distance dl along a space curve have a definite
meaning.

Particle Dynamics

In the special theory of relativity the motion of a free particle of mass m is
defined by the action integral (14.5). The action integral of a free particle
is simply proportional to the arc length in the four-dimensional space-time
manifold, i.e.,

Ss Sz | dyk dyn |
I= —mcf ds = —mc/ &in—— ——ds, (17.13)
Sa Sa ds ds

where m is a mass parameter of the free particle. From (17.13) we see that
the Lagrangian function is given by the expression

L = —mc/ gtk (17.14)

The equations of motion of a particle in the gravitational field are obtained
by variation of the same action integral (17.13), since the introduction of
the field of gravity is nothing but the change of the space-time metric to
a pseudo-Riemannian metric with a coordinate-dependent metric tensor
(17.3). On the other hand, except for the overall constant multiplier —mc,
the Lagrangian (17.14) is the same as the Lagrangian (11.14) used to derive
the geodesic equations (11.25). Thus we conclude that a free particle in the
gravitational field moves along the geodesic lines and that the equations of
motion are the geodesic equations (11.25), i.e.,

a2 it dk
a7 Tl gy = =0,1,2 17.15
dsz Ik dS dS 0 (k,l,n 0, 1, ,3) ( )
or
d n
% + Flnkuluk =0 (k!,n=0,1,2,3). (17.16)

In order to find the nonrelativistic limit of Equations (17.16), we first note
that the nonrelativistic limit (v << ¢) of the components of the four-velocity
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(13.39) and (13.40) is given by

o
W0 = ~l, W=~ L (17.17)
[

Thus the leading term on the right-hand side of the expression (17.16) is
the one with / = k = 0, such that we may write

n
d_d”_ =TI (1=0,12.3). (17.18)
A

For a static gravitational field with dpgoo = O, the only nontrivial equations
in (17.18) are the spatial equations

d—;; =-Th (@=123). (17.19)
Using (17.17) and the zeroth-order nonrelativistic approximation for the
differential of the parameter ds ~ cdt, we further obtain
1 a®
2 dr
Let us now recall the definition of the Christoffel symbols of the first kind
(9.28), ie.,

=-Tg (@=123). (17.20)

1 (98 dgpk 3gjp)
o _ 1 (o8 o8k %8p ) 17.21
e =5 (Bxp T e ok (17.21)

For a static gravitational field with dpgj, = 0, we obtain

1(3gko dgox 3800)_ 13800

_1 _ _ _ %80 17.22
P =31 50 T30 ~ ax 2 axk (17.22)

Now using the definition of the Christoffel symbols of the second kind
(9.29),i.e.,

1 dgki  Ogmx  0gj
no_ onkp, o Cnk [ 70K TOPX 7Ol 23
Tp =8 Thip =38 (3xP+ ax  oxt )’ (17.23)
we obtain

1 ;3800
Thy = g™ Thoo = —Eg"kak—-

The spatial components of Equation (17.24) give

(17.24)

1 %9800
o _ - ak9800 (17.25)
Lo 2°  axk
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For a static gravitational field with dgggo = O we then obtain

¢ — —— = /.
Substltutlng (1 ;26) into (1 720), we obtain

1dv® 1 5080
L Lees%80 g 12,3, .
2 =38 55 @B=123 (17.27)

In order to find the nonrelativistic approximation for the component ggg of
the metric tensor, let us consider the nonrelativistic Lagrangian for a particle

moving in the gravitational field defined by the gravitational potential ¢,
given by

L=E&—-V= %mvz —mp, ¢=dGH%). (17.28)

We may always add a constant term to the nonrelativistic Lagrangian
without affecting the dynamics. Thus, following the result (14.17) we add
a constant —mc? to the Lagrangian (17.28) and obtain

2 2

1 1
L=-mc?+ Emv —mep = —mc” — Emgaﬂv“vﬁ — me, 17.29)

where gop are the spatial components of the pseudo-Euclidean metric
tensor. In the Descartes coordinates they are given by gog = —8qg. Using
(17.29) we obtain the nonrelativistic approximation to the action integral
(17.13) in the form

s ¢ 1 dif
I~— =+ gap——— | dt, 17.30
mcsz (C+c+2gaﬂcdt) ( )

or, after some regrouping,

Sp
I =—mc / ds
Sa

Sg 1 o
~ —mc/ [(1 + %) cdt + ~gup v—dxﬁ] ) (17.31)
Sa c 2 C

From Equation (17.31) we obtain the nonrelativistic approximation for the
line element ds as follows:

1 W~
ds ~ (1 + %) di® + ~gap—dxP. (17.32)
c 2 c

The nonrelativistic approximation to the metric of the space-time manifold
is then obtained by squaring the expression (17.32) and dropping the terms
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of the order v2/c? and higher. Thus we obtain
2 dx® de
2 ¢ 042 ® = P
ds ~(1+02) (dx”) +(1+cz>g"ﬂ dtdx -

1 v 2
41 (e Za?) (17.33)

Here we may drop the last term as the term of higher order in v2 /¢ to obtain

2
ds? ~ (1 + f%) (dx®%? + (1 + %) gapdr®dxP. (17.34)
C C .

Assuming that the gravitational field is relatively weak, we may use
the approximations

2
2
(1 + f) ~ 1+ fad (17.35)
c? c?
and
(1 + %) Zapdx®dxP ~ gopdi®dxP. (17.36)
C

Substituting (17.35) and (17.36) into (17.34), we finally obtain

ds? ~ (1 + 2—‘5) (@) + gapds®ds?. (17.37)
C

From the result (17.37) we obtain the nonrelativistic approximation to the
quantity ggo in the form
2¢

g0~ 1+ 5. (17.38)

Substituting (17.38) into (17.27), we obtain

av® op 09
T T (@, 8=1,23). (17.39)
dt axP (@8

Using here the pseudo-Euclidean spatial metric g*#, consistent with the
result (17.37), we obtain in the three-dimensional vector form

‘;—j = —gradg, ¢ =¢@. (17.40)
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If we now recall the nonrelativistic result for the gravitational potential ¢,
we may write

-

- GM GM
¢(x) = —T = grad¢ = r—3r, (1741

where M is the mass of the source of the gravitational field, r is the three-
dimensijonal radial coordinate given by

r=/x2+y2 422, (17.42)

and G is the gravitational constant given by

m3
G=6.67x10711— (17.43)
kgs?
Substituting (17.41) into (17.40) and multiplying by the mass of the test
particle m, we obtain the result for the nonrelativistic gravitational force
between two bodies with masses M and m as follows:

7. (17.44)

Thus in the nonrelativistic limit the equations of motion of a particle (17.16)

are reduced to the corresponding Newtonian nonrelativistic equations of
motion.

Electromagnetic Field Equations

The objective of the present section is to generalize the electromagnetic
field equations, derived in the previous chapter, to the pseudo-Riemannian
metric space in the presence of gravity. In the special theory of relativity
the electromagnetic field tensor is defined by Equation (15.14), i.c.,

Fion = %An — 3,A;  (k,n =0,1,2,3), (17.45)

As the partial derivatives do not transform as vectors in the Rieman-

nian metric spaces, the expression (17.45) has to be modified to the
covariant expression

Fin = DiAs ~ DpAy  (k,n=0,1,2,3). (17.46)

Using the definition of the covariant derivatives (8.24),ie.,

DiAn = 9An — TI4Aj,  DaAr = 9,4x — TV A;, (17.47)
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we obtain
Fin = %An — T A; — 3,4k + T A, (17.48)
Using the symmetry of the Christoffel symbols of the second kind (9.9), i.e.,
v =1, *mp=0,12,3), (17.49)

the second and fourth terms on the right-hand side of Equation (17.47)
cancel each other and we reproduce the pseudo-Euclidean result (17.45).
Even in the presence of gravity the definition of the electromagnetic field
tensor (17.45) remains valid. Using the definition of the covariant derivative
of a second-order covariant tensor (8.33), we have

DjFin = 8jFin — TjFin — Ty Fu
DuFj = 0nFj — T} Fi — T, Fin (17.50)
DiFyj = 0Fnj — ThFlj — Th Fp.
Now, using the antisymmetry of the electromagnetic field tensor
Fin=—Fn, Fuy=-Fx, Fy=-Fj (17.51)
and the symmetry of the Christoffel symbols of the second kind
Ty =Th: Thi=Th Ti=Ty (17.52)

jn?
we obtain from (17.50) the cyclic expression
D;jFy + DuFj + DyFpj = 3ij,, + 8,,ij + 0 Fyr = 0. (17.53)
Thus we conclude that the first pair of Maxwell equations remains
unchanged in the presence of gravity and has the form
0Fy, OdFjp  OFy
ax/ + ax" + axk
In order to derive the second pair of Maxwell equations, let us consider the
interaction Lagrangian (16.6) in the form

=0 (j.kn=0,1,23). (17.54)

c dt

The four-dimensional volume element, defined in the pseudo-Euclidean
space-time of special theory of relativity by the equation

dQ = dx°dv = dx"dxtdx?dx>, (17.56)

1 n
Ip=—- f o 4 a0, (17.55)
Q

is no longer an absolute scalar. Instead of (17.56) we define the invariant
volume element as /—g d2. Thus we rewrite the interaction Lagrangian
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(17.55) as follows:
1 co dx" 1
Ip = —Ap/—gdQ2 = —— JrAL~ .
0 \/_ 70 / gd2. (17.57)

Since the action integral (17.57) and the four-dimensional volume element
+/—g dS2 are both absolute invariants and &, is a covariant four-vector, the
system defined by

oc dx"
Vg dd
is by definition the contravariant electromagnetic current four-vector. The

temporal component of the four-vector (17.58) is proportional to the charge
density o and is given by

n

(17.58)

I =c— (17.59)
V=g '
and the three-dimensional current density vector is
o
J* = Ve (17.60)
v =8

Given the definition (17.58) we can generalize the second pair of Maxwell
equations (16.38) by replacing the partial derivative d; by the covariant
derivative Di. The second pair of Maxwell equations then becomes

DyF* = uod"  (k,n=0,1,2,3). (17.61)

Using the definition of divergence of an arbitrary tensor with respect to one
of its contravariant indices (10.15), we obtain

1
DiF'™ = —— = (V=gF™) = po". 17.62
k g ok ( g o ( )
In the same way we generalize the equation of continuity (16.45) to obtain
D=2 (vV—gl")=0 (17.63)
" J/—g ax" ' '

Thus the complete system of electromagnetic field equations in the pseudo-
Riemannian space-time manifold, which includes the gravitational effects,
is given by

8Fp | OFj | 9Fy 1

- d o .
ax/ axn axk =0, F7 (\/ gF )—qu (17.64)
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with the continuity equation

1 9 '
T (vV—=gl*)=0. (17.65)
The pseudo-Riemannian four-dimensional formulation of Maxwell equa-
tions in the presence of gravity given by (17.64) with (17.65) is quite com-
pact, and it nicely illustrates the general prescription for the introduction
of gravity in the laws of physics.

In general, the laws of physics must be valid in all systems of reference
and expressed as covariant tensor equations. The field equations of phys-
ics, which involve the derivatives of the field variables, must therefore be
rewritten such that the ordinary derivatives are replaced by the covariant
derivatives. Even if we are working in a flat space-time described by some
curvilinear coordinates, we need to use the covariant derivatives if we want
the field equations to be valid in all coordinate systems.

" 'If we assume that a physical object described by a set of pseudo-
Euclidean equations does not represent an appreciable source of the
gravitational field, then it does not significantly influence the components
of the metric tensor gz:(x/) as the potentials of the gravitational field. In
such a case the geometry of the four-dimensional space-time manifold is
rigidly determined by some massive external sources of the gravitational
field. Then the effect of the physical object under consideration on the geo-
metrical structure may be neglected. Under these circumstances the set of
pseudo-Euclidean equations describing the physical object can readily be
generalized to incorporate the effects of gravity by making the substitution

d— D, 8 — Dy, dQ— /—gdQ. (17.66)

Thus the prescriptions (17.66) can be used to generalize any pseudo-
Euclidean equation, used to describe a physical object that is small in
comparison to the sources of the gravitational field, to incorporate the
gravitational effects and to be valid in all systems of reference.

» Chapter 18

Gravitational Field Equations

The Action Integral

In the previous chapter we concluded that the components of the metric
tensor of a given space-time manifold are the potentials of the field of
gravity, and the gravitational effects are described by the metric itself. The
metric tensor is therefore a system of functions of the local distribution of
matter as a source of the gravitational field and cannot be fixed arbitrarily in
the entire space. The metric tensor as the field potential is therefore a solu-
Fion of the gravitational field equations. The objective of the present chapter
is to derive the gravitational field equations from the suitable action integrél
of the gravitational field. The total action integral for a system consisting
of a continuous distribution of matter as the source of the gravitational field
and the gravitational field itself is given by

I=1Ic+ Iy, (18.1)

where I is the action of the gravitational field in empty space, where
there are no field sources, and Iy is the action describing the interaction
of the matter distribution with the gravitational field. The action of the
gravitational field in empty space can be written in the form

1
o= [ Lo@m dsm)v/=gdn (182)
where L is the invariant Lagrangian density of the gravitational field that

is integrated over the invariant four-dimensional domain 2. The action
describing the interaction of the matter distribution with the gravitational

177
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field can be written as follows:
1
In =~ fg Lyt (8ns 3i8in) V=842, (18.3)

where Ly is the invariant Lagrangian density of the source fields. For
example, if the source of the gravitational field is the electromagnetic field,
then Ly is the Lagrangian density of the electromagnetic field (16.52), i.e.,

1 _
L (8n) = _ZlL_ngjganknFﬂ . (18.4)

It should be noted that the electromagnetic field Fy, in Equation (18.4) is
taken as the given source of the gravitational field, and the Lagrangian Ly
is varied with respect to the gravitational field potentials gn-

In order to construct the invariant Lagrangian density of the gravitational
field L, we note that it is a function of the metric tensor gk, and its first
derivatives 9;gx, only. On the other hand, by using (9.25) in the form

3igin = Tngj + Tknj = 8l i +eul - (18.5)

we see that the first derivatives of the metric tensor 9;gk, can always be
expressed in terms of the suitable metric tensors and Christoffel symbols of
the second kind. Thus the invariant Lagrangian density of the gravitational
field £ can be seen as a function of the metric tensor gi, and the Christoffel

symbols of the second kind I',. Thus we may write

Lo=Lg (gk,,,r,{n) : (18.6)

The only nontrivial tensors that can be created froml the metric tensor gin
and the Christoffel symbols F,{n are the curvature tensor lelm, defined
by (12.14) as

' j J P P .
R} =0T — 80, + Tyln = Dl pi> (18.7)

the tensors obtained by contractions of the curvature tensor, €.g., the Ricci
tensor Ry,, defined by (12.44) as
_pl _ J T P P .
Rin = Ry, = Oy — iy, + l"kjFI{,, = Telps (18.8)
and the Ricci scalar R, defined by (12.50) as R = g Rin.
Thus, a suitable candidate for the invariant Lagrangian density Lg is
proportional to the Ricci scalar R. In such a case we may choose

(,‘4

— R,
167G

where G is the gravitational constant given by (17.43). The factor of pro-
portionality in Equation (18.9) is added to ensure the correct dimensions

Lg = (18.9)
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f’f the physical quantities. The action integral (18.2) may then be written
in the form

C

3
lo= ‘IGHGfQR«/—ng. (18.10)

However, from the preceding definitions we note that the Ricci scalar R
depends not only on the metric tensor gi, and its first derivatives 9;gs,

but also on the first-order derivatives of the Christoffel symbols Ble ’ an(i
thereby also on the second-order derivatives of the metric tensor. (15’1'1 the
other hand, the gravitational field equations must contain up to the second-
order derivatives of the metric tensor as the gravitational field potential.
As these' equations are obtained by the variations of the action (18.2), the
Lagrangian density £ must not contain the derivatives of the metric tensor
of the higher order than the first.

In_order to resolve this difficulty, we need to analyze the structure of
the Ricci scalar R. If it can be shown that the terms containing the second-
order d.erivatives of the metric tensor do not contribute to the variations of
the action integral (18.10), then we could proceed using the action inte-
gﬂ €178.10) in the derivation of the gravitational field equations. Since the
RICC% scalar is the only available nontrivial scalar invariant created using
memc tensor gy, and the Christoffel symbols of the second kind r/ ,1tis
important to show that the preceding assumption is indeed valid. Let us
therefore calculate the quantity ./—gR as follows:

V=R = V=88 Rin = /=88""0.T},
=881y, + v/ =gg" (I‘ﬁ;l‘;,, -7 1“1{].)

= 0 (v=88"1}) - & (v=e¢"T},) — on (V=28") T},
+; (J—_gg"”) ri — J/=gg (rglrgj —r’rJ ) (18.11)

ki~ pn

h}terchangin g the dummy indices 7 <> j in the first term on the right-hand
side of Equation (18.11), we obtain

V78R =8 (V88T - =28},

+ «/fgr,;d—l__éaj (J?ggb') - JIEF,{jJ—IZ—_éan («/——gg"”)
— V=28 (To.T} = T4T,). (18.12)
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Here we note the result (9.48) in the form -

; 1
jnpk _ __ _ -
& = = (v=25"), (18.13)
and we calculate
1 n o
7= (,/_—gg ):g""aj (n/=g) + 8;g"". (18.14)
Using the result (9.36) in the form
e, =8 (Inv/=g), (18.15)
we obtain
1 kn\ _ P a kn
=3 (v=28") =15, + 8™, (18.16)

Using further the result (8.29) applied to the metric tensor g and the
property that the covariant derivative of the metric tensor is equal to zero,
we have

Djg"" = 48" + Tpgh? + Tpye™ =0, (18.17)
or
38" = —Tpe" —Tg™. (18.18)
Substituting (18.18) into (18.16) we obtain
1 k
Wil (V "ggk") =T}, — 787 —Tpe™. (18.19)

Substituting (18.13) and (18.19) into (18.12) we obtain
V=38R = 8 (V=g¢"T}, — v=88"T},)
+ /=T, (815, ~ Ty — Thg™)
++/—8T5,8"T}, — /—8g" (Fi’nf,f} - F;’J.F,{,,) (18.20)
or, after regrouping,

V=R = (~/ —8g¥Tg, — —gg"”l“zi};)

+ =g (TLgT?, + Th,g7Th) — y=gT}, (Tye® + The™)

— V=g (T5,T) — T, (18.21)
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Interchanging the dummy indices k < j in the second term on the right-
hand side of Equation (18.21) gives

V78R = 3 (V=88T}, — V=g¢"T},)
kn (J P P J j i pk
+ V=R (T, + TTS) — V=g (Trse + ITe")
P J P Jj
o ol (YA rér,). (18.22)

Now, interchanging all dummy indices in the third term on the right-hand
side of Equation (18.22), we obtain

V78R = 4 (V=58T}, — V=g8"T},) + 2v/=gg"T LT,

P kn Prj kn kn P J j
—+—8 (ijl",{pg + ijl",{pg ) —/—gg (Fknrzij - I"Z.I“I{n) .

(18.23)

Using the symmetry of the Christoffel symbols of the second kind with
respect to its two lower indices (9.9), the result (18.23) becomes

V78R = (v=a8"TE, - v=gg"r,) + 2/=gg T, TY,
’ kn j kn j j
~ 2/=gg" TG T ), — V=g (T,T5 ~T4TS)  (1824)
or
V78R = b (V=88Th, — v=25"T},)

kn (1~ P P Jj kn (P J P j
+2J-g8 (Fknrjp - ijl“‘gn) — /—gg (I‘knl";j — ijI‘I{n) .
(18.25)

Now we note that the second term on the right-hand side of Equation (18.24)
is twice the third term with a positive sign. Thus we obtain

V78R =4 (V88T - V=gsT},)
+v/=88" (TL,T ~ T4Th) (18.26)
The final result for the quantity ./—gR can thérefore be written in the form
V—gR = 3wl 4 /=gT", (18.27)



182 Chapter 18 Gravitational Field Equations

where we define

=g (r” rJ - rf;rp,,) (18.28)
and
wl=."g (gkfp;:n _ glmr,{n) ] (18.29)

Here we note that the quantity I depends only on the metric tensor gk,
and its first derivatives 9;gx, while the terms containing the second-order
derivatives of the metric tensor in the Ricci scalar R are collected into
an expression that has the form of the divergence of a vector, i.e., ijj .
Substituting (18.29) into (18.10), we obtain

3
/ ry/—gdQ— fa,-wfdsz. (18.30)
GlJa

lo = 167tG 167
According to the Gauss theorem, the second integral on the right-hand side
of Equation (18.30) can be transformed into an integral over a hypersurface
surrounding the domain Q over which the integration is carried out in the
first integral. Thus the variation of the second integral vanishes because of
the variational principle, which requires that the variations of the fields at
the limits of the domain 2 are equal to zero. Consequently, we have

3
RY/=gdQ = — Fv/—gdQ. (1831
167G fﬂ d 16 G f (183D

It should be noted that the variation of the action (18.31) is a scalar invariant,
although the integral

8lg = —

3

e f rJ/=gdQ (18.32)

and the quantity I" defined by (18.28) are not scalar invariants. Thus we
have shown that the terms in the Ricci scalar R containing the second-order
derivatives of the metric tensor do not contribute to the variations of the
action integral (18.10) and that we may use the action integral (18.10) in
the derivation of the gravitational field equations.

I Action for Matter Fields

The variation of the total action (18.1) of the gravitational field in the
presence of matter is given by

81 = 81 + 8y = 0. (18.33)
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Thus we need to calculate the variations 81 and 81j. In this section we
consider the variation of the action integral of matter fields Iy, i.e.,

8Iy = / (vV=8Lu)dQ (18.34)
1 [ [a(y=sc 3 (v/=gL
Sly = ;/ﬂ[ ( 8gf" M)ag""+ g‘faj—jknﬁl)a(ajg"")] dQ. (18.35)

Integrating the second term in the integral (18.35) by parts and dropping
the integral over the hypersurface boundary of the domain of integra-
tion €2, following the same steps as in the case of the electromagnetic
field, we obtain

. Let us now define the energy—momentum tensor Ty, of the matter fields

as follows:

1 d(v=glm)| 8(v=sLm)

~/=gTin = 0; - . 18.37

2V T8 e ’[ 3 (3,8 agn (1837
Substituting (18.37) into (18.36) we obtain

1
8y =~ f TrndgX" /—gdS2. (18.38)
Q

Using here the result § (g¥gj,) = 56]’-‘ = 0, we may write

Tindg"™ = 81TV 888" = —guTg"" 58y
= —8T8g, = ~T8gn = —T"8gj. (18.39)
Substituting (18.39) into (18.38) we obtain

1
Oy = - / T* 8 gin/—g dS2. (18.40)
CJQ

Let us now calculate the energy-momentum tensor for the electromagnetic
field with Ljs given by Equation (18.4). In the case of the electromagnetic
field the Lagrangian Ly is a function of the metric tensor gg, only and
not of its derivatives djgi,. Thus using (18.37) we obtain the contravariant
energy—momentum tensor in the form

o —
pon_ 2 (V=8Llmu) _ w2 3’/~£M

=8 08 T T8k 8 38

(18.41)
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Using the result

2 2/—g 13 _g’f_g,m

il = = (18.42)
~—8& 98kn g 08in 8
we obtain from (18.41)
L
i = %M _ L. (18.43)
08in

Using (18.4), we may write

LM 1 i 9 L rpaplingkgn
M FPIFI _(gyiga) = +—FPIFI258,8 gq
08kn dpo 38kn @pi8a 410 .
1 1
— 4 Flaping  — 4 _— FKF" (18.44)
+2H0 8q! 2140 q

Substituting (18.4) and (18.44) into (18.43), we obtain

T — ~;1—F’9F]f’ +»I}£5 npiEy, (18.45)
0

The result (18.45) is identical to the result (16.65) obtained by other means
in the special theory of relativity with pseudo-Euclidean geometry. '

As the next example, let us now consider a continuous distribution of
noninteracting particles with a total mass m and a rest energy &p in a three-
dimensional domain of volume V.. If we denote the mass density of the
matter distribution by p, we may write

m= f pdV, & = / pc?dv. (18.46)
\ \%4

The action integral of the given matter distribution can be written inthe form

SB B -
Ix = —mc/ ds = —cf pdV/ ,/gﬂdxldx’ (18.47)
S, 14 A

A

or
‘B dxJ dx! '
P
= — — | gi————~/—gdV dt. (18.48)
x C-/V u V78 8% ar 8
Introducing here a system ®",
o P E (18.49)
J—g dt
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the action integral (18.48) can be written in the form

1 .
Ic =?LEMK‘/__ng’ Lyx = —c\/gn®Iidl. (18.50)

Since Lyg is the invariant Lagrangian density, we see from (18.50) that
the system " is a contravariant four-vector. The temporal component of
the vector ®” is proportional to the mass density o and is given by
pc
@0 = . (18.51)
N
The spatial components of the vector ®” are proportional to the flux of

mass through a unit of the boundary surface dI1 of the volume V in the
unit of time, i.e.,

3

O . d’m
- . 18.52
J—2  dl.dr (18.52)

The definitions (18.51) and (18.52) are fully analogous to their respective
electromagnetic counterparts (17.59) and (17.60). In analogy with the elec-
tromagnetic result (17.63), the mass conservation law gives the following
continuity Equation:

Y =

1 9
T /=g oxn

In the three-dimensional vector notation the continuity Equation (18.53)
has the form

D,®"

0. (18.53)

(vV=-g®")

9
a-’; + div (p¥) = 0. (18.54)

Integrating over the volume of the three-dimensional domain V and
using the Gauss theorem, we obtain the intergal form of the mass
conservation law:

d

= pdV:f ov - dIl. (18.55)
dt 1 n

According to the mass conservation law (18.55), the negative increment of
mass m within a three-dimensional volume V is equal to the total mass flux
through the boundary surface I1 of the volume V in the unit of time. Using
Equation (18.48), we may write

ds X ds
v—gLlyk = —ch giulul = —pc;;t. (18.56)
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Using (18.41) we obtain the energy—momentum tensor of the given mass
distribution as follows:

2 3(J/=8lmx) _ pc ‘Euku"
V=8 08 V—gdt
In the pseudo-Euclidean case we note that the component T% gives the
correct result for the energy density,

™ = —

(18.57)

7O = , (18.58)

=t (18.59)
Jios
c

For a weak gravitational field at low velocities, the following limits can
be used:

80a = 800 > 0,  8ap = —dup, (18.60)
and
ds — Jgoocdt, /—g > /g00- (18.61)

Substituting (18.61) into (18.57), we obtain
TR, = pctutu". (18.62)

The energy-momentum tensor (18.62) can be considered as the kinetic
energy—momentum tensor, which does not include the contribution from
the internal energy of the given matter distribution. In order to include the
contribution from the internal energy of the matter distribution, we may
use the result for the differential of the internal energy dU = —p dV, where
p is the pressure within the matter distribution. Thus we obtain the action
integral corresponding to the internal energy in the form

ip 1
Iy = —/ Udt = —[ Lyu/—gde2, (18.63)
tA cCJQ
where the Lagrangian density Ly is given by
dUu
=—— =p. 18.64
Lmu v =P ( )
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As the Lagrangian density Ly does not include any dependence on the
metric tensor gx,, we use the constraint

1—/guuu! =0 (18.65)

to create a Lagrangian function f = f(u*, A) with the constraint

JiURN) =p,/gﬂu1'ul + A (1 — 1/gﬂuju’) . (18.66)

Using the method of Lagrange multipliers, the equations for the parameter A
and the variables u* are given by

] e ,
% =1- gﬂufu’ =0= gﬂuful =1 (18.67)
and
af _1 )
ok =2 ®—2)/guwu2gyu’ =0= L =p. (18.68)

Using (18.68) we obtain the suitable Lagrangian density for the calculation
of the energy—momentum tensor

Lyu =p +p(1 —‘/gﬂujul) =p. (18.69)

The contribution to the energy—momentum tensor from the Lagrangian
density (18.69) is obtained using (18.43) as follows:

0Ly
Tl = 2 &Ly =p (uku” - gk”) , (18.70)
where we used (18.69) to calculate
oL 1 . 1
@5 = —Ep\/gﬂufu‘uku” = —Epuku". (18.71)

Putting together the results (18.62) and (18.70), we obtain the total
energy—momentum tensor of a matter distribution in the form

T = TR, + Ty, = (p + pP)du" — gp. (18.72)

The result (18.72) is the most commonly used form of the
energy—momentum tensor of a matter distribution in the general theory
of relativity. It should be noted that the quantity 7% is always positive, and
in most practical calculations the contribution from the pressure terms can
be neglected.
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Einstein Field Equations

In this section we consider the variation of the action integral I in (18.33),
which describes the gravitational field itself, and derive the gravitational
field equations. Using the result (18.31) we have

C3
3lg=——8 | RJ—2dS. 18.73
G 16;;(;/9“/—3" (18.73)

In order to calculate the variation (18.73) we need to calculate
8 (V=8R) = 6 (V=28"Rin)
=8 (v/=8) R+ V=888 Rin + ~/—28"0Rtn.  (18.74)
Using the results (9.35) and (9.40), we may write

38 = 88" 5gin = —g8Inde"™", (18.75)
and we have
1 1 :
8 (V—g) = —m——=0g = —=——(—g8mmdg"™, (18.76)
(vV=8)=—-77= = W
or
8 (v=8) = ~ YL gisgt. (18.77)

2
Substituting ¢ 8.77) into (18.74), we obtain

8(V=gR) =/=2 (R,m - %gk,,R) 88" + V=gg"6Rin.  (18.78)
Next we calculate the expression g”?8Ry,, as follows:
§"5Rin = g6 (0uT) + 9T}, + T4TJ — TL,T)
= 85 (9.1 — 9T}, ) — g"sTY, 1), — T2, 8T,
+ "SI T, + &"TR8T ), + ¢TI LsT? — g*r)sr?)
(18.79)

where we have added the term

grlsrh — grisrh =0 (18.80)
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at the end of Equation (18.78). Regrouping the terms, Equation (18.79)
becomes

gkn(stn — gk"5 (a"FI{j - ajl‘,{n) +gk" (F
+ 87080 ), + g8TRTS, — ¢T% 6T ). — gbrr)or?

ki* pn kp
(18.81)

J o P J eTP
o rpjar,m)

Renaming the dummy indices, we obtain
§"5Rin = '8 (9I7, — 9,17, ) + g (T},6TF, — To17,)

+ 8T, 8Ty, + 88T, I, — "I} 8T, — g T8
(18.82)

or
§"0Rin = 86 (8,15, — 313, ) + g (TL,0T%, — T4,57%,)

+g/"ThTh, + V78T, — gk orh — grnsry
(18.83)

Using the symmetry of the Christoffel symbols with respect to the lower
two indices, we may rewrite (18.83) as

8"3Rin = 88 (T, — 3,17, ) + ¢ (1875, — T877 )

— (—g"T}, — 891},) 1%, + (™I, — g7, ) 6T,

(18.84)
From the results D,g"" = 0 and D,g*" = 0, we have
Bpg " = ~T}g"" — 7 gY
Ong™ = —Thgi" — T gh. (18.85)

Substituting (18.85) into (18.84) we obtain
§"8Rin = g0, (5T, ) — g3, (5TF,)

— 8T, 358" + 875, g™ + ¢ (T4,3T7, — 5T,
(18.86)
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or
§"8Rp, = 9, (g""ar,fp) ~ 3 (g""ar{n)
+Ty (gsrf,) - T, (gery,). (18.87)

Interchanging the dummy indices k <> p in the first and third term on the
right-hand side of Equation (18.87), we obtain

§"6Rin = 9, (76T, - gsry,)
+ Ty, (87, — g6T%, ). (18.88)
Introducing here a four-vector w?,
w? = gsTy, — gker? | (18.89)
and using r}’,, = 9, In \/=g, the result (18.88) becomes
1
£"8R, = 8p00F + T} 0P = 0P + J—__gap (vV=g)wP  (18.90)
or
1
kn
"R = ——0, (V=gwP) . (18.91)
\/jg P( )
Substituting (18.91) into the result (18.78) we obtain
1
8 (V—8R).=~¢ (Rk,, - EgknR) 88" + 8, (V=gw?). (18.92)

Substituting further (18.92) into (18.73) we obtain

3
c 1 n
8lg = — Rin — =88R ) & —gdQ
6= 155 [, (Ra = 53k) 88V 2
3
c
———— | 3 (V/—gwP)d. 18.93
IGHGLP( ga)) ( )

The second integral in (18.93) can, by means of the Gauss theorem, be
transformed into an integral of @? over the hypersurface surrounding the
entire four-dimensional domain £2. When we vary the action Ig, the vari-
ation of the second integral vanishes because of the variational principle,
which requires that the variations of the fields at the limits of the domain
$2 be equal to zero. Thus the second integral in (18.93) can be dropped
and we obtain the final result for the variation of the action integral for the
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gravitational field in the form
3

c 1
8l = — - = =
G T /9 (Rk,, ng,.R) 8¢/ =gdQ. (18.94)

Using now the result (18.33), i.e., —8Ig = 813 with (18.38) and (18.94),
we obtain

3

1
167:(;/9 (R"" - Eg""R) 8""/=g 2

1
=— / Trndg"™ /=g dS. (18.95)
2c Q
Since the variations of the metric tensor are arbitrary, the result (18.95)
gives Einstein field equations for the gravitational fields in the form

1 8nG
Rkn - —Z“gknR = ——-é—4—Tkn. (18.96)

The field Equations (18.96) with mixed tensors Rf, and T, ,’f are given by

Rk ESﬁR = ——c4—T,’f. (18.97)
Contracting Equation (18.97), we obtain
1 8
R'— ~8'R=R-2R=—R= 20T, (18.98)
2 ct

Substituting (18.98) into (18.96), we obtain an alternative form for the
gravitational field equations:

Ryp = —g (Tk,, — 1gk,,T) . (18.99)
c 2

In empty space we have Ty, = 0, and Equations (18.99) give Ry, = 0.

The result Ry, = 0, however, does not mean that space-time is flat (i.e.,

pseudo-Euclidean). The condition for space-time to be pseudo-Euclidean

is that the curvature tensor R,iln is identically equal to zero, i.e., Riln =0.
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Solutions of Field Equations

In the previous chapter we derived the gravitational field equations. The
gravitational field equations are nonlinear equations, and they include the
self-interaction, i.e., the interaction of the gravitational field with itself.
The principle of superposition, which is valid for electromagnetic fields
in the special theory of relativity, is therefore not valid for gravitational
fields. However, in most practical cases we work with weak gravitational
fields for which the field equations can be linearized and the principle
of superposition is approximately valid. In this chapter we discuss the
nonrelativistic limit of gravitational field equations and the simplest solu-
tion of the complete gravitational field equations for the static spherically
symmetric field produced by a spherical mass M at rest, known as the
Schwarzschild solution. The Schwarzschild solution has played a major
role in the early development of the general theory of relativity and is still
regarded as a solution of fundamental importance.

The Newton Law

In order to find the nonrelativistic limit of the gravitational field
Equations (18.96) or (18.99), we start with the definition of the Ricci
tensor (18.8), i.e.,

Rin = 14, — &T}, + TT), ~TL 12 (19.1)

193
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In the nonrelativistic limit in the static gravitational field, with the

approximate metric given by (17.37), the only nontrivial Equation (19.1)
is the one with k = n = 0. Thus we calculate

_ J T/ P ~J |~
Roo = 80T — 3jTg9 + Tg;Tp0 — [Ty ~ — 8Ty, (19.2)
For the static gravitational field with dpgx, = 0 we may use the

approximation (17.26) with (17.38), such that we have

1 1
T = —Eg“ﬁaﬂgoo = —58%. (19.3)

Substituting (19.3) into (19.2), we obtain

1
Roo ~ —3,Tgy = gaaa%. (19.4)

From the result for the energy—momentum tensor of a matter
distribution (18.72), in the static nonrelativistic case under consideration,
we obtain

Too = pctugug ~ pc?, T =~ g uweu, = pc?. (19.5)
Thus we obtain

1 1
Too — =gooT = = pc2. )
00 2goo 2,06 (19.6)

Substituting the results (19.4) and (19.6) into the gravitational field
Equation (18.99) with k = n = 0, we obtain

1 87 G 1 4G
Roo = —040%¢ = —— (Too - —gooT) =——p, (197)
c [ 2 c

or
— 3,8%¢ = V¢ = 4nGp. (19.8)

Thus we obtain the nonrelativistic gravitational field equation for the
gravitational potential ¢ in the form

V3¢ = 4nGp. (19.9)
The solution of Equation (19.9) is given by

OF) = —Gf E%X, (19.10)
14
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where R is the three-dimensional distance between the position of the
sources and the position where the potential is calculated, ie.,

R = /]x* — xo|2. (19.11)

For a uniform mass distribution over the volume V, we obtain

o G GM
=—— dvV = ——, 19.12
00 =-2 [ o - (19.12)
Theresult (19.12) agrees with the result (17.41), which leads to the Newton
law of gravity (17.44). Thus the gravitational field Equations (18.96)
or (18.99) have the correct nonrelativistic limit (19.9), which leads to the
Newton law of gravity.

The Schwarzschild Solution

The Schwarzschild solution is a solution of the complete gravitational field
equations for a static spherically symmetric field produced by a spherical
mass M at rest. The static condition requires that all the components of the
metric tensor gi, be independent of x° or time ¢. Furthermore, we must
have g,0 = goe = 0. The spherical symmetry suggests the choice of the
spatial coordinates as the three-dimensional spherical coordinates (r, 8, ).
The most general spherically symmetric metric satisfying these conditions
can be written in the form

ds? = e N2d? — O gr? — 12302 + sin? 0de?) (19.13)

where v = v(r) and 1 = A(r) are yet unspecified functions of the radial
coordinate r. In the metric (19.13) we are using the exponential functions
in order to secure the right signature of all terms. Thus the covariant metric
tensor of a static and spherically symmetric gravitational field is given by

e2v 0 0 0
0 - o0 0
lgmnl = | 0 2 0 ) (19.14)

0 0 0 —r?sin0

The contravariant metric tensor is then given by

=2V 0 0 0
0 —e2 9 0
(gmal =] N 0 ) (19.15)
0 0 0 —r2Zsin 29
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The Christoffel symbols of the first kind for the metric (19.13) can now be
calculated using the definition (9.28), i.e.,

1 (08K  38n 38k
2\ax"  axk o )’

Cjkn = (19.16)

The results for the Christoffel symbols of the first kind for the metric (19.13)
are summarized in the following list:

T'o,00 = 3 (30800 + 0800 — Bogoo) = 0 v

To01 = Lo,10 = 3(3rg00 + dog10 — dogo1) = v/(r) exp(2v)

To.02 = Fo20 = 336800 + 30820 — dogo2) = 0

To.03 = 030 = 5 (3,800 + 30830 — d0g03) = 0

To,11 = 3(3-go1 + 8,810 — dog11) = 0

To12 = To21 = 330801 + 3820 — dog12) = 0

To,13 = Tos1 = 3(3,801 + 3-g30 — d0g13) = 0

To22 = 2(d9802 + dpg20 — d0g22) = O

To23 = To32 = 3(3,802 + 96830 — d0g23) = 0

033 = 3(3,803 + dy830 — 0g33) = 0

1,00 = $(30g10 + dogo1 — 8rg00) = —Vv'(r) exp(2v)

T101 =T110 = (3,810 + dog11 — drgo1) = 0

102 =120 = 3(39g10 + dog21 — 3r802) = 0

1,03 = T'130 = 33810 + d0g31 — 9,803) = 0

Ti1 = 33811 + 8,811 — 8,811) = —A'(r) exp(21)

T2 =T121 = 3(Beg11 + 3,821 — 9,812) =0

I3 =T131 = %(%gn + 0,831 — 0,813) =0

Ti22 = 4(30812 + Bpg21 — drg22) =7

123 =132 = (83812 + doga1 — 8,823)

T'133 = 5(0p813 + dyg31 — 8r833) = rsin* 4

2,00 = (30820 + 0802 — d9g00) = O

T201 =210 = 33,820 + 30812 — dego1) = 0

Section 19.2 The Schwarzschild Solution 197

T202 = T220 = 3(39820 + 30822 — dpgoz) = 0

2,03 = T230 = 3(3p820 + Bog32 — 8pg03) = 0

T211 = 33,821 + 8,812 — 86811) = 0

T2 = 221 = (39821 + drg22 — Bpg12) = —r

L2153 = 231 = 5(3,821 + 8,832 — o813) = 0

T220 = 5 (9822 + 99822 — Bpg22) = 0

T223 = T3 = 3(3p822 + 99832 — Bpg23) =0

T233 = 3 (35823 + 3y832 — 99g33) = r” sin @ cos§

T300 = 3(d0g30 + 80803 — dyg00) = 0

T301 =310 = 5(3,830 + 80813 — dp801) = 0

300 = 320 = 3(9g30 + 0823 — dpgoz) = 0

303 = I'330 = (3,830 + 30833 — 8yg03) =0

T311 = 58,831 + 8,813 — 8,811) = 0

312 =T321 = 389831 + 9,823 — pg12) = 0

3,13 = T331 = (3,831 + 8,833 — dpg13) = —rsin® 6
322 = %(39332 + 09823 — 3p822) =0

323 =332 = 5(3,832 + 39833 — 9yp823) = —r”sin6 cos b
333 = %(Bq;gsa + 8p833 — 0pg33) = 0. (19.17)

The Christoffel symbols of the second kind for the metric (19.13) can be
calculated using the definition (9.29), i.e.,

Y = 8" ;. (19.18)

The results for the Christoffel symbols of the second kind for the
metric (19.13) are summarized in the following list:

T = 8¥Tj00 = £%To00 = 0

gy =Ty = g%Tj01 = g%To0 =V'(n)

gy =T9 =8%Tj00 = g®¥Tp02 = 0

gy =T% =g"Tj03 = §%To03 =0
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Y =g =g%ro1 =0
=19 =g"Tj1=¢g%To1n =0
Y =Tr3 =g%Tj3 =g%Toi3 =0
Y, = %2 = g0 =0
9 =T% =£%Tj23 = g%To23 =0
I3 = g¥Tj33 = ¢*Toz3 =0
Iy = &YTj00 = g!'T100 = V/(r) exp(2v — 2)
Ty =Ty =8"Tjo =g"T1a =0
I =Tl =8"Tin=g"Tin=0
[y =T3=8"Tj0=g"Tie=0
Il =g =¢"Tin =@
I, =T3 =8gTj=8"T112=0
=T =g =¢"TL3=0
I, = gVl = g'' T2 = —rexp(=22)
Iy =T, =¢"Tj=¢"Ti23=0
Tl; = gYTj33 = "' 33 = —rsin” 6 exp(—21)
o = &7Tjo0 = g*T200 =0
I3 =T} =g¥Tjo1 = gT201 =0
T3, =2 = g%Tjo = g T20 =0
I3 =T3 = g0 =g"T20m =0
2 =g%Tjn = g°Ta1 =0
12, =T% =gl =g o= %
T3 =T% =g¥Tj13=g"T213=0
3, =89Tj2 =g"T2; =0
I3, =T% = g% =g"Ty23 =0
F§3 = gzjf‘j,33 = g221‘2,33 = —sinfcosd

Fg() = g3]1-*]’00 = g331—‘3’00 — O
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g1 =T =8¥Tj01 = g°T30, =0
o =T3=8¥Tjn =gPT30,=0
gy =T =8VTj03 =gPT303 =0
Ffl = 83ij,11 =¥ =0
I, =T3 =8YTj12=¢g"31,=0
; 1
[} =T3 =g¥Tj13 =" = -
T3 = g3jrj,22 =gP30 =0
- cos
F33 = ng = 83’1"1',23 = 833F3,23 = e cotf
I3 =g¥Tj3 = ¢"T333 = 0. (19.19)

From the results listed in (19.19) we can make the following conclusions:

1 1 1
Tlp T3 T
[Fgﬂ] = [FgO] =|T% T3 T%|=0 (19.20)
' ' 3 3 3
[ o T3 T
0 0 0 ]
[Ty, 9, Y
[Fgf’] = [F 2&] =|T3 I T| =0 (19.21)
|0 p0 o
[ I3 T3 Ty
where (o, B = 1, 2, 3). Furthermore, we can calculate
j 2
=Tl +Ti +Th+ T} :V/'H»/"';
F§j=rgo+ré1+1“§z+l"33=cot0
My =T%+T} +T%+ T} =0. (19.22)
Using the results (19.22) we note that
; ) ; }
‘ Ty L5 8Ty &, 0 0
AN . J J .
[3ﬂrqj] = aor}j aor‘?j agréj = 0 ael-\éj 0 (19.23)
Iy Bply; 9Ty, 0 0 0
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or
8T, =0 for a #B. (19.24)
From the results listed in (19.19) we also have
T, =Ti3=T3=0= 3Tl =0 for a#p
rf2=;, ML, =ry=0= T =0 for a#p
[, =Th=0%=0=3T3;=0 for a%p (19.25)
or
9,Teg =0 for o+ p. (19.26)

The Ricci tensor for the metric (19.13) can be calculated using the
definition (18.8), i.e.,

i ] j P )
R = 8,Ty; — 8T, + i1}, —TL T, (19.27)

From the result (12.48) we see that the Ricci tensor is a symmetric tensor
Rin = Ry and that it has only 10 independent compongnts. The for-
mulae for the components of the Ricci tensor for the metric (19.13) are
summarized in the following list:
j i P J SR
Roo = 3oT'g; — 8Ty + TG — Tl
j j P J P i
Ro1 = Ryo = 8T'g; — T, + T, — To T
j j P i P rJ
Rop = Rao = 8T, — 8T, + TG,T5, =TT
j ] P nJ P J
Roz = R3g = 84,1‘(’)]. — a,-F(’)3 + FOjFP3 — F03ij
J j P i P
Ry = ,Ty; - Iy, + ;L) — AT,
] ] P J P
Ry = Roy = 3Ty, — §T{, + T1,T), — 5,10

1 p2
Ri3 = Ry = 3,1}, — §;T4, + T4T), — T, 1),
Ry = 3T} — §;T3, + 417, — T4,/
Ry3 = Ry = 8,1, — T3, + THT) —ToT).
Ryy = 8,1, — Ty + T4 T, —T4,r2 (19.28)

The results for all 10 individual components of the Ricci tensor for
the metric (19.13) can be obtained from the list (19.28). However, the
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calculation process can be facilitated using some of the general re-

sults (19.20)~(19.26). Thus for & — 1,2,3 we may use (19.27) to
calculate

Roo = 3T, ~ ;T + T4T0 — TETL (19.29)

Using the condition for the static metric aor',{,, = 0, we obtain

Rao = ~3pT5 — TS}, — Faol'h + T4, (19.30)

Using 1"50 = 0 and F(’)-j = 0 from (19.20) and (19.22), respectively, the
result (19.30) becomes

Rao =Tyl = D8I, + Iré + TSoT80+T4,0%.  (19.31)
Using gy = 0, T? = 0, and Tgs = 0 from (19.19), (19.20),
and (19.21), respectively, we see that all four terms on the right-hand side
of Equation (19.31) vanish. Thus we obtain

Ro=Roa=0 (x=1,23). (19.32)

Furthermore for a,=1,2,3and & # B, we may use (19.27) to calculate

Rop = 35T, ~ o7 + TeTos —Thl (19.33)

From (19.24) and (19.26) we see that the first two terms on the right-hand
side of Equation ( 19.33) for @ # B vanish. Using (19.22) we then obtain

TR
Rep =TET7, — FapTo — Tapl}; — TepT;- (19.34)

Using l"gﬁ = 0 and P;ﬁ = 0 for e # B from (19.21) and (19.25),
respectively, we have

—rPyJ 142C0t0
Rap = Ty — b085——. (19.35)
Thus the second term on the right-hand side of Equation (19.35) is not

equal to zero only for (xf) = (12). Let us now calculate the first term on
the right-hand side of Equation (19.35), as follows:

P J 0
ToiTps = Taolps + T4, T2, (19.36)
or
TaTop = TaoTs + 20T 05 + Fawlgs +TS,T%.  (19.37)

From (19.19) we see that the only nonzero term of type T'Yy or I'Y, is
Fgl =V'(r). Thus for @ # B the first term on the right-hand side of
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Equation (19.37) is zero. Furthermore, using (19.20) and (19.21), we see
that the second and third term on the right-hand side of Equation ( 19.37)
are also equal to zero. Thus we have

[P, =g, T = Doyl + Taul %5 + Toul 55

aj” p aw” o

1 3 2 (L 2 2 2 3
=T} Tl + ool + Taslip + Tailop + Toal'2p + Tasl'ag

+ T3 Tl + T35, + Tl (19.38)
Using the result (19.38) we can show by direct calculation that
j 213 3 1.200t0
T TS g = 8083735 = 8adp—— (19.39)

Substituting (19.39) into (19.35) we finally obtain
Rop =Rpa =0 (o # B). (19.40)

From the results (19.32) and (19.40) we conclude that all off-diagonal
components of the Ricci tensor are identically equal to zero:

Rin=Ru=0 (k#n). (19.41)

Thus the only nontrivial components of the Ricci tensor are the diagonal
components. Using the static property of the metric BOI‘in = 0 and the
results (19.20)—(19.26), they can be calculated as

Roo = —3, Ty — TooT}; +2Tg0T %0
2
= (—v” +VN =% — —v’) exp(2v — 21)
r
j 1 _plpi 0\’ 1)?
Ry =Ty ;—oTy -l + (FIO) + (Fn)
2 2 2
+ (F%Q) + (1{153) v — VN + v/2 _ ;k’
2 .
j 2 3 1 pJ
Ry = 9T — Ty + 2T + (F23) — Il

=(1+n'- rAyexp(—24) — 1

1 ~J 2 nJ 13
R3z = —B,F;B — 39F§3 - F33F{j — F33F2j +2I'3;30y3

+2r4 3, = sin?0 [(1 +7rv' — rd)exp(=22) —1].  (1942)

. . 2 . .
From the results (19.42) we see that R33 = R sin2@. As sin® @ is in
general different from zero, substitution of these two components of the
Ricci tensor into the vacuum gravitational field equations R, = 0 gives the
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same differential equation for v and A. Thus the vacuum gravitational field
equations Ry, = 0 give only three independent equations for v and A, i.e.,

—" VN =% - %v’ =0
r
V= % - zk' =0
r
(14 rv' —rA)exp(=24) = 1. (19.43)
Adding together the first two equations in (19.43) gives

2 d
—=(V+A)=0 = —(@w+1)=0. (19.44)
r dr

From (19.44) we see that the quantity v+ A must be a constant. On the other
hand, for large values of radial coordinate r the space-time is approximately
flat and both v and A tend to zero as r — oo. Thus the constant v 4+ A must
be equal to zero, and we have

v+A=0= A=—v. (19.45)
Substituting (19.45) into the third of Equations (19.43), we obtain

d
(1+2rV)exp(2v) = = [rexp2v)] = 1. (19.46)
Integrating (19.46) we obtain
rexp2v) =r —rg, (1947)

where the integration constant r¢ is called the gravitational radius of the
body. Thus we obtain

rG
goo = exp(2v) =1 — —

-1
gi1 = exp(2A) = (1 - rTG) . (19.48)

The gravitational radius of the body is defined using the Newtonian
limit (17.38) with (19.12) as

2 2GM
goo—*l-l-—':—q;-:l—

- (19.49)
cer

Comparing Equation (19.49) with the first of Equations (19.48) we find

2GM
r6="—5— (19.50)
C
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Thus the final result for the Schwarzschild space-time metric is given by

ds* = (1 — r76) c2dr? — (1 - '.TG)~1 ar? - r? (d62 + sin? Od(pz) .
(19.51)

From the Schwarzschild solution (19.51) we conclude that the empty space
outside a spherically symmetric distribution of matter can be described by
a static metric. Furthermore, it should be noted that the solution (19.51) is
also valid for moving masses as long as the motion preserves the required
symmetry, e.g., a centrally symmetric pulsation. We note also that the met-
ric (19.51) depends only on the total mass of the body that is the source of
the gravitational field, just as in the case of the Newtonian theory. If we put
dt = 0 in the metric (19.51) we obtain the three-dimensional space with a
line element:

dP = (1 - rTG)_l art + 12 (d62 + sin? 9d¢2) . (19.52)

As the Schwarzschild metric tensor g, is not time dependent, the distances
can be defined over a finite portion of space and the integral of the element
of the spatial distance d! along a space curve has a definite meaning. In
other words it is possible to split the space-time into the space and time
with definite meaning. If we can turn the mass M of the source down to
zero, the metric (19.51) reduces to the pseudo-Euclidean metric of the flat
space-time in the spherical coordinates:

ds? = 2di® — dr* — 1?2 (d92 + sin? Gdgoz) . (19.53)

Turning the M on again, we introduce a distortion into both the four-
dimensional space-time continuum and the three-dimensional space itself,
and neither of them is flat any more. The level of distortion is proportional
to the dimensionless quantity rg/r. In the flat space-time described by the
metric (19.53) the radial coordinate r is the measure of the radial distance
from the origin of the coordinates. In the curved space-time it is no longer
the case and r is just a space coordinate that does not measure the radial
distance from the origin. From the line element (19.52) we obtain the square
of the infinitesimal radial distance dR for d6 = d¢p = 0, as follows:

dR? = (1 - i9)_1 ar. (19.54)

r
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Thus we see that the actual radial distance increment dR is larger than the
coordinate differential dr, i.e., dR > dr. The distance between two points
r1 and r; is then obtained as

_ n rG -1/2
RZI—/;I (1_7) dr
= [\/r(r— r6) +reIn (Vr+/r— ro)]:2 >r—r.  (19.55)
1

From the result (19.55) it can be shown that for small rg/r the distance
between the two points r; and r, tends to r, — ry. If we take the sphere in
space with r = constant, then the three-dimensional space metric (19.52)
becomes the metric of a two-dimensional sphere of radius » embedded in
the Euclidean space, i.e.,

di? = 12 (d92 + sin20d(p2) . (19.56)

The infinitesimal tangential distances are therefore the same as in Euclidean

space:
dl = r\/d62 + sin? 0d?. (19.57)

Let us now consider the element of the proper time dt given by (17.5) as

follows:
re
dt = /goodt = /1 -Tdt<dt. (19.58)

The proper time between any two events occuring at the same point in space

is then given by
o) 7
r:/ /1—76dz<r2—t1. (19.59)
a1

Thus in the curved space-time near the massive sources of the gravitational
field there is a slowing down of time, compared to the time that would be
measured in the pseudo-Euclidean limit at the infinite distance from the
sources of the gravitational field, i.e., when r tends to infinity.

It should be noted that the Schwarzschild metric (19.51) becomes sin-
gular at r = rg, where goo = 0 and g;; = —oo. However, for most
of the observable bodies in the universe the gravitational radius lies well
inside them, where the Schwarzschild metric is not applicable anyway. For
example, for the Sun the gravitational radius is rg = 2.9 km and for the
Earth the gravitational radius is 7 = 0.88 cm. Furthermore the singular-
ity of the Schwarzschild metric can be shown to be more a consequence
of the choice of the space-time coordinates than of the space-time itself.
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Nevertheless for a few bodies in the universe that are actually smaller than
their gravitational radius, some physically interesting things do happen at
the boundary r = rg. For example, matter and energy may fall into the
region where r < rg but neither matter nor energy (including the light
signals) can escape from the region where r < 7. Such a region is called
a black hole and will be discussed in the next chapter.

» Chapter 20

Applications of the
Schwarzschild Metric

In the previous chapter we derived the static Schwarzschild solution of
the gravitational field equations for a static spherically symmetric field
produced by a spherical mass M at rest. In this chapter we discuss two
applications of the Schwarzschild solution to explain two physical phe-
nomena that cannot be explained within the framework of the classical
Newtonian theory of gravitation.

20.1| The Perihelion Advance

According to the Newtonian theory of gravitation, the orbit of a planet
around the Sun is a closed ellipse with the Sun at one of the two foci. Thus
the point, which is called the perihelion and where the planet is closest to the
Sun, is fixed. However, experimental evidence shows that the perihelion of
the planets is not fixed, but gradually rotates around the Sun. This rotation,
although very slow, is cumulative and can be measured over a long period
of time. In classical mechanics the Lagrangian of a planet in the central
field of the Sun is given by

L=E& —mp@r) = g+@f—m (20.1)

207
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The conserved energy of the planet is

oL 2 GM
E=——y =" VM ~onstant. (20.2)
v 2 r

From (20.1) we may write in the spherical coordinates
1 . GM
L=m [E(i2 + %62 + r?sin? 0¢%) + —] , (20.3)
r

where the dots denote the time differentiation of coordinates. Since the
classical motion of the planet in the central field of the Sun is confined
to the plane of the orbit, which we take to be the equatorial plane of the
spherical coordinates, we have 8 = 7/2 and 6 = 0. From (20.3) we then
obtain

GM
L=m [%(# + %) + —] ) (20.4)
r
The Lagrangian equation with respect to the angular variable ¢ is given by
d (3L oL
—| =) =—. (20.5)
dt \ 9¢ dg
Substituting (20.4) into (20.5) we obtain
2 ) = 0 (20.6)
—(mr =0, R
dt ¢
or
2. 2. h
mr°g = h = Constant = r“¢ = —, (20.7)
m

where & is the conserved angular momentum of the planet. Substitut-
ing (20.7) into (20.2) in the polar coordinates, we obtain

m h? 2GM
E=—|[# - ) 20.8
2 [r + m2r? r ] (20.8)

From (20.8) we may write

2
= 26 h + 26M . (20.9)

m m2r2 r

Dividing now #2 from (20.9) by r*$? from (20.7), we obtain

1 (dr\*> m?[2E M 26M
A = (= __2_ =) 20.10
r4 (d(p) h2 (m m2r2 + r ) ( )
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or

[i NP _2mE /1N 26Mm? /1
i \r)] = 7 +T(7)- @0.11)
Introducing here a new variable u = 1/r, we obtain

du)' . o 2mE  2GMw?
do Y + W2 u, (20.12)

or

(du)z B ImE G2M2m4 <GMm2 )2
St —— = ———-u) .

dp 7 . 2 (20.13)
Introducing here the notation
e _MmE GCMnm' 1 GMm?
p2 - h,2 + T: ‘; = h2 3 (20'14)
where
o 1.  2EW h?
T T @M P Gy (2013

we may rewrite (20.13) as follows:

du\? &2 1 2
(E(;) =p_2_<1_7_ ) . (20.16)

The well-known solution of the differential Equation (20.16) is given by
1+ ecosg

p

Th.e validity of (20.17) is easily confirmed by direct substitution.
Using (20.17) we can calculate

1 2 2 C (du\? 2
2 u e
~——u] =—=c¢ — ) = Zsin?

(p ) 7 0s“ @, (dﬁﬂ) = 2 sin“ . (20.18)
Subs.titutiflg (20.18) into (20.16) and using cos2 ¢ + sin g = 1 we obtain
the 1c}enuty. Thus (20.17) is a correct solution of the differential
Equation (20.16). Using here u — 1/r we finally obtain

=P
I+ecosg’

: (20.17)

(20.19)
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This is the equation of an ellipse in polar coordinates. The length of the
major axis of this ellipse, denoted by 24, is given by

P P 2p
2 = :O = = = . .
a=r(p=0)+r(p=m) 1+6+1_e - (20.20)

Thus we may express the parameter p as
p=a(l-é. (20.21)

Thus according to the Newtonian theory of gravitation the orbit of a planet
around the Sun is indeed a closed ellipse with the Sun at one of the two foci,
and the perihelion is fixed. Let us now consider the motion of the planet in
the Schwarzschild space-time within the framework of the general theory of
relativity. The equations of motion are the geodesic Equations (11.25),i.e.,

da*x dxl axk

7 Tl =0 (ln=0123). (20.22)

Using the nonzero Christoffel symbols of the second kind in the Schwarz-
schild metric (19.19), we obtain the four equations of motion:

d?t a0 dt dr —o
ds? Ogsds —

&Pr 5 (dt\? dr\? do\? do\?
— +r (= ri (= L — ri —) =0
a? ¢ W(ds) +h (ds) Ty ) tiel

d%o dr do de\?

42— 4T4 (=) =0

a2 T g T (ds)

d*p 5 drdg 3 d0 do

kA, o it AT, o Mudidias iy} 20.23
ds? +21s ds ds + B ds ds ( )

In Equations (20.23) the factor of 2 appears before each of the off-diagonal
terms, as they appear twice in the sum because of the symmetry of the

Christoffel symbols of the second kind with respect to its two lower indices.

The Schwarzschild metric is a spherically symmetric metric and the motion
of the planets around the Sun is still confined to the plane of the orbit, which
we may take to be the equatorial plane of the spherical coordinates. Thus we
still have § = /2 and § = 0. The third of the equations of motion (20.23)
for the angular variable 6 becomes, therefore, trivial, and the other three
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equations are reduced to:
d’t dt dr
— O —— e —
ds? +200; dsds 0
d2r t 2
d2+ FOO(*) +F“(d—s) + %3(*(;’) =0
dzi 3 ﬂd*go =0
ds? Bdsds (2024)

S.ubstituting the actual values for the Christoffel symbols of the second
kind from (19.19) in the first and the third of Equations (20.24), we obtain

d*t dr dt

— + 0= =
ds? +2v() ds ds 0
d2(p 2drde _

a2 + Tdds = 0, (20.25)

or

d dt
exp (—2v)— Z) =
p( ”)ds (eXp(Zv)ds) 0

1d (,dy —0
2as\" a5 ) = (20.26)

Thus we obtain two constants of motion:

dt rg\dt 1/ 2E
exp2v$ = (1 — T) el 1+ d = Constant

2dg h
r*— = — = Constant. (20.27)
ds  mc ’

_The form pf the constants on the right-hand side of Equations (20.27)
is chosen in such a way to secure the correct classical analogy. From
Equations (20.27) we may write

dt 2 re\ —2 2F
2 (¢ _ _ G
¢ (ds) - (1 r ) (1 + ch)

AN
re) = (20.28)
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Now, using the result for the Schwarzschild metric (19.51) with = /2
and § = 0, we have

ds® = (1 _ 'TG) di® — (1 - 5:5-)_1 dr? — rdg? (20.29)
or i
_ 2
== (E) -0 (E) =),
(20.30)

Substituting (20.28) into (20.30) we obtain

ron -1 2E
— - = 1 —_—
1= (1 : ( + mc2>

2 2
(1- ’_G)"l dr\"_ R (2031)
- r ds m2c2r?
or
ro _ 42 912_L(1—’—G). (20.32)
1= T mec? ds m2c2r? r

Using (20.27) we may calculate
dr _1dr,dp b d (l) . (2033)
ds ridy ds mcdy \r

Substituting (20.33) into (20.32) we obtain

i )]2 yP 2B o, Mo s

— - — 55 = T3 22,3
m2C2 d(ﬂ r m2c2r2 mc r mec-r

Using here the result (1 9.50) for rg and introducing a new variableu = 1/r,
we obtain

2 2

(e | 2B 2OM | PTG (2035)

m2c? | \do ‘ mc? c2 mZc
or
2

du 2 2 2mE 2GMm u 3 (20.36)

—_— = —5 +rgu . .
(d(p) te=Tr TR
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Using again the result (19.50) for 7, we finally obtain
du\? L2 mE 2GMm? L 20M 5 (2037)
—_— = u - .
dp) TH TR 2 2

Comparing Equation (20.37) with the Newtonian Equation (20.12) we see
that the only difference is an additional nonlinear term proportional to u’
that vanishes for ¢ — oo. This term can therefore be considered as a small
perturbation of the Newtonian Equation (20.12) that introduces the general-
relativistic corrections to the Newtonian results. Differentiating both sides
of Equation (20.37) with respect to the angular variable ¢, we obtain

du (d’u du (GMm* 3GM ,
2—({— =2 | —5— + ——u"). 20.38
dy (d<p2+u) dw( Pt Te u) 2039

If we disregard the solution du/d¢ = 0, which represents the circular orbit

with r = constant, we obtain the nonlinear differential equation for u in
the form

d*u GMm? 3GM ,
The solution to the corresponding Newtonian linear equation,
d?u©® GMm?
(.
77 + 40 = o (20.40)

is given by Equation (20.17), i.e.,
4O = 1+ ecosgo.
4

Using the perturbation method, we may construct an approximate solution
of the nonlinear Equation (20.39) in the form

(20.41)

u=u® +40 4O «u,© (20.42)
Using (20.42) with (20.41) we may write

Pu  BEu® 2O g0
du _ - _€ , 20.43
dp?  d¢? * dy? a2 p ¢ )

and

1
u=u® 4 ,® =, ® + ¢ cosg + —. (20.44)
14 p
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Combining the results (20.43) and (20.44) and using the definition (20.14)
we obtain
d?u d?u®

—tu=
dy? " dy?

GMm?
w27 (20.45)

Substituting the result (20.45) into Equation (20.39) and putting u = u©®
in the nonlinear term, we obtain the equation for the perturbation () in
the form

2, M
du” = 3M oy (20.46)
d(pz c2
Substituting the result (20.41) into (20.46) we obtain
2D 3GM
LU 40 = 28 (14 ecos ), (20.47)
do c’p
or
A 3GM  6GM 3GM
O = ———eCcos Y + e*cos? p. 20.48
iz PR ) LR - (2048)

Considering orbits with small eccentricity e the term of the order e can be
neglected. The contribution from the constant term is negligible as well. The
only term that produces an observable effect is the one proportional to cos ¢
with the contribution which increases continuously after each revolution.
Dropping the constant term and the term proportional to 2, we obtain

d*u® 6GM
77 +uD = 2,7 € C0S Y- (20.49)
The solution of differential Equation (20.49) is given by
3GM
u) = =—epsing, (20.50)
cp

which is easily shown by direct substitution into (20.49). Substitut-
ing (20.41) and (20.50) into (20.42), we obtain

1+ecosp 3GMe
U= +

=@ sin @. (20.51)
p cpp
Let us now introduce the increment Ag as follows:
3GM 3GM

Ap =

TV = dag (20.52)
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where we have used the result (20.21) for the parameter p. Thus we may
rewrite (20.51) as follows:

v l1+ecosgp+eApsing

(20.53)
P

Using the trigonometric formula
cos (¢ — Ap) = cos g cos Ap + sin g sin Ag (20.54)

and the approximations for the trigonometric functions of a small angle
Ag, given by

cos Ap~ 1, sinA¢ =~ Ag, (20.55)
we obtain
cos¢ + Agpsin Agp = cos(p — Ag). (20.56)
Substituting (20.56) into (20.53), we finally obtain

14 ecos(p — Agp)
U= .
p
From Equation (20.57) we see that while a planet moves through an angle ¢,
the perihelion advances by a fraction of the revolution angle equal to
Ap  3GM
o ca(l —é?)’
For a complete revolution (¢ = 2m) the perihelion advances by an angle
__ 6nGM
Y= aa-a
For the planet Mercury the theoretical result for the relativistic perihelion
shift is equal to A = 43.03 seconds of arc per century, while the observed
perihelion shift is equal to Ag = 43.11 =+ 0.45 seconds of arc per century.
The perihelion shift of the planet Mercury could not be explained in the
Newtonian theory of gravitation. This remarkable agreement of the the-

oretical result from the general theory of relativity with the observational
data was the first major experimental confirmation of the theory.

(20.57)

(20.58)

(20.59)

Black Holes

In the previous chapter we mentioned the singularity of the Schwarzschild
metric (19.51) at the gravitational radius of the spherical body » = r; and
the possibility of the existence of bodies in the universe that are actually
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smaller than their gravitational radius rg. The region where r < rg around
such bodies is called a black hole. A number of physically interesting
phenomena occur at the boundary r = rg. For example, we have argued
that matter and energy may fall into the region r < rg of a black hole,
but neither matter nor energy (including the light signals) can escape from
that region. In order to prove this assertion, let us consider a particle falling
radially into a black hole with a radial velocity u! = dr/ds. As the particle is
falling radially, we have #? = u> = 0. The motion of the particle is described
by geodesic Equations (11.25), i.e.,

du®
ds
Using u? = 13 = 0 and the results for the Christoffel symbols of the second
kind (19.19), we may write the temporal equation of motion as follows

+ IMalut = 0. (20.60)

du® 0,1k _
or
du® v dr o dv
— =-2——u =-2—u’, 20.62
ds dr ds ds " ( )

where the factor of 2 appears because the term proportional to l"(l)0 = Fgl
appear twice in the sum. Thus we obtain

% + 2d——u =exp(— 2v)—(exp ) = (20.63)

Equation (20.63) can be integrated to give
exp v = goouo = K = Constant, (20.64)

where K is the integration constant that is equal to the value of ggo at
the point where the particle starts to fall toward the black hole. Using the
identity gg,u*u” = 1, we may also write

1 = gt u" = goo(®)? + g11 (). (20.65)
Multiplying by ggo and using (20.64) as well as ggog11 = —1, we obtain
00 = (800)>(°)* + googn (')* = K* — (u')?, (20.66)
or
') =K* —goo=K>— 1+ rTG (20.67)
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For the radially falling body we have u! < 0, and we may write
7, 172
W=~ (K2 1+ TG) . (20.68)

Using (20.64) and (20.68) we may calculate the ratio dt/dr as follows:

d K ro\—1/2

— == (K?_14+ =

== Cgoo( + r) , (20.69)
or

d K rg\~l/_, rg\—1/2

o= (1=7) (®-1+7) 2070

If we now assume that the particle falling radially into a black hole is close
to the gravitational radius r¢, then we may write r = rg + € with € < rg.
Equation (20.70) then becomes

-1
dr K e\ !
—=—|1-{14+=
dr c rG
_17-172
2 €
X|K°—14+ 14+ — . (20.71)
rg

Using the approximation

—1
(1 + i) ~1- S (20.72)
re re

in Equation (20.71), we obtain

Zi % [K2 _ :_G]_m ~ _;_C:, (20.73)
or
dt r
e G _GrG), (20.74)
Integrating (20.74) we obtain
t =~ —rgIn (r — rg) + Constant. (20.75)

From Equation (20.75) we note that as r — rg we have t — 00. Let us now
consider an observer traveling with the particle. The proper time measured
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by the observer in its own rest frame is given by (17.5), i.e.,

dt = lds = /goodt. (20.76)
c
Thus we may write
1
dr = lds = 1‘—i£dr = —dr, (20.77)
c cdr cul
or
-1/2
dr =& (K2 —1+ 5‘3) . (20.78)
c r

If we again assume that the observer traveling radially into a black holg is
very close to the gravitational radius rg, then we have r = rg + € with
dr = de. Equation (20.78) then becomes

~1/2
PR (Kz _ €+E> , (20.79)
c rG
or
—-1/2
gr ~ %€ (K2 - i) . (20.80)
C re

Integrating from the starting point € to the point € = 0 where the observer
reaches the gravitational radius rg, we obtain

0 -1/2
T~ —lf (KZ — i) de
C Je rG

0
_weK (€ )‘/2
T ¢ K2rg
€
2rgK €
= - 11— , (20.81)
c [1 K2rg
or
€ r—rg
N = & rg. (20.82)
t K Kc € <76

From the result (20.82) we conclude that the observer reacpes the point
r = rg after the lapse of a finite proper time according to his own clock.
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Thus the singularity at r = rg is not areal unphysical singularity, but merely
a coordinate singularity that is a consequence of the choice of the coordi-
nate system. Let us now assume that, during the radial fall, the observer
is sending light signals to a distant counterpart at precisely regular time
intervals according to his own clock. Using the definition of the differential
of the proper time (17.5), the differential of the coordinate time is given by

dt rg\—1/2
= — = 1 —_——_— R
RV ( . ) (20.83)

and from the point of view of the distant receiver the light signals are
red-shifted by a factor proportional to

o0 = (1~ rTG) " (20.84)
Thus, although the traveling observer passes the point r = rg after the
lapse of a finite proper time, from the point of view of the distant receiver
the time intervals between light signals become longer and longer as the
traveling observer approaches the point r = rg. The distant receiver never
sees the traveling observer after his passing below the point » = rg, which
is in line with the initial assertion that neither matter nor energy (including
light signals) can escape from the region with r < rg.

The lack of communication with the outside world is a basic property
of black holes. The boundary r = r¢ is called an event horizon. Just as the
curved Earth creates a horizon limiting the range of vision of an ocean
navigator, the strongly curved geometry in the vicinity of a black hole
creates an event horizon hiding the space-time of the interior of the region
with r < rg from the external observer. Nevertheless, the black holes do
exert influence on the external observers by their gravitational effects on
external bodies arising from the Schwarzschild metric for r > rg.

Another interesting feature of the black holes is that inside the region
r < rg there can be no static bodies. Only the dynamic bodies can exist
inside the region r < rg. This property is obvious from the unphysical
negative result for the square of the world line element of a body at rest,
for which we have dr = d@ = dp = 0, i.e.,

ds® = ?de? = 2 (1 - 59) dP <0. (20.85)
r

At this point we want to examine how bodies move inside a black hole. In
particular it is of interest to find out if they are moving toward or away from
the central mass. We first note that by virtue of the principle of invariance
of the speed of light, the world line element ds of a light ray is always equal
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to zero. The equation ds = 0 defines the two light cones. As an illustration
consider a pseudo-Euclidean metric described by Descartes coordinates,
where dy = dz = 0. The light cones are then defined by

ds? = c*dt? — dx® =0, (20.86)
or

xg —xp = £c (tg — tp). (20.87)

Equation (20.87) is the equation of the cross section of two cones with the
y-plane or the z-plane. All world lines of a light ray in four-dimensional
space-time, passing through an arbitrary world point P, must lie on these
two light cones where ds = (. All other permissible world lines of arbitrary
bodies with ds*> > 0 must lie within the two light cones, since otherwise
the slope of the actual world line would be larger than ¢, indicating a body
moving faster than the speed of light with ds> < 0. All world lines within
one of the two cones point into the future compared to the world point P,
while all world lines in the other two cones point into the past compared
to the world point P.

As we have argued before, if we want to explain how bodies are moving
inside a black hole, the usual set of four coordinates (¢, r, &, ¢) is not
adequate and we need to introduce a more suitable new set of coordinates.
The simplest way to achieve this goal is to keep the three spatial coordinates
and just introduce a new time coordinate w, defined by

w=t+Cmn L—l‘. (20.88)
C rG
From (20.88) we obtain
-1
dt = aw— '€ (1 - r—G) dr. (20.89)
Ccr r

The square of the original coordinate time differential dt as a function of
the new coordinate time differential dw defined by Equation (20.89) is then
given by

2 -1
d? = dw? — 28 (1 - 5‘5) dwdr
cr

L6 (1- ’T)"z ar. (20.90)
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On the other hand for the light cones of a radial motion, where we have
dé = dgp = 0, the result for the metric gives

ds? = (1 - 'TG) Adi? — (1 - rTG)_l dr? =0, (20.91)
or
a? = 515 (1 — rTG)_Z ar?. (20.92)

Substituting (20.92) into (20.90), we can remove the dependency on dr?
and obtain a quadratic equation in dw/dr as follows:

2
rg\ (dw 2rg dw 1 rG
1-=)|—)] ————-=(1+—=)=0. 20.93
( r><dr) cr dr c2(+r) 0 ( )

The two solutions of the quadratic Equation (20.93) are given by

aw 1 /rg rg\ 1

= (Z+1Y(1-= 20.94

dr ¢ ( r ) ( r ) ’ (20-54)
or

aw 1 dw 1 rG rg\~1

—=—, —=-(1+=)(1-= . 20.95

dr ¢ dr ¢ ( + r )( r) (20.95)

The first of Equations (20.95) shows that outside the black hole for r > rg,
some world lines have a decreasing coordinate distance r with increasing
coordinate time w, i.e., the light rays move toward the central mass. The
second of Equations (20.95) for r > rg shows that some world lines have
increasing r with increasing coordinate time w, i.e., the light rays move
away from the central mass. On the other hand, inside the black hole for
r < rg both Equations (20.95) show that all world lines have decreasing
coordinate distance r with increasing coordinate time w, i.e., the light rays
always move toward the central mass. Based on the earlier conclusion that
all other permissible world lines of arbitrary bodies with ds® > 0 must lie
within the two light cones, we see that all matter and energy (including
the light signals) within a black hole for r < rg can only move toward the
central mass and can never escape from the region where r < rg.

The preceding discussion of the properties of black holes would be
only academic unless there were reasons to believe that such objects exist
in the universe. It is generally believed today that black holes do exist
and that they are created by gravitational collapse in the final stage of
the evolution of massive stars with a mass greater than 10 times the solar
mass. This type of black hole is expected to have a mass in the range of
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two to three solar masses. Some stellar objects that may be candidates for
this type of black hole have already been studied. Super-massive black
holes comprising thousands, millions, or billions of solar masses may also
exist. It has also been suggested that in the early stages of the creation of the
universe, because of the high density of the hot matter, some small material
objects could have been squeezed sufficiently to form the so-called mini
black holes.

Part V

Elements of Cosmology




» Chapter 21

The Robertson—Walker Metric

In the previous two chapters we have shown that the general theory of
relativity provides the solutions for the space-time structure created by any
given matter distribution. Thus, if we can specify the average distribution
of matter in the entire universe, the general theory of relativity provides
the solution for the average space-time structure of the entire universe. The
study of such a solution for the average space-time structure of the entire
universe is a part of the subject of cosmology.

Introduction and Basic Observations

In the present chapter we study phenomena on a cosmological scale. For
that purpose we need to develop a suitable model of the universe and to
make suitable assumptions about the physical processes that are dominant
on the cosmological scale. The two basic observations that allow us to
address the large-scale structure of the universe are the expansion of the
universe (the Hubble law) and the cosmic microwave background radiation.

The first basic observation that allows us to address the large-scale
structure of the universe is the discovery that the spectral lines of distant
galaxies are shifted toward the red end of the spectrum. If we interpret this
red shift as a Doppler shift, this observation leads to the conclusion that
all the distant galaxies are receding from us. Thus we conclude that the
universe as a whole is expanding. This expansion implies a finite age of
the universe. In other words, by observing the sky we can only see stars
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that are close enough for the radiation originating from them to reach us in
such a finite time.

It has been shown by Hubble that the velocity of the distant galaxies v
increases linearly with their distance r. This proportionality is known as
the Hubble law. Using simple Euclidean geometry, the Hubble law can be
formulated as follows:

o o km 1
v=Hr (H = (55 i7)——) , (21.1)
s Mpc

where the quantity H is called the Hubble constant. The Hubble constant is
aconstant in a sense that it does not depend on the magnitude or the direction
of the vector 7. However, it may depend on time, and the numerical value
given in (21.1) is its present-time value. According to the Hubble law the
universe is in uniform expansion, which means that there are no privileged
positions in the universe and that an observer traveling with any galaxy sees
the surrounding galaxies as receding from him. If we observe from Earth
two different distant galaxies Gy and G», then according to the Hubble law
their respective velocities observed from our galaxy are given by

Vi = H#, V,=Hp. 21.2)

The relative velocity of the galaxy G as observed from the galaxy G,
denoted by V, is then obtained as follows:

-

V =9 — v, = H(f — ) = HR, (21.3)

where R = 7, — 7, is the relative distance between the two galaxies Gy
and G;. Thus an observer traveling with galaxy G, sees galaxy Gj, and
indeed any other galaxy, as receding from him. Although we have used
nonrelativistic approximation in Euclidean geometry and ignored the time
dependence of the Hubble constant, these general conclusions are nonethe-
less valid, i.e., the observer traveling with each galaxy sees all the other
distant galaxies as receding from him.

Since the distant galaxies are receding from us with a velocity directly
proportional to their distance, there must be a point at which each of them
will approach the speed of light and the relativistic effects will become dom-
inant. The set of all those points is called the world horizon. The radius of the
world horizon is approximately equal to rwg = c¢/H =2 x 1010 lightyears,
if the present-day value of the Hubble constant is used. The galaxies that
are located at or beyond the world horizon are invisible to us.

The second basic observation that allows us to address the large-scale
structure of the universe is the discovery of the extremely isotropic cosmic
microwave background radiation. This radiation has the same intensity in
all directions with a precision better than one part in a thousand. Regardless
of the origin of the radiation, this observation is convincing evidence for the
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assumption that any acceptable model of the universe has to be an isotropic
model. P

‘ Ano?her interesting feature of the microwave background radiation is
}ts relatively high energy density. It is the component of diffuse radiation
in the universe with by far the highest energy density. The universe today
is n‘lat.ter dominated, but there are reasons to believe that the universe was
radiation dominated in the early phases of its history and that the observed

n?icrowave background radiation originates from these early phases of the
history of the universe.

Metric Definition and Properties

The basic observations described in the previous section indicate that the
large-scale stmcture of the universe is both homogeneous and isotropic.
This assumption is often called the cosmological principle. We imagine
that the matter in the universe is on the large-scale evenly distributed in
the fo@ of a cosmic fluid, with no shear-viscous, bulk-viscous, or heat-
conductive features. This is a good approximation of the actual universe as
long as we take the large-scale point of view. Clearly, on a smaller scale
the matter in the universe is unevenly distributed and the universe is highl);
nonhomogeneous.

We denote an observer at rest with respect to the cosmic fluid as a
fundamental observer. As the universe expands, the cosmic fluid takes part
in the expansion and the fundamental observer is co-moving with the fluid.
Every co—movi_ng observer in the cosmic fluid sees the same isotropic and
homogeneous Image of the universe. The objective of the present section
is to define the space-time metric in the co-moving frame of reference.
W‘f cannot use the static Schwarzschild metric to describe the expanding
universe, which is certainly not static. We need a nonstatic, homogeneous
and isotropic metric to describe the entire universe. ’

Let us take the proper time measured by the fundamental observer
co-moving with the cosmic fluid as the time coordinate, which we here

denote by w. In such a case the space-time metric has the following general
form:

ds? = c?dw? + 2cgoodwdx® + gaﬂdx“dxﬂ . 21.4)

Applying the condition of isotrop ~
; y and spherical symm
metric (21.4), we obtain P ymmetry to the

2
ds* = c?dw? — D(r,w)dr?® — cE(r, w)drdw
~ F(r,w)(d6? + sin” 0dp?). (21.5)
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In Equation (21.5) it should be noted that we have chosen the dimensionless
radial coordinate r = R /L, where R is the usual radial coordinate with
the dimension of length and L is a yet-unspecified reference length of the
universe. The functions D(r, w) and F (r, w) therefore have the dimension of
the square of length and the function E(r, w) has the dimension of length
to secure the proper dimension of the metric (21.5). Let us now use the
geodesic equations of a particle given by (11.32), in the form

du; 19
S _ 108k 1k

= - 21.6
ds 2 ox/ (21.6)
For a particle at rest in the co-moving frame of reference we have
=1, =0 (@=123). (21.7)
Substituting (21.7) into (21.6) and using ggo = 2, we obtain
duj d ! d 0
@ = 5@ =5 (a0)
i 10
_ dwdsjio _ 1380 _ 21.8)
ds dw 2 9x
Thus we obtain
dg; d
asjo _ 0= —E(r,w) =0. (21.9)
dw dw

From (21.9) we conclude that E=E(r) is not a function of time
coordinate w, and the metric (21.5) becomes

ds* = c*dw? — D(r, w)dr2 — cE(r)drdw
— F(r,w)(d6? + sin” 0dp?). (21.10)

The term proportional to drdw can be eliminated by introducing a new time
coordinate:

1 [ 1
t=w-— —/ E(r)dr=dw = dt + —E(r)dr. (21.11)
2c 2¢
Using (21.11), we may write
1
cdw? = 2di® + cE(r)drdt + 3 (E("))? dr?, (21.12)
and
1
—cE(r)drdw = —cE(r)drdt — 5 [E(r)]2 dr?. (21.13)
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Substituting (21.12) and (21.13) into (21.10), we obtain

2
ds® = *di® — A(r, tydr® — B(r, 1) (d02 + sin? 9d<p2) (21.14)

where

811 = A(r,1) = Dlr,w(r,1)] + [E(P
2 (21.15)
822 = B(r,t) = F[r,w(r,1)].

The functions A(r, t) and B(r,t) defined by (21.15) have the dimension of
the square of length to secure the proper dimension of the metric (21.14).
In order to further specify the functions A(r, £) and B(r,1), we now apply

the cgndition of homogeneity of space-time and consider the following
coordinate transformation:

P =x%+ e(r,0,9) (@=1,2,3). (21.16)
Using the initial assumption that £ = 0 and Equation (21.16) we obtain
dz* 3e* 370
— =52y = S
3P s+ P R 0. (21.17)
The general transformation law for the covariant metric tensor, defined

with respect to the systems of coordinates {x*} and {z*} by gy, and 7;,
respectively, is given by "

_ 87 a7 _
Using Equations (21.17) and (21.18) we may write
0z 927 _
Substituting (21.17) into (21.19) we obtain
ag? e’
—_ v o
8ap = (501 + axa> (8; + m) 8va - (21.20)

Ex;.)an('iing the expression (21.20) and dropping the term quadratic in the
derivatives of the small translational parameters £“, we obtain

- agY _ de?
— k -
8ap () = Zap () + 32 8@ + aF8va@). (21.21)

Tpe homqgeneity of space-time now requires that the metric be invariant
with respect to the transformation (21.16), i.e., that we have

Bap(2) = gap(") (@, B =1,2,3). (21.22)
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Substituting (21.22) into (21.21), we obtain
_ ae’ ae¥ &
2ap () = Bap@) + ﬁguﬁ(z") + 558w (@). (21.23)

On the other hand, expanding gupg (z*) into the Taylor series, we may write

98
2ap(@) = gap(h) + 7;?8”~ (21.24)

Substituting (21.24) into (21.23) and dropping the terms quadratic in the
small translational parameters £ and their derivatives, we see that only the
zeroth-order term of (21.24) contributes to the first-order Equation (21.23).
Thus we obtain

ae’ ae¥
8ap () = Bap(@) + 55808 0) + 5 5800 ), (21.25)

or

de¥ 08’ x '
Bap (@) = gap(x) — T 8B = op8va)- (21.26)

Using again the homogeneity condition (21.22) and comparing Equations
(21.26) and (21.24) with each other, we obtain
Jd gaﬂ " 38 v _ﬂc
=L+ — +
o & T g ® ™)
Fora = $ = 1and using the metric (21.14) with (21.15), Equation (21.27)
becomes

08 ak 21.27
axﬂgvu(x):()- (21.27)

1
9411 2% 40, (21.28)
or or
For « = 1 and B = 2 and using metric (21.14) with (21.15),
Equation (21.27) becomes

g+ a=o. (21.29)
ar >t %6

Finally for @ = B = 2 and using the metric (21.14) with (21.15), Equation
(21.27) becomes

daB

ag?
2—B=0. (21.30)
or * 26
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From the differential Equations (21.29) and (21.30) it is possible to
eliminate £2. We first rewrite (21.29) and (21.30) as

3e?  3c'A

or 30 B

de? 139B, @ .

P S ~1/2) g1 _
38 _ 2Bar.  ar (h‘B )8 (21.31)

From (21.31) we may write

8262 aZslA

“9ro6 962 B
9262 32 9 el
¥e” ¥ 1) 1y B o p12) 3 2130
ara0 arZ(ln )e +ar(“3 ) o (21.32)

Addition of the two Equations (21.32) gives

a%l4 32 1 5 96l
A “12\ .1, 9 -1/2 _
AT (n8=12) ! + or (m5™2) o =0 (@133

Now, using Equations (21.28) and (21.30), we may also write

10A _ 0 L 2 9e!
Adr  or = el ar
19B d 2 9g2
s = nB)=———-. 21.34
B or ar (In B) PSRFY) ( )

As the small translation parameters % are by definition independent of
the time coordinate z, we conclude that 8,(InA) and 9,(In B) are not the
functions of the time coordinate ¢, either. But the functions A(r,?) and
B(r, t) are dependent on the time coordinate . This is only possible if the
functions A(r, t) and B(r, ¢) are factorized as follows:

A(r,1) = a(DR(@), B(r,1) = b(NR(), (21.35)

where R(¢) is some yet unspecified function of the time coordinate ¢ that
has the dimension of length. This function in some sense plays the role of
the radius of the universe. The function R(¢) should not be confused with
the Ricci scalar R used in the gravitational field equations, and whenever
there is arisk of confusion the distinction between the two will be explicitly
stated. On the other hand, we note that the dimensionless radial coordinate r
is not uniquely defined. The metric (21.14) is invariant with respect to the
transformation from the radial coordinate r to some new radial coordinate p,
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defined by

r = fp F(p)dp = dr = F(p)dp, (21.36)

where F(p) is some arbitrary function of the new radial coo?dinate p-
Indeed, if we substitute (21.36) into the metric (21.14), we obtain

_ ‘ ,
is? = 2df? — Alp,dp® —B(o.D) (d(ﬂ + sin 0dg ) (21.37)

where

0
g =A(p,1) =A [ f F(p)dp, t] [F(o))*

P
gn=B(p,0)=B U F(p)dp,t] . (21.38)

The metric (21.37) has the same form as the metric (21.14)b§nd m:go?(r;
fully equivalent to cach other. Thus we are free to make an :su;7 1t)raiy chorve
of the form of one of the functions a(r) or b(r). If we set b(r) =17,
metric (21.14) becomes

i = Adi* — R (Da(rdr? — Bor (de2 + sin? 9d¢2) . (2139)

1 urface area of a sphere with the
the metric (21.39) we see that the ' .
fél(:llgve E1:‘adius r is equal to Axr?R2(1). If, at a conveniently chosept t:1tnk1:::
instant ¢, we have R(t) = L, then the surface area of a1 spheredwlates )
radi i 2 and the angular coOrdin

i dius 7 = R/L is equal to 4 R* an . .
ﬁguvixr::o:ne the usual spherical angular coordinates. In ordt?r tg fspeci);

the f(fmction a = a(r), we use Equation (21 28) and the factorized Torm

the function A(r, ?) given by (21.35) to obtain
g —1/2 21.40)
9 ! ___3_ mA~Y?) = — |Ina . (1.
5;(1n8)—3r( ) ar( )
The solution of the differential Equation (21.40) can be written as
el (r,0,9) = (0, p)a” (). (21.41)

Substituting the factorized form of the functions A(r, 1) ax}d B(r,t), given
by (21.35) with b(r) = /2. into Equation (21.33), we obtain

2eta 3%

) ae! 5
__?_Ezﬁ(lnr)ewg;(lnr)—a;, (21.42)
364 r r
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or
el _r2(1osl 1\ _rtd (s 0143
%2 " a\rar 20 )T aa\F) (21.43)
Substituting the solution (21.41) into (21.43) we further obtain
19% % 3 1
——=——— ——} =C. K
€36  a'l?9r (ral/z) 21.44)

The expression on the right-hand side of Equation (21.44) is a function
of the angular variables # and ¢ only, while the expression on the left-
hand side is a function of the radial variable » only. Thus both sides of
Equation (21.44) are equal to a constant that we denote by C. In order to
determine the value of C, we use (21.44) to write

32%e

ryohe Ce. (21.45)
If the translation (21.16) is chosen to be along the polar axis (z-axis) in
the corresponding Descartes coordinates, we have e(8, ¢) ~ cos§. This

determines the value of the constant C to be C = —1. Thus we obtain the
differential equation for the function @ = a(r) in the form
AR (U 21.46
ad23r\raz) = (21.46)
The solution of the differential Equation (21.46) is
1
= —. 21.47
a(r) = +— (21.47)

Itis easy to verify by direct calculation that (21.47) satisfies the differential
Equation (21.46):

)
21 ~kr258— (_____Vlk’) =1 (21.48)
r r

Substituting (21.47) into (21.39) we obtain the final result for the
Robertson—Walker Metric in the form

1—kr?

where R(z) is a dynamic function of the time coordinate ¢ with the dimen-
sion of length, which will be calculated as a solution to the gravitational
field equations, and k is the so-called curvature constant, which describes
the geometry of the three-dimensional space at any particular time instant.
The positive values of the curvature constant (k > Q) correspond to the

d 2
ds* = ?dt* — R (t) ( L 4 2d6% + P sin? 9d(p2) (21.49)
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three-dimensional space with a positive curvature, the zero value (k = 0)
corresponds to the flat three-dimensional space, and the negative val-
ues (k < 0) correspond to the three-dimensional space with a negative
curvature. The value of the curvature constant k can always be taken as
+1, 0, or —1 by a suitable rescaling of the radial coordinate r.

The infinitesimal element of the proper distance between two arbitrary
galaxies given by cdt can be calculated from the condition ds = 0 using
the Robertson—Walker metric (21.49) as follows:

dr?

1—kr2

cdt = R(t)do, do* = + r2d6% + r?sin®0dp®  (21.50)
where do? is the metric of the three-dimensional space for a fixed value of
the time coordinate ¢ that is usually called the cosmic time. The cosmic time
is a universal time equal for all observers at rest with respect to the local
matter. Using Equation (21.50) we may write cAt = R(f)Ao for finite
proper distances. All measurements are made at the same epoch . The
radial coordinate r is a co-moving coordinate and it remains fixed for each
galaxy. The angular coordinates 8 and ¢ also remain fixed for the isotropic
motion of each galaxy. Thus the spatial metric do? remains fixed and the
proper distance between two galaxies is only scaled by the function R(z)
as the cosmic time ¢ varies. The function R(¢) with the dimension of length
is therefore called the scale radius, and it increases or decreases as the
universe expands or contracts, respectively.

The Hubble Law

In the present section we discuss the Hubble law in the framework of
the Robertson—Walker geometry. It has been concluded before that each
galaxy has similar coordinates (r, 6, ¢). Let us now assume that our
own galaxy, being an approximately co-moving object, lies at the spatial
origin r = 0 and that some other distant galaxy lies at some radial coordi-
nate distance r. Because of the homogeneity of space-time this choice of
coordinates does not place our own galaxy in the center of the universe,
since any galaxy can be chosen to have » = 0. This particular choice is only
made for convenience. The proper radial distance D, between our galaxy
at r = 0 and the distant galaxy, at some radial coordinate distance r and
at a given cosmic time #, can be calculated using the Robertson—Walker
metric as

r dr
D, =R - 21.51
(t)/(.) V1 —kr? ( )
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The integral (21.51) is elementary and gives

R(@)arcsinr  (k=1)
D, =3RWt)r k=0) (21.52)
R@)arcsinh r (k= —1)

where it should be noted that r = R/L is the dimensionless radial coordi-
nate. Thus the proper distance is proportional to the scale radius R(¢), which
changeg with time. Keeping in mind that the radial coordinate 7 is a fixed
co-moving coordinate, the proper velocity is obtained by differentiating
the proper distance D, with respect to the cosmic time tie.,

. R r dr R
vr:D =R(t) —————:——D, .
" 0o Vi—k?2 R’ (21.33)
where tbc dots denote the time differentiation. Thus we obtain the Hubble
law saying that at any given cosmic time ¢ the speed of any distant galaxy

relative to our own galaxy is proportional to its proper distance from our
galaxy. The Hubble constant is given by

-0
T R@’

gnd we see that the Hubble constant is indeed a function of the cosmic
time as we have anticipated earlier in this chapter. The quantity Hy meas-
ured by the astronomers is the value of the Hubble constant at the present
epqch, Le., for ¢ = 1. It should be noted that the proper distance is not
a directly measurable quantity, and it can only be measured indirectly by
measurements of some other quantities such as red shifts.

H() (21.54)

The Cosmological Red Shifts

In the present section we discuss cosmological red shifts as one of the means
of measuring the proper distances to distant galaxies and test the validity
of the Hubble law in the framework of the Robertson--Walker geomeiry.
Let us consider a distant galaxy at some relative radial coordinate distance
r = rq emitting two light wave crests at cosmic times tg and t; + Aty
toward our own galaxy situated at » = 0. The two wave crests are received

in our galaxy at cosmic times 7o and 7y + Aty. For the radial motion of light
the Robertson~Walker metric gives

dr?
=0. (21.55)

ds® = 2dr® — R%(s =
( )1 — kr2
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Thus we may write

a1 dr
R() ~ ~cl—kr?2
Since the beam of light is moving toward us, the radial coordinate r
decreases as the time coordinate ¢ increases along the null geodesic, and

it is appropriate to use a minus sign in Equation (21.56). Thus we may
integrate Equation (21.56) to obtain

(21.56)

/’0 dt B 1 /’d dr @1.57)
w RO cJo 1—k? ’
and
totAto gy 1/” dr
- == —_— (21.58)
/t:i+Atd R(t) C 0 1 - kr2

For all types of radiation received from distant galaxies, the time intervals
Aty and Aty are tiny fractions of a second, and over that time R(t) remains
effectively constant. Subtracting Equation (21.57) from Equation (21.58),
we obtain

Aty Aty Atfo  R(x)

RGo) RG2) A R

The observed wavelength Ay and the emitted wavelength A4 are related to
the time intervals Aty and At, by the following definitions:

(21.59)

Ap = cAly, Aq = cAty. (21.60)

Thus the red shift of the received light waves can be obtained in terms of
the function R(¢) as follows:

= M—rd_ Rt
Aa R(t2)

In the expanding universe we have R(zg) > R(t;) and the red shift z is
positive in agreement with the empirical observations. The red shift (21.61)
is a consequence of the light traveling in curved space-time and is not a
result of the Doppler effect. This red shift is called the cosmological red
shift. Most observed cosmological red shifts are rather small and ¢, is
relatively close to 7. It is therefore possible to expand R(t;) in a Taylor
series around # as follows:

(21.61)

R(13) = R(to) + (ta — to)R(t0) + ';‘(td —19)*R(10) + - - (21.62)
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or

R(ta) = R(t) [1 + Ho(ta — t0)R(tg) — %qOHg (ta —10)* + - ]

(21.63)
where Hy is the present value of the Hubble constant given by
R(t)
Hy=—=, 21.64
R(io) @169
and gy is a dimensionless deceleration parameter given by
R(t0)R(to)
0= —— . 21.6
g R2(0) (21.65)

The deceleration parameter gq is positive when R(?) is negative, i.e., when

the expansion of the universe is slowing down. Substituting (21.63)
into (21.61), we obtain

) 1 -1 '
IR [1 + Ho(ts — to)R(tp) — quHg(td - to)2] ~1 (21.66)

or

1
2~ Ho(ty — tg) + (1 + qu) H3 (o — 1) (21.67)

This formula is sometimes very useful, but we must keep in mind that
it is only valid for small cosmological red shifts where #; is relatively
close to fg.

When we observe a galaxy with a red shift z = 1, it means that the scale
radius R(zz) of the universe at the cosmic time t4 when the radiation was
emitted was one-half of the present scale radius R(zg). In other words, the
size of the universe at the time z; was half of the present size of the universe.
Unfortunately, we do not know the cosmic time ty when the radiation
was emitted. If we did, we could directly measure the function R(r). We
therefore need some theory of the cosmic dynamics in order to determine

the scale radius R(¢). Such a cosmic dynamics theory is the subject of the
next chapter.
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Cosmic Dynamics

The nonstatic models of the universe based on the Robertson—Walker
metric (21.49) are described by their scale radius R(¢) and the curvature
constant k. The analysis in the previous chapter did not determine the scale
radius R(z) as a function of the cosmic time ¢. The knowledge of the func-
tion R(?) is essential for determining the rate of expansion of the universe
and other physical properties of the expanding universe. In order to find the
solution for R(z), we need a theory of cosmic dynamics based on the grav-
itational field equations. We therefore combine the homogeneous isotropic
Robertson—~Walker metric with the gravitational field equations to obtain
the dynamic equations satisfied by the scale radjus R(#). These equations
are called the Friedmann equations.

22.1| The Einstein Tensor

In the present section we use the Robertson—Walker metric (21.49) given by

2
ds? = c2df* —R*(1) ( dr

1 —kr?

The covariant metric tensor for the Robertson—Walker metric is given by
the following matrix:

+ r2d6% + r?sin® 9d(p2) .(21)

1 0 0 0
0 —R%(1 —kr?)~! 0 0
lemn] =1 0 —R*r? 0 @22
0 0 0 —R%rZsin? 6
239
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The contravariant metric tensor for the Robertson—Walker metric is then
given by

1 0 0 0
0 —R2(1 —krd) 0 0
[gmn] = 0 0 _R_zr_z 0 . (22.3)
0 0 0 —R2r7%sin"%40
Using the matrix (22.2) we may write
RZ
= 1, = -,
800 811 =2
gn = _R2r2’ £33 = —R*sin? 6. 22.4)

The coordinate differentials of the metric tensor components (22.4) can be
calculated as

dgoo =0 (k=0,1,23),
et — 2RR S
Ogll - l—krz’ rgll - (1—kr2)2’

99811 = dpg11 = 0,

d82 = —2RRr?, .80 = —2R*r,

O9go2 = 0pg22 =0,

30833 = —2RRr* sin20, 0,833 = —2R?r sin? 0,

09833 = — R%r? sin 6 cos 0, 9,833 = 0. (22.5)
In the results (22.5) and in the following calculations, we temporarily define
by dots the derivatives of the scale radius R(#) with respect to the temporal
coordinate x* = ¢t rather than with respect to cosmic time ¢ to simplify the

calculations and to make the results compatible with the results obtained
elsewhere in the literature using the units with ¢ = 1. Thus we have

dR(r) ldR(t)

k@ = dd T ¢ dt

(22.6)

The Christoffel symbols of the first kind for the metric (22.1) can now be
calculated using the definition (9.28), i.e.,

1 (Ogjk  3gnj  38kn
Ty = = — S8kn ) 227
ikn =2 (ax" Yok T o 22.7)
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The results for the Christoffel symbols of the first kind for the metric (22.1)
are summarized in the following list:

1
Too0 = 5(305’00 + dogoo — dogoo) = 0
1
Foo1 =Tp10 = E(argoo + 30810 — d0g01) = 0
1
Tooz = Top0 = 5(36800 + dog20 — dogo2) =0

1
To,03 = I'o30 = E(atngO + dog30 — dogo3) =0

RR
1 —kr?

Ton = %(&gm + 3,810 — dog11) = +
Foi2 =To21 = %(30301 + 9rg20 — dog12) =0
Fo13 =Tg3;1 = %(3¢go1 + 9,830 — dog13) =0
Fo22 = %(36802 + 99820 — B0g22) = +RR1?

Lo23 =To3 = %(%goz + 99830 — dpg23) =0
Fossz = %(3«;803 + 8,830 — dog33) = +RRr?sin? @

1
[1,00 = 5(805’10 + dogo1 — 0-800) =0

1 RR
r = = — - —
1,01 = 10 2(3rgw + dog11 — drgo1) = T2
1
o =T120 = 5(39810 + 30821 — 9r802) =0
1
03 =T130 = 5(3«:810 + dog31 — 3,803) =0
1 R2kr
Tin==@ - =27
L = 53811 + 3,811 — 3r811) T =2y

1

FLip=T0 = 5(39811 + 0,821 — 0,812) =0
1

M3 =TI31 = 5(3¢g11 + 0,831 — 3,813) =0

1
Fl,22 = 5(304?12 + 3gg21 — 0rg22) = +R2r
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Fa=T132= %(33g12 + 09831 — 3,823) =0
Fi33 = %(3«:313 + 94831 — 0rg33) = +R%rsin? 0
00 = %(30820 + dogo2 — dpgo0) =0

20 =T20= %(8r820 + 30812 — 98801) =0
02 =T20 = %(aogzo + Bog2z — d9go2) = —RRr?

03 =T230 = %(%gzo + 90832 — dpg03) =0

P = %((’#821 + 3,812 — dg11) =0

a2 =T21 = %(30821 + 8,822 — dpg12) = —R%r

213 =T231= %(atngI + 0,832 — 09g13) =0

P22 = %(30322 + 39822 — 9pg22) =0

r 2,.23 =Tg3 = %(%822 + dgg32 — 3pg23) =0

233 = %(3%'23 + 0y832 — 0pg33) = +R%r%sin 6 cos 0
300 = %(30830 + 30803 — 9p800) =0

301 =T300 = %(3rg3o + 90813 — 3801) =0

302 =T320 = %(30830 + 0823 — 9p802) = 0

T303 =330 = %(3«;5'30 + 80833 — 8y803) = —RRr* sin® 0
31 = %(3r831 +0-813 — dpg11) =0

F312="T321= %(3@831 + 9rg23 — 3pg12) =0

1 2 2
313 =T33 = 5(%831 + 8,833 — 3pg13) = —R°rsin” 6
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1
32 = 5(30832 + 09823 — 0p822) =0
1 .
323 =T33 = 5(%832 + 96833 — 0,823) = —R*r? sin6 cos @
1
333 = 5(3:;»833 + 9,833 — 9,833) = 0. (22.8)

The Christoffel symbols of the second kind for the metric (22.1) can be
calculated using the definition (9.29), i.e.,

. Ty, = &T) . (22.9)
The results for the Christoffel symbols of the second kind for the
metric (22.1) are summarized in the following list:

% = 8%Tj00 = §%To00 = 0
I =T =g"Tjo = g%To01 =0
T, =T9% = g% = %000 =0
Igs =T9 = 8%Tj03 = §%To03 = 0
RR
1—kr?
Tl =T3 =g"Tj12 = g®To 1 =0

I =¥ = g®Ton = +

Y= g = 8%Tj13 = g%¥Tg13 =0
), =g 22 = §°T0.22 = +RRr?
9 =T%, = g% = %23 =0
'Y = g¥Tj33 = g®To33 = +RRsin2 6
Too = 8YTj00 = g''T1.00 = 0
rl =rl =glr.,, = 11]‘ —+§
o0=11w=8"1j01 =8 1,01 = R
Top =T =gYTj0 = g" T =0
Fos =Tl =gYTje3 =g" T3 =0
kr
1 —kr2
Fi,=T} = gljrj,l2 =gl ;=0

I}, =g = g' M=+
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M3 =T3 =¢g"Tj13=¢"T113=0

I}, =8YTjn=g"Tin=—r (1 - kr2)
[ =T3=g"Tjn=g"T123=0

T3 =gYTjz=¢"Tss = —r (1 - kr2) sin? 6
IS = 8¥Tj00 = gT200 =0

5 =T = g¥Tjo = g0 =0

TG =T3 = g¥Tj0 = g2Tym = +£
g =T3 = g7Tjo3 = gT203 =0

I} =g%Tj1 =g"Tn =0

I =T% =gTjn=¢"Ton= +%
I =T% =g%Tj13 = g”T213=0

I, =gTjm=g"T2=0

I3 =T% =g%Tj2 =Ty =0

I = g¥Tj33 = T3 = —sinf cos @
T30 =8"Tj00=§T300 =0

g =T3 =g¥Tjo = g*I301 =0

I, =T3=¢87Tjn=g"T0=0

3 =T3 = g¥T;03 = ¢33 = +B
Ig3 = T3 =87Tj03 = o R
I3 =g¥Tjn=¢"T3;1 =0

F%Z = F%l = g3ij,12 = g33F3,12 =0
1
i 33 _ .2
1"?3 = 1":3;l = g311"j,13 =g"T313 = +r
l"gz = g3ij,22 =g r3m =0
co
3 3 LU e — o33 = — =coth
[y =03, =¢g7Tj2=¢"Ti2 sng _°©
I} =gYTj3=g"T33 =0

(22.10)
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From the results listed in (22.10) we can make the following conclusions:

Fgo=0, I =rY =0, (22.11)
and

Tap = —Rgap, TP =TL — o8 7’:, (22.12)
where (o, 8 =1, 2,3). Thus we further obtain
i I’gﬂ =0, Tog=0 fora 4,
rl, = 5,15;%, Tl = 3;53% +0585c0t0 fora £ 8. (22.13)
Using the results (22.12) and (22.13) we note that

9Tl =0 fora 4, a,rf —o (22.14)
Furthermore, we can calculate the following sums:

i . R
Pty =0 + Ty + T + T3 = +3
; kr 2
0 1 2 3
F{j:F10+F11+F12+F13=m+;

Fé}zrgo+r§1+r§2+F§3=cot0
F§)=F30+F311+1“§z+1“§3=0- (22.15)

Using the results (22. 15) we note that

3T, =0 fora # B, T2 =o. (22.16)
The Ricci tensor for the metric (22.1) can be calculated using the definition
(18.8),1.e., :
= J T j P
Rin = 0.1 — 3Ty, + TET) — L0 (22.17)

From the result ( 12.48) we see that the Ricci tensor is a Symmetric tensor
Rin = Ry and that it has only 10 independent components. The formulae
for the components of the Ricci tensor for the metric (22.1) are summarized
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in the following list:

Rop = 8013, — 8T + Th T2y — ThT),
Ro1 = Rio = 8,TY; — T, + Tg;T5 — T Ty
Roz = Ryo = 39T, — 80, + TG;T5p — T0oly;

j J P P
Ropz = R3p = 8¢F0j — iy + Fojrp3 - FOBij

j j o pPpi _pPpi
Ri = 3,T{,— Iy, +T{;r) — T,

Riz =Ry = 39F€j — T, + I‘i-l";z N I‘fzfgj
Riz =R3; = aqoriii - BjF{3 + F‘Tjr‘é - F%Fé"

Jj Jj p J P ~J
Ry = 89F2j — 3jF22 + szrpz — Fzzr‘pj

Rz = R3p = 9,1y — 8T + T4 T3 — T5; T,

R33 = ’3wr§j — 0T, + ngrg3 - F§3FI§J" (22.18)

The results for all 10 individual components of the Ricci tensor for the
metric (22.1) can be obtained from this list (22.18). However, the calcu-
lation process can be facilitated using the general results (22.11)—-(22.16).
Thus for o, 8 = 1,2,3, and o # B, we may calculate

Rop = T, — 0L, + TET) — TR T2 (22.19)
From (22.14) and (22.16) we see that the first two terms on the right-hand
side of Equation (22.19) for o # B vanish and we may write

P rJ 0 rJ 1 yJ 2 i
Rop = ToT) 5 — Topl — Togly; — Taplyy (22.20)

Using here Fgﬂ =0 and Féﬁ =0 for o # B from (22.13), we obtain

P i i52c0t0
Rop = I‘ajFpﬁ - Saaﬁ—r— for o # B. (22.21)
Thus the second term on the right-hand side of Equation (22.21) is not
equal to zero only for (@) = (12). Let us now calculate the first term on
the right-hand side of Equation (22.21), as follows:

P _ P 0
TéiT s = Toolhe + Thulip (2222)
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or

ToT)s = Toolog + Tooldg + PO, T8 + T2, T2 (22.23)

aw” af-

It is shown by direct calculation that the first three terms on the right-hand
side of Equation (22.23) vanish. Thus we obtain

P i 1
Fajrpﬁ = rgwrg)ﬁ = Fawr(loﬂ + Fgwr‘g’ﬂ + F{?;wrg’ﬁ

Rl 12 1 3
=T Tip+Toalp +Taslip + nglrllﬂ + ngr%ﬁ + r§3rgf5

+ToaT3p + Toal 3 + T2 3. 22.24)
Using the result (22.24) we can show by direct calculation that
j cotd
TaiTop = 883 T 15, = 8585~ (22.25)

Substituting (22.25) into (22.21), we finally obtain

Rug =Rga =0 (a #B). - (22.26)
Furthermore for o = 1,2, 3, we may also calculate
of

Using here the results (22.11), (22.14), and (22.16), we see that the first
three terms on the right-hand side of Equation (22.27) vanish. We then have

Rag = T'}; — 30T 0q — 8T 5y + T2y — T, T (22.27)

— P10 B _ 0 p '
Rag =T 000 + Th, T8 — 15,1, — 15 ). (22.28)

Using (22.11) further, the first and third terms on the right-hand side of
Equation (22.28) vanish. Thus we obtain

0
Roo = T9sThy + T2,Th — 1819 —Th s (22.29)

Using once again the results (22.11), the first and third terms on the right-
hand side of Equation (22.29) vanish. We may then write

Roo = TiTP — Ay . (22.30)
Using the result (22.24) we can show by direct calculation that
Ryw=0 (x=1,2,3). (22.31)

From the results (22.26) and (22.31) we conclude that all off-diagonal
components of the Ricci tensor are identically equal to zero:

Ren =Ry =0 (k #n). (22.32)
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Thus the only nontrivial components of the Ricci tensor are the
diagonal components. Using the results (22.11)—(22.16), they can be
calculated as

Roo = 8oTg; + TG00 ‘

= 33 (2) + (rgl)2 + (r§2)2 + (r33)2 - 3j—§

] 1 j 0 rJ 1 f
Rit = 8Ty, ~ LY — 8T, +T{T, — [0, — T}y,

. kr 2 % RR s kr
o 1—kr2+r 1—kr? "\ 1 — k2

2R? k22 N 2 3R?
1 —kr? * A—kr)2 2 | —kr2

kr kr +2 R §+2R2+2k)
T1—k2\1—k2 " r) T T1-k2\R R?

. : . L j
Ry = 89[‘51. - 801‘32 9Ty +T ng;2 - ngrf;j - Fzzr‘{j

+

— 3o (cot6) — 30 (RRr?) — 3, [—r (1 - kr?) | + 28272

2 (1 - krz) +cot?9 — 3R} 42— kr?
L
rs(E 2
Rs3 = =301y — 8,133 — 4T3 + TT); — TRy, — ThLTY,

— I%:0y, = —do (RRr? sin® 0) — 8, [—r (1 = r?) sin® 6]
— 3 (— sin 0 cos ) + 2R%r* sin?6 — 2 (1 - krz) sin® 6
—2cos?0 — 3R*2sin? 6 + (2 — krz) sin® 0 + cos? 6

R 2R +2k
_ 2.2 : 2
= —R°r*sin 6(}_?+—Rz—_) . (2233)

Multiplying the covariant components of the Ricci tensor (22.33) by
the corresponding components of the contravariant metric tensor given
by (22.3), we obtain the components of the mixed Ricci tensor as
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follows:

B
RO = ®Op =3
0 — 8§ 1o R

R 2R? 42k
Rl= IIR — = o e
1 =8 Rl R-!- )
R 2R? 42k
R2 — ,2p,
2 g 22 R+ R2
R 2R 42k
R=g¥Rypy =42 22.34
- 3=&Rn =gt — (22.34)

.The Ricci scalar R‘; is then given by

R 2R?+2% R R +«k
——+—)=6(—+ +) (22.35)

Ri=3R 3R, —
IR R R2 R' R

Let us now form a mixed tensor G¥, entering the gravitational field
Equations (18.97) as

GF =R — _§kRI = 2k (22.36)
n 2

The tensor G¥ is usually called the Einstein tensor. Substituting the results
(22.34) and (22.35) into the definition (22.36), we obtain the components
of the Einstein tensor for the Robertson—Walker metric as follows:

. R R R +k R*+k
GS=R3—1R”.=3E—3(—+ + ):—3—+—

27 R R R?
1 ; R 2R2+2k
1 _ 2 _ ~3_ pl —pl _
===kt e
R Rtk R R4k
-31?‘3T=—(2E+ 7 ) (22.37)

At this stage it is appropriate to reverse the temporary convention (22.6)
and to return to the usual definition of dots as the derivatives of the scale
radius R(#) with respect to the cosmic time #, i.e.,

o~ dR()
R(@®) = ot (22.38)
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This change of convention introduces an additional factor of 1/c before
each derivative defined by the dots. Thus the results (22.37) become

o0 3 R% + kc?

0T T2 TR

L a2 a 1 (R R*+k?
Gi=G=G=-5(2p+t—7 ). (22.39)

Equations (22.39) are the final results for the components of the Einstein
tensor in the Robertson—Walker metric.

22.2| The Friedmann Equations

In order to construct the gravitational field Equations (22.36), we now need
the energy—momentum tensor Tff of the cosmic matter. The assumption is
that the matter in the universe is, on the large scale, evenly distributed
in the form of a cosmic fluid with no shear-viscous, bulk-viscous, or heat-
conductive features. Thus we may use the mixed energy—momentum tensor
of an ideal fluid, which is in the covariant form given by (18.72). We may
then write

Tk = (p+ pc*) und — 8lp, (22.40)

where p is the pressure and p is the matter (or rest energy) density of the
cosmic fluid. In the co-moving frame the cosmic fluid is at rest and we have

=1, =0 (@=1,223). (22.41)
Using the results (22.41) and observing that p < pc?, we obtain
9 =p?, T}=T}=T;=—p. (22.42)

Thus the energy—momentum tensor of the cosmic fluid in the co-moving
frame can be structured in the following matrix:

ez 0 0 O

k_ | 0 —-p 0 O

[T 1= 0 0 —p 0] (22.43)
0 0 0 —p
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Substituting the results (22.39) and (22 42) into (22 .
. . . .36), we ob
gravitational field equations in the form ) obtamn the

RZ4+k? 882G

BT3P (22.44)
213 R? + kc? 8nG
RT TR = po (22.45)

quations'(22.44) {md (22.45) are called the Friedmann equations, and
their solution describes cosmic dynamics. Combining Equations (22.44)

argd (22.45), we may write’

2?? 8nG 87G
gt 3r= ——a P (22.46)
Furthermore, from Equation (22.44) we have
5 > 8aG
R* + ke* = TpRz. , (22.47)

l);g?renﬁaﬁng Equation (22.47) with respect to the cosmic time ¢, we
obtain ’

... 887G . ., 8nG .
2RR = —5 R+ —5— P2RR, - (2248)
or
LR _ 816G R 8rc
t _3__,,,1.% + =5 2p. (22.49)
Substituting Equation (22.49) into (22.46), we obtain
877G R 8nG 8nG_p
3 PRY T =3 2230
or
.R p
5 +3 (o + C—z) =0. (22.51)

Observ.ing Fhat the universe as a system of galaxies in the smooth fluid
approx%mat}on behaves as an incoherent dust, we can again use the
approximation p < pc? to obtain

) R d
— = bl 3y __
p+3p R Rar (’”‘R ) =0. (22.52)
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Integrating (22.52) we obtain
pR3 = poRg = Constant, (22.53)

where pg and Ro are the matter density and scale radius at the pr'esen;reizgils
(t = tp). From the result (22.53) we see tt.lat the mattf:r denlsity v s 18
time as R~ and that the quantity of mattgr in a co-moving volume e cment
is constant during the expansion of the universe. This conclusmp 13;;;:
to the present matter-dominated epoch in the history f’f the unive d.iadon
In the early phases of its history . when the universe wats1 ra hation
dominated, this conclusion was not valid becau§e :at that stgge ;d e jjl ue ::3
tion p A<< pc? was not valid either. In the radiation-dominat X

Equation (22.51) becomes
; LAL 22.54)
p+3 (p +t3)r=Y
and the pressure component cannot be neglected. Using .(22.53) a;d
neglecting the pressure, W€ obtain the Friedmann equations ior the
matter-dominated epoch of the universe as follows:
R R+k? _
RT TR
ke 8GRy
2 3 R
i i ions for the matter-dominated epoch
The solutions of the Friedmann equations t .
of She universe given by (22.55) and (22.56) will be the subject of the next
chapter.

0 (22.55)

(22.56)

» Chapter 23

Nonstatic Models
of the Universe

In the previous chapter we derived the cosmic dynamic equations satisfied
by the scale radius R(z), known as the Friedmann equations. As we
concluded earlier, the nonstatic models of the universe based on the
Robertson-Walker metric (21.49) are described by their scale radius R{¢)
and the curvature constant k. The objective of the present chapter is there-
fore to study the appropriate solutions for the scale radius R(?) and the
appropriate values of the curvature constant & and their implications for the
future evolution and other physical properties of the expanding universe.

23.1] Solutions of the Friedmann Equations

In order to solve the Friedmann equations (22.55) and (22.56), we first

introduce some useful quantities. Let us recall that the Hubble constant
{21.54) is given by

_ R

Substituting (23.1) into (22.56) we obtain

kc? _ 8nGpo Rg

H2 4 — =220 23.2
TR 3 R3 (23-2)

253
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In the present epoch (¢ = 1) with R = Rp and H = Hy, Equation (23.2)
becomes

k2 8wGpg
H2 — 233
24 2 3 (23.3)
or
k 8zG H2 8xG
n_=2 (00 = PC). (23.4)

R~ 32 2 32
where pc is the critical (or closure) matter density of the uﬁivers¢, defined
by
_
T 826G

With the range of the estimated values of the Hubble constant Hy in the
present epoch, the numerical value of the critical density is given by

pc (23.5)

k
pe=2x10%25 (©05<a<]). (23.6)
m

Let us also recall the definition of the deceleration parameter g(¢) defined
according to Equation (21.65) as follows:

R(OR(@) 1R
== ———. 23.7)
q(® 20 R (
From the Friedmann equations (22.55) and (22.56) we may write
. 3
R _ _4mGpo Ry (23.8)
R 3 RS
Substituting (23.8) into (23.7) we obtain
4 Gpo R}
= ——. 23.9
o) = — (23.9)

The present-epoch value of the deceleration parameter (23.9) is given by

4 Gpg _Po

= = 23.10)
3H} 2pc (

q0 =

From (23.10) we see that the present-epoch value of the deceleration
parameter can be expressed in terms of the present and critical matter
densities of the universe.
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23.1.1 The Flat Model (k = 0)

For the flat model with k = 0, Equation (23.4) gives py = pc and

from Equation (23.10) we find g0 = 1/2. Using pp = pc and (23 5)
we may write .

8nGpp
3 (23.11)

Friedmann Equation (22.56) then becomes

H? =

., 8mGpR3 H2R
p2 = ZEPRe _ Hgly
3R xR (23.12)
or
. A?
2 3/2
R=— A= HoR,'>. (23.13)
Equation (23.13) can be rewritten as follows:
R=R _ g VR
s = RdAR=A | dt+ C. (23.14)
Performing the elementary integration in (23.14) we obtain
5 2/3
§R3/2 =At+C = R(®) = (%) 213, (23.15)

where we used the initial condition R(0) = 0 to set the integration con-
stant C in (23.15) equal to zero. From Equation (23.15) we may also

write
2 2 (R\7?
f= 2~ (R
3A 3Hq ( Ro) . (23.16)
The present-epoch Equation (23.16) for # = #, has the form
o= 2 |
0= 3y 23.17)

The solution (23.15) for the scale radius R(t) with the choice of the curvature
constant £ = 0, is, in the literature, sometimes called the Einstein—de

Sitter Solution.
23.1.2 The Closed Model (k= 1)

For the clqsed model with k& = 1, Equation (23.4) gives pg > pc, and
from Equation (23.10) we find go > 1/2. The Friedmann Equation (22.56)
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then becomes
R? SJ'L’Gp()R(?;
2V 1= 5ar
where we introduce a constant B as
_ 87GpoRy ,47Gpo HR}
T 32 3H§ 2

_E (23.18)
R

(23.19)

Using the definition of the present-epoch deceleration parameter (23.10)
we obtain :

H3RS
B=2q0—5 (23.20)
Furthermore, using Equation (23.4) for k = 1, we may write
2 H2
1 _HK (241%’3 - 1) =22 2g~1), 3.21)
R, &\ 3H; ¢
or
Ro= — (2qo— 1)~ '/2. (2322)
Hy
Substituting (23.22) into (23.20) we obtain
20 <€ (23.23)

" Qq0- D2 Ho

Equation (23‘.1 8) may be rewritten in the form

1dR _B-R f cdt = f ‘/ . (23.24)
cd . R B_R

Let us now introduce an angular parameter n as follows:

B
R=Bsin? L =2 (1 —cosn), (23.25)
272
with
in 2 cos 2 (23.26)
dR = Bsin 3 cos Edn. .26)

Using Equations (23.25) and (23.26) we may write

B——}S—dR Bsin? Edn = — (1 —cosn)dn. (23.27)
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Using (23.25) and performing the elementary integration in (23.24) with
(23.27), we obtain the two parameter equations

B . B )
R= 5(1 —cosn), ct= E(r)—smn). (23.28)

The parameter Equations (23.28) define the scale radius R(¢) by a param-
eter 77. The function R(¢) defined by (23.28) is a cycloid, and the scale radius
is a cyclic function of the cosmic time. The universe starts expansion at
the cosmic time ¢ = 0 (n = 0) with scale radius R = 0 and expands to a
maximum size R = B at the cosmic time ¢t = #7/2 (n = m). Thereafter
the universe contracts back to the scale radius R = 0 at the cosmic time
t = tr (n = 2x). The time ¢; in the closed model is called the lifespan
of the present untverse. It can be calculated from (23.28) with (23.23) for
n = 2m, as follows:

B B 2 1
tL=-—27r=JL—— 40

=— 23.29
27T T 2go - )7 Hy @329

For example, the choice gp = 1 gives a lifespan of the universe equal to
t; = 2n/Hy. From Equations (23.22) and (23.23) we also note that for
go = 1, the present scale radius Ry = ¢/Hj is equal to one half of the
maximum scale radius B = 2¢/Hj. It means that in the closed model for
go = 1, the present universe will expand to twice its present size before it
starts contracting.

23.1.3 The Open Model (k = -1)

For the open model with k = —1, Equation (23.4) gives pp < pc, and
from Equation (23.10) we find g < 1/2. The Friedmann Equation (22.56)
then becomes

R? 87GpoRY B
S —l=—a=2t=_, 23.30
c? 3c2R R ( )

where we again use the constant B given by (23.23). Equation (23.30) may
be rewritten in the form

1dR B+R
___Lﬁjcdt f / iR (23.31)
c dt

Let us now introduce an angular parameter 7 as follows:

B
R = Bsinh? g = > (coshn — 1), (2332)
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with
.7 7
dR = Bsinh 5 cosh Edn. (23.33)

Using Equations (23.32) and (23.33), we may write

R .27 B
_ " 4R =Bsinh® —dn =~ hn— 1)dn. 23.34
JB+#m sinh® Zdn 2@%?} )dn ( )

Using (23.32) and performing elementary integrations in (23.31) with
(23.34), we obiain the two parameter equations

B B .
R= 3 (coshn—1), ct= 5 (sinhn — 7). (23.35)

The parameter Equations (23.35) define the scale radius R(r) by a param-
eter 5. The function R(¢) defined by (23.35) is growing indefinitely as
t— oo (n = o0). Like the flat Einstein—de Sitter solution, the open
solution continues to expand forever. It should also be noted that the expan-
sion of the universe in the open model is faster than that of the flat model
because of the presence of the exponential functions in the parameter 7.

Closed or Open Universe

The analysis of the three possible models for the expansion of the universe,
presented in the previous chapter, does not resolve the question whether
the present universe is open or closed. The answer to that question must
be looked for in astronomical observations and estimates of the various
parameters of the model. The current estimates of the present-epoch Hubble
constant Hg and the critical density pc are

Hp = 100 km _1

= q— —
0 s Mpc
ke

pc=2x 10~%64% 3
m

05<ax<l (23.36)
Estimates of the present-epoch deceleration parameter go are more difficult
to obtain. In order to study the deceleration parameter go, we use the result
for the Hubble constant H = R/R to calculate the second derivative of the
scale radius with respect to cosmic time as follows:

R=HR = R=HR+HR=H’R+HR. (23.37)
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Substituting (23.37) into (23.7) we obtain
1R H
q(t) = —EE=—(E+ 1). (2338)

Using (23.38) we can calculate the present-epoch deceleration parameter
qo as

0= — ( H(zo) 1 5

9 () . (23.39)
The result (23.39) indicates that if we can measure H (%) and H (#5) we can
calculate the present-epoch deceleration parameter go. In order to measure
H (tp) we use the fact that as we look deeper into space, we look farther back
into time. For example, if we estimate the Hubble constant H (¢) for objects
1 billion light years away, we are really estimating the Hubble constant H (¢)
for the universe 1 billion years back in the cosmic time. The difficulty with
such a method of determining the present-epoch deceleration parameter gq
is related to the difficulties of measuring the distances to the objects deep
in space.

In spite of these difficulties, some existing observational data suggest
the value of the present-epoch deceleration parameter go = 1. As we have
concluded before, for go > 1/2, the universe is closed and such obser-
vational data suggest that the present universe is closed. However, using
Equation (23.10) for go = 1, we obtain the following present-epoch matter
(or rest-energy) density of the universe:

k
0o = 2pc = 4 x 10—26a2m—% 05<a<), (23.40)

which is much larger than the observed density of matter in the universe.
This discrepancy is the origin of the so-called problem of missing mass in
the universe. The problem was identified by measurements of the masses
of clusters of galaxies in two different ways. One method was to exploit the
definite relation between the luminosity of a galaxy and its mass, to sum up
all the masses of member galaxies to obtain the total mass of a cluster. The
other method was to measure the relative velocities between the member
galaxies and to calculate the mean relative velocity, which is determined
by the mass of the cluster. It was discovered that the luminosity mass
obtained by the first method was considerably smaller than the dynamical
mass obtained by the second method.

Thus there is reason to believe that there is a large amount of invisible
matter within the observed clusters of galaxies. The first decisive evidence
of the existence of such dark matter in the universe came from the rotation
curves of galaxies. By measurements of the rotation curves of smaller
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galaxies revolving around great spiral galaxies, it was discovered that
they differ completely from curves expected from Newtonian mechanics
in empty space. The only possible interpretation of this result is that the
space around galaxies is not empty. On the contrary, it seems to consist of
a considerable amount of dark matter. It is today generally believed that
up to 90 percent of the matter in the universe is such invisible dark matter.
Thus we have the problem of determining the nature of the dark matter in
the universe. Optical measurements indicate that the density of diffuse gas
in the universe is far below the density required to account for the large
amount of dark matter in the universe. Such gas could be in the form of
high-temperature ionized gas emitting X-rays, and X-rays have indeed been
detected in clusters of galaxies. However, the observed density is again far
below the density required to account for the large amount of dark matter
in the universe. There are enormous numbers of neutrinos in the present
universe. Some experiments indicate that they may have a rest mass of the
order of 10735 kg, and if this is true the neutrinos may just be the missing
matter. This is a growing area for combined efforts in astrophysics and
particle physics today, although it is still not clear how the neutrinos could
affect the rotation curves of galaxies in the observed way.

Newtonian Cosmology

In the present section we study the evolution of an expanding universe
within the framework of the Newtonian theory of gravitation and compare
the results with those obtained using the general theory of relativity. Let us
imagine the large-scale matter-dominated Newtonian universe as an ideal
fluid with negligible pressure moving according to the Newton laws of
motion and gravity. Such fluid is often called the Newtonian dust. We now
consider Newtonian dust with a uniform density p(z) being in a state of
uniform expansion. The only force acting on the dust particles is the force
of gravity. The components of the three-dimensional position vector of an
arbitrary dust particle at some cosmic time ¢ are given by

x*(t) = R(MOA® (a=1,2,3), (2341)

where A is a constant vector defined by the initial position of the dust
particle, and R(?) is the scale radius of the uniform expansion. The first and
second time derivatives of the coordinates (23.41) are given by

. R . S R
B =R = X% = HRY, 3 =RAY = ot (23.42)
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where H(t) = R/R is the Hubble constant of the Newtonian expansion.
Let us now use the continuity Equation (18.54) in the form

dp

. .
a + 0 (V) = F + X%y p + pIi® = 0. (23.43)

Using (23.42) and the definition of the total time derivative of the density p,
given by

;=22 _ 90 Bp dx”

T T T @344
we may rewrite (23.43) as follows:
P+ pHIx* =0 = p+3pH =0, (23.43)
or
R 1d
) +3—p = —— (pR?) =
b+3%p = == (oK) =0. (23.46)

Integrating Equation (23.46) we recover the result (22.53) obtained using
the Friedmann Equations, i.e.,

oR® = poR3 = Constant, (23.47)

where pg and Ry are the matter density and the scale radius at the present
epoch (f = #;). From the result (23.47) we see that in Newtonian cosmology
the matter density also varies in time as R3. The isotropy and spherical
symmetry of the universe require that any spherical volume evolve only
under its own influence. If the observed spherical volume has radius
and mass M(r) = (4 /3)r3p, the equation of motion of a dust particle
somewhere on its surface is given by the Newtonian Equation (17.44),
as follows:

.« R GM(r) 47 Gp
@ _ e o _ o
X Rx 3 x 3 x%. (23.48)
As Equation (23.48) is valid for an arbitrary x*, we obtain
. 4n G,
R=— ”3 PR. (23.49)
Now using the result (23.47), Equation (23.49) becomes
47w GpoR>
— PR (23.50)

3R2
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Multiplying both sides of Equation (23.50) by R, we obtain

... 4wGpoR3 R
RR+ ———— =0, 23.5
+ 3 72 ( 1)
or
1dR?  4wGpoR) d 1)
T T ) = 23.52
2 dt 3 dt \ R ( )
Thus we may write
d (., 8nGpoR:
g2 _SE2PT0Y _ (23.53)
dt 3R
Integrating Equation (23.53) we obtain
.. 8wGpoR>
. —% v (23.54)

where kc? is the integration constant. After some restructuring of
Equation (23.54) we recover the second Friedmann equation (22.56), i.e.,

R? + kc? _ 87eroR_(3)

2 3 R (23.55)
Furthermore, using the result (23.54) rewritten as
4xGpoR2 1 R? + k2
3R 0 = 3R (23.56)
Equation (23.50) becomes
2 2
B— _%R_;i. (2357

Dividing by R and restructuring Equation (23.57), we recover the first
Friedmann equation (22.55), i.e.,
R R®+kc?

2R + 2 - 0. (23.58)
From the preceding discussion we conclude that Newtonian cosmology
gives the same dynamic equations for the scale factor R(z) of the expand-
ing universe as the relativistic cosmology based on the Robertson—Walker
metric. In Newtonian cosmology the parameter £ is just an integration con-
stant, whereas relativistic cosmology  is the curvature constant. In fact if
k # 0 there is no loss of generality if we set k¥ = =1 in Newtonian cos-
mology either. The dynamic Equations (23.55) and (23.58) lead to exactly
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the same three models of the expanding universe with k = —1,0,1. It
should, however, be kept in mind that the Newtonian cosmology is just
a nonrelativistic limit of the standard relativistic cosmological model and
that it cannot account for a number of important physical features of the
expanding universe. In particular it cannot handle the radiation-dominated
early phases of the expanding universe and incorporate the pressure of the
cosmic fluid in the proper way.
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Quantum Cosmology

The objective of the present chapter is to give a short introduction into
the most profound speculations about the earliest moments of the present
universe. In the solutions of Friedmann equations, presented in the pre-
vious chapter, we have generally used the initial condition R(0) = 0. In
effect such an initial condition means that in the earliest moments of its
evolution, the present universe may have been so compact that its size
was comparable to the size of a single quantum particle. In such an early
epoch the classical solutions of the Friedmann equations, derived in the
previous chapter, are no longer adequate and we need a quantum the-
ory of the very early universe, i.e., a quantum cosmology. Since quantum
cosmology is a highly speculative theory in its early development phase,
the presentation in this chapter will be limited to a few introductory top-
ics. Furthermore, as quantum theory is outside the scope of the present
book, a few elementary quantum-mechanical results needed in the present
chapter will be introduced without a detailed derivation from the first
principles.

Introduction

The nonstatic models of the expansion of the universe, discussed in the
previous chapter, are based on a well-formulated gravitational field theory
and available observational data. These models can be used to study the
early moments of the universe down to the times < 1072 s. The subject

265



266 Chapter 24 Quantum Cosmology

of the present chapter is to investigate the so-called Planck epoch, i.e., the
times £ < 107%s.

The approach pursued in the present chapter is to use the canonical
quantization procedure to quantize the gravitational degrees of freedom
and to derive the Klein—Gordon wave equation for the wave function of
the universe governing both the matter fields and the space-time geometry.
Such a wave equation is generally known as the Wheeler-DeWitt equation.
The wave function of the universe in this approach is a function of all pos-
sible three-dimensional geometries and matter field configurations, known
as superspace. It should be noted that the concept of superspace used in
quantum cosmology has nothing to do with the concept of superspace of
the supersymmetric quantum theories.

In order to reduce the problem to a manageable one, all but a finite
number of degrees of freedom are frozen out, leaving us with a finite-
dimensional superspace known as the mini-superspace. In the present
chapter we consider a simple mini-superspace model in which the only
remaining degrees of freedom are the scale radius R(z) of a closed homo-
geneous and isotropic universe and a homogeneous massive scalar field ¢.
Furthermore all the degrees of freedom of the scalar field are also frozen
out, and the only effect of the scalar field is to provide the vacuum energy
density p,4- Such a vacuum energy density contributes to a cosmological
constant term defined by A = 87 Gpygc. :

Using the mini-superspace model just described, we then calculate the
semiclassical wave functions of the universe and the tunneling probability
for the universe to make the transition from R = 0 tothe transition pointR =
Ro, being the upper limit of the classically forbidden region 0 < R < Ry.

24.2] The Wheeler-DeWitt Equation

Let us start the derivation of the Wheeler—-DeWitt equation by recalling
the Friedmann equations of cosmic dynamics, given by (22.44) and
(22.45), 1.,
R +ke* 871G
_ = 24.1
R 3P (24.1)

(24.2)

In the very early phases of its evolution, the universe was clearly not matter
dominated. In fact, it is generally believed that in the Planck epoch it
was not even radiation dominated, and the energy—momentum tensor was
determined by the vacuum energy. In such a vacuum-dominated epoch
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the pressure of the extremely dense matter of the universe is given by

p = —pct. Using Equation (22.54), we see that in the vacuum-dominated
epoch we have

o =0= p = pyuc = Constant. (24.3)

Thus the Friedmann Equations (24.1) and (24.2) in the closed model
(k = +1) become

R®+c*  81G A
R2 = Tpvac = '5 (24.4)
R R24¢?
E T = SH'G,DW_;C = A. (245)

Substituting Equation (24.4) into (24.5) we obtain

R A R A
2— 4+ = — =
213 A:>R 3 (24.6)

Equation (24.6) can be written as follows:

.2 3
R—R=0 [Ro=c/~]. (24.7)

The classical solution of Equation (24.7) is given by

R(9) = Ry cosh (C_’) . (24.8)

Ry
This solution describes a universe that was infinitely large (R — o) in the
infinite past (t — —o0). Then it contracted to a minimum size of Ry at
¢ = 0, after which it started expanding again to an infinite size in the infinite
future (¢ — +00). From Equation (24.8) we see that the classical solution
has a forbidden range for 0 < R < Ry. Thus it is classically impossible for
the universe to start from R = 0 and evolve into the preceding cosmic
model. However, given the quantum-mechanical nature of the problem
in the Planck epoch, it may be possible for the universe to make such a
transition with some finite quantum-mechanical tunneling probability. In
order to calculate the wave functions of a universe starting at R = 0 and
tunm?I%'ng into the region R > Rp and the tunneling probability of such a
transition, we now construct the action integral of the universe in the Planck
epoch as follows:

c

4
I D Y / dil [R(t),ii(t)] / v/ —gdrdbde, (24.9)
) H 14

7T
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where
—gdrd6dy = R rhdr sin 6d6d (24.10)
— T -— —_— Sl . .
& 4 = p

In Equation (24.9) we have used the result for the Ricci scalar (22.35) in
the Robertson—Walker metric with k = 41, i.e.,

; 6 (R R+
R=={=4+——1, 24.11
J CZ(R+ s ) @4.11)

to conclude that the Lagrangian density £ [R (1), R (t)] in the present model
is space independent. Thus we can integrate out the spatial part of the
action integral (24.9), which is just a three-dimensional spherically sym-
metric volume in the Robertson—Walker curved space-time metric (21.49),
to obtain

3 1 rzdr ¥ 4 2n
/—gdrd8de = R ] f sin@d@f de. (24.12)
[V & v 0 ~1—7r2Jo 0 ¢

Integrating the elementary integrals over € and ¢ and introducing the new
angular variable x as

r =sin x = dr = cos xdy, (24.13)

the result (24.12) becomes

/2
/ /—gdrdfde = AnR? f sin® xdy = 27%R3. (24.14)
v 0

Substituting (24.14) into (24.9) we obtain
T C4 .
Io=—c f diR* (1)L [R(®),R®)]. (24.15)
1

Using the result for the Ricci scalar (24.11) in the Robertson—Walker metric
with k = -1, we construct the Lagrangian density of the present model as
follows:

. 6 (RR—c* A
LIRO.RO) | =5——+=1}, 24.16
[R(®),R®)] 62( = +3) (24.16)
where we have eliminated the term including the second-order time deriv-
ative, which should not appear in the Lagrangian density, by reducing it to

the total time differential. Substituting (24.16) into (24.15), we obtain

3mc? . A
Ig = f diL(t) = — 2% f dr [ RR?> — RSP + —R3), (24.17)
f 4G J,© 3
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where the Lagrangian L(¢) is given by

L) = —3:(;2 (RRZ — R + %z@) . (24.18)
The Lagrange equation for the scale radius R(#) is then given by
| OL _d (3L _,
R @ (aiz) =0. (24.19
Substituting (24.18) into (24.19), we obtain

3mc?

_ p2 2 B ~b2
G (R A+ AR? — 2RR — 2R ) (24.20)
or
R Ry
Rt =4 24.21)

Thl'ls the Lagrangian (24.18) gives the correct Equation (24.5) for the scale
radius R(¢). Let us now define the momentum conjugate to the scale radius
R(t) as

oL 3mc?

PR=%%~ " 2G

RR. (24.22)

Using (24.22) we may €xpress R in terms of Pr as follows:

. 2G pr
R=— —.
I R (24.23)
Using Equations (24.22) and (24.23) we obtain the Hamiltonjan of the
present model as follows:

. G p2 3me? A
H=ppR—L = — R 2__ps
PR I2cZ R + G (Rc 3 R ) . (24.24)

The Hamiltonian (24.24) is a classical Hamiltonian of the present mini-
superspace _model. The quantum-mechanical Hamiltonian operator H is
obtained using the canonical quantization prescription

., 0 .
PR~ zhﬁ, i=+/"1. (24.25)

The wave equation of the universe in the present mini-superspace model,
known as the Wheeler-DeWitt equation, is then obtained from the condition
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H = 0 as follows:

AV(R) = { RG 8 42 nc? (Rc2 - é}?)} W(R) =0, (24.26)
37c?R 3R? 4G 3 ;
or
2 32
[—h T U(R)] W(R) =0, (24.27)

with the potential U(R) defined by

_(3nlRe\ [ RV RV
U(R)_( 2G ) [(R_o) _(170) ' @429

The Wheeler—DeWitt equation written as in (24.27) has the familiar form
of the one-dimensional Schrédinger equation for a particle with zero total
energy moving in the potential U(R). The form of the potential (24.28)
clearly indicates that there is a classically forbidden region for0 < R < Rp
and a classically allowed region for R > Ry. The point R = Ry is a turning
point of the potential (24.28). Classically speaking and using the particle
analogy, we conclude that a particle at R = 0 is stuck there and cannot
travel to the region R > Rp. However, in quantum mechanics there is a
finite probability that the particle can tunnel through the barrier and emerge
at the classical turning point R = Ry. Thereafter it can evolve classically
in the region R > Ryp.

24.3| The Wave Function of the Universe

In order to find the solutions of the Wheeler—DeWitt equation for the wave
function of the universe W(R) and to calculate the tunneling probabil-
ity of the universe through the potential barrier (24.28), we restructure
Equation (24.27) as follows:

av -,

— + o (¥ =0, (24.29)

dz
where z = R/Rg is a dimensionless scale variable and the function 0% (z)
is defined by

3w c3R2 97’
) 2{ 4 2 0

- _ - = . 24.30
Q) =a (Z ¢ ) “=2rG T 2hGA (24.30)
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Using the Wentzel-Kramers—Brillouin (WKB) approximation, the wave
function of the universe W (z) is given by

1 -
3No| Q)12 exp [w(z)| 1
W(z) =12 > z< (R < Ryp)
{NoIQ(z)I‘I/%os (W@ ~3%), 251 ®>Rry D

where Ny is the WKB normalization constant, which is not essential for
the present analysis. The function w(z) is given by

; a 372
w(z) = fz Q@dz = 3 (22 - 1) . (24.32)

For example, in the region where R >> Ry the wave function (24.31)
becomes

1l a T
(@) = Noa /2~ cos (52~ 7)
; 38 7)- (24.33)
and it i:§ a slowly falling periodic function. Let us now turn to the tunneling
probability for the universe to make a transition from R — 0 to the transition

Poil.lt R = Ry. The most general WKB result for the tunneling probability
is given by

1 -1 -1
T = [I +exp (2/{; Q(z)dz)] = [1 + exp (—?)} . (24.34)

Substituting a from the result (24.30) into (24.34), we finally obtain

375\
T= [1 +exp (_h%X)} . (24.35)

It sh‘oul.d be noted thaF in many quantum-mechanical problems the expo-
nential in the expression for the tunneling probability (24.34) is a large

quantit){. It is therefore customary in the literature to use the approximate
expression

1 -1 1
T= [1 +exp (2 fo Q(z)dz)] & exp (—2 [ Q(z)dz) . (24.36)
0

However, §ince the gravitational action integral is a negative quantity, such
an approximation is invalid in the present discussion and only the more
general result (24.34) can be used. Even though the energy density p,,

and thereby the cosmological constant A of the vacuum-dominated Planclz
epoch are very difficult to estimate, in order to get the idea of the orders
of magnitude of these quantities let us assume that the quantity a given
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by (24.30) is of the order of unity. This gives the tunneling probability of
the order of T~ 2/3. Using the result (24.30), we obtain

9’ 97 cd 1
= ~1= A~ =4.87 x 101872, .
a ShGA = > x 10 (24.37)
Now, using A = 871Gy, we have
A kg
_ ~ +96
Pvae = 8eC 29 x 10 5 (24.38)

The result (24.38) indicates an enormous energy density of the universe in
the vacuum-dominated Planck epoch. Furthermore, using the result (24.7)
we can estimate the radial distance of the turning point of the poten-
tial (24.28) as follows:

[3
Ro=cto=c\/ =~ 7.44 x 1073 m. (24.39)

The length scale of this order of magnitude is sometimes called the Planck
length. The time scale #; corresponding to this length scale is then given by

to = ,/% ~ 248 x 107% s, (24.40)

and it is roughly 75 < 1074 s, which is in agreement with our assertion in
the introduction to the present chapter.

A remarkable, and surprising, property of the wave function of the
universe is the fact that it is time independent and depends only on the space-
time geometry and the matter field content. A possible interpretation of the
wave function W (R) is that it measures probabilistic correlations between
the geometry and the matter field content. In this interpretation it is possible
to use some function of the matter fields, ¢.g., the energy density of the
matter fields, as a surrogate time variable. However, neither the role of time
in the quantum cosmology nor the interpretation of the wave function of
the universe is fully understood yet.

We also note that just having the wave equation of the universe does
not resolve the issue of the quantum evolution of the universe. To be more
specific about the quantum evoiution of the universe, we need information
about the initial quantum state. There are currently several proposals for
such an initial quantum state giving different physical predictions. If such
predictions can be made to be sufficiently precise, then the present-day
observations could be used, at least in principle, to test these different
proposals for the initial quantum state of the early universe.

The quantum cosmology efforts around the world today are very ambi-
tious and the very limited presentation given in the present chapter only
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gives some flavor of this exciting subject. It is our hope that after mastering
the material discussed in this chapter, an interested reader will be able to
proceed to more advanced monographs on the subject. Itis also importantto
note that despite a number of speculative efforts to create a self-consistent
and empirically supported cosmological quantum theory, a lot of work

remains to fulfill that goal, and several fundamental questions still remain
unresolved.
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Cosmic,
background radiation, 225
dynamics, 239-52
fluid, 227
time, 234
Cosmological,
principle, 227
red shift, 235-7
scale, 225
Curvature,
constant, 233
Curvature tensor,
alternative expression, 102
covariant, 101
cyclic identity, 101
mixed, 101

b

Deceleration,
parameter, 237
Density,
charge, 148
critical (closure), 254
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current, 149
Lagrangian, 149

E

Eigenvectors,
eigenvectors, 55
orthonormal, 57
Einstein,
—de Sitter solution, 255
field equations, 188-91
tensor, 239-50
Electromagnetic,
current vector, 147-9
field invariants, 145
field tensor, 137
Energy,
momentum, 126
rest energy, 127
total energy, 126
Energy—momentum tensor,
of matter distribution, 187
Equation of motion,
of a free particle, 124
temporal, 216
Epoch,
matter-dominated, 252
Planck, 266
radiation-dominated, 266
vacuum-dominated, 266-7
Events,
interval between, 112-16
horizon, 219

F

Flux of,
electric-charge, 148
mass, 185
Friedmann,
- equations, 239, 250-2

G

Gauss,
theorem, 85, 86-7
curvature, 106

Index

Gauge,

condition, 141

of the theory, 141
Geodesic,

lines, 89-95

equation, 89, 92-5
Geometry,

pseudo-Euclidean, 166

pseudo-Riemannian, 166
Gravitational,

constant, 173

field, 165-76

field potentials, 166

potential, 171

H

Hamiltonian,
A-operator, 79
operator, 269
variational principle, 90
Hubble,
. constant, 226
law, 225, 226

I

Indices,
dummy indices, 10
lower indices, 56
upper indices, 5-6
Inertial systems,
local, 167
of reference, 111
Interaction,
gravitational, 165
maximum speed of, 112

J

Jacobian,
of transformation, 33
Jacobi theorem, 87 .

Index

K

Kinetic,
energy, 128
energy—momentum tensor, 186

L

Lagrangian,
equation, 89-92
function, 90
of charged particle, 136
Linear operators,
eigenvalues of, 56
main directions of, 58
secular equation of, 56
Light,
cones, 220
speed of, 112
Lorentz,
condition, 141
force, 137
gauge, 141
transformation, 116-19

M

Matrix,
adjunct matrix, 45
cofactors of, 45
column matrix, 5
determinant of, 13
transposed matrix, 45
unit matrix, 45

Metric,
metric, 18
Schwarzschild, 204, 205
Robertson—-Walker, 225-37

Metric spaces,
Euclidean, 18
pseudo-Euclidean, 22
pseudo-Riemannian, 22
Riemannian, 18-22

N
Newtonian,

dust, 260
Newton law, 193-5
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nonrelativistic limit, 173

universe, 260
Nonrelativistic limit,

of action integral, 125

of kinetic energy, 128

of Lagrangian, 125

of momentum, 128

Newtonian, 173

0

Operators,
commutator of, 103
operator expression, 103

P

Perihelion,
advance, 207-15
of a planet, 207
shift, 215

Potential,
electromagnetic, 135
electric scalar, 135
magnetic vector, 135

Q

Quantum,
cosmology, 265-73
theory, 265
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Ricci,
scalar, 105
tensor, 104
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Scale,
radius, 234
Scalars,
pseudoscalars, 42
scalar product, 18
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Space-time,
coordinates, 114
geometry, 165
metric of, 165

Systems,
first-order system, 6
of reference, 111
second-order system, 6
third-order system, 7
arbitrary-order system, 7-8

T

Tensors,
tensor capacity, 36
tensor density, 35
Transformation,
Gallilei, 118
law, 23
of coordinates, 23

of energy—momentum, 128-30

U

Unit systems,
S-symbol, 11
e-symbol, 12

Universe,
dark matter in, 259

expansion of, 225
large-scale structure, 225
lifespan of, 257
matter-dominated, 252
nonstatic model of, 239
radiation-dominated, 252
wave function of, 270-3

\4

Vectors,
axial vectors, 42
curl vector, 86
of electric field, 137
of magnetic induction, 137
polar vectors, 42
surface vector, 86
tangent unit vectors, 49
unit vectors, 49

w

Wheeler-De Witt,
equation, 266-70
World,
horizon, 226
line, 113
point, 112

Index




	ba0001
	ba0002
	ba0003
	bb0001
	bb0002
	bb0003
	bb0004
	bb0005
	bd0001
	be0001
	be0002
	be0003
	be0004
	be0005
	be0006
	be0007
	be0008
	be0009
	be0010
	be0011
	be0012
	be0013
	be0014
	be0015
	be0016
	be0017
	be0018
	be0019
	be0020
	be0021
	be0022
	be0023
	be0024
	be0025
	be0026
	be0027
	be0028
	be0029
	be0030
	be0031
	be0032
	be0033
	be0034
	be0035
	be0036
	be0037
	be0038
	be0039
	be0040
	be0041
	be0042
	be0043
	be0044
	be0045
	bf0001
	bf0002
	bf0003
	bf0004
	bf0005
	bf0006
	bf0007
	bf0008
	bf0009
	bf0010
	bf0011
	bf0012
	bf0013
	bf0014
	bf0015
	bf0016
	bf0017
	bf0018
	bf0019
	bf0020
	bf0021
	bf0022
	bf0023
	bf0024
	bf0025
	bf0026
	bf0027
	bf0028
	bf0029
	bf0030
	bf0031
	bf0032
	bf0033
	bf0034
	bf0035
	bf0036
	bf0037
	bf0038
	bf0039
	bf0040
	bf0041
	bf0042
	bf0043
	bf0044
	bf0045
	bf0046
	bf0047
	bf0048
	bf0049
	bf0050
	bf0051
	bf0052
	bf0053
	bf0054
	bg0001
	bg0002
	bg0003
	bg0004
	bg0005
	bg0006
	bg0007
	bg0008
	bg0009
	bg0010
	bg0011
	bg0012
	bg0013
	bg0014
	bg0015
	bg0016
	bg0017
	bg0018
	bg0019
	bg0020
	bg0021
	bg0022
	bg0023
	bg0024
	bg0025
	bg0026
	bg0027
	bg0028
	bg0029
	bg0030
	bg0031
	bg0032
	bg0033
	bg0034
	bg0035
	bg0036
	bg0037
	bg0038

