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PREFACE

Tue present volume is the outgrowth of the requirements
for students in engineering and science in Cornell University,
for whom a somewhat brief but adequate introduction to the
Caleulus is preseribed.

The guiding principle in the selection and presentation of
the topics in the following pages has been the ever increasing
pressure on the present-day curriculum, especially in applied
science, to limit the study of mathematics to a minimum of
time and to the topics that are deemed of most immediate nse
to the professional course for which it is preparatory.

To what extent it 18 wise and justifiable to yield to this
pressure it is not our purpose to discuss. But the constantly
accumulating details in every pure and applied science makes
this attitude a very natural one towards mathematics, as well
as towards several other subjects which are subsidiary to the
main object of the given course,

This desire to curtail mathematical training is strikingly
evidenced by the numerous recent books treating of Calenlus
for engineers, for chemists, or for various other professional
students. Such books have no doubt served a useful purpose
in various ways. But we are of the opinion that, in spite of
the unquestioned advantages of learning a new method by
means of its application to a specific field, a student wonld
ordinarily acquire too vague and inaccurate a command of the
fundamental ideas of the Calculus by this onesided presenta-

tion, While a suitable illustration may clear up the difficulties
3



4 PREFACE

of an abstract theory, too constant a dwelling among applica-
tions alone, especially from one point of view, is quite as likely
to prevent the learner from grasping the real significance of
a vital prineiple.

In recognition of the demand just referred to, we have made
special effort to present the Caleulus in as simple and direct
a form as possible consistent with accuracy and thoroughness.
Among the different features of our treatment, we may single
out the following for notice.

The derivative is presented rigorously as a limit. This does
not seem to be a difficult idea for the student to grasp, espe-
cially when introduced by its geometrical interpretation as
the slope of the line tangent to the graph of the given func-
tion. For the student has already become familiar with this
notion in Analytic Geometry, and will easily see that the
analytic method is virtually equivalent to a partieular case of
the process of differentiation employed in the Caleulus.

In order to stimulate the student’s interest, easy applications
of the Differential Calculus to maxima and minima, tangents
and normals, inflexions, asymptotes, and eurve tracing have
been introduced as soon as the formal processes of differentia-
tion have been developed. These are followed by a discussion
of funetions of two or more independent variables, before the
more diffieult subject of infinite series is introduced.

In the chapter on expansion, no previous knowledge of series
is assmmed, but conditions for convergence are discussed, and
the eriteria for determining the interval of convergence of those
series that are usually met with in practice are derived.

A chapter on the evaluation of indeterminate forms and
three chapters on geowetric applications furnish ample illus-



PREFACE 5

tration of the uses of infinite seriezs in a wide ranpe of
problems.

By reason of its significance in applications, it does not seem
advisable to omit the important principle of rates. Arising
out of the familiar notion of velocity, it affords an early glimpsa
into applications of the Caleulus to Mechanics and Physics.
We do not propose to make the Calenlus a treatise on Mechanies,
as seems to be the tendency with some writers; but a final
chapter on applications to such topies of Mechanies as are easy
to commprehend at this stage is thought advisable and sufficient.
Especially in treating of center of gravity, the formulas have
been derived in detail, first for » particles, and then, by a limit-
ing process, for a continuous mass, This was considered the
more desirable, as textbooks in applied mathematies frequently
lack in rigor in discussing the transition from diserete particles
to 4 eontinuous mass. Besides, the derivation of these formu-
lag affords a very good application of the idea of the definite
integral as the limit of a sum. This idea has been freely and
consistently used in the derivation of all applied formulas in
the Integral Calenlus. However, as the formula for the length
of are in polar cobrdinates is especially diffieult of derivation
by this method, we have deduced it from the corresponding
formula for rectangular codrdinates by a transformation of the
variable of integration.

In order to make the number of new ideas as few as possible,
the notions of infinitesimals and orders of infinitesimals have
been postponed to the last article on Duhamel’s principle.  This
principle seems to flow naturally and easily from the need of
completing the proof of the formulas for center of gravity.
The teacher may omit this article, but its presence should at
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least serve the important end of calling the attention of the
student to the fact that there is something yet to be done in
order to make the derivations complete.

Some teachers will undoubtedly prefer to do a minimum
amount of work in formal integration and use integral tables in
the chapters on the applications. For such the first chapter of
the Integral Caleulus might suffice for drill in pure integration.
The problems in this chapter are numerous, and, for the moat
part, quite easy, and should furnish the student a ready insight
into the essential principles of integration.

The characteristic features of the books on the Caleulus
previously published in this series have been retained. The
extensive use of these books by others, and a searching yearly
test in our own classroom experience convinee us that any far-
reaching change could not be undertaken without endangering
the merits of the book. The changes that have been made are
either in the nature of a slight rearrangement, or of the addi-
tion of new illustrative material, particularly in the applications.

We wish to acknowledge our indebtedness to our colleagues,
who have added many helpful suggestions; to Professor 1. F.
Church, of the College of Civil Engineering, for a number of
very useful problems in applications of integration (See Exs.
14-18, pp. 318-320, and Exs. 6-7, pp. 323-324), and particu-
larly to Professor James MeMahon, who has carefully read all
the manuacript, assisted throughout in the proof reading, and
made many improvements in the text.
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DIFFERENTIAL CALCULUS

————a i O

CHAPTER 1
FUNDAMENTAL PRINCIPLES

1. Elementary definitions. A comstant number is one that
retains the same value throughout an investigation in which it
oceurs. A variable number is one that changes from one value to
another during an investigation. 1f the variation of a number
can be assigned at will, the variable is called independent; if
the value of one number is determined when that of another is
known, the former is called a dependent variable. The depend-
ent variable is called also a _function of the independent variable.

E.g,32% 4vVr — 1, cos z, are all functions of .

Funetions of one variable = will be denoted by the symbols
f(z), ¢{x), ---, which are read as “ f of »,”" “ ¢ of x,”" ete.; simi-
larly, functions of two variables, =, ¥, will be denoted by such
@X]Pressions as

. Sz, !l':l', Fx, F}; _—

When a variable approaches a constant in such a way that
the difference between the variable and the comstant may be-
come and remain smaller than any fixed number, previously
assigned, the constant is called the limit of the variable,

15



16 DIFFERENTIAL CALCULUS

2. Illustration: Slope of a tangent to a curve. To obtain the
elope of the tangent to a eurve at a point F upon it, first take
the slope of the line joining P ={x, ¥,) to another point {x., i)
upon the eurve, then determine the limiting value of the slope

- Yo —
iy —
as the second point approaches to coincidence with the first,

always remaining on the curve,

Ex. 1. Iktermine the slope of the tangent to the curve
¥, y=14
stk d+) atthe point (2, 4) upon it
Here, :1=2, m=4. Let 2z =244
k ya =4 + L, where b, k are so related that the
point (ze, y2) liea on the eurve.
Thus 4 + & =(2 + )4,
or k=444 &% (1)

2,4 [

The slope m =" 1 becomes
Tz — Xy

4+ k-1
24+ h—2
which from (1) may be written in the form

k_ 2
p=tth (2)

Fia. 1

k
IEFI‘

The ratio &:% measures the slope of the line joining (=, ) to
(e, 32). When the second point approaches the first as a Hmiting
position, the first member of equation (2) assumes the indeterminate

form g, but the second member approaches the definite limit 4. When
the two points approach coincidence, a definite slope 4 is obtained,
which is that of the tangent to the curve y = 22 at the point (2, 4).

It may happen that &, & appear in both members of the equation
which defines the slope, a8 in the next example. )
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Ex. 2. If z* + 3* = % find the slope of the tangent at the point
(z1s 1)

¥
Sinee
o + 3t = o, (o4 B (1K) = ad
hence 2he + A4+ 2k + 42 =10,
o x
A 2+ A
f hich ==—-="LT =,
POITY W ILLE & ﬂyl.i_ k
To obtain the Limit of ’_;, put A, &
each egual to zero in the second member,® S
. E.'__ﬂ+
].J:.llk— L

This step is more fully justified in the next article.
This result agrees with that obtained by elementary geome-
try. The slope of the radius to the circle »* 4 3*=a* through

the point (=, ¥,) is i—:, and the slope of the tangent iz the nega-
tive reciprocal of that of the radius to the point of tangency,
gince the two lines are perpendicular.

3. Fundamental theorems concerning limita. The following
theorems are useful in the processes of the Caleulus.

Turorem 1. If a variable e approaches zero as a limit, then
ka will also approach zero, k being any finite constant.

That is, if =1,
then . ko = 0.

F{.}r, let ¢ be any assigned number. . By hypothesis, « can be-
come less than E, hence ki can become less than ¢, the arbi-

* For convenlence, the symbol = will be used to Indicate that & variable

approaches a constant as a limit; thus the aymbolic form = =a is to be read
* the variable  approaches the constant a as a limit."”

EL. CaLo,—2
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trary, assigned number, hence ke approaches zero as a limit.
(Definition of a limit.)
TaeorEM 2. Given any finite number n of variables

@ B ¥ each of which approaches zero as a limit, then their
Sum w]]l approach =zero as a limit. For the sum of the =

variables does not at any stage numerically exceed n times the
largest of them, which by Theorem 1 approaches zero.

Taeorem 3. If each of two variables approaches zero as a
limit, their product will approach zero as a limit. More gen-
erally, if one variable approaches zero as a limit, then its
product with any other variable having a finite limit will have
the limit zero, by Theorem 1.

Tarorem 4. If the sum of a finite number of variables is
variable, then the limit of their sum is equal to the sum of
their limits; e,

lim{z+y+ ) =limz +lim y 4 -

For, if =, Y =Dby e,
then r=a 4 &, y=b4 g, -,
wherein o =0, B=0,--; (Def. of limit)
hence  z4y+ - =(@+bt o)+t B4 ),
R FE— (Th. 2)

hence, from the definition of a limit,
lim{z+y+ - )=a+db4+ . =limz+limy+ -

Tarorem 5. If the product of a finite number of variables
is variable, then the limit of their product is equal to the
product of their limits.

For, let r=a4e, y=b+8,
wherein =0, B=0,
so that lim 2 =a, limy=a.
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Form the product
a2y = (@ + a)}(b+ B)=ab + b + Ba+ af.
Then lim zy = lim (@b + wb + Sa + «fF)
= ub + lim ab + lim Sa 4 lim «8 (Th. 2)
= ab. (Th. 1)
Hence limeaey=limz- hmy.

In the case of a product of three variables =, y, z, we have
lim zyz = lim 2y - lim 2 ' (Th. 5)
= lim & lim % lim z,
and so on, for any finite number of variables.

TurorEM 6. If the quotient of two variables x, ¥ is vari-
able, then the limit of their quotient is equal to the quotient
of their limits, provided these limits are not both infinite or

not both zero.
x

For, since £==1,
lim 2 =1lim ﬁ lim y, (Th. 5)
and hence litn & = lim 2,
y limy

4. Continuity of functions, When an independent variable =,
in passing from a to b, passes through every intermediate
value, it is called a continwous varidble. A function f{x) of an
independent variable » is said to be continuous at any value x,
or in, the vieinity of x, when f (=) is real, finite, and determi-
nate, and such that in whatever way = approaches =,

M (x) = ().

¥ = ¥y

From the definition of a limit it follows that corresponding
to a small increment of the wvariable, the increment of the
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funetion is also small, and that corresponding to any number
g, previously assigned, another number & can be determined,
such that when & remains numerically less than 3, the differ-

ence S+ h)— f ()

is numerically less than «

o+

Fic. 3

Thus, the function of Fig. 3 is continuous between the values
x, and z, + 3, while the functions of Fig. 4 and Fig. 5 are dis-
continuous. In the former of these two the function becomes
infinite at 2= ¢, while in the latter the difference between the
value of the funection at ¢+ % and ¢—h does not approach
zero with &, but approaches the finite value AB as & ap
proaches zero.

When a funetion is eontinuous for every value of # between

a and b, it is said to be cohtinuous within the interval from a
to b.

3. Comparison of simultaneous increments of two related vari-
ables. The illustrations of Art. 2 sugpest the following general
procedure for comparing the changes of two related variables.
Starting from any fixed pair of values x,, ¥, represented graph-
ically by the abscissa and ordinate of a chosen point P on a
given curve whose equation is given, we change the values of
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x and ¥ by the addition of small amounts & and % respectively,
s0 chosen that the new values =, + & and y, 4 & shall be the
coordinates of a point F, on the
curve. The amount & added to =
is called the increment of = and is
entirely arbitrary. Likewise, k is vk
called the inerement of y; it 1s not
arbitrary but depends upon the A
value of &; its value can be caleu- O = &, th
lated when the equation of the curve Fia. &

is given, as is shown by equation (1). These increments are
not necessarily positive. In the case of continuous functions, &
may always be taken positive. The sign of & will then depend
upon the function under consideration. The slope of the line

P,P, is then % and the slope of the tangent line at P, is the

¥
B

L]

limit of E as h and consequently &k approach zero.

The determination of the limit of the ratioof k to & as &k and
k approach zero i3 the fundamental problem of the Differential
Caleulus. The process is systematized in the following ar-
tieles. While the related variables are here represented by
ordinate and abscissa of a curve, they may be any two related
magnitudes, such as space and time, or volume and pressure of

a gaa, ete.

6. Definition of a derivative. If to a variable a small incre-
ment is given, and if the corresponding increment of a contin-
uous function of the variable is determined, then the limit of
the ratio of the inerement of the function to the inerement of
the variable, when the latter increment approaches the limit
zero, i3 ealled the derivative of the function as to the variable.
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That is, the derivative is the limit of ¥ as & approaches zero,

_ . h
or — 0 G‘TE) '

~ For the purpose of obtaining a derivative in a given case it is
convenient to express the process in terms of the following Etepa:

1. Give a small increment to the variable.

2, Compute the resulting increment of the function.

3. Divide the increment of the function by the inerement of
the variable.

4. Obtain the limit of this quotient as the increment of the
variable approaches zero.

7. Process of differentiation. In the preceding illustrations,
the fixed values of » and of y have been written with sub-
seripts to show that only the increments &, k& vary during the
algebraic process of finding the derivative, also to emphasize
the fact that the limit of the ratio of the simultaneous incre-
ments A, & depends upon the particular values which the
variables x, y have, when they are supposed to take these in-
crements. With this understanding the subseripts will hence-
forth be omitted. Moreover, the increments h, k& will, for
greater distinctness, be denoted by the symbols Az, Ay, read
“ increment of " “increment of y." :

If the four steps of Art. 6 are applied to the function
¥ = $(x), the results become

y+ Ok = (x + Az},
Ay = ¢ (v + Ax) — ¢ (x) = A (),
Ay _ $(r+ Ax) —plz)  Ap(x)
Ax Az T Az ]

lim 8% _ lim [""f“’ + Ax) — $(7) } —lim 2¢(2)
Ax ¥

Ar
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The operation here indicated is for brevity denoted by the

symbol di# , and the resulting derivative function by ¢'(z); thus

d m x4 Azx) — a1
) e

The new symbol g;-"i is not (at the present stage at least) to

be looked npon as a quotient of two numbers dy, dx, but rather
as a single symbol used for the sake of brevity in place of
the expression “ derivative of y with regard to =.”

The process of performing this indicated operation is called
the differentiation of ¢ (x) with regard to =

EXERCISES
Find the derivativea of the following functions with regard to =
L x*—2x: 2x; 8; 2 5. 1
=1
2 851542 6. r* n being a positive integer.
1. g 2.
4z r+1
3 z
i.:‘—ﬂ+1—ﬂ- E'f'-l-l
9, y =Vvzr. [Puty® =z, and apply the rules.]

1‘:1- y = :'_li

8. Differentiation of a function of a function. Suppose that y,
instead of being given directly as a function of =, is expressed
as a function of another variable u, which is itself expressed
as a function of x. Let it be required to find the derivative
of y with regard to the independent variable mx.

Let y=f(u), in which » is a function of 2. When x changes
to the value =4 Ax, let w and y, under the given relations,
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change to the values u + Au, y + Ay. Then
ay_dy  Aw

Ar_ Aw Az
hence, equating limits (Th. 5, Art. 3),

dy _dy du __dfiu)
de du dr  du

TE

This result may be stated as follows:

The derivative of a funciion of w with regard to x is equal to
the product of the derivative of the function with regard to w, and
the derivative of u with regard fo x.

EXERGCISES
1. Given y=3u—1, u =3z 4 4; find 22- .

dy du
du= 0w gz =073
dy dy du B
pr el _E_Eﬂur—ﬁﬁz{ﬁx’-bﬂ.

2. Given y=3ul—4u+ 5 u=2z—5; find %.

1 i
3. Gi?eny=;,u=ﬁ:’—2r+4; find d_i‘

1 3 dy
: e G e = = ot
4. Giveny = 3w T = ﬂ+x"1 find ;



CHAPTER 11

DIFFERENTIATION OF THE ELEMENTARY FORMS

: . d
In recent articles, the meaning of the symbol E"g: was ex-

plained and illustrated ; and a method of expressing its value,
as a function of x, was exemplified, in cases in which y was a
simple algebraic function of =, by direct use of the definition.
This method is not always the most convenient one in the dif-
ferentiation of more complicated functions.

The present chapter will be devoted to the establishment of
some general rules of differentiation which will, in many cases,
save the trouble of going back to the definition.

The next five articles treat of the differentiation of algebraic
functions and of algebraic combinations of other differentiable

functions.

9. Differentiation of the product of a constant and a variable.

Let ' Y = cu,
Then Y + Ay = c(u + Au),
Ay = c¢(u + Au)— cu = cAu,
E‘E . Au
Axr Az’
dy du
h f e = —— .
therefore T = C
Thus d(cuw) _ ,du. | (1
dx da
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DIFFERENTIATION OF THE ELEMENTARY FORMS

In recent articles, the meaning of the symbol :;—i Wad ex-

plained and illustrated ; and a method of expressing its value,
as a function of x, was exemplified, in cases in which y was a
simple algebraic function of =, by direct use of the definition.
This method is not always the most convenient one in the dif-
ferentiation of more complicated functions.

The present chapter will be devoted to the establishment of
some general rules of differentiation which will, in many cases,
save the trouble of going back to the definition.

The next five articles treat of the differentiation of algebraic
functions and of algebraic combinations of other differentiable
functions.

9. Differentiation of the product of a constant and a variable.

Then ¥+ Ay = e(u 4 Au),

Ay = e(u 4+ Au)— cu = cAu,

ﬁ _ E.&.u

5 M_ El

dy  du

therefore 7o = C 3"

Thus dicu) . du, ' (1
dax i

26
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The derivative of the product of a constant and a variable iz
equal to the constant multiplied by the derivative of the variable.

10. Differentiation of a sum.
Let Y=t 10— e
in which », v, w0, ... are functions of =
Then ¥+ Ay =—u 4 Au 4 v+ Av—w— Aw 4 .y
Ay = Au+ Av — Aw 4 -,

dy _du , dv_ dw
dz de ' dz dz |

d — =S A dw
Hence gt e—wt)=o 4 T~

The derivative of the sum of a finite number of fractions is
equal to the sum of their derivalives.

L

S ()

Cor. If y=wu+¢, ¢ being a constant, then
YA Ay =4 At 40;

hence Ay = An,
E.ﬂ.d- EE‘E=dj-
de de

This last equation asserts that all functions which differ
from each other ouly by an additive constant have the same
derivative.

Geometrically, the addition of a conatant has the effect of
moving the curve y=u(x) parallel to the y-axis; this opera-
tion will obviously not change the slope at points that have
the same =

From (2), o —
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but from the fourth equation above,

dy_ du.
de  dx’
. ele
hence, it follows that {E:l}.

The derivative of a constant is zero.

If the number of functions is infinite, Theorem 4 of Art. 3 may not
apply; that is, the limit of the sum may not be equal to the sum of
the limits, and hence the derivative of the sum may not be eqoal to
the sum of the derivatives. Thus the derivative of an infinite series
eannot always be found by differentiating it term by term.

11. Differentiation of a prgduct.
Let y = uv, wherein w, v are both funetions of .

« A,

Then '&j={H+ﬁu}{u+&ﬂ}_“ﬂ=u£+ﬂ-ﬁ_“+ﬁ
Aux Ax Ax Axr Az

Now let Ax approach zero, using Art. 3, Theorems 4, 5, and

noting that if 2% has a finite limit, then the limit of m(‘*—‘r‘f)
. Az Ax
i8 ZETro.

The result may be written in the form

d{uv) _ ' dv  _du
dx T l:h‘.!'+ #dﬂ: 8

The devivative of the product of two functions iz equal to the
sum of the products of the first factor by the derivative of the sec-
ond, and the second factor by the derivalive of the first,

This rule for differentiating a product of two functions may
be stated thus: Differentiate the produet, treating the first
factor as constant, then treating the second factor as constant,
and add the two results.
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Cor. 'To find the derivative of the product of three functions

L.
Let Y = e,
Cody_ . d dw
By (8), dx_'wdz{w}-l- W
{ v it dw
= (" dx ' da dz

The result may be written in the form

‘-i—l M+miu+umﬂ 4

dx dx
By induetion the following rule is at onee derived :

The derivative of the product of ahy finite number of faclors is
equal to the sum of the products ollained by multiplying the de-
rivalive of each factor by all the other factors.

12. Differentiation of a quotient.

Let y =", u, v both being functions of z.
- .
Then Ay v4+4av v Az - Ax

Ax Az w4+ Av)

Passing to the limit, we obtain the resulf
pdtt _ o

L=

The derivative of a fraction, the quotient of two functions, is
equal to the denominator multiplied by the derivative of the nwu-
merator minug the numerator multiplied by the derivative of the
denominator, divided by the quure of the denominator. )
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13. Differentiation of a commensurable power of a function.

Let y=w", in which % is a function of x. Then there are
three cases to consider:

1. n a positive integer.

2. n a negative integer.

3. n a commensurable fraction.

1. n a positive integer.

This is a particular case of (4), the factors wu, v, w, ... all
being equal. Thus

.ﬂ — ﬂu"'ﬁ -

dx iz

2. n a negative integer.
Let = —m, in which m is a positive integer.

Then y=u"'=u"——-1;,
u
dy —mu™" du 5)
e — and Case (1
and dx u* da by (), &)
—_— e mu—m—ldj'.
= T
hence :':—: T N j:'.

3. n a commensurable fraction.

Let n =L, where p, ¢ are both integers, which may be either
q

positive or negative, .

ThHIEl y = u® =t 3
hence ¥ =",
' d d
— = — ) ;
and 3 (¥} ) ()
el -
f 1 - L'
L.e. gyt = = p
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Solving for the required derivative, we obtain

dy _p o idu,
i 4
hence %u’:nu""g—z- . (6)

The derivative of any commensuralble power of a _fundmn I8
equal to the exponent of the power mulliplied by the power with
ils exponent diminished by wnity, multiplied by the derivative of
the function.

Tt should be noticed that vu = ud,

1

—=u,
u
- 1 du d 1N _ —1du
hence _-\,.-f T2 de’ d_:e(;)_ W dx

These theorems will be found sufficient for the differentia-
tion of any funetion that involves only the operations of addi-
tion, subtraction, multiplication, division, and involution in
which the exponent is an integer or commensurable fraetion.

The following examples will serve to illustrate the theo-
mmﬁ, and will show the combined application of the general
forms (1) to (6).

ILLUSTRATIVE EXAMPLES

1 y=32=2 fina 9.

z + 1
o ;
ity (.r—1—1} {3:’ 2) — (32— E]E{zwl}' (by 5)
dz (z+ 1)*
d _ Cod g o
LEA-=T N -T@) (y2)
=6z (byl, &)

Larn=F-1 vy
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Substitute these results in the expression for gi. Then

dy _(z+1)8x—(829-2) Ba24 6242
d (z+1)? DT

2. u=(3s%+ DVIF 5a3; find i_f‘-

H=@r+) SVIHEAVITER. L@t (bys)

%m:_{1+5:’}i

=§{1+5ﬂ}‘*£(1+w} (by 6)
b= .

T

%{3:’+2} =65 (by6)

Substitute these values in the expression for E- Then

ds ‘v’m \-’1+E.l’
3 y— v’1+=-=+v"l—_+ﬁd§!
V14 2% — 1 — o
First, as a quotient,
i [v’l"-i-?—mtf.;(ﬂ+zﬂ+ﬂ—ﬁ]
dr (V14 2 —v1— )2

"

(ﬂ+xﬂ+w’1—:=]£{ﬂ+zﬂ-f1—=ﬂ)
.- e - vi—o)e - (by 5)
£[m+f1__?]=—fo-—:'+£f1—_ﬂ (by 2)

Aviza=20+ani= {1+:==:r“*(1+x=} (by 8)

di{l +a%=2z (by2and6)
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Similarly for the other terms. Combining the results, we have
dy _ —2 (] L] )
:h: xd V1 —at

Ex. 3 may also be worked by first rationalizing the denominator.
-

i

EXERCISES
Find the z-derivatives of the following functions:
— 10
1 y==" 14. ¥y =(2a al 4y Vb 4 b
=. = x4, -
e . 15. ¥ = % '
E,H—EVFJ-'. 141 —a
2 V2 [1-a
& y=—— i 16. y = .
! v @ ¥ (1 + «%)®
5 y= vieb 17, g =t 1
y ¥=o 3
6 y=(x+a)" 1 1
18. ¥ = . .
7. ;I::I.'.--E- a®. i )- {_'ti-'l-'.'ll)“
B y—= _f ] 19. y = 3 2t +
Var - o ey
9. _;‘,=£':_s-ti;, 20. y = 3(2* + Dd a7 - 8).
+ 21, y = 3u—
10 y =(x+1) Ve +2. 22 y=dw—Gul4 120 — 8
oy Yot 23, y =(1—3ut 4 Guty(l+u)?
via + Vz 24, y = ur.
12, y =4l 2, 25. y = u® 4 8 ot 4 24
l - 2‘51 y = ut -i-
13, y—— - (e +2)
r + V1 — 22 27. y = il

28, Given (a + x)* = b+ Sa'z 4+ 10a%° + 10 a%? + Hazt + 25,
find (@ + z)* by differentiation.

29. Show that the slope of the tangent to the curve y = x* is never
negative. Show where the slope increases or decreases.
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30. Given 3?4+ a%® = %, find 'i_i: (1) by differentiating as to
r; (2) by differentiating as to y; (3) by solving for y and differen-
tiating a8 to . Compare the results of the three methods.

31. Show that form (1), p. 25, is a special case of (8), p. 27.

32. At what point of the curve y? = az?® is the slope 07 — 17 4 1%

33. Trace the curve y =2 + 322 + =z — 1.

34, y=24T and w=5s—1; ﬂnd
Viut+ Db

35. At what angle do the curves y?=12r and 2+ 22+ 6z — Gl =0
intersect

14. Differentiation of implicit functions. When a functional
relation between z and y caonot be readily solved for y, the
preceding rules may be applied directly to the fmplicit function.
The derivative will usually eontain both » and 3 Thus the
derivative of an algebraic function, defined by equating a poly-
nomial in x and y to zero, may be obtained by the process illus-
trated in the following examples :

Ex. 1. Given the function y of x, defined by the equation
gy —Hay+1=0,

r:!'_qr_
i’i'miE
Since di{.r"‘+y”u5.ty+l}=ﬂ,
x
hence haet + 5 “"'F—'#—E —ﬁmffg—ﬂ (by 2, 1)
Y ¥ dx ' L
Solving for 9Y | we obtain dy _='—y,
dx’ de = — yt

Ex. 2. 7+ 2% = 1. Find j_i.

Fx. 3 c+4y+(zr—3)0+(2z-33)*=0. Find ‘j_i-

EL. CALC. — 3
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15. Elementary transcendental functions. The following fune-
tions are called transcendental functions :

Simple exponential functions, congisting of a constant
number raised to a power whose exponent is variable, as
4=, a* ;
the logarithmic functions, as log, », log, u«;
the incommensurable powers of a variable, as 23, w=;
the trigonometric functions, as sin u, cos u;
the inverse trigonometric functions, as sin™'w, tan~!z.

There are still other transeendental funetions, but they will
not be considered in this book.

The next four articles treat of the logarithmie, the two ex-
ponential funetions, and the incommensurable power.

16. Differentiation of logs ¢ and loga .

Let = log, =
Then ¥+ Ay = log, (x+ Ax),
Ay log, (x4 Ax) —log, =
Ax Az
1 x4 Ax
=-—1 .
m“ﬁ*( . ]

dy _1 tim [y, (148
whenece dm-zh=“[ug‘( +¥} .
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To evaluate the expression (1 +'i—*)h when & =0, expand it
£

by the binomial theorem, supposing E to be a positive inte-

ger m.
The expansion may be written

N g Ly mm—1) 1  mm—1)m—2) 1
(1+m) =t T wmt 1.3 wT

which ¢an be put in the form

(-8, (-2

1= 1 m 1 m m

(1+a) =+t =—+i—= 3
Now as m becomes very large, the terms l, E, +++ become

W
very small and m increases without limit as & approaches zero.

As m =0 the series approaches the limit

1,1 1
I+I+ﬂ+lﬂ+-ﬁ+ *y

which will be discussed later.

The numerical value of this limit can be readily caleulated
to any desired approximation. This number is an important
congtant, which is denoted by the letter e, and is equal to
27182815 ...; thus

lim (1 + i)' —e=2.7182818 ... *

N m =

® This method of obtaining ¢ i8 rather too brief to be rigorons; it assames
that i is a positive integer, but that is equivalent to restricting Az to ap-
proach zero in a particular way, It also appliea the theorems of limits to the

sum and product of an infinite number of terms. The proof g eompleted on
p- 315 of MeMahon and Snyder’s ** Differential Calealos,™
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The number e is known as the natwral or Naperian base ;
and logarithms to this base are called natural or Naperian log-
arithms. Natural logarithms will be written without a sub-
seript, as logx; for other bases a subseript, as in log,x, will
-generally be used to designate the base. The logarithm of e to
any base a is ¢alled the modwlus of the system whose base is a.

. A
If the valoe ﬁh:.n(l +2) = ¢ is substituted in the expres-

gion for ‘E"_ the result is
i

dJl
di

More generally, h_‘j' Art. 8,

- log, e

2 logau =822 8. @
In the particular case in which a =e,
2 togu=1 3. (8)
The derivative of the logarithm of a function iz the product of
the derivative of the function and the modulus of the system of
logarithma, divided by the function.

17. Differentiation of the simple exponential function.
¥

Let ¥= (7
Then log y =u log a.
Differentiating both members of this identity as to x, we obtain
1 dy du *
yox— =loga .. (by 8),
1 il
— =loga.y.
therefore :Ii:r. av = log e - a» - g- ("
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In the particular case in which a =&,

o e
ﬁ-ﬂ“—ﬂu-ﬁn l:l“‘}

The derivative of an exponential function with a constant base
is equal fo the product of the funciion, the natural logarithm of
the bose, and the derivative of the exponent.

18. Differentiation of an incommensurable power.

Let y=u"
in which = is an incommensurable constant. Then
log y = n log u,
ldy = du
ydr w de
ay_..¥. 3
= w de
il

U™ = nu~-! d;ﬂ.
dx

Thiz has the same formm as (8), so that the qualifying word
“commensurable ” of Art. 13 can now be omitted.

EXERCISES
Find the z derivatives of the following funections:
1. y=log(z+ a). 9, y = log VI — 7~
34“:"“:;”:; 10. y = V7 — log (VE + 1).
3. = — + 2. _
y=log (e =Ta4D 4y = log B —vIT ).
" l—zx 12. ¥ = log, (¥ 4+ T x).
5. y=|ﬂg}_+ ::‘ 13. y=log.n.
- 14. i = ™,
6. y=xlogx. .
= gtath,
7. y=x"logxz. 13 y=e

)
8. y=z"logz™ 16, y= elts,
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e va + vz
17. y=7—- 23 y=log Y2 VI,

l+e via — vz
18, y= (1 — 2. 24. 3,:%

= = o &

& -

1. y= = 25. y = (log 2)%.
20. y = log (¢* — ™). 26. y = log (log x).
21. y = log(z + €*). 27, y=rlﬂgl—r'.
22. y=z"a". 28. y = alw=,

The following functions can be easily differentiated by first taking
the logarithms of both members of the equations.

31, y =21+,
29, y= (I_l:li ‘ Y V] — 2
(z — )iz - 3)} 32. y = 2% + 3 z)¥a — 2 )%
PR
30. y=xv1-x(1+z). 33 5':%.
19. Limit of sin § as © approaches 0. Before proceeding to

0
determine the derivatives of the trigonometric functions it is

necessary to prove the following lemma :
lim gin @
8=0"g L
BD  yWith O as a center and 04 =r
aa radius, describe the circular
arc AB Let the tangent at A

i 7 =4 meet OB produced in D; draw
Fra. 7 B(! perpendicular to O, cutting
OAin €. Let the angle 0.AB =@ in radian measure,
then arc AB = 78,
OB < arc AB < AD, by geometry
i.e. raind < 8 < ritan g,

gin @ < § = tan 4.
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By dividing each member of these inequalities by siu 4,

1 {i{: sec §;
sin #
but sec # = 1, when § =10,
lim @ llm alnﬂ

20. Differentiation of sin .

Let Y = sin .
Ay  sin (u+ Aw)—sinu Aw
Th —_— = . —
en Ax Au Az

To evaluate the expression
sin (u + Au)— sin w,
we make use of the formulas for the sine of the sum and the

sine of the difference of two angles. Bines

sin (@ 4 &) = sin a cos b + cos a sin b,

sin (@ — b) = sin @ cos b — cos a sin b,

hence, by subtracting the second equation from the first,

sin (@ 4+ &) —sin (@ — ) = 2 cos e sin b

This equation is true for all values of @ and of . In particu-
lar, then, putting

T+ b= u+ Au,
and a—b=u,
that is, u—u+%, and bF-?,

we obtain
zin (% + Au)— sin w = 2 cos (u + "5; sin ﬂ;
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The expression for i—i may now be written in the form

ﬂing
AY _ os ﬂ_l_ﬁt; 2 An
Az 2/ Auw Ax
2
A
d _ B‘Ill? du
hence O _ cosu - lim —
dx An=10 E o’
2
hence, by Art. 19 L du
L » d—mﬁl““ WE“E- (11}

The derivative of the sine of o function iz equal lo the product
of the cosine of the function and the derivative of the function.

21. Differentiation of cos .

Let H=EUE'!.I!-=E'I'I'I.(§— )
- 50)==(i-) 406
Then T dmmn (ﬁ i cn-s(z d:::( )
il — e
R—mmu_ ::hm:Ileﬁlu {12}

The derivative of the costne of @ function iz equal o minus the
product of the sine of the function and the derivative of the function.

223  Differentiation of tan w.

Let y=tan = """,
O0S W
dy mu-%ainu—ﬂinu-%maﬂ
Th — = (by b
o dx Cos® i y o)
cos® i - :;"'+Em d” dy
- de__dr o 11, 12)
cos? u EDH- T

that is, % tan © = sec® :_;- (1%)
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The derivative of the tangent of o function i3 equal to the
product of the square of the secant of the function and the deriva-
tive of the funcliion.

Hince the remaining elementary trigonometrie functions
can be expressed as ratiomal functions of those already con-
sidered, their derivatives can be obtained by means of the
preceding rules. The results are

o — — enc® u TH 14
dﬂ:m“ R “d.q:' (14)
@ soon du,
d—mmu_..mnutnnudx _ (156)
imu:—mumug- {16}
EXERCISES
Find the z-derivatives of the following fonetions:
1 y=sinT=x L
16. y = tan a=
2. y=cosdx - .
) 17. y = ain nzAlO®x.
3. y=sina 18, y = sin (u + ) cos (u — B).
&, g=ufni‘:um:. 19. y:ﬁn“'“:+
5. y=mnmn"x. COE® mI
6. y=sin 52 20. y=z + logcos :—E).
7. y=sin*7r. 21. y = min (gin u).
8 y={tan’z—tan = 22, y = sin?e™.
9. y=sin'zeosz. 23. y =sin e log sz
1Q. y = tan x + seo x. 24. y = Viin %
11 g =sin? (1 — 227)% 25. y=cm?d
12, y=tlan{3 -5z 26. y=sec{dx - )L
13. y = tan?z — log (sec? z). 27. y = ecot 2?4 seevz,
14. y=logtan(lz + { =) 28. y =ain zy.
15. y =log sinV'z. 29. y=+tan(z 4 ¥).
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30. Find d;'i (cos ) directly from the definition of the derivative.
Also % (tan u).

31. Find %{ﬂﬂﬂ «) from the relation sinu + cos?u = 1.

23. Differentiation of sin—1 4

Let y=gin"'u.

Then sin y = u,

and, by differentiating both members of this identity,

dy  du,
08 ¥ % = —3
Vs dx
dy 1 du 1 dn
hence N L. S
de cosydr 4 /1 sin® yd#
3 d . A 1- e
18, d'_zﬂ-m t.l:—j_—v' dﬂ:

The ambiguity of sign accords with the fact that sin~'w is a
many-valued funection of w, since, for any value of u between
— 1and 1, there is a series of angles whose sine is w: and, when »
receives an increase, some of these angles increase and some

L1
a8 % Lo positive, and

decrease; hence, for some of them,
for some negative. It will be seen that, when sin—" « lies in
the first or fourth quarter, it increases with w, and, when in
the second or third, it decreases as u increases, Hence, for the
angles of the first and fourth guarters,

i =1 —_i -1 — —I ﬂ- T
I'I:I'!ﬂin u=—o C0RT U +fﬁsﬂ:¢ (17

In the other quarters the minus sign is to be used before
the radical.
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The derivatives of the other inverse trigonometric functions
can be aaaily obtained b:,r the method emplu_f,.red in the present
article. The most important of the remaining ones are tan™"u,

seclu; .
a8 a1, 1 du
Ea:-hn w= mﬂml u_1+“=dm (18)
of Loy = -_i -1 E—I EI.E
2 e u i i dx (19}
EXERCISES

Find the z-lerivatives of each of the following funetions:

1. y = sin1249
= coa~1v1 — i,
y=rgin"1{3xr—1).

y = gin-! (3r —4 ).

y = coa-1 log z.

LI R I O

¥ = sin-1 {tan x).

(W]
[=]

. ¥ = seg”]

11.

14, ¥ =sin~! vsin x.

15. y = tan™!
14 cosx

| — onRx

16. y = tanx . tan-'a

17. y=zxun~tz
IE... y‘:etlm":.
1
19, v — pao-l .
y=oe 21
=+ 1
zﬂ-. = =1 "
I = aeb a1
21. y=tan-1 Y2+ Va,
1= +vax
22, y=cos 1S ¢
X 4 gt
23. y = tan1(n tan x).
24. y = cos™! (coa 2 x).
25. y = cos~! (2eosx).
26. y= tan=1 (VT + 2 — ).
1l —=
2?.; — Emn_i .
! 14z
28. y:t.an-l'f._.{-'_rm“_lﬂb—_r
B v
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24 Table of fundamental forms.

de ol a

d _du  dv_dw

&E{u+-u W:I-dx-l-dw A | (2)

e —u gy pdu (3)

d - el dv,

S5 (uvw) _uud +m‘m+ﬂlﬂ-dx (&)
du v

du Var” (5)

drv . - 2 '

ﬁu" =nu""! ﬁ—ﬁ (6)

d _log, ¢ du

" Ty aw )

a _ldu

d o — gt du

" =loge-a da ("

d%a“ =" :%‘: (1)

%ﬂlﬂ =mug—:- (11)

d%:mu : :-a.ilug;- (12)

imu =m3u§- (18)

L - du

da:ﬁ“" = miu‘m 14
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ri )

';—;mu =sec 1 tan u . (16)
‘%mu =—mumtu§% (18)
.,%:“l“_l“ =—t%: cos 1 =ﬁ% (17)
T‘;:m-lu=—%mt-lu=ﬁ?fﬁ- (18)
A ae1 gy = r&m‘lu =“——ﬂl:=__lg—:~ (1)

EXERCISES ON CHAPTER I
Find the z-derivatives of the following functions :

l y=3z%4 5% —T. T
- 10. y= -
3.5 1 I
2. y=— 4 — -
In ﬂ.'t T 1—1—.. y: I—T"
a. y=(z+5)vz-5. V142t
4 y—zvVai— 12. y=< cosx
_ 11
5. y=r log sinx. 13'3'=ml{;)'
6. yzgm_ 14, y=tan-t_480Z
3+ bHecosx
7. y=Ce
- ¥=7 15, y:(z+u}t.an-11E_,ﬂu_m

8. y=tan2z,z=tan1{2z - 1). g
’ 16, ' :mt—lu’.
L.

9, y=¢% u=lor sin x.

17. y=tan'z - 2 tan? z + log(sec* ).

18 y:zl{'g:+h)g[1 _2).

1—=x

_3+5¢=:na::

19, y=eog-1_ " " 7777,
¥ G4 3cosx
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0. y=to (122)1 e

21 y=log(z+vVE—ad)+ m’li-

22, y=¢* u=lopz. 25. i+ 4=
23, p=loge+ e s=pocr. 26. Prr=y+p I
24 P4y Baxy=0 27. zyt + 2y =z + .

2B, y=s8in(2u—"T), u=logst

29. By means of differentiation eliminate the constant p from the
equation y = prd,

30. At what points is the tangent to the curve y =cos z parallel to
the z-axis?

31. Show that the z-derivative of tan-1 41— ju not a fune-

. 1+cosx

tion of .

32. Find at what points of the ellipse & + -EL: = 1 the tangents cut
aoff equal intercepts on the axes. a

33. Find the poinis at which the slopa of the eurve y =tanz is
twice that of the line y ==

34. Find the angla which the curves y=#nz and y=cosx raalke
with each other at their point of intersection.



CHAPTER III

SUCCESSIVE DIFFERENTIATION

25. Definition of nth derivativee When a given function
= ¢({z) is differentiated with regard to = by the rules of

Lha.pt.er I, then the result gy #'@)
k4G

is a4 new function of # which may itself be differentiated by the
same rules. Thus, d dy .j.{a:}
dz' de

The left-hand member is usually abbreviated to %, and the
right-hand member to ¢"(x); that is,

Ty _
a2 =d (z)

Differentiating again and using a similar notation, we obtain

L) B g

and so on for any number of differentiations. Thus the sym-

d’y 4 OXpresses that ¥ is to be differentiated with rﬂgm-d to =,

and t.hat the resulting derivative is then to be differentiated.

Similarly, % indicates the performance of the operation %
three times, :;(%(%D In general, the symbol d’}i MEAns

that ¥ 18 to be differentiated » fimes in succession w1l;h regard
to @
47
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Ex.1. If y=a*+ sin 2z,

dY _ 445 4 Zoos21,
oE

%: 1222 — 45in2z,

ﬂ-:ﬂ-ir-— Heos2x,

o8

diy ,

i =24 4+ 165in2z.
If an implicit equation between = and y is given and the

derivatives of y with regard to # are required, it is not neces-
gary to solve the equation for either variable before perform-

ing the differentiation.
Ex. 2. Given x* + v + 4a%ry = 0; find %
%(:ﬂ" + 3 + dafzy) =10,

d
dr

dy ey
'i:t‘-l—‘i-y'EI—+ ‘iﬂ’rﬁ+ 4oty =0,

d L
i"-lﬂa_ﬂ"-l--'l--ﬂ E::y:ﬂ.

The last equation is now to be solved for {;:

dy _ # 4 ﬂ%
dr ¥+ a'c (1)
]:hf':'amul'.mtmg again, we obtain

d¥y _ d x® + oty
e d:[:yT-l- ity

(@ +0%) 2 (@ 4 a%) — (22 + a%) T (4P + o)
- 0 + o)
) (3" + a%r) (Ex=+a'j3’) —(z* + a%) (3,,:% +ﬂ)
T (7 + a%x)? '
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The value of ? from (1) is now to be substituted in the lash
£

equation, and the resulting expression simplified. The final form

may be written :
Py 2atry — 10a%® — at(x 4 y) = Bl (2 +y)
dt = & + a%z)

In like manner higher derivatives may be found.

26. Expression for the nth derivative in certain cases. For cer-
tain functions, a general expression for the nth derivative can
be readily obtained in terms of n.

» dy ) ﬂ = e ﬂlj — A%
1x. 1. Il y = e=, then -2 == = £, ey prtal
where n is any positive integer.  1I y = e8%, Jpn = AME

Ex. 2. If ¥ = gin x,
%:um::niu(r-]—%),
x5+

1 a = r £l - Bl ' - Ll - -

dey nw
E‘“"("’fs)‘

i A-H— n 5] kil
If y =sinar, T =a mu(u_:+2).

EXERCISES ON CHAPTER Il

1. y=3z'+4 643z -0 ﬁud{ﬁ"r 5. y = tanz; 1’i|1u|'1{;|!1jl

‘ Py

2. y=2x"+ 3z +5; find - :ir‘ 6 y= -P']ﬂg'.r find —2 T

_1 ity _ . d‘iy
¥y=z find A 7. y=x2logz; find

‘.3,r=.r=—::—5; 'ﬂtidﬁ—:ir B. y = sec?r; find %,

EL, CALO.—4
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dsy 1 dry
ﬂf* dn
= sinz cos z; find dﬁ 19. y = cosmx; find dﬁ.
xa diy 1 dny
4 . find d®y dﬂy
. y = z*logz?%; fin e 21. y = log (a + z)™; find —— —
d’y
. y =sinx; find j;i‘!'; _ 22. y? = 2px; find - ek
* 4 o7 z? Y d%y
= log(e* + %) ; ﬁnd d:t:“ 23. 2 + = =1; find el
dy 3 3 d?y
. Y= (;1:5__3:r+3)eh find el 24. 22 + y® =3 azy; prh

d“y

d
7R 25. e=tv = zy; find ——Z

. y==ztlogz; find

. Y = e%%; ﬁndj—g* 26. y =1 + zev; find

d*y
dx?
dgy 2 dy
dz?
d2y
dx?

27. y = e*sinx; prove +2y+0

2::: +(:r“+2)y 0.

ﬂ'”y

28. y = axsinx; prove x*——5

29. y = ax*t14 bx—"; prove :ﬂﬂ s=n(n+1)y.

30. y =(sin~? :i:)ﬂ; prove (1 — z%) s :::E: 2.

e+ e* ii_s_f 9
31. y= = _g—s PTOVe d:r_l y2

32. y =a"1logz; find 3

dry _ odnly  dvy

don = 2gi1 gz T 26"

33. y = z%=; prove

dry
2
34. y = cos?z; find 7
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— d¥y
= logsinx; find I 3
10. y = sinxcosx; find %
T dy
1. y=y 3 find g
12, y = etloga?; find T2
13. y = sinx; find j:i

- .y - vy
14. y = log(e* + ) find =5

d°y
15. y=(z*— 3z + 3) ¥, find pr

18, y=_1; find 5%

dxn
dny
19. y = cosmz; find e
d";ﬂr
('-"+ )=
21 y = log(a + 2)"; find 2.
22, ' = 2 pr; find 'ﬂl
.r“ g,r iy
23. 5= 1; fin dd;r’
“.I’-I—y':ﬂ-ﬂ.ty,ﬂnﬂ E.‘-'Ef

)
16. y = rilogx; find ;3 25. ¢t = ry; find iy

ﬂnd a2y

s 26, y =1 4 xev; ﬂndd’y~

17. y = eo=;

27. y = e*sinr; prove %—ﬂf+ﬂy—ﬂ

-n'.*y 2:

T +{r’+2}y 0.

28. y = azsinx; prove x5
1 P 1
29. y = ar*tl4 b provex E="[ﬂ+ )12

d
30. y =(gin-)x)?; prove {1'11};1 L

dx
L
e*—pg—s’

31 y= 1—gt.

.

® iz
32, y = 2+ log x; find E
ity _ gy
dz=

33. y = x%*; prove e E._Ti"'ﬂ"’-*

34. y = cos®r; find fﬁ-



CHAPTER 1V

MAXTMA AND MINIMA

27. Increasing and decreasing functions. A function is said
to be dncreasing if it increases as the variable increases and
decreases as the variable decreases. A fumetion is said to be
decreasing if 1t decreases as the variable inereases and inereases
as the variable decreases. When the graph of the function is
known it will indieate whether the function is increasing or
deereasing for an assigned value of »; conversely, a knowledge
of the fact whether a function is increasing or decreasing is of
great assistance in drawing the graph. Usuoally a function is
inereasing for certain values of # and deereasing for others,

28. Test for determining intervala of increasing and decreasing.
Let ¥ = ¢(x) be a continuous function having a derivative for
all values of = from a to . By the above definition ¥ is in-
greasing or decreasing at a point =, according as

k= dlay+ k) — d()

has or has not the same sign as A, where & iz a sufficiently
small number. Hence ¢(x) 18 an increasing or a decreasing
funection at the value @, according as

dy _ lim
=

&y =“[¢(r1+h;—¢(m.ll ()

iz positive or negative.
(2 ]
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Thus, the function ¥ = ¢z} is increasing, if 4'(z) is positive;
if ¢'(x) is negative, the function is decreasing.

In order that a function shall change from an increasing
function to a decreasing function or wice versa, it iz necessary
and sufficient that its derivative shall change sign. M the
derivative is continuous, this can happen only when the deriva-
tive passes through the value zero. The derivative may also
change sign when it becomes infimte, and, notwithstanding
this discontinuity of the derivative, the original function may
still be continuous, TIn the graph of the function this requires
that at such a point the tangent to the locus shall be parallel to
the y-axis. The process will be illustrated by a few examples.

Ex. Find the intervals in which the function
P(z) =2x%—- 0%+ 122 -6
is increasing or decreasing. The derivative is
() =027 — 1Bz + 12 = B(x — 1)(z — 2);

hence, ad r passes from —ooto 1, the derived funetion ¢'(z) is posi-
tive and $(x) increases from ¢ —m )
to ¢{l), i.e. from p==xtop = —~1;
as r passes from 1 to 2, ¢'(z) is nega-
tive, and ¢ (z) decreases from (1) to
(2}, ie. from — 1 to —2; and a8 =
passes from 2 to +o, ¢§'(z) iz posi-
tive, and $(x) increases from ¢(2) to
d(xm), te. from —2 to + o. The
locus of the equation y=<¢(z) is shown
in Fig. 8. At points where ¢/'(z) =10,
the function $(z) is neither increas-
ing nor decreasing. At such points
the tangent is parallel to the axis of 2. Thus in this illustration, at
z =1, x = 2, the tangent is parallel to the r-axis

¥

Fia. &
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EXERGCISES
1. Find the intervals of inereasing and decreasing for the function
prj=r*+ 2194+ - 4
Here ¢{r}—31"+4z+1_('ix+1]{x 1).
The function increases from r= — o to x = — 1; decreases from
r=—1tox=—}; increases fromz = — jtor ==,

2. Find the intervals of increasing and decreasing for the function
p=x* -2+ xr— 4,

and show where the curve is parallel to the r-axis.

3. At how many points can the slope of the tangent to the curve
¥y=2z'=-3z7 41
bal? —17 Find the pointa.

4. Compute the angle at which the following curves intersect
y=dzr -1, y=22%+ 3.

29. Turning values of a function. It follows that the values
of x at which ¢ (z) ceases to inerease and begins to decrease
are those at which ¢'(z) changes sign from positive to nega-
tive; and that the values of x at which ¢ (z) ceases to decrease
and beging to inerease are those at which ¢'(x) changes its
sign from negative to positive. In the former case, ¢ (x) 13
sald to pass through a marimum, in the latter, a minimumn,
value.

Ex, 1. Find the turning values of the function
P(z)=22" — S22 127 + 4,
and exhibit the mode of variation of the fanction by sketching the

o = $(2).
Here @' (o)=0z" —b6xr— 12 =68(z+ 1)(r—2),
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hence ¢'(x) is negalive when x lies between — 1 and
+ 2, and positive for all other values of z. Thus ¢(x)
increases from r=— @ to x=— 1; decreases from
.:.kl |x z=—1 tor=2; and increases from 2 = 2 to r = e

! Hence ¢(— 1) iz & maximum value of ¢(r), and

+(2) & minimum,.

the following simultansous values of z and y:

The general form of the curve y = ¢(r) (Fig. #)
may be inferred from the last statement, and from

Fia, 8 t=—w -2, 1,0 1, 2, § 4 =
y=—c, 0, 11,4, -0 —16, — 5 36, =

Ex. 2. Exhibit the variation of the
fonction $(z)=(z— 1)+ 2, \/‘
especially its turning values. ¥
Since ¢(z) =2 — L1
CESL
henee ¢'{x) changes sign at z=1,
being negative when z<1, infinita
if £ =1, and positive if z>>1. Thus

$({l)=2i8 h minimum turning value o
of $(x). The graph of the function
i= as shown in Fig. 10, with a vertical tangent at the point (1, 2).

Fia, 10 .

Ex. 3. Examine for maxima and minima the function
$(x)=(z— DY + 1.

¥ V' e @)= ——,
(z—1)

Fia, 11 is infinile when z=1. (Fig.1L)

hence ¢'(x) never changes sign, but is always
positive. There is sccordingly no turning
' value. The curve y = () has a verti-

X cal tangent at the point (1, 1), since ;1!
X
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30. Critical values of the variable. It has been shown that
the necessary and sufficient condition for a turning value of
¢ (x) is that ¢'(z) shall change its sign. Now a function
gan change its sign only when it passes through zero, as in
Ex. 1 (Art. 29}, or when its reciprocal passes throngh zero,
as in Ex. 2. In the latter case it is usual to say that the
function passes through infinity. It is not true, conversely,
that a function always changes its sign in passing through
zero or infinity, e.g. #° and 7%

Nevertheless all the values of =z, at which ¢'(2) passes
throngh zero or infinity, are called eritical values of =z, be-
cause they are to be further examined to determine whether
#'(x) actually changes sign as z passes through each such
value ; and whether, in consequence, ¢ (x) passes through a
turning value. :

For instance, in Ex. 1, the derivative ¢'(x) vanishes when
#=—1, and when x = 2, and it does not become infinite for
any finite valne of z. Thus the critical values are —1, Z,
both of which give turning values to ¢{x). Again, in
Exs. 2, 3, the critical value is =1, since it makes ()
infinite ; it gives a turning value to ¢(z) in Ex. 2, but not
in Ex. 3.

31. Method of determining whether ¢'(x) changes its sign in
passing through zero or infinity. Let @ be a critical value of =;
in other words, let ¢'(a) be either zero or infinite, and let &
be a ~1w:r:,r small positive number, so that @« — & and a 4 k are
two numbers very close to a, and on opposite sides of it. In
order to determine whether ¢'(z) changes sign as x increases
throngh the value a, it is necessary only to compare the signs
of ¢'(a + k) and ¢'(a — A). If it is possible to take & so
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small that ¢'(a —A) is positive and ¢'{a + &) negative, then
$'(x) changes sign as = passes through the value a, and
¢ (#) passes through a maximum value ¢(a). Similarly, if
$'(a — &) is negative and ¢'(s + A) positive, then $(z) passes
theough a minimum value ¢ (a). :

If ¢'(a — k) and ¢'(a + &) have the same sign, however
small & may be, then ¢ (a) is not a turning value of ¢ ().

Ex. Find the turning values of the function
()= (z — 1)3(z + 1)®.
Here ¢'(z)=2(z — 1) (= + 1)+ 3(z — 1)’z + 1)*
—(z=1)(z+ 1)¥5z—1). '
Henee ¢'(z) becomes zero at = — 1, §, and 1; it does not become

infinite for any finite value of z.
Thus, the critical values are — 1, §, 1.

s
18 peme —— e e mm =

|
=
i~
+

Fra. 12

When z has any value less than — 1, the three factors of ¢'(x)
take the signs — 4 —, hence ¢'(z) is +, and when z has a value
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between — 1 and ! they become — + —, and ¢'(x) is still 4 ; hence
${ — 1)=0 is not a turning value of ¢(x).

When z has any value between } and 1, the signs are — + + and
¢'(z) is — ; hence ¢(}) is & maximum.

Finally, if * has any value greater than 1, the signs are + + +;
hence ¢'(z) changes sign from — to + as z increases through 1, and
(1) =0 is a minimum valoe of ¢(x).

The general march of the function may be exhibited graphically
by tracing the curve y = (z) (Fig. 12), using the foregoing results
and observing the following simultaneous values of x and y:

r=—a, —2, —1, 0,4, 1, 2, =
y=—om, —9 o, 1,1-1..., 0, 27, =.

32.' Second method of determining whether 4'() changes sign in
passing through zero. The following method may be employed
when the function and its derivatives are continuous in the
vicinity of the eritical value z=a.

Suppose, when « increases through the value a, that &'(x)
changes sign from positive through zero to negative. Its
change from positive to zero is a decrease, and so is the change
from zero to ﬁegﬂtim; thus ¢'(z) is a decreasing function at
x= a, and hence its derivative ¢'(x) ia negative at z=a.

On the other hand, if ¢'(x) changes sign from negative
through zero to positive, it is an increasing function and ¢"(z)
is positive at z =a; henece:

The function $(z) has a mazimum value ¢(a), when ¢'(a) =0
and’ ¢''(a@) is negative; ¢(x) has o minimum value $(a), when
¢'(a) =0 and $"(a) is positive.

It may happen, however, that ¢''(a) is also zero.

To determine in this case whether ¢(x) has aturning value,
it is necessary to proceed to the higher derivatives. If ¢(z) is
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a maximum, $"(x) is negative just before vanishing, and
negative just after, for the reason given above; but the change
from negative to zero is an increase, and the change from zero
to negative is a decrease; thus ¢"(x) changes from inereasing
to decreasing as x passes through a. Hence ¢''(z) changes
sign from positive through zero to negative, and it follows, as
before, that its derivative ¢™(x) is negative.

Thus ¢{a) is a maximum value of ¢(z) if '(a) =10, ¢"{a) =10,
"' (a) =0, ¢"(a) negative. SBimilarly, ¢(a) iz a minimum
value of ¢(z) if ¢'(a)=0, ¢"{a) =0, ¢"'(a) =0, and $"(u)
positive. :

If it happens that #"{a) =0, it is necessary to proceed to
still higher derivatives to test for turning values. The result
may then be generalized as follows:

The function ¢(x) has o marimum (or minimum) value af
o = a if one or more of the devivatives ¢'(a), ¢"(a), ¢""{(a) vanish
and if the firat one that does not vanish i3 of even order, and
negative (or positive).

Ex. Find the critical values in the example of Art 31 by the
seeord method.

@ (2) = (2+1)(Bx—1) +2(z— 1) (z+ 1) (5 x—1) +5(x= 1) (z +1)?

=4{(5x'+322—-3z—1),

#7(1) = 16, hence ¢(1) is & minimum value of ¢(x),
&"( — 1) = 0, hence it is necessary to find ¢"'(— 1);

() =125 +22-1),
#"( = 1) = 24, henee ¢(— 1) is neither a maximum nor a minimum

value of ¢(z).

Again, ¢"(}) = 5(1 — 1)(1 + 1)? ia negative, hence ¢(}) is & maxi-
mum value of ¢{x).
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33. The maxima and minima of any continuous function occur
alternately. Tt has been seen that the maximum and minimum
values of a rational polynomial oeccur alternately when the
variable is continually increased, or diminished.

This principle is true also in the case of every continuous
function of a single variable. For, let ¢{a), $(b) be two
maximum values of ¢{z), in which a is supposed less than
b. Then, when z=a 4 h, the function is decreasing; when
@ =b — h, the function is increasing, A being taken sufficiently
small and positive. But in passing from a deecreasing to an
increasing state, a continuous function must, at some inter-
mediate value of #, change from deereasing to increasing, that
is, must pass through a minimum. Hence, between two maxima
there must be at least one minimum.

It can be similarly proved that between two minima there
must be at least one maximum.

34. Simplifications that do not alter critical values. The work
of finding the eritical values of the variable, in the case of any
given function, may often be simplified by means of the follow-
ing self-evident principles.

1. When ¢ is independent of z, any value of x that gives a
turning value to ed(x), gives a turning value to $(z) also; and
conversely. These two turning values are of the same or
opposite kind according as ¢ is positive or negative.

2. Any value of = that gives a turning value to c+¢(x) gives
a turning value of the same kind to ¢(x) also; and conversely.

3. When n is independent of #, any value of x that gives a
turning value to [¢(x)]* gives a turning value to ${z) also;
and conversely. These turning values are of the same or
opposite kind according as n[¢(z)]*" is positive or negative,
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EXERCISES

Find the critical values of z in the following funetions, determine
the nature of the funetion at each, and obtain the graph of the funetion.

1. u=.-i:{1'=—l]. 7. =04 12 — 3z — 958
2 u=2s%_154% 4 86 x — 4. 8 = loET '
£
3. u:(.t—l}‘{.t—ﬂ}’. 9. u = sin?x cos® L.
4. u=sginzx 4 cosx
\ 10. “=r‘:—;+1,

5_“:!:-:1-;!_ 4r—1

T 11, w= EENEF1)
6. u=ux(z+1)* -4 (x—1){x—-2)

12. Show that a quadratic integral funetion always has one maxi-
mum, or one minimum, but never both.

13. Show that a cubic integral funetion has in geoeral both a
maximum and 3 minimom value, but may have neither.

14. Show that the function (z — b}! has neither a maximum nor
a minimum valua.

35. Geometric problems in maxima and minima. The theory
of the turning values of a function has important applications
in golving problems concerning geometric maxima or minima,
f.e. the determination of the largest or the smallest value a
magnitude may have while satisfying eertain stated geometrie
conditions.

The first step 12 to express the magnitnde in gquestion
algebraically. If the resulting expression contains more than
one variable, the stated conditions will furnish enongh relations
between these variables, so that all the others may be expressed
in terms of one. The expression to be maximized or minimized,
being thus made a function of a single variable, can be treated
by the preceding rules.
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Ex. 1. Find the largest rectangle whose perimeter is 100, Let x,
y denote the dimensions of any of the rectangles whose perimeter is
100. The expression to be maximized is the area

o = XYy (1)
in which the variables , y are subject to the stated condition
2x+2y=10,
Fot y =8l — =3 (2}
. hence the function to be maximized, expressed in terms of the single
variable x, 13 # = () = (5 — )= ) x — 2= (3

The critical value of x i3 found from the equation
d(z) =50 ~2x =0

to be =25 Whan z increases through this value, ¢'(x) changes
sign from positive to negative, and hence ¢(x) is a maximum when
r =25. Equation (2} shows that the corresponding value of y is 24.
Hence the maximum rectangle whose perimeter is 100 ia the square
whose side is 25.

Ex. 2. Tf, from a square piece of tin whose side is a, a square be
eut out at each corner, find the side of the latter square in order that
the remainder may form a box of maximum

capacity, with open top. i _j . i___
Let x be a aide of each square cut out.
Then the bottom of the box will be a square
whose side is a = 2 x, and the depth of the box
will be . Hence the volume ia e -
v=z(a—2x)3 : ]
which is to be made a maximum by varying . Hia. 13
Here & (@22 ta(a-22)

= {a =2 x)a—0z)
This derivative vanishes when z = g. and when z = g « It will ba

found, by applying the usual test, that :r=f'; gives v the minimum
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a . . . ot I
value zero, and that z = F gives it the maximom value ==. Ience

[

the side of the square to be cut out is one sixth the side of the given
Buare.

Ex. 3. Find the area of the greatest rectangle that can be inscribed
B in a given ellipee.’

P An  inseribed ree-
tangle will evidently be
¥ symmetric with regand -
0 a A  to the principal axes

of the ellipse.
Let a, b denote the
lengths of the semi-
! axes OA, OB (Fig. 14);
Fre. 14 let 2 z, 2 y be the dimen-

sions of an inseribed rectangle. Then the area is

u=4 IHy (1)
in which the variables x, y may be regarded as the cotrdinates of the
vertex I, and are therefore subject to the equation of the ellipse

xt oyt
atmE=t )
It 13 geometrically evident that there is some position of P for
which the inseribed rectangle is 3 maximum. _
The elimination of y from (1), by means of (2), gives the function
of = to be maximized, - 4b Y 3
a

By Art. 34, the critical values of x are not altered if this funetion
is divided by the constant 4—b, and then squared. Hence, the values
a.

of z which render v a maximum, give also a maximum value to the
function $(x) = 2¥(a? — 2%) = a%e® — 2,
Hera ' {x)=2a% — 42 =2 x{a? -2z,
¢ () =2 a® — 12 22



MAXIMA AND MINIMA 63

hence, by the usual tests, the critical values r = + ﬁ render ¢(x),

and therefore the area w, & maximum. The corresponding valuas of
y are given by (2), and the vertex P may be at any of the four points

denoted
hjr t:ii_,yz:ti_l
V32 Va2

giving in each case the same maximum inseribed rectangle, whose

dimensiona are av'2, bv2, and whose area is 2 ab, or half that of the
circumsecribed rectangle. .

Ex. 4. Find the greatest evlinder that can be cut from a given
right cone, whose height is &, and the radius of whose base is a.
Let the cone be generated by B
the revolution of the triangle OAR p /
{Fig. 15), and the inscribed cylin-
der be generated by the revolution . z 7 A
of the rectangle AP,
Let OA =k, AB =a, and let the \
codrdinates of * be (x, ). Then Ta. 15
the funetion to be maximized is
ay?(h — =) subject to the relation E: ;-
This expression becomes

T
V="0 2%k — 7).

The eritical value of x is } &, and F:“%’i‘
EXERCISES ON CHAPTER IV

1, What is the width of the rectangle of maximom area that can
be inseribed in a given right segment of a parabola ?

2. Divide 10 into two parta such that the sum of their squares is
& minimuam. .

3. Find the number that exceeds its square by the greatest pos-
sible quantity.
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4. What number added to its reciprocal gives the least possible
sum T

5. (ziven the slant height of a right cone; find its altitnde when
the volume is a maximum.

6. A rectangular piece of pasteboard 30 in. long and 14 in. wide
has a squara cut out at each corner. Find the side of this square so
that the remainder may form a box of maximum contents

7. Find the altitude of the right cylinder of greatest volume in-
seribed in a sphere of radiua .

8., Determine the greatest rectangle that can be inscribed in a
given triangle whose base is 25, and whose altitade is 2 q.

9. A rectangular court is to be built so as to contain a given area
¢?, and a wall already constructed is available for one of it sides.
Find its dimensions so that the expense incurred in building the walls
for the other sides may be the least possible.

10. The volume of a eylinder of revolution being constant, find
the relation between its aliitude and the radius of its base when the
entire surface i3 & minimum.

11. Assuming that the stiffnems of a beam of rectangular cross
section varies directly as the breadth and as the cube of the depth, what
must be the breadth of the stiffeat beam that ean be cut from a
log 16 in. in diameter?

12. A man who can row 4 mi. per hour, and can walk 5 mi. per
hour, is in & boat & mi. from the nearest point on a straight beach,
and wishes to reach in the shortest time a place on the shore 5 mi.
from this point. Where must he land ¥

13. If the cost per hour for the fuel required to run a given
steamer is proportional-to the cube of her speed and is $20 an hour
for a speed of 10 knots, and if other expenses amount to #1356 an hour,
find the most economical rate at which to run her over a course s.
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14. If the cost per hour of running a boat in still water is propor-
tional to the cube of the velocity, tind the most economieal rate at which
to run the steamer npstream againgt a current of 4 miles per hour.

15. A Norman window cousists of a rectangle surmounted by a
semicirele. If the perimeter of the window is given, what muet be its
proportions in order to admit as much light as posible?

16, Find the most economical proportions for a cylindrical dipper
which is to hold a pint.

17. The gate in front of a man’s house is 20 yd. from the ear
track. . If the man walks at the rate of 4 mi. an hour and the car on
which he i3 coming home is running at the rate of 12 mi. an hour,
where ought he to get off in order to reach home as early as possible?

18. How much water should be poured iuto a eylindrical tin dip-
per in order to bring the center of gravity as low down as possible?
[Omit until after reading Art. 164.]

19. A statue 10 ft. high stands on a pedestal that is 50 ft. high.
How far ought a man whose eyes are § ft. above the ground to stand
from the pedestal in order that the statue may subtend the greatest
possible angle

20. The sum of the surfacés of a sphere and a cube is given. How
do their dimeusions compare when the sum of their volumes is a
minimum ?

21. An electric light is to be placed directly over the center of a
cireular plot of grass 100 It. in diameter. Assuming that the inten-
sity of light varies directly as the sine of the angle under which it
strikes an illuminated surface and inversely as the square of ite dis-
tanca from the surface, how high should the light be hung in order
that the most light possible shall fall on a walk along the circumfer-
ence of the plot?

22. Find the relation between length of cireular arc and radius, in
order that the area of a circular sector of a given perimeter shall be a
maximuom.

EL. CALc. —B
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23. On the line joining the centers of two mutually external
spheres of radii r, R, find the distance of the point from the center of
the first sphere from which the maximum of spherical surface is visible.

24. The radius of a circular piece of paper is r. Find the arc of
the sector which must be cut from it so that the remaining sector
may form the convex surface of a cone of maximum volume.

25. Describe a cirele with its center on a given circle so that the
length of the are intercepted within the given eircle shall be a maxi-
mum.

26. Through a given point within an angle draw a straight line
which shall eut off & minimum triangle.

27. What is the lungt.]fl of the axis, and the area, of the maximum
parabola which can be cut from a given right circular cone, given
that the area of the parabola is equal to two thirds of the product of
its buse and altitude? A parabola is cut from the cone by a plane
parallel to an element.

28. Through the point (g, ) a line is drawn such that the part
intercepted between the rectangular codrdinate axes is a minimuam.
Find ita length,

29. The lower corner of a leaf, whose edge is a, is folded over so
as just to reach the inmer edge of the page. Find the width of the
part folded over when the length of the crease is a minimum. l

30. What is the length of the shortest line that can be drawn tan-
gent to the ellipse 22?4 a%® = a®® and having ils ends on the co-
ordinate axes 't

31. Given a point on the axia of the parabola 3 = 2 pz at a dis-
tance a from the vertex. Find the abscissa of the point of the curve
nearest to it

32. A wall 8 ft. high is parallel to the front of a house and B ft

from it. Find the length of the shortest ladder that will reach the
house if one end rests on the ground outside the wall.
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. 33 Tt is required to construct from two circular iron plates of
radius a & buoy, composed of two equal cones having a common base,
which shall have the greatest possible volume. Find the radius of
the base.

34, A weight W is to be raised by means of a lever with force F
at one end and the point of support at the other. If the weight is
suspended from a point at a distance a from the point of support, and
the weight of the beam is w pounds per linear foot, what should be
the length of the lever in order that the foree required to lift the
weight shall be a minimum ?

a5. A load is bauled up an inclined plane by a horizontal foree; it
is required to find the inclination # of the plane so that the mechanical
efficiency may be greatest, assuming that the efficieucy 5 is defined by
the formula tan &
= m:
where ¢ is the angle of friction; ie. tan ¢ = p, the coefficient of frie-
tion between the load and the plane.

36. Tf the plane is of cast iron and the load ia steel, and if the
coefficient of friction between these substances is p = 0.347, at what
angle @ is the efficiency of the inclined plane a maximum 7

47. Prove that a conical tent of given capacity will require the
least amount of canvas when the height is v2 times the radius of
the base.

38. If given currents ¢ and ¢' produce ions & and @ ina
tangent galvanometer, so that tan «/tan o show that @ — o' is

. T
a maximum when « + i = Y e

If
Nl nalir oo 5 be ne



CHAPTER V

RATES AND DIFFERENTIALS

36. Rates. Time as independent variable. Suppose a particle
P ig moving in any path, straight or eurved, and let 5 be the
number of space units passed over in ¢ seconds. Then s may
be taken as the dependent variable, and ¢ as the independent
variable. The motion of P iz said to be uniform when equal
spaces are passed over in equal times. The number of space
unitz passed over in one second is called the velocity of P,
The velocity v is thus connected with the space s and the time
t by the formula p?

i
The motion of P is said to be non-uniform when equal spaces
are not passed over in equal times. If #is the number of space
units passed over in ¢ seconds, then the average velocity during

these t seconds is defined as f, If during the time Af the num-
ber of space units As are described, then the average velocvity
during the time Af is E. ],:The actual velocity of P at any in-
stant of time ¢ is the limit which the average velocity
approaches as At is made to approach zero as a limit. |
lm As _ ds

—

TA=0a7 T @t
is the actual veloeity of P at the time denoted by £ It is

evidently the number of space units that would be passed over
08

Thus
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in the next second if the velocity remained uniform from the
time ¢ to the time ¢ 4 1.

It may be observed that if the more general term, “rate
of change,” is substituted for the word “ velocity,” the above
statements will apply to any quantity that varies with the
time, whether it be length, volume, strength of current, or any
other funetion of the time. For instance, let the quantity of
an electric current be € at the time ¢, and €' 4 AC at the time
t + Af. Then the average vate of change of current in the in-

terval Afis %?; this iz the average increase in eurrent-units
per second. And the actual rate of change at the-instant de-
noted by ¢ is im AC_dC
At=0 A7 dt
This is the number of currentunits that would be gained in

the next second if the rate of gain were uniform from the time
¢ to the time ¢+ 1. Since, hy Art. 8,

dy _dy dx

de  dt dt’

hence % measures the ratio of the rates of change of y and
of = :
Tt follows that the result of differentiating

y=flz) (1)

may be written in either of the forms

W=pan @

dy _ i 2,
dt = Jf'(z) at (3)
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The Jatter form is often convenlent, and may also be obtained
directly from (1) by differentiating both sides with regard to
t. 1t may be read: the rate of change of y is f'(2) times the

rate of change of x.
*  Returning to the illustration of a moving point P, let its

cotrdinates at time ¢ be x and . Then ';—i: measures the rate
of change of the x-coirdinate. _
Since velocity has been defined as the rate at which a point

is moving, the rate g may be called the velocity which the

point P has in the direction of the zaxis, or, more briefly, the
wcomponent of the velocity of P.

It was shown on p. 68 that the actual velocity at any instant
t is equal to the space that would be passed over in a unit of
time, provided the velocity were

Y o~ uniform during that unit. Ae-
cordingly, the rcomponent of

¥ 4 velocity % may be represented

¥

by the distance PA (Fig. 16)

which F* would pass over in the
. direction of the z-axis during a
unit of time if the velocity remained uniform.

Fra. 16

Similarly % iz the g-component of the veloeity of P, and
mway be represented by the distance PB.
The velocity g of P along the curve can be represented by

the distance FC, measured on the tangent line to the eurve at
F. It is evident from the parallelogram of velocities that PCf
is the diagonal of the rectangle PA, PH.
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Since PO = PA* + PH, it follows that
ds\*_ (da\' | fdy\*, 4
(@ -@+G)

Ex. 1. If a point deseribes the straight live 3z + 4y =5, and if
inereases & units per second, find the rates of increass of y and of .

Since y=4%-—4x=
henca 2y - _ Bdx
dt 4 ot
When dx _ k,
eft

it follows t.hat.'%: — 1k, %= VEE + 7 B = 1A

Ex. 2. A point deseribes the parabola y* = 12z in such a way that
when x = 3 the abacissa is increasing at the rate of 2 fi. per second ;
at what rate is y then increasing? Find also the rate of increase of a

Since yi=12pk,

1 il
then RTE A )
¥ ot ]

dy _6dz_ 0z,
dt  ydt 3l

hence when z=3 and % = 2, it follows that % =12

g (8= (5 (5 e 230 .

FEx. 3. A person is walking toward the foot of a tower on a hori-
gontal plane at the rate of & mi. per honr. At what rate is he ap-

proaching the top, which is 60 ft. high, when he is 80 ft. from the
bottom ¥
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Let x be the distance from the foot of the tower ab time 4, and y
the distance from the top at the same time. Then

2t 4 602 = 33,

and :E Eyd—#a
(A=

When = is 80 ft., y is 100 ft.; hence if ’fﬁ i 5 mi. per hour,
'% ig 4 mi. per hour.

i

37. Abbreviated notation for rates. When, as in the above
examples, a time derivative is a factor of each member of an
equation, it 13 usually convenient to write, instead of the

symbols {%", %‘r, the abbreviations dx and dy, for the rates of

change of the variables x and y. Thus the result of differen-

tiating - ¥ =r(@) 1)
may be written in either of the forms
Y _re@), @
A _ iy 82 -
dt fiz) dr’ (3)
dy = f'(z)d. (1)

It is to be observed that the last form is not to be regarded
as derived from equation (2) by separation of the symbeols, dy,

dz; for the derivative &ﬁ has been defined as the reanlt of

x
performing upon % an indiecated operation represented by the
sy mbaol %, and thus the dy and dr of the symbol j_i have
been given no separate meaning. The dy and dz of equation

(4) stand for the rates, or time derivatives, % and ?E OEEUT-
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ring in (%), while the latter equation is itself obtained from
(1) by differentiation with regard to t, by Art. 8.
In case the dependence of y upon x is not indieated by a
functional operation f, equations (3), (4) take the form
dy_dy iz
dt dxdt’
dy=§d:;.

In the abbreviated notation, equation (4) of the last article
is written  (ds)! = (d=)*+ (dy)® or ds’ =d’ +di.

Ex. 1. A pointdeseribing the parabola y* = 2 px is moving at the
time ¢ with a velocity of v ft. per second. Find the rate of increase
of the codrdinates £ and ¥ at the same instant.

Differentiating the given equation with regard to ¢, we oblain

wily = pdx.
But dz, dy also satisfy the relation
idx? + dy® = o,

henee, by solving these simultaneous equations, we obtain

dx = ;I,F_:"I_'-_F v, dy= _y‘l-"%‘%_;':’ #, in feet per second.
Ex. 2. A vertical wheel of radius 10 ft. is making b revolutions per
second abont a fixed axis. Find the horizontal and vertical veloeities
of a point on the circumference situated 30° from the borizontal.

Sinca = 10¢co0s8, y= lsin 8,
then dr = — 10sin @i,  dy = 10 cos Gdf.
But dfl = 10 o = 31416 radians per second,
hence dr = — #14.16 sin # = — 157.08 fL. per second,
and dy = 514.18 cos § = 272,06 ft. per second.

Ex. 3. Trace the changes in the horizontal and vertical velocity
in a complete revolution.
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38. Differentials often substituted for rates. The symbols dz,
dy have been defined above as the rates of change of & and ¥
per second.

Sometimes, however, they may conveniently be allowed to
stand for any two numbers, large or small, that are prppor-
tional to these rates; the equatioms, being homogeneous in
them, will not be affected. It is usual in such cases to speak
of the numbers dz and dy by the more general name of differ-
entials ; they may then be either the rates themselves, or any
two numbers in the same ratio.

This will be especially convenient in problems in which the
time variable is not explicitly mentioned.

39. Theorem of mean value. Let f(z) be a continuous func-
tion of # which has a derivative. It can then be represented
by the ordinates of a curve whose
¥ equation is y = f(z).
H In Fig. 17, let
z= 0N, x4+ h=0R,
f(z)=NH, f(z+h)=RE.
X Then f{x+ k) — f(z) = MK, and

o N R fle+h—flzxy  ME
Faa. 37 Tk T HM

But at some point 8 between H and K the tangent to the
curve is parallel to the secant HK. Since the abscissa of S is
greater than x and less than z+ & it may be represented by
% + 6k, in which 6 is a positive number less than unity. The
slope of the tangent at S is then expressed by f'(x 4 6k), hence

Jle+ -Tﬂ-f}"f{m} =/l + 6n),
' f.

=tan MHK.

from which Sz + by=f{x) + i (z + OR).
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The theorein expressed by this formula is known as the
theorem of mean value,
If in this equation we put

Sl+h)—f(z)=dy, h=dx,

in which & is an arbitrary increment, then the relation between
the increment of the variable and the actual inerement of the
function will be expressed by the eguation

dy = ['(@ + 0dz)dz,

whereas if dy, dr are reparded as differentials (dy not an
actoal but a virtual inerement), then the relation becomes

dy =f"(x) .

This more clearly illustrates that the differential dy is de-
fined as the change that would take place in the funection y,
corresponding to the actual change dx in the independent vari-
able x, provided the rate of change remained constant,

EXERCISES

1. When x increases from 45° to 45° 15, find the increasze of
loge 8in £, assuming that the ratio of the rates of change of the func-
tion and the variable remaings constant throughout the short intarval.

Hera dy = logg e - cot zle = 4343 cot zdr = 4348 dr.
Lat dr = 00473 (the number of radians in 15/).
Then. dy = 0018305,
which is the a..pp.m.timut.e. increment of logyg sin .
But logw sin 45° = — § 1ug£ = — 150515,
therefore log, gin 457 153" = — 148620,

2, Show that log,z increases more slowly than z when
z = log,, ¢, that iz, r > 04513,
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3. A man is walking at the rate of 5 mi. per hour towards the
foot of a tower 60 ft. high standing on a horizontal plane. At what
rate is the angle of elevation of the top chauging when he is 80 ft from
the foot of the tower?

4. An are light is hung 12 ft. directly above a straight horizontal
walk on which a man 5 [L. in height is walking. How fast is the man's
shadow lengthening when he is walking away from the light at the
rate of 168 ft. per minute ?

5. At what point on the ellipse 16 * + § 3% = 400 does y decrease
at the same rate that © increases ¥

6. A vessel is sailing northwest at the rate of 10 mi. per hour.
At what rate is she making north latitude?

7. In the parabola 3% = 12 z, find the point at which the ordinate
and abscissa are inereasing equally.

8. At what part of the first quadrant does the angle increase twice
as fast as its sine ?

9. Find the rate of change in the area of a square when the side
k ia increasing at a ft. per second.

10. In the function y = 2 #* 4 6, what is the value of x at the point
where y increases 24 times as fast as 7

11. A circular plate of metal expands by heat so that its diam-
eter increases uniformly at the rate of 2 in. per second. At what rate
ia the surface increasing when the diameter is 5 in. ¥

12. What is the value of = at the point at which 2* — 62* + 17z and
¥ — 3 z change at the same rate?

13. Find the points at which the rate of change of the ordinate
y=x'—82%+ 3 x4 5 is equal to the rate of change of the slope of the
tangent to the curve.

14. The relation between s, the space through which a body falls,
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and ¢, the time of falling, is s = 162 Show that the velocity is equal
to 32 2. )

The rate of change of velocity is called aecceleration and iz denoted
by a. do_d

dat e
Show that the acceleration of the falling body is a constant.

Hence

15. A body moves according to the law s = coa (at + ¢).  Show Lhat
ita acceleration is proportional to the space through which it has
moved.

16. If a body is projected upwards in a vacoum with an initial

velocity vy, to whab height will it rise, and what will he the time

of nacent? 3- VK 1L el K meend .-.uc;f:,. L
h L -"'i. "'l:'l.‘.I:-"'I"-'-Ilﬂ'\-nr-l\.'l'l Tiy [

17. A 'l:rmlj is pm]mtad npu.r:u':la with a velocity of o fi. pe;-smuud
After what time will it return?

18. If A ia the area of a circle of radins x, show that the circom-
ferenoe 18 ':f;.%+ Interpret this fact geometrically.

19. A point describing the circle =? 4 »® = 25 passes throngh (3, 4)
with a velocity of 20 ft. per second. Find its component velocities
paralle]l to the axes.

20. Let a point P move with uniform velocity on acircle of radius
a with center 0; let A B be any diameter, and g the orthogonal projec-
tion of I on AB. Find an expression for the velocity of @ in termsa
of the angular velocity of I, and show how this velocity varies during
a revolution of P. The motion of the point @ along AR ir called
harmdnic.

21. A point P moves along the carve y = 2® at the rate of 3 f& per
pecond. At what rate is the angle <, which the tangent to the curve
makes with the zr-axis, increasing when P is passing through the
point (1, 1) ?

e s



CHAPTER VI

DIFFERENTIAL OF AN AREA, ARC, VOLUME, AND
SURFACE OF REVOLUTION

40. Differential of an area. If the codrdinates of F are (x, ¥)

v and those of Q (x + Az, y+ Ay), then

MN=PR= Az, and P§ = R{@=4ay.

s—A@ If the area O.APM is denoted by A,

- o L then A is evidently some funetion

T4 of the abaeissa x; also if area OAQN

x __is denoted by A+ A4 then the

o M N arca MNQP is Ad; it is the incre-
Fig. 18

ment taken by the function A, when
‘ ¢ takes the increment Az. But MNQP lies between the
rectangles ME, MQ; hence

yAr < Ad < (y + Ay)Az,

AA
and E{E{_y-f—.ﬁy.

Therefore, when Az, Ay, A4 all approach zero,

AA _dd_

lim = =
Ax  dx

LS
Hence, if the ordinate and the area are expressed each asa
function of the abscissa, the derivative of the area function
with regard to the abacissa is equal to the ordinate function.
78
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In the notation of differentials we may say: The differentiol
of the area between a curve and the azis of  ia measured by the
product of the ordinate and the differential of .

dA = yiz.

Ex. TIf the area included between a curve, the axis of x, and the

ordinate whose absoisaa is z, i given by the equation

A ==,
find the equation of the curve.

Hera y:i—-‘izﬂ;ﬂ.

41. Differential of an arc. A segment of a straight line is
measured by applying the unit of measure .H;mﬂﬂuaireljr to the
segment to be measured. In the case of a curve this is gen-
erally impossible. We define the length of a given curve
between two points wpon it as the limit of the sum of the
chords joining points on the curve when the lengths of these
chords approach the limit zero. We shall then assume that the
ratio of the are to the chord approaches the limit 1 when the
length of the chord approaches the limit zero. [Compare § 19.]

Let PQ be two points on the curve (Fig. 19); let =, y be the
codrdinates of P; o+ Az, v+ Ay '
those of §; # the length of the arc
AP; 2+ As that of the are AQ. E,
Draw the ordinates MP, NQ; and
draw PR parallel to M¥. Then

PR =Ax, RQ = Ay; arc PQ=As. al - X
Henee chord PQ=~/(ax¥4 (ay), Fia. 19

Py \/—ﬁy

az = N1 +(ﬁ.—m)

As_ As PQ_ As AW
Therefora M-PQ Az = PG 1—}—(&3)
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Taking the limit of both members as Ax approaches zero

and putting .1:|: - 0 ?___':E =1, we obtain

Similarly, ds _ N1 +G;)g @

Moreover, from Art. 36,

(o) =) *(a) ®

or in the differential notation,

gl

:E*

ds* = da® + i @)
42. Trigonometric meaning of i ::;
Since 2= ;E P cos rPQ- 7%,
it follows by taking the limit that
= cos g,

wherein &, being the limit of the angle RPg, is the angle
which the tangent at the point (z, ¥) makes with the zaxia.

Bimilarly, —y— gin ¢ ; whenece 45 _ geo : E!.E = €3¢ .
¥ 3 ir P dy

v By using the idea of a rate or

dy differential, all these relations may
a be conveniently exhibited by Fig.

d= 20.
These results may also be de-

L yived from equations (1), (2) of
Art. 41, by putting ji=tam b
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43. Differential of the volume of a solid of revolution. Let
the curve APQ (Fig. 21) revolve about the r-axis, and thus
generate a  surface of revo-

lution ; let ¥ be the volume in- Y
cluded between this surface, ﬂ
the plane generated by the R
fixed ordinate at A, and the 7T A
plane generated by any ordinate X
MP u M N

Fuz, 21

Let AV be the volume gener-
ated by the area PMN(Q. Then AV lies between the vol-
umes of the cylinders generated by the rectangles PMNE
and SMNQ; that is,

AT < AV < = (¥ + Ay)"An.
Dividing by Az amd taking limits, we obtain
d V"
R

44 Differential of a surface of revolution. Tet S be the area
of the surface generated by the are AP (Fig. 22), and A8 that
generated by the arc F¢), whose length is As,

Draw P, QP parallel to OX

¥ P and equal in length to the are 7).
‘ - . Then it may be assumed as an
= ¢ axiom that the area generated by
P{} lies between the areas gen-
X s
- TR erated by PQ and P'Q; ie

Fio. 2 ayds < AN < 2w (y + Ay) As.
EL. CcaLc,—0
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Inviding by As and passing to the limit,

as_,

ds ¥ (1
as _dS ds _ iy o
dr  ds dr ”’\'IIJ“( ) . @

dy = 2’1:’3"\!1 C;;) d,

45. Differential of arc in polar coérdinates. Let p, @ be the
coirdinates of P (Fig. 23); p+ Ap, 0 4+ A8 those of ¢; s the
length of the are K P; As that of the

are G draw PM perpendicular to
. Then

PM = p sin A8,
MQ=00Q—0OM=p+ Ap —pcos A
=pll —cos Af) 4 Ap
Fra. 23 =2 pain® | A+ Ap.
Hence P@Q*=(psin &ﬁ}’+{2pﬂiu’ﬂ-¢ﬂ'+ﬁp]’.

(E}E ;F(“i: 5 S (,. sin § A8 - %Li‘g + :;)

Replacing the first member by Lﬂﬂ M) passing to the

limit when Af=0, and putting lun 1:3 =1, Iim 51:3&3 =1,
lim 310240 1, we obtain

L Af " ﬂ
(@) ==+ (@)

ihat is, | 3_;=\‘F,+ (_'%)s
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In the rate or differential notation this formula may be
conveniently written s = dg* + p'df?

46. Differential of area in polar codrdinates. T.et A be the
area of ONP (Fig. 24) measured from a fixed radius vector

(I to any other radius vec-
tor ‘OF; let AA be the area of :

OFPQ. Draw ares PM, QN, )v

with O as a center. Then the

area POQ lies between the

areas of the sectors OFPM and -~ I
ONGQ; ie Fra. 24

'!- pgn'lﬂ <Al :'gl:]l:l + ﬁp}!ﬁﬂ,
Dividing by Af and passing to the limit, when A# =10, we
obtain
Hence, in the differential notation we may write the formula
dA =1 p*df.

EXERCISES ON CHAPTER VI

1. In the parabola y?=4mhnd'ﬂr "ﬂ ds V.
iz

ﬂ'_r. dx
2. Find il and s for the circle z* 4 »* = a?
dx iy
3. Find n’ﬁ for the curve ¥ cosxr = 1.
F

4. Find the z-derivative of the volume of the cone generated by
revolving the line y = ar about the axis of =.

5. Find the r-derivative of the volume of the ellipsoid of revolu-

. . 1 4 .
tion, formed by revolving °. + %": = 1 about ils major axis
Lrs
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6. Int-h&t:unep:u'ﬁnd%

7. Given p=a(l + coa #); find L_L-;

8. In pfcos2 6, ﬂndj—;.

9. The parabolie are y* = 8 £ measured from the vertex toa variable

poiut F = (z, ) is revolving about the z-axis. If ' moves along the

- w“/ cupve at the rate of 2 in. per second, what is the rate of increase
of the surface of revolution when P is passing through the point

(4, 6)7 What is the rate of increase of the volume of revolution ?

10. The radius vector to the cardioid p = 2 (1 — cos @) is rotating
about the origin with an angular velocity of 18° per second. Find
the rate at which the extremity P of the radios vector is moving along
the curve, taking the inch as unit of length. At what points of the
curve will P be moving fastest? slowest? Find the velocities at

these points.



CHAPTER VII

APPLICATIONS TQ CURVE TRACING

47. Equation of tangent and normal. The funetion y=jf{x)
may be represented by a plane eurve. It will now be shown
how to obtain several of the properties of this curve by means
of the principles already established. The tangent line at a
point (2, i) on the curve passes through the point and has

the slope S'E‘-, the symbol meaning that the cobrdinates z,, 3

are subetituted in the first derivative after the differentiation
has been performed. Its equation may be written in the form

y—ph="0 () 1)
T

The normal to the curve at the point (z, 1) is the straight
line through this point, perpendicular to the tangent. Since
the slope of the normal is the negative reciprocal of that of
the tangent, its equation may be written in the form

i

— a4 Ly —1) =0 2

T — &+ -iml{;y ) (2)
4B. Length of tangent, normal, subtangent, subnormal. The

segments of the tangent and normal intercepted between the

point of tangency and the axis OX are called, respectively,

the fangent length and the normal length, and their projections

on 0OX are called the subtangent and the submormal.
EE. §
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Y ¥
- o
A
0 x O T X
: NVYM r T ™~
1
Fia. &a Fra. 25 &

Thus, in Fig. 25, @, b let the tangent and normal to the curve PC
at P meet the axis OX in 7 and N, and let MP be the ordi-

nate of . Then pp g the tangent length,
PN the normal length,
TM the subtangent,
MN the subnormal.

These will be denoted, respectively, by ¢, n, =, v

Let the angle X T4 be denoted by ¢, and write t-am#m:g_‘.
1
Then Bh Y =VRTER n=VIT
1'131 T yl
14y
h et YN+
cnce = du’ v g o :
i, dx,

dayF

el
“_"r”t'l‘{'(d:]

The subtangent is measured from the intersection of the
tangent to the foot of the ordinate; it is therefore positive
when the foot of the ordinate is to the right of the intersec-
tion of tangent. The subnormal is measured from the foot
of the ordinate to the intersection of normal, and is positive
when the normal cuts OX to the right of the foot of the ordi-
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nate. Both are therefore positive or negative, according as
¢ is acute or obtuse.

The expressions for r, » may be obtained also by finding
from equations (1), (2), Art. 47, the intercepts made by the
tangent and normal on the axis OX. The intercept of the
tangent subtracted from =z, gives 7, and = subtracted from
the intercept of the mormal gives .

Ex. Find the intarc:pt-s made npon the axes by the tangent at the
point (x, ¥,) on the curve vz + vy = Va, and show that their sum
ia constant.

" Differentiating the equation of the carve, we obtain

1o 1 vy,
2y 2yde

Hence the equation of the tangent is
—
¥ == \2E - )
1

The z intercept is x, + Vz,y, and the y intercept is y, + vV,
hence their sum ia (Vr + Vi)i=a

If a series of lines is drawn such that the sum of the intercepts of
each is the same constant, account being taken of the signs, the form
of the parabola to which they are all tangent can be readily seen.

EXERCISES
1. Find the equations of the tangent and the normal to the ellipse

L]

:%: e %: = 1 at the point {r,, ). Compare the process with that em-

ployed in analytic geometry to obtain the same results.
2. Find the equation of the tangent to the eurve

. Az +y)=a¥zr —y)
at the origin.
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3. Find the equations of the tangent and normal at the point
(1, 4) on the curve 3* = B 22

4. Find the equations of the tangent and normal to each of the
following curves at the point indicated :
_ Ba
@Y =rars
(B) ¥ =2 — £ at the pointz for which = 1.
(y) y*=4 px, at the point (p, 2 p).

5. Find the value of the subtangent of y*= 3 2% — 12 at £ — 4.
Compare the process with that given in analytic geometry.

, ab the point for which x = 2a.

6. Find the length of the tangent to the enrve 32 =2 z at z = 8.

7. Find the points at which the tangent is parallel to the axis
of r, and at which if is perpendicular to that axis for each of the fol-
lowing curves : () _ﬂ:t-‘a-l'ﬂﬁl} + by = 1.

By =27

@
(y) ¥*=2*2a— ).
8. Find the condition that the conies
art 4+ hf=1, a'z? + ¥yt = 1
shall cut at right angles.

9. Find theangle at which 2 = y® + 5 interseets 8 r? + 18 3% = 144,
Cowpare with Ex. 8.

10. Show that in the equilateral hyperbola 2 zy = a? the area of
the triangle formed by a variable tangent and the codrdinate axes is
constant and equal to a%

11. At what angle does y? = 8 » intersect 4 27 4+ 2 37 =48}
12. Determine the subnormal fo the corve y* = a*'z.
13. Find the valoes of x for which the tangent to the curve

¥ =(x— a)*(x - ¢c)
13 parallel to the axis of =.
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14. Show that the subtangent of the hyperbola ry = a® is equal to
the abscissa of the point of tangency, but opposite in sign.

15. Prove that the parabola * = 4 ex has a constant subnormal.

16. Show analytically that in the curve 22 + 3® = a® the length of
the normal is constant.

17. Show that in the tractrix, the length of the tangent i comn-
stant, the equialion of the tractrix being

r=pd— §=+E log E—¥e — ¥ et — yt,
= r.:+"-"'|:==—?
a

18. Show that the exponential curve y = ae® has a constant sub-
tangent.

19. Find the point on the parabola y® =4 prat which the angle
between the tangent and the line joining the point to the vertex shall
be a maximum.

49, Concavity upward and downward. A curve is said to be
concave downward in the vicinity of a point P when, for a
finite distance on each side of P, the curve is situated below

E
Fic. 2

the tangent drawn at that point, as in the ares AD, FH. It

is concave wpward when the curve lies above the tangent, as
in the ares DF, HK. |
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By drawing successive tangents to the curve, as in the fig-
ure, we easily see that if the point of contact advances to the
right, the tangent swings in the positive direction of rotation
when the coneavity is upward, and in the negative direction
when the concavity is downward. Hence upward concavity
may be called a positive bending of the curve, and downward
concavity, a negative bending.

A point at which the direction of bending changes con-
tinuously from positive to negative, or vice versa, as at F or
at I, is called a point of inflexion, and the tangent at such a
point is called a stationary tangent.

The points of the curve that are situated just before and just
after the point of inflexion are thus on opposite sides of the
stationary tangent, and hence the tangent crosses the curve, as
at I, F, H.

30. Algebraic test for positive and negative bending. TLet the
inelination of the tangent line, measured from the positive end
of the z-axis toward the forward end of the tangent, be dencted
by ¢. Then ¢ is an increasing or decreasing function of the
abacissa according as the bending is positive or negative; for
instance, in the arc Af), the angle ¢ diminishes from 4+ T

through zero to —E; in the are DF, ¢ increases from —E

through zero to %; in the are FH, ¢ decreases from 4 1E't,]u'unugh
zero to — %; and in the are JK, ¢ increases from —E through
zero to 4 2,

+i

At a point of inflexion ¢ bas evidently a turning value which
i3 a maximum or & minimum, aceording as the concavity changes
from upward to downward, or conversely.
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Thus in Fig. 26, ¢ is a maximum at F, and a minimum at [
and at M.

Instead of recording the variation of the angle ¢, it is gen-
erally convenient to consider the variation of the slope, tan ¢,
which is easily expressed as a function of z by the equation

o,
tan ¢ = d%'

Since tan ¢ is always an increasing funection of ¢, it follows
that the slope function g-—:_ i3 an inereasing or a decreasing

function of =, according as the conecavity is upward or down-
ward, and hence that its z-derivative i1s positive or negative.

Thus the bending of the eurve is in the positive or negative
direction of rotation, according as the function f—:; i8 positive
or negative. '

At a point of inflexion the slope 3—1—: is & maximum or a

'y

minimum, and therefore its derivative ) changes sign from

positive to negative or from negative to positive. This latter
condition is evidently both necessary and sufficient in order that
the point (z, ¥) may be a point of inflexion on the given curve.

Hence, the cotirdinates of the points of inflexion on the curve

y =)
may be found by solving the equations
‘ S@)=0, f'(z)=2,
and then testing whether f"(x) changes its sign as x passes

through the critical values thus obtained. To any eritical
value a that satisfies the test corresponds the point of inflexiom

(, fla)).
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Ex. 1. For the curve  y= (7 — 12

find the points of inflexion, amdl show the mode of variation of the
slope and of the ordinate.

Here 5-3. = "L‘H:.'!-“i — 1}, l
oy _ a_
=A@ -1,
hence the eritical valuea for inflexions are z = 4 1—_ « It will be seen

Vi
that as x increases throngh -%, the second derivative changes sign
]

from positive to negative, hence there i an infexion at which
the concavity changes from upward to downward. Similarly, at

=+ % the coneavity changes from downward to upward. The
i

following numerical table will help to show the mode of variation of
the ordinate and of the slope, and the direction of bending.
As z increases from — @ to

du oy 1 .. -
r ¥ T at - the bending is positive, and
_“: + ;:" - :1 + the glope continually increases from
— 3 + . & .
_1 0 0 M — o through zero to a maximuom
1 + 4 B 0 value ﬂ, which is the slope of
0 1 0 _ the stationary tangent drawn atb
1 4 8 i 1 4
+— | 32 —_— 0 the I_]ﬂlllt(——_,—}.
Vi | o 33 v o
1 i 0 + As r continues to increase from
+® + T t 1 Lo + l_, the bending Iz neg-
e Vil
ative, and the slope decreases from + if_ through zero to o minimum
a3
value — E, which is the slope of the stationary tangent at

3vE
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93

Finally, as x increases from + % to + ez, the bending is positive
3

and the slope increases from the
8

ava
The values t=-1, 0, + 1, at

which the slope passes through zero,

value —

through zero to 4 .

correspond to turnivg values of the
ordimate.

Ex. 2. Examine for inflexions

the curve
4+ 4 z{y-—?)*.

¥

) X

—

Fua. 28

¥

\

l o

Fra. 27

In this case

y=2+(+ 1},
dy _ 1 -1
3T 5

ir.
dx?

Hence, at the point { — 4,2), Z_E

2 -§
—ﬁ{_'.t-l‘ 1) .

and:%_;are infinite. When z< —4,

% is positive, and when x> — 4, % is negative.

Thus there is a point of inflexion at {—4, 2), at which the slope
is infinite, and the bending changes from the positive to the negative

direction.
Ex. 3. Consider the curve
y= =t -

ty _ Ay _ qa 41
f.['::_ixt -r.['i:"_'L'Ii

S~

o_— x

At (0,0), % i z6r0, but the
-Iri'-!ﬂ'

' " Er
earve haa no inflexion, for -
L

never changes sign (Fig. 204,

Fra. 29
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91. Concavity and convexity toward the axis. A curve is
said to be convex or concave toward a line, in the vicinity of
a given point on the eurve, according as the tangent at the
point does or does not lie between the curve and the line, for
a finite distance on each side of the point of contact.

uﬁ

Fro. $a Fpa 30

First, let the curve be convex toward the z-axis, as in the left-
hand figure. Then if y is positive, the bending is positive

and j% is positive ; but if ¥ is negative, the bending is nega-

tive and &y i8 negative, Hence in either case the produet
Iy dlx?

yf—- is positive.
ar P

Next, let the curve be coneave toward the z-axis, as in the
right-hand figure. Then if y is positive, the bending 1s nega-
tive and % 1z negative; but 1f y is negative, the bending is

positive and 33 is positive. Thus in either case the product

y@ is negative. Hence:

dx®
1w the wicinity of a given point (x, y) the enrve is conver or

concave o the z-axis, according as the product y % @ posifive or
megative.
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EXERCISES
1. Examine the curve y =2 — 3(z — E}i for points of inflexion.
2. Show that the curve a'y = z{a? — z%) has a poiot of inflexion
al the origin.

3. Find the points of inflexion on the curve y = — %

i, Fraal

4. In the eurve ay = z#, prove that the origin is a point of in-
flexion if m and n are positive odd iutegers.

5. Show that the curve y=¢ Eiﬂ; has an iufinite number of
points of inflexion lying on a straight line.

6. Show that the curve y(z®-+ a®) = x has three points of inflexion
lying on & straight line; find the equation of the line.

7. If y? = f(x) is the equation of a curve, prove that the abscissas
of its points of inflexion satisfy the equation

L=} =21 (=) - " (%)
8. Draw the part of the curve a% ="§ — azx? + 2 4% near its point
of inflexion, and find the equation of the stationary tangent.
9. Show that the curve y = 2% has no points of inflexion, n being
any positive integer. Sketch the curve.

10. Show that the earve (1 + x¥)y =1 — = haa three points of in-
flexion, and that they lie in a straight line.

52. Hyperbolic and parabolic branches. When & curve has a
branch extending to infinity, the tangents drawn at successive
points of this branch may tend to coincide with a definite fixed
line, as in the familiar case of the hyperbola. On the other
hand, the successive tangents may move farther and farther out
of the field, as in the case of the parabola. These two kinds
of infinite branches may be called hyperbolic and parabolic.

The character of each of the infinite branches of a curve can
always be determined when the equation of the curve is known.
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33. Definition of a rectilinear asymptote. If the tanpents at
successive points of a curve approach a fixed straight line as
a limiting position when the point of contaet moves farther
and farther along any infinite branch of the given curve, then
the fixed line is called an asymptote of the curve. :

This definition may be stated more briefly but less precisely
as follows: An asymptote to a curve is a tanpent whose point
of contact is at infinity, but which is not itself entirely at
infinity.

DETERMINATION OF ASYMPTOTES

54. Method of limiting intercepts. The equation of the tan-

gent at any point (z, ¥,) being

¥—mn= g'—ii{.'-“—fﬁ}:

the intercepts made by this line on the cobirdinate axes are

h=th -5 o
da,’

7y = 3 — gy 22 @
el

Suppose the curve has a branch on which z = % and y = .
Then from (1} the limits can be found to which the intercepis
Ty, Yy approach as the cobrdinates =, ¥, of the point of contact
tend to become infinite. If these limits are denoted by a, b,
the equation of the corresponding asymptote is

TV _1.
-:1.+Er 1

Except in special cases this method is usually too compli-
cated to be of practical use in determining the equations
of the asymptotes of a given curve. There are two other
methods, which together will always suffice to determine the
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asymptotes of curves whose equations involve only algebraie
functions. These may be called the methods of inspection
and of substitution.

65. Method of inspection. Infinite ordinates, asymptotes parallel
to axes. When an algebraic equation in two cobrdinates » and
¥ is rationalized, cleared of fractions, and arranged according
to powers of one of the cofrdinates, say y, it takes the form

ay" +(bx + Yyt 4 (da* + e+ YT+ e oy + =0,
in which %, is a polynomial of the degree n in terms of the
other codrdinate 2, and w,__, is of degree n — 1.

When any value is given to 2, the equation determines n
values for y. )

Let it be required to find for what value of = the correspond-
ing ordinate ¥ has an infinite value.

For this purpose the following theorem from algebra will
be recalled :

Given an algebraic equation of degree =,

ay + By e =0

if ®=10, one root y becomes infinite; if =10 and §=0, two
roots ¥ become infinite; and in general if the coefficients of
each of the k& highest powers of y vanish, the equation will
have k infinite roots.

Suppose at first that the term in *is present; in other
words, that the coefficient a is not zero. Then, when auy
finite value is given to =, all of the n values of y are finite,
and there are accordingly no infinite ordinates for finite
values of the abscissa.

Next suppose that a is zero, and &, ¢, not zero. In this
case one value of y is infinite for every finite value of =, and

EL. CaLe,—T
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hence the ecurve passes throngh the point at infinity on the
y axis.
There is one particular value of =, namely, z= _TE, for

which an additional root of the equation in y becomes infinite,
For, when = has this value, the coefficient ba 4 ¢ of the high-
est power of ¥ remaining in the equation vanishes.

Geometrically, every line parallel to the y axis has one
point of intersection with the eurve at infinity, but the line
br+4e¢=0 has two points of intersection with the curve at
infinity. A line having two coineident points of intersection
with a curve is o tangent to the eurve; and when the coinci-
dent points are at infinity, but the line itself not altogether at
infinity, the tangent 1s an asymptote. Henece, an ordinate that
becomes infinite for a definite value of x is an asymptote.

Again, if not only a, but also & and ¢ are zero, there are
two values of x that make y infinite; namely, those values
of = that make da'4er+47=0. The equations of the
infinite ordinates are found by factoring this last equation;
and 80 on.

Similarly, by arranging the equation of the ecurve according
to powers of » we can easily find what values of y give an
infinite value to =

Ex. 1. In the carve
Q¥4 2y 4yt =a?— -5,

find the equation of the infinite ordinate, and determine the finite
point in which this line meets the curve.
This is a cubie equation in which the coeficlent of ¥® is zero.
Arranged in powers of y it is '

¥y z+ 1) +yr* +{22° — 2% + §) =0.
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When r = — 1, the equation for y becomes
R - yg +¥+ 2= '}l
the two roota of which are y ==, y= — 2; hence the equation of
the infinite ordinate is x4+ 1 =0. The infinite ordinate meets the
curve again in the finite point {1, — 2).

Since the term in 2 iz present, there are no infinite values of =
for finite values of y.

Ex. 2. Show that the lines r = a, and y = (} are asymptotes to the
eurve alz = g(z — a)? {Fig. 31).

Fig. i1

Ex. 3. Find the asymptotes of the curve 3y — a) + xy® = a®

56. Method of substitution. Oblique asymptotes. The as-
yvmptotes that are not parallel to either axis can be found by
the method of substitution, which is applicable to all algebraie
curves, and is of espeeial value when the equation is given in

the implieit form
Jiz, y}=0. (1)

Consider the straight line
i = e 4+ bj I:g:}
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and let it be required to determine m and & so that this line
shall be an asymptote to the curve fx, ) =10.

Since an asymptote is the limiting position of a line that’
meets the curve in two points that tend to coincide at infinity,
then, by making (1) and (2) simultaneous, the resunlting equa-
tion in =, '

Sz, mz4b) =0,

is to have two of its roots infinite. This requires that the
coefficients of the two highest powers of z shall vamish.
These coefficients, equated to zero, furmish two equations
from which the required values of m and b can be determined.
These values, substituted in (2), will give the equation of an

asym ptote.

Ex. 4. Find the asymptotes to the curve y* = x%(2a — ).

In the first place, there are evidently no asympiotes parallel to
either of the cotrdinate axes. To determine the oblique asymptotes,
make the equation of the curve simultaneous with y = mx + b, and

eliminate y. Then
(ml‘-}b}*:: 2a-—1x),

or, arranged in powers of z,

{1+ m"z? + (3 m% — 2a)z? + 3 ¥mx 4+ 6 =1

Leat mP4+1=0 and 8mWBb—2a=10
Then _ m=—l,b=?§;
hence =—1-‘+2?'[I

is the equation of an asymptote.

The third intersection of this line with the given curve is found

from the equation 3 mbtz 4+ b =0, whence xr = ET“'
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¥

Fra, 32

This ias the only oblique asymptote, as the other roota of the equation
for m are imaginary.

Ex. 5. Find the asymptotes to the curve y(a? + 23} = a*(a — ).

L]

I
Fra. 23

Hére the line y =0 is a horizontal asymptote by Art. 65. To find
the oblique asymptotes, put y = mzx + b

Then (mz + b)(a® + 2%) = a¥{a — 1),
.. mad 4 b 4 (mat + a?)x + (a% — a®) =03
henee m =10, b=10, for an asymplote.

Thus the only asymptote is the line y = 0 already found.
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57. Number of asymptotes. The illustrations of the last
article show that if all the terms are present in the general
equation of an uth degree curve, then the equation for deter-
mining m is of the nth degree and there are accordingly =
values of m, real or imaginary. The equation for finding & is
usually of the first degree, but for certain eurves one or more
values of m may cause the coefficients of »* and »*-' hoth to
vanisl, irrespective of b. In such cases any line whose equa-
tion is of the form ¥y =m,x 4 ¢ will have two points at infinity
on the eurve independent of ¢; but by eqnating the coefficient
of 2% to zero, two values of b can be found such that the re-
sulting lines have three points at infinity in common with the
curve. These two lines are parallel; and it will be seen that
in each ecase in which this happens the equation defining m
has a double root, so that the total number of asymptotes is
not increased. Henee the total number of asymptotes, real
and imaginary, 18 in general equal to the degree of the equation
of the eurve, :

This number must be reduced whenever a eurve has a para-
bolie branch, since in this case a value of m which makes the
coefficient of 2* vanish does not correspond to any finite value
of b )

Ex. 6. Find the asymptotes of the curve (z =y =2x. The
equation in m is (m = 1)* = 0. The coefficient of «* vanishes identi-
cally when m = 1; that of x is 3(m — 1}4? -~ 2 which cannot be made
to vanish for any finite value of & when m = 1. The curve has no
asymptotes.

Ex. 7. Find ibe asymptotes of the curve

(@ —1)@ -
¥= —3

and trace the curve. (Fig.34.)
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EXERCISES

Find the asymploles of each of the following curves:

1. y(n? — =021 L ek

g _x —a)(x—-in)
- ! — D ax

Z ¥
3. | aiyt = 1.1!(151—3’}.
'!1.?':-!1 +mg‘
5. ¥ = a%(a — 2).

6 y{r—1)=a%

7.

(z+ a)y® =(y + b)s2

B =24z +7

9. zy? 4+ 2% = ol

10.

11.

12.

13.

14.

(2% + 3 a¥) = .5,

2 — Jacy + 0 = 0.
4y =al

z! —I!y“-i--u’;.’ + M =10

rd — yb = atey.

15, 4 2afy — xp? — 230 + 437+ 2y + y = L.
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POLAR COURDINATES

58. When the equation of a curve is expressed in polar
cotrdinates, the veectorial angle # is usually regarded as the
independent variable. To determine .the dirvection of the
curve at any point, it is most convenient to make use of the
angle between the tangent and the radius vector to the point
of tangency.

Let P, ) be two points on the
curve (Fig. 35). Join P, §) with
the pole 0, and drop a perpendic-
ular PM from P on (. Let p,
8 be the cobrdinates of P; p 4 Ap,
#+ a8 those of @. Then the angle
POQ = Af; PM = psin Af; and
MQ=00Q—O0OM=p+Ap—p cos Af.

Hence - tan MQP = p sin A8 .
or p+ Ap — peos Af

When @ movea to coincidenee with F, the angle MQP
approaches as a limit the angle between the radius vector
and the tangent line at the point . This angle will be
designated by 4.

Thus tan = , 00 p sin A8 .
: d 80=0 "4 Ap — pcos A
But p{l — cos Af) =2 p sin® | Af,

p sin Af
Af

lim
hence tan ¢ =, 5 . .
=" . sin } A | Ap

Ag . B o a7
S S VU R
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lim sin 1 Af

Binee 4 . g 1 A6 = 1, the preceding equation reduces to
df
tan _.——
v dp dp (%)

df

Ex. 1. A point deseribes a cirele of radivs p.
Prove that at any instant the are velocity is p times
the angle veloeity,

is, idx i

&t Par

Fra. 36

Ex. 2. When a point describes a given
curve, prove thatat any instant the velocity

at % has a radius component %‘E" and a com-

ponent perpendicular to the radins veetor

p:;—f,, and hence that

40 sing e o ey o8
Fra. 3T ﬂn-aglr_dn,smgtr_pds,l.au¢;-_pdﬂ.l,
This furnishes a dynamical proof of equation (3).
dy Li)
9. Relation between -~ and Pdp If

the initial line is taken as the axis of =,
the tangent line at P makes an angle ¢
with this line.

Hence 04 ¢=4d;

i.6. O+ tan™! (p%:) = tan—! (% .

60. Length of tangent, normal, polar subtangent, and polar sub-
normal. The portions of the tangent and normal intercepted
between the point of tangeney P and the line throngh the pole
perpendicular to the radins vector OPF, are called the polor
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tangent length and the poler normal length ; their projections on
this perpendicular are called the polar subfangent and polar
subormal,

g

M N
Fig. 30 a ’ Fra. 3 b

Thus, let the tangent and normal at F* (Rigs. 30 a, b) meet the
perpendicular to OF in the points ¥ and M. , Then
PN is the polar tangent length,
PM ig the polar normal length,
()N is the polar subtangent,
OM is the polar subnormal.

They are all seen to be independent of the direction of the
initial line. The lengths of these lines will now be determined.

Sinee PN = OF - gec GFN_,: seC i = py [p (riﬂ) +1

g dpy*
PN +(dﬂ)'

hence  polar tangent length = pjﬁv’p=+(%)r.
: p

J'l.gﬂ.'i.fl,. ﬂN= OF tan OFPN= p fan ||!|| — Fi %,

hence polar subtangent = ”j:-
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PM = OP- csc OPN=pesc § = \J.; + (:if_.r;)',

hence polar normal length =\(p“+(.%5 g

OM = OP ot GPN:ﬂﬁ,
henee polar subnormal = c%il'

The signs of the polar tangent length and polar normal
length are ambiguous on account of the radical. The diree-

tion of the sublangent is determined by the sign of Fﬂg‘f,*

When 3{ is positive, the distance ON should be measured to

the right, and when negative, to the left of an observer placed

at O and looking along OF; for when # increases with

By j_ﬂ is positive (Art. 28), and ¢ is an acute angle (as in
[

Fig. 39 b); when # decreases as p increases, g_i is negative,

and  is obtuse (Fig. 39 a).

EXERCISES
1. In the curve p = a sin 8, find .

2. In the spiral of Archimedes p = af, show that tan ¢ = § and
find the polar subtangent, polar normal, and polar subnormal. Trace
the curve.

3. Find for the curve p®=a%cos2 & the values of all the expres-
sions treated in this article.

4. Show that in the curve p@ = o the polar subtangent is of con-
stant length. Trace the curve.

5. In the curve p=a(l — coa ), find ¢ and the polar subtangent.
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6. Show that in the curve p =5 - e?*te the tangent makes a con-
stant angle & with the radius vector. For this reason, this curve is
called the equiangular spiral.

7. Find the angle of intersection of the curves
p=a{l+ cos @), p= {1 — cos &).

8. In the parabola p = a am:'g., ghow Lhat ¢ + = .

EXERCISES ON CHAPTER VIl

Trace the following curves. Find asymptotes, intervals of in-
ereasing and deereasing ordinate and direction of bending, as well as
intercepts on the axes.

- y=2' 422 -T2 4 L 5 =4

1

2 =242z Tzr+l - 6 ay?=z1*— b
3 g = (= 1) 7. o — gt =2z,
4 ztpi=1, :

In the following curves find W, determine whether p can become
infinite, and obtain the (angular) intervals of increasing and decreas-

ing p.
B. p=acoa?fl 10. p=a(l - cos#).

9, F=uginﬂﬂ, Al. p=aa&|:9§.



CHAPTER VIII

DIFFERENTIATION OF FUNCTIONS OF TWO VARIABLES

Thus far only funetions of a single variable have been con-
sidered. The present chapter will be devoted to the study of
functions of two independent variables =, y. They will be
represented by the symbol

2 =.ﬂ“"‘l Y-
" If the simultaneouns values of the three variables =, y, # are
represented as the rectangular cobrdinates of a point in space,
the locus of all such points is a surface having the eguation

z=f(z, ).

61. Definition of continuity. A function 2z of z and y,
z = f{z, y), is said to be continuous in the vicinity of any point
(a1, &) when f({a, &) is real, finite, and determinate, and such

that 0 flat By b+E) = fla, b),
k=10
however k and k approach zero.

When a pair of values a, b exists at which any one of these
properties does not hold, the function is said to be discontinu-
ous at the point {a, b).

Eg., let z= E:—g

When r=10, then z = — 1 for every value of y; when y =0 then
z = + 1 for every value Inf . In general, if y = ma=,

z_—l-'-_m

l—-m
1049
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and z may be made to have any value whatever at (0, 0) by giving an
appropriate value Lo me. ’

Geometrically speaking, when the point (z, y) moves up o (G, 1),
the limiting value of the ordinate z depends upon the direction of
approach.

62. Partial differentiation. If in the function
=1z, ¥)
a fixed value y, is given to y, then
2= [z, 1)

is a function of « only, and the rate of change in z caused by &
change in z is expressed by

iz
dz = T, (1)
in which d_[;: is obtained on the supposition that ¥ is constant.

To indicate this fact without the qualifying verbal state-
ment, equation (1) will be written in the form

dz
lz="22dz 2
dz=2" (2)

The symbol % represents the result obtained by differentiat-

ing z with regard to z, the variable y being treated as a con-
stant; it is called the partial derivative of 2 with regard to x.

From the definition of differentiation, Art. 6, the partial
derivative is the result of the indicated operation

dz _ lim f(x+ Az, ¥) — A=, ¥)
dr Ax =10 Ar _

Similarly, the symhbol ? represents the result obtained by
¥

differentiating 2 with regard to y, the variable = being treated
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as a constant; it is called the partial derivative of 2 with
regard to .
The partial derivative of z with regard toy is accordingly the
result of the indicated operation
dz _ lim f{z ¥+ ay)—f(x y),
-ﬂy Ay =0 Ay
dz =g—:d=: is called the partial z-differential of z, and

dz= %—;dy is called the partial y-differential of z.

EXERCISES
. du | du
1. Given u=z% + 3253 — 7 zy®, prove that o + y@ =4u.
Ju g

2. Given u= tu:r‘%. show tha.t-.ra + ylﬁ =313
3. u = log (& + &) ; ﬂndj—i-}-g—;-
: du , du
M = H nd =— —_
4 uw=sinzy;fi E.:+ﬂ'y
du , odu

5 u=log (r+ \fa:i-l-_!.ri}? flnli.'rﬂI"'Fﬁ‘

6. u = log (tan = 4 tan y + tan 2); show that

ﬁuﬂxg—:+ﬁllﬂgg—;+sinﬂ'zg—:=ﬂ.
du , gu 2
+ = "I tl_ gl
7. w=log (x + y); show tha ﬂ:a:+ﬂy p
8. ﬁ=—xi-;ahﬂwﬂ1;t:a_“+yﬂ'=u.
=+ ¥ CEE
9. u:(y—z]{z—:]{:n—y:l;Ehnwl.ha.l.g;:+g—;+g;—'=ﬂ~
(i gu | Ju
. H= : bt —4— = =1
10. u o show tha ﬂ1‘+ﬂ'§ (z+ y- 1w
11. u=log (z* + y* + z* — Bxyz) ; show that
gu du du_ 3

dr gy o= =+y+n'
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63. Total differential. If both = and y are allowed to vary
in the function 2= f(x, ), the first question that naturally
arises is with regard to the meaning of the differential of .

Iﬂ-t- 5= ,f{i'ﬁn FJ:
and &+ adz=f(z + Ax, 1+ AY)

be two values of the function corresponding to the two pairs
of values of the variables =, ¥, and @, 4 Ax, ¥, + Ay.
The difference

Az =_|r'[:$| + Az, ¥ +*ﬁy} —-f{-'-ﬂl. )

may be regarded as composed of two parts, the first part being
the increment which z takes when = changes from =, to 2, + Az,
while y remains constant (y=gy,), and the second part being
the additional inecrement which z takes when y changes from
# to 3+ Ay, while # remains constant (z=2=, 4+ Ar). The
increment Az may then be written

Az = f(z + Ax, 3, + Ay) — fz + Az, i)
+ flz + Az, 1) — [z, 1)

=S (@ + Az, 3 + Ay) — f 2+ Az, y1) Ay
Ay
+f{-:l +M: yl]_‘f(:hm}ﬂ:_
Az

From the theorem of mean value, Art. 39, the last equation
may be written

Az = %ﬂrm + 8z, 3,) Az + :—yf{m. + Az, 3 4 645 AY. (3)

It represents the actual inerement Az which the dependent
variable z takes when the independent variables = and y take
the increments Az and Ay.
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To illustrate, let 2 = £(x, y) be the equation of & surface (Fig. 40).
Let A1 = (2, 31), As=(z1 + Az, 1), As= (#1 4+ Ax, ¥y + Ay), so that
AP1=f(zn )y AePe=f(n1 4+ Az, 1), AsPa=F(n + Ax, 31 + Ay),

LPa=f(xn + Ax, 1) — £z, ) = Az,
QePs=f(z1 + Bz, 30 + Ay) — f (51 + Ax, yy) = Asz,
BaPy=f (21 + Ax, 1 + Ay) — F (71, 1) = Baz + Agz = Az,

As the moving point P passes from 5 to
P along the plane curve PPy, the ordinate
takes the increment

= (5o

where the derivative is taken at the inter-
mediate point x =2, + 0Az, y=p (Act. 39). | ____ | 1____
Similarly, as F* passes from P to P; along #

the plane curve P3Py, the ordinate takes the A, /"L
further increment

A ={'5'z Ay,
8 ﬂ'y) Ly Fra. 40

where the derivative is taken at the intermediate point y = 3, + #,Ay,
= + Axr
The sum of these two partial increments gives the total increment Az,

In the preceding equation (3) let Ax, Ay, Az be replaced by
- dr, e dy, e.dz respectively, in which dw, dy are entirely
arbitrary. After removing the common factor ¢, let € approach
zero. The resunlt is

ds = ﬂ_,l"'!:,;;: #) dx + a'ff;; 1) diy. (4)

The differential dz defined by this equation is called the fotal
differential of 2. It is not an actual inerement of z, but the
increment which 2 would take if its change continued uniform
while # changed from =, to #, +dz and y changed from y, to
¥ +dy.

EL. CALC, — 8
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n other words, dz is the rate of change of the variable 2
when the independent variables = wdl y change simultane-
.uualjr at the rates of de, dy respectively.

Equation (4) may be written in the form

iz dz
de=—d — =l x4l
dx x+ﬂydy il

from which the following theorem can be stated ; the tofal dif-
ferential of a funclion of twe variables is equal o the sum of ils
partial differentials taken with regard to fhe separate variables,
or the total rate of change of z is equal to the sum of its par-
tial rates.

The same method can be applied directly to functions of
three or more variables. Thus, if « is a function of the van-

ables =, ¥, z, u= (L ¥ ),
dep deh deh
th dit = —= x4+ — s o
en i I +33.' y+a=dﬂ
Ex.1. (Given z = axry® + bxly + cx? 4 ey,
then dz = (ay? + 2 bry + 3 cx¥de 4 (2 ary + bx* + o)y

Fx. 2. Givenu = tan~1¥, ghow that du = ‘?dy___ﬁr .
o I‘l + #E

Ex. 3. Assuming the characteristic equation of a perfect gas,
pp = R, in which v is volume, p pressure, ¢ alsolate temperature, amil
I a constant, express each of the differentials de, dp, dt, in terms of
the other two.

Ex. 4. A particle moves on the spherical surface «* + y* + 2% = o
in a vertical meridian plane inelined at an angle of 60° to the =r-
plane. 1f the zcomponent of its velocity is ;!—“ feet per second when

T = E, find the y-component and the z-component velocities.

Since z=val — 2 — y%
xilx - wely

then iz = — - R—
‘I."H:t_ri_yi Vit — s — y?




FUNCTIONS OF TWO VARIABLES 115

But since oz = %, and the equation of the given meridian plane is

¥ = x tan G0°, henoe dy = Vi = f‘;’:ﬁ_ and y = % o Therefore

dz = —.E_—‘I‘_ji= —"vfrh in feet per second.
ﬂ-v"ﬁ - ]d "

Ex. 5. A triangle has a base of 10 units and an altitnde of § unita
The base is made to increase at the rate of 2 units and the altitude
to decrease at the eate of | unit. At what rate does the avea change?

Ex. 8. A point on the hyperboloid 22 — %;-:— f—= =1 in the position
ik

=2 y="2 moves go that z increases at the rate of 2 units per sec-
onil, while y decreases at the rate of 3 units per second. Find the
rate of change of =.

Ex. 7. If the area of a rectangle Jd = zy is incorrectly measured

owing to a small error dr, «fy in the length of each side, how close
ia il d = zdy + ydr to the actual error in the area?

64. Total derivative. If in the relation 2= f{=, %), the vari-
ables = y are not independent, but both are functions of
another variable s, the process of the preceding article can
still be applied. The variable z i3 now a funetion of s, and
its derivative as to # may be expressed in the form

dz_ 3z dx | 9z dy

ds  Odrds = dyds

In particular, if ¥ is not independent, but is a function of
x, then 3 may be chosen as » itself, and the preceding equation

becormes de _ 0z  dzdy

de dx dydx

If the functional relation between x and ¥ is given,

= 1:#1:3},

b1
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then the same result will be obtained, whether .{% is deter

mined by the present method, or y is first eliminated from the
relation
z = f(x, ."i'r}:-

and the resulting equation is differentiated as to z The
method of this article frequently shortens the process.
dz

It iz here well to note the difference between =
x

and dz
dx

The former is the partial derivative of the functional expres-
sion for z with regard to z, on the supposition that y is con-
gtant. The latter is the total derivative of z with regard to
z, when account is taken of the fact that y is itself a func-
tion of =

In the former case the differentiation with regard to x is
merely explicit; in the latter it is both explieit and implicit.

Ex. 1. Givenz =v2% + 3%, y=log x; find j—i_.

dr V3T ¢ 8 Vgl 4 ytdx
dy _1
dr  z'
henes d_z=i_+£_|_
ile I\.I"xﬂ_l_yi
a ¥ _ dz -2
Ex. 2. If 2 = tan™! and 4 #* + y® = 1, show that — = —.
2 x de ¥

65. Differentiation of implicit functions. If, in the relation
z =f (x, ¥}, # is assumed to be constant, then

dz=10,;
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S oar + Yy =
hence a#d.-u + aydy 0, (1)
af
i ay__ oz
from which FrA (2)
dy

In all such cases either variable is an implicit function of
the other, and thus the last equation furnishes a rule for
finding the derivative of an implicit function.

Ex. 1. Given =0+ * + Sazy = ¢, ﬁnd‘.'fii

Since {Sx‘+3ﬂy}+(3f+3nx} l],—i' ~Etay

¥+ ax
Bx. 2. f(ar + )= c; L=afaz+t); L=bf(ar+by);
dy o
dr~ b

Ex. 3 Tfar'4+2hry + byt + 292 4 2fy +c=0, ﬁndj—i.

Ex. 4. Given r* — gy = ¢, find EE
oz
Ex. 5. If x increases at the rate of 2 inches per second as it passes
through the valoe x =3 inches, at what rate must y change when
y=1 inch in order that the function 2zy?— 3a% shall remain
constant ¥

If u="2xy? -3 2%,
du du
then =0y, —=drxy—3ri
" 3z -ty 3 Iy
o iy
dy _dz 2y —6xy it
dz  du  day—3dat dx’
oy dt
Eiﬂmr=3.y=1,%_E,heneegg=-—2ﬁmehespermmnﬂ
f
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Ex. 6. m=o 4y, v=logs g=e Fm]'r'?:"

Ex. 7. w=siu"l(r—2), r=34Ls=48 Find *z_:*_

Ex. 8 ¢ —¢+xy=10. Find @F

I

Ex. 8 sin(zy)— e — iy =10. Find a9

iz

It is to be noticed that the result of differentiating any implicit
Function of z, y by the method of the present article will agree with
the result of differentiation according to the rules of Chapter 1.

66. Geometric interpretation. Geometrically, the equation
z= f(z, y} represents a surface. The equation y = 1y, defines
a plane parallel to the x2-cobrdinate plane. The two equations
treated simultaneously therefore define the plane section made
on the surface z = fz, ) by the plane ¥ = 4. The derivative

! defines the slope of the tangent line to this curve at the
3?1

point (2, ¥y, ).
Similarly, the plane « =2, euts the surface in a section
parallel to the yrcobrdinate plane. The slope of the tangent

line to this second curve is defined by :i The equations of

these two lines are $

¥=1n T — 2 ——'{m-—-:r,t},

T = 2, z—=.=—'{y—m}~
iy

They have the point (a;, ¥, 2,) in eommon ; henee the two lines

will define & plane. The equation of any plane through the
first line will be of the form

. [s | —g—il-l {z — :r:,}]—l— x{y—m)= 10,
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and similarly, the equation of any plane through the secound
line will be of the form

[= — 75— % (y — m}] + «{z—2z)=0.

These two equations will be identical when

ﬂ:—ﬁl-* H:—ﬂﬂ

dyy o,
henee the equation of the plane containing both lines is

B = ? (2 — =)+ E:l{y-— )
Ty 1
It is called the tangent plane to the surface z = flz, ) at the
point {2y, ¥, ).
From the equation

dz = g%liﬁ + g%::dy’ (3)
it is seen that if z, y receive the arbitrary increments dx, dy,
then the increment dz i3 defined by the sums of the products
of these increments by the corresponding partial derivatives.
Thus, if de =2 —x, dy =y — i, d2 =2z — =, it is seen that
the point (x, y, z) always lies in the tangent plane to the sur-
face z = f(z, ¥), however the increments dx and dy approach
Zero.

Moreover, the equations of the line joining (#, ¥, 2) to
2 4 Ax, ¥, + Ay, 7 + Az on the surface will be of the form

= _ - _ g5

pr— 1t —m
— — —

A Ay Fu ¥
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Now as Ax, Ay approach zero, the point always remaining .
on the surface, the line becomes a tangent in the limit, and its
equations are

ﬂ’d_mzl=§Ey§l=EEz"lj (4)
wherein dx, dy depend upon the direction of approach, and dz
18 defined by (3).

But a tangent line to the surface is also tangent to any plane
section passing through the line, and the line (4) is seen to lie
in the tangent plane, hence:

The tangent lines fo all the plane sections of the surfuce
z = f{xz ¥) passing through the point (z,, 1, %) lie in the tangent
plane at that poind.
The line through (=, 3, ) perpendicular to the tangent
plane
=P 2 oy —
A=)+ g -

is called the normal to the surface at the point (z, ¥, ). Its

equations are
i;_m":'i'l'lll_3”'I==:1---:al+
% % 1
dax, a

If the equation of the surface is given in the implicit form
F(z, y, z) = 0, then since
aF aF aF

—dr+—dy +—de=0
P +dyy+ﬂ'= ’

the equation of the tangent plane becomes, if F(z,, w, 2,) = F,,

aF, aF.
——r—m)+ El{ﬂ—zﬂ=ﬂ=

an,
W,
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and those of the normal are

Ty _ y—m=ﬂ—'§1_
oF, ~ oF,  dF,

dr, 1 dey

EXERCISES

1. Show that the plane z = 0 touches the surface z = xy at (0, 0, 0).

2. Find the equation of the tangent plane to the paraboloid
z=22z7%4 4 »? at the point (2, 1, 12).

3. Find the equations of the normal to the hyperboloid

24yt 4228 =-6at (2,2, 3).

4., Show that the normal at any point (z, 1, 21) on the sphere
12 4 y? + 22 = 16 will pass through the center.

5. Find the equation of-the tangent plane at any point (1, 31, 71)
of the marface .-::i + y‘i 4+ = =.|:1Cit and show that the sum of the squarea
of the intercepts which it makes on the codrdinate axes is constant.

6. Show that the volume of the tetrahedron eut from the coor-
dinate planes by any tangent plane to the surface zyz=a® is constant.

7. The sphere 22+ 39422 = 14 and the ellipsoid 32 42 4% 4 22 =20
pass through the point (—1,—2,—3). Determine the angle at
which their tangent planes at this point intersect.

8. How far distant from the origin is the fangent plane to the
ellipsoid =2 4+ 3 y* + 2 22=0 at the point (2, —1,1) ¥

9. Find the equation of the tangent plane and of the normal to
the cone #* =2 77 4 3% at (xy, §1, #) on the sorface. Bhow that the
plane will always pass through the vertex of the cone.

10. Find the equations of the tangent line to the circle
4yt + 22 =25,

TH+ez=5
at the point (2, 243, 3).
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67. Successive partial differentiation. The expressious

o ? which were defined in Art. 62 are functions of both

ar’ dy

= and y.
If 3—':_' 15 differentiated partially as to =, the result is written
4 fazy _ 0%
az(aa: az

This expression is called the second partial derivative of -
z ns to x
Similarly, the results of the vperations indicated by

L3 (E"!E) 2 ('3’_*) 4 (E)
dy\dz) dx\dy ) dy\dy
are written aj—:#, ﬂ%g:;; . %ﬁ, respectively.
Beginning with the left, we call these-expressions the
second partial derivative of 2 as to z and y, the second partial
derivative of z as to y and =, and the second partial derivative

of z as to 9.

68. Order of differentiation indifferent.
Theorem. The successive partial derivabives

e

dy dx’ dx dy
are equal for any values of 2 and ¥ in the vicinity of which
z and its first and second partial 2~ and g-derivatives are
continuons.

The truth of this theorem will be assumed. It should be

verified for special cases as in the following exawmples,
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Cor. It follows directly that under corresponding eonditions
the order of differentiation in the higher partial dervivatives s
indifferent.

E.g., Tz _ ¥z _ 2
do dy dx O dy dy o
EXERCISES
1. Verify that ﬂT;y = ﬂi ‘E'i-t-: when u = r475%
2. Verify that ﬂ-faﬂl;‘ = gf;:;r when uw = 2% + ryb.
3. Verify that ﬂi::;y = ﬂi;-i-" when u =y log (1 + ry).

4, Tn Ex. 3 are there any exceptional values of'z, y for which the
relation i nob trus?
5. Given u = (z* 4 y"}i verify the fm‘mlﬂﬂ.

H‘Eu ﬂ i

6. Given u=(r* + 3%z, show t.hat t-!u& expression in the left
member of the differential equation in Ex. 3 is equal to 3—:
e | d's | d's
. = i + * =
7. Given u = (2% 4 o5 + 28k, ]ﬁmwt.llntﬂr, o g

B. Given u=sec (y+az) + tan (y — ax); prove that 'g—;;z “,(‘Fu,

B
Cguw _ ' __d'u
9. (Given u=sin r cos y; verify that an ar! axoyoroy orioyt

Yu
10. Given u = (4ab — e")-1; prove that g{_, :l b

zhy* d*u o du
11. Ifu= . phat z=— - =0
u :+yﬂhﬂw harﬂ*+vﬂrﬂy Fvy
12. Given u = log (.:*-1—3;‘*} I:mum'ﬂi“ + ‘;ﬂ =M
¥
13 Hfu= {4+ y']* show that the equation of Ex. 5 is satisfied.
14. Given u = (7 + y* + % + w¥)-, o O O gt @
(12 4+ o + w¥) me,a_, +ﬂ‘+ﬂ"“+a‘w‘



CHAPTER IX
CHANGE OF VARIABLE

69. Interchange of dependent and independent variables. If
¥ is a continuous function of =, defined by the equatiom

J{z, ¥} =0, the symbol g—: represents the derivative of y with

regard to x, when one exists. If x is regarded as a function of
3, defined by the same equation, the symbol :f represents the
Y

derivative of =z with regard to y, when one exists. It is re-

quired to find tl_‘m relation between %i'! and ';E

¥
Let x, y change from the initial values =, ¥, to the values

x, + Az, i + Ay, subject to the relation f{x, y) =0.

Then, since
Ay
Arx

]

g~

it follows, by taking the limit, that

e SR (1)

Hﬂnlne, if y and & are connected by a functional relation, the
derivative of ¥ with regard to x is the reciprocal of the devivative
of x with regard fo y.

This process is known as changing the independent variable

from z to 3. The corresponding relations for the higher de-
124
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rivatives are less simple, They are obtained in the following
MAnmer :

dy - dr d'z

To express 0 in terms of d-y &y differentiate (1) as to x;
_d[l)_d(l)dy_a[1) 1
d_ﬂvld_ ay |z ﬂf“ ih_-:iy dx| dz

d dyl dy
'z
d[1 mf
dy (dy
&
hence dty,.__'-ﬂ"i 2
| “T@ )
dy
In a similar manner,
dzdr ( )
d’y _ dy'“:iy dy* (3)

W)

70. Change of the dependent variable. If y is a function of 2,

ay . - 1n termsufdj @z

dy e=
let it be required to express i a ey

Suppose ¥ = ¢(z). Then

dxr d , Y -
=E§£¢[3]+¢{I}E
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But S @)=L # @ ="
Tlenee n'.ay "(z }(dx) + iz {F: )

The higher z-derivatives of y can be similarly expressed in

terms of rderivatives of 2

71. Change of the independent variable. Let y be a function
of x, and let both = and % be functions of a new variable ¢. It

is required to express j—i in terms of %‘r, and g in terms of

fr—‘" amd @
ot ot
v Art 8, (L]
fi'la,f 1‘1! (1
&=z ’
it
dydz _ Erdy
hence ﬂ d di  di® dt (=)

ar = [y
x)

In practical examples it is usually better to work by the
wmethods here illustrated than to wse the resulting formulas.

72. Simultaneous changes of dependent and of independent vari-
ables. Buppose, for example, that an equation involving =, w,
dy
e
into polar cobrdinates by means of the formulas 2= p cos §,
y=p sin & BSioce the variables & and ¥ are connected by some

equation (¥ being a function of ), we may regard x, », p as

. 18 given, and it 1s required to transform the equation
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functious of 8.  E.g., eonsider the furction

dlx*
From Art. 71, dy
dy _ a8,
de dx
e

do iy _dy dx

Py b dF di s

and L .
* s dzy?
(riﬂ

i

By substituting these values in the pxpression for I, itheeomes

(&1

iz _y _dy  d%
dg d@F  di  dF

¥

This is in terms cf a new independent variable §. We have
now to express these f-derivatives of x and y in terms of p

and &.
From the relations 2= p cos @, y = p sin 8 we have

5!?:=-p gin § 4 cos ﬂd—ﬂ %E:p cos @+ sin ﬂETE

de g’ g

%=-—p 08 ﬂ-—?ainﬂ:—%—l—mﬂﬂf'd%

-d-!""l=—p sin 8+ 2 cos -E:i‘;+ﬂiu ﬂ:‘%-

e
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Upon substituting these values in the last expression for R,

we obtain i 3
a* + (—E I]
R= [ ‘5‘5)

BB

EXERCISES
1. Change the independent variable from r to = in the equation

:*‘-‘F‘” —E+_§r={l, when x = e*,

d:‘* ifx
_E _Ee"l'
dr =z
EE:E&' -!h,...‘h"—h
detdst  dr
Hemwee z"ﬁ+:—5+y ﬂb&cumes%—]—y—ﬂ

2. Interchange the function and the variable in the equation

3. Interchange r and ¥ in the equation
1 1’!)”3
! * (n’:r i .

iy
it

=

4. Change the independent variable from z to ¥ in the equation

B(d_igjg_{ﬂﬂ - @ (EE)E:
iz dedrd  drf\dx

5. Change the dependent variable from y to z in the equation

dly _ 3 220+ (dr\® hen v =
dzr? + 14 y* (d:r)*w #ay=tn&
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6. Change the independent variable from z to y in the equation

L

— hen y =
R + % =0, when y = log .

7. Tf y ia & function of =, and za funetion of the time f, express
the y-acceleration in terms of the r-acceleration, and the r-velocity.

Since dy _ dy d=
dt  dz ol
)
henon _Eu" "fﬂ e o "I;"" : (ﬂ)‘
der  dx dit et wi iz
But 7 (ﬂl) e (\j) W
dt \fxd — dx \dx dt dx®dt’
ity _dy Pz | d (dz):
henee dit T dx ot* + dzt\dt )’

In the ablbreviated notation for i-derivalives,

_ iy L P R
a2y = |:Mr.!'*".i: +d:’1{d::l .

8. Change the independent variable from x to u in-ihe equation

2z dy ¥ __ —{, when x= tan
.d:=+1+:9d:+(1+ﬂj=_ﬂ’w no=

9. Change the independent variable from x to ! in the equation

(1-— :-:3}—-"1 +T¥ _ p, when z = cost.
dx

10. Show that the equation

iy ify
P LI T =10
ol 2 + dT ty=

remains unchanged in form by the sabstitution x = 1:

EL. caLg.—38
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11. Interchange the variable and the funetion in the equation

(i) () =0

s olr

1z. ﬂlmn.gﬂ the dependent variable from ¥ to z in the equation

dly aly
1 - — + = ﬂ, hen = =z
izt +( y}n'x d " ¥

Change the independent variable from x to ¢ in the equations :

13, (l—fi}f—;—rﬁ+y=ﬂ, given T = cos L
d_“:_r .Enﬂ.l' i _ . .
14. :"dﬂ-{-ﬂrJﬂ+zd1+#_1},gwﬁn:_f.
dly _ 1
15- I‘F{-ﬂ“y—ﬂ‘, I—Iq
I?—y
Fy - .
16. Transform ———7-— —— by assuming x = pcos @, y = p sin f.
1+ (—”)
A i

P
17. Given =17+ 4 y=3+2— 3¢ Find - .
. £




CHAPTER X
EXPANSION OF FUNCTIONS

It is sometimes necessary to expand a given function in a
series of powers of the independent variable. For instance,
in order to compute and tabulate the successive numerical
values of sin z for different values of =, it is convenient to
have sin x developed in a series of powers of z with coefli-
cients independent of . .

Simple cases of auch development have been met with in
algebra. For example, by the binomial theorem,

(a4 2)" = a= + nuv + ";‘J:}l AT e (1)

and again, by ordinary division,

11—m=1+m+m=+f+m. (2)
It is to be observed, however, that the series is a proper
representative of the function only for values of x within a
certain interval. For instance, the identity in (1) holds
only, for values of = between —a and +a when n is not a
positive integer; and the identity in (2) holds only for values
of = between — 1 and 4 1. In each of these examples, if a
finite value outside of the stated limits is given to , the sum
of an infinite number of terms of the series will be infinite,
while the function in the first member will be finite.
131



132 DIFFERENTIAL CALCULUS

73. Convergence and divergence of series.* - An infinite geries
is said to be convergent or divergent according as the sum of the
first » terma of the series does or does not approach a finite
limit when n is increased without limit.

Those values of = for which a series of powers of 2 is' con-
vergent constitute the interval of convergence of the series.

For example, the summ of the first » terms of the geometric

senes @ 4 ax 4 o 4 ot 4 ..
) 1 —
18 = *

T 1—=

First let x be numerically less than unity. Then when n is
taken sufficiently large, the term = approaches zero;

lim __iE
=0 Hn

ﬂe.nce = '
1—=

Mext let z be numerically greater than unity. Then z* be-
comes infinite when » is infinite; hence, in this case

lim
o e =00

Thus the given series iz convergent or divergent according
as x 18 numerically lesa or greater than unity. The condition
for convergence may then be written

— 1<z,

and the interval of convergence is between — 1 and + 1.
Similarly the geometric series

1—8a4 02— 2T 4 oo,

*For an elementary, yet comprehensive and rigorous, treatment of thia
#ubject, sea Profesaor Osgood’s * Introduction to Infoite Series  (Harvared
Univeraity Press, 1897).
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whose common ratio is — 3 =, is convergent or divergent accord-
ing as 3 x is numerically less or greater than unity.

The condition for convergence is — 1 < 3 2 < 1, and hence
the interval of convergence is between — } and + }.

T4. General test for convergence.
Liat B=; 4+ tig ttg+ o= gty + e

be a series of positive terms having the property that “‘u:l < T
(r a fixed proper fraction) for all values of n that exceed a def-
inite integer & that can be assigned. We wish to prove that
under these conditions § is convergent. This is called the ratio

test for convergence. )
According to hypothesis we have the inequalities

ﬂ.ﬂ{f, E&L’{r, Jur B <r, obe,
Hy . LIRS | LT

By multiplying the first two equalities together we obtain

Yirt 44 then, multiplying this result by the third of the
By -

given inequalities we deduce further HEJ";"**'-n'_“_al-"‘; and soon. These
results may be written in the form

Byyq < Ty, Wyyg < TR o TARETII A o T
Hence we have the inequality
B <y 4 ttg - oee o+ 2ty + Uy Py Uy oo

But the series in the right member, which may be denoted by
&', can ba put in the form

8=ty vy -+ +"g—1+ﬂ1{1+r+f’+f’+"*}
= i +ﬂ1+"'+ﬂ1-1+%'
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The terms u,, uy ---, u, being assumed finite, it follows that
&' is finite and hence S, which is less than 8, also is finite.
Since & is fermed by the successive addition of positive terms,
1t follows that the series S converges towards a definite finite
limit. .

If the series § cootains an infinite number of negative, as
well as of positive, terins, it converges whenever the series
formed by the positive, or absolute, values of its terms con-
verges. The series is then said to be absolutely convergent.

In order to prove the preceding theorem, we obrerve that
the positive terms of S taken alone form a converging series,
whose limit will be denoted by P, and the negative terms taken
alone will form a converging series whose limit will be denoted
by —N. Let S denote the sum of the first m terms of 8 and
suppose that these consist of p positive terms whose sum is
denoted by P, and of » negative terms whose sum is — N,
Then we have S, = P, — N,. Now when m becomes infinite,
# and = also become infinite, and henee

S___mll:_r_nm s, =ph‘m P, lin N.=P—XN.

= oo " =a
Therefore, § is convergent.

When a series is convergent, but the series formed with
the absolute values of its terms is not convergent, the given
series is said to be conditionally convergent.®

The absolute value of & real number w is its numerical value
taken positively, and is written | »

-

If a series consists of terms that are alternately positive

* The appropriateness of this terminology ia doeto the fact that the terms
of an absolutely convergent series can be rearranged in any way, without
altering the limit of the sum of the series ; and that this is oot true of a con-
ditionally convergent series. For a simple proof, see Osgood, pp. 43, 4.
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and negative, and if, after any definite term of the series, each
succeeding term is numerically less than the preceding one,
then the series is convergent.

For, suppose that beginning with the term w, the series is

S=a, — U — Mg Ui — 0y

in which w,, w,,,, ebe. represent positive numbers and w, ., << u,,
Upyg < Wypny ==y Upet < ¥y, [OF EVETY value of m greater than k.
By grouping the terms in pairs, (4, — %), (Mess—Uppa)hs -+ cach
of which is positive, it is seen that &' has a positive value,
which may be finite or infinite.

But 8' may also be written in the form

8=y = [(Mppr — Wpya) + (days — Uppa) + ++ 15

wherein the terms in brackets are all positive, hence S8' has a
value less than w, It therefore converges towards a definite
finite limik

Tt now follows that the approximate value of §' obtained by
algebraically adding w, w0, =y 1y, differs from the true value
of the series by a number less than w, This fact can be
shown in precisely the same way as that by which 5’ has just
been shown to have a value less than w,.

Ex. 1. Is the series ]__]_'+1'—l+..-_|_(_ I)H—T::_F“.mn-.

2 8 4
vergent?

Since the terms are alternately positive and pegative and their
numerical values are always decreasing, it follows at onee from the
preceding paragraph that this series 1s convergent. It will be found
later that its value is log 2.

Ex. 2. Prove the convergence of the series met with in Art. 16,

101 1 1 -
E i —_— J—— ara +— maw g
taitaitat wl
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1 — 1 1!“_.“__ 1 M
— tppy = CESIT Henee v, “nal’ This

ratio is less than § for all values of » greater than 2, and the ratio
condition for convergence is satisfied.

In this case u, =

Ex. 3. Prove the divergence of the Aarmonic series

1.1 1
) [ T TR TR S
gttt

The ratio upy: s becomes greater than + when n is sufficiently
large. By grouping the terms it inay be written in the form
1+i+G+D+A+3+1+ D+ -
the smcceeding groups having 2%, M, ... | 2= ... consecutive terms re-
spectively. The sum of the terms in any group is greater than j.
For,in the nith group the last term 21_ has the least value, and as there

are 2*~! terms in the group their sum is preater than 21 L}_' =$--
As there ia an infinity of such groups, their sum is infinite,

Ex. 4. The series

1.1 1
.!-l — LY
& toatat- +n’+
is eonvergent for p > 1.
Let the terms of § be grouped in the following manner:

5= 1+(2-+3-) (4-1 5r+ﬂlﬂ+?1r}"“'"

the ath group beginning with and containing 21 terma.

{5"' -)F
The nth group is accordingly less than its first term multiplied by
| S |

the number of terma in the group, that is, < 2n-1. (:jﬁ—l}l‘_{?_]}-"l.

Hence we deduce the inequality

3{1+ 1 ;_l E.w—l+'"
I

the right member of which is a geometric series having i B the

common ratio. Itis therefore convergent, and hence § is convergent,
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This inequality is satisfied for every value of p greater

than unity. Moreover, it was shown in Ex. 3 that for p = 1 the seriea
& 15 divergent. When p<I1, § iz divergent. For in that case

lﬁ:}l, n i3 any positive integer (except 1), and therefore the
n* " on

terms of § are greater than the corresponding terms of the harmonic
RETiER.

Hence :

The necessary and sufficient condition that the series 1 +
may converge i p = 1.

1 1
£l+3#+

tX. 5. Show that the serics IL + 1 + = 1 1

S e &
+

18 convergent. 2-3 3.4 n(n+1)

This may be proved by comparison with the series in Ex. 4 for the

particular case p = 2.

. 1 1 .1 1 _1 1 1
g A1 1 ., 11
R o B T R ey e A

it follows that the value of the given series is less than that of

1 1
1"';:"'3{" b

which is known to be convergent onaccount of the theorem deduced in
the preceding example.

Ex. 6. Examine for convergence the series whose nih term is ;_‘j_ o
i
n 1 1
[Hmt n=+1_“+f’n+1']
e
Ex. 7. Examine for cnn?ergenm the series
1 (—=1)"n
2 5 2+ ﬁ:— B + 1 +
Ex. 8. Deterinine whether the series whose ath term i ]
L o

convergent or not; the series whose general term ia

nf4l
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75. Interval of convergence. If the terms wu, u, +-- of a given
series are funetions of a variable x, then the series will usually
converge for some values of x and diverge for all others. In
such a case the problem is to determine the interval of conver-
gence, that is, the range of values of & for which the series is
convergent. The following examples will illustrate the method
of procedure.

Ex. 1. Deterinine the interval of convergence of the series
-.I. +I+EIE+HIH+ mEa + ﬂII‘ + T

In this case u, = (n — 1)z ' and u, ., = nz"

Hene Bogr . mR oA .
= 4y (m—1)e"1 n_1

According to the ratio condition for eonvergence, it is necessary
that this ratio ghall be numerically leas than 1 for all values of »

el

exceeding a fixed number & As » increases, the fraction

n —
nppmm'lma unity. Henea if | x| has any fixed valne less than 1, the
given series is abaolutely convergent. The interval of convergence
is defined by the inequalities — 1 = r=7 1.

It is avident from the preeeding example that the ratio eon-
dition for the absolute convergence of a series may be written

lim

m | Wy
R—=oh

” = 1, (3)

which iz especially convenient for application.

Ex. 2. Find the interval of convergence of the series

1 4+2.22 4344 4. 884510244 <o,
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Here the sath term w, is n 20-Y2%1 and the (n + L)th term u,,, is
{re+ 1) 27"

hence wi_(nt+1)2 _ (n+1)2=
. i, o dn—lgn 1 " ]
therefore when n = @, “;H @ .
]

It follows by (3} that the series is absolutely convergent when
—1=<2x<«1, and that the interval of convergence is between — |}
and + §. The series is evidently not convergent when z has either
of the extreme values.

Ex. 3. Find the interval of convergence of the series

T _._-;,_-II- + i 3 +£_11ﬂ I_::_n 1
1.3 3.3 5.38 7. ‘tli1 (2n-— 1)g=—1
Here taan| _2nm—1 A -1 ::"“‘"l 2n—1 =%
thy TOm g 1 afetl gin-1 9p 4] Ty
Ii . x?
hence n Enu;- H;:' = H_“;

thus the series is absolutely convergent when ';:::], ie., when

— 8 x=8, and the interval of convergence is from —3 to 4 a.
The extreme values of z, in the present case, render the series con-
ditionally convergent.

Ex. 4. Determine the interval of convergence of the series

xF ¢ x8 gt
R A _pywer _ETE
E‘f+4! f.1‘-|!+ + ) (Zn—-2)1

Bince even powers of » are positive, the terms of this series are
alternately positive and negative. The term w,, is derived from u,

by multiplying it by ﬁ- For all values of n such that
n— S |

this fraction is less than 1, we shall have the condition |wyey| < |, |
and the series is eonvergent on account of the property of series with
alternately positive and negative terma.
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Ex. 5. FProve the convergence of the series
B (@ - PHE - D -1 —1-Dt+ o, 21

" 1 1 1 ) 1
Inthis case Ju, | =29 — (2 + 1 + e g_-'-_u)‘ Notice that “hin;:. ||
ia not zero. The series is nevertheless convergent, but not absolutely

convergent. Wt r ol Wn-ag_.I
Ex. 6. Determine the interval of convergence for the series

ozt ax"
1- I U T B
:+E 3'|' + { ) -

Ex. 7. Determine the interval of convergence for the series

1 L2 % Lo
=1 (x=1)F (x—=1) (x=1"

Ex. 8. Find the interval of convergence for the binomial series

a{a— 1) a{a—1){a —2)
Lhast ==+ 2y o+

in which a is any constant.

Ex. 9 Bhow that the series

l.(?] _1 f)" l(-_’f)‘_ l(“{)‘

| ERT T T +593 T *

has the same interval of convergence as that of Ex. 3; but that the
extreme values of x render the series absolutely convergent.

76. Remainder after n terms. The last article treated of
the interval of convergence of a given series withont reference
to the question whether or not it was the development of any
known fonetion. On the other hand, the series that present
themselves in this chapter are the developments of given fune-
tions, and the first question that arises is concerning those values
of = for which the funection is equivalent to its development.
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When a series has such a generating function, the difference
between the value of the function and the sum of the first n terms
of its development is called the remainder after n terms.  Accord-
ingly, if f(x) 15 the function, S,(x) the sum of the first n terms
of the series, and K (z) the remainder obtained by subtracting

& (x) from f{x), then
T J@=8.)+ R,
in which 8, (x), E (x) are functions of n as well as of o

It Jm g (#)=0, then '™ 8§ (z)=7(z);

"

thus the limit of the series S () is the generating function
when the limit of the remainder is zero. Frequently this is
a sufficient test for the convergence of a series.

If a series 1s expressed in integral powers of = — a, the pre-
ceding conditions are to be modified by substituting z — a for
x; in other respects each eriterion is to be applied as before.

77. Maelaurin’s expansion of a function in a power-series *
It will now be shown that all the developments of funections
in power-series given in algebra and trigonometry are but
special cases of one general formula of expansion.

It is proposed to find a formula for the expansion, in
ascending positive integral powers of o —a, of any assigned
funetion which, with its successive derivatives, is continuous
in the vieimty of the value x = a.

The preliminary investigation will proceed on the hypothe-
sis that the assigned function f{x) has such a development,

* Named after Colin Maclaorin (1#-1746), who published it in his
“ Treatise on Fluxionsa' (1742); but he distinctly says it was known by

Jamea Stirling (16E2-1T70), who alse published it in his % Methodus Differ-
entialis " (1T30), and by Taylor (see Art, TH).
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and that the latter can be treated as identical with the former
for all values of x within a certain interval of equivalence that
includes the value =@  From this hypothesis the coefii-
cients of the different powers of z —a will be determined. Tt
will then remain to test the validity of the result by finding
the conditions that must be fulfilled, in order that the series
50 obtained may be a proper representation of the generating
funetion.

Let the assumed identity be

fizy=d4 + Blz— a) + Clz —a) + D{z —ay

FE@—af ey (1)
in which A4, B, €, --- are undetermined coefficients, indepen-
dent of x.

Sucecessive differentiation with regard to z supplies the
following additional identities, on the hypothesis that the
derivative of each series can be obtained by differentiating it
term by term, and that it has some interval of equivalence
with its corresponding funetion :

fllioy=B+2C(z—a)+ 3D(z—a)®+ 4 E(z—a)4 -
ffxy= 20 +3-2D(z—a) + 4.3E(z—a)’+ -
S (x)= 3.2D +4-3.2E(z—a) + -

- '] - n " - & '] - L] P [} L, - = +

If, now, the special value a is given to z, the following
equations will be obtained:

flay=A, fi(a)y=B, " (@)y=20C, f""(a) =3 -2 D, -

Hence,

A=f(@), B=f (2, ¢=LD, p=L00),

=Ry
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The eoefficients in (1) are now determined, and the required
development is

fx) = fa) + f{a) (x - a) +-ﬂ={lﬂ{m—u}= +ﬂ;ﬁlﬂl{m_ﬂ}:
e aan +'L:;riﬁl{£—\‘1:|“+--‘. (2}

This is known as Maclourin's series, and the theorem ex-
pressed in the formula is called Maclaurin’s theorem.

Ex. 1. Expand log £ in powers of ¥ — a, a belug positive.
_ L ey — o a2 102
Here f(z) =log = f(1) =L /(1) = - L ) = L2,

forge) = G @D

1‘.
Ience, S(a) =log a, {{a) = ;l.' S () = — %f’"[ﬂ} = ]E;aﬂ ey
M) = (—1)~(n — 1)1

and, by (2}, tha required development ia
- i) = L (r=a)? +L (z— a)® — wr
log z=loga+ (r=a)= ;5 =a)+gg(r—a)
R

The condition for the convergence of this series is

(r—a)+l  (x—a)*
(n41)a~t na=

lim
1=

=<1,

X — il
=1,

|z—aj<a,
0 < -EE;EH-.
This series may be called the development of log x in the vicinity of
x=a. Its development in the vicinity of x = 1 has the simpler form
logz=z—1— {12+ J{z—1)}*— .

which holds for values of £ between 0 and 2.
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In using this series for the computation of a table of logarithms
we may put for a any number whose logarithm is already known, and
for x any number near a in magnitude. It is a great advantage to
keep z — a so small that the power-series in = — @ may be not merely
convergent, bub may converge to its limit so rapidly that all powers of
2 — g above the fourth or fifth may be neglected without affectig the
desired degree of accuracy. )

E.g., being given log 10 = 2.302585, suppose it is required to com-
pute log 11, log 12, -.., log 20, Put @ = 10, and x = 11. Then

log 11 =log 10+ 5 — § (#5)*+ 4 (7a)*— 175D +3(10 )" = 3 (da)*+ H( )T

The numerical work may be tabulated in the following form:

+ 230258509
10000000 — 00500000
00033333 00002500
D0000200 00000017
DO000001 — (0502517

2 4202043

— 0502517

2.30788526
Hence log 11 = 2.397895 .-,

correct to six places of decimals. To make sure of the sixth figure it
is well to carry the work to seven or eight figures. The remaining
terina of the series after (#&)"7 cannot affect this result, becanse their
sum is less than an infinite decreasing geometric progression whose
first term is }{ )" and whose ratio is . From the formula

it follows that the remainder is less than Tll!.lla/@

To calenlats log 12, log 13, - we could now keep a =10 and let
¥ =12, 18, --- successively, but in order to seeure rapid convergence it
is better o change the value of a, choosing for a the nearest nudiber
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whose logarithm has been found. Thus, in computing log 12 we can
use either of the two series

log 12 = log 10 + & — }(%)%+ H(i%)* — -
log 12 = log 11 + /r — §(#)? + (A)* — -3

but it will be found that five terms of the second furnish as close an
approximation as nine terms of the first. The practical advantage
of the step-by-step process will depend on how many of the intermedi-
ate values we actually require. If we are given log 10 and wish fo
compute log 15, it may be easier to compute the latier directly with-
out determining the intersiediate valoes.

Ex. 2. Develop flz)=2%—- 222+ 62— 7 in powers of x — 1 and
use the result to compute /(1.02), £ (101), £(.99), £ (.58).

Ex.3. Develop 3y — 14y + 7 in powersof y — 2.

Ex. 4. Expand sin x in powers of x — a and use the result to com-
pute ain 31°.
Let a = 30°, £ = 31% In the formula

gin r = gina 4 cos a(r — ﬂ]—%{z—u}’ -—“%(r-a}*---,

the difference r — @ becomes 1° or 01745 radians, and the coefficients
of its varions powers are all known; since sin @ = .5, cos a = SA0025 the
work is now reduced to nomerical calculation in which three terms
are sufficient to oblain the result correct to six places of decimals.  In
general, to ealoulate sin r or cosz, take for a the nearest valoe for
which sin g, cos a are known.

The expansion of a function f(z) in a series of ascending
powers of x can be obtained at once from formula (2) by giv-
ing a the particular value zero, The series then becomes

Ny = fih + ff{hax -I-ﬂé%la::-l- o +£};£!E+._._ (3)

EL. Cavc,— 10
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Ex. 5. Expand sin z in powers of z, and find the interval of con-
vergence of the series.

Heve  f(z) =sing, F(0) =0,
f(z) = eos z, 10 =1,
f7(z) = — sinz, £7(0) =0, -
S(#)=—eoaz, frin=—

S {xr)=rninz, Fre({y =0,

Sr(z)=rcoaz, Sy =1,

L} L +* - L] [ - +* # ' L [ ] L [}

Henee, by (3),

siux:l}+]-:+‘ﬂ-ﬁ—%:’+l}-x‘+£-l.t‘m;

thua the required development ia

_— o i L.}__]' n—1 .
giie = x z‘+5]a:" “:t:"+ + _1:“.-::’ -+

To find the interval of convergence of the series, use the method
of Art. 4. The ratio of u,, to u, is

u'+.|= i+l . rim—1 - xa .
e (2a+13 (2a—-1)!" (2n+1)2n

This ratio approaches the limik zero, when » becomes infinite, how-
ever large may be the fixed value assigned to . This limit being less
than unity, the series is convergeul for any finite value of x, and
henpe the interval of convergence ia from — o to + o,

The preceding series may be used to compute the numerieal value
of sin x for any given value of . It is rapidly convergent when x is
small. Take, for example, x = .5 radians. Then

L (5, (B)S (5
8in () =5 - 53 Yoy 4.5 2.3.4.5.6.7°7 "
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= HNHKI00
o B08333
+ D604
— D00015
+ OOOMHHH)
sin (.5) = AT4256 ...

Show that the ratio of u; to w, is ;}y; and hence that the error in
stopping at u, is numerically less than w, [g}s + (e 4+ -], that
18, < ghy uy

When z is not small, it is better to use the more general series in
powers of = — a.

Ex. 6. Show that the development of eos x is

A g4 I e 1)a-1yin-%

a1 4 g @n_m1 T

and that the interval of convergence is from — o to 4 .

Ex. 7. Develop the exponential functions o®, e®.

Mere
f(zy=a% f(z)=a" loga, /(x)=a*(log n)?, -, F(z)=a*(log a)";
hence  f(0) =1, f'(0)=1og a, /(0) =(log @)*, -, /1" (0) = (log &),

2 o -
and a =14 (loga)z + {H%Lﬂ-p e +L:I't“}_rn+
ﬂﬂ-a-upaniﬂnﬂ.ﬂﬂ,ﬁllt.n:e.
Then loga=loge=1,
‘ | 1® 0
and E:_1+I+E_[+:ﬁ+ =i +m+ rary

These series are convergent for every finite valoe of =,

Ex. 8. Compute HF when r = .1.
Ex. 9. Compute 10= when = = 2.01.



148 DIFFERENTIAL CALCULUS

Ex. 10. Defining the hyperbolic cosine and the hyperbolic sine
by the equations

cosh z= {{e* + ¢ =), sinhz = j(e* —e~7),

prove L ensh x = sinh x, ix‘iuh r = cosh x,
E dx

cosh 0 = 1, sinh 0 = 0; and henee expand cosh r and ginh z in powers
of z. Verify that coshx 4 sinhx = ¢®, and coshx — sinhx = &=
Compute cosh 2 and sinh 2 to four decimal places. Show that the
error made in stopping the series at any term is much less than the
last term used.

78. Taylor's series. If a funection of the sum of two num-
bers @ and = 18 given, f{a + ), it is frequently desir-
able to expand the function in powers of one of them,
BAY &

In the function f{e 4 ), a is to he regarded as constant, so
that, eonsidered as a function of =z, it may be expanded by
formula (3) of the preceding article. In that formula, the
constant term in the expansion is the value which the fune-
tion has when » is made equal to zero, hence the first term
in the expansion of f(a +x) may be written f{a). In the
same manner the coefficients of the successive powers of =z
are the correzponding derivatives of f{a 4 ) as to 2, in which
ia put equal to zero after the differentiation has been per-
formed. The expansion may therefore be written

fla+x)=fla) + fla)xe + g';“a:ﬁ+ +%m‘+

This series. from the name of its discoverer, is known as
Taylor's series, and the theorem expressed by the formula is
known as Taylor's theorem.
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Ex.1l. Expand sin {a 4 z) in powers of z.

Here Sa 4 ) = sin (a+x),
henece f{a) = ain a,
and fia) = coaa,
Hence gin (& + x) =3inu+cma-r—m;ljazl—“':§1“ml+

Ex. 2. Compute sin 81°% by putting a = 60°.

EXERCISES
1. Expand tan z in powers of 2. Obtain three terma.

2. Compare the expansion of tan r with the quotient derived by
dividing the series for sin x by that for cos z.

3. Find & limit for the error which occars in replacing coa z by
the first three terms of its expansion in powers of x when x = Jof a
radian.

8 3 | af
4. Prove that log (z+ V1 + 2° _I_ﬂ"'ﬁ Sk
_ oz 2a4 16a2% 27228
5 Provelogeosz=—5 "0 " 61 8l
6. Compute sin 1° correct to six places of decimals.

7. Expand +v'1 — z¥in powers of z, and compare with the expan-
sion by the binomial theorem.
8. Expand cos x in powersof z — E’.
9. Expand £+% in powers of k.
10. Arrange 3z* — 5% + 82 — B in powers of z — 2,
11. Expand log {z + &) in powers of &.

12. Arrange =* — 1 in powers of = + 1.
nl gz

—pp—

rl{n—r)l'
Find the forin of the series when n is not an integer, and determine
the interval of convergence.

L]
13. Prove the binomial theorem (g + z)* =a*+ - = E
=l
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14. Find ¥126 = V125 + 1 = 5¥1 + 15 to three places of deci-

mals by the binomial theorem.
. AEET

15. Find V13 = 4 1 +(H?

16. Caleunlate log 31.

17, What is the greatest value of m that will permit the approzi-
mation {1 + m)* =1 + 4 m with an error not exceeding 001 ¢

18. Expand Lin powers of ¥ — 1 and find the interval of con-

I

VErgenes.

79. Rolle’s theorem. By Art. 76 a series can be the correct
representation of its generating funetion only when the re-
mainder after # terms ean be made as small as desired by
taking n large enough. Before obtaining the form of this
remainder it is necessary to introduce the following lemma.

Rolle's theorem. 1f f{x) and ita first derivative are continu-
ous for all values of @ between a and b, and if f{a), F(#) both
vanish, then f(x) will vanish for some value of z between a
and b. )

The proof follows immediately from the theorem of mean
value (Art. 39). See Figure 41

B80. Form of remainder in Maclaurin’s series. Let the re-
mainder after n» terms be de-
noted by K, (z, a), which s

- £ a funetion of x and a as well
/ \ as of n Since each of the
U{ﬂ k5 X  sueceeding terms is divisible

¥

by (z — a)", K, may be con-
Fio. 41 veniently written in the form

R,z 0)= E= "4 (s, a).
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The problem is now to determine ¢z, @) so that the
relation '

J(@)=7(a)+ o)y z—a)+ .i_“_;{i!ﬂ (x— a)fq o

- +%{% {z _ {l:}'_l + 'ﬂ:!!_ﬂ} {:1_-_ ﬂ}n (1}

may be an algebraic identity, in which the right-hand mem-
ber contains only the first n terms of the series, with the
remainder after n» terms. Thus, by transposing,

S(z) = f(@) — flla)(z —a) —-%;“ (@ — @)t — -
e - ERe—ar=0 @

Let a new funetion, F(z), be defined as follows:

P& = (@) — 1(7) — ()@ —2) — o) (@ — ) = e

21

i IR D MR eUED S

This function F(z) vanishes when z=u=, as is seen by
inspection, and it also vanishes when z=a, sinee it then
becomes identical with the left-hand member of (2); henee,
by Rolle’s theorem, its derivative F'(z) vanishes for some
value of z between x and a, say 2. But

F'(2) = — £(2) + L&) — (@)@ —2) + [ @)z — 2) —

- t‘:—“_]%—? (2 —z)*'+ {Llﬂ i‘ ﬁ!{m — 2t
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These terms cancel each other’in pairs except the last two;
hence

F'(z)= (_% [$(z, @) — ()]

Binee F"(z) vanishes when 2 = gz, it follows that

Bz, a) = z). 4)

In this expression 2, lies between = and a, and may thus be

represented by o=+ 8z — a)

where 8 is a positive proper fraction. Hence from (4)

¢ (2, a) = ™[a + 6 (z —a)],

and Rz, a) =f{l.[l'1 +ﬂﬂ;:2— )] (2= a)~*

The eomplete form of the expansion of f(x) is then
Flx) = fla) + () (x— a) +ﬂ‘ﬂ (& —a)® + -

™ la) n-1, f"™ {ﬂ+ﬂt.'ﬂ= a))
-+ (e—a)* 14 (w—a)™, (5)

in which n is any positive integer. The series may be carried
to any desired number of terms by increasing n, and the last
term in (5) gives the remainder (or error) after the first n
terms of the series. The symbol f™(a + #(x — a)) indicates
thak f(x) is to be differentiated n times with regard to z, and
that x is then to be replaced by a 4 8(z —a).

* This form of the ramainder was found by Lagrangs (IT3-1313), who pub-
lished it in the Mémoires de |'Académie des Belences & Berlin, 1772,
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81. Another expression for the remainder. Instead of putting

Rz, a) in the form (p _ 4y
'{_‘Tl ¢ (z, a),

it is sometimes convenient to write it
Iz, a) = (z— a) ¢z, a).
FProceeding as before, we find the expression for F'(z),

F'(z)= L{;%(r. )4 (2, a).

In order for this to vanish when z = 2, it i8 necessary that

Wy @)= L7E) (g et

(n—1)1

in which n=a+br—a), a—z=(z—a)(l—=@.
Hence y{z, a)= {‘T["' E(f} : a1 — 8"z —ay,

and Rz, a) =(1— ﬂ}n " ’fﬂ{r :_E(T}T ) (5 — g)n

An example of the use of thiz form of remainder is fur-
nished by the series for log » in powers of # — a, when x—a
18 negative, and also in the expansion of {a 4 x)™.

Ex.1. Find the interval of equivalence for the development of

log = in powers of » — a, when a is a positive number.
Here, from Art. 77, Ex. 1,

Fimgzy= (1) -—IM}_‘_

. e (n =131
bence  f(a + 8z —a)) = (~ 1) B
and, by Art. 80,

_ (=1 Ny (D) x—a - "
Ro(z a) Comfad B(x —a))* n [a+ﬁ{.:—u}] ’
* This form of the remainder was found by Caochy (17391857}, and first
published imhis ** Lecons sur le caleul infinitésimal,™ 1826,
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First let £ — a be positive. Then when it lies between 0 and a, it
is numerically less than « + #(z - a), gince & is a positive proper
fraction; hence when n = @

x— i .. .
_®=a  1":0p and R (r, a) =
[u-j-ﬂ'{::—u;ljl 0, and R (x, a) =0

Again, when z — a is negative and numerically less than a, the

sacond form of the remainder imust be employed.  As before

st + 0= o) = G

— 1 — fym—l . { =1z —a)®
hence Ry(z,a) = (1 - 6~ [a + 8{x —a)]"
= — Fyn—1. - {ﬂ _'T}‘
=(1-9 [a — 0(z — z)]
=_[lr“—-‘-'}—_#_{ﬂ'¥} 1 a—
a—ﬂ(u—::::l "'—ﬂ{u_-__—x}'

The factor within the brackets is numerically less than 1, hence
the (r — 1)th power ean be made less thin any given number, by tak-
ing n large enough. This is trus for all values of » between 0 and a.

Therefore, log x and its development in powers of r — a are equiva-
lent within the interval of convergence of the series, that is, for all
values of z between 0 and 2 a.

Ex. 2. Show that the development of ¥ in positive powers of
 — a holds for all values of = that make the saries couvergent; that
is, when z lies between 0 and 2 a.

If the function is expanded in powers of z, the complete
form will be

— T f" L} . fﬂﬂ}
J(@)y= 0+ (0= + ‘TJ{'[JW’-I_ +{n_l}lﬂn-1

+ £ 88 m

n!
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for the first form of remainder, and

7 (@)= ) +1 Oz + L 1 +; S “‘iﬁr-l
-

+ ’Jﬂ—l),{l gt - a (2)
for the second form of remainder.
Similarly, the complete forin of Taylor's series (Art T8)
becomes

f@t@=f@+ @+ LD 4 4 Ll

4 S+ ba) (3)

n!
for the first form of remainder, and

Ja+ ) =r@+r @+ LD L

n
.ﬂ_lﬁl“_ "i ]&f — Gt (4)
for the second forw of remainder.

These forms are of no value for numerical eomputation
unless f*(x) can be determined, but may sometimes be used
to advantage to obtain a maximum error, eorresponding to
small values of n. It should be observed that when n=1,
the theorem of mean value results. (Art. 39.)

Ex. 3. Obtain the limit of arror in retaining but two non-vanish-
ing terms in the expansion of log (r 4+ V1 + 23) when z = .

] Vigdy = [ty 8T
og (x+ +_I} ¥ 2.3+[{1+ﬁ; o4

wherein y = fz.
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The next step is to obtain the largest and the smallest value which
the expression in brackets amsumes for values of y within the interval
Oto }. For this purpose, consider the function

w9329
(1+99i
du

We find that 'IE' is positive for all values of y between y = Oandy = §;

£l

hence u has its largest value when y = }, and the corresponding valoe
of the last term is .000284.

Ex. 4. How many terms should be used in the expansion of e= in
powers of x to insure a result correct to four places of decimals when
z=}1

Ex. 5. In the expansion of logy (1 + z) in powers of £ how many
termis should be used in order to obtain the value of log, (1.8) cor-
rect to & decimals ?



CHAPTER XI
INDETERMINATE FORMS

§2. Hitherto the values of a given function f{x), corresponding
to assigned values of the variable z, have been obtained by direct
substitution. The function may, however, involve the variable
m such a way that for certain values of the latter the correspond-
ing values of the funetion eannot be found by mere substitution.

For example, the funetion

ef— g
sin x

for the value z = 0, assumes the form g. and the correspond-

ing value of the funection is thus not directly determined. In
such a case the expression for the function is said to assume
an indeterminate form for the assigned value of the variable.

The example just given illustrates the indeterminateness of
most frequent oecurrence; namely, that in which the given
function is the quotient of two other funetions that vanish for
the same value of the variable.

Thus if bl
us i Flx)y= '.l"i )

and: if, when x takes the special value @, the functions ¢(z)

and ¢(z) both vanish, then 0
fla "#{E}
@=y(@) "0
iz indeterminate in form, and eannot be rendered determinate
without further transformation.
16T
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83. Indeterminate forms may have determinate values. A
case has already been noticed (Art. 2) in which an expression

that assumes the form %fﬂr a certain value of itz variable takes

a definite value, dependent upon the law of variation of the

function in the vieinity of the assigned value of the variable.
As another example, consider the function

x* —at

r— i

y=

If this relation between = and y is written in the forms
Yz —a)=#—a’, (z—a)y—x—a)=0,

it will be seen that it can be represented graphically, asin Fig.
42, by the pair of lines

v T = ﬂj-
P/ ¥—&—0a= 0.
/ Henee when x has the value of a, there
/ ig an indefinite number of corresponding
b 'l
/ o 4 7 points on the locus, all situated on the

line #=a; and accordingly for this
value of z the function ¥ may have any
value whatever, and is therefore indeterminate.

When = has any value different from a, the corresponding
value of ¥ is determined from the equation y =z +a. Now,
of the infinite number of different values of y corresponding
to =, there is one particular value 4P which is continuous
with the series of values taken by y when x takes successive
values in the vicinity of #=«. This may be called the de-
terminate valwe of y when z =a. [t i3 obtained by putting
x = a in the equation ¥ = = + a, and is therefore y =2 a.

Fra, 42
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This result may be stated without reference to a locus as
follows. When = = a, the function
xt — af

& — @

iz indeterminate, and has an infinite number of different
values ; but among these values there is one determinate value
which is continuous with the series of values taken by the
function as x increases through the value a; this determinate
or singular value may then be defined by

lim & — {1!_

T=a 0 __

In evaluating this limit the common factor z — a may be re-
moved from numerator and denominator, since this factor ia
not zero while @ is different from @; hence the determinate
value of the function is

Ex.1. Find the determinate value, when £ = 1, of the function

P e R
2 —F3xf—z+ 1

which, at the limit, takes the form g

This expression may be written in the form

(2 4 dx){xr —1)
(B — 1)(x = 1)

which reduces to ;:—""—Ffil' When x = 1, this becomes %= 2,

o —

Ex. 2. Evaloate the expression

8 4 ar? 4 a%x + at
¥+ ¥z 4 a® 4 abd

when = — a.
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Ex. 3. Determine the value of

P -7t 3r4 14
P82 17z + 14

when = =2,

Ex. 4 Evaluats T—VY® —= "'::—'*‘“

(Multiply both namerator and denominator by a + va® — E".}L

when z = (.

84. Evaluation by development. In some cases the common
vanishing factor can be best removed after expansion in series.

Ex. 1. Consider the function mentioned in Art. 82,

£ — g F
gin ¥

When nomerator and denominator are developed in powers of =,
the expression becomes

2 71 o8
1 L-—(]— — S — J-r)
+x+M+J! ant
=
:_u...ﬂ+ -
2 xd
_2:+3t1'+ _E+E+ #4s
x4 o x? !
¥ H-_E+ 1-'E+r-|r

which has the determinate valoe 2, when x takea the valua zero.

Ex. 2. As another example, evaluate, when == 0, the function

z —ain—tx
gin® x
By development it becomes
1. ) _,. ..
(I+2 3 ﬂ+

.
(o= 5+ -)

Removing the common imtnr, and then puiting x = 0, we obtain
-1
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In these two examples the assigned value of =, for which the
indeterminateness occurs, is zero, and the developments are made
in powers of x. If the assigned value of z is some other number,
as a, then the development should be made in powers of z — a.

Ex. 3. Evaluate, when r="T, the function

2
_CosT
1 —sginx
By putting = — g = f, 2 = ;—:'+ h, the expression becomes
T i® At
—_ .ﬁ == e — e —1 — = man
mﬂ(ﬂ+ ) _ —sink _ " T 7%
. 1 —cosh AT R A A8 '
1—sin(Z+ 1) MR AR,
T T TR TR

which becomes infinite when & = 0; that is, when r = %

lim ocosx
¥=T1 - sinw

according as k approaches zero from the negative or positive sida.

Hence =+ o,

85. Evaluation by Differentiation. Let the given function

be of the form ﬁ:-?} and suppose that f(a)=0, ¢(a)=0. It
. ) lim f{x)
d to find . <27,
is required to find . (2)
We assume that f{z), ¢(z) can be developed in the vieinity
of # = a, by expanding them in powers of x —a. Then

e T@H@E—)+ 0 @ ot

O b+ p@e—at SN e ot

r@e—a+ D@ —ayt ..

d@e-a+ D —at -

EL. caLe — 11
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By dividing by # — ¢ and then letting x = a, we obtain
lim f(x) __ fla)
2=1g(z)  ¢'(a)
By hypothesis the functions ("(a), ¢'(a) will both be finite.

If f'(a) =0, ¢'(a) % 0, then % =0.

If )+ 0, ¢'(a) =0, then ;Ei} = oo,

1f f'(a) and ¢'(a) are both zero, the limiting value of ﬁ%

is to be obtained by carrying Taylor's development one term
farther, removing the common factor {# — a)’, and then letting

x approach a. The result 18 fh(a),
i $"(a)

Similarly, if f{a), Ma), J'(a2); $(a), ¢'(a), " (a) all vanish,
it is proved in the same manner that
lim f(z) _ f""(a)
= ag(z) " $"(a)
and 8o on, until a result iz obtained that is not indeterminate
in form.
Henee the rule:

To evaluate an expression of the form g, differentiale numer-
ator and denominalor separately; substitute the critical voalue of
x in their derivatives;) and equale the gquotient of the derivatives
fo the indeferminate form.

Ex.1. Ewvaluate -ILE“‘_,“_B when 8 =-D.
Put S0y =1 — cos §, H(8)= -
Then S = siu b, (=28,

and F(m=un $'(0) =0.
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Thus, the function L8 iz also indeterminate at @ = 0. It is there-

+'(6)
fore necessary to obtain i%
Accordiugly, JF"(#) = cos 8, ¢ {f) =2,
J10)=1, $(0) =2,
hence lim 1 —coaf_ 1

§=0 g 3

. lim a"+e‘i‘-]-ﬂrm.t—4
Ex. 2. Find 2 =0 = .

lim e 4 ¢ * 4 2008 x—4 _ lim e —a» — Aginx

x=10 It Cx=0 e
_ lim &= e = —2pemmz
x=10 12 x2
_ lim = — == 4 Dginz
Tax=0 04 5
_ lim e*+& %4 2opax
Tx=0 pr
=1
t

. lim *=—8inzooax
Ex. 3. Find P e

o lim 28— 2 4y x4
Ex. 4. F'lnd::él -2 21 .

In this example, show that z — 1 is a factor of both numerator and
denominator.

. . lim Stanx — 3% — 2*
Ex. 5. Emdxi'} prs -

In applying this process to particular problems, the work
can often be shortened by evaluating a non-vanishing factor
in either numerator or denominator before performing the
differentiation.
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Ex. 6. Find _ limy (:—-l-}’tun:r

The given expression may be written

]Jm LA li 1
= ﬂ{:'_ﬂ: = ::I-l][ ﬂ,x:uta::
=16-1= 140,
In general, if f(z)=y(x)x(x), and if ¢(a) =0, x(a)+0,
) =10, then .
20 4z) ’{ @y
For
lim ﬂiﬂ!;{ﬁi x(# lim Wiz) _ ¥'(a )
r=a ﬂ:“u. } r=a X :'
¢(z) $(x) '(a)
l:m gin ¢ cos?x
Ex. 2 e <
X 7. Fmd P {Ja:——.r}“
o lim (T — 3)%leg(2 — x)
Ex. 8. Find v =1 wn(z— 1)
EXERCISES
Evaluate the following expressions :
l'jmzwhan:::l]. T. iﬂ#whau:=l}.
gin x x
!ﬂ_ g—l - a
. = tan £ —
2 = when z = 0. 8. LT e:::ruw:: when z=0.
[ — |
e 9, 0T henz=0.
aF — tan—'zx
4, when x = (L
tr =1 Ssing — 1 — £°
: \ - . h =1
5. m":_': when z = 10 m*‘+xluxgl:1—r}wenx
1
6. u:lﬁ when x=0. 11. uL:lehm::ﬂ.

There are other indeterminate forms than % They are
2ow—w 1% .
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86. Evaluation of the indeterminate form %

Let the function I(=) become % when a=a. It 18 re-

$(x)
: i &I
quired to find . :ﬂ%-
This funetion can be written
1
J(=x) _ ¢(=)
$(z) 1°
Sizx)

which takes the form g when x=a, and can therefore be

evaluated by the preceding rule.

When o =a, 1 #'(z)
lim J() — lim E= lim B [_"!’{1!:’]!

z=ag() *=a_1 “x=a_ j'(2)

S i) [A=)]

_ lim fz) fﬁ@'
22 qr-{xn] 7@ @

If both members are divided by ;‘i"'u-%, when this limit

is not 0 nor e, the equation becomes

_ i f(2) $/(2)
== ag(z) f(z)’

tim [ M2)]_ f'(a)
therefore = .

: 2= “[-ﬂﬂ}] #'(a) @
This iz exactly the same reanlt as was obtained for the form
. hence the procedure for evaluating the indeterminate forms

(=1 f— Q=] =]

» 2, is the same in both cases.
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When the true value of fla) is 0 or oo, equation (1) is salis-
it

fied, independent of the value of ﬁg%; but (2) still gives the

correct  value. For, suppose lim () =1{. Consider l]hﬂ
==ﬂ¢wn
I x) o Jlx )+ edb ()
d(x) ET} ’
which has the form :'_‘f‘ when == a, and has the determinate
value ¢, which is not zero. Hence by (2)
I @)+ 4@) L @4 H @ L@,
z=a  (x) $'(a) $'(a)
Therefore, by snbtracting ¢,

lim flz) _ (@)
tZag(z) ¢ (a)

If xh:a% =, then _ o ?ﬁ—' 0, which can be treated
as the previous case.

The forms 0-e0 and w —o can usually be evaluated by
putting them in one or the other of the forms already dis-
cussed. In the ecase of the others, in which the indetermi-
nateness appears in the exponent, the logarithm of the
function can be reduced to one of the preceding forms.

function

EXERCISES
Evaluate the following expressions:
l.l—ﬂgﬂi?—hwhmlz=ﬂ. 4 BRT ene=T.
log sin = tan 5z 2
2. BT whenz = 0. 5 %¢3% ohenz=T.
eot x sac b x 2

6. xeinz when x =0

i
3. — wh = 0.
TheRE== 7. (cos ax)™"r when x = 0.



CHAPTER XII

CONTACT AND CURVATURE

87. Order of contact. The points of intersection of the two
curves y=(x) y=yp()

are found by making the two equations simultaneous ; that is,
by finding those values of @ for which

$(x) = ().
Buppose ¥=a i8 one value that satisfies this equation.
Then the point x=a, y = ¢{a)=y{u) i5 common to the curves.

If, moreover, the two curves have the same tangent at this
point, they are said to touch each other, or to have contact

with each other. The values of y and of g—: are thus the

same for both curves at the point in question, which requires

that . *{ﬂ_} — 'P (ﬂ } .
$'(a) = y'(a).

If, in addition, the value of Y 2 the same for each curve

at the point, then

¢'"(a) =¢"(a),
and  the curves are said to have a contfact of the second order
with each other, provided ¢"'(a) + ¢'"(a).

If ¢(a) =¢(a), and all the derivatives up to the nth order
inclusive are equal to each other, that is, ¢'(a) = ¢'(a),
(@) = (@)« 7(a) = (@), but ¢ (a) = P (a),
the curves are said to have contact of the nth vrder.

167



168 DIFFERENTIAL CALCULUS

88. Number of conditions implied by contact. If the equation
of the curve y=¢(x) is given, and it is required to determine
the equation of a second eurve y = () that shall have contact
of any given order with y= ¢(z) at a speecified point, then,
from the definition given in the preceding article for contact
of the nth order, n 41 conditions must be imposed upon the
coefficients in ¢(z). The required enrve must therefore eon-
tain at least n+4 1 arbitrary constants in ovder to fulfill the
required conditions,

A straight line has two arbitrary constants, which can be
determined by two conditions; accordingly a straight line can
be drawn which touches a given curve at any specified point.
For if the equation of a line is written y = mx 4 b, then

d_ ., F_o,
hence, throngh any arbitrary point x=a on a given curve
¥ =d(z), a line can be drawn which has contaet of the first
order with the curve, but which has not in general contact of
the second order; for the two conditions for first-order con-
tact are . ma + b = (a),

mo=d'(a),

which are just sufficient to determine m and b,

In general no line can be drawn having contact of an order
higher than the first with a given curve at a given point; but
there are certain special points at which this can be done.
For example, the additional condition for second-order contact
i8 0 = ¢""(a), which is satisfied when the point z=a iz a
point of inflexion on the given curve y= $(x). (Art. 49)
Thus the tangent at a point of inflexion on a carve has contact
of the second order with the curve.
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The equation of a circle has three independent constants.
1t is therefore possible to determine a circle having contact of
the second order with a given curve at any assigned point.

The equation of a parabola has four constants, hence a
parabola can be found which has contact of the third order
with the given curve at a given point.

The general equation of a eentral conie has five independent
constants, hence a conic can be found which has eontact of the
fourth order with a given curve at any specified point.

As in the case of the tangent line, special points may be
found for which these eurves have contact of higher order.

88, Contact of odd and of even order.

TaroreM. At a point where two curves have contact of an
odd order they do not cross each other; but they do cross
where they have contact of an even order.

For, let the curves y = @(z), y=y(z) have contact of the nth
order at the point whose abseissa is a; and let y, ¥y be the
ordinates of these curves at the point whose abseissa is @ + h.

Then Yy =dlo + 1), ya= (a4 k),

and by Taylor's theorem
1= $la)+ ¢'(a) - b +%l hE .

$r(a) ., AT e
+50 Ji +{ +1J‘¢ {a)+ -

Yo = gla)+ /() - h+$-m+ ..

m n+1 .
+ +( +1), -y a) +
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Sinee by hypothesis the two curves have contact of the nth
order at the point whose abacissa is a, hence

¢la)= (o), ¢'(a)=y' a), -, ¢"{a)=y"(a),

ot

i@ @ T

but this expression, when & is sufficiently diminished, has the
same S1gN as v ™ ) — e +i(a)].

Hence, 1if n is odd, y, — » does not change sign when % is

changed into — &, and thus the two curves do not eross each

other at the common point. On the other hand, if » is even,

and g —y=

# — ¥ changes sign with &; and therefore when the contact
is of even order the curves cross each other at their common
point. '

Geometrically, we may say that two curves having contact
of the nth order pass through n 41 common points which
approach coineidence at the point of contact. For let y = ¢(x),
# = (x) touch each other at » = a. This means that they have
two coineident points in common at (a, ¢{a)), and the condi-

tions to be satisfied are
(@)= y(a), $'(a)=4'(2).
If the curves alzso have a point in common for = = a 4 &, then
il -+ )= y{a+ k).
Expanding by Taylor’s series and making use of the preced-

ing conditions, we may cancel the common factor A% If now
this condition is still satisfied when A approaches zero, so that
the third point of intersection approaches the position of the
two coineident ones, then we must have the further condition



CONTACT AND CURVATURE 171

¢"(a)=¢"(a). Thus, three coincident points of intersection
imply contact of the second order. By repeating this argu-
ment the above theorem results.

For example, the tangent line usually lies entirely on one
side of the eurve, but at a point of inflexion the tangent erosses
the curve. :

Again, the eircle of second-order contact erosses the curve
except at the special points noted later, in which the ecircle
has contact of the third order.

EXERCISES
1. Find the order of contact of the curves
dy=x2and y=x~ 1.
2. Find the order of contact of the curvea
s=yand =2y +1=0
3. Find the order of contact of the carves
dy=322—4 and £ - 2py=3 -z

4, Determine the parabola having its axis parallel to the y-axis,
which has the closest possible contact with the eurve a%y = z* at the
point (@, a). (The equation of a parabola having its axis parallel
to the y-axis is of the form

y=dAz?+ Bx + ()

5. Determine a straight line which has contaet of the second order
with the enrve y=x*—3z—Bx +

6. Find the order of contact of
' y=log(x —1)and «* —x +2y+8=10
at the point (2, 0).
7. What wust be the value of a in order that the curvea
y=z+1%a(x- ].}’mulztyzﬁx-—l
may have eontact of the second order?
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8. Determine the parabola which has its axis parallel to the y-axis
and has contact of the second order with the hyperbola zy = 1 at the
point (1, 1).

9. Determine the point and order of contact of the curvea

(a) y=3% y=0:2— Bz 4 4;
(B) y=a% y= —6z"— 122 — 8,

10, Determine the parabola which has it axis parallel to the y-axis,
passes through the point (0, 3), and has contact of the first order
with the curve y =2 z? at the point (1, 2}, Similarly for a parabola
having its axis parallel to the »-axis.

11. Show that the curve y = sin z has contact of the sixth order
with the curve - £

¥=%— E + ﬁ
at the origin. Show that y =sinz, y = sinh :r;ﬁ'hava contact of the
second order at the ordpin.  Draw these curves.

3

12. Find the order of contact of the curves y = cosz, y =cosh z
at the point (0, 1). Sketch the curves.

13. Find the order of contact at the origin of the curves
ginh x
cosh x

90. Circle of curvature. The circle that has contact of the
closest order with a given curve at a specified point is called
the osculating cirde or circe of curvature of the curve at the
given point, The radius of this circle is called the radius of
curvalure, and its center 18 called the center of curvature at the
assigned point.

y=tanz, y = tanhzr=

91. Length of radius of curvature; cobrdinates of center of
curvature. Let the equation of a circle be

(X —a) + (¥ —fB)' = R, (1)

in which R is the radius, and e, 8 are the coidrdinates of the

center, the current cobrdinates being denoted by X, ¥ to dis-

& ttaf«-h;l".
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tinguish them from the codrdinates of a point on the given
CUTYE.

Tt is required to determine R, a, 8, so that this circle may
have contact of the second order with the given curve at the

point {z, ¥).
From (1), by successive differentiation, we deduce
dY

()
1 +( (Y — ,ﬂ}_-_ﬂ

1f the cirele (1) has eontact of the second order at the point

(x, y) with the given curve, then when X =2 it 18 necessary
that

Y=y,
ay_dy &Y _ @.] ®)
AX  de' dX?® da?

Substituting these expressions in (2), we obtain

@@= o) +— BIL=0,

: @
(8 o-see
whence
y—ﬂ=—£:g§I,m—m*§ii;§%II (5)
§ . d_f Eﬂ
and finally, by substitution in (1),
L @Y o

&y
d?
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Ex. 1. For the curve y = sin z, show that & = x4 cot z{1 + cos? 1),

B=—2cosrcscx, K=~ (1+ ﬂﬂﬂir}i escr. Find the numerical
'|] ﬂ- E m

634’8
points (e, B) ou a drawing. Skelch roughly the path of this point
as x varies.  Write the equation of the osculating circle for the point

values of @ and § when x = » and locate the corresponding
T = g, and for x = ;—r Diraw these circles.

Ex. 2. For the curve y = 2% find a, B, R in terms of z. Computa
their numerical values at 2 =1, .7, G, 8 0. Show that R is a mini-

mum when z = —— = .39 ..., and that the value of R is .57 -.-.
V5

92. Limiting intersection of normals. Let P=(z, ) and
FP'= (ry y3) be two points on a given eurve f{x, ) =0. The
equations of the normals at these points are

(o=m)+ @ — ) =0,
(:-rs)+{y—y=}%=
If (o', B is the point of intersection of these two lines, then
' dy,
—o) 4 . | - = U,
(&' =) + (B' —m) iz,
(e —m)+ (8~ )5 =0
Now consider the funetion ¢z} of = defined by the equations
Vo) =@—a)+ v —BYLY,  fay) =
Since ¢ () =0 and ¢(x)=10, hence by Rolle's theorem

(Art. 79) it follows that
Y {ﬂ =10,
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in which # is defined by the inequalities
¥y <l X < Ty
Hence «f, ' may be determined by the simultaneous
equations () =0, y(x)=0.

When = (x, ) approaches coincidence with the point
P={x, 1), then ¢'(x) =¢'(x), and therefore from (4), the
point {«', A") becomes the center of eurvature, hence:

The center of eurvature at a point P on a curve is the limiting
position of the point of intersection of the normal at P with the
normal at the point P, when /¥ approaches the position of P,

_ 9'3;" Direction of radius of curvature. Binee, at any point P

on the given ecurve, the value of gz-" is the same for the curve
T

and the osculating eirele for that point, it follows that they
have the same tangent and normal at P, and hence that the
radins of eurvature coincides with the normal.  Apgain, since

the value of :jﬂ:", is the same for both curves at P, it follows
*

from Art. 50, that they have the same direction of bending
at that point, and hence that the center of curvature lies on
the concave side of the given eurve (Fig. 43).

It follows from this faet and Art. 87 that the osculating
circle is the limiting position of a circle passing through three
peints on the curve when these points move into coineidence,

The radius of curvature is nsnally regarded as positive or
negative aceording as the bending of the curve is positive or

negative (Art. 49), that is, according as the value of ? is
x*

positive or negative; hence, in the expression for R, the radi-
eal in the numerator is always to be given the positive sign.
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The sign of & changes as the point J* passes through a point
of inflexion on the given curve (Fig. 44). Itis evident from
the figure that in this case B passes through an infinite value;

Q

Fia, 43 Fru. 44

for the circle through the points N, P, @ approaches coinei-

dence with the inflexional tangent when N and @ approach

coineidence with P, and the center of this circle at the same
time passes to infinity.

94. Total curvatore of a given arc; average curvature. The

total curvature of an are PQ (Fig. 45) in which the bending

iz in one direction, is the angle through

which the tangent swings as the point

) of contact moves from the initial point

P to the terminal point ; or, in other

words, it is the angle between the tan-

gents at P and ¢, measured from the

Fr- 48 former to the latter. Thus the total

eurvature of a given arc is positive or negative according as

P AP

the bending is in the positive or negative direction of rotation.
The total curvature of an are divided by the length of the
arc is called the average curvature of the are. If the length of
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the arc P is As centimeters, and if its total eurvature is Ad
-q!r

radians, then its average curvature is = radians per centimeter.

95. Measure of curvature at a given point. The measure of
the curvature of a given curve at a given point P is the limit
which the average curvature of the are PQ approaches when
the point € approaches coincidence with P.

Since the average curvature of the are @ is %, the
measure of the eurvature at the point P is

_ lim Ad _ dé

“= 8120 5y T dy?

and may be regarded as the rate of deflection of the are from
the tangent estimated per unit of length; or, as the ratio of
the angular veloeity of the tangent to the linear veloeity of the
point of contact.

To express « in terms of z, v, and the derivatives of ¥, we

observe that tan ¢ =§£;
whence ¢=tan—“—13,
; de¢  d _y iy
d 124
. ds ds(t&“ dx
i _rdyy, dr
= [t T2,
aa,-( M) ds
&y
det 1
dy\t ds’
L] 1 — —
+(d:u) x
&y
therefore x= ¢ _ ___dr . [Art. 41.

EL, OALD, =— 13
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96. Curvature of an arc of a circle. In the case of a circular
~are the normals are radii;

henece As =171+ Agh, m:.—;l_ (1)

and therefore K= % ‘

1t follows that the average ﬂurvatnrﬁ of all arca of the same

circle is constant and equal t-u L fadians per unit of length.

For example, in a circle of 2 feet radius the total curvature
of un are of 3 feet is § = 1.6 radians, and the average curva-
ture iz .5 radian per foot.

It also follows from (1) that in different eircles, arcs of the
same length have a total eurvature inversely proportional to
their radii.

Thus on a eireunmference of 1 meter radiug an are of § decimeters
has a total curvature of .5 radian, and an average curvature of .1
radian per decimetar ; but on a cirvcumference of half o meter radius,
the same length of arc has a total curvature of 1 radian and an
average curvature of .2 radian per decimeter.

EI'.Tt Curvature of osculating circle. A curve and its oscuolat-
in-g cirele at P have the same measure of curvature at that
point.

For, let &, x" be their respective measures of curvature at
the point of contact (x, ). Then from Art. 95,

dy
dz?

K = ®

+(@))°
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But this is the reciprocal of the expression for the rading of
curvature (Eq. (6), p. 173); hence

That ia: the measure of curvature x at a point P is the recipro-
eal of the radivs of curvature R for that point. Since a curve
and its osculating eirele have the same radius of eurvature
(Art. 90} at their point of contaect, it follows from this result
that the measure of curvature is also the same for both; k=",

It 18 on account of this property that the oseulating circle
is called the circle of curvature. This is sometimes used as
the defining property of the ecirele of curvature. The radius
of eurvature-at P would then be defined as the radius of the
circle whose measure of curvature is the same as that of the
given curve at the point 2 Itz value, as found from Art. 95
and Art. 96, accords with that given in Art. 91,

EXERCISES
1. Find the radius of curvature of the curve y? = 4 az at the origin.

2. Find the radius of curvature of the curve ¥* + % 4 a4+ yt)
= ay at the origin,

3. Find the radius of eurvature of the curve aly = bz? + cx¥y at
the origin.

Find the center and the radius of eurvature for each of the following
curves ab the point (z, )} and their numerical values at the special
point indicated. Find where the curvature is greatest and least on
each curve,

4. Rectangular hyperbola £z = m? at (m, m).
2 ‘
5. ,Hj'pe-rhulaﬁ i 1 at (a, 0)
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v @

10.

11.

DIFFERENTIAL CALCULUS
General parabola a1y = z= at (a, a).
Parabola vz + vy = v at (a, 0).
Hypoeyeloid 2t + yi = a¥ at the point at which z =g.
Cissoid y* = _ 2 atz=a

g —x .

Catenary y= E*’u-’*'* e s)atx=10.

In what points of the curve y = 2 is the curvature greatest?

Direct derivation of the expressions for x and R in polar

codrdinates. Using the notation of Art. 58, we have

hence

But

$ =0+
db df
_ (1+%) [Art. 44,

+()]
tany =p5, ¥= tnn-ifg—z}
dd

therefore, by differentiating as to # and reducing, we obtain

as) ~ Pa@

v o)

(@)~
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which, substituted in (1), gives

P’ p—E + ﬂ(%)’

[+(&)]

SHinos « =% it follows that

pe L) |
p —P—£+3(dﬂ)

This result should be compared with that of Art. T2.

When % — 1 is taken as dependent variable, the expres-

P
sion for « assumes the simpler form

a*u
i-!-'('l-!-—l' Eﬁi) -
dun
2 (T
[+(a) ]
Since at a point of inflexion x vanishes and changes sigm,

henee the condition for a point of inflexion, expressed in polar

cobrdinates, is that :.n+:%';'!F shall vanish and change sign.

L]

EXERCISES
Find the radins of curvature for each of the following curves:
1. p=a’ a p=i"‘umuﬂ'—a. 5. pleos2f = ot
2. pt=atcos20. 4. peosi]f=a 6 p=2a(l —coafl).

7. pf=a.
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EVOLUTES AND INVOLUTES

99. Definition of an evolute. When the point P moves aiﬂng
the given curve, the center of curvature ¢! describes another
curve which is called the evolute of the first.

Let fla, y)=0 be the equation of the given curve. Then
the equation of the locus described by the point € is found by
eliminating « and y from the three equations

Az, y)=10,
i ()
TR
o
1+(‘£

and thus obtaining a relation between «, £, the cotirdinates of
the center of curvature.

No general process of elimination can be given; the method
to be adopted depends upon the form of the given equation

J(xy) =0,

Even when the elimination eannot be performed, the evolute
can be traced from peint to point by computing successive
values of (&, B) corresponding to suceessive values of (z, ¥).

Ex.1. Find the evolute of the parabola y? = 4 pa.
g T T . ﬂm*’:_!i;—!,
e y=2pieh TR = 5P

hence T — = —p‘*a:_i{l +]'J.t_1}?p_'!1'i ==~ 2(x + p),

and oy — 8= (1 4+ pr)2piad —o(phad 4 platy;
therefore =2p+ 8z, 8= —Ep‘*xi.
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iz, 46

The result of eliminating x between the last two equations is
& (a —2p)* = }(pIB)%
ie. 4w — 2 p) =27 pf3,
which is the equation of the evolute of the parabola, &, 5 being the
current codrdinates.

Use the expressions for & and J to compute their values, and to
locate the points (o, §) when x =10, _-":, -

Fx. 2. Find the evolute of the ellipse

Ll
Zel=1 N
T o8 dy_go de_ Wz
Here u=+ﬁ’f dr de . a%'
By B - e e i PR
== =\ ¥ oy ) T Y PD= 55
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whence (aty? 3,
_ (ot 4 bl ¥_ aty? .
y-B= ad ( i +a“) ( +1 b*)
Therefore . =f= “u; b!'y-t (2)
Similarly, L) ()

On eliminating z, y between (1), (2), (3), the equation of the
locus described by (a, #) is
(aeyt + gt = (a2 — i, (Fig. 51)
Use (2), (1) to locate varions values of (i, 8), and trace the evolute.
Take a=25;a=4l.

100. Properties of the evolute. ‘The evolute has two im-
portant properties that will now be established.

L. The normal to the curve is fangent to the evolute. The
relations conpecting the ecotrdinates (e, B) of the center of
curvature with the coiirdinates (x, y) of the corresponding
point on the curve are, by Art. 91,

s—a+ @y —HY=0, (1)
L AP o
1+ d:.:) +—B) =0 ()

By differentiating (1} as to =, considering , 8, y as functions

of z,we obtain 2
1 ay _ Ty _de  dfdy = 0.
+(dz) T T dr )

Subtracting (3) from (2), we obtain

2+ Lo @
dr | dz dz

g _ _dz
hence __ =,
" ol dy
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" But 28 is the slope of the tangent to the evolute at («, g,

and —%T is the slope of the normal to the given curve at
)

(%, ). Hence these lines have the
same slope; but they pass through the
same point (e, ), therefore they are
coincident.

II. The difference befween two radif
of curvature of the given curve, which
touch the evolwle af the points ), O Fig. 47
(Fig. 47), is equal to the are C\Cy of the evolute.

Since B 1s the distance between the pointa (2 ¥), (« 5).

henece (z— ) +(y — B)'= R (5)

When the point (x, ¥) moves along the given curve, the
point (e, 8) moves along the evolute, and thus «, 8, B, ¥, are
all functions of = '

Differentiation of (5) as to = gives

{:lr—-:r}(l - %:)+ (y— 'ﬂ](g_j}' = L—Ri (6)

henee, subtracting (6) from (1), we obtain

@—)%+ @y—pL=—RrE. ™

Again, from (1) and (4),

de  dB
i i
e y—f (8)
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Henee, each of these fractions is equal to

@

VeE—art—fF %

in which o is the arc of the evolute. (Compare Art. 41.)

Next, multiplying numerator and denominator of the first
member of (8) by #— e, and those of the second wember by
¥ — 8, and combining new numerators and denominators, we
find that each of the fractions in (8) is equal to

{=‘ﬂ}{;—:+ f::—ﬂ}g'g
(@ — a)* + (y — B)° ’.
R% -
which equala — = by (7) and (5).

By combining with (9), we obtain

dor iR
dz~ L dz’
that is, i%{:rj;ﬂ}={}.
Therefora o & R = constant, (10)

wherein o 1s measured from a fixed point A on the evolute.
Now, let 7y, Oy be the centers of curvature for the points
P, P, on the given curve; let P,y =R, (= FR,;; and let
the ares AC,, AC; be denoted by oy, oo Then
m + B, =ay + K, by (10);
that is o — o=t (B — &);
hEI].EEI, ara E‘I'lﬂl': = R':— Rl-l - (Il}
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Thus, in Fig. 48,
Fl'r_n + CILTI = 'Pt':rt
FyCy + (50 = FyCy ete.

Hence, if a thread is wrapped
around the evolute, and then is un-
wound, the free end of it can be
made to trace out the original euarve,
From this property the loeus of the
centers of curvature of a pgiven
curve is called the evolute of that curve, and the latter is called
the énvolute of the former,

When the string is unwound, each point of it describes a
different involute; hence, any eurve has an infinite number
of involutes, but only one evolute.

Any two of these involutes intercept a constant distance
on their eommon normal, and are called parallel eurves on
acconnt of this property.

Fia. 48

Ex. TFind the length of that part of the eveunte of the parab-
ola which lies inside the curve.

From Fig. 46 the required length is twice the difference between
the tangents CyF; and Py, both of which are normals to the
parabola.

To find the codrdinates of the point Py, write the equation of the
t.angf-.ut'tn the evolute at ', and find the other point at which it
intersects the parabola.

The codrdinates of 7, the point of intersection of the iwo eurves,
are (8 p, 4 pv'2), and the equation of the tangent at C, is

Dr—vViy—Bp=0
This tangent intersects the parabola at the point (2p, — 2v2p),
which is P,. '
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The valne of the radins of corvaturs ia EL:_EL! » hence P, =2 p,
: vr
P30y = 63 p, hence the are C,C, is 2 p(3v8 — 1), and the required

length of the evolute is therefore 4 p(3v3 — 1).

EXERCISES

Find the codrdinates of the eenter of eurvature for each of the
following curvea:

1 x4 yt=al 3. ¥ =an

2 r=alog TtV —¥ "]:_s-fu‘-yﬂ 4. y=£{e;+e_5}.
o F ﬂ

Find the equations of the evelutes of the following curves :
5. xy=ad 6. ahy? — M= — a%d 7. ot & y; — af.
B. Show that the curvature of an ellipse is a minimum at the end

of the minor axis, and that the osculating circle at this point has con-
tact of the third order with the curve.

L8] A

Fra. 49

This cirele of ecurvatore must be- entively ontaide the ellipse
(Fig. 49). For, consider two points Py, Py, one on each side of 5,
the end of the minor axis. At these points the curvature is greater
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than at B, hence these points must be farther from the tangent at B
than the eircle of curvature, which has everywhere the same curva-
ture as at B,

9. Similarly, show that the curvature at A, the end of the major
axis, is a maximum, and that the circle of curvature at 4 lies entirely
within the ellipse (Fig. 48).

10. Show how to sketeh the eirele of curvature for points hetween
A and B. The cirels of carvature for points between 4 and B has
three coincident points in common with the ellipse (Art. 93), hence
the circle erosses the curve (Art. 39). Let K, P, L be three points
on the are, such that K is nearest 4 aod L nearest B, The center

B

Fui. 50

of eurvature for P lies on the normal to P, and on the concave side
of the curve. The eircle crosses at P, lying outside of the ellipse ab
K (on the side towards A), and inside the ellipse at L; for the bend-
ing of the ellipse increases from B to P and from P to K, while the
bending (curvature) of the osculating cirele remains constant
(Fig. 50).

11. Two centers of curvature lie on every normal. Prove geo-
metrically that the normals to the curve are tangent to the evolute.
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12. Show that the entire length of the evolute of the ellipse is

T g8 . .
4 (% — %) [From equation (11) above, take R, E, as the radii of

curvature at the extremities of the major and minor axes.]

13, If ¥ is the center
of eurvature at the vertex
A (Fig. 51), prove that
K = ae?, in which « is
the eccentricity of the
ellipse; and hence that
oD, CA, CF, CE form
a peometrie series whosa

common ratiois e. Show
also that DA, AF, I'E

forin a similar series.

14. If H ia the center
of curvatnre for B, show
that the point A is with-

H out or within the ellijse,
Fia. 51 according 83 @ == or
T

< bv2, or according as ¢2 = or << 1. Sketch the evolute when & = -

15. Bhow by inspection of the figure that four real normals can
be drawn to the ellipse from any point within the evolute.
16. Find the parametric equations of the evolute of the cycloid
x=oa(l —sind), y=a(l — cosd).



CHAPTER XIII
SINGULAR POINTS

101. Definition of a singular point. If the equation f(z, ¥} =10
is represented by a curve, the derivative %—i, when it has a

determinate value, measures the slope of the tangent at the
point (z, y). There may be certain points on the curve, how-
ever, at which the expression for the derivative assumes an
illusory or indeterminate form; and, in consequence, the slope
of the tangent at such a point cannot be directly determined
by the method of Art. 5. Such values of =, y are called sin-
gular valwes, and the corresponding points on the curve are
called singular points. '

102. Determination of singular points of algebraic curves.
“When the equation of the eurve is rationalized and cleared of
fractions, let it take the form f{x, y = 0.

This gives, by differentiation with regard to z, as in Art. 60,

af L ardy _g
iz oy dz
af
dy  dx
whence dz E (1)
dy
In order that ‘;—I may become illusory, it is therefore neces-
sary to have af =10, ar =), (2)

dr o
11
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Thus, to determine whether a given carve f{x, %) =0 has

singular points, put o ar
o dy

these equations for x and .

If any pair of values of 2 and y, so found, satisfy the equa-
tion f{x, ¥) =0, the point determined by them is a singular
point on the curve.

To determine the appearance of the eurve in the yieinity
of a singular point (z,, %), evaluate the indeterminate form

and == each equal to zero and solve

df
dy  dx 0
dx af 0’

dy

by finding the limit approached econtinnously by the slope of
the tangent when ==, ¥ =y,.
E(ﬂ_

dz(f)

_Bf dy
af dx Ay

7 o dy

dx i
at the point (=, ). %
This equation eleared of fractions gives, to determine the
slope at (=, #), the gquadratic
af iy ® ﬂii Q’J"
ar ey 2 = (.
ﬂy’(dﬁ) N a-'t-'ﬂ:ar( ) ©
This quadratic equation has 1 general two roots. The
only exceptions ocenr when simultaneously, at the point in

rquestion, 11}_“ 0, 5’5" =0, ;-g—ﬂ (4)

Hence

[Arts. 64, 85,

=1
—_—
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in which case ﬁ—y iz still indeterminate in form, and must be
€L
evaluated as before. The result of the mext evaluation is a
cubic in j-i", which gives three values to the slope, unless all
e

the third partial derivatives vanish simultaneously at the
singular point.

The geometric interpretation of the two roots of equation
(3) will now be given, and similar principles will apply when
the quadratic is replaced by an equation of higher degree.

The two roots of {3) are real and distinet, real and coinei-
dent, or imaginary, according as

()%
dx dy axt dyt
is positive, zero, or negative. These three cases will bhe con-
sidered separately.

103. Multiple points. First let H be positive, Then at the
point (z, y) for which -i‘ = -Ely =0, there are two values of

the slope, and hence two distinet singular tangents. It fol-
lows from this that the curve goes through the point in two
directions, or, in other words, two branches of the eurve cross
at this point. Such a point is called a real double point of
the enrve, or simply 3 node. The conditions, then, to be satis-
fied at a node (x, ¥,) are

F(@n 1) =0, fi= , o,

and Hi(z, yl} > 0.

Ex. Examine for singular pointa the curve
. EL. caLc.—13



194 DIFFERENTIAL CALCULUS

Here %:Ex—y+3ﬂ, gg:—z—li-y—?%yi

The values z = 0, y = 0 will satisfy these three equations, hence
{0, ) is a singular point.

Since %?—;=ﬁ+_ﬂ;=ﬁn{u,n],
&,
or dy
%’£=-4-43y=—4 at (0, 0),
¥
) X
Fia. 52

henee the equation determining the slope is, from (1),

(8 -a(l) oo

of which the roots are 1 and — §. It follows that (0, 0) is a doubla

point at which the tangents have the slopes 1, — 3.
Find the equation of the real asymptote, and the cosrdinates of the
finite point in which it meeta the curve.

104. Cusps. Next let H=0. The two tangents are then
coincident, and there are two cases to consider. If the curve
recedes from the tangent in both directions from the point of
tangency, the singular point is called a facrode. Two distinet
branches of the curve touch each other at this point. (See
Fig. 53.)
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If both branches of the curve recede from the tangent in
only one direction from the point of tangency, the point is
called a cusp.

Here again there are two cases to be dml:mgutahei If the
branches recede from the point on opposite sides of the double
tangent, the cusp is said to be of the first kind ; if they recede
on the same side, it is called a cusp of the second kind.

The method of investigation will be illustrated by a few
examples.

Ex. 1. Flx, )= a*y® — o' + 2* = 0.

..f—_iqizi-i-ﬂsi g:-—ﬂu"y.

The point (0, 0) will satisfy £ (z, y) = 0, %:n, %= 0; hence it

is a singular point. Proeeeding to the second derivatives, we oblain

gﬁ;=— 12 a¥z? + 30 ¢ = 0 at (0, 0),

¥ _q d
dz d s
Ez:ﬂu"‘. & X

The two values of gﬁ are there-

fore coincident, and each equal to Fia. 53

zero. From the form of the equation, the curve is evidently aym-

metrical with regard to both axes; hence the point (0, 0) is a tacnode.
No part of the curve can be at a preater distance from the y-axis

than + a, at which points g# i3 infinite. The maximom valoe of ¥

corresponds to = =+ avi. Between z =0, x = aVv{ there is a point
of inflexion (Fig. 53).
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Sketeh the curves obiained by giving larger and larger values to the
paramater a.

Ex.2. finy)=y"—2=0;
§f=_3¢i .@i‘=g
dx " ay ¥

llence the point (0, 0) is a singular point.

o _ _ .
Fu:thar,aﬂ_ Gx =0 at (0, 0);
__Lﬂﬂ = ﬂ'; ﬂ =2
az dy gy’
Therefore the two roots of the quadralic equation defining j—y- are
£

both equal to zero. 8o far, this caze is exactly like the last one, but
here no part of the curve lies to the left of the axis y. On the right
gide, the curve is symmetric with regard to the r-axis. As r increases,
¥ increases; there are no maxima nor minima, and no inflexions
(Fig. 54).
Ex. 3. Sz, 3)=z* — 2az?y — axy? +a¥y? =0,

The point (0, 0) is a singular point, and the roots of the quadratic
defining g-g are both equal to zero, hence the origin is a cusp, and the

cuspidal tangent is the z-axis.
To show the form of the curve pear the cusp, solve the equation

fory. The _
ot g n yzﬂf#(hyqyz}

First suppose that a is positive.

When z is negative, y is imaginary; whenz =0, y = 0; when z i
positive, but less than e, ¥ has two positive values, therefore two
branches are above the raxis. When z = a, one branch becomes in-
finite, having the asymptote = a; the other branch has the ordinate
i @. The origin is therefore a cusp of the second kind (Fig. 55).

Next suppose that o is negative. When r i3 positive, y is imagi-
rary; when x is negative, y is real. The same reasoning as hefore
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ghows that there is a cusp of the second kind in the second quarter,

with the z-axis as a cuspidal taugent.
Examiue the transition case in which @ = 0.

3 - i

Fra. 64 Fig. 65

X

o

105. Conjugate points. Lastly, let H be negative. In this
case there are no real tangents; hence no points in the im-
mediate vicinity of the given point satisfy the equation of the
curve.

Such an isolated point is called a comjugate point.

Ex. 1L f(z, y)=ay —* 4 bt =0

¥
Here (0, 0) is & singolar point of the

locus, and at this point we find

dy _ , [P

il a

both roots being imaginary if a and &
have the same sign.

To show the form of the curve, solve
the given equation for y.

Then y’=:|::3'"\| ﬂ_ﬁ, Fia. 56

and hence, if @ and b are positive, there are no real points on the
curve between x = 0 and x = . Thus iz an isolated point (Fig. 5i}).
Examine the cases in which a or b 1a negative.
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These are the only singulaiities that algebraic eurves can
have, although complicated combinations of them may appear.
In each of the foregoing examples, the singular point was
(0, 0); but for any other point, the same reasoning will apply.

Ex. 2, fizng)=2"+3pP- 13 -4x4+1Ty-3=0,

Y o, 4 Y_gp 95,417
dx * Yoy ¥ ¥+ 20

At the point (2, 1), (2 1)=0, L0, ¥ _0; hence (2,1) is
. . oz ay
& singular point.
8 —a. O _y. I _15, _o8 —_
Also az'_ﬂ‘ ﬂlﬂy_“' ayt_wy 28, = — &at (3, 1).

Henee EE =4 % ; and thus the equations of the two tangents at the

node (2, 1jarey =1 =§(x —2), g—1=—}{z — 2).

When H is negative, the singular point is necessarily a con-
jugate point, but the converse is not always true. A singular
peint may be a conjugate point when H=10. [Compare
Ex. 4 below.]

EXERCISES ON CHAPTER XIII

Examine each of the following curves for multiple points and find
the equations of the langents at each such point; also find the
asymptotes and eketch the curve

1. gl = -ﬁ“y“ + a:’y-".

¥
Dy -z

ﬂ.. y==

3. zi 4 y‘r = af; or, in rational form, (24 g% —a?) 4+ 27 a22%y? = 0.

4. (2 — af) = 1,

5 y=a4x4+bzt4 czi:, or, in rational form,
(y—a—z—he?)2— i =0,
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When a curve has two parallel asymptotes it is said to have a node
at infinity in the direction of the parallel asympiotes Apply: to
Ex. 6.

6 (- -4yt +y=0

7. 1 — 2ay® — Sa%t —2a%s? + at =0,

d y¥=z(z+a)? a=0; al{jﬂ,

9, *—Jary+3*=0. Fiud the asymptote and sketeh the curve.
10, pd =zt 4 25

11. Show that the curve y = z log r has a terminating point at the
origin. Find the minimum value of y and sketch the curve.

12, y =2t logx.



CHAPTER XIV
ENVELOPES

106. Family of curves. The equation of a curve,

Sz, 3)=0,

usually involves, besides the variables x and v, certain coeffi-
cients that serve to fix the size, shape, and position of the
curve. The coefficients are called constants with reference
to the variables z and ¥, but it has been seen in previous
chapters that they may take different values in different
problems, while the form of the equation is preserved. Let
« be one of these “constants.” Then if « is given a series
of numerical values, and if the locus of the equation, corre-
sponding to each special value of « is traced, a series of curves
is obtained, all having the same general character, but differ-
ing somewhat from each other in size, shape, or position. A
system of curves so obtained is called a _family of curves.

For example, if &, k are fixed, and p is arbitrary, the equa-
tion (y— k)P =2p(x—h) represents a family of parabolas,
each curve of which has the same vertex (A, k), and the same
axis y =k, but a different latus rectum. Again, if k is the
arbitrary constant, this equation represents a family of parab-
olas having parallel axes, the same latus rectum, and having
their vertices on the same line z = h.

The presence of an arbitrary constant « in the equation of

a curve i3 indieated in functional notation by writing the
200
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equation in the form f{z, y, ®)=0. The quantity «, which
is constant for the same curve but different for, different
curves, is called the porameter of the family. The equations
of two neighboring curves are then written

Sz ) =0, f.z ¥, “+ﬁ-}=“:

in which & iz a small increment of & These curves can be
brought as near to coincidence as desired by duminishing h.

107. Envelope of a family of curves. A point of intersection
of two neighboring curves of the family tends toward a limit-
ing position as the curves approach coincidence. The locus of
such limiting points of intersection is called the envelope of
the family.

Let flz, g, &)=0, flz, 9 a+h)=0 (1)

be two curves of the family, By the theorem of mean value
{Art. 39)

&y e +B)=1(5 0 @)+ (5 y, et o), (2)

which, on account of equation (1), reduces to

af -
ﬁ{'t' i, w4 8h) =0.

Henee, it follows that in the limit, when A =10,

g{{% ¥, a)="0

L]

is the equation of a curve passing through the limiting points
of intersection of the curve f(=z, y, ) = 0 with its consecntive
eurve. This determines for any assigned value of « defimte
limiting points of intersection on the corresponding member of
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the family. The locos of all such points is then to be obtained
by eliminating the parameter « from the equations

f{#‘! Xy “’}=ﬂl g_i{jt i ﬂ}=f-}

The resulting equation in x and y represents the fixed enve-
lope of the family.

108. The envelope touches every curve of the family.

1. Geometricad proof. Let A, B, ' (Fig. 57) be three consec-
utive curves of the family; let 4, Bintersect in , and B, C'inter-
sect in Q. When P, § approach coincidence, P} will be the
direction of the tangent to the envelope at P; but since P, @

W
A B c
Fia. &7

are two points on B that approach coincidence, hence P is
also the direction of the tangent to B at P, and accordingly B
and the envelope have a common tangent at F. Bimilarly for
every curve of the family.

I1. More rigorous analytical proof. Let ﬂ_"‘i flz, 4o @) =0
be solved for e, in the form = ¢(x, ). Then the equation

of the envelope is
(@ y bz, 1)) = 0.

Equating the total z-derivative to zero, we obtain

af L af dy  df (94 | d¢ dy\_,.
an ay ot ag\ax Tay dz)=
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but g'%= %n 0, hence the slope of the tangent to the enve-

lope at the point (x, ¥} is given by
of L of dy _ g
h+@m_'

But this equation defines the direction of the tangent to the
eurve f(z, y, @) = 0 at the same point, and therefore a limit-
ing point of intersection on any member of the family is a
point of contact of this curve with the envelope.

Ex. Find the envelope of the family of lines

y=mz+L, m
: . m
obtained by varying m.
Differentiate (1) a8 to m,
0 =:—£’. (2)

To eliminate m multiply (2) by m and square ; square (1) and sul-
tract the first from the second. The envelope is found to be the

parabola yi=4 pe.

Draw the lines (1) corresponding to
m=123%34o;m=—1, -2, =34 — 4.

109. Envelope of normale of a given curve. The evolute
(Art. 99) was defined as the locus of the centers of curvature.
The center of eurvature was shown to be the point of intersec-
tion of consecutive normals (Art. 92), whence by Art. 107 the
envelope of the normals is the evolute.

Ex. Find the envelope of the normals to the parabola y* = 4 pr.
The equation of the normal at (z,, 1) is

i yl=_ﬂ_;1{1_rl]:
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or, eliminating & by means of the equation g,* = 4 px,, we obtain

a
y—y.=§—;ﬂ—§§- (1}

The envelope of this line, when y, takes all values, is required.

Ditferentiate as to ¥, BRI =z
pt 2p

nw= %:E[I —2p)

On substituting this value for y, in (1), the result,
T py'=Hz—2p),

is the equation of the required evolute. Show that this semi-cubical
parabola has & cusp at (2 p, 0). Trace the curve.

110. Two parameters, one equation of condition. In many
cases a family of curves may have two parameters which are
connected by an equation. For instance, the equation of the
normal to a given curve contains two parametera ,, ¥, which
. are connected by the eguation of the curve. In such cases
one parameter may be eliminated by means of the given rela-
tion, and the other treated as before.

When the elimination is ditfieult to perform, both equations
may be differentiated as to one of the parameters, «, regard-
ing the other parameter 8 as a function of x. This gives four

equations from which «, 8, and {T:TE may be eliminated, the
resulting equation- being that of the desired envelope.
Ex. 1. Find the envelope of the line
T ¥
ati= b

the sum of ita intercepts remaining constant.
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—x_yaabh_
at  Fda 0,
T
1+% =0
el
Eliminate ah,
da
Then £ =¥ . which reduces to
g ja
r ¥ T ¥
E_E_ﬂ+ﬁ
a b a+b
Therefore V4 vy =ve

is the equation of the desired envelope. [Gd:;mpare Fx. p. 87.]

This equation when rationalized is

(x—9)1—2e(z+y) +c* =0,

:%; whenoe a = ver, b = Vey.

205

By turning the cobrdinate axes through 457, show that this repre-

sents a parabola whose axis bisects the angle between the original
axes, Show that the corve touches both thess axes Draw different

lines of the family, corresponding toa =4, b=4; a=55=3; a=1

b=2ya=T,06=1; a=806=10; ete.

Ex: 2. Find the envelope of the family of coaxial ellipses having

a constant area.

o

ab = k2

For symmetry, regard a and b as functions of a single parameter ¢,
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Then by differentiation as to f,

Pda  yidb _
at dt - b dr

hence ‘f—:

a=4zve b= j:;gr"u"ﬁ,
and the envelope is the pair of rectangular hyperbolas zy = 4 § ¥

'IF'

Fuz. 58

Note. A family of curves may have no envelope; ie., consecutive
enrves may not intersect; e.g., the family of concentric circles 2% +y*
=%, obtained by giving r all possible values.
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If every curve of a family has a node, and the node has
diffarent positions for different curves of the family, the enve-
lope will be composed of two (or more) curves, one of which
i3 the locus of the node.

Ex. Find the envelope of the system
fEE— A+t -2t =0,
in which X is a varying parameter.

Here 1;{ =—2({y— A)=0; by combining with /=0 to eliminate

A, we obtain 2=0 z—-1=0, 4+ 1=0.

From Art. 103 it is seen that the point

=0, y=X
is & node on f; moreover, the various corves of the family are ob-
tained by moving any one of them parallel to the y-axis. The lines
g—1=0,2+1=0form the proper envalope, and x = 0 ia the locus
of the node.

EXERCISES ON CHAPTER XIV

Find the envelopa of each of the following families of cnrves;
draw to scale various members of the family, and verify that the en-
velope has been correctly found.

1. The family of straight lines r cosm + ysin @ = p, when « is a
parameter.

2. A straight line of fixed length a moving with its extremitiea
in two rectangular axes.

3. Ellipses deacribed with commmon centers and axes, and having
the sum of the semi-axes equal to c.

4. The straight lines having the product of their intercepts on
the codrdinate axes equal to k2,

5. The lines y— B=m(x — &)+ rv1 + m% m being a variable
parameter.
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6. A circle moving with its center on a parabola whose equation
is y? = 4 az, and pasing through the vertex of the parabola.

7.° A perpendicular to any normal lo the parabola ¥* =4 ar,
drawn through the intersection of the normal with the x-axis

8. The family of cireles whose diameters are double ordinates of
the ellipse i2x? + aty® = a2,

9. The circles which pass through the origin and have their
centers on the hyperbola 2% — y* = ¢

10. The family of straight lines y = 2 mz + m', m being the vari-
able parameler.

11. The ellipsea whose axes eoincide, and such that the distance
between the extremities of the major and minor axes is constant and
aqual to k.

12. From a fixed point on the circumference of a circle chords are
drawn, and on these as diameters circles are described.

- 13, With the point (ri, 31) on a given ellipse as center, an ellipse
is desoribed having its axes equal and parallel to those of the given
ellipsa. Let (x1, ;) deseribe the given ellipse.

14, Bhow that if the corner of a rectangular piece of paper is
folded down so that the sum of the edges left unfolded is constant,

the erease will envelop a parabola.

15. In the “nodal family " (¥ — 2a)i=(x — a)?+ 8 2% — 3% show
that the usnal process gives for envelope a composite locus, made up
of the “ node-locus " (a line) and the envelope proper (an ellipse).

16. The family of curves (y — z%) + a (x —3") =0
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CHAPTER I
GENERAL PRINCIPLES OF INTEGRATION

111. The fundamental problem. The fundamental problem
of the Differential Caleulus, as explained in the preceding
pages, is this:

(iven a function f(x) of an independent variable x, to deter-
mine its derivative f'(x).

It is now proposed to consider the inverse problem, viz.:

Gliven any function f'(z), to determine the function f(x) hav-
ing f'(z) for its derivative.

The solution of this inverse problem is one of the objects
of the Integral Caleulus.

The given funetion f'(z) is called the integrand, the func-
tion f(x) which is to be found is called the infegral, and the
process gone throngh in order to obtain the unknown function
J(z) is called integration.

The operation and result of differentiation are symbolized

'hjr the formula %f‘:“} =fr{-‘-'¢], [1}

or, written in the notation of differentials,
df(z) = f(z)de. (2)

EL. CiLo, — 14 S0 I
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The operation of integration is indicated by prefixing the
S}’Iubu]jtﬂ the funetion, or differential, whose integral it is

required to find. It is called the infegral sign, or the sign of
integration. Accordingly, the forinula of integration 1s written

i @)= [r@az.

Following long established usage, the differential, rather
than the derivative, of the unknown funetion fiz) is written
under the sign of integration. One of the advantages of so
doing is that the variable, with respect to which the integration
is performed, is explicitly mentioned. This is, of course, not
necessary when only one variable is involved, but it is essential
when several variables enter into the integrand, or when a
change of variable is made during the process of integration.

112. Integration by inspection. The most obvious aid to
integration is a4 knowledge of the rules and resunlts of differen-
tiation. It frequently happens that the required funetion f(x)
can be determined ai once by recollecting the result of some
previous differentiation.

For example, suppose it is required to find

fuus o da.

It will be recalled that cos x dx is the differential of sin x, and
thus the proposed integration is immediately effected ; that is,

fm“:-:lz= Bin .

Again, suppose 1t 18 required to integrate

f:w da,
i
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in which n is any constant (execept — 1). This problem sug-
gests the formula for differentiating a variable affected by a
constant exponent [(8), p. 44]. The formula referred to may

be written ., .
== "
(ﬂ- + 1) e
xntl
and hence we conclude, fzﬂ il = .
n+41

An exception to this result oceurs when n has the value — 1.
For in that case we deduce from (8), p. 44, the forinula of

integration
f“'.-..“'l ola: =J""£z = log =.
T

The method used in the above illustrations may be designated
as integration by inspection. This is, in fact, the only praetical
method available. The object of the varions devices suggested
in the subsequent pages is to transform the given integrand
or to separate it into simpler elements in such a way that the
method of inspection ean be applied.

113. The fundamental formulas of integration. When the
formulas of differentiation, pp. 4445, are borne in mind, the
method of inspection referred to in the preceding article leads
at once to the following fundamental integrals. Upon these,
sooner or later, every integfatiun must be made to depend.

Ill.ftl“du=1:‘;“.
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IV. fﬂ“dﬂ:ﬂ".
Y. fmau du = pin u.
VL fﬁﬂlu du =— cos ut,
VII. fmmau=mu.
VIIIL. jﬂeli;du=--nulu.
IX. fﬂﬂ:ﬂhﬂﬂ:dﬂ:lﬂzm

X. jmu cot & e = — 030 1.

il
v1—ud

X1 = gln—1 1, or — cos-1 1.

d
. =tan—1 #, or — cot-1u,
XI1I f1+ ,

114. Certain general principles. In applying the above for-
mulas of integration certain principles which follow from the

rules of differentiation should be made use of.

(a) The integral of the sum of a finite number of functions is
equal to the sum of the integrals of the functions taken separately.

This follows from Art. 10.
For example,

J"m’; 1M=“rzdz._fd_:=§—lﬂg$»
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(b) A constant factor may be removed from one side of the
sign of integration to the other.
For, since d{ew) = ¢ du,

it follows that f{: A= o = ef:_i.’u

To illustrate, let it be required to integrate

fﬁ#‘dﬂ:.

The numerical factor 5 is first placed outside the sign of
integration, after which formula I is applied. Accordingly,

fﬁ:‘dﬁ=ﬁfﬂ:’d¢=%_

Apgain, suppose the integral
¥ dx
41
is to be found. We notice that if the numerator had an addi-
tional factor 2, it would be the exact differential of the
denominator, and formula IT would be applicable. - All that is
required, then, in order to reduce the given integral to a known
form, is to multiply inside the sign of integration by 2 and
outside by J‘;. This gives

zdr_ 1 (#+4+1)_1
m‘+1 2 2r1-2) wr1 —glos@+L

In this connection it must not be forgotten that:

An expression containing the variable of integration cannot be
moved from one side of the sign of integration to the other.

(¢) An arbitrary constant may be added to the result aof
integralion.
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For, the derivative of a constant is zero and hence

du=du+ ¢),
from whieh follows

Jdu:fd{u+c}:u+c.'

This constant is called the constant of integration.

From the preceding remark it follows that the result of
integration is not unique, but that any number of funetions
(differing from each other, however, only by an additive con-

stant) can be found, each of which has the same given expres-
sion as its derivative. [Compare Art. 10, Cor.]

Thus, any one of the functions =*—1, «#*+1, &+,
(x— a)(x 4+ a) may serve as a solution of the problem of inte-
grating fi-‘ & du.

It often happens that different methods of integration lead
to different results. All such differences, however, can occur
only in the constant terms.

For example,

fs{m+1}=d¢;3f{m+ 1 d(z+1) = (@ +1)°
=+daf+3x+ 1.

Integration of the terms separately gives
J3zdet [Oods (Bdr=o"+327+3a,

a result that agrees with the preceding except in the constant
term.
Again, from formula XII,

dr
— _=tan 'z or —cot'a,
fm"+1 %



GENERAL PRINCIPLES OF INTEGRATION 215

It does not follow from this that tan™'» is equal to —ecot'a2
But they ean differ at most by an additive constant. In fact,
it is known from trigonometry that

— eot™" & = tan™! t+-’t‘w+§,
in which & is any integer.

In a sumilar manner the different results in formula X1 can
be explained.

EXERCISES
Intagrate the following :
1 {Vads, n ‘""‘“':‘i’.
oot ¥
[Hint. For the purposs of in- )
tegratiou this may be writien 12. imf_ﬂx:;i.
k3
j:i dr.} s
dz f r
2- I:ﬂ' !:Ia la, I I“g I[ = Iug :] -
{x Hridr
a3 | X, 14. .
.r Nz *+1
s (m 1_,.“.. 15. j'tau:d;:[.-.- —Elll'l.t-lft}
Vv
5. j‘ (o} My, 16, J'mt zdz.
B - dr 41
6 | Bl 17. (e dz.
7. (234 a)ids 18. (et ds.
8. f(ax +B)mdz. 15. {(a+b)~redz,
dx
9. Ix+ﬂ' 20. jcus?rd.n

10. _fﬂ 21. J—ain nx dz.

dax — ®
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22. {oos?zdz| = '“WE%&]
23. [snizds. 24 fsinm+n)sdr 25 frsinade.
26. jmsazd:[=j'q1-ainﬂz)mm:]. 27, _[sintmr,l
28, j’mnix-:;x[:_f(m*x—l}fu]. 29. {tan?zsectzdz.
30. {eso? (az + bdx. a1 | Vot z - oset .
2§l el
33. (sects tan zdx.

sa., (nsis 3. |

BC X

"..-"'f:‘—;::'.

[Hint. Divide numerator and denominator by a and then write

ff()
in the form —
9
Vi-(3)
N
_f - -H.'+-E- j- l::-rﬁ}i 1]'

115. Integration by parts. If » and v are functions of =, the
rule for differentiating a product gives

d{uv) = v du 4 uwdp,

whence, by integrating and transposing terms, we have

fu dv = uv -fﬂ .
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This formula affords a most valuable method of integration,
known as integration by parts. By its use a given integral is
made to depend on another integral, which in many cases 1s

of a simpler form and more readily integrable than the
original one,

Ex. 1. § tog zax.
Asaume u=logx de=4dr
Then rfu:d—'r, D= .
¥

By substituting in the formula for integration by parts, we obtain,
Ilﬂg:d:r: xlogx -jri'x

. =zxlogz—z=z(logz—1)
=.-r.{]ng:—]nge]=.::lng§.
Ex. 2. ja‘s’ iz,
Arsume u=ux dpo=¢dz
Then el = dx, v =&,
and _fxfdr:re’—jc‘d::s’(r—l}.

Suppose that a different choice had been made for u and de in the
present problem, say

u = €%, v = xdzr.
From this would follow

tH
du = e dx, n:?E_,

and . j';eﬂd:m}ﬂr_ _f%’ad:.

It will be observed that the new integral _f?;'?"i” is leas simple in
form than the original one; hence the present choice of u and de
s not a fortunate one.

No general rule can be laid down for the selection of w and dn.
Several triale may be necessary before a suitable one can be found.
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It is to be remarked, however, that de should be so chosen that its
integral may be as simple as possible, while » should be so chosen
that in differentiating it a material simplifieation is brought about.
Thus in Ex. 1, by taking uw= logx, the transcendental function is
made to disappear by differentiation. In Ex. 2, the presence of either
x or ¢ prevents direct integration. The first factor x can be removed
by differentiation, and thus the choice » = x is naturally suggested.

Ex. 3. J,' 2a* dx.

From the preceding remark it is evident that the only cholee which
will simplify the integral is

1!.I:=.'I!'I., {fl-*:fl'dx-

Henee du =2xdr, v = a” 4
loga
and I.I:.‘iﬂ'r.‘..: = jm oz,
log o Iu-g ]

Apply the same method to the new integral, assnming

u=rx, idr = a*dz,

whenea i = dx, v = IJ:;.E=
F iy — Ta” _ 1 ]
and _fm Iz _lugu lugaj--:x dx
— II!I‘ _ I!]" I
loga (loga)?®

By substituting in the preceding formula, we have

Patde= & [ 22 2 1.
j = loga klg-r:-l_{lugu_}‘*]
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EXERCISES
1. J‘ sin~! rdr. 7. jx cot~lx dr.
2. (& tani(e)dr 8 (zsin3zdr
3. j. r?eos xdz, 9, _fﬂ’ cos x dx.
s, j' ™ log rdz. 10. je sin zdx.
5. j.r*tan"-.-rd.r. 11. jmrtmﬂrd‘n
6. jaen z tan  log cos r dx. 12. j..t.' aec? zdx.

116. Integration by substitution. It is often necessary to
simplify a given differential f'(z)dz by the introduction of a
new variable before integration can be effected. Exeept for
certain special classes of differentials (see, for example, Arts.
127-129) no general rule ean be laid down for the guidance of
the student in the use of this method, but some aid may be
derived from the hints ¢ontained in the problems which follow.

rdx
Ex. 1. Iv’.:’ =

Introduce a new variable z by means of the sobstitution a?— z2==.

Differentiate and divide by — 2, whence xdx= — ‘f_: Accordingly,

j' Tdr _ rfz_ j‘ id':.-——-z )
vt — r?

The details required in ::arrring out this eubstitution are so simple
that they can be omitted and the solution of the problem will then
take the following form :

zdx | _ 1 —4
_f—ﬂg L (= ey Vade = —éj.{u’ _ a0y i 2 zdy)
= —(a? — 7)1,
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In this series of steps the last integral is obtained by multiplying
inside the sign of integration by — 2 and outside by — §, the object
being to make the second factor the differential of a® — z% Think-
ing of the latter as a mew variable, the integrand contains this
variable affected by an exponent (- }) and multiplied by the differ-
ential of the variable, in which case formula I can be applied. L

Ex. 2. j"EE_‘ dx.
o

Assume logz ==
dr
The — =
o . z,
and J‘—E—Iu’: —J.zd'z—— {—ﬂ-g—}l

Here again it is not necessary to wrile out the details of the sub-
stitation, as it is easy to think of log r as a vew independent variable
and to perform the integration with respect to it. It is then readily
seen that the expression to be integrated congigta of the variable

log  multiplied by its differential <% —, and that the integration is

accordingly reduced to an immediate appl.mat.mn of the first formula
of integration. Thus

J-lng.t -d{log x) = !:lﬂg_rfﬁ

IX. 3. .—lz -tf.!'
Ex J'e" T
Think of tan—!x as a new variable and apply formula IV. This

gives
tap—1e L oAnn~ e - stam .-
.{"’ ]+: __r ‘“:t'““ ""'}

Ex. 4 j‘qin'lrd::_
R S =

Regard sin~'z as a new variable and
of that variable. Apply formula .

_ dx
V1 -z

a3 the differential
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Ex. 5. [ (22422 +8)(x + 1)dx.
Multiply and divide by 2. The integral then takes the form

%j’(ﬂ+2:+3}-(ﬂz+2]ﬂ.

Observing that (2 4+ 2)dc is the differential of 2+ 21 + 3, and
using the latter expression as a new variable, we see that formula
I is directly applicable, leading to the result

(254 22 4 8)8

Ex. 6. jlag cos (22 + 1) sin(2? + 1) - zdx.

Make the substitution 24l =z
The given integral takes the form

%j.]ug c0d 2 gin 2 dz.

Make a ascond change of variahle,
cO8: = §.

Then gin z dz = — dy.
The transformed integral is
1
- E Ihgy dy,
to which the result of Ex. 1, p. 217, cau be at once applied.

It will be observed that two sabstitutions which naturally suggest
themsslves from the form of the integrand are made in succession.

The two together are obviously equivalent to the one transformation,
cos(x? 4+ 1} = 3.

Ex. B. ju1+¢i

[Hist., Substitute v = az]
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LA
Ex.9 | — ™ . Ex. 10.
'f:x-"r'—a* j‘\-‘ﬂ u:r—:“
[Hnn'. Bubsbitute z = l ] [Hm'r- Substitute r = z 4+ . ]
F

Ex. 11. jm u .

Multiply and divide the integrand by csc w —cotiw. Tt will then

be seen that the integral has the form j'fff
Another method wounld be to use the trigonometric formula

aiuu=ﬂsingmﬂg,
1';‘.-:‘(':')
du "5\ di
WhE’I’IﬂB jcﬂ{'.urfu"_— _u.'-—u= —u‘= T'
D gin - cos — tan -
g " g 3

in which ¢ = tan E

Ex. 12. j'amu if ok,
Putw =z —g and use Ex. 11.

Solve tha.pmhlem also by means of sobstitutions similar to those
used in the preceding example.

Ex. 13. _f ¥Vab — B dr. Ex. 15. m“_*"‘-;"*,
BT ¥
Ex. 14, | 29 Ex. 16, f i
(z — l}l cos®z + 2 gintx
Put tan x = =

Ex.17. Prove that % can be integrated by a substitution,
a

when m iz a positive integer.

117. Additional standard forms. The integrals in Exs. 7, 8,
11, 12 of the preceding article, and in Exs. 15, 16 of Art. 114,
are of such frequent ocenrrence that it is desirable to collect
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the results .of integration into an additional list of standard
forms. Two other very useful formulas are also ineluded, the
derivation of which we now give.

du
Integration of .
8 o J"u“uz+a

Make the substitution
' w4+ Vil a=z

From this equation, we obtain, by differentiation,

(1+-“—)Iiﬂ'e= dﬁ}

w4 a
that is, (VEFa+w)—2 —ds,
Va4 a
dw dz iz
whence, =

"'.-'rtr.’+u_ Viulfa4u z

This gives, on integrating,

e iz
— = | ==logz
f\fﬁﬁ an

= log(u ++'u* + ).

edu
Integration of -

The fraction

-— may be written as the sum of two
u? — a

simpler fractions,

1 _ 171 1
w—a Z2a|ln—a utal
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whose denominators are the factors of u* — a® Hence,

de 1 du  du
w—a' ZaJ|u—a uwuda

= og e — ) —tog (o )| = L g
XIIL % = sin-t ¥
XIV. u“;% = log (% + VT @)
XV u*d:m = .::l; "
XVI. w1 log H®—a

XVIL ftnudu=—hgmu=lugmu

XVIIL J‘ oot u dut = log sin .
XIX. fﬂﬂﬂdﬂ=lﬂfﬂﬂﬂ+huu}:hgtm(¥+i-

XX. fmu du = log(cse 1t — eot )= log tany -

118. Integrals of the formas

J‘g.ri:r: + Bydaw o .f (Az + Byde
ax®+ br+e Vaxt + b + ¢

Such integrals occur so frequently that they deserve special
mention. The integration is facilitated by the substitution
of a new variable ¢ which reduces the affected quadratie
ar’® 4+ bx + ¢ to a pure quadratic of the form mi? 4+ n. The
mode of procedure will be readily understood from the follow-
ing illustrative problems.
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* rdr
Ex. 1. fm

The first step is to complete the square of the r terms in the
denominator. After the factor 2 has been placed outside the integral
sign, the quadratic expression may be written

(Zrr+d+U-D=0E=+1*+i
Now substitute a new variable ¢ in place of z4+}. Sinee x = -} and
dr = df, we obtain for the new form of the given integral

1 (=30t _ 1 ,2eee 10 ot
2) "'+ 4oy aldegy

r.)_ -]

2+ vh

1 3 1 2xr41
=_1ug(x~" + x + ,)_ ﬁm“—l V-
Ex. 2 [ (Gzr=1ldr
V142 — 328
Divide out v3 from the denominator; since the coeflicient of 22 is
negative, put the z terma in parentheses preceded by the negative sign
and complete the square. The integral then becomes

{2z — 1dr
v’s.[ Vi—(z =)
Now make the substitution z — =1t Bince dx = dt, the integral
reduces to

fjjgv!_;{:;“ ﬁj(;_‘"}_i(—?rmj = vfu’r

= _E(i_ﬂ i - _1 .3i]1—|(if
vaLd ) 343 ‘J)

EL. CALC, — 156
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It is seen from the two preceding examples that the method
here used contains two essential steps:

(1} Completing the square of the x terms in ax' 4 br 4-¢ ;

(2) Substituting @ new variable for the part in parentheses.

If the numerator of the new integral contains two te:rlms,
separate into two integrals and integrate each one separately.

EXERCISES
1.j__ii__. (22— B)dx
Sy dr+1 "r“'E.r"+.t—
2 I S
j‘ﬁr‘i_2:+5 1+J____=
3. IL ' [Rationalize the numerator. ]
4 4xr— 48
s j‘ dz 10. j"1j31'+2!rf.r
: =78 - tr 4D
Vil — 9t — 24
5. j’ _.*a_:d'.t: . 11. j"lrl:Id:.
vl 4 2z + 2
6. (L =zdz . 12, (_Crrliz
Ly N e e |
VE -4z — 443 Veodz—2z+ 1

119, Integrals of the forms

f‘ dir and f dx B

(dwe+ Byvaxr:+ ke + o (Adx+ B)vax® 4 br + ¢
Integrals of these types can be reduced to forms given in

the preceding article by means of the reciprocal substitution

1 il

*

dr= —
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EXERCISES

1. j—*.
v gl

4,

ix

R
J

x?
ax .
svor — 4z 4+ 1

(z+ l}fr“+ r+3

S
vf }v’:*+x+l
-f —:me

EXERCISES ON

. Ie"‘eﬂd.t.

l.r‘ri:
442t

(24 3 dx
6+ 122+ 5

l+=d':,
VI

i
f :sa_:—g;

ST

7. | LI
(x+2)v -2 - 10r—7

a. j-—_
gl — g3

g (— el

gl o ﬂ*‘

W

LI ]

- -[ dr—1)viaeE 3

CHAPTER 1

7. j:{n“ — .::‘]'i iz,

xix
* I{ﬁ + llﬂl

9 J" iz .
vr+1+vz—1

10. Imsﬁ:d:r.

11. jvmﬂ.l:th:.

12, j#’ RlT £ E.
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_ j’M 23. j'—_
@ cos x + b 6xv1 — logz
'z
14. : -
J.‘“ — e 24. .‘- :+d:-=-
[Put e~ =] .
zidz 25, cos @ dff _
15. “f\-"fl_—:t_* 'f'\."rl+ﬁﬂa=ﬂ—ﬂinﬂ
16, | —2% . o6 (9% |
'fv‘i-t.'* + 812 -[:tr{lﬂg.t)‘+ x
17. ae X 1
J- — g l . 27T. J‘(m) d"-.'-'q-
is8. jx*ta.n—lxit. o J‘ (x — a)dz 1
19. i Val—a¥(x — @)= (x—a)*
“I

1
o [t =it > Vo

df ; dx
21. Vil — gf) .
1= 'ﬂ' 30. jlﬂg{: + vzl — a} 8
tan & 48
2. a+ btantd 31. jﬂil] z log tan x dx.

az. j’ [ j‘ gin x dx
1+m1.’-:i.' sin T + ocom s

(sin x + eos ) —(cosx — ginx)
2 Bnx 4 codr

e |

[Another method would be to multiply numerator and denominator
by sin x{cos z — sin r) and express in terms of the double angle.]




CHAPTER II
REDUCTION FORMULAS

120. Tn Arts. 118, 119 the integration of certain simple ex-
pressions containing an irrationality of the form Ve +betc
was explained. As was shown in Art. 118, the radical can
be reduced to the form v + =¥ £ a* by a change of variable,
It remains to show how the integration ean be performed in
in such cases as, for example,

SV EF £ aus,

n being any integer.

_ atdx
Vidta

For this purpose it is convenient to consider a mors general
type of integral of which the preceding are special cases, viz.,

f (6 + ba)eda, 1)

in which m, n, p are any numbers whatever, integral or frac-
tional, positive or negative.

It is to be remarked in the first place that n ean, without
loss of generality, be regarded as positive. TFor, if n were
negative, say n = — n', the integrand eould be written

LAY az” 40\ .
(o e e

This expression, which is of the same type as ™o 4 bz, is
such that the exponent of = inside the parentheses is positive.
Lt ! |
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It will now be proved that an integral of the type (1) can in
general be reduced to one of the four integrals

(a) A [ z=a + bev)dz, b A f 2%+%(g 4 bem)oda,

(e) A fen(a+ baryda, (@) Af 2@+ bam 71de,

plus an algebraie term of the form
Br*(a + bam)e,

Here A, B, A, p are certain constants which will be deter-
mined presently.

Observe that in each of the four cases the integral to which
(1) is reduced is of the same type as (1), but that certain
changes have taken place in the exponents, viz.,

the exponent m of the monomial factor is increased or dimin-
1shed by =,

or, the exponent p of the binomial is increased or dimin-
ished by unity.

The values of A and u are determined by the following rule:

Compare the exponents of the monomial factors in the given
integral and in the integral to which it is to be reduced. Select
the less of the two numbers and increase it by unity. The resull
i the value of .. In like manner, compare the emponents of the
binomial factors in the two integrals, select the less, and increase
it by unity. This gives p.

Thus, if it is desired to reduce the given integral to

A f z—=(q + bav)*dz,
first write down the formula
[(2m(a + bemypan = ﬂfﬂ:‘*"‘{a + bareyedz + Brh(a + bav),
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The exponents of the monomial factors in the two integrals
are m and m — n respectively, of which m —n is the less.
This, increased by unity, gives the value of A; that is,
A=m—n-+1l

Again, the exponent of the binomial factor in each integral
is the same, namely p, so that there is no choiee as to which of
the two is the less. Inerease this number p by unity to obtain
the value of p. Henee p=p + 1.

The above formula may now be written

f (e 4 bavyrda
- Af:n“—'({t + by 4 B+ bl (2)

In order to determine the values of the unknown constants
A and B, simplify the equation by differentiating both mem-
bers. After being divided by z="{a4 dx*)* the resulting
equation is reduced to '

= A+ Ba(m —n + 1) + Bb{m + np + 1)

By equating coefficients of like powers of x in both members,
we find the values of A and B to be

d=_ﬂ-l::1'ﬂ—ﬂ.+11 B 1
bm +np 4 1)’ b{m + np 4 1)

When these values are substituted in formula (2), it beeomes

rn:"{u+b:c"]l'dn:
_ L am—mn4l) g T et bty
1'1:‘;.-:-1+1rn,[:-+l}.j‘;':’l (a+ bards + b(m + np + 1) L]

Notice that the existence of formula (2) has been proved
by showing that values can be found for 4 and B which make
the two members of this equation identical.
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There is one case, however, in which this reduction is
impossible, viz., when '
m+np+1=0,
for in that case A and B become infinite. [See Ex. 4, p. 235.]
In a similar manner the three following formulas may be
derived :

f (a4 bary d
_bmtn 4 npt1) (e . o™+ 4 baryr!
a(m+1) wa bty a(m + 1) [F]
J.m"[u + benyr o
+
ﬂ@rf+ru'-r+lf:"m':ﬂ"l‘b:'5 P m-+ﬂ1-"+1 €]
fm"‘[ﬂ; + bamyr il

_m4ntnp+1 Fgp T (@ 4 Byt
T T an(pt D) fﬂ“"'wj'd‘_’ an(p+1) (P]

The cases in which the above reductions are impossible are,

For formulas [A] and [€], when m +np 4 1=0;
for formula [B] » when m41=0;
for formula [D] , when p4+1=0

Ex. 1. j'.zw‘aﬂ “ 2z

If the monomial factor were x instead of x%, the integration could
easily be effected by using formula L. Since in the present case
m =8, n= 2, formula [A], which diminishes m by », will reduce the
above integral to one that can be directly integrated.
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Instead of substitating in [A], as wmight readily be done, it is best
to apply to particular problems the same mode of procedure that was
used in deriving the general formula. There are two advantages in
this, First, it makes the student independent of the formulas, and
seeond, when several reductions have to be made in the same problem,
the work is generally shorfer. [See Ex. 4.]

Accordingly amume

j-.-:‘(rz’ b dz = A (2(a? — )} de 4+ Bro@ - )Y,

the values of A and u having been determined by the previcusly given
rule.

Differentiate, and divide the resulting equation by x(a® — %) L]
This gives A=A 4 BEat— 52,

from which, on equating coefficients of like powers of x,

_2a p_ 1
A= 5,.&_ e

hence,

jz“‘v‘a’ — e :ETH';J‘[‘IE — ﬂﬁr,ﬁ._ 1 z¥(a? -~ Ii"'g‘-
= - J2a? + B2 (a® — L,

Ex. 2. j'v'iﬂ—ﬂ_'.—, A dx.

By following the suggestions of Art. 118, this integral can be re-
duced to the form

jfﬁ-&ﬂ,
in which s =2 - 1.
Assumea

[ -tla= A -0V dz 4 B - it

In determining A notice that s = 0 in both integrals, so that
A=04+1=1 Abo,p=—-}+1=4
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Ex. 3. I V2 ar — dx.

The mode of procedure of Ex. 2 may be followed. Another method
can also be used, as followa.
Un writing in the form

ft(@a -2t s,

and observing that the integration of
=1 - —i _ dx
r*(Ca-2)'dr=§ e

‘f j Vi ar — x%
can be performed (see Ex. 10, p. 222), it will be seen that integration
may be effected in the present case by reducing each of the exponents
m and p by unity. This is possible since i = 1 and m can accordingly
be diminished by 1. Hence assume

fa -z]*d::ﬂf_f:‘lmu — iz + Bt 2a - .

The exponent of the binomial in the new integral may be reduced
in turn by asauming ’

Ir‘l {2a— I}l dz = .*]""j..r_i (2a— I-_:I_i dx + ﬂ"::*fﬁ"u - ::)i.

When this expression is substituted for the integral in the second

member of the preceding equation, the result takes the form
Sar —Bdr=Af— % 4 pedaa_ o)t PP

(VEar—Fdz=Af =+ Bd@a- it cd@a-of,
in which A, B, € are written for brevity in the place of A'A", A'B",
B respectively. The values of A, B, © are calenlated in the nsual
manner b}’ diﬁﬂl‘ﬂnt-in.ﬁng‘, simplifying, and equating coefficients of
like powers of x.

The method just given requires two reductions, and hence is less
suitable than that employed in Ex. 2, which requires but one reduction.

The rule for determining the values of A and x may now he
advantageously abbreviated. Let m, p be the exponents of the
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two factors in the given integral, and m', p' the corresponding
exponents in the new integral. Of these two pairs, m, p and
m', p', one of the numbers in the one pair is less than the cor-
responding number in the other pair. This fact will be ex-
pressed briefly by saying that the one pair is less than the
other pair. With this understanding the preceding rule may
be expressed as follows:

Select the less of the two pairs of exponents m, p and m', p.
Tncrease each number in the pair selected by unity. This gives

the pair of exponents A, p.

Exij xtdr |
(= + an

Asstimie successively

e+ ay Lz = A" [zt + 0y dz + Bode + aty},
[+ anhae = a- f22(ar + atyddz + B + anl,
{2+ @y e = 4 (@2 4 ayH iz + Bz v a?) i,

These equations may be combined into the single formula
j-;a:‘-[z“ + a“}'l de=A j (z® + u‘}_i oz 4 Be{z* + u"}i
+ Oz®(z? 4 a‘-l}i + Da¥(2® + u’]”*a

The values of the coefficients are found to be
X _4 _ _1
l{=_"“'-| B—E, l:'_—;, H_a_il
Hence

frt v an R f;:tiifr - jatlog (z+ VT i ad).
2wt 4+ a¥
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In this example three reductions were necessary; first, a reduction
of type [1?], second, and third, a reduclion of type [d4]. Can these
reductions be taken in any order?

The different possible arrangements of the order in which these
three reductions might sneceed each other are

(1) [4], [4)LLDT: (2) [4] (D], [4]; (3) [D], [4], (4],
of which number (3) was chosen in the solution of the problem. Of

the other two arrangements, (2) can be used, but (1) cannot. For,
after first applying [4] (which would be done in either case), the new

R
tutegral is j-x*{-::*-i-r"}rid.:.

Il [A] were now applied it would be necessary to assume
j‘:ﬂ{au 2y ldr=4 j{a’+ 22} 4 Br(a® + L

This equation, when differentiated and simplified, becomes
#=A+ Ba?, °

a relation which it is clearly impossible to reduce to an identity by
equating coeficients of like powers of z, since there i8 no z? term in
the right member to correspond with the one in the leit member. It
will be observed that this is the exceptional case mentioned on page
232, in which m 4+ np + 1 =10,

EXERCISES
1 ((a—alas 5. f VaT—Hd.
dx
& j(-"’a‘l'ﬂi- . j‘zﬂv‘ﬂ“-zﬂ
d
o P 7 f{ﬂfu;z'

& jfjh 8. [ (a*+aYidr.
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o (V@ ¥ads 12 {4 fﬂﬂm-

10. IIVEM — iz 13. j.[ﬁ_b :‘; e
n, (V2 o, 14 (VIT2z—Ads
15. Show that

j-r;:iifc;u: Ex:{ul— 1) {{.ﬁ +xc}-~l T (En—3) j[ﬂ—-ﬁ}ﬁ]

2 19 #in 048
16 jx‘v’.r“ 1 j-{l -+ eam*ﬂ)!
[Substitute cos § = z.]
_xdx -
(224 TH 20, j:ﬂqfﬂl — ¥dr.
dx
18 § —. i
J’w + b 1. f(ar—idr



CHAPTER III

INTEGRATION OF RATIONAL FRACTIONS

121. Decomposition of rational fractions. The object of the
present chapter is to show how to integrate fractions of the
form $iz)

(@)’
wherein ¢ (x) and ¢(x) are polynomials in =,

The desired result is accomplished by the method of sepa-
rating the given fraction into a sum of terms of a simpler
kind, and integrating term by term.

If the degree of the numerator is equal to or greater than
the degree of the denominator, the indieated division can be
carried out until a remainder is obtained which is of lower
degree than the denominator. Hence the fraction can be re-
duced to the form

T) _ -1 J(=
EE%_M Foe g +#ﬂ},
in which the degree of f(z) is less than that of ¢ {).

As to the remainder fraction “5{[1%, it iz to be remarked in
x

the first place that the methods of the preceding articles are

sufficient to effect the integration of such simple fractions as

A A" . Met+n MatN' L P+ Q@ (1)
r—a |f:t:—|rf_]n5'1 "t {fiu’]” " me+n’

Now the sum of several such fractions is a fraction of the

kind under consideration, viz., one whose numerator is of
235
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lower degree than its denominator. The question naturally
arises as to whether the eonverse iz possible, that is: Can

every fraction % be separated into a sum of fractions of as

simple types as those given in (1)7

The answer is, yes.

Since the sum of several fractions has for its denominator
the least common multiple of the several denominators, it fol-

lows that if -E\El can be separated into a sum of simpler frac-
b

tions, the denominators of these fractions must be divisors of
y(x). Now it is known from Algebra that every polynomial
¢(2) having real coefficients (and only those having real coefti-
cients are to be considered in what follows) 7z the product
of factors of either the first or the second degree, the coefficients
of each factor being real.

This fact naturally leads to the discussion of four different
cases.

I. When ¢(x) can be separated into real factors of the
first degree, no two alike.

Eg, ¥ (@) = (2—a) (z — b) (2 — o).

I[I. When the real factors are all of the first degree, some
of which are repeated.

Eg. ¥ (@) = (@ — a)(z — b (z — )",

11I. When some of the factors are necessarily of the see-
ond d:agren, but no two such are alike.

Eg., plx)=( +a¥) (2 + = + 1){z — b) (z — )"

IV. When second degree factors oceur, some of which are
repeated.

Eg., giz) = (' +a®) (o® —z+ 1) (x—b).
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122. Case I. Factors of the first degree, none repeated.
When ¢(x) is of the form

y(z) =(z —a)(z—b)(z—c) - (z—n),

flz) 4 B, C ., . N .
R q&{m]—m—u_’_m-—b_l_m-—- T +:¢—n’

in whieh A, B, C, ---;, N are constants whose values are to be
determined by the condition that the sum of the terms in the
right-hand member shall be identical with the left-hand
member,

i — !;—E+;—
Bx (o iees
X Ya_—sz+a ¥

Dividing numerator by denominalor, we oblain

230t x

w42 xt — x4 2
A i

A . = i
UM T -9 -1 232

By clearing of fractions, we have
(1) r=A(zx—-2) + B{z-1).
In arder that the two members of this equation may be identical

it is necessary that the coefficients of like powers of z be the same in

{!MII.

Henee =4 +08 0=-24-=-25
from which A=—-108=%2

Accordingly the given integral becomes

[+ 752 o g mmce-» -2
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A shorter method of calculating the coefficients can be wsed.
Hinee equation (1) is an idemtity, it is troe for all values of . By
giving r the value 1 the equation reduces fo 1 = A(—-1),or 4 =~ 1.
Apain, assume x = 2. Whence 2 = B,

EXERCISES
) (2% — ab) dz
1 jx!_ui * -{{z—a}[x—bf
1-3=x zdr
A 5 \ = .
& j. d: ::*-ir+1
(=% — 12}-:.‘: j‘ — 1} ez
rdz+ 3 {xﬂud}{ixﬂ-—l}

2 Dex 4 e — r1£|-+!|m-_"L_lr
{x —a)(x—b){x—e)

8, j' 23z + a) Wz + b)ldz.

(xr+ 1ydr *dr
Iy i — 2 12. .fz-’*+'?r+lJ
{x* 4 ab)dz dz
0 jx[:—u){:-l—ﬁ] jﬂ".‘t"—b‘
(z+4)ds ' soe? z dx
el P W )
[Put tan z = £.]

123. Case II. Factors of the first degree, some repeated.

(fz?—dxz+1)dx
Ex. J. 1

Amume

. B5a%_3:41 A, B C D
1 pxf—dr+1_ A .
(1) a1 z z -1 G@-1)p a1y

To justify this assnmption, observe that:

{a) In adding the fractions in the right-hand member, the least
common multiple of the denominators will be x({r — 1)% which is
identical with the denominator in the lefi-hand member.

EL. CaLc.— 18
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(¢} Further, the expressions z, = — 1, (z — 1}% (x — 1) are the
only ones which can be assumed as denominators of the partial
fractions, since these are the only divisors of x (x— 1)* consisting of
powers of a prime factor.

(¢) When equation (1) is cleared of fractions, and the coefficients
of like powers of z in both members are equated, four equations are
obtained, exactly the right number from which to determine the four
unknown constanta A, 8, €, L

Instead of the method just indicated in () [or caleulating the
coefficients, a more rapid process would be as follows.

By clearing of fractions, the identity (1) may be written

Grt—Sr4 1= A(x— 1+ Br{x — 1)+ Cx(xr= 1) + Dz

Putting x = 1 gives at onece 3 = 0.

Substitute for [} the valoe just found, and transpose the corre-
sponding term. This gives

Srtetz+l=sAd(z -1+ Br(z - 1)+ Cz(z-1).

Tt can be seem by inspection that the right-hand member of the

result is divisible by £ — 1. Ag this relation is an identity, it follows

that the left-hand member iz also divisible by « = 1. When this
factor is removed from both members, the equation reduces to

br—1=A(z~1) 4 Bz(z —-1) 4 Cx

Now put x =1. Then =4
' Substitute the value foand for C, transpose, and divide by = — 1.
The result is 1=dA(z 1) + Bx.

By giving « the values 0 and 1 in suceession, we find that

A=-1, B=1,
Accordingly, we have
{(6x*— 3z 4+ L)z _ [:__l 1 i 4 d
[} =z — 1) = { Pl Sl e 1 L. uﬂ} g

gE—1_  Bxr-—5
=l e —
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EXERCISES
1 (Y2 4 1yeix
J-{; - 1}*1: + 1) 4 f::,_:l + V2t
dic B 5r—38
2§ = . N g
L-“{I—l} ) omrr @
iz 6. 2(z* + ax)dx ]
3. j.{I:_,',i_}i‘ jx*-ﬂa“:’-i— at
-
(2 + 'u-"ﬂ — ﬁ;;ﬂ
ar' + a¥x 4 (a+ )z +a
8 j- rHa + x)
(* = 1)dx_ 11 (=124 )iz
9. 43 j. (x — &)
[Substitute x — 3 = z.]
10. { (az? + br*)~tdz. e
(= —a)*

[Substitute x — a = 2.]
124, Case ITI. Occurrence of quadratic factors, none repeated.
. _ur‘* + Sx 4 4)dx
Ex. 1. J-(Iu (2 + 2z + 2)°
Asgaume

) 424 5x 4 4 =.~T1-+H x4+ D ‘
(e 1) +22+2) 241 242542

Then
(2) 427 4 Ha4 4 =(Azx+ BY (= + 2x 4+ 2)+ (Cx + DY(x* + 1).

By equating coefficients of like powers of x

0=4d 4+ h=244+28B+
4=24+ 84+ D, 4=204+D,
from which A=1B=2,C=—1, D=1
Hence the given integral becomes
{z4+Nx rdr . 1 -i 241 X
el -F-+ﬂ==+'.*_)m“ %+ tan (I+1}+“°gz=+9:+2
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To make clear the reasons for the assumption which was made eon-
cerning the form of equation (1), observe that since the factors of tha
dopominator in the left member are 294+ 1 and 294+ 22 + 2, these
miiet necessarily be the denominators in the right member. Also,
since the numerator of the given fraction is of lower degree than its
den ominator, the numerator of each partial fraction must be of lower
degree than ita denominator. As the latter is of the second degree in
each case, the most general form for a numerator fulfilling this re-
quireiment (i.e., Lo be of lower degres than its denominator) is an ex-
pressiom of the first degree such as Az 4 B, or Oz 4+ D,

Notice, besides, that in equating the coefficients of like powers of =
in oppogite membera of equation (2), four eqoations are obtained
which exactly suffice to determine the four unknown coefficients
A, B O, D

i
Ex. 2. f{.ﬁ+ (= +2)

1 A B

We can agsume in this case
FEr D+ P+l A s

" For if we make the substitution x® = ¢, the given fraction becomes
s to which Case I is applicablea.

1
{4+ 13t +2)

EXERCISES
4dx ] 5 j‘{'—!-::—ﬁ!d:r_
ELEAE X o4 4 Bl
;:.-d'.:.- & j' Loz ]
(z+ 1)+ 1) PO
i rdx
7. .
4 at j(:—n}i{x“+u“}
(a? — )z i 8. j‘ (2% + 22 4 D)elz
(£* + a®)(x* +p) (x — 1}z + 2z +2)

2dx
> -r{x - )(FE+1)
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125. Case 1V. Occurrence of quadratic factors, some repeated.
This case bears the same relation to Case III that Case 11
bears to Case I, and an exactly analogous mode of procedure iz
to be followed.

Gf— b B 4+ 4
Ex. Az,
X j (a1 + 2) X
Assurma

2xt —r + Bx* 4+ 4 _Ax+ B lf?'.t+.ﬂ+ E3:+F_
(z*+ 2)8 42 (x4 2)% (2242

Whence, by clearing of fractions,
2pt— b Bt A= (Ax+ B) (4 224 (Cx+ D) (2 +2) + Ez+ F. (1)
Instead of equating coefficients of like powers of z, as might be

done, we may calculate the values of A, B, C, ... by the following
briefer method.

Substitute for 2? the value — 2, or, what is the same thing, let
z=+— 2. This causes all the terma of the right member to drop
out except the last two, and equation (1) reduces to

_BJ—_E-?EVF-:E"+F.

By equating real and imaginary terma in both members, we obtain
—_8=F, 0=F.
Subatitute the valoes found for B and Fin (1), and transpose the

correaponding terms.  Both members will then contain the factor
#* 4 2. On striking this out the equation reduces to

9yt L dr +2=(dzx+ BW22+ 2)+ Cr + D,
Proceed as before by putting 22 =— 2. Whenece

4=0C0v-24+ 0D,
and thereforsa 0=0C, 4=10In
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Substitute these values, transpose, and divide by 22 + 2. This gives
2r=1=Ar+ B,
whence A=2 B=—1.

The given integral accordingly reduces to

I | tux Brdx
! e Badx
-f.ﬁ+£'x+-[(ﬂ+~.*}1 @+ 2)8

The first term becomes

2 ¥z dx 1 x
— =1 24+ 9y — —tan-l T
‘fﬂ"'z z*+2 W+ v'2 " v

The sscond, integrated by the method of reduoetion (Chap. II),
gives . _l: -1 .
F+2 2 v

Finally, by using formula I the last term is integrated immediately.

Henes

E::F_r"+31‘|‘+4d _ &9 x ...ﬂ )
j. @rop B S Y aop
EXERCISES
_ﬂ"')’dx. 4. j‘f'-“*"'?}*“.
2 4 1 xHxt + 1)
T+ a)? 4 al 22t 4 Doty — 2
2. IL}—{ S 5. f oy
j' 2 xdz ) 6 j' PR TS )
(14 2)(1 4 =7)% _ ’ (1 + %)

[Ex. 6 can aleo be integrated, and more easily, by meana of the
substitution 1 + 2* = 1]

The principles used in the preceding cases in the assump-
tion of the partial fractions may be summed up as follows:

‘Each of the denominatars of the partial fractions contains one
amd only one af the prime factors of the given denominator.
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When a prime factor occurs to the nth power in the denominator
aof the given fraction, all of its different powers from the first to
the nth wust be used as denominators of the partial fractions.

The numerator of each of the assumed fractions is of degree
one lower than the degree of the prime foclor whose power ocours
in the corresponding denominalor.

1268. General theorem. Since every rational fraction can be
integrated by first separating it, if necessary, into simpler frac-
tions in accordance with some one of the cases considered
above, the important eonclusion is at once deducible:

The integral of every rational algebraic fraction is expressible

in terms of algebraic, logarithmic, ond inverse-frigorometric
Sfunclions.



CHAPTER 1V

INTEGRATION BY RATIONALIZATION

At the end of the preceding chapter it was remarked that
avery rational algebraic function can be integrated. The
question as to the possibility of integrating irratiomal fune-
tions has mext to be considered. This has already been
touched upon in Chapter 1I, where a certain type of irrational
functions was treated by the method of reduction,

In the present chapter it is proposed to consider the sim-
plest cases of irrational functions, viz., those containing
+az+4 b and ﬁm, and to show how, by a process
of rationalization, every such funetion ean be integrated.

127. Integration of functions containing the irrationality
vaxr+ b When the integrand contains ~az + b, that is,
the nth root of an expression of the first degree in #, but no
other irrationality, it can be reduced to a ratiopal form by
means of the substitution

Vax b=z

Ex. 1. IL
vz 44 —1

Assume .‘u"21:—|-3=3,
that is, x4 3 =2
Then dx =z ifz,
ax zilz
n.n::'l = =z+ 1 z—1
j.f2;+::—1 th st—1

=v3z4+d4+log(VEz+3-1).
245
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Ex. 2. j'l'”j" Yovay,
+ x
It would appear at first sight that thia integrand containe several
irrationalities, viz., v, vz, Vz. It is readily seen, however, that
they are all powers of vz, and hence the substitution vVr=z will
rationalize the expression to be integrated.

EXERCISES
. 4. .
v -rnf.;i-l' f{;—l]v’:—ﬂ
dx
5. —
2 j"E-l-‘lu""_ j[::—ﬂ-—flﬂ}'v"r—a
3. j' 6. ‘++"’”—‘_’-m
"-'V':a:-l+= ri+xu

When two irrationalities of the form ~ar+ b, Ver+d
oceur in the integrand, the first radical can be made to dis-
appear by the substitution

var4-b==z
The second radical then reduces to

\!i{f — tl"} +d,
and the method of the next article can be applied.

128. Integration of expressions containing +ax? +br + e
Every expression containing ~'ax®+ bz +¢, but no other
irratibnality, can be rationalized by a proper substitution.
Two cases are distinguished.

(a) When oz® + bx + ¢ has real factors. 'We may then write
the quadratie expression in the factored form

a2’ 4 bz o= a(z — a)(z — B), (1)
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in which « and 8 are real. Introduce a new variable f by
means of the formula

vVaxr + bx + e =tz —a). (A)

Square both members of this equation and replace the left
member by means of (1). This gives

a(z — a)(x — B) =tz — a)’.
On canceling * — & and solving for z we obtain as the equa-

ion of f ti 8
tion of transformation y g —af @)
= i}

Hence z (and therefore d) is rationally expressible in terms
of £, while the radical reduces to
at’ — af at(u — B)
e -9 l= 3
[ f—a {:] F—a '’ (3)
which is also rational in £ The substitntion of these expres-
sions in the proposed integrand gives a rational fraction which
may be treated by the methods of the preceding chapter.
(b When a, the coefficient of °, is positive.
Make the substitution
var®+br+e=va x+ 1. (R

By squaring both members and solving for = we obtain
= _f—c
b—2Vat’

x

(4)

while the radical is expressible in the form

Vaf — bt ++ace
2vat—b

(5)
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and hence the integrand becomes rational when expressed in
termz of &

The only case that is not included in {a) or () is that in
which the factors of ax® + bx 4 ¢ are 1maginary and the coeffi-
cient a is negative; the radical is then imaginary for all values
of 2. Although the integral can be obtained (in an imaginary
form) by either of the preceding substitutions, this case does
not arise in practical applications of the caleulus and will not
be considered further.

Ex. 1. { ds .
Tt 81
Formula (B) gives
v+ 3z —1=x+41,

whence, by solving for x, we obtain

_ r41
Taa gy’
and acecordingly dr = W dt,
— 2241
142z -1 = .
bl R :}{I_:}

When these expressions are subatitoted in the above integral it

reduces to (—B+2t+ 1)dt

21 +0)*

Tha.'rmrk of integrating may be facilitated by means of the trans-
formation 1 4 ¢ = z. The resulf, in terms of =, i

— 1
vVl 42— 1)+ p—
= ) l—z4+vz24 221

+2log(l—z4vri4+8x-1)
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Er.g. [Ylizdr
(1l —x)v1—=x

By rationalizing either numerator or denominator we oblain
V1 = «* aa the radical part of the integrand.

Formula (A) gives 1 — ¥ = i1 —z),

1+'T='!p 1

whence 1”[1—1- (1)
14z

Or 1—::'_‘:’ (E.}

and hence, by differentiation,
Dz

a—o¢ =21t (3)
Add 1 to both members of (2) and combine the two terma of the lelt
member. The resalt is a
oo=rt L (4)
— &

Dividing (3) by (4), we have
e 2edr
1—z 1442 (5)

Now multiply (1) and {5) together and integrate. Wa oblain

I 1+.1.'_ e r2adt
-\[1—.1: 1—-z Jot1

EXERCISES
dx
1.
"f(l — )l —+1 — =)
2 J’ dx
V29 -3z + ]|:1n-"r.¢.4:‘2 dr+4+1 +"|-'"_(.1:.-— 1]]
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We can rationalize also by means of a trigonometric substi-
tution. First reduce az® + bz 4 ¢ to the form + £+ &, as in
Art. 118, and then make one of the following transformations:

In k* — ¢ put t =k sin §,
in £ —&* put ¢ = k sec @,
in. € +&* put t =k tan 8.

Sinee v — £ — & is 1rua.gma.r3r, we shall exclude this case from
conzideration.

The resulting trigonometric functions can then be integrated
by methods to be explained in the next chapter.

129. There is one case in which a different transformation
leads more rapidly to the desired result. If, after reducing
the terms under the radical sign to one of the simple forms
menticned in the preceding paragraph, the integrand can be
expressed as the product of tdt and a function containing only
even powers of ¢, then we may substitute

VEFER=-.
For this gives F=+(z2+ K
and tdt = +zdsz,

and hence the integral takes a rational form in =

EXERCISES ON CHAPTER IV

(=2 +4x)de
(F*+2)ver 1

[Notice that Art. 120 is applii:-ahle-]

j‘ [(z —a)i—1]dz 3. j':"m.rh: _
oz —ayl— i_’.u:—aj‘l Vr+l42
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N o f_ .
T+vr -1 o R |

5. j Tax P 9. j"l_+\-"idr
[u+=] 1+ /7
(2327 b)ds 10 tdz
:-th-i-ﬁxi

j{ﬂ’+ﬂ“}u‘ﬂ = 11. jﬂ

[ Use trigonometric substitutions in the following exerciges.]

12, § va*-—2* 15.
j' .I= dﬂ:’- j‘i:l.ﬂ: + ﬂ&]i
‘.L-‘ ——
e Fy— 6 (¥

1 (%

17.
(@ +ani Sor (a*— r=':u



CHAPTER V

INTEGRATION OF TRIGONOMETRIC FUNCTIONS

130. In regard to the integration of trigonometric functions,
it is to be remarked in the first place that every rational trigoe-
nometrie funetion can be rationally expressed in terms of sine

and cosine.
It is accordingly evident that such fuuetions can be inte-

grated by means of the substitution

gin r=z.

After the substitution has been effected, the integrand may
involve the irrationality
V1—2[ =ecosz ]

This can be removed by rationalization, as explained in the
preceding ehapter, or the method of reduction may be employed.
The substitution cos z=2 will serve equally well.
1t is usually easier, however, to integrate the trigonometric
forms without any such previous transformation to algebraic
functions. The following articles treat of the cases of most
frequent ocourrence.

i31. f see"r dar, J‘ cse™ = dor.

In this case n is supposed to be a positive integer.
If see™z dx is written in the form

see™—2 . gecke de = (1 + tan® x)"'d{tan x),
255
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the first integral becomes

f{t-an‘#+ 1)="d(tan x).

If (tan’z+1)"'is expanded by the binomial formula and
integrated term by term, the required result is readily
obtained.

In like manner,

fmﬂ"m de = | cse®™ %z .cscls dx

= — f{mt.’: + 1)*'d{cot x).

This last form can be integrated, as in the preceding case,
by expanding the binomial in the integrand.

The same method will evidently apply to integrals of the
form

J-t.au':t; sec®r dr, | cot™xcse®™z dr,

in which m is any number.

EXERCISES
iz (1 — eos )%
1. k. 5. )
cosls j- sintr
. j dz .
2. Im‘*- dx. sindz coalr (costs — sinte)t
3. (seots dz. 7§ [ ftantrsectzds].
mn'.r COS 2
4. j‘"—f 8. 'f‘*""‘f’”'*.
sin®z cosfr ginte
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132. fm“:r. tan®™ o dor, fmﬁ"‘m col®™ e dar.

In these integrands n is a positive integer, or zero, so that
2n 4 1 is any positive odd integer, while m is unrestricted.
The first integral may be written in the form

fﬂ&ﬂ"lﬂ: tan™z - sec x tan x e

ser™-lz(sec’r — 1)"d(sec x),

which can be integrated after expanding (sec’z —1)" by the
binomial formula.
Similarly,

-

fmc"n: colt® e de = § cse™ 1z cot™s .- cac 2 cot @ dx

esem™ Ltz esefe — 1)"d(esc ).

EXERCISES
1. jseu:% tan®r dx. 5. J.hm“x dz.
. S e (pon-
2. j‘mu: x cotde dz. 6. J" i [ j-ae::' % tan®s dx].
BEC O -!i'
7. _rlm xrdz.
4, flﬂi.ll z oot®r dx. a jmt .

EL. canc. — 1T
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133. f tan™x dx, f cot™x da.
The first integral can be treated thus:

ftan“rda: =ft.an'—*-tﬂ.n=:|:dx

= f tan*—r(secs — 1)z

_ tan*'z
T =1

-ft.n.n"%l.:dz.

When # is a positive integer, the work of integration may
be rapidly ecarried ont by writing ¢ for brevity in place of tan =
and then putting #'dx in a different form by means of the
following "process.  First, divide #* by £ 4 1; the quotient is a
polynomial of the form ¢~? —p 4 =% ... while the re-
mainder R is either + 1 or + ¢ aceording as n is even or odd.
Then, since the dividend equals the product of divisor and
quotient plus the remainder, we have

=ttt — L+ 14 R
But since  (tan®z + 1)dz = sec®s dz = d(tan z)= dt,

we have

ftanve {I::=f{t"" e -'--}d£+fﬂd.r.
For example,

ftan“mdm=f{:'—:‘+f—1}d£+fﬂm,

and fmn':rdzzf[t’—ﬂ+:}d:—ftanzdm
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The integral | cot*x dz can be treated in a similar manner,
in case n is a positive integer.
For any value of n we have

fm:-t‘ T ﬂ#:fmt""m cot?x dx

cot* ? ¢{esc’ v — 1)dz

- —fm:nt“'z dax.
n—1

Since tan = and cot  are reciprocals of each other, the above
method is sufficient to integrate any integral power of tan x or
oot x.

Another method of procedure would be to make the substi-
tution tan x = z, whence '

fmn“ﬁdm_fl Py

If the exponent n is a fraction, say n.—_-E, the last integral

can be rationalized by the substitution z = "
It is evident from this that any rational power of tangent
or cotangent can be integrated.

EXERCISES
1. jmt‘: dr. 3. I{Lmn x — oot ¥)3dr.
2. j.tan‘-u: dz. L3 J‘{mn‘ x 4+ tan®—% r)dz.

5. jt-ﬂ.u‘ T dx.
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When n is a positive integer show that

in -1 In-5
6 ftanmzar =0T 2 ORI, ei(tans - ).

ianh.-:_t.ﬂ.nh—ir
2 n 2n -9

+ o o (= 1)1 (} tan®z + log coa x).
134. fnln'“mma"a:dﬁr-.
(a) Either m or n a positive odd integer.

7. Itanhﬂ zdx =

If one of the exponents, for example m, is a positive odd
integer, the given integral may be written

fﬂm"‘ x eos™ & sin 2 de = —f{l —eos*x) T cos™ s d(cos x).

Since m 18 odd, m—1 is even, and therefore m—1, a

positive integer. Hence the binomial can be expanded into
a finite number of terms, and thus the integration can be
easily completed.

j-ai né zvioos x dx.

Aceording to the method just indicated this integral ean be re-
duced to

—j.uin':tfm"_a'i d{oos ) =—J‘{1— cog? x)¥(cos rj*d(r:m x)
' =—§¢mi:+§.mim—ﬁm;&z.

EXERCISES
1. j-ain’ x dx, 3. ﬂ:,ﬂ"tdz:.
gin
- . J’ ginf .z dz ]
2. jsm * cos! x dz. oos? ¥vieos ¢

5. j‘ gin® ¥ dx i
vl — cos x
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() #% 4 n an even negative integer.
In this case the integral may be put in the form

gin™x L. - —{m )
cos™t zde = | tan™z sec x de,
cos™ o

which ean be integrated by Art. 131, sinee the exponent
— (m + n) of see x is an even positive integer.
Ex. (X8R %ds.
EI:IRE I
The integration iz effected in the following steps :

M :j-t.ani‘j: gact x dx
veos ¢ cost z

= J'tani x(tan? x + 1} d (tan z)

— 2 tan® 2(* + } tan?z).

EXERCISES

cos? T 4 J' LN

1. wind rd'r " Juintz cos? x

. dx . 5. -{ _dxr .

Ain® x v5ind T cost
cost Hila— :r
. : 6. j'
3 ginf .':dr cosn s g

(¢) Multiple angles.
‘When wm and n are both even positive integers, integration
may be effected by the use of multiple angles. The trigeno-

metric formulas used for this purpose are

1 —cos 2z
2 |
BDE’E:l—_'_“gﬂ Eﬂ:’

. gin 2 @
BN @ CO& &= — T

ginf =
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L]

Ex. j'ai:u.* ¥ cogt rdx.

. jsin*x oogt r dr =j(ain ¥ oo )% oot 2 dr

=j".=|.i||‘321: 1 +nm!2::dm
1 2

=%jsin“2;¢u& +ﬁj‘siu=i-‘.ruua2:d{i*.rj

lj'l—n::mﬂlr 1 5102
= ——  —ir 4+ —
8 ) T 3

=y x— JEndx4 P oain? 2
EXERCISES

1. jnm‘: gin? z dx. 3. j'uin"z cost r dx.

2. Jsin‘i z cogb x dx. 4. j(sin*a: ~ coit 2y dir,

sintx . (1 = cos®x)P, —
5. j'm;:dr—j. v ri':r-_f(ﬂm“: 2 + cos® x)dx.

(d) Reduction formulas. Integrate fﬂin"#ma‘zdm by parts,

taking % = cos™ 'y, dv= sin"™z cos z dzx,
, in=+
whence du=—(n—1)cos" *zsin xde, v= Em+ ?,
]

and therefore

. pin™peos™ e 0 — 1 . ..

" = sin™** cog™ *rdx.

f&uu cos"z dr T +-m-|—1 -

In the last term replace sin®x by 1 — cos'z and separate the
integral into the two terms

J.uin"# (i R 1 —J-sin-: cos™r dx.
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Transpose the second integral and unite with the similar
integral in the left member. After dividing the resulting

equation by & :'I__i; we obtain the formula of reduction
"

M+l m—1 _ .
fﬂiﬂ"m cos*rde = T cos & + 2 1 sin™z cog™ e dr
m4n i+ a0

hy means of which the exponent of the cosine factor may be
diminished or increased by 2 according as the integral in the
left. member or that in the right member is taken as the given
integral.

In like manner a reduetion formula may be deduced which
decreases or inereases the exponent of the sine factor by Z.
The details are left to the student as an exercise. The
result is

T m—I n4l —
fain’mma‘:n dp=— S & €08 +£+m Uﬂiﬂ"”mﬁnn‘:ﬂdﬂ.

m+ e -+

The two preceding formulas, when solved for the integrals
in the right members, and m (or #) increased by 2, become

fﬂin‘m cos"ods= __sin™*le cos™ + m+n+32 sin™z cos™ipdy,
n41 n+1

] mtl
fsin‘: cos*rdy = sin™"lz cos™ x + m+n+2 sin™*ix costmda.
. m+1 m41

L

Whenever the values of m and n are such that one of the

three preceding cases, (a), (b), (c), is applicable, the integration
can generally be performed more quickly by one of those
methods.
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EXERCISES

1 jﬂinixd:c. 2. j.:::'tdm

[lu Ex. 2 after one reduetion, diminishing the exponent of cos x by
4, Art. 133 may be applied. ] .

[ A
jsln Id.t.' 3. j‘ : Wz . 5. j‘n:m.-, :d'.r.
sind 2 ¢ gin*

135. i
f-ﬁ 4B cos nx’ a.-l-bslnm{: @+ b sin nax+ ccos nar

These forms can be integrated by expressing them in terms of

the half angle and then in terms of tan "'3;1

By making use of the trigonometric relations

T . aX
coE? = 2= =1
E-l-ﬂ-ll'l. 5 .

xr a I
= gl = — e
'l'.‘.'ﬂﬁ.l:—l:.-ll':l-ﬂ. 2ln® -,

the denominator may be written in the form

o) o).
ﬁ(m& 2+au| 3 + 4| ooy sin 3

L
which bedomes sin? S+ % cos? = g °n collecting the terma; whenee
dx
dx _ 2
54 4coRx

ain’% + 9 st )

2
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Now divide numerator and denominator by cos? % and bear in mind
that

=sect =, ‘This gives

cm}’g
aee’Ed(E)
2 —E 2 =gl;a.||—1(lllﬂ:|]£)+
tantZ+9 3 3 2
2

dx
-2 —_—
Ex f Gmndzt 1
Express the denominator in the form
4 ain E'?'t 08 3:—;"+(Hiu’ 3; + mﬂ-“ﬂ%‘)

ar

Then, after dividing both terms of the fraction by cos? H'?I, the given

integral becomes - g_]; dx
. 3 x 4 x

tan? ==+ dtan—+1
. 2

Now make the substitution tanﬁﬂf =t and apply Ark. 118,

It will be observed from these two problems that the aim is
to put the denominator in the form of a homogencous quadratic
expression in sine and cosine functions. Then, when both terms
of the fraction are divided by the square of the cosine, the
denominator becomes quadratie in the tangent function while
the numerator ean be expressed as the differential of the tangent.

EXERGISES
1. jd—‘ 5. f iz .
S4+3ecoax {a gin 2 + booax)?
2 J' olx 6 j’ e
5= dsinz T J atein®z + Heostx
3. j' ix . 7. J"f—‘
| 1+ cosdx

daz dr
4. . 8. .
j‘uainx+bma= Il +8inzx 4 2e08x
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136. fauuinﬂ-:cti;r-, fﬁ""" 008 7 .

Integrate f e** gin ne de by parts, assuming

= 8in ne, and dv = e°= dx,
This gives ,

feﬂsinﬂzdz=1¢“ainnm—5fa"ﬂmmdm {1}
@ @

Integrate the same expression again, assuming this time

o= ¢, dv=gin nrds
Then

. 1 .
fe‘" sin nmd‘mz—ae“ ﬂnum+§fe“ cos nx dr. (2)
Multiply (1) by E and (2) by E’* and add. The integrals in

the right members are eliminated, and the result is

fc"ﬂinmd:n=‘q“m sin nx — i cos ne)
a4 n*

By subtracting (1) from (2}, the formula

f”“ cos na da = e**(n in e + @ C08 i)
@'+ n*

s obtained.
EXERCISES ON CHAPTER V
1. Derive the reduction formula

fﬂ&ﬂ‘:dm - tan rsectiz  n— 12 jm:}"’.: dzr.
n—1 n—1

[Tutegrate by parts, taking u = see™~%x, dv = sectr dxr.]

2. Derive
fcm dy = SOhzesct Tz A — 2 € osor-2z dr.
n—-1 n—1
3. jf_mn:rd::_ jm“rdm
ginx coax
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5. j‘ 9 BTN E‘td.l:.
COR T am* T eF
=
6. j‘umgzd-l'- 10. je“ gin? ¢ dx.

7 j -'5. — 11. j-ﬂ'aillﬂxﬁlin:ff:.
(1 —z)+v1 — a8

[Put x = cos §]. (Ilint. 28in 2xsinx = cosx — condz.]
ol
B. J’e 'mgdz.

12. Show that
. . __sginfa — b)x _sinfa + Hx
jam ax sin bx dx = S(a — b) 2(a + 1)
Use the trigonometric formula

sin @sin 8 = 1[cos{a — B)— cos{e + B)].
13. Show that

. _ _cos(a—b)x _cos(a+B)r
_fama:mam'dr—— 3(a — b) 2(a+ b)

14. Show that

_sinfa—F x |, sinfa + ¥z
j-m)ﬂuﬁﬁﬂﬂb.!!ﬂ.r— 3(a—1b) + a +b)

dz
13 j‘mn'tcm’r d. 19. jn.iu Foosl s — gin® reoax
iz . j’ dx
16. j. . 3 i 20, gint T cost :i.'
BIn*r cOa®™ T

JE—F
17. j{hm xr + cotx)8dz. 21. '-‘._.t.‘*— di

dx geinx+ boosz
18. _f . _ j‘ _ d
(1 + cosx)* E’ @ sz 4+ [3oos iz x

[Hixt. Assume
aging + heosz=A(esinz + Feosx)+ Blacos x — Fsinx)
and determine 4 and B by equating like terms. Treat Ex. 23 in
like manmner.]

ae® 4 be = a.in!‘,x+n!{mr
Fifaad _I_ ﬁe-idi j'ﬂill (-: + b}



CHAPTER VI

INTEGRATION AS A SUMMATION. AREAS

137. Areas. The problem of caleulating the area bounded
by given straight or curved lines can be solved by means of
the Integral Calculus provided that the equations of the boun-
dary curves are known and satisfy certain restrictions.

Sappose it is required to determine the area limited by a
continuous are of 4 curve whose equation, in rectangular codr-

dinates, is written
Y in the form

e B
fayr=—r, y=fiz), (1)

by the two ordinates
r=a and x=1=5, and

S Iy by the maxis; that
i h B
[ JELY 0 S Loy 15,_1;9 area APQ
- (Fig. 59).
4 £ We proceed as
A Ay Ay Ay, I

follows. It is as-
sumed in the first
place, for the sake of simplieity, that f(x) 1s always increasing
(or always decreasing) between  =a and x =5, so that a vari-
able point on the are FQ is continually rising (or falling) as
its abscissa x increases. Suppose, further, that every ordinate

between £ = o and & = b ents the are PQ in but one point. Let
208

Fra., 5B
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the interval A to B (Fig. 5%) be divided into » equal intervals
Ady, A, Ay -+, A B, each of length Ax, so that

interval AB=b —a=mn- Az

At each of the points of division A, A,, A, -, B erect ordi-
nates and suppose that these meet the eurve in the points
PP, Py .-, . Throogh the latter points draw lines PR,
P Ry, PR, - P, , K, parallel to the z-axis.

A series of rectangles PA,, FAd, +-- i3 thus formed, each of
which lies entirely within the given area. These will be re-
ferred to as the interior rectangles. By producing the lines
already drawn, a series of rectangles 8A4,, S,y -+ i3 formed
which will be called the exterior rectungles. 1t is clear that
the given area will always be greater than the sum of the in-
terior rectangles and always less than the sum of the exterior,
or, expressed in a formula,

P+ Pdy 4+« + P, B < Area APQR < 84, 4 8,4, 4 -
+8..B. (2)

The difference between the sam of the exterior and the sum
of the interior rectangles is
SE, + 88y + - + 8,y B, =rectangle §,_, T= TQ - Ax. (3)
As we suppose the curve to be continunous between F and £,
the line T'¢ is of finite length.

If the number n of equal parts into which AB is divided is
increased, the first sum in (2) increases in value and the
gecond sum in (2) decreases. Moreover, as their difference
T¢ - Az, given in (3), approaches the limit zero, it follows
that the limil of the sum of the exterior reclangles i3 equal fo the
timit of the sum of the intevior recloangles when n = oo, that is,
when Az =10,
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Since the required area always has a value intermediate
between the two sums, it follows that the area 7s equal to the
limit of either sum. So that, for example, we have

area = \07 [PA 4+ Pdy+ - + PoyBl. . (4)

The second member of this equation may be expressed in
terms of the function f(x) which appears in the equation (1)
of the given eurve. For,

area Pd) = AP - Az = f(n)Az,

since AP is the ordinate y when z = a.
Bimilarly,
areda Pdy= A F - Ax = fla+ Ar) « Az,
area FPd,= AP, Az = {0+ 2 Ar) - Ax,

- " * + r L

area P, B=dA, P, , - Ar=f(a+n—1Az)- Az
If these expressions are substituted in (1), it takes the form
area = % [ f(a)+ 1 (a+ Az)+ F(a+ 2Az)+ -
+f(a+n—1Aaz)]az. ®)

As it now stands, the formula just derived is of little prac-
tical value for computing areas. This is due to the fact that
there is no general method for caleulating the sum of the n
terms given in brackets in the second member of (5).

Fortunately, the value of the limit of this sum when n =00
and Az =0 can be calculated by integration as we shall now
proceed to show.

138. Expression of area as a definite integral. Denote the
funetion arising from the integration of f(z) by F(=z), that is,
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let F(z) = J" £(x) dz,.
or ‘_I%E_:} = f(x).

By definition of the derivative of () we have

ﬂ::nizﬂF'{:n+ ilj—F{m} — f(a).

F(x + Az)— F(z)
Ax
f(Z)+ ¢, in which ¢ approaches zero at the same time as Az,

otherwise the limit of the quotient when Az = 0 eould not be
S{z). TFrom this relation follows, on multiplying by Az,

F(a+ Az)—F(2)=/(x) - Az + $ - A ®)

The gquotient may be written in the form

Next, in equation {6) substitute for « the successive values
a, a4+ Ax, a4 2 Az -, @ 4-(n—1)Ax

We thus deduce the following series of n equations, in which
Py, by -+ are used to denote the different values which ¢ may

take: F(a+ Ax)—F(a)=f{a) - Az + ¢, - Az,
F(a+ 2 Az)— Fla + Ax)=f{(a 4 Ax) - Az + ¢y - Az,
Fla+43Ar)—Fla+ 2 Ar)=f(o + 2 Ax) - Az 3- ¢y - Az,

- = - £l = -

Fla4+n—1.Ax)—F(a4n—2.Ax)=f(a+n—2 - Az)Az
' +Er_|—1-'ﬁ'r’?
Fla+naz)—Fla+n—1-Ax)=f(a+n- 1.Ax)Ax
+ ¢, - A

Let these n equations be added; then all but two of the
terms in the left member of the sum cancel each other and the
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reault may be written
Fb)—F(a)=[f(@)+f(a+a2)+ - +fla+n—1-Az))Az
+ 1+ de+ -+ + ¢, ]A7,
in which & 1s written for a 4+ n Az, since n Az = b — a.

Now let Ax approach zero. The expression

(1 4 e+ == + b, ) A

vanishes at the limit. For, let & denote the positive value of
the numerically largest term of the set ¢, ¢y, -, ¢, 3 then we
have evidently
[+ s+ - + ) Ax|= (2 + @ ---(n terms)) Az =nd - Az
= ndz - = (b —a) - &

Henes, from the fact that i‘;‘_’l: ® =0 and that b — a iz finite, it
follows from Art. 3 that

N (s + by + - $,) A2 =0;
and therefore F(b) — I(a)= E[ Sia) + f(a+ ax) + ---
+fla+n—1. Az)]Ax (M

Now the right member of this equation is exactly the ex-
pression previously derived for the area APQE; hence,

area APQR = F(b) — Fa). (8)

To compute the value of the right member of (8), first obtain
F(x) by integrating f () dr. Having determined F (x), substi-
tute the values & and @ which x takes at the extremities of the

are bounding the given area and then subtract the second from
the first. This result may conveniently be represented by the

symba (7o
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which indicates both the integration to be performed and the
aubatitution of the two limiting valoes @ and & for = It is
called the definite integral of the function f(z) between the limits
a and b,

We thus obtain, as a final formula for area,

area APQRB = J:" 1(z) da. (9)

139. Generalization of the area formula. Instead of taking the
limit of the sum of the interior {or exterior) rectangles, a more

5 B

HI} L,
8p----- Pl . =it

L
P b R,
[ X

A oA, L

Fra. 6

general procedure would be to take a series of intermediate
rectangles. Let x, be any value of = between a and a 4 Ax, =,
any: value between a 4 Az and a+ 2 Az, ete.  Then f(x) Az
would be the area of a rectangle KL A, A (Fig. 60) intermediate
between P, and 8.4,; that is,

PA, {f{ﬂ!ﬂﬁ.ﬂ?{ S8A,.
Likewise PAy < f{z)Ar < 8,4, ete.

EL. caLc. — 18
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Hence,
sum of interior rectangles < [ f(z) 4 f (x5) + -] Az

< gum of exterior rectangles,
and therefore (cf. Fig. 5%),

area APQB= .h]xI: o LI(E)+ Rx) + o0 + i, )] A, (109

This result combined with {9 gives for the definite integral
the more general formula:

.j:ﬂx}'h= AN LA ()4 f (@) 4 - flz) Az (11)

140. Certain properties of definite integrals. From the defini-
tion of the definite integral faf{:t:}d:r as the limit of a par-

tieular sum, certain important properties may be deduced.

(@) Inferchanging the limils a and b merely changes the zign
of the definite integral.

For, if = starts at the upper limit  and diminishes by the
addition of suceessive negative increments (— Ax), a change
of sign will ocecur in formula (7), giving

Fa)— F(b)= J: “f () da.

Henee,

[ r@ite=— ["f(z)de.

(Y If ¢ is a number between a and b, then

[r@da=f @+ [ 1@ @
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{¢) The Mean Value Theorem.

The area APQH {Fig. 61), which represents the numerical
value of the definite integral may be expressed as follows.
Let an ordinate MN be drawn

¥
in such a position that
area PSN = area NRGQ).
If £ denotes the value of  cor-
responding to the point ¥, then
MN = f(£), and E
area. AP(B = rectangle ASREB
= MN.ARB = f(&}(b — a).
a X
Henes, ~ i —5
b .
If{m}dﬂ=f{'f}b_'“]r {12} Fra. 6l

in which £ is some valne of # between a and b. This result
is known as the Mean Value Theorem (compare Art. 39),

[ty
and the ordinate f(£) = “-b—-_ — is called the mean ordinate
between @ =a and #=2>0. This is also called the mean value
of the function f(x) between these limits.

The theorem may be expressed in words as follows:

The value of the definite infegral

b
[ 1@z
ia equal to the product of the difference between the limils by the

vedue of the function f(x) corresponding to a certain value ©=§
betureen the limils of integradion.

(d) It is frequently desirable to make a change of variable
in the definite integral in order to facilitate the work of inte-
gration. It is obvious, from the nature of the definite integral,
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that the limita of integration must be changed so that in the
new integral the limits shall be the values of the new variable
corresponding to those of the old variable.

Ex. Evaluate j,#\.-"ﬂ’ — it

Make the change of variable z = a s8in @, whenee dx = a cos @ 40,
and therefore

fﬁ'i‘f?x?dx:mfmsﬂw&

Here the limits for the new integral are determined by inspection

of the equation eonnecting x and 8, namely, sin § =%, It is seen that,

i)
a8 ¥ varies from O to 4, sin # varies from 0 to 1. This eorresponds to
a variation of # between the limita 0 and g. The indefinite integral

i Art. 134 (e),
by @ (04 5020)
a2’ g
it dyr

The substitution of the limita gives the value T

141. Maclaurin’s formula. As an application of the mean
valne theorem (Art. 140 (¢)), we derive Maclaurin’s formula
with the remainder term,

Let 5 and ¢ be independent variables. Suppose fls — ), to-
gether with its first n» derivatives with respect to f, to be
continnous within the interval @ to #. Then we have by inte-

t'iﬂ'ﬂ i fy
S = pdt=— s —#:I:L = f(5) — fls—1).

On the other hand if we integrate by parts, taking u = (s ),
dv = di, we obtain

Vfif'(#*l!]dt =fls—1)- s]: +J:",r"{a —t)-tdi
=f{5—5:}-h+£'f”{s—t]-tdt.



INTEGRATION AS A SUMMATION, AREAS 277

Integrate the last term by parts, taking u =7 "(s — ), dv =t di.
By successive applications of this process we deduce the
formula

Ji&)— fls —t)=F"(s — )ty +f"(5 - 51};:1! + (s — ﬁ]%+ var

1 1
+mf S5 — ) dt.
By the mean value theorem we have
S s — et e = pr(s— )0y 8

in which # is a positive fraction and &, is the same as { of
(12). Inserting this in the preceding equation and substituting
§=x, t; = & — a (hence 3 — f; = a) we obtain as a final form

f@=1@) + @)@ —a)+L @ —ay + -

[l .
+ gyt @~ 0= a))(a—ay:

If we replace @ by 1 — ¢, the remainder term takes the form
given on p. 153, with 8" written in the place of 8.

142. Remarks on the area formula. (o) It is noticed that
the formula

S ryde= 1 f(@) + 7@ + A2)+ - +fa+n— 1. Ax)]As

indicates two steps, —a summation, and a process of passing
to a limit. The differential f(«)dz which appears under the
integral sign may be regarded as representing the general
term f{x) Az of the series to be summed, while the process of
taking the limit of this sum is indicated by replacing Ax with
the differential dx and prefixing the sign of integration.
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The general term f{z) Az represents the area of an arbitrary
rectangle (of the set of interior rectangles) whose altitude is
the ordinate corresponding to an arbitrary « and whose width
is Az. This is called an element of area. The definite integral
may then be thought of as indicating the limit of the sum of
all contipuons elements of area between r=a and x ==,

This notion of sammation (followed by passing to the limit
Ax =1} is a very useful one in applying the caleulus to prob-
lems of geometry, mechanies, and physiecs. In each case an
applieation of this notion consists in finding the general ex-
pression for an element of the given magnitude (element of
area, element of mass, element of moment of inertia, ete.) and
then indicating the two steps of summation and taking the
limit by changing Az to dx and prefixing the symbol * of the
definite integral. It must not be forgotten that in every case
it is necessary to prove that the limit of the sum gives pre-
cisely the desired result.¥ This we have already done in case
of the area formula.

() The element of area f(z).Ar is positive when the cor-
responding rectangle is above the z-axis, sinee in that case f(x)
is positive, while Az is positive if b>a Accordingly, the
Sormula fl_r{m]dm gives a posilive value for an area above the
a-axts provided we take b > a.

Similar considerations show that the same formula gives a
negative value for an area below the r-axis.

(¢) If the curve y= f(x) crosses the x-axis between the two
points A, B, then the area consists of a positive part APC,

® This symbol originated historically from the injtisl of the word sum,

1 In some cases the lmit of the som is naed as 2 definition of the magnitode
in question, as, for example, in the definition of the length of are.  (Art. 151.)
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represented by the integral ‘fr Sz} dx, and a negative part CBQ
represented by the integral fbf{:u} dxz. The sum of these two
integrals, which (by Art. 1408)is T p

equal to Jﬂ S(x) dx, would accord-

. A Tt B X
ingly give the algebraic sum of the O] w-a © a-b
positive and the negative area. \L
(d) Some of the restrictions Fi. 62

placed npon the funetion f{x) in Art. 137 can be removed. In
the first place, suppose that f(z) is not always increasing (or
deereasing) as x increases from

a to b Let ordinates be drawn

13(_\ at the maximum and minimum
a4 A A" " points of the given are P@ (Fig.
o = *¢ ® ™ §3). These divide the required
Fra. 3 area into several parts A', 4",

A" for each of which the ordinates satisfy the original condi-
tion of Art. 157, hence we conclude that

wea=A'+ 4"+ 4" = [ (@) dat [ f (@) do+ | flayda

- f' f(x) d, by Art. 140 (b).

A discussion of the methods to be employed in ease f(x) be-
comés discontinuous, or is not singly valued in the assigned
interval, is postponed to Art. 143.

(e) Since f(z)=1y, formula (9) may be written more briefly

area APQH=I°;&=. (13)
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. (/) By exactly the same process used

¥ in deriving (9), or (13), it may be shown
that the area A'P@QB' (Fig. 64) bounded by
P the curve FQ, the y-axis, and the two lines

X y=a', y=>1" is given by the formula.

W
area A'PQEB =f x dy.

{7) If it is required to find the area bounded by several

arcs such as PQ, QR, RS, ete. (Fig. 65), we may calculate by

formula (%) the simple areas
APQB, BQRC, ete., and by
proper additions and sub-
tractions obtain the desired
area. Thus the area in Fig. 0]
65 would be expressed by

(1@ dot [ ria) do— [ 1ilo) dn— f "1 )

EXERCISES

¥ 1. Find the area bounded
by the curve y = log x, the
r-gxig, and the ordinates
r=2,zr=8.

Area APQEB (Fig. 66) =
Lﬁogxd:r::{lug r—l}]

=3(log3 —1)-2(log2 - 1)

iw
&

L3
* The symbol -] indicates that the valoes 3 and 2 are to be subatituted for

]
r in the expresston which precedes the symbol abd the second result sub-
tracted from the frst.
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2. Find the area bounded by the aro of the parabola y* =4 pz
measured from the vertex to the point whose abscisaa is a, the r-axis
and the ordinate x = a.

From the result show that the area of the parabola cut off by a
line perpendicular to the axis of the curve is two thirds the area of
the rectangle cireumseribing this segment.

Does this result hold good for all parabolas?

3. Find the area between the z-axis and one semi-undolation of
the eurve y = sin =

4. Find the area bounded by the semicubical parabola y® = 25 22
and the line z = 3.

5. Find the area bounded by the curve y*=4({z45)* and the y-axis.

6. Find the area bounded by the cubical parabola y = =% the
y-axis, and the line y = 1.

7. Find the area bounded by the curve z 4 #* = 2 and the codndi-
nate axes,

8. Find the area bounded by the parabola y = 2 2* and the line
y=2xz
9. Find the area bounded by the parabola y=2® and the two linea
y=zxand y=2x
10. Find by integration the area of the circle 2® 4 3% =#%

11. Find the area between the curve y = z{z — 1)(z — 3) and the
r-axis.

12. Find the area bounded by the codrdinate axes, the witch
8a*
At
find the area batwesn the curve and the raxia

y = ,and the ordinate z = z,. By increasing r, without limit,

13. Find the area of the ellipse :_:+i';= 1.

14. Find the area included between the hyperbola zy = 36 and the
line z + y = 15.
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15. Find the area bounded by the logarithmic curve y = o7, the
r-axia, and the two ordinates z = x, = r;. Show that the result is
proportional to the difference between the ordinates.

16. Find the area between the curve y = (22 — 1)(z® — 2) and the
T-axis. ‘

17. Find the area cub off from the parabola (r—1¥=y—1 by
the line y = =

18. Find the area of the oval in the curve y* =(x — a)(x — b)3,
given a =< b,

13. Prove that the area of the curve a%® = #%(2 a — z) is equal to
that of a circle of radius 0. Draw figures of the two curves (center
of the circle at the point (a, 0)) and compare.

20, Find the area of the loop of the carve ? = 24 4 25

21, (Given the curve of damped vibrations y = ¢ sinz. Show
that the areas contained between successive semi-undulations of the
curve, and the positive raxis form a geometrical series of alternately
positive and negative terma.

Find the sum of this iufinite series and verify that the same result
 may be obtained by integrating between the limits 0 and .

Find the total area included between the positive raxis and the
curve (changing the negative areas to positive).

22. Find the ares bounded by the hyperbola zy = a?, the zaxis,
and the two ordinates ¥ = a, r = na.

From the result obtained, prove that the area contained between
an iofinite branch of the curve and its asymptote is infinite.

23. Find the area contained between the curves ' = r and =8 = y.
24. Take the segment of the equilateral hyperbola zy = %, be-

tween two points P and @ Show that the area between this are and
the z-axis is the same a3 that between the same arc and the y-axis

25. Find the area bounded by the parabola v 4 vy =+Vva and
the codrdinate axes,
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26. Fiud the area between the curve 333 — 2)=x — 1 and the |
coirdinate axes,

27. Find the ares common fo the two ellipses

i LT P
Tt EptaTl

28. Find the area enclosed by the curves y = sin x, y = cos = be-
tween two consecutive intersections,

29. Find the mean ordinate of the curve y = tan z between the
limits z = 0 and E=E (see p. 275).

20. Find the mean value of the function sin r between the limits

0 and g; also of the function ¢ *sin x.

31. Find the area of the loop of the eurve

:ﬂﬂ_x.
y: i 4+ T

143. Precauntions to be observed in evaluating definite integrals.
The method given above for determining plane areas in ree-
- tangular codirdinates involves two essential steps:

(1) To find the integral of the given function y(z);

(2) To substitute for = the two limiting values a and b, and
subtract the first resnlt from the second.

Erroneous conclusions may be reached, however, by an in-
cantious application of this process. The case requiring par-
ticular attention is that in which f{z) becomes infinite for
some value of z between @ and b, or at a or 5. When that
happens, a special investigation must be made. The method
of procedure will be brought out in the following examples.

Ex. 1. Find the area bounded by the curve y(z — 1)2=g¢, the
codrdinate axes, and the ordinate = = 2.
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A direct application of the formula gives
_ (% ede e P__
m_j;{r—l"p:- .-::—l]u- 5

where the ﬂ;.rn:tlzn-i:n]]!r is a sign of substitution, indicating that the

values b, a are to be inserted for x in the expression immediately
preceding the sign, and the second result subtracted from the first.
This result is incorrect. A glance at the equation of the curve

shows that f(:}[= (:r—f Iy becomes infinite for z=1. It is

7]

~

L

-—//

L

[ hecssassmmme———csassnmnmn=

it
H

1 e=i X

Fin. &7

accordingly necessary to find the area OC'FP.A (Fig. 67) bounded by an
ordinate 4 P corresponding to a value x = 2', which i3 less than 1.
For this part of the area f(z) is finite and positive, and formula (9)
can be immediately applied, with the result

[}
area OCPA =""{ch:}}1= —a D=2l
L (z—

e o e
T (z— 1]]. T F -1
If now ' is made to increase and approach 1 as a limit, the value
of the expression for the area will increase without limit.
A like result is obtained for the area included between the ordi-
nales r =1 and x = 2. Henee the required area is infinita.

Ex. 2. Fiod the area limited by the curve y®(z® — a®)? = 8 1% the
codrdinate axea, and the ordinate z =3 a.
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Since f{:}[ = ol ] becomes infinite for x = a, it is necessary
- @

in the first place to mnmder the area OFPA (Fig. 68) and determine

'
P P
] A ada A ¥ i L
E T=3a
i
i
Fii. 68

what limit it approaches as AP approaches coincidence with the
ordinate £ = a. Accordingly
area OFPFAd = i ﬂ 3{3‘*-—{;‘9}!]-*
— uﬂ'] L}
_3{;*=_uf}i+3ui D<z'<a
whence llm g Larea OFPA]=3 al

In the same manner, the area A''Q8 has the valoe
B Drdr
"zt —anl
As ¢ diminishes towards a, the area inereases to the limiting value
Gal. Hence, by adding the two results, the required area is found
t"'}l""'[ 3al + Gal =0af

=6af — 3(r'2— anyl, a<z < 3a

The same result is found by a direct application of (9), viz.:
[ LT uﬂi]“ =9 al,
(2 — at)} v
a0 that in this case an immediate nse of the area formula gives the
correct result.
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Some of the details in such problems as the two preceding
may be omitted. It is unnecessary first to put = =z, a value
leas than the eritical one, and, after integration and substitn-
tion of limits, to let =’ approach the critical value as a limit.
For this is clearly equivalent to taking the eritical value at
onee as the npper limit for the portion of the area to the left
of the infinite ordinate (or as the lower limit for the area to
the right of this ordinate).

Thus, in case of an infinite ordinate, the rule of procedure
becomes :

Calculate separately, by formula (9), the two portions of arex on
each stde of the infinite ordinate and add the two results.  1f one
of these portions is infinite, it is not necessary to calculate the
other; the required area iz infinite.

The formula (9) for area has been deduced under the as-
sumption that the limits @ and b are finite. Tt may happen,
however, that the eurve y=jf{x) approaches the z-axis as an
agymptote. It might then be required to determine the strip
of area extending to infinity between the curve and its asymp-
tote. The method of procedure for such a case will be ex-
plained in the following example.

Ex. 8. Find the area bounded by the curve y(x?+4 1)=1 and
the x-axis
¥
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This curve being symmetrical with respect to the yaxis, it is
sufficient to caleculate the area in the first quadrant. As our formula
of iutegration docs not take account of the ease b = o, we integrate
from 0 to =’ and in the result caunse z' to increase without limit.
This limit will be defined to mean the area between the are in the positive
quadrant, its asymplote, and the yaris. 1t is evident that these steps in
the evaluation amount to a direct upptina.ti:::n of the area formula,
using the limits 0 and . The half area is, accordingly,

- 2]
'E 1 Tﬂ = tan-‘::]: = tan—la — tan-10.

We are here confrontad with the difficulty that the anti-tangent is
& many-valued funetion and there is a question as to which of ita
values should be chosen. It is necessary in such a ease to go back
and examine the limiting process just explained. The area OPQN ia
equal to tan~lz' — tan-10. Tf = approaches zero, this expression
ahould approach zero; and as =¥ inereases continuously the area also
increases continnously.  Accordingly, whatever value we choose for
tan—10, the limit of tan—12' should be the value obtained by a continu-
pug increasa in this function as r' increasea without limit, The sim-
plest valoe for tan—10ia 0. TIf tan— z' inerenses continuoosly from 0,
it reaches the limit TEF when = becomes infinite.  Hence

1i.l]1 w
=1 =] .
;o (tan " —tan—10) = —
If we choose tan—0 = nr, n any integer, then _,[i. tan—Ye' =nawr 4 r"r

and the difference gives ; as before.

Ex. 4. Find the area bounded by the curve y(22 4+ o2) =z and
the positive r-axis

Ex. 5. Find the area bounded by the enrve y = tan-1z, the codrdi-
nale axes, and the line z = 1. '

In this problem wa have to deal with a many-valued function of =
In fact, to each value of r cormesponds an infinite number of values of
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tan-'z. The problem, accordingly, has an indefiniteness, which must
be removed by making some additional assumption.

The curve y =tan~!x consists of an infinite number of branches,
corresponding ordinates of whieh differ by integer multiples of .
Each branch is eontinuous for all finite
values of = (see Fig. 70). It is evidently
necessary to select one of these branches
for the boundary of the proposed area,
and discard all the others. Suppose, for

i

example, the branch A B iz selected. The
ordinate to thiz branch has the walue
w when x is zero, and increases con-

tinuously to r+i’=ﬁf-' as r Increases

continuously to 1. Hence the required
Fia. 70 area is

'Elha.n"f:r:dz= gtan-1x — | bog(+? + 1)]1
1]

bw 1
=" —"log 2.
i z2°®
EXERCISES
1. Find the area bounded by the curve y%x — 1}= 1, the asymp=
fole x = 1, and the line z = 2.
2. Find the area bounded by the curve 3%z — 1) =1 and its
asymptote, the r-axis.
3. Find the area bounded by the ecurve of Ex. 2, the raxis, and
the ordinate = = 2.
4. Find the area inclosed by the curve 2% = o?(3® — %) and its
asymptoteg,
5. Find the area bounded by the curve ar = y(x — a), the r-axis,
and the asymptote £ =a.
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o
=

6. Find the area between the cissoid y* =3 and its asymp-

bote £ = 2 a,

7. Find the area between the curve pi(1 —+*) =1 and ita
asymplotes.

144. Calculation of area when x and y are expressible in terms
of & third variable. When the rectangular coiwrdinates of any
point of the boundary are of the required area are given as

funetions of a third variable # we may substitute in fhydm

the expressions for ¥ and dz in terms of # and integrate be-
tween the corresponding new limits for # in accordance with
Art. 140 (d).

Area of the eyeloid. This curve is traced by a point P in
the cireumference of a circle of radius r as the cirele rolls on
a straight line, without sliding.

¥

It

X

0 M 7 A
! Fio. 71
Let the point P be in contact with the given line at O when
the circle begins to roll. Buppose that an arbitrary are PQ
has rolled over the segment O@. Let (x, y) denote the rec-
tangular codrdinates of P, and let # represent, in radian meas-
ure, the angle at the center €' subtending ¢ ; then,

ﬂQ:ﬂ[‘GPQ:Tﬂ

EL, CALD, — 18
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Dropping a perpendicular PR on the line '), we hava

Pil=rasmnb, RC=rcosh.
Accordingly,

2=0M=00—-MQ=ri—rainfd= r{ﬂ—aiu E},
y=MP=QU— BC=r—rcos 8 =r(l —cos#).
These are called the two parametric equations of the cycloid,
¢ being a varying parameter. One complete arch of the cy-
cloid is generated as # varies from 0 Lo 2 =, that is, as = varies
from 0 to 2 #r. The maximum ordinate for this arc oceurs at

@ = =r, and the are is symmetrical with respect to this ordinate.
The area inclosed by the are 024 and the x-axis is

drr w
“[ yu‘.-n=f #(1 — cos §) - r(1 — cos 6)df = 3 =",
The area is three times that of the rolling cirele.

EXERCISES

1. Find the area of the ellipse when r and y are expressed in
terms of the sccentric angle, r = acosd, ¥ = hain g
What is the meaning of the negative sign in the result?

2. Find the area of the hypoeyeloid P g yl = at by expressing x
and g in the form x = a cos* 8, y = a sin® f.
3. Find the area of the loop of the folinm of Descartes
Pty =10
This area may be caleulated either by expressing x and y in the

_ 3@ _ 48

Terr  TeEr T
obtained by putting y = #x and solving for x and y, or by transform-
ing to polar cosrdinates and using the polar formula for area, Art. 145.

form
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4. Find the area within the curve y®=(1 — z%)* by assuming
T = cos #, ¥ = sin® .

5. Find the area of (ur]iﬁ- {.E_:,r}i = (a? — b’}i, the evolute of the
ellipse. (Ses Fig. b1, p.180.) Express ¥ and ¥ in the form,

ax = (a® — b%) sin® @, by = (a® — B%) cost® .

145. Areas in polar cobrdinates. Let PQ be an are of a eurve
whose equation is given in polar codrdinates (p, #). It is re-
quired to find the area bounded Q
by this curve and the two as-
signed radii OF and 0Q.

Let A4 and B be any two
points of the curve with codrdi- D
nates (p,8) and (p + Ap, 8+ Af)
respectively. Through A draw
an arc A of a circle with radius
p and center €. The element of 3 R
area 0.AC is a sector of a circle © /
of angle Ad. The arc AC is, Fia. T2
therefore, p Af and the sectorial area is & p"Af.  The limit of
the sum of all such elements contained between OF and 0Q is

18
5ot do. (14)

That this is the actual area sought remains to be proved by
showing that the sum of the elements of area has the required
area for its limit. This may be done by steps exactly analo-
gous to those used in Art. 137, which would consist in
proving that the sum of all interior sectors, such as 0.AC, has
the same limit as the sum of all erierior sectors, such as QODB.
The details are left to the student as an exercise.
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EXERCISES

1. Find the area of the three loops of the curve p = asin 3 6.
From the symmetry of the figure it is seen that one sixth of tne
total area is described as § varies from 0 to E Hence the area is

ﬁﬁfiaﬂuiuiaﬂ.:m =fa? E(l — cos 6 @)dd ="T‘"-
This is one fourth the area of the circomseribing cirele.

2. Find the area of the lemniscate p? = a®cos 2 6,

3. Find the area of the eircle p = 2rcos §.

4. Find the area of the cardioid p = r{1 — cos #).

5. Find the area of the circle p = 10 sin a.

6. Find the area bounded by the hyperbolic spiral pf = ¢ and
radii drawn to two arbitrary points {p,, 8,) and (pg, ;). Show that
the area is proportional to the difference between the radii.

7. Find the area of the four loops of the curve p = asin 2 6.

8. Find the area of the loop in the spiral of Archimedes p = aff
generated between the limita — E and +§ for 8.

9. Find the area bounded by the lituus p*@ = k and two arbitrary
radii, making angles & and #; with the polar axia

10. Find the area of one loop of the eurve p? = a? cos né.

11. The radius vector of the logarithmic spiral p = ¢~ starts at
the angle # = 0 and rotates positively about the origin an infinite
number of times. Determine the area swept over by the radius
vector.

12. Find the area of the curve p* = sin®#@ cos 6,
13. Find the area within the curve p = cos? 8.
14. Find the area of the innermost loop of the double spiral p=6.

146. Approximate integration. The trapezoidal rmle. As
shown in Art. 138, the numerical value of the definite integral
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Lbyd.fu is the same as that of the area bounded by the curve
¥ = f(z), the z-axis, and the two ordinates z=4a, 2=5
When a, b, and the coefficients in f(z) are numerically given,
the approximate value of this area, and therefore of the defi-
nite integral, ean be found by adding the n terms of the series
[fla)+ f(a + Az)+ - + f(a+n—1.Ar)]Az.  The close
ness of the approximation improves with increasing values of
#n. A much more rapid method of approximation is now to be
considered.

Instead of forming rectangles, P
as in Fig. 59, p. 268, draw the B
chords PP, PPy, +--, P,_,§), thus
making trapezoidal elements of
area, APPA, APPd, ete. Fio. T
Denote the ordinates at A, Ay, Ay, -, A, ;, B by 3, th, ¥y ++n
Yoo ¥, Tespectively. Also for brevity write Az =Hh. Then
the areas of the several trapezoids are

APPI.:‘II = -Hy. + yl}.ﬁ,
4P Pydy = J(h + vy

AP, QB

¥ E

Ol A 4, 4, A FX

EY a - #

oy + w)h.

Hence, by adding, we obtain for the approximate value of
the definite integral the expression

" A2 Vn f oyt gt ot Y |

This is known ad the trapezoidal formula for the approximate
value of j;"ym: and thizs method of computing its numerical
value iz ealled the trapesoidal rule.
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147. Simpson's rule. With three ordinates. Instead of draw-
ing the chords PF,, FFP; pass a parabola, having its axis ver-
tical, through the three points P, P, F; and determine the
area of the double strip bounded by the two ordinates y, w,,
the z-axis, and the parabolie are. :

The equation of the parabola is of the form

y=k + Iz + ma
For convenience take the origin at the foot of the middle
ordinate 3. Then the abscissas of the three ordinates may

be represented by — &, 0, 4+ A, and the area under the para-
bolic arc is given by the formula

j_':{a:+ & + maf)dz =5 (6 k + 2 mh?),

This result can be expressed in a simple form i terms of the
three ordinates y,, ¥, y;. For,

=k — lh 4+ mh?,
=k,
Yo =k + Th 4 mh?;
therefore, Yo + vy =2 k+ 2 mA,
hence, b+ 2ml =u,+ 4y, + ¥y
and, accordingly,
parabolic axes APPPyds="1(n+ 4+ (19)

This is Bimpson’s parabolic formula for three ordinates.
With n ordinates. In like manner the area bounded by the
two ordinates u, ¥, and a parabolic arc through P, P, P, is

B4 ) (16)
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and so on. If the number of ordinates wy, ¥, ---, ¥, 18 odd, we
obtain, by adding together the expressions (15), (16), etc.

;'[m +4tn+ 28+ d 8y 4 -+ 2y, o Hdy, _ F VL]
5
This is Bimpson's formula for the approximate value of J- yd.

148. The limit of error in approximate integration. The ap-
proximate value obtained for J"f(m} dz by means of Simpson’s

formula differs from the true value hj an amount which does

not exceed ¥  G—a) SR
180 ’
in which /(¢ is the value of the fourth derivative of f(z)
when x is given a certain value ¢ between @ and . The limit
of error for the trapezoidal rule is*
_ (b—a) /(O
12
Bince £ is not definitely koown, in applying the above
formulas to find the limit of error it is necessary to choose §
go that y{£) or f'(£) has its greatest valune in the interval
from a to b. The result so obtained may be considerably
larger than would be given by the formula if £ were actually
koown. In some cases the result will be so large as to give no
useful information in regard to the closeness of our approxi-
mation. In other cases it will be small enough to indicate
that the required degree of approximation has been attained.
For example, suppose it is required to evaluate

J"“’lﬂﬁm Z e
- 1] b

¥ Bea Maggorwr, ' Differenzenrachnung,” § 14, pp. 57, 5.




206 INTEGRAL CALCULUS

Since f(z) =z logy®, we obtain by successive differentiation
J () =224 logyx — b0 M), M =log,, e=0.4343, very nearly.
As we cannot readily determine by inspection the largest nu-
merical value of f1¥(z) in the interval 20 < = < 30, we obtain

the next derivative o) = a~%(274 M — 120 log,, ).

The first factor #7% is positive. The second factor takes a nega-
tive value for = = 20 and hence f¥(x) is negative in the given
interval. Therefore, f'¥(x) is a decreasing function for all the
values of * under consideration. But f™{x) is positive for
a =30, and accordingly its greatest numerical value eccurs for
z= 20, which is f1(20) = 0.000003.

The limit of error for Simpson’s formula is, therefore,

_ 10(0.000003),, .
T50 = — (0.0000002)R"

If we use 3 ordinates, then A=5 and the error does not exceed
—0.0001+ ; that is, the error is less than two units in the fourth
place of decimals.
EXERCISES

In the following problems use Simpson's formula whenever an odd
number of ordinates is given. Determine the limit of error and,
when possible by direct integration, the exact error. Also evaluate
by using the trapezoidal rule, and compare the degree of accuracy
attained by the two different methods.

1. Evaluate _1,:‘::‘-1 dz by the trapezcidal rule, using 5 ordinabes;
# ordinates.

In the case of 9 ordinates, n =8 and A=
n=%"mn=1 M= {ﬂi- riey Mg = 42,

2. Prove that Simpson’s rule gives the exact value of j:';:" dx,
§ etz (4 Be 4yr 4 B,

b — 1
EIEF Yo=1,
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3. Evaluate juicm zdr, using 3 ordinates; 5 ordinates; 7 ordi-
nates; B ordinates. Notice the variation of error with imcreasing
values of n. _

3. Evaluate [ Vzdsz, using 5 ordinates.

o m———

o 8 N . )
/5. Ewaluate L V1 + 20 dr, nsing 4 ordinates;|7 ordinates. 3

[ E 1t 'll
6. Ewvaluate j; cod zdz, using 7 ordinates. I'. ,1 .
i j - )

"\ 7. Evaluate j log,q * 'x, using unit intervals.

8. Evaluate j'm

o = uu.mg T ordinates.

- 9. Evaluate .ﬂ V1 — rtdz, using 6§ ordinates.

10. Evaluate 5:&";'-31:, using 11 ordinates.
This integral (with any upper limit) is called the Probabiliy Fnte-
gral since it plays an important rile in the theory of probabilities.

1 11. Ewvaluate £E v1 — dsin®zdz, using ¥ ordinates.

12. Evaluate j‘_’“ﬂdz by the trapezoidal rule, using 11 ordinates.

1 dy
1 4 «*

13. Calenlate the valoe of o from the formula E =
11 ordinates.
Determine the error by comparison with the known value of .

, LEing

14. Evaluate jf veoa @ 40, taking @ at intervala 15°% 10°, 9°.

This, like Ex. 11, is an Elliptic Integral and cannot be integrated
by any formula given in the present volume. It ocours in the prob-
lem of caleulating friction in journals. {See “ Engineering Mathe-
matics ® by Prof. V. Kanarerorr, Part I, p. 16. Wiley, 1912}

15. Evaluate E “#wT ge using 3 ordinates.



CHAPTER VII
GEOMETRICAL APPLICATIONS

149. Volumes by single integration. The volumes of varions
solids may easily be caleulated by a suinmation process exactly
similar to that used in cowmputing areas, The following prob-
lems will make the mode of procedure clear.

Ex. 1. A woodman fells a tree 2 ft. in dismeter, eutting halfway
throngh on each side. The lower face of each cut is horizontal and
the upper face makes an angle of
60" with the lower. How much
wood does he cut ont?

The portion eut out on one side
forms a solid bounded by a eylindri-
cal surface whose equation may
be taken in the form z® + 32 =1,
and by two planes whoss intersec-
tion may be chosen for the y-axis,
Imagine this wedge-shaped solid
divided intc thin plates by means

Fio, T4 of planea parallel to the zz-plane

and at equal distances Ay. The

volume of an arbitrary plate PQRP'Q'R' is approximately equal to
the ares of the triangular face multiplied by the thickness Ag.

Area PQR = | RP- PQ = ;:;:%:::.

208
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sinee E: tan 60° = v3. The element of volume is therefore

V3§ 2
-.ﬂ_ - Ay

Since the figure is symmetrical with respect to the zz-plane, it ia suffi-
cient to calculate the volaome between the limits 0 and 1 for y and
double the result.

The limit of th= sum of all elementa of volume in the first octant

e WA 1
?ﬁr’dy..-é—j;[l—ﬁdy_ﬁ.

is

That this limit i3 the volume %o be determined may be seen on
observing that the element of volume falls short of the total amount
contained in the plate PQRE™ R’ by the prismatic piece PN QM.
The sum of all these neglected portions, in the first octant, is less
than the volume of the maximum plate (having the rz-plane for base),
and hence approaches zero as Ay diminishes.

Therefore the total volume of wood eut out is % eu. ft.

Ex. 2. Calenlate the volume in Ex. 1, by dividing the solid of
Fig. 74 with equidistant planes parallel to the ye-plane.

Ex. 3. Find the volume of the ellipsoid

21 g0, 2t
pr + ?IF + 5= 1.

Imagine the solid divided into a number of thin plates by means
of planes perpendicular to the z-axis and at equal distances Ax. He-
gard the volume of each plate as approximately that of an elliptic
cylinder of altitude Ax, whose base is the seclion of the ellipsoid by
one of the cutting planes. If the equation of this plane is x = A,
the equation of the elliptic base of the plate is (in ¥, = codrdinatea)
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A2
— ;t,

¥
b’+r."_1

Dividing by 1 — :ZL: we obtain

#i.lﬂ* —wy = 1
BE) ) -

T al

The semiaxes of the ellipse are
lﬂ lﬂ
b\llil. -5 ;«\1'1 -

Since the area of the ellipse is the product of the semiaxes multi-
plied by = (Ex. 13, p. 281), it follows that the area of the elliptic base

in "b{.‘(l -j—:). On replacing A by x, the element of volume may

e writben

-ﬂ.».e(1 - E:) Az

The sum of all such elements for values of x varying by equal
inerements Ax between 0 and a differs from the volume of the half
ellipsoid by a series of ring-shaped portions, the total snm of which
is less than the volume of the maximum plate of the figure. It
readily follows from this that the total volume of the ellipsoid is

“wbel1 _ Vg 14
EL rﬁt.(] u“)dr 3 wabe.
Ex. 4. SBolve Ex. 3 by taking the cutting planes parallel to the z=-

plane and at equal distances Ay.

Ex. 5. Solve Ex. 3 by taking the ecutting planes parallel to the
zy-plane.

Ex. 6. Find the volume of the portion of the elliptic paraboloid
2t
E‘:-I_E’: x cut off by the plane x = 1.
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Ex. 7. Find the volume of the elliptic cone :: + ;—i_- (z — 1) meas-
ured from the yz-plane as base to the vertex (1, 0, 0).

Ex. 8. Find the volume of a pyramid of altitude & and of base
area . -

[Hixt. Take the base on the zy-plane, the altitude coinciding
with the z-axis. Cutb the solid into thin plates by planes parallel to
the base. ]

Ex. 9. Given an ellipse :;:+%:= 1. On the major axis a plane
rectangle ABCD i3 con- ¢ p D
strueted perpendicular to
the plane of the ellipse.
Through any point P of
the line 0 a plane is
constructed perpendicu- 5
lar to C0. The iwo

points B and 8 in which B
the latter plane meets the \p/
ellipss are joined to P i

by straight lines. The Faa., 95

totality of all lines so determined forms a ruled surface called a conoid.
Given 4 = p, find the volume of the above conoid.

Ex.10. A rectangle moves from a fixed point P parallel to itself,
one side varying as the distance from P, and the other as the square
of this distance. At the distance of 2 ft., the rectangle becomes a
square of 3 {t. on each side. What is the volume generated?

Ex. 11. The center of a square moves along a diameter of a given
gircle of radius a, the plane of the square being perpendicular to that
of the eircle, and ita magnitude varying in such a way that two oppo-
site vertices move on the ecivcumference of the ecircle. Find the vol-
ume of the solid generated.
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Ex. 12. A right cirenlar cone having an angle 2 § at the vertex has
ite vertex on the surface of a sphere of radins a and its axis paming
through the center of the sphere. Find the volume of the portion of
the sphere which is exterior to the cone.

Ex. 13. Find the volume of the paraboloid i—: T g = z cut off bry the

plane z = ¢.

Ex. 14. A banister cap is bounded by two equal eylinders of revo-
lution of radius r whose axes intersect at right angles in the plane of
the base of the cap. Find the volume of the cap.

150. Volume of solil of revolution. Let the plane area,
bounded by an arc PQ of a given curve (referred to rectangular
axes) and the ordinates
¥ £ Qﬂ at the extremities P and
B~ | | ¢, be revolved about the
R, 2 __-.4:‘:’5' x-axis. It is required to
g \Fy -.-..-.C_Kﬂ find the wolume of the
o x  solid so generated.
4 4 4, Aoy [B Let the figure APQB
be divided into n strips
of width Ar by means
of the ordinates A4,P,
AgFyy vovy A F . In
revolving about the
zaxig, the rectangle APR, A, generates a cylinder of altitude

Ar, the area of whose base is = - AP". Hence

Fra. T

volume of eylinder = x - AP" - Ax.

The volume of this eylinder is less than that genmerated by
the strip AFPF, A, by the amount contained in the ring gen-
erated by the triangular piece PR,P. Imagine this ring
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pushed in the direction of the waxis until it cceupies the posi-
tion of the ring generated by CDE. If every other neglected
portion (such as is gemerated by F_,F; &) is treated in like
manner, it is evident that the sum is less than the volume
generated by the strip A, F @B, and henece has zero for
limit as Az approaches zero. Therefore the sum of then cylin-
ders generated by the interior rectangles of the plane, viz.

w(AP + AP+ o+ AP A,
has for limit the volume required. But the limit of this sum
is the definite integral f:y’dm, and hence

volume = y‘ dz.

The volume generated by revolution about the y-axis is found
by & like process to be expressed by the definite integral

&_-I
T 2 lf_!j',

w

in which a' and &' are the values of y at the extremities of the
given aro.

When the axis of revolution does not coineide with either of
the cotrdinate axes, a similar procedure will usually give at
once the element of volume. y,
Examples 1-3 will illustrate.

Ex. Find the volume of revo-
lation of the segment of the
parabola y% =z eut off by the
line y = x, the axis of revolu-
tion being the given line.

Let 0Q be the axis, and F
any point of the parabolic arc.
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If ¢ denotes the perpendicalar distanes PR from P to 0@ and s the
length of the line OR, then the element of volume is

o A,

The formula of analytic geoinetry for the distance from a point

to o line gives
u=_|,r—::_1.f"§—:.-

V2 V2

in which (z, y) are the codrdinates of /. The second form for » is
obtained by substituting for g the expression given by the equation
of the parabola.

Since Aw is measured on a lineg making an angle of 45" with the
r-axis, it follows that Aw = V2. Ax,

Hence the required volume is
iig-(ﬂ'r = I]i Vidy = T .
va 30,/

EXERCISES
1. A quadrant of a circle revolves about its chord. Find the

volume of the spindle se generated.
[HiwT. Take ths equation of the circle in the form 2% 4 y? = r3
and the equation of the chord x + y = r.]

2. Find the volume of revolution of the segment of the circle
¥ 4+ y? = r? cut off by the line x = a, this line being the axis of

revolution.

3. Find the volome of the truncated cone obtained by revolving
about the y-axis the segment of the line 3 x 4 y =5 between the

points (2, — 1) and (1, 2).
4. Find the volume generated by the revolution of the cissoid
_ &
¥ = 2a—rx
What is the limit of this volume as z, approaches 2 a?

about the r-axis from the origin to the point (z, 7).
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5. Find the volume obtained by revolving the entire cissoid about
its asymptote, the line £ = 2 a.

[HixT. The elemeut of volume is x{2 a — x)?Ay. For the pur-
pose of integration express r and y in terms of a third variable ¢ by
means of the equations

< g .
= 2asin? = 2, 20 t]
_ L ¥ p—

6. Find the volume of the oblate spheroid obtained by revolving

. ¥ yE . . . .
the ellipsa u_-'*+ i 1 about its minor axis.

7. Find the volume of the sphere obtained by revolving the
eirele 2% 4 (y — £)? = r¥ about the y-axis.

8. The arc of the hyperbola zy = &3, extending from the vertex
to infinity is revolved abont its asymptote. Find the volume
generated.

What is the volume generated by revolving the same are about the
other asymplote ?

9. Find the entire volume obtained by rotating the hypocycloid
P yi = a¥ about either axis.

10. Find the volume obfained by the revolution of that part of
the parabola vz + vy = va intercepted by the codrdinate axes about

one of those axes.
11. Find the volome generated by the revolution of the witeh

¥ = ;’i?:aﬁ about the r-axia
12. Find the volume generated by the revolution of the wilch
about the y-axis, taking the portion of the curve from the vertex
{z = 0) to the point {x,, 1n).
What is the limit of this volume as the point (z,, y,) moves toward
infinity ¥
EL. OALC, — 20
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13. Find the volume obtained by revolving a complete arch of
the cycloid = = a{# — sin #), y = a(l — cos #) about the r-axis.

Volome = w_[;!“y" dr = mﬁj;h{l — cos )2 40,

14, Find the volume obtained by revolving the mrdinid
p=a{l —cos @ about the polar axis.

Amume z=peosl, y= psind.
Then  dxz = d(pcos )= d[a(l — cos §)eos &]

=asin 8 —1 + 2cos #) 48,
Hence

volume = a—_fy"d;: S mtfama (1 — cos §)3(1 — 2 cos ) df. .

151. Lengths of curves. Rectangular coordinates. Let it be
required to determine the length of a continuous are () of a
curve whose equation is written in rectangular codrdinates
(=, ).

It is first necessary to define what i3 meant by the length
of a ecurve. For this pur-
pose, suppose a series of
points Py, Py, ---, P_; taken
on the arc PQ (Fig. 78), and
imagine the lengths of the
chords PP, PP, +- to have
been determined. The limit
of the sum of these chords as
the length of each chord ap-
proaches zero will be taken,
in accordance with accepted
usage, as the definition of the length of the are PQ;* that is,
arc '@ = Lt (chord PF, 4 chord PPy + - 4 chord P,_,@). (1)

*® That thia limit I3 always the same no matter how the points P; are chossn,
aa lohg as the corve has a continnously turning tangent, and the dlstances

Fia. T
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This definition is ummediately convertible into a formula
suitable for direct application.
For, let the points P, P, --- be so chosen that

PHIIP]R*=-J.=QE,

the lines PR, ete., being drawn parallel to the saxis.
Denote by Ay the inerement B,F of 3. Then the length
of the chord PP, is

V({BTF + (A7 =4/1 +<i_:) Ag = \{ll-i—(:—;)z&y. (2)

Now E—h: is the slope of PP, It is, therefore, equal to the

slope of that tangent to the arc PP, which is parallel to the
chord. Tf (m, 3,) dencte the codrdinates of the point of con-
tact of this tangent line, then we have

Ay _ du,

Az dz,
Hence the length of chord PP, may be expressed in the form
f (=) Az, i which

Flay=y/1 +(%") ®)

PPy = flag) Ax, PoFy=f(z,) Az, .-,

in which =z, is the abscissa of a certain point on the are P F,,
and so for 2;, ... When these expressions are substituted in
(1), 1t becomes

are PQ= " ([ £(m) +f () + - +(w,)] A

Pyaf¢ are all made to tend towards zero, admits of rigorous proof. The
proaf is, howaver, unsoitable for an elementary textbook. ({Bee Rouché et
Comberoussa, ** Tralté de géomeétria," Part I, p. 189, Paris, 1801).

Similarly
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But, by (11), p. 274, this limit is f 'f@) dz. Substituting for
fiz) from (3), we obtain the formula

awe PQ= "1+ o, @

in which @ and & are the abscissas of P and @, respectively.
Taking for PP, the second form in (2), namely,

M ]
V() oo
we deduce in like manner

amPQ=£F\||1+($)’ d,

in which a' and 3" are the ordinates of P and €.

EXERCISES

1. Find the length of arc of the parabola y® = 4 pr measured from
the vertex to one extremity of the latus rectum.

In this case @ _\e,
hanes length of aro = "\ + 2 dr= (" EXL_ 5.

vl + pr
2. Find the length of arc of the semicubical parabola ay®* = 2*

from the origin to the point whose abscizaa is Er

3. Find the length of are of the curve y = log cos x, measured
from the erigin to the point whoss abacissa i % :

4. Find the entire length of the hypocyeloid =24 yY = o,
5. Find the length of arc of tha circle 2? 4 3 = 2%
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6. Find the length of are of the catenary y:E(; -l—-e_:} from
the point {0, a) to the point whose absciasa is a.
7. Find the length of arc of the curve y =

=",

+ 1 betwean the
2z

limits z =1 and = = 2.

8. Find the length of the logarithmic curve y =log = from z =1
to z = V3.

9. Find the length of arc of the evolute of the ellipse

(az)¥+ ()i = (a2 - 01,
10. Find the length of arc of the curve y = alog (o' — =) from

L]
r=0toxr= 5"

153. Lengths of curves. Polar codrdinates. The polar
formulas for length of arc may be derived from those of the
previous article by transformation from reetangular to polar
codrdinates.

Since x=pcosd, y=psind, we obtain by differentiating
with respect to @

dlae =(?I§‘WE 8 — psin E)u!'ﬂ', dy —_H(E sin # 4 p cos E) a#f,

hence
V1 +(gi)’az — Vi@ Fdy = G!;)H o dé.

L]

Therefore the length of are is

arc PQ — f " +f gg)’ s, ®)

the limits of integration being the values of @ at Fand Q.
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If p instead of # is taken as the independent variable, we
deduce in like manner

g dend
arc PQ = \||1 +(P“"' tp,
ay ﬂ.-".F'
the limits being the values of p at P and Q. '

EXERCISES

8

1. Find the length of are of the logarithmic spiral p = ¢* botween

the two points (p), 8,) and (py 6), and show that it is proportional
to the difference of the two radii gy and sy

2. Find the length of arc of the circle p = 2 a sin 4.

3. Find the entire length of the cardioid p = a1 — cos &).

4. Find the length of the parabola p = @ sec? g between the points
(1 6,) and (p,, 6,).

5. Find the length of the spiral of Archimedes p — afl between
two arbitrary points.

6. Find the length of are of the spiral p = #* measured from
=0t =m

7. Find the entire length of the curve p = cos® 4.

8. Find the entire length of the curve p= ain'ga

9. Find the length of arc of the cissoid p = 2 a tan @ sin @ between
the limits 0 and %

[Hiwr. For the purpose of integration, express the integrand in
terms of sec § as the independent variable.]

153. Measurement of arcs by the aid of parametric representa-
tion. Buppose the rectangular cotirdinates of a point on a
given curve are exprossed in terms of a third variablet. Then,
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“sinee in rectangular codrdinates — -.-\l(fh) ( HT {Art. 41),

S EEINGEAL

in which 8= are Pg, and ¢,, ¢ are the values of ¢ corresponding
to the points F and . In like manner, if the polar cotedi-
dates (p, §) are expressed in terms of ¢, the formula for length

of are is i
o= *‘\,({gg) +(p'fﬁf’)* d,
since ds \/( ( m) (Art. 45)

EXERCISES
1. Find the length of a complete arch of the eyeloid

r=ua(t —&int), y=a(l — couai).
2, Find the length of the epicycloid
r=a(meost — cosmi), ¥ = a(msint— sinmt)

Lo

fromi=01ot =
m—1

3. Find the length of arc of the hypoeycloid oF 4 3.ri = ﬂ§ by ex-
pressing x and g in the form £ = a sin?f, ¥ = a cos¥ L.

4 Find the length of the involute of the circle
r=a(coat + tsint), y = a(sint — {cosf)
frome=0%tot =1

5. Find the length of arc of the curve 2% — y¥ = a! from (a )
to (1‘1, y.] by amuming = = a sec*t, y = a tan® L
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6. Find the length of arc of the curve z = e'sin 4, y = #cos ¢ frome
{=010toi=4

7. Find the length of arc of the curve z=a + &, y = b + # meas-
ured from the point { = 0 to the point ¢ = 4.

154. Area of surface of revolution. Let AQ be a continuous
arc of a enrve whose equation is expressed in rectangular cobrdi-
- pates @ and y. It is required to
Q. determine a formula for the area

L of the surface generated by revolv-

ing the are A¢) about the z-axis.
It has been shown in Art. 44,
x p. 81, that if § denotes the area
of the surface generated by the
Fra. 79 rotation of AP (P being a variable
point with cotrdinates (z, %)), then AS satisfies the conditions

of inequality

ZwyAs < AS < 2 x(y + Ay) As. (6)
Let the are A¢ be divided into n equal parts of length As.
For each segment of arc there will be a set of condi‘ions such
as (6), the values of », Ay, AS being in general different for
the different segments. FLet the n sets of inequalities this

obtained be added. In what follows, the aymbol 2 will be
used as an abbreviation of the expression, “ The sum of the

f# terms of the form.” Binece E.&S=S {in which S now
denotes the entire surface generated by are AQ), we have

2w yas <8< 2wy (v+A4y) As. (7)
Now let as (and hence Ay) approach zero, The first mem-

ber of (T) becomes 2« | yds, which changes to
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2 ymdmurtﬂﬁrfy ()dy,

on making «, or y, the independent variable. The limit of the
last member of (7) may be written

J:E_Elu z [y A=+ Ay Ax] =f3.r ds 4 1im2 Ay As.

The last term iz zero. For, let § represent the maximum
value of Ay in any of the terms of Eﬂy As. Then follows

DAyAs =83, As =8 -arc AQ,
and since 8 approaches zero, we conelude that lim 3 Ay As = 0.

Hence lim Zyﬁa-limz{y-l—.ﬁy} A,

and therefore

§=2x] y\jl+(i—i d:=2wv£” ﬁf1+{j_;)’dy.

In like manner the area of the surface obtained by revolving
arc A6 about the y-axis is

. dnt ¥ !
E'I"J: m\‘1+(d$ dm—ﬂr‘):. 1—]—(@) iy

EXERCISES
1. Find the sorface of the catemoid obtained by revalving the

= = :
mtepujryﬂg(¢-+g s ) ahout the y-axis, from x =0 to z = a.
Bince ' Ei=i(e"—a_;}.
it follows that
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henca, by using the first formula of (8), the required surface has the

area
'r":'.r{e; +e =)dr
2. Find the surface obfained by revolving about the paxis the

quarter of the circle 2?4 3 + 22+ 2% + 1 =0 contained between
the points where it touches the cotrdinate axes.

3. Find the sarface penerated by revolving the parabola 3@ = 4 pr
about the r-axis from the origin to the point (p, 2 p).

4. Find the surface generated by the revolution about the y-axis of
the same are as in Ex. 3.

5. Find the surface generated by the revolution of the ellipse

72 2
atE=l

{a) abount its major axis (the pra:nlnt-;a spheroid) ;
{#) about its minor axis (the oblale sphercid).

6. Find the surface generated by the revolution of the cardioid
p = afl + eos §) about the polar axis

Regarding the figure as referred in the first place to rectangular
axes such that = = p cos ¥, y = psin & we have

surface = 2 rjy de =2 -;rj:: p 8in H*“IF* +(:—E)=dﬂ,
since ds =gt + (%}“fﬂi by Art. 45.

7. Find the surface of the cone oblained h:,r revolving that por-

tion of the line E+ E = 1 which is intercepted by the codrdinate axes,

(=) about the r-axis; (B) about the y-axis.

8. Find the surface of the sphere obtained by revolving the circle
p =2 a cos § about the polar axis. [Cf. Ex. 6.]
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9. Find the surface generated by the revolution of a complete
arch of the eyeloid = a(f — sin #), ¥ = a(l — cos #) about the r-axis.

10. Find the surface of the ring generated by revolving the
circle 22 + (y — &)* = o, k> a, about the raxis. Also find tha vol-
ame of this ring.

11. Find the surface generated by the rotation of the involute

of the circle a
r=a(coal +tsinf), y =asint—{ocosr)

about the raxia from ¢ = 0 tof =,

155. Various geometrical problems leading to integration.

Ex. 1. A string A8 of length @ has a weight attached at B. The
other extremity .4 moves along a straight line OX, drawing the weight

¥

0 A X
Fra. 80

in a rough horizontal plane XO¥F. The path traced by the point B
ia called the tractriz.  What is its equation?

Let Y be the initial position of the string and 4 8 any intermedi-
ate position. Bince at every instant the force is exerted on the weight



216 " INTEGRAL CALCULUS

B in the direction of the string BA, the motion of the point must be
in the same direction; that is, the direction of the tractrix at B is

the saime as that of the line B4 a.lid hence BA is tangent to the curve.
The expresgion for the tangent length is ( Art. 48, p, 86)

dgh? :
y 1+(75'-') —
HEF 1||_"" ‘+l=a.
dy ¥ [:dy)
dz

Solving for j—:, we obtain

is_ JE=F.
dy L
Integrating with respect to y gives
r=j‘_-'dz_fdyzvﬂ—f—ulogtw—;g—:£+ .

The constant of integration is determined by the assumption that

(0, a) is the starting point of the cwrve. Substituting these codrdi-
. nates in the above equation, we find " = 0.

Ex. 2. The equiangular spi-
ral is & oorve 8o constructed
ihat the angle between the ra-
dius vector to any point and
the tangent at the same point
is constant. Find ita equation.

¥

Ex. 3. Determine the curve

having the property that the

y line drawn from the foot of
any ordinate of the curve per-
= pendicular to the correspond-

"f ing tangent is of constant

]&hg'l'.h .
Fra. 81 If the angle which the




GEOMETRICAL APPLICATIONS 31T

tangent makes with the r-axis is denoted by ¢, it is at once evident

(Fig. 81) that
1 1
=m¢'=vrl+tﬂ“*';= E’E’
1
\JI +(d.t)

=R

From this followa
= log(y+ vy - a®) + C.
a

When the tangent is parallel to the r-axis, the ordinate itself ia the
perpendicular . [f this ordinate is chosen for the y-axis, the point
(0, a) is a point of the curve, and hence

' =— log a.

The equation can accordingly be written
y+vyi—a_ o (1)

ia

From this follows, by taking the reciprocal of both members,

a =

FHVE_—at

whence, on rationalizing the denominator,

Y-V -al_ e

Adding (1) and (2) and dividing by E we obtain

¥ =E {a; -+ E_;:h.

which is the equation of the catenary.

-

3

Ex. 4. Find the equation of the curve for which the polar subnor-
mal is proportional to (is a times) the sine of the vectorial angle.
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Ex. 5. Find the equation, in rectangular eosrdinates, of the eurve
having the property that the subnormal for any point of the curve
is Empu;lﬁuual to the abscissa.

Ex. 6.' Find the equation in polar codrdinates of the curve for
which the angle between the radius vector and the tangent is n tines
the vectorial angle. What is the curve when s =17 When n = }?

Ex. 7. Find the rectangular equation of the eorve for which the
Elﬂf_g_f the tangent varies as the ordinate of the point of contact.

Ex. 8/ Find the equation of the curve for which the polar sub-
tangent is proportional to the length of the radius vector.

Ex. 9. Find the volume generated by the revolution of the trac-
trix (ses Ex. 1) about the positive r-axis.

Ex. 10. Find the area of the surface of the revolution deseribed
in Ex. 9.

Ex.11. Find the length of the tractrix from the cusp (the point
(0, 2)) to the point (xy, 3,).

Ex. 12. Derive the following formulas for the length of arc s of a
twisted curve, in apace of three dimensions, limited by the points
(zu: 31: 21)s (T4 ¥2, ), the codrdinates being rectangular:

= SN G G = SN (G (BT
=SNG+ (@) =SNG (B) -+ (5)

' Ex. 18, Using the formula of Ex. 12, find the length of the helix
r=agocodl, y=asint, == M,
in which @ and b are constants, and ¢ is a variable parameter.

Ex.14. A plate of steel is } inch thick and has the form of a right
segment of & parabola. It weighs 490 Ib. per cubic foot. Find the
total weight of a plate 30 in. broad and 16 in. Jong.

Take the equation of the parabola in the form ¥ =4 pr. Since
¥=15 wheu z = 16, we may find tha value of p by substituting these




GEOMETRICAL APPLICATIONS 319

eoordinates in the assumed equation, namely, 4 p = 325, The area of
the parabolic plate is therefore 1

25“11:1 s 8. in.
0

The volume and hence the weight are now
readily obtaivable.

Ex.15. A plate of wronght iron of heavi- F"
ness 480 |b. per cubic foot is § in. thick and
is bounded by three straight edges at right
angles to each other, as shown in the figure, K
while the curved boundary is a hyperbola Fic. &2
with the equation (z + 5) ¥ = 40, the base of the figure being on the
y-axis. Caleulate the weight.

-y

Ex. 16. A metal plate, in the form of an B
equilateral triangle, is } in. thick and has an
altitnde of 4 in. Any very narrow vertical ¢ A
atrip, as A B, of length 2y and width Ax, is
of nearly uniform density. The density varies A
from one strip to another in such a way that Fra. &3

the weight y per cubic inch is determined by the condition
y = 0.26 (1 +91+i;,)‘
Find the weight of the plate.

[HixT. Caleulate the weight of the strip AB, then take the limit
of the sum of all such strips con- ¥
tained in the figure.]

Ex.17. A trapezoidal plate A BCD
is § in. thick. The weight y percubic g " X
inch is constant along any vertical

line, but varies with z according to
the law

y = .05 :ri oz. per cubic inch.
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The first strip DA is 4 in. from the origin. What altitude & must
be adopted for the trapezoid in order that the total weight of the
plate may be just three ounces?

Ex.18. The frustum of a paraboloid of revolution has vertical par-
allel bases five inches apart. The equation of the meridian curve, with
the inch as the linear unit, is y = V. The heaviness y is constant
over a vertical plane section, but varies with x according to the law
v = 0.06v100 - #* Ib. per cubic inch. Find the total weight from
s=4tox=9.



CHAPTER VIII
SUCCESSIVE INTEGRATION

156. Functions of a single variable. Thus far we have con-
dy
e
only is given. It is now proposed to find y when its nth

sidered the problem of finding the funetion y of z when

. . amy . -
derivative = .
vahive i8 given
The mode of procedure is evident. First find the function

@ o hich has ©¥ for its derivative. Then, by integrating
dzv 1 dz !

the result, determine f__r;:i—j‘;’ and so on until after n successive

integrations the required result is found. As an arbitrary
constant should be added after each integration in order to
obtain the most general solution, the funetion y will contain
n arbitrary constants.

dhy _
dt

Ex. 1. Given —;' , find .

Integration of Il, with respect to x gives
' By 1, ¢
di? 2z + o
A gecond integration gives,

d
ﬁ ﬂ"'{:‘lx"l'ci'

and finally y=1logz+ } O+ Car + Cg
Bi. 0aLc, —E21 321
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The triple integration required in this example will be symbolized by

f§ oo

which will be called the triple integral of ;1_ with respect to z.

Ex. 2. Determine the curves having the property that the radius
of curvature at any point P is proportioual to the cube of the secant
of the angle which the tangent at P makes with a fixed line.

If & system of rectangular axes is chosen with the given line for
z-axig it follows from equation (6), p. 174, and from Art. 42, that

(1

d':“
in which a is an arbitrary constant. This equation reduces to
v
de = "
from which follows
x4
— =gl T
y = jju{:.i’rj _.:a:[2 Ot Gy,

¢, and € being constants of integration. Hence the required curves
are the parabolas having axes parallel to the y-axia.

The existence of the two arbitrary constants €1, €5 in the preceding
equation makes it possible to impose further conditions. = Suppose,
for example, it be required to determine the curve having the prop-
erty already specified, and having besides a maximom (or a minimum}

point at (1, 0).
Since at such a point ﬂ-i =, it follows that
I

0=a(l+ ),
whence = —1
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Also, by substituting {1, ) in the equation of the curve,
0 =a(} -1+ C)
from which C:=1

Accordingly the required corve is
o
y =50z — 15

Ex.3. Find the equation (in rectanpular codrdinates) of the
curves having the property that the radius of carvature is equal to
the cube of the tangent length.

[Hixt. Take y as the independent variable.]

Ex. 4. A particle moves along a path in a plane such that the
slope of the line tangent at the moving point changes at a rate pro-
portional to the reciprocal of the abscissa of that point. Find the
equation of the ourve.

Ex. 5. A particle starting at reat from a point P moves under the
action of a foree snch that the acceleration (ef. Ex. 14, p. 77) at each
instant of time is proportional to (is & times) the square root of the
time. How far will the particle move in the time ¢ ?

Ex. 6. In comnection with a certain carve referred to rectangular
axes, we know in advance that it passes through a point A on the
y-axis at a distance 1.12 in. above the origin. It also passes through
a point B of the first quﬂrunt which is at a distanee of 12 in. from
the p-axis, and the slope of the tangent to the curve at this point is
0.09. At each point P of the curve the second derivative of y sabis-
fles t!m relation

dy _
i 0.0012 z.

It is required to find the general expression (in terms of ) of the
ordinate and the slope of the tangent line for any point P of the
curve. In particular, find the ordinate and slope when z =20 in.
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Ex. 7. For a certain curve A DN situated in the first quadrant we
have given

d!l
10007 — 1.5 — ]
T LH=02T6x

The point A has the codrdinates (0, 0.04) and the abscissa of I is
1. At the point 8 of the curve, whose abacissa is 5, the slops of the
tangent line ia 0,002,

A second curve DC is tangent to the first at the point D, and for
each point of it we know that

%y
Fod

1000 o =02z —0.115.

Find the equations of boih earves.

157. Integration of functions of several wariables. When
functions of two or more variables are under consideration,
the process of differentiation can in general be performed
with respect to any one of the variables, while the others
ara treated as constant during the differentiation. A repeti-
tion of this process gives rise to the notion of suceessive
partial differentiation with respeet to ome or several of the
variables involved in the given function. [Cf. Arts. 62, 67.]

The reverse process readily suggests itself, and presents
the problem: Given a partial (first, or higher) derivative of a
Junetion of several variables with respect to one or more of these
variables, to find the oviginad function.

This problem is solved by means of the ordinary processes
of integration, but the added constant of integration has a
new meaning. This can be made clear by an example.

Suppose » i an unknown function of « and y such that

du
—=2 -
F z+ 2y
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Integrate this with respect to 2 alone, treating y at the
same time as though it were constant. This gives

=242 xy 4 ¢,

in which ¢ is an added constant of integration. But since
y is regarded as constant during this integration, there is
nothing to prevent ¢ from depending on it. This depend-
ence may be indicated by writing $(y) in the place of 4.
Hence the most general function having 2x+2y for its
partial derivative with respect to x is

u=2z"+ 2y + $(y),

in which ¢(y) is an entirvely arbitrary function of y.
Ayain, suppose
PP o

e ==
= a

dxdy
Integrating first with respect to y, = being treated as though

it were constant during this integration, we find

o 1

—_— _xi
where §(z) is an arbitrary funetion of x, and is to be regarded
as an added constant for the integration with respect to y.

Integrate the result with respeet to », treating y as constant.

Then
u =&y + ¥(z).+ (y)-

Here @(y), the constant of integration with respect to x,
is an arbitrary funetion of y, while

¥(z) = f g{z) de.

Since ¢(x) is an arbitrary function of =, so also is ¥(z).
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158. Integration of a total differential. The total differential
of a function » depending on two variables has been defined
(Art. 63) by the formula

i ou
= — — (Y.
da :+ﬂy -

i
The question now presents itself: Given a differential ex-
bresgion of the form
Pdz 4 Qdy, (1)
wherein P and Q are functions of x and y, does there exist
@ funciion w of the same varialles havieg (1) for its total
differential # -
It is easy to see that in general such a function does not
exist. For, in order that (1) may be a total differential of a
function u, it is evidently necessary that P and ¢ have the
forms
o
ay
What relation, then, must exist between P and ¢ in order
that the conditions (2) may be satisfied? This is easily
found as follows. Differentiate the first equation of 2 with
respect to y, and the second with respect to . This gives

_Ou o

aP_ ' aQ_ &'
dy  dydx dr odxdy
from which follows (Art, 68)

ar_aq (3)

oy o=z
This is the relation sought.
The next step is to find the function u by integration. Tt
is easier to make this process clear by an illustration.
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Given (2x+2y+ 2)de +(2y+2x+ 2)dy,
find the function » having this as its total differential.
Bince P=2zx4+2y+2 Q@=2y+22x+12

it is found by differentiation that
dP g _
3 2 and 2> = 2,

hence the necessary relation (3) is satisfied.
From (2) it follows that

e pxy2y+2 .
dx

Integrating this with respect to = alone gives
u=x"+2xy+ 2+ ¢ly) (1)

It now remains to determine the function ¢(y) so that

g_;[=q]=zy+:sx+2, (5)

Differentiating (4) with respect to y alone gives

-ﬂu_ ]
ﬁ_zm'l' "#"':.y}!

where ¢'(y) denotes the derivative of $(y) with respect to y.
The comparison of this resnlt with (5) gives
2y+2x42=22+¢'(y),
or $)=2y+2, (6)
whenoe, by integrating with respect to w,
=y +2y+0G

in which (7 is an arbitrary constant with respeet to both =z
and . :
Henee v=04+2ay+ 224+ +2y4+C
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EXERCISES

Detarmine in each of the following cases the function » having the
given expression for ita total differential :

1. ydr + xdy.
2. sin r cos y dr 4 cos z sin y dy.

3. ydr — rdy.

Ty

5. (32— Bay)dr + (39 — San) dy.

6 _¥dr _ _=zdy
=4y P+

T 22422+ 8)dx +(22 4+ »® — y) dy.
B (P g+ — ) dr (L — 2y 4y — 3 4 2) dy.

159. Multiple integrals. The integration of ez_’-—; was con-
Y

sidered in Art. 157. If Fiz, y) is written for the given funec-
tion, the required integration will be represented by the symbol

L =ffFl::lT, y) dx dy,

and the function sought will be called the double integral of
Kz, ¥) with respect to = and .

Likewige f f Nz, y, 2)dx dy dz
will be called the triple integral of F(x, v, 2). It represents
the funetion » whose third partial derivative i is the
dr dy 0z

given function F(x, y, z). It will be understood in what fol-
lows that the order of integration is from left to right, that is,
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we integrate first with respect to the left-hand variable z, then
with respeet to ¥, and lastly with respect to 2
Such integrals (double, triple, ete.) will be referred to in

zeneral as multiple integrals.

160. Definite multiple integrals. The idea of a multiple
integral may be further extended so as to include the notion
of a definite multiple integral in which limits of integration
may be assigned to each variable.

v o
Thus the integral J‘ 'j: rhy® dy de will mean that 2% is to

be integrated first with respect to ¥ between the limits 0 and 2.
This gives

‘,:ffy* dy =4 2%

The result so obtained is to be integrated with respect to =
between the limits ¢ and b, which leads to

fala?da:.—_-ﬂb’—aﬂj

as the value of the given definite double integral.
In general the expression

will be used as the symbol of a definite double integral. Tt
will be understood that the integral signs with their attached
limits are always to be read from right to left, so that in the
above mntegral the limits for y are b and &', while those for =
are @ and a'.

Since @ is treated as constant in the integration with re-
spect to g, the limits for y may be functions of x. Consider,
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1
for example, the integral ‘E J:_n:yd'ydz. The first integra-

tion (with respect to y) gives

fomor 5] 4525

By integrating this result with respect to x between limits 0
and 1 the given integral is found to have the value — 4f.

EXERCISES
Ewaloate the following definite integrals:

1. .fr{j;#r cos (zydy iz, 5. ﬁﬂﬁ.ﬂw ‘]p"‘ gin @ dp b
L}

2. j;ij;:;: dy dx. L&j- “'\f’w iz iy,

R s

g oL ' 1 eaTretrdzdydx
&, !l J;"aﬂt:“ (xy) dy dx. J;J: j; :r_l_+3r+z'

161. Plane areas by double integration. The area bounded
by a plane eurve (or by several eurves) can be readily ex-
pressed in the form of a definite double integral. An illus-
trative example will explain the method.

Ex. 1. Find by double integration the area of the circle

(r—af +(y — ) =+

Imagine the given area divided into rectangles by a series of lines
parallel to the yaxis at equal distances Ax, and a series of lines
parallal to the r-axis at equal distancea Ay.

The area of one of thess rectangles is Ay - Ax. This ia called the
element of area. The sam of all the rectangles interior to the circle

o

=1
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will be less than the hrea required by the amount contained in the
amall subdivisions which border the circumference of the eircle.

All these neglected portions are contained within a ring bounded
by the given circle and a circle coneentric with it, whose radius
i3 less than r by the

length of diagonal of ¥

B
an element of area,

that ia, of radius -
r= V{32 + (A9

/
In other words the {—
N

amount peglected iz
leas than the area of a
eircular ring whose ""*-..,_‘
widih is A
V(az)t + (Ay)?
and which therefore |7 X
approaches zero simul- & Fio. &
tanecusly with Az and Ay, Hence the area of the circle is the limit
of the sam of all the elements of area included within it.

To find the value of the limit of this sum it is coovenient
first to add together all the elements contained between two con-
secutive parallels. Let PP, be one of these parallels having the
direction of the r-axis. Then y remains constant while x varies
from a —vr? —(y — 5)* "(the value of the abscissa at P) to
a4+ V¥ —(y — b)? (the value at ). The limit, as Ar approaches
zero, of the sum n{ rectangles in the strip from PPy is evidently

]

u = - '\l"ra::jl—IT
: limit of sum (Ax 4+ Az 4 )] = Ay §** dr. (1
Aplfimit of sum (& + N=88) ™ D
Now find the limit of the sum of all such strips contained within
the circle. This requires the determination of the limit of the sam
of terms such as (1) for the different values of y corresponding to

the different strips. Since y begins at the lowest point A with the
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value b —r, and increases to b 4 r, the value rdached at B, the final
expression for the area is

£ T8 a1 G

Integrating first with respect to = gives

Ir=x o

j‘-+ VA (g e =TT
JPY e eyt a—%"TE (b}

= 2 (y— B

This result is then integrated with respect to y, giving
Ve = (r =) VA= = D et i 2 [ s,
r -

b

If the summation had begun by adding the rectangles in a strip
parallel to the y-axis, and then adding all of these strips, the expres-
gion for the ares would take the form

P R T e ——
j' + j' + 0 dyd.
d—F “hetS A {1—a)l

It is seen from the last result that the order of integration in a
double integral can be changed if the limits of integration are properly
modified at the same time.

Ex. 2. Find the area which is included between the two parabolas
y¥i=9zrand ¥=72-902x

Ex. 3. Find the arca belween p? = bzand y==z.

Ex. 4. Find by doable integration the area of the segment of the
cirele ¥ + y® = 16 cut off by the line = + y = 4.

Ex. 5. Find the area between the two eurves
= zand y = o5

Ex. 6. Find the area between the two curves
3;9 = z® and _gra =T,

Ex. 7. Find by double integration the area

of one loop of the polar curve p = a sin 2 6.
Imagine the area divided into amall ale-
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ments by means of concentrie circles whose radii vary by equal
increments Ap and by means of radii drawn from the origin, the
angle between two consecutive radii being Af.  (See Fig. 86.)

The area of an arbitrary element may be expressed as the differ-
ence of two cirenlar sectors with & common angle Af and with radii
p+Ap and p respectively. That is,
element of area = ] (p + Ap)TAfS — | p? AR

=pABap + } AB (Ap)t,
The sum of all the complete elements within the loop may then be
represented by the formula

D pABAp+ ] > A0 (Ap)t
Reasoning precisely as in Ex. 1, we find. the limit of the first sam
to be
¥ faunzg
£| j; pdp db.

The second sum may be written § Ap= Af Ap, hence ita limit is

}-limap- lim 3'adap=1-0. ii'ﬂ'“ *idp it = 0.

Following the anazlogy of Ex. 1, we .EEI.I'I easily sea that all the
neglectad incomplete elements of area lie within a narrow band along
the boundary of the given area, the width of which band approaches
0. Their sum therefore approaches zero in passing to the limit.

It follows from the preceding discussion that the general formula
for area in polar codrdinates is

| §§ooss

the limita of integration being determined by the boundary of the
given area.

Ex. 8. Find by double integration the area of the cardicid

p = af{l — cos §).
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Ex. 9. Find the area of the lemniscate p? = acos 2 8.

Ex. 10. Express by double integrals the three areas between the
cardioid {Ex. 8) and the circle p = a.

Ex. 11. Find by double integration the area of the triangle whose
vertices have the rectangular cbordinates (5, 2), (— 3, 6), (7, 6).

Ex. 12. Find the area common to the two circles
P28+ —By428=10,
- Brt+ i —dy 4+ 16=10

162. Volumes. The volume bounded by one or more surfaces
can be expressed as a triple integral when the equations of the
bounding surfaces are given.

Let it be required to find the volume bounded by the surface
ABC (Fig. 87) whose equation is z = f(%, ¥), and by the three
cobrdinate planes.

Imagine the figure divided into small equal rectangular
parallelopipeds by means of thres series of plames, the first
series parallel to the yz-plane at equal distances Az, the second
parallel to the mz-plane at equal distances Ay, and the third
parallel to the xy-plane at equal distances Az The volume
of such a rectangular solid is Az Ay Az; it is called the element
of volume. Tha limit of the sum of all soch elements con-
tained in OABC is the volume required, provided that the
bounding surface ABC is continuous. For the sum of the
neglected incomplete elements, which border the surface, is
less than the volume of a shell whose outside boundary is
the given surface and whose thickness is /(A=) (A +(Az)},
the diagonal of the element of volume. Hence the error ap-
proaches zero as the three increments diminish.

To effect this summation, add first all the elements in a
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vertical eolumn. This corresponds to integrating with respect
to # (@ and ¥ remaining constant) from zero to f(z, y). Then
add all such vertical columns contained between two consecu-
tive planes parallel to the yz-plane (z remaining constant),
which eorresponds to an integration with respect to % from
y = 0 to the value attained on the boundary of the curve AB.

C &
i
K
=
g
4
/
ﬂll /u I L 5
P v “
|.t:
Py
r i}
F o
r Frz 47,

This value of y is found by solving the equation flz, y)=10.
Finally, add all such plates for values of = varying from zero
to its value at 4. The result is expressed by the integral

f‘fﬂ;i’rﬂ:lﬂd&' dy d.;l:,
o &S0 L



B36 INTEGRAL CALUCULUS

in which ¢(z) is the result of solving the equation f(x, ¥) =0
for y, and a is the r-cobdrdinate of .

i%x. 1. Find the volume of the sphere of radius a.
The equation of the sphere is
2+ 3+ 2 = ad,
oF 2=va! — o —

Since the cofrdinate planes divide the volume into elght equal
portions, it is sofficient to find the volume in the first octant and
multiply the result by 8.

The volume being divided into equal rectangular solids as deseribed
above, the integration with respect to = is equivalent to finding the
limit of the sam of all the elementis contained in any vertical column.
The limits of the integration with respect to z are the values of =
corresponding to the bottom and the top of such a column, namely,
s =0, and 2 = via? — 2 — 3, sinee the point at the top is on the sor-
face of the sphere.

The limits of integration with respect to y are found to be y =0
(the value at the r-axis), and y = va? — &2 (the value of ¥ at the cir-
cumference of the circle a® — 2% — 2 = (), in which the sphere ia cut
by the zy-plane).

Finally, the limiting values for r are zero and a, the latter being
the distance from the origin to the point in which the sphere inter-
secis the r-axis. Henee

V[ = volume of sphere] = B‘ij'ﬁfﬂL‘th""""dz dy dx.
Integration with respect to z gives
V=8V VA =y d;
then with respeet to y and x,

I T I e e mr SO e g RS | Va_a
F_Bj;d'r[ﬂ al — g% - 32 4 5 sin u'ﬂ_fl].

ot _i'rvl'-'r"
_E.L T (et — at)dz =27
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Ex. 2. Find the volume of one of the wedges cut from the cylinder
2% + y* = a® by the planes z = 0 and 2z = mx.

Ex. 3. Find the volume common to two right eireolar eylinders
of the rame radius & whose axes intersect at right angles.

Ex. 4. Find the volume of the cylinder (z—1)4+(y—1)*=1
limited by the plane =z = 0, and the hyperbolic paraboloid z = zy.
Ex. 5. Find the volume of the ellipsoid

# ¥, 2
pral T

+

Ex. 6. Find the volume of that portion of the elliptic paraboloid
¥

r=] == —-=

at b
which is cut off by the plane 2 = 0.

Ex. 7. Find by triple integration the volume of the tetrahedron
formed by the three codrdinate planes and the plane z 42y + 32 = 1.

Ex. 8. Find the volume of the elliptic paraboloid 23 + 3z =6=x
eut off by the plape £ = 2.

EL. CALD. — 22



CHAPTER IX

SOME APPLICATIONS OF INTEGRAL CALCULUS TO
PROBLEMS OF MECHANICS

163. Liquid pressure on a plane vertical wall. The pressure
exerted by the liquid wpon any point of a plane vertical wall
P Surface g 1 proportional to the depth

\ i / of that point below the sur

T face of the fluid. Td ealenlate
% ¥ g  the pressure upon the entire
wall we divide it into nar
row horizontal strips of equal
areas Ad Denote the breadth
Fia. 8. of the kth strip P§ (Fig. 88),
counting from the top, by h,. The pressure exerted on the
kth strip is equivalent to the weight of a eoluion of Huid
standing on a base of the same area A and having an
altitude intermediate between the least depth z and the
greatest depth =z 4 &, of points on the given strip. This
altitude may be represemted by =+ 6.k, in which 4, has a
value between 0 and 1. If w denotes the weight of a cubie
unit of the fluid, the pressure on PQ is wiz + 84,) Ad
Summing the pressures for all the strips of the wall, we
obtain for the total pressure

> wiz + 6,h,) AA.
]
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In order to evaluate this sum we take its limit as Ad
approaches zero. This gives, by separating into two terms
and observing that w is constant,

wﬂgﬂﬁ; Ad 4+ w E:’;Zﬂﬁl&i

The second term reduces to zero.  For,

D6k, Ad=AAD Oh,< AA - H (since 6, < 1),

in which H denotes the total altitude of the wall; as A4 =0
the right member of this inequality approaches zero. Hence

pressure =t | x dAd.

In order to evaluate the integral, it is most convenient to
make = the variable of integration. Dencte by y the width of
the wall at the depth . Then &4 =y, Ax in which ¥, is a
certain value of ¥ betweeny and y+Ay. (Compare Art. 40.)
Dividing by At and passing to the limit we, obtain, since
lm y, = ¥, @ _ E

at Y ar
or in the differential notation, dd = ydz. The substitution of
this in the above integral gives

. pressure = w | oy d=,

the limits of integration being the values of z at the top and
the hottom of the given wall or surface.

If the liquid is water and the unit of length isa foot, then
w = 62} |
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EXERCISES _ )

1. Find the pressure on the end of a rectangular tank full of water
that is 10 ft. long, 8 ft. wide, and 5 ft. deep.

2. A watermain 6§ ft in diameter is half full of water. F.mi_ the
pressure on the gate that closes the main.

3. A vertical masonry dam in the form of a trapezoid is 200 fi.
long ab the sorface of the water, 150 ft. long at the bottom, and 60
ft. high. What pressure must it withstand ?

4. A vertical cross section of a trough is a parabola with vertex
downwards, the latus rectum lying in the surface and being 4 ft.
long. Find the pressure on the end of the trough when it is full of
water.

5. One end of an unfinished watermain, 4 ft. in diameter, & closed
by a temporary bulkhead and the water is let in from the reservoir,
Find the pressure on the bulkhead I its center iz 40 ft. below the
surface of the water in the reservoir.

164. Center of gravity. (1) For a system of n particles. Let
£y, Py be two particles.of matter of masses (or weights) m, and

B . ey respectively, and let =, =, be their
o = F distances from a chosen point O on the
Fig. 89 straight line through them. There

exists a point P such that the segments PP and PP, are in-
versely proportional to the masses of the two points, that is,

PP =My (1)
PP, ™

Let « represent the distance OP. Then formula (1), expressed
in termsa of the abscissas of the points, is

T—x,; _ Wy
|
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whenece, by solving for =,
y = Tty + My
YT R )

The point P is called the center of gravity, or, the center of
mass,-of the system formed by the two points Py, Fy 1If we
imagine the line PP to consist of a rigid, weightless rod
with the two given particles fastened at its extremities, and if
we suppose this object to rest on the point Fas a base, it will
remain in equilibrium, without any tendency in either of the
end points to move downward under the force of gravity.

In other words, the system of two particles is equivalent, as
far as the action of gravity is eoncerned, to a single particle,
of mass m, + my, placed at the point P.

Let P be a third point of mass m, situated on the same line
with P, and P, Then the abscissa # of the center of gravity
of the system of three points may be found by calenlating the
center of gravity of the pair P and P (the center of. gravity
for P, P;), the mass of P being taken as m, + my the sum of
the masses of P, and . This gives

. + Ty
(mq 4 mg) TELEES gy
= ) My + Wiy ___ﬂhﬂﬂl+mﬁ+mr’#-
(my + my) + My My 4 My + Ty

In like manner the center of gravity for any number n of
particles situated on a straight line ia given by the formula

If the n particles are not on a straight line but are situated
in the shme plane at the points (@, ¥i), (2 ¥e)y -y (% ¥hr

u_l_\_.
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then the center of gravity of the system has its abacissa given
by () and itz ordinate ¥ is

§r=mﬂ"1+ Mylfy + == +Tﬂ..'!||'._
Wy + Mg 4 - 4By,

If the = particles are not situated in one plane, there will
be a third and similar formula for 2.

(£) For a continuous solid. lmagine the solid divided up
into small elements, precisely as in determining its volume, by
means of three series of planes parallel to the cobrdinate
planes and at distances Az, Ay, Az.  If we regard any par-
ticolar element as being very nearly of uniform density, then
the mass of an arbitrary element is approximately p Az Ay Az,
in which p is the weight of a cubic unit of homogeneous mat-
ter having the same density as the given element. This num-
ber p is usually called the density. For a finite number of
elements the rcotrdinate of the center of gravity is determined
approximately by (3) io the form

(P + pas + - + po,) Az By Az
(1 +pat vv + po) Az Ay Bz

¥

in which =, =, .- are the abscissas for the different elements
and p, py, +-+ are their densities. The abscissa of the center of
gravity of the given eonticuous solid is obtained by makiog
Ax, Ay, Az approach zero as a limit.* This gives

o ffﬁ:- ﬁﬂh' ﬂ'_‘ydﬂ'
T e

* A proof of this statement will be found in Art. 166,
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the limits of integration being determined just as in caleulat-
ing the volwme of the solid. 1f the solid is homogeneous,
p is constant and cancels out of numerator and denominator.
Otherwise, it is a function of x, ¥, =

In precisely the same manner the values of y and z are
obtained. The cotrdinates of the center of gravity are thus
found to be

jld,fj‘_]‘pmamyazfﬁiff p y dz dy dz,
=%ffffpzdmdydz,

in which p is the density at the point (z, y, #) and M is the
total mass of the given solid, that is,

H:fffpd:udyda.

The cobrdinates of the center of gravity of a plane area are
found in like manner to be %

E'r_-%.fffpmdm:y,ﬁ=&lr fpyd.my, M= fpdm:iy.

EXERCISES

&
Il

Tn the following problems p is understood to be constant unless
otherwise specifisd. The abbreviation C. G. will be used for “ center
of gravity.”

1. Find the C.G. of the tetrahedron whose faces are the three
edordinate planes and the plane x4+ 2y +32=6.

2. Find the C. (. of the volume bounded by the codrdinate planes
the plane * + y = 1, and the surface z = zy.
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3. Find the C.G. of the volome bounded by the hyperboloid

2yt -
primb T Eg_lnndthaphmz_k, k= a.

4. Find the C. G. of the semiellipsoid on the l:ﬂsiti'-rec sida uf the

zy-plane, the equation of the ellipsoidal surface tre:lug + EE +==1.

5. Find the C.G. of a thin hemispherical shell of t.hmh:nesﬂ h
bounded by two conecentric hemispheres of radii a and a + &.

6. A hemispherical iron bowl of uniform thickness a is filled with
water. If the density of iron is seven times that of water, find the
C. G., supposing the radius of the interior of the bowl to be r,

[Hixt. Find the C.G. of the iron bowl by means of Ex. 5. Find
the C. G. of the hemisphere of water and combine the centers of grav-
ity of the iron and the water by means of (2).]

7. Show that the C. G. of a triangular plate one inch thick is one
half inch below the interseetion of the medians of the upper face.

8. Find the C.G. of a T-iron one inch thick, the vertical bar being
a inches wide and b inches high, and the horizontal bar @’ inches wide
and ¥ inches long.

9. Find the C. G. of asector of a eircle of radius e and angle 8.
10. Find the C.G. of the segment of the circle £ + 3 = r* cut off
by the line x =a, 0l < a < r.
11. Find the C.G. of the quadrant of an ellipse.

12. Find the C.G. of the segment of an ellipse cut off by the
chord jhining the extremities of the major and minor axes.

13. Find the C. G. of the area bounded by the parabola

1-"'I‘+ "-"Er 'u"-:

and the line T4y=on

14. Prove that the volume of a solid of revolution is equal to the
product of the generating area by the length of path described by ita

center of gravity.
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15. Find the C. (. of an octant of an ellipsoidal mass.

16. Find the C. G. of the preceding mass when the density varies
directly as the distance from the plane z = 0.

17. Find the C. G. of an octant of a sphere. From this result find
the C. G of an octant of a spherical shell of thickness & and inner
rading a.

18. Find the C.G. of an octant of a sphere il the density varies
directly as the distance from the center of the sphere.

[Hiwr. Divide up into thin concentric shells of equal thickness &,
the density of a particular shell being regarded as constant. Let A
denote the radins of an arbitrary shell, A the distanee of its C. G. from
the origin, and m its mass. Caleulate A in terms of A by means of
Ex. 17, measuring if on a line equally inclined to the =z, g, # axes.
Then use the different values of A in place of zy, 4, -, formula (3),
and paas to the limit.

19. Find the C.G. of aright circular cone of altitude & and base-
radius r.

This problem can be solved by single integration if we suppose the
aolid divided up into thin plates of equoal thickness by means of
planes parallel to the base. Then find the approximate expression
for the C. (5. of any plate, apply (3), and pass to the limit.

20. Find the C.G. of the portion of the elliptical cone
2—':+ E: {z— 1)* betwesn the vertex (0, 0, 1) and the zz-plane.

21. A cone of vertical angle 2 @ has its vertex on the surface of a
aphere, its axis passing through the center of the sphere.

(a) Find the C.G. of the mass outside the cone and inside the
sphere.
~ (b) Find the C.G. of the mass inside the sphere and inside the
cone.
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165. Moment of Inertia. The moment of inertia of a small
particle of matter of mass m about an axis is defined as the
product of the mass by the square of the distance of the
particle from the axis. It measures the resistance of the par-
ticle to rotation about the axis.

To find the moment of inertia of a homogeneous solid hﬂd]",
imagine it divided up into small rectangular blocks (or ele-
ments) of dimensions Az, Ay, Az Then the moment of
inertia of a single element about the w-axis is approximately

Py + Z)Ax Ay Az,
in which p is the density, that is, it is the weight of a eubic
unit of the given solid. Summing up these elements over the
whole body and taking the limit of the sum, we find the
moment of inertia to be ®

[ foor+mazaya, 0)
the triple integral being extended over the entire solid, just
as was done in finding its volume. '

If the solid is not homogeneous, then p is variable. Its
value at a specified point P of the given body is equal to the
weight of a homogeneous cubic unit of matter having the
same density throughout as the particle of matter at the point
P. Tt is a function of =z, y, = which is to be determined by the
conditions of the given problem.

Similarly, the moment of inertia of a plane area about the
x-axis is defined as the limit of the sum of terms formed by
multiplying each element of area by the square of its distance
from the axis. This gives the formula

f o dedy.

# Bea tha next article for a completion of the proof.
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EXERCISES

In the following problems M. is used for brevity to denote
“moment of inertis.” Unless the contrary is stated, the body is
homogeneous and of density p.

1. Find the M. L. of a rectangular parallelopiped of dimensions a,
B, e about an edge a

Take three edges a, b, ¢ meeting in & common point as the =, ¥, =
axes, respectively. Then by formula (4) the M. L. is

pj[l.'};ij;u{y! + 22y oz ily d x.

2. Find the M. L. of a circular cylinder of radios & snd altitude &
about its axis.

3. Find the M.T. of the cylinder of Fx. 2 abont a line perpendicu-
lar to, and bisecting, the axia.

4. Find the M. 1. of a circular cone of altitude a and base-radins
r about its axis.

[Hm'r, If the axis of the cone is taken for the raxis and its vertex

at the origin, the equation of the conical surface is

¥yt
a¥ ¥
5. Find the M. I of an elliptical right eylinder about ita longi-

tudinal axis, the axes of the elliptical bases being 22, 25 and the
altitude A.

6. Find the M.L of the preceding solid about the minor axis of
an elliptical base.

7. Find the M.I. of the same body about a line bisecting the
longitudinal axis amnd parallel to the major axes of the elliptical
bases,
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8. Find the M. L of a sphere about a diameter. Hence find the
M.1I. of a spherical shell of uniform thickness A about a diameter, as-
suming that the M. I. of a solid consisting of two parts is the sum of
the moments of the separate parts.

9. Find the M.I. of a spherical solid of radius r about a diameter
if the density varies directly as the nth power of the distance from
the center.

[Hinr. Imagine the sphere divided into concentric shells of equal
thickness AX and denote by A the interior radius of any shell. Using
the preceding problem, write down the element of M. I, that is, the
M. I of the shell of radius A and thickness AX. Take the limit of
the sum of all such elements as AX =0. The required M.I. is thus
obtained by a single integration. ] '

10. Find the M. L of a cube of edge a about its diagonal.

[Hint. Take threefaces of the cube as codrdinate planes.  Obtain
an expression for the square of the distance from any point (x, ¥, 2)
to the diagonal of the cube that passes through the origin. This
multiplied by AxAyAz, will be the element of M.I. Then take the
limit of the sum.]

11. Find the M. I. of & cylindrical shell, of length a, about its
axis, the radius of the inner surface being r and that of the outer
surface being R.

12. Find the M. L. of a rectangle of sides a, b about the side b,

13. Find the M. 1. of a triangle of base b and altitude & about an
axis through a vertex parallel to the opposite side.

14. Find the M. 1. of a circle of radius a about & diameter.

166. Dubamel’'s Theorem. In order to complete the proof
of the formulas for center of gravity and moment of inertia,
wa make use of the following theorem which is of very general
use in applications of the Integral Calculus.
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Dunamer’s Taeorem.  Lef oy, @y, «--, o, be positive variables,
each of which approaches zero as n increases withowt limit, and
suppose that the sum a4+ e+ - 4 o, approaches a _finite lmit
asn=c. Letph, By -+, B, be variables having the same prop-

érty ag the o’z and such that Im‘, Et__:[ Jor k=1, 2, .-, n.
n=0 g L
Then *

#Ii_i“wfﬁ1+ﬁr+ -+ 48) =uli.=mm{u| oyt - 4@

Since ﬂ“_:]m&*=1, we may write E: in the form 14¢, in

which ¢, approaches zero as n =o0. Henee,

By =, + ey,

and therefore 2 .= E“& 4 Ze,u,.

Let e denote the positive value of the numerically greatest
term of the series ¢, €, -+, ¢, Then we have the inequalities

— ety Sy T A ey,

— ety = ity S A wity,

— e, £ e, < + en,
and by adding we obtain’
;f{m tat -t a) S 2an S Helnt ot o +a)
Now let n increase without limit. Bince by hypothesis e=0

and (o + o5+ -+- + &) has a finite limit, it follows that the
first and last members of the preceding.inequalities vanish at
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the limit and therefore
lim 2 —0
R = g ey k0 =1

lim lim
Hence u.‘—_mzﬁ#=némzﬂfi

As an application of the above theorem, consider the’ sum
occurring in the approximate formula for center of gravity,

namely, (s + e + -+ + pu) AV

in which AV = Az Ay Az

Let g, 2, be the minimum, and p,", z," the maximum values
of p, @ in the kth element of volume. For brevity write

F.'ﬁ#l &-Fr= ﬂ'H Fl"';'Ei" &F= _ﬁ]."'
Then we have i, S pt, AV B,

hence, by taking the sum,

Do = eV E D B

Hla IT
But - %‘1*' which approaches 1 as n increases since p,', «,’
£y P Ty

approach equality with p,", =,". Hence

lim 21}:,: lim Eﬂ, = lim Epﬁxﬁn

In obtaining this result no restriction is placed on =z, and p,

)

® A variable which hag zero as a limit is often called an infnitesi-
mal. Hence ap, ag, -, 4, are infinitesimals. If we write ¥ = em,, then
ﬂllé-"; :—:=lim g =0. When two Infinitezlmals, § and a, are so related that
the ratio of & to & has the limit zero, then § is said to be infinitesimal with
respect to a, or it is called an infinitesimal of & higher order than a.

Blnee, by Dubamel’s Theorem, lim ¥ (a; 4 §;) = lim Fa;, this theorem 1s
pquivalent to saying that the limit of a sum of indnitesimals iz not offected
by dropping from each term an infnitesitnal of o higher order.
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except 2’ Sz, =" and p,' = p, <p,". We may accord-
ingly take for @ any wvalue of = in the kth element of
volume and for g, the value of p at the point whose absecissa
is 2.  With that choice of p the formula lim Ept."‘.- AV may be
expressed as a definite integral in the form given in Art. 164.

In like manner we may prove that

lim (py + py+ -+ + p_}aF=fJ‘fpdrdytiﬁ
and, in case of moment of inertia, that

lim X pu(yid+ ) avnff_fp{y‘ + ) dndy dz.

The details are laft to the student as an exeroise.

Ex. By means of Dohamel's Theorem prove the formulas for area,
length of are, surface of revolution, ete.



FORMULAS FOR REFERENCE

I. TricoNOMETRIC
1 sinrescr=coszsecx=tanz cot z=1.
2 sinfxdeosfzr=1, tan'x + 1 =3sec’x, cot’z 4+ 1 = cac?x.

gin = Cos T
3 tanx= g tob = "3
coa T ain 2

4. sin(z L£y)=sinzcosy + cosxsiny.

5. cos(r i y)=cosxrcosy T sinz siny.

7. .sin:t:+sjny=2siu-}(m—j—y}m&%{:u—-y}
8. sinx—siny==2cos { (x4 y) sin } (x — ¥).

9 cosz+cosy=2co8d (x+ y)oos )iz —y).
10. cosz —cos y=—2sin } (z+y)sin } (x —y).
11. sin2x=2ginzcosr

12, cos2x —=cos’2 —sin®r= 2otz —1=1—2 gin’x

2 tan x
1 — tan%:

14. sin } 2=V }(1 — cos ).

15. cos lz=+'}(1 4 cosz).

13. tan 2z =

l—cosx__ sine _1—cmz
l4cosxz 14cosz  sing .
362

16. tan i =



FORMULAS

5
“m

H_
=1

I

+ cos @, ma(m:]: )=:|:sin:|:,

(2K |

tau(mi!)=—mt:n, mt(a:i;)=—mn#,

m(;r;[-_ E)= T cac ¥, cse(a'. :I:E)= + Bt T.

18. ﬂlﬂ(g ﬁ:} £08 X, (— — )= H'III

19.

20,

21,

23.

24,

Jogxy =logx + log,y.

G ):cntx G{}t(——) tan z,
seu( ):ﬂﬂﬁ:l‘ um(--— )—aer:aa

sin(r + ») =—sinx, cos{x + r)=—cos s,
tan (x + =) = tan z, cot(x + =) = cotx,

sec (& + w) =— sec x, csc(x it w)=—cscmx
gin (r — x) = sin x, cos (v — &) = — cos8 x,

tan (xr — ) = —tan x, cot (r —x =—cot z,
gee (r — X} = — s8¢ x, ese(r — x; = cse @

sin(— #) =— sinx, cos(—) = cos x,
tan (— z) = — tan =, cot(— x) =— cot x,
sec ( — x) =sec z, csc (— ) =— cac .

1. LocARITEMIC

]
log, Z =log.z —log, .
Y 1
26. log, 2=_—"—.
log,z” = p log,z. log,a
27. log.a=1, log,1=0, log,0l =—oan.

EL. Cana, —23

00

25. log, x= }E?i = log,xlog,b.






ANSWERS

DIFFERENTIAL CALCULUS

. Bxr—4d.

_1,
Ryt
i
. dad— 2
2
3

—

ot

. (Bu—4)828

Page 33. Art. 7

8. nr-l

! 243z
b

1 — gz

(=f +1)%

1

2vx

10. — §z-1.

-

Page 2¢. Art. B

3 —uljflﬂ:u-ﬂ}. " (Eﬂ-—l){f‘—-ﬂ.)-

Jut xt

Page 32. Art 13

2—6x—22
(=% +2)*

10, 3x+5,

VIt 2
1. Va( v — Vi) i
2 vz (VI + a)(Va + vz?

1
V1 =21 =x)
1

T 2x(l—®) 4 VI— B

12

13
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14.

16.

17.

18. —

18.

21.

ANSWERS
-lai +3:1' 23, 80 a1 -I—ui}i'f—i:,
ANz gt ;+
>tz 24, u -+ zﬁ.
__By
V1 -yt o5, [’ﬂu+ﬁ:u)%‘+3ﬂ+¢ﬂ
2y —4x ] g
(- 4 o v ez
— 2 nzr-1 " Tatzt (atz)ymtl
(x*=1)% 27. guswﬂ_ﬂ“n;:%:,am
(b 4 XY Fnla 4 x) ) o : .
(@ x)™+1. (b 4 x)n 30. — b _ bz
_s aty @/ g — 2
B 4 2]
2z + ) 3. (0, 0), (9 a’ 27 u)‘
56 232 + 1)}, 4 .8
u_{ ) (ﬂd- +2?a)
-3
Bu e gq (218 —19u)10x
du (7 u? 4 5)E
120t —u+ 1 g 85, At right angles at (3, + 6).

Page 33. Art. 14

_y Ry
2ay + =

Page 37.

Tk @

“ &
x4 b

Bz —T
4z —Tz+3

2

1— a2t
_4::

1 =gt
log 2 4 1

B2z —3y)'+ 2(z—y)+1
B2z —3y)i+2z—w— 1

Art. 18

10.

11. log e

T. nzn-1logx 4 xn—l,
8. nzn-llogx™ 4+ man-l,

x
L

2 —1
1.
vz 4+ 1y
122v342—1
VI (B2t —vEsr)
2x4+T

18. lﬂ-g]_u.!t- 5

24 Te



ANSWERS
18 - ¥ 2.
x log =
14, ae®s.
28,
16. 4 ghotd,
1
—glts 27.
(1+x) o8,
&
17. .
(14 e)?
18. y — 3 xdg”. 29.
19. 1—y°
e*-br’_ 0.
e —a"
ey 5,
£ 4 2F
22. nrrla® + x"a” log a. .
a3 va
V(e — x)
1 23,
%(log z)
Page 41. Art.
1. ToosTx 13,
3. —heinbx 13.
8. 2roosad 14.
4 Z2con2zcosx—ain2xsinx 15.
§. Zain?zeoa .
6 10.xcos5at 18.
T..14s8inTzco8Tx. 17.
8. sec®r (tan*z — 1) 18,
9, 3ain?xcos?y — gintx.
10. sec x(tan x + sac x). 18.
11 —162(1—22Nein(l - 2252 g,

cos (1 — 22972,

3567
ﬁﬂz.

T
1 "
x log e
—(log =+ 1).
aloxs 0BG
&

—(z—1iT e+ 80207y
12(x—2)i@ - 57
Z4x—baF
2vi—=x
1+82—30t
(1-ai
Bat{a + Bx)¥(a —2x)
(a® + 2 az — 122%).
{x— Eﬂ}xm_
(z—af

22

=202 ({8 =5 z*) oo (3—b27)2
Ztan zaecty — 2 tan x.
BB .
oot v
2 v
1 1

1 i 1
| = - mecd (g,
i (a®)

n sin~-!z gin (n + 1)x
e

2y—-
ol

mn sinm-1 nr - coB(n — Rz
coantlme

g -
1 4 tanz
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$1. cos (sin u) cos uT2. 25. — 8 esc?dx cotd
ke 28. B(4r — 3) sec (42 — 3)2
tan {dx — 39

1. —2xcantyry B¢ Vitan vz

23. . cos & - log x 4+ B, 24/,
z
gy _poeoBTy
gq 008 28 1—x cos xy
gin 2. —ocec? (z+y).
Page 43. Arxt 23
1tz . s ! n 1.
vi—dix 2+vEn e vl — o8 V1 — it
9 1. . — . 19, — =1 .
g e O
s — 9 . 8. =1 . 13 —1.
Vix— 9t 2 V1 —(log z)* 1422
: a __seely
4 = T 14. } V1 4 cacu.
~2 0, — . 15. .
5 —= . .
1+ % e
tan x - E
18, secdz . tan~lx § ——- 17. sin-lx 4 ——m87 -
1+ V1 — gt
18, £ g, 1 g5, 80T
14 2% 2 vz (x+1) vl — 4ot x
— g —1
H H. " “.. ———————
18, . & et 2(1 + %
- +e {_1 )
25 _ 0 2. —.
a9 —2 . costx 4 ngind x e
41 24, 2, 28 0,
FPage 45. Exercises on Chapter IT
1. x4+ 16 2% 4. =27
g —8_15 vat — !
o o § logginz 4 xcotz
g Sx=1 6 _ — @

vV —8 T at — xt



10

11.

14.

15.

16.

17.
18.

19.

2(1 +27)
4 tan® =,
ogz
(1—xz)
4
&+ Scoax

ANSWERS

B8 8 B 3 B B R ER B

i4.

3569

Z21lan x + ™0 = . gp¢ x Lan x.

- ay

iar — y*

_imt 3t
2riy + 3yt

Bz 41

S+ 1

¥+ By —1

1—Zay—ai-

4 cos (2logxt —T)

T

4 _g
22l =2y.

e

%, y are determined from
a%y =+ bz and eguation
of corve.
= x

‘“"“i.;

tan-! 2v'E,

FPages 49, 50 Exercises on Chapter ITI
8. Btan raec? x (Jaectz — 1).

T2 2

2. 0.

a1

— —

+ ot

8.
10.

11.

2 oot & ot .
16 sin x cod x.

24

_ 8t
=
§. daects — 4otz

Dee g
g, logx + ———=,
e=logr + -

T. 2logx + 8.

4

(-

13 B,

x

N x.

14, Alem = 2—=)

T(mre

=



360 ANBWERS
15. B zlgt, e
ga, — D
16. _ﬂ‘ aty
xd -ﬂm
; ElllM&M.l w1 " (¥ — az)®’
18. fx —1y=+1 25 —y[(z—1P 4 (p—1)7]
r iy — 1) .
19. m-.m(m 4 ﬂ_)'
o0, (=11 (m+ H--]}!_ @—y)P
(m—1%1(a 4 z)=ts o
gy M(=11.(n—1)! 30. 5.1_:;_1__
(a+z)*
. 4.

5

an-1 c-ua(ﬂ T+ “‘-E’).

Page 53. Art. 28

2. Tre. from — oo to §; deec. from § to 1;

3. Two. +latz=3+vy; —latz=}+vH.

Ine. from 1 to 4e; ¢

Page &0. Art 34

I 1 6
1. '\I"IH-‘ mak. ; 'u"'E' . "
2. 2, max.; 8, min, 8.
3. 2 min ; §, max 8.
4 (2n+})r max; (2n+])m

win, for all integral values
of m.

b. :i, min.

1. z=S8+4
3{1.:-—1}

" 10.
wltddm 4 4=0.

4. 4 tan-lg,.
— 1, max. ; — }, min.
. — 2, min, ; 1, max,
&, TAX,
2nx, min.; also t.ln—lg:w.q
for nngim in 2d and 3d
quarter. 2n 4 1),
tan-! & v, 1st and 4th
quarter, max,
2, min. ; — 1, max,

Pages 63-67. Hxercises on Chapter IV
1. Two thirds the length of the sagment.

8. The parts are equal.

s ] 5 0.
V3
4 1. 6. 3 inches.



10.
11.
12.
13.
14.
15.

17,

L
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The gide parallel to the wall is double each of the others
The altitude 18 equal to the diameter of the base.

# inches,

Omne mile from stopping point.

Most economical per hour at 15 knots.

io

The altitede of the rectangle is equal to the radios.

The altitnde is equal to the radins of the base.

yards from the nearest point.

The diameter of the sphere equals the edge of the cube,

. feat.

wWa
Circular arc is double the radins,

Dl
ri + B
Arc =2 t}{i— 1.-"'?} .

Angle at center of variable eirele defined by 8 = eot 8.
The line should be bisected at the given point.
The altitnde is § the slant height of the cone,

{u!+ﬁ-i}i. 31. z=a—p. M. oxr— ﬁuwhﬂh
la 32, 20 ft. w

. I being the distance between the centers of the spheres.

856. tan f = soc gp—Lan ¢-
a+ b 3. avi. 86. § = 35° 20/

nia Pages 76, 77. Art. 39
About §° 58/ per secomd. 6. (3, 15).

4. 120 feet per minute. 6. At 52 miles per hour,

T.
8.

(4, ). 8. 2ah. 11. &,
At 607, 10. 1 2. 12. 3.



262

18,
186.

17.

ANSWERS
1 and &. 19. &+ 16, F 12 feet per second.
_ oo’ o
=L =10, ! + dep
= 53 0. sing - d¢
& a1. m_ radians per second.
16 VTS _
Page B3. E:ﬂﬂmunﬂhlptuﬂ- '
842 9oz, 4xve + ar, 4 zaz. g % I
T - ¥ o
BEC . E. I'E;{ﬂi—ﬂ}. 7. vZap
at
8 T.
waird 8. pv'1 +(log a)s P
0w, T2, 10. § &in &, 007, 2707 ; 23, — 2.
Pages 87-89. Art. 48
E_FF_IE:L i (e +2y=4da,
at b ¥ —2x4+8ga=10.
g =T oy (B)2y=+(x+ 1),
¥=n b*:i':: %) y=F2zr+ &
y =z 1 (Y)y=2+p 2+y—3p=0.
By=0x—3 0y+2z=20. & & 6. 417

{x) Parallel at points of intersection with ax + hy = 0.
Ferpendicular at points of Intersection with ke 4+ by = 0.

(8) Pmllalu( ‘f:@* 3“:"5 ; perpendicular at z = 0.

() Paralll at (*T“, ﬂ?“) ; perpendicular at (0, 0); (2 &, 0).

__.,ﬁ=;'._£7,u. they muat be confocal.

11. 13 ¥
nr

[

£ta, 19. (2p, +2pvE).

Page 95. Art. 51

. An inflaxion at x = y = 2.

o (22,30), (=20 39) o L0

_v,lﬁ'lﬂ ﬁ'l?
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8. l'oint of inflexion at (a, $a), tangent is x4y =T—;. Bending
changes from negative to positive.
~ (1 +VE
Page 103. Arxt. 37
1. y=0z=a,r=-a. B. =0 twice; one parabolie

branch.
r=0hrx=80¥y¥=a,y=—0a.
two imagi g z=0,y=0,z4y=0

= = —; im |my.
Y= y=—ai _ 10. y = r; two imaginary.
y=a; £=0twie. 11. z+y+a=0; two imaginary.
y=—r.+5; two imaginary. 12 ¥ + = =10; two imaginary.

3 18. x =0 twice; z=p; £ =— ¥.
8 =z =1; one parabolic branch. 14. y=z, y=—x; tWo imaginary.
7. x==—a,y=—by=x+b—a 15 x+2y=Ozty=lz—p=—1.

L

Page 107. Art. 60
1. =@
2. Polar subtangent = PE“ Polar normal = +'a® 4 g%, Polar subnormal = .

8. \ir:§+ﬂﬂ, Suhtangent:—,:mt.ﬂﬂ.,Tangnnt:iLn,

Vit — pt
Bnbnnrmal:-ﬂiﬂip—mﬂl,. Hﬂfﬂlﬂl=u—!:-
F
o 2% tan ¥

7. They have a common tangent at the pole ; elsewhere, E.

Page 111. Art 62
3 L 4 (x+ y)coBxy. 5. 1.

Page 115. Art 63

§. ] square units. 8. ‘}iw.-"'_.'lﬂ. T Differs by de'dy.

1L

H .
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10.

ANSWERB

Page 117 Art. 65

_arthy4g q 3
hx + by + f VI— B
2, g E=¥
v &4 x
2n ¥ y[eos (zy) —ew —22]
s T ' ¢ [z + e — o8 (xy)]

Page 121. Art 66

Br48y—s=12=0, 5. 4 ¥ 4 2 g
I‘Li il'll ?Ii
— % y—2 =238
= 1 =t 3 == 3 7. ﬂm-i—lf_n 8 —“!:-
- V118 V17
] —_ =i} t"xl=3r"'f!lrl.=3—al
TP 4 WY — o ] 2 1y e .
x4+ 3vViy+3z2=125 r4z=5h
Pages 128-130. Art. T2
a2 dr x| dzx
—— Ty ===, 1. —+—+4+y=0
ae U ay dF " dy
a4 iz dzy?
]‘1+{§) ] 12. Ezd-.:'-l-ﬂ(dx)
H==
o +(l—a2z By o0,
dy® &
'*EJ,E)E:{}. 18, TVyy=0.
af " dy] dy de
'z _ gz 14, [l = 1,
E-m"sﬁ-ﬂ(;) . :.!F-I_ﬂ
L S 15, TV 2dY e g,
E-Pu_l]. e ¢ dt d’ﬂ-
dy p*
: =1 18 —
rh.:‘fl‘i;II \[1 (dp)i
Pt Fr
ﬂ='].
el 17. —#&.

Page 137. Art. 74
Divergent, % Convergent. 8 Convergent in both casea,



ANSWERS

—l{zél. 1. Izl}//z 8. —a<x<a.

Page 145. Art. 77

flm) = (2 —1)3 +-(x—1)7 + 4(x — 1)— 8.
F{1.02) =— 2010602, F(L01) = — 2.050800,
F(00)=— 5.088001, f(.98)=— 3.070608,

Sy —8)*+ 4(y —8)— 8. 4, gin31° = .51508.

Page 149. Art 78

: :+§+£zﬁ+.&. 8. 000002,

15
i

. 017452, T 1—-—=———+ R

2 =B

. ﬂ_u%(x—lj_ﬂ(:q—f)i.}llﬂ(z—g}‘{-ﬂ.

2 fi 4 i)

! u‘+ﬂ‘h+%k’+ﬁ.

15 + 24(x — 2} + 18 (z — 2)* + 3(z — )%

—d (2 1)+ 60+ 10— (x4 1B+ (2 4+ DA
5.013. 16. 3438087,

. 11.0087. 17. 0197 ...
1= (x—1) 4+ (z—1)2—(z— 1F+ R 0Otod

Pages 159, 160. Art 83
2q? g _ 13

Pages 163, 164. Art 85

8. i 5. 3. B —4.
4 4, T }
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ANSWERS

FPage 164. Art 85

5. I, .
b g1
2 32 6. L. 0. -2,
n 3
. 8, 7. L 1. 4. '
Iy
4 TEG !
log b 81
Page 166. Art. 86
1. 1 3. 0. 5 —j.
2 0 4. b 8. 1.
at
T &g
Page 171. Art. 89
1. First. 8. Second.
2. They do not tonch, ¥. a=—1L
3. Third. § v=222 bz 4
4. 3x(x—a) =aly — a). 8aqa (=2, -—8), First.

B. ¥+ 122 = 10.

9B, (-2, —B), Second.

10. y=—r 4 8z 4+ 83, B ==8y* 4 1d y — 806,

12. First.

g, L(efz® — u“li_
ab

1. oI (log ay
a?
* 3

13. Second.

Page 179. Art. 97
6. (+nynl g, aVZ(Ba—38x)°

Litl:ﬂ = 1)y ' _-E_{Eu—zjﬂ
M CE3) L 10- %
va
1 1
11. \ .
8. 3(amy)t (3-& Mﬁ)

Page 181. Art. 98

3. a(6—teosa)}
T B—Gooad
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4 E;Li 6. %
va
5. 2 T
- _qa' F
Pags 188 Art. 100
1. a=0, g=0. = "

4. u=:—§(€‘—¢ '),ﬂ:ﬂy.

it — s
2. u=ulﬂs%- A=y 5 @ipi-(@-pi=@aol

f—(na)? = i,
;g-“‘“f't g ooy — 9% 6 (aa)t — (56)3 = (a* + V%)

z2at 1. (e+BY 4 (@—pi =24l
16. & =al(# — Einﬂ"’}, g=a(l —cos#), F=8—r.

Pages 198, 199. Exercises on Chapter XIII
L (0,0); ax 4 by=0. 8. Two nodes at infinity ; the
. asymplotes are x=y4 1, z4y=+1.
2. (0,0); cusp of first kind, y=0. A

1. (0, —a); {+a,0); (—=a,)
8. Four cusps of *first kind; the tangents are, respectively,

(o, :l:ﬂ]t{:l:ﬂ-pﬂ'];rzﬂ.ﬂ::ﬂ. ﬁ(?‘l’ﬂ}:ih"ﬁ:;
2r 4a)=4+Viy;
4. (0, 0); conjogate point with 9z —a)=+Viy.

real colncldent tangents, y = 0. 8. (— a, 0); conjugate points.

. (0, a); y=a+x; casp of 3 (B 0); x=0, y=0.
second kind, 10. (0, 0); is a tacnode ; y = 1.
12, Terminating point at (0, 0).

Pages 207, 208. Exercises op Chapter XIV

L 24yt =t 1. y*=4a(le— ).

8 xlpylt=al - B. bt (a? DY)y = b¥(a?+B7).
3. o 39 =ch ' 9. (2% +97)" = 463(2F — 7).

4 4y =48 10, 16y + 2T 2t =10,

5. (x— )t 4 (y—pB)i=1nt 1. y+x+ k=0

6. yix +3a) + =0 12. (2 +pt—ay)=a{z®+(y+a)%)

13, et 4 gyt = 4 a¥l



e

= 3 @ o=

10.
11.

13.
14.
15.
18.

17.

18.
19,

|

i =k,
gat!
a4+ 1

gl

2m

2m—1

az — $alzt + palel — pan

Ologx 4+ L
i (2% + atyh

(e + Byntt
a{n + 1)

log (= + a).

| log (2 ax — x¥).

— log cot x.

—log {1 + cos ).

log (log x).

§log (=* + 1).

— log cos .
log sin
1

= pE=_
T

I e

(@ - b)ymbns
nlog (a4 b)

4 8in 2z,

™k,

27 32°

INTEGEAL CALCULUS

Pagea 215-216.

1

2 8

S 8 F REER S BRBYBSE R 8B B

Art. 114

gin r — } s8infx,
— co8x + § coEt .
tan = — =,
jtantz.

—iml {ax + b).

— j(eot ¥,
log tan =.

§ sectx,

— QO .

gin-1Z.
4 8

] sin-1 2x,

l tan=1 .
a a

1

tm—l d_':!:.
b &

tan-1{x = 2).

Page 219. Art. 115

rain-1x4 v1 =3
8 ertan~ter — § log (1 4 e),

308

3 Pginz 4+ 2xco8xr— 2 8in .

-+l 1
4 — |1 - .
(o8 = =5

n+ 1




5 j[3rtan-lz—zitlog (14+29)] 9.

ANSWERS

369

4 e (8in x 4 eos x),

6. sec x [log cos x + 1]. 10. e (sin x — coazx).
7. d[{#2 4+ 1) eot-1z + x]. 11. fjeoszsinx — feos Ersinm
8 j[eindzx—3zecosdx] 12. xtan z + log cos x.
Fagea 220-222. Art. 118
~Lgyd
4. }(sin~ix)d, 11. log tan 2.
6. }cos(x34+1)[1—Ilogeos (22 +1)] 2
B i 3
7. gin-1 E 12. log tan {\E-I-E)
18, — j(a*—ank
B. ll.-ﬂ.l]" t_‘. i': J 2
a a 14 log (x—1) — -1
- . =1 2{zx-—1)F
9. - cos—1 2, 15, —._1 .
i & Egin®z
1
10. sin-1¥—% 16. ——tan'{+2 tan z).
a '3 I'l )

Page 226. Art. 118

1 VEz+1)—1 3 —Ljppz—2

1. . . . g — .

zfilﬂgv‘i(:+l)+1 12 x4l
o Lm-1M+ 4. }ein“'{3x — &),

v1d V14
5 Vil +2x 42— loglz+14+vVe+23x+ 2).
B —V—zt+2x+1+4sin1E2=1,

v

1. —m"ﬂ—«lx—-&xﬂ+}ain*lh—ﬂ+-l--
8 3ﬂ?+‘5;—2_ﬁlm{z+i+f=’+ihn
0. L viTes—g@+ -2 anrdz—1

2 42 4
10. L2log (z—6) — § log (z — 1).
11, fu:r.—-z*+§s]n"h__§.

i

EL, CALD. — 24
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12, —v—2xi—dzxr—1-— 1 - gin~! {4 z 4 3).
2 42

'\-"1-— — Bl = _1“_5“1-133:|'_
53

Page 227. Art. 119

g __llﬂg(u+u"'=“-1_-_fr_?)1 g, _1,nH[a+w.fa¢——:ﬂ)_
i & 1] x

F o

3. —lng(l_ﬂz"' b -ty l).

1 VB vt + 2x 4 3Y,
¢ —tog (T
2 z+1
== i l:_zj-_ﬂfﬁ -I:_x_‘l:ji‘l). 6. E-i!'l_ia;-
B z 41 '-.-"‘_{m—l}
1, floztvo@—l0x—1 o —Va— T
T ——Il:ig( x4+ 2 ) aZe

Vi —d gy _Vr4dl . _ &= :
a' & V2 VE(2x—1)

Pages 22T7-228. Exercises on Chapter I

§ t_-g_n-lf.
2

2
1. &= F

3. }log (6= +122+45).

& 2vz(l+iz). & —j3-2nt e ﬁ.[ﬂl_—m:)rt‘
=1 9. e +ni-jz-nh

vixl +

. HE
. B . - ==
10. §sinbBz lugm(2+4)

. — -t 8

(=

18. — o8 &
14 —log (e~ +ve = — 1).
ﬂg[v@ +v‘::1+2]

13. ——lc-g{m:aua-:+ﬁ}
1B. imn-lﬂ
-1 17. Liog =1,
2v/3 T3 ”Ef.:+1
18, {2 tan—tx — gy ot 4 Jy2? — Jylog (2 + 1).
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19, —[(2+2zlogatizlogal] o0 oo o

a*(log a)? m

2. —eot?, - oo 108(m cos?d 4 bsin® #)
3 . 2(b — a)

28. —v1—logz. @4 Jlog(e™+1). 95 mn_.(i‘.ﬂinaﬂ:+])_

1

%, tan (log ). e b

an. 3 Elm'i[ﬂ—{—:"—-= — e+ 'EE]

e ;
29. _!¢3=§+3:+1+Ing[:+]+f‘lﬂ+2=+I.. .
X
30. ——1ug{:u:+1.-' 3l+‘ “&.
2 itr
3. -mz'mgl.anz+lugtané- 82. {r— | log(ein 2 + 008 x).

Pages 236-237. Bxercises on Chapter II

1. gmu*-aﬂ}wﬁ-zﬂ +3?u‘mu'

{I
1 x 1 x X s  a¥ e
. = tan-1 B, Tvigt — gt B 1t
 alaEratae ;] 3 g
2x—1 4 2r—1 S
- + tan-! . B T
HrE—x+1) 33 3 atr
8 —Iva— 7 Cgip1 2 B A SR 1 S
2 2 @ Ha{:!+aﬁ Sa'vrita

8 £(2a2+ 507Vl -i'-i:cf+3:h}g{x+v'xi+u“j

9. ‘Efﬂ+u+§ing{1+v"ﬁ+u].

1

10. lest oz - S vim =% + Lain1 2= 9,
G 2 P
1, —@az—ani 19 _ YTEZ
3 ax? 9 21

Hz 4+ 29— 5(z4+2), 3, x41
18. om0,
B(#+4x+8)7 16 Tx48
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14. L+ 1vVi—2z— 2 +ein 2L
2 V32
vei=1 1., .1 18, —=% .
16. 2 xd ﬂaln T av'a + b
-1 19 — 08 f
17, ——1 . . ;
B +T) (1+ &) V1 + esina
20. E{Eﬂ—ﬂfﬂ—ﬂq-%aiu—l*‘
91, Z (33gt— 98 gl 4 St viE — 8 4 2P g1 E.
18 16 a
‘ Page 241. Art 122
1 X— .ﬂ:_j__g 131 5::-}-3!*_
Ll P dogTiEb et
(= +1)F & 4 log(x—a) (z—= bt
2 lﬂgm(m-l}
5. E'I'ﬁlﬂg[: 2 - v"_]— fﬂlﬂg{x—2+v’?ﬂ}.
'3
{8z —1)(x—2) 7. lo (2 —a){z=0b),
8. lﬂg{ﬂx+1}{:+ﬂ} —
8. 24 1 (alog(z +a)— BHlog (2 + D).
9. log[(z +2)vEx — 1]. 12. *E’_u + Bdlog (z 4 4)
10. log E— N +E), — 27 log (= +3).
2ab Cax+ b
1 Ca : 14 liggltt
. 5l A — o g Tt
_ Pages 243. Art 123
1 r4+1 g 1 .
L. 2{;-11+ log o1 2 — 2)
—1
l+‘3:u: :r-l 4, .
2 5a +log V2 (x + V)
B. ’-Eﬂ-g—ﬂz+i;“_|"_'3+lngz{:,+1;i.
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2 q? 1

8. = gf)— . 1. .

log ( e a 4(vE+1—x)9
B -:::i:——+1+:l'i;1:z_._ﬂ
8. :z+l'-—-[E=E1crg‘lf::+3}—~lngn:],
Be ®

10. _lug"““' L. o oz——2 —Blog(z—2)

E r—3
Za*—4ax

12. lug{::-.:}ql-w.

Page 244. Art 124

1 41 1
1. log —2—. 8 Jlog o4y tan=1zx.
VI + 4 (x+1)*
[lug{z-[-a}-—lng{m* az +a%) + V3 tan1 22— 8 ]
avs
1 x, 1 x 1 1 "
4 —VYian1%4li@n T, R SN L
a a+!r " b T Zaler—a) T &
3 a* 3 4 T ol 4 2 g
5. 2 4log—— + —tan"1—, oy legEtiz i
T ' +2 3 v 8. x—log g1
6 — L ian1 V8 9 log-T=1 _tan-iz.
<3 et 1 "u-'rz’+!.
Page 246. Art 125
1 3 1% r—2a
., tan-! . g —tan-1~ o ————.,
! | g a2+ )
3. llog 2+l oy z—1

i (1P 2]

_2 Ve + 1 d+2r us-n-l
& —gtale 2{:¢+1} =
. S 2 — L tapt®
6 E(:‘ T @) + log (=* + a*) tan o
1 1
8. ——+ log (=% + 1).

ot 1 (x4 1)
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Page 249. Art. 127

1 log¥etl=1 2, 2vi—3¥z+06%z—6log(¥z+1).
Ve 141
3. vlog(VE—141) 4 — >
'u“x—l+1
4 f2tan-lv'm — 2. 5. llog .‘”"5"-_.: a—h

6 14 (2t = 12t 4 et — 32t 4 paih).
Page 252. Art 128
_ 1||i + _ B{z—1)
- EIM[I l—r] #1441 48
2 —Elng{-ﬁ+w‘“-1

Pagas 253-254. Exercises on Chapter IV

= 1
1. ﬂv"ﬁmn-l\lf 3

3 v'r_{:.—u"ii—lr
* e a 11
8. z—4vVEz 1 1 +8log (VZ+1 +2).

& log(z+ VE— 1)— 2 ggpa 2¥e=141

—vai— 1.

v v
M2z —3a)(a+ o)l r 1 e VE— @ 42VE
8 log (* — gat + B). PR Y

i —2ve¥ — 1 4 log(z + v —1)].
gt — gt 4 80t 13280 a2t 4 10g (=t + 1)+ Btan-12d,
10. — j(2a? +28) Vet — i vE—

1. fﬁ:ﬁ+glﬂs—~‘“‘;%:‘:: -

Vi — 14 — %
19. - YE=F_gin1 L N
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e Mk

— 4 cosfx 4 | oos’ 3.
bog sin z — ain?x 4 }sint .

Page 261.
— jeot?x
—cotx — Jeottz — Lootz.
— oot 2} + } cot?z).
— jeot?x — Zoot x + tan x.
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z(2e 434 16. 11og YOIz VaT+z
Bt (2? + %) 2 U Valid—x x
L
A%/ g — g3
Page 256. Art. 131
jtan®x 4 tan . 5. jos?x —cotr — § ootz
— { cot?x — oot x. 6. —d [cotd x4 foot?dx].
tanx + §tan®x 4 } tan*x. o _ tlogtans.
— 188 [cot Ex + cot* 2z 2tandr
+icotb2x + 1 cot’22]. B — jcotbz— §eotie.
Page 257. Art. 132
. }eectz — | sectr, 5. }sectr —asectx + logsecr,
— joeoTx 4 § cso’x g fecnlx _ secn-iz
— jescz, ) ] "m—1 n-3
141 .
u(ﬁmcﬁw Sam‘m+aal: q:r) 7. log secz.
— (5in T 4 e8¢ x). B — log cao .
Pages 259-260. Art. 133
— oot x 4 oot x 4 1. . tann-1x
1 tant ax — ! log sec az. m—1
fa @
} (tan?x + cot?xr) 5. jtan"z — ] tandx 4 jtanix
+ 4 Jog (sin z cos x). —lanz + .
Page 260. Art 134 (a)
- L
cos x + § cos’ x. a jeosdz 4 Bcoste_ joostn

5. $(1—cosz)l — 3(1 — eos )l
Art. 134 (5)
B. §v'tau:r.{ia.nz—3mt-x],

m“ﬂllg: t"-“-+11-|
n—1 a4l
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‘Page 262. Art. 134 (c)

1. jx—Jsindux
2 gz §sin?2r—gindx — LsinBa).
3. Je(3r—sindz + }sinbx).
4 |3z +eindz + }einBz). 6. tanx + }gin 2x — fz.

Page 264, Art. 134 (o)
1. {{x—sginxcosx). 2. jeotx{oos?r —3)—] =

8 —}sin*z—sinx + logtan (‘;+E)

4 —jeotZresc2r 4 }logtanx
b §x+2cotx 4 |einzooszs — §cotfx,

Page 265. Art. 135
s 1 F m
1. }tan-l(}tan=x). 8 —tan-i |2 TR
Han (e g [2e(5-1)]

o1 tanz —2 -3
23  tanz— 2 ++3

. bmnﬁ—a+v’m

———log
Vat B punf—a—varin

-

b .. —1 . 7. -l—un-l(““_”}.
a{atanx + b) - V2
: tn.ng-_l-'l
1 - fatanx B, - logwg———.
8 —tan"l| ——=].
ab ( » ) » mE_

Pages 266-267. Exercises on Chapter ¥

3. 2+'tan x. 4. ltantz 4 jtanx
5 — logtan [Z4+ 7.
cac x + log n(2+*)

1 ] T 1
6. - tan? = — N T O + &
9 xﬂinx-]-ﬂ[al.u:: log tan (24.*)] 7. .



10.

18.
17.

18,

21.

13.

16.

3l.
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11. }es(sinz 4+ coax—{mindx

;:i(sm5+m!'), — }cos §x),

2 2
—}e(sinZx 4+ Zeoa ). 15, Bin*tlr  minstix

1 e (2 — sin 2 — cos 2 x). m+1 nt3

gtan¥ 2 — 9otz
— 8200t 2 x(1 4 §oorr 22 4 } ootd 3 2),

. }tan f (14 §tan? § = + § tan* } £). .

log tan 2 x. 20, —B[cot2 x4 Joot?2z2].
-1 Vel — @
Euﬁ‘( x )
fﬂﬂ‘f'ﬁ'ﬂ)-“,l,h“—ﬂﬂ
ot 4 5 w4 gt
1fa , b 1fa &
E(E+E)1+§(E—E) log {ee* + Be—=).
zcod (¢ — b)) 4 8in (a — b) log sin (x + &).

Ing_ {e8in x + & ooa x).

Pages 281-283. Art. 142
$plat. 3 2 4. 38+, 5. 40VB.
1. 7. §VE. 8. }. 9. i 10. =72, 11. i

4-.-aitau-l;—“l-; 4 wal. 13. wab. 14. 1§8 — T2 log 2.
13

@ — ot 24 —8v3 _ayl
loga " 18. et 17. } 18, 2B — a)i.

Ty m.%;g-{"{;%lﬁ, 28 alogn. 93 1. 25 %
L |

A o idbt&n'l;. o5, 2v3 99 %84, g %- 1— ez,

£

at
-

Pages 287-289. Art 143
1. 4. 2 w, 3. 8 4, 44

B oo, 6. 3wl 1. 2w
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1. =ab.
3w

Srr"*
2

5. 2bw,

]
6. 5 (m—p).

ANEWERS

Pages 290-291. Art. 144
9, §rat. 8 I
5. M!;“;bb*}_’.
[

Fage 292. Art. 145

T "—Q‘E‘ 11. §.
. 2% 18. :*
-
o Liog (‘:_:) 13. =5
10, EI:‘ 14. 'I"E‘.

Pages 296-297. Art. 148

In the following answers the values are given for Simpson’s formula
only, unless the trapezoidal formula is called for in the problem.

1. 22; 21.5.
4. 5.2593.
8. 80.6466.
12. 335,

15. 0.5638.

8. }wab.
7. jwab.
8. }.4h

1. %{10~3'}, 9. ‘2-—[ (2 ¥+ a%) Vi gi—ar? sin-!

62

1]
8 T & “"l-%f"l +ﬂﬂ=l‘*+4a‘=1+3{1’lng(3“ “1)]1,;.

2. 0.500014 ; 0.500002 ; 0.5000014 ; 0.5000011.

5. S7.B555: 36.6261. 6. 0.09006. 7. B.O04T.
9. 0.7583. 10. 0.7468. 11, 04443,
13, 3.006, 14, 1.1873; 1.1830; 11931.

Pages 300-302. Art 149

9. ﬂ;hg_ 12. 4 wa® ooat @,
10. 4§ cu. ft. 13. } wabdd,
11. §at 14. §r

Pages 304-306. Art. 150
m]_
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B, 2wl 8. %- 7. §wrd. 8 i m
T2 xut wot
: : 10. T, . g,
L] 105 0 T 11
12. r[ﬂn‘lﬂgi—“—ﬂld‘{ﬂn—y.}]; w, 18 Gt 14 %-
1

Pagea 308-309. Art 151

1. p[vZ2 #log (1l + v2)]. tla -
5. T 3. log VB
4 fia 5 2wr 8. E{g_.rlj_ 7. H.
8. 2 —v3 4 log LtV . 1= 10, alogs—ja
v cxly
Page 310. Art 152

1. (pz— p) Ve + L. 2 2wa 3. Ba

] ] [ L
i- u[uné S E'I‘lﬂ'g tan (T)]h-

R e | B
n,’:;[afm+1+lng(a+u’m+ﬂ]h. )

@il 8 2
6 3 ] T- 4+Jﬁlﬂﬁ{‘fi+2)‘
g. B 9. ﬂa[ﬁ—ﬁ—uﬁlugM]-
2 vZ(2+VE)

Page 311 Art 153

1 fa g Bam 3 da 1. 1::{1*. jt
o= 1 . P

B VZ{et —1).

5 it +nbhi-2.
1. AL +0ni-8).

Pages 313-315. Axt. 154

1. ma(1_£). 3. §epf(vE—1).

it
2. x(x—2). 4 T[h*'i—lﬂgn +vI)).
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5. (a) Erb[:b-l—‘%m—li').

el a4 via® — h¥
(1) 2 xa® + e log i a"f-_m]
8. 33 rgl, T. (@) wbvaiypt; B i wad
8. 4 wad (8) mavia: + bt 10, 4 xfagk; 2 rlalk.
11, 2wa?(38iné; —3i cosd, — H¥sing).

Pages 316-320. Arxt 155

LT

2 p=e ", 4. p==qgoo8 # 4 O,
b. yi= axi 4 b, " 8. po=cainnf. Straight line. Cardioid.
¥ ot

T.y=e=t. B op=ce. 9 - 10 Zwat 1L a log 2.
4 ]
18. Val ¥ B —n). 14 2271h 15 00627 1b. 16 44313,

17. h=528in. 18, h=432.17 b,

Pages 323-324. Art. 156

3. zy=ay’+by—} 4 y=ke(logz—1)+ax4b b Akd
6. y=>00002* + 0.0036 2 + 1.12, slope = 0.0006 23 4+ 0.0086 ; =20,
y = 2.792, slope = 0.2436,

T. 10y=—0.0462" + 0.76 2" — 2063 + 40 ; 1000 y= Sy 2*— 00675 24
=87z + 117.01§.

Page 328. Ast. 158
1. =y + O 3. Tmpossible, B 2+ 3" — 3 axy + O\
2 —coaxoosy 4 O -l. In,gi+ . 6. tau—1§+ﬂ.
T i+ 2y + e+ -+ O
B i +tmt+ =t - fp' + 2y + O

Page 330. Art. 160

1
1. . .1 . fat, 7
2vE > b i
2. 4. 4 1 6 815 B.

@ bol¥

Iz 2.
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Pages 332-334. Art. 161

B . e
2. 64, 4 4= -8 . o - B. 5
3. 4. 5. 1 8 8. al
0,97 (5 oot 2oy 2§
11. 20. 12. 3 — 23,

Fages 336-337. "Art. 162

2 2B, 5 ”T“’. & r B grabe 6 T2 ot g 6 20V

Page 340. Art. 163
1. 62261b, 2. 1120.61b. 3. 8537.5tons. 4. 66.41b, 5. 16646 tons,

Pagesa 343-345. Art. 164

L (&b
B (b ). . (00,2
3, g=lk+a) o _s_g

4k + 2 1)

5. 3[(= u] from center of sphers,
8lia+ a)?
8. Brivfr 4+ a) —
BLT(r+a)—tie
g, W1+ 2albh' +a"V 4 v the base.
2{ab + a'd")

] from spherical center.

h:ahl?
. — from the vertex.

2(r2 — g}
(r*nm—' -—nm)

2a 2a
n (12 42) u (32, %)

5
(a(._m ‘ s{fiaj)' - (H S 35)'
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16. Ba Mb I6e
16" 16«" 1=
17. (3“. 3a —3—”]; z=y=z=J[leth) —at
8 8B 8 B {ﬂ+ h}E—
= _—_=_2r
1. s=y=2="".
v 5
18. ({l,{ll %) the base of the cone being in xp-plane, 20, (0, 0, 1).

2l. (2) acos®d; (b) u(l+ﬂ- both measured from the vartex,
14 cos¥ g

Pages 347-348. Art 165
1 %"{bﬂﬂ*} 8. "*“‘ﬁauuﬂ
2 | wath

- T, “*‘M (8 b2 + A2),
3 ']—Ecsawm}.

a"& 3:
8. -
 rar S e+ ),
T 8 Err""”
5. } wabh(a® + b%). " 3(n+5)

10. fa®. 1L jxa(R—r). 12 ja%h. 18, }BA%, 14, }wa’
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{The numbers refer to pages)

Absaolute valoe, 134,
Alsnlutely convergent,
1.
Acceleration, T7.
Actoal veloaity, G8.
Approximate  integra-
tion, 22,
Are, length of, 506
Aren, by donble Integra-
tion, 330
derivative of, T9.
formula for, 273, 280.
in polar eobrdinates,
291
in rectangular codrdi-
nabes, 3.
Asymptotes, B6.
Average curvature, 176.

Bending, direetion of,
.

Cardioid, areaof 203, 335,
Catenary, 180, 316.
length of arc, 509,
voloma of revolution,
i
Catenoid, 313
Canchy's form of remain-
der, 153,
Center of curvaturs, 172,
Centar of gravity, H.
Change of variable, 124,
Circle, area by double

integration, &31.
of cnrvatnre, 1TE.
Gissold, 180.
area of, 280,
Component veloeity, T0.
Coneave, B,
toward axia, ™.
Copditionally  coover-
gent, 154,

Conditions for contmot,
T4

Conjugate point, 197.
Conoid, 3H.
Constant, 15.
tactor, 25, 213
of integration, 214.
Contact, 167.
of odd and even order,
165,
Continuity, 19, 109.
Continuwous Tunction, 19,
Convergencs, 133,
Canvex, 34,
to the axis, B4
Critical valoes, 55
Cubical parabola, 281.
Cusp, 194,
Cyelold, length of, 311.
surface of revolution,
b i

Decreasing function, 51.
Deflnite integral, 270,
geometrie meaning of,
.o E
multiple integral, T2,
Dependent variable, 15.
Derivative, 21, 22
of are, T,
of area, T8,
of surfacs, 81,
of volume, #1.
Dweterminate value, 158.
Development, 131, 160.
Differentials, 74, 210,
integration of, 326.
total, 112,
Differentiation, Z3.
of elementary forms,
44, 4.
DMrection of curvaturs,
175.
Discontinoous function,
0.
[Mvergent series, 132.
Duhamel’s theorem, 8.
383

Ellipss, area of, 281.
evolute of, 190, 509,
parametric form, 290,

Ellipsoid, volume, 2.

Envelops, 200.

Epicycloid, lengthof, 311,

Equiangular apiral, 316.

Evaluation, 160, 165.

Evolote, 183
of ellipse, 190, 183, 291,
of parabola, 153,

Expunsion of functions,

131.
Exterior rectangles, 260.

Family of curves, 300.
Formula for integration
by parts, 216
Formulas of differentia-
tlon, 44, 45.
of integration, 211, 224.
of reduction, 229, 62
Funaotion, 18-

Helix, 318.
Hyperbolic branches, &5,
spiral, ares of, 262,
Hypocyeloid, ares of 200,
length of arc of, 308,
a11.
volume of revolotion
of, 308,

Im i Tonction, 33.

Impossibility of redoe-
tion, 2392,

Inereasing fanction, 51.

Increment, 21.

Independent variable, 16.

Indeterminate form, 157.

Infinite, 20.

Infinite limits of integra-
tion, 287.

ordinates, 97.
Infinitesimal, &6
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Integral, 208,
definite, 270,
double, 330,
multiples, 320,
of sum, 212,
triphe, 325, 354,
Integration, 208,
by inspeetion, 211.
by parts, 216.
by rationalization, 248,
by substitotion, $14,
formulas of, 211, 224,
of rationsl fractions,
3.
of total” differential,
&5,
puecessive, F21.
summation, 268,
Intarior rectangles, 266.
Intarval of convergencss,
138.
Iovolota, 187,
of elrala, 311,

Lagrange's form of re-
malbder, 152,
Lemniscate, area of,
A4,
Length of are, 306,
of avoluts, 185,
of apace curve, 318,
poelar codrdinates, 309,
rectangular  colrdi-
nates, 306,
Limit, 15,
change of, in definite
integral, 2T6.
Limits, infinite, for defi-
nite integral, 287.
Liquid pressure, 338,
Logarithm, derivative
of, 4.
Logarithmio curve, 280,
epiral, length of arc,
310,

Maclaurin's series, 141,
276.

Maximum, 53.

Mean value theorem, T4,
275,

INDEX

Measure of curvatore,
177.

Minimom, 5.

Moment of Inertia, 346,

Multiple points, 193,

Natural logarithms, 56,
Normal, 85.
Notation for rates, T2.

Obllgoe asympiotes, 59,
Onder of eontact, 167,
of differentintion, 122,
of infinitesimal, 350.
Oscalating circle, 172,
Csgood, 132,

Parabola, 108, 89, 171.
semi-gilicenl, 308,
Parabolic branches, 965.
FParaholoid, 314,
Parallel carves, 187,
Parametar, 201.
Fartial derivative, 110.
Polnt of inflexion, M0,
Polar cobrdinates, 104.
suboormal, 106.
suobtangent, 106,
Problem of differential
calenlus, 21,
of integral caleulus,
204,

Rading of
172,
Rates, 68,
Rational fractions, inte-
gration of, 248,
Rationalization, 248, 240,
Rectangles, exterior and
interior, 265,
Eeduction, casea of im-
poasibility of, 236.
formulas, 220, 262,
Bemainder, 150,
Eolle's theorein, 150.

curvature,

Bimpaon's rule, 394,
Bingular point, 191,
Blope, 16,

Bolld of pevolation, 81,

Bphare, volume by triple
integration, 556,
Sphereid, oblata, 305, 314.

prolate, 314,
Spiral, of Archimedes,
107.
equinngular, 108, 316,
310, ,
hyperbolic, 202,
logarithimic, 202,
Standard forma, 211, 224,
Stationary tangent, 90,
Emp;g in differentiation,
Stirling, 141.
Subnormal, 56,
Subtangent, 6.
Summation, 268,
Surface of revolotion, 81,
ares of, 312,

Tacnode, 104,
Tangent, &5,
Tangent plane, 119
Taylor, 141.
Taylor's seriea, 148,
Teats for convergence,
13
Total eurvaturs, 176.
differential, 112,
Tractrix, 315.
length of, 318.
surface of revolution
of, 318,
volume of revolution
of, 318,
Transcendental fune-
tivns, M.
Trapezoidal rule, 202,
Trigonometrie functions,
integration of, 256,

Variabla, 15.

Volome of solid of revo-
lution, S0,

Yolumes by triple inte-
Eration, 4.

Witch, aren of, 2686,
volome of rovolotion
" of, 3056,





