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Chapter 1—
Logarithms

Most of you, at this point in your mathematical journey, have not seen logs for at least a year, maybe longer.
The normal high school course emphasizes the wrong areas. Y ou spend most of the time doing endless
calculations, none of which you need here. By the year 2000, students will do almost no log calculations due to
calculators. In case you feel tortured, just remember you only spent weeks on log calculations. | spent months!!!

TheBasic Laws of Logs
1. Defined, log, x =y (log of x to the base bisy) if bY = X; logs 25 = 2 because 52 = 25.

2. What can the base b be? It can't be negative, such as -2, since (-2)¥2 isimaginary. It can't be 0, since 0" is
either equal to O if nis positive or undefined if nis0 or negative. b also can't be 1 since 1" always = 1.
Therefore b can be any positive number except 1.

Note

The base can be 2V2, but it won't do you any good because there are no 222 tables. The two most common bases
are 10, because we have 10 fingers, and e, a number that occurs alot in mathematics starting now.

A. eequals approximately 2.7.

B. What is e more exactly? On acalculator press 1, inv, In.

C. log =10gy,

D. In=log. (Inisthe natural logarithm).

3. A logy is an exponent, and exponents can be positive, negative, and zero. The rangeis all real numbers.

4. Since the base is positive, whether the exponent is positive, zero, or negative, the answer is positive. The
domain, therefore, is positive numbers.

Note

In order to avoid getting too technical, most books write log x|, thereby excluding only x=0.
5.1og, x +10g, y =log, xy; log 2 + log 3 = log 6.

6.1og, X - log, y = log, (x/y); log 7 - log 3 = log (7/3).

7.log, xP=plog, X; In6"=7In6is OK.

Note
Laws5, 6, and 7 are most important. If you can simplify using these laws, about half the battle
(the easy half) isdone.

Example 1—

Write the following as simpler logs with no exponents:

[ a'b®
. [ n::""\v*"E)



4lna+5Inb-6Inc-%Ind

8.log,b=1sincebl=b.log,7=1.Ine=1.log 10=1.
9.1og,1=0sinceb®=1.logs1=log1=1Inl1=0.

10. Log isal1:1 function. Thismeansif logc=logd, c=d.
Note

Not everythingis 1:1. If x2 =y2, x = #y.

11. Log isan increasing function. If m < n, then log m <log n.

. IV = o
12 ll_IE (1+1/x)" =¢

13. b*s=* isaweird way of writing x. en x = x.
14. log, b*=x; In ex = x.

oo log, © o _11_1_11_. .
tmgil cC= gh {]1 J-Ugd CcC= -ln {] 3 ].th o)

15. lo

"z

Y ou should now be able to solve the following kinds of log equations:
Example 2—

Solvefor x; 4 - 3x+2 =28,

Divide by 4; isolate exponent.

3 i=7

Takelogs. It now becomes an elementary algebra equation, which we solve for x, using the
sametechnique asin the implicit differentiation section of Calc 1.

(x+2)log3=log?7

log7-2log3a
log 3

16. & = exIna Also xx = gxInx gnd xsinx = gsinxInx,

Example 3—

42-.1—5 —_ 93A—r

(2x+5)log4=(3x-7)log9

Using the same agebraic tricks, we get

Eliminate excess minus signs.

__—_f_l_ng'&-,'ilngé_ ) ?10g9+5_|og4
~ 2log4-3log9 ! 3log9-2log4

All this should be known about logs before the calculus. Now we are ready to get serious.



17. Major theorem: given f(x) = In x; then f'(x) = 1/x. Proof (worth looking at):

Definition of derivative

flx + Ax) — f[)_(_} _In(x+Ax)—Inx

lim ——— —

Ax—0 .-"IL:{ -j'l-x
Rule6
NE + Ax'
— 1 X
_iil_-ﬂj lﬁx —ie
Normal trick [—multiply by | = x/x
X+ Ax
x1 ( ]
= lim X
T ax— xAX
Algebra
X Ax
—In (1 + ]
: Ax , X /
=lim
Al N
Rule7
f Iﬂx" %l
In (1 + —J
. X
= lim
Ax—0 X

X
=
Usetrick 2, Ax As Ax — 0, w — o=

In (1 + 1/w)*
m e

=1i
W X
Rule 12
_Ine
T ox
Rule8
=1 /%

This theorem isimportant, since it has alot of log rules together with two normal math tricks. The theorem
gives us the following resullt:

)’1dx:111 %l +C
X



Chapter 2—
Derivatives of Ex, Ax, Logs., Trig Functions, Etc., Etc.

We will now take derivativesinvolving In x, ex, a, f(x)8X), trig functions, and inverse trig functions.
Example 1—

v =1In (x*+ 5x + 7)

Letu=x2+5X + 7. Theny =Inu. So dy/dx = (dy/du)(du/dx) = (L/u)(2x + 5) = (2x + 5)/(x2 + 5x + 7).

Notice, taking derivatives of logsis not difficult. However, you do not want to substitute u = x2+ 5x + 7. You
must do that in your head. If y =Inu, doy' = (1/u)(du/dx) in your head!

Example 2—

[3® + 7)x + 3)

——
X

y=In

The simplest way to do thisisto use laws 3, 4, and 5 of the preceding chapter and simplify the expression
before we take the derivative. Soy =91In (x2 +7) + In (x + 3) - 6 In x. Therefore

Remember to simplify by multiplying
9(2x) = 18x.

. _9{2:{] 1 B

U A
Example 3—
v=log. x

Using law 15, y = In x/In 2, where In 2 isanumber (a constant). Therefore
v =(1/In 2)(In x}' = 1/(x In 2)
Law 18

y = el y' = e¥(du/dx). If y = eto the power u, where u = afunction of x, the derivative isthe original function
untouched times the derivative of the exponent.

Example 4—
}.‘ = UH:.II %
y' = e % (sin x)" = e""* (cos X)

Law 19

y =a'. y' = a'Ina(du/dx). If y = a4, the derivativeis av (the original function untouched) times the log of the
base times the derivative of the exponent.

Example 5—



y=7"
¥ = (7)(In 7)(2x)

= [whole function) (In of base) (derivative of expo-
nent)

Let us, for completeness, recall the trig derivatives and do one longish chain rule.
Law 20

A.y=s8inx, y'=cosx

B.y=cosx,y' =-snx

C.y=tanx,y' =sec?Xx

D.y=cot X, y' =-csc? X

E. y=secx, y'=tan x sec X

F.y=cscx, y' =-cot X csC X

Example 6—

y = tan” (4x* + 3x + 7)

Since thisis afunction of afunction, we must use the extended chain rule.

Letu=tan (4x2+ 3x + 7).y = uS and dy/du = 6u>. Let v =4x2 + 3x + 7. u=tan v. du/dv = sec? v and dv/dx =
8x +3. S0

dy/dx  (dy/du) times (du/dv) times (dv/dx)

= 6u° times sec? v times (8x +3)

= [6tans(4x2+3x+ [sec? (4x2+3x+7)]  (8x+3)

Yl

Power rule—leave Derivative of trig Derivative of
trig function and function—leave crazy crazy angle
crazy angle angle untouched

untouched

Y ou should be able to do this without substituting for u and v. It really is not that difficult with alittle practice.

Law 21

1
y=sin"u y' = Ao dufdx  lul <1

A T-w)"



1
yv=lan™" u. vy = —— du/dx

B. 1+ u?
c v =sec ' u. }r’zmdufdx lal =1
Example 7—
y=tan" (e™)
u=e" u =e"5
s 1’ He™ e

R TR e P g
Example 8—

y = (tan™! x)/(1 + x7)

Use the quotient rule.

,_ [+ [1/(1 + x*)] = (tan™ x)(2x) _ 1-2xtan x
- (1 +x%) T 1+

| likethis one. | don't know why, but | do.
Example 9—
vy =sin" (cos® x)

u = cos® x. u = 2(cos x)(-sin x).

+#

y = u _ —2cos X 5in x
e e

(1—-u®)¥  [1-cosx)"
Example 10—

y=sec’' (x*+1)
u=x*+1.u =2x

y’:

u’ a 2x
ufw? = 1)"* 7 K+ 1)[xE+ 121"

If y = f(x)9), we take logs of both sides and differentiate implicitly (if you've forgotten implicit differentiation,
seemy Calcl).

Example 11—
y= xﬂ]‘i ®

In y=sinxInx



(1/v)(dy/dx) = (sin x)(1/x] + {ln x){cos x)
dy/dx = yl(sin x)/x + (In x)(cos x]]
= "= [[gin x)/% + [In x)(cos x]]
Example 11, Alter native M ethod—
y = xn® = giinxlnx
y = e *"*(sin x In x)’
=" x5 (gin x)/x + (ln x)(cos x)]

= x""* [[sin x)/%x + (In x){cos x)]

Example 12—

(3® + 1)7(sin® x)(x* + 4)°
G?IKE

To take derivatives without logs islong and leads to errors. However, taking logs first and differentiating
implicitly makes things much shorter and easier.

Inyv=7In(x"+1)+6Insinx+9In(x*+4)-7x-8lnx

7(3x%) N Blcos x) N 9(2x) 7 B

Jdx = =
(1/y) dy/dx x4+ 1 sin x %Xt + 4 X
dy 21x* 18x 8
E—F[m”“““‘* X+ 4 ‘7"‘;]

Thislooks neat. But remember what y really is!! This method is till pretty short!



Chapter 3—
Shorter Integrals

In most schooals, the largest part of the second semester of athree-term calc sequence involves integrals. It
usually covers more than 50 percent of this course. It is essentia to learn these shorter ones as perfectly as
possible so that Chap. 6 will not be overwhelming. Also, it isimpossible to put every pertinent example in
without making the book too long. The purpose of this book isto give you enough examples so that you can do
the rest by yourself. If you think an example should be added, write me.

Rulel

F(x) dx
j Wﬂn 1f(x)] +C

One of the first new things we look for is that the numerator is the derivative of the denominator. This gives us
alnfor an answer.

Example 1—
Let u=5x2- 7 and du = 10x dx.
J’ x dx
5y -7
10x d> " d
=(1/10) ( XX _ (1/10) | au
J 5x* -7 o

=({1/10)In lul +C={1/10)In 15x* =7 | + C

Example 2—
u=1+sin x and du = cos x dx
[ cosx dx
1+sin x
Exclude x = 3r/2 and so on. Then sin x > - 1, so the absolute value is not needed in the answer.
=Jﬂ=ln lul +C=In{1+sinx)+C

1

Example 3—

Thisonelookskind of weird. Sometimes we just have to try something. Let u = x¥2 + 3. (Note
that u = x¥2 will also work.) du = Y12 dx, so dx = 2x¥2 du.

[ 6 dx
J 2 (V2 4 3)

[ 6(2x'* du) [ 12 du
J M 1

=12lnu+C=121In (x"*+3)+C

Let'stry adefinite integral.



Example 4—

u =Inx; du = (1/x) dx

-

< d
J, ¥ms

o

= [ (MTfu)du=Inu=In(lnx) {

=ln{lne)-In(lnel=Inle)=In1=1-0=1

Example 5—

We need to divide the long way since the degree of thetop is greater than that of the bottom:

x —2+-1i(x-12)
x—12 0 —4x+3 '
x®— 2x
C 2x+3
_—__1x—4
I

=%—2x—ln lx-21+C

Example 6—

u =x2 + 3; du = 2x dx. But be careful! Thisisnot alogarithm!! The exponent on the bottom is
2011 It must bea 1tobealog!!!

J 2x dx

(%% + 3)°

=Jd—l}=juzdu=i+ﬂz 1_1‘ +C
u- u X+ 3

TrigIntegrals

Rule 2

A fsinxdx=-cosx+C

B. Jcosxdx=sinx+C



C.[sec’xdx=tanx+C

D Jtanxdx=-In lcosx| +C orln lsecx| +C
E Jesc? xdx=—cotx +C

F. lcotxdx=In Isinx| +C

G. Jtan x sec x dx =sec x + C

H [secxdx=In ltan x + sec x| +C

|. Jescxcot x dx = —csc x + C

J Jesexdx=-In leotx+escx!| +Cor
In lcscx —cot x| +C

You must know these integrals perfectly!!

Example 7—

u = 4x; dx =% du.

qul4xdx
=% _.[ cotudu=%In lsinul +C=%1n lsin (4x}! +C

Note

Whenever you have the integral of one of these trig functions and there is a constant multiplying the angle, you
must, by sight, integrate this without letting u equal the angle. Otherwise, the integralsin Chap. 6 will take
forever.

Example 8—

Thisisthe crazy angle substitution:

u = crazy angle=1- 3x3; du =-9x?2
dx.

( x* cos (1 - 3x%) dx

(1/9) [ (-9x%) cos (1 - 3x°) dx

(—1/9) [ cosudu=[-1/9]sinu+C

=[(-1/9)sin (1 - 37+ C



Example 9—

u =tan 2x; du = 2 sec? 2x dx.

{ tan 2x sec® 2x dx
=4 J i du="%u*2+C=4%tan® 2x + C

Example 10—

Thisonerequires splitting the integrand into two fractions and usesidentities

J' 1+ sin x dx
Cos’ X

{1 sin x )
= l — + = dx
Jlcos*x  cos'x

-

[sec® x +tan x sec x) dx=tan x +sec x + C

of

It'san easy oneif (abig if) you know your identities and trig integrals.

Exponential Integrals

Rule3
~ b ~ .E"!:{ .
J e dx= b " C. Know this perfectly by sight!
Example 11—
. g
|| e dx=—+C
o
Rule4
v ahx
J a™ dx = +C .
blna . Know thisone perfectly also!
Example 12—
..-.5‘ o 7N e
l' 7 El)\.——ﬁ 7 C
Example 13—

Crazy exponent substitutions: u = 7/x;
du = -7/x2 dx.




|- e?.‘\

| e dx

i

:J—%d1t=—%+[ﬁ=—e; +C
Example 14—
Crazy exponent: u - In x; du = (1/x)
dx.
- =lnx
(7" dx
Ix
N ?IJ ?IIJ'\(
J? dLl—m—.G—m+C
Example 15—

Crazy exponent (only real choice) plustrigidentity: u = sin x; du = cos x dx = dx/sec x.

[- |._!I::ir.'«: dx
seC X

_ {‘[:II dLl_Uu+C _E::cint_'_{j

Example 16—

One of my favorites. This onelooks exactly likethe onein Example 16A but isreally different:
u=e™+1; du=4e™ dx.

l" e* dx
(Hd:t_']-]l!

Slfgetde 1fdw gl g
45 [e™+1) 4 u*  4u 4(e™ + 1)

Inverse Trig Functions

This part isthe last of the basic integrals that you must know by sight. In some schools, all six inversetrig
functions must be known; in some, you learn three; and in some, like in my school, you learn two. We will do

three—arc sin, arc tan, arc sec.

Rule5



f 1 dx - r 1dx
(1

— _=sin'x+C J
— X @

J—J]'I.! = sin™ {x.-’:—l] FC
2

1 dx - . | dx _ f | 1 ‘ .
| T Tt x+C |z =Wa) tan™ (xfa) + G

1 {_'b( a 1 dx P }
J XE-1)" secx+ 0 J Xo — ) [1/a) sec™ [x/a) + C

Memorize these also!

Example 16a (The Next One 1 L eft Out)—

Thisisdifferent.

i F
[,
e

Hx dx
e+ 2™+ 1
=I[de=[e“"+2+e“dx
o a ;
o Ax —ix
= + 2x -
4

+C

These integrals are not long, but you must study them because there are alot of differences.

You will be able to identify these integrals by sight with practice. Asfor me, | know arc sin and arc tan very
well, because I've practiced them. However, in al the years I've taught, no one has ever required arc sec, so |
have to struggle, since | need practice also. Practice is what is needed!

Example 17—
You must seethisisan arc sin. u = €3%; u2 = (e¥)2 = e8X; du = 3e3* dx; du/3 = e3X dx.
J e** dx
[1 — BﬁxJ!-'z
(1/3)du . , s
= ( T (1/3) arc sin u + C=(1/3) arc sin (™) + C
4 -1
Example 18—
You must seethisisan arctan. u: X8 u?=(x8?2 = x12; du = 6x° dx; a= 7Y2 sincea?=7.
J’ x dx
-:,r + x:z
du 1 - 3
= [ll'rﬁ] Jr ?+ 1'12' = W tan™ [xf..‘,r?].,} +C



Example 19—

Thisisharder totell. It isan arc sec with u = x2, du = 2x dx. Multiply top and bottom by 2x. a =
11Y2,

( dx
Jox(xf - 1102

1 J 2x dx 1 J du
Tzl ExE-11)"2 T 2 ului-11)"

arc sec [x%/11Y%)
2.11'"

(1/11"%) arc sec (u/11"¥) + C= +C

B3| =

You can all do it if you concentrate and practice alittle.

Warning!! Beware! Danger! Now that you know these three, be careful of those that ook similar but are not
arcs.

Example 20—

Thislookslike an arc tan, but a u-substitution will giveusalog. u = x2 + 4; du = 2x dx; du/2 = x
dx.

dex
xE+ 4

—L&J duu=%Inu+C=%In(x*+4)+C

Example 21—
Thisisnot anarcsin. u=(1-x?);
du = -2x dx.
Fooxdx
_| [1 _ 32)1.-':.'

==l ( U du=-u"*+C==(1=x""+C



Chapter 4—
Exponential Growth and Decay

In every book on calculus, thereis alittle on differential equations, which are equations with derivatives.
Usually, one chapter is devoted to this topic, which is almost never used. Parts of one or two other chapters may
have differential equationsin them. Thistopic isamost universally covered by all courses.

Example 1—
The rate of change of marlenium is proportional to the amount.
Ten pounds of marlenium become 90 poundsin 4 hours.
A. Write the equation.
B. How many pounds of marlenium will there bein 10 hours?
C. When will there be 500 pounds of marlenium?

1A. The differentia equation to solveis dM/dt = kM where k is a konstant.

We solve this by separation of variables.

Integrate.

dM

v =k dt

InM=kt+C

We need atrick. Lete C=In M,

In M=kt +1n M,

where M, = the amount of marlenium at t = 0.

InM—-InM, =kt

By law 6 of logs,
M
In M, kt

By the definition of logs,
M

— =g or M =M, e¥

a

M,=10 M=90 t=4 M =M, &

Divide by 10

90 =10 e**

Takelns

g =g

Ing9=4klne or k=Ilng/4



But dn9=9

M=10 [E]n H-'-t]t]

Whew!!!!

5000 M =10 (9"4)
1B. t=10
M =10 (8'%) = 10 (97%) = 10 (3°) = 2430 pounds.
1C. M =500 pounds. Solve for t. 500 = 10 (9%%)
50 = 9"
IN50=(t/4) In9. Sot=41n50/In9 = 7.12 hours, by calculator.
The ssimpler way to get part 1A. If you notice the numbers, you will see that 9 comes from 90/10. Although the

time, 4 hours, originally isin the numerator, after the derivation, the 4 turns up in the bottom. Sooo, by
observation

M = Original times (Future amount/original)"™

M =10 (90/10)"%; M = 10 [9"%)

Let'stry another one. Suppose 76 exponentially decaysto 31 in 5 days.
The equationisN = 76 (31/76)15. Simple, isn't it?

Example 2—

Radioactive strontium 90 exponentially decays. Its half-life is 28 years. After an atomic attack, strontium 90
entersall higher life and is not safe until it decreases by afactor of 1000. How many years will it take strontium
90 to decay to safe levels after an atomic attack?

The equation, the short way, is S= So (Y2)V28, The Yzisfor the half-life, or half the amount of radioactivity.

We can let So = 1000 and S =1 for areduction factor of 1000.
1= 1000 Y ¥
001 = [.5)e

In (.001) = (¥/28) In (.5). t = 28 In (.001)/In (.5) = 279 yearsto be safe.
We must truly be careful not to unleash nuclear bombs!!

Interest is also an exponential function. Simple interest = principle times ratetimestime. If t = 1 yr, i = pr and
the total amount A =p + pr = p(1 + r). In other words, after 1 year, the principle is multiplied by 1 = pr. After 2
years?A =p (1 +r)2 Aftertyears?A=p (1 + 1)t

Suppose we have compounding interest twice ayear, or half the interest rate (r/2) but twice as many periods
(2t). A =p (1 + r/2)2. Compounded n times ayear, the formulais A =p (1 + r/n),

Finaly, if theinterest is compounded continuously, n — =, and A = p e'.

Note 1



If you use abank with simple interest, go to another bank.
Note 2
For al intents and purposes, daily compounding is continuous compounding unless you have 10 billion dollars.
Note 3
For continuous compounding formula verification, look at L'Hopital's rule.
Let'stry aproblem.
Example 3—
Suppose we have $100,000 invested at 10 percent.
A. How much would you have after 10 years, compounding yearly? continuously?

B. When would you double your money, compounded yearly? continuously?

3A. P= 100,000, r=.10,n=1.
A=p({l+r)"=100,000{1 +.1)" = 5259,374.25
A = pe" = (100,000} " = $271,828.18

That's a difference of $12,453.93. Now all we need is the $100,000.

3B. A =200,000; p=100,000; r=.10

A =pQ +71); 200,000 = 100,000(1.1)";
t=In2/In(1.1) = 7.27 years

A = pe™; 200,000 = 100,000 e*; t = In 2/.1 = 6,93
Vears

Continuous compounding does pay.



Chapter 5—
What You Should Know from Before To Do the Next

We have now come to the part of the book that requires you to work harder than perhaps at any time in the
entire calculus sequence. We are about to embark on learning new, long integration techniques. Since the

product and quotient rules do not hold for integrals, we are forced to learn many techniques, most of which are
long.

In order to make these integral s shorter, we are listing some crucial facts from previous chapters. If you have
properly learned them, this chapter will be much easier.

1. The definition of the six trig functions

2. The values of the six trig functions for multiples of 30, 45, 60, and 90 unless your instructor allows you to
cheat and use calculators

3. The derivatives of the six trig functions
4. For the last time, the following identities:
A. sinxcscx=1

B.cosxsecx=1

C.tanxcotx=1

D. tan x = sin x/cos x
E. cot x = cos x/sin x
F sin®*x+eosfx=1
G. 1+ tan® x =sec* x
H. 1+ cot’ x =csc® x

| 8in 2x =2 sin X €cos X
Note

It is of interest to note that you really don't need to know cos 2x, as we will see shortly.

. g 1 - cos 2x
sin* x = ————
2
2 1+ cos 2x
cos® X = ———

5. The beginning integrals
A. Integral of X" n# -1

B. Multiplying out

C. Dividing out



D. u-substitution in a parenthesis
E. u-substitution for a crazy angle
F. u-substitution for a crazy exponent

6. Trig integrals

A. j sin ax dx = (1/a)(—cos ax) + C

B. I cos ax dx = (1/a)(sin ax) + C

c. | sec? ax dx = (1/a)(tan ax) + C

D. j csc” ax dx = (1/a)(~cot ax) + C

E. [taﬂﬂx sec ax dx = (1/a) sec ax + C
F. J cot ax csc ax dx = —(1/a) csc ax + C

. Jta.naxdxzu[la"a] In lcos ax) +C

or (1/a) In |secax| +C

H JEDIEJEﬂJ{E[le] In Isinaxi +C
| Isecaxdx:{ﬂa] In Isecax +tanax! + C

J‘cscaxdxz—[i.l"a] In lcscax + cot ax| +C or
J.

=(1/a)In lcscax —cotax| +C

7. Definition: certain values involving multiples of 30, 45, 60, and 90°, and derivatives of arc sin, arc tan, and
arc sec

8. Inversetrig integrals

fl—;,]m = arc sin (x/a) + C

A. f (a®

B I azdjxg = (1/a) arc tan (x/a) + C

C fﬁ= (1/a) arc sec (x/a) + C



9. Other integrals you should know:

R Juxax:ln Ixl +C

B | FO/E) dx=1n 1)1 +C

c J-sinh ax dx =(1/a) cosh ax + C

D f cosh ax dx = (1/a) sinh ax + C

c f o™ dx = (1/a)e™ + C

bu:

F.Jh dx=—Tr+C

It isquite alist, but, as you will see, all are needed.



Chapter 6—
Integration By Parts

Asyou will see, thereisvery little theory in this chapter—only hard work.

Integration by parts comes from the product rule for differentials, which is the same as the product rule for
derivatives.

Let u and v be functions of x.

d{uv)=u dv + v du or u dv=dfuv) - vdu
Integrating, we get

J udv= J dluv] = J v du or

( udv=uv- J’ v du

What have we done? In the first integral, we have the function u and the differential of v. In the last integral, we
have the differential of u and the function v. By reversing the roles of u and v, we hope to either have avery
easy second integral or be allowed to proceed more easily to an answer.

Example 1—

[ xe™ dx

o

If apolynomia multiplies e, sin ax, and cos ax, we always let u = polynomial and dv = e dx, sin ax dx, or
cos ax dx. In thisexample,

u=x dv =™ dx 1»':—3—- du=1dx
u dv u v v du
A% ks
2] e
[xc“‘dx—x - | dx
3
KB:-::N: Gﬂ:ﬂ
3 9
Example 2—
J’ wie™ dx

We must let u be a polynomial and dv = e3x dx 4 times!! However, if you observe the pattern, in time you may
be able to do thisin your head. Yes, | mean you. Signs alternate, polynomials get the derivative taken, a3 is
multiplied on the bottom each time, and e3x multiplies each term.

The answer will be

xtoax? 12t 24x 24 %
+ —+ — 8
3 9 27 81 243

Note



If we have ! f(x) - g(x) dx and f(x) is a polynomial and g(x) is e, sin kx, or cos kx, we let u be a polynomial and
dv = g(x), and we integrate by parts, of course.

Next we will consider integrating the arc sin, arc tan, and in. If you had never seen them before, you probably
would never guess that all are done by integration by parts, since there appears to be only one function.

However, mathematicians, being clever little devils, invented a second function so that all three of these
integrals are rather easily done.

Example 3—
jﬁin Vdx
i
Letu=sin"x du = ﬁ
Let dv =1 dx!! V=X
u dv v u v du
. . 1dx
( sin 'xd:u::_" sin” x dx = x sin ‘x—[x (1 - =77
=x sin™" x + ( ~x dx
- L < J |:l - x'.!]'l."!
w=1-x%dw=-2%dx
=xsin! x + 1 J _Z2xdx
-_— A 2 [.1 }:H}'I.'H

, 1 y
=x 5in' X+ IQ-J’W Y5 dw

1 w''
=xsin' X+ +C
2 1/2

=xsin'x4+wZ+L(

=xsin'x+(1=x*)"+C

Note 1

If we have | f(x) - g0x) dx, f(x) =a polynomial or is not there (= 1), and g(x) = Inx or sin'1 x or tan1 x or sec1 x,
we let dv be apolynomia or i and u = g(x). Integrate by parts.

Note 2

Although Example 3 isrelatively short, some of these are verrrry long and use techniques we will learn later in
this chapter.

We will now do a more complicated problem, €5 cos 3x dx. Based on what we did before, we can take either
function as u and the rest as dv. It turns out both will work. However, the problem is not quite so easy, aswe
will see. Being a glutton for punishment, | will show that the problem can be done two ways.



Example 4—

J 8™ cos 3x dx; u =™ du = 5™ dx; dv = cos 3x;

v = [gin 3x)/3.

u dv u v v du
. e™ gin 3x gin 3x
J e cos Ixdx = - - [ : (5e™) dx
3 3
e™ sin 3x o
=—————(5/3) | &% sin 3x dx

At this point you might say, "This doesn't do anything for us." You'd beright. Let'sdo it again. We let U = &5
because, if we reversed, we would wind up with the original integral and would have accomplished nothing. dV
=gin 3x dx. V = (-cos 3x)/3. (Note that, in the third line, the product of three minus signsis aminus.)

U dv
" L 3 . - .
J e cos Ixdx = % - (5/3) J g™ sin 3x dx
u vV
_ e™ sin 3x (5/3) 6" {—c::;n’s 3x)
3 '-s
du Vv
5 5, CO8 3X
2 f 5e —g dx

. e™s5in 3x 5" cos 3x
e™cos dxdx == 3 + 5

- [25/9]) J e™ cos Ix dx

It looks like we will be going forever. However, notice that the original integral and the last integral are the
same except for a constant. Call the original integral | (for integral, of course). The last line becomes

™ gin 3x  5e™ cos 3x

I= 3 - 3 - [25/9]]
now | = (9/9)I

53 - [P ——
{344’9]1=E 51n3x+or, cos Ix

9

SO

i

S " gin 3 5e* cos 3x
1:[9"“ cos 3x dx=[£!.-’3=‘l]LE S 9% o0 ]+C

3 9

3™ gin 3x 5™ cos 3x
= + +
34 34

Note



Y ou do not have to multiply out the last step, but | wanted to show you that doing the problem two ways gives
the same answer. Also note that you do not have to do the problem two ways, and | am alittle crazy to try.

f e™ cos 3x dx; dv = ™; v = e™/5;

o

u=cos 3x; du=-=3 sin 3x dx

u dv u v v du
r . cos 3xe™ [ e™ ,
J cos 3x e™ dx = — (-3 sin 3x) dx
] o
dv u dv U
cos Ixe™

J'Em cos Ix dx = + (3/5) J' e™ sin 3x dx

dV =e™; V=e"/5; U=sin 3x; dU = 3 cos 3x dx

v U \Y dU
’-c““ cos 3x dx :9_5* c;s 3x [ﬂfﬁ]etsin 3x (3/5) J‘ e 3 c-::: 3x dx

e™ cos 3x  3e™sin 3x .
= —— + o5 -(9/25) J‘ e™ cos 3x dx
5 5

I5x.-.l .SKSI'I.H-
1= r‘;*’ x| 3e 2; * _(9/25)1  I=(25/25]1

(3a/25)1 = £ 005 3X _ 3e% sin 3x
2 25

[ e™ cps 3 3™ gin Ixy
I=Je“cusﬂx dx:[25.f34](9—1-"?q X e s xJ+L’.

+
o 25

5™ cos 3x . 3e®™ sin 3x
= 4

C
34 34

Our two answers check. Now that I've done it two ways to show you that both ways give the same answer, |

Thelast integration by parts, unless | think of another, isthe integral of sec3 x. | think it more properly belongs
later (Example 10).

The next section involves integrals of trig functions. It is absolutely essential that you know the trig identities
and integrals we listed before.

Let's consider integrals of the form sin™ x cos" x.

Example 5—



[ sin® x cos® x dx .
J| when mor nis odd.

The technique isto break off the trig function that isto an odd power (if both are, break off the one that isto the
lower degree), and write al the others using the identity sin2 x + cos? x = 1.

f sin® x cos® x dx = | (sin® x)(1 - sin® x)(cos x) dx
o
u =sin x; du = cos x dx
= f (1 —u? du= [ (u® — u?) du
7 q
uwoou
v N Le
7 g
i x  sin'x

;
2 i a -
80 sin® x cos® x dx = - +C
J 7 9

Pretty ssimple, eh? However, when m and n are to an even power, the integrals are usually much longer.

Example 6—

o
’ sin®x dx;im =6 o4 1y = o with both exponents even.

In doing these problems, we will use the half-angle formulas:
sin®x = (1 - cos 2x)/2 and cos® x = (1 + cos 2x)/2

JI sin® x dx = J [sin* x){sin® x)(sin® x) dx

__J’l—cusz‘.x 1-rcos 2x (l—cus}lx')dx
L 2 2 2

Y

:%jdx—%jcns 2xdx+%fms“ 2w dx

—1 |I cos® 2x dx

a.-
1 3 s5in 2x

= x-22" 2T LA +B
a8 16



dx

3 )
ﬁ:-é_fcus‘ Zxdngjw

Integral
=-E-I1-dx+ijcus4xdx
16 16
ix+ 3 sin 4x%
16 64

Integral
1
B='-"I-3-J.EUSH 2x dx

1 .
=3 j (1 = sin® 2x)(cos 2x) dx

u=sin 2x; du = 2 cos 2x dx

1 .
== | (1 —sin’ 2x)(2 cos 2x) dx

1 1 u?
- — 1-uf)dy=- " —
‘lﬁj[ u) du 15( 3)

sin? Ex)

1 .
=——(Slﬂ 2x -

 sin 2x N sin® 2x
16 48

Combining all parts of the integral, we get

J'Sinsxdx—x 3 5in 2x+ Ix . 3 sin 4x
8 16 16 64
_ sin 2x . sin® 2% +C
16 48

_ 5% gin 2x  sin® Zx . 3 gin 4x

“16 2 " Tas g2 'C

Quite aproblem. It certainly is much nicer if the sin or cos has an odd exponent.

We now examine the integrals involving tan™ x sec" X. Before we start, we will make two notes: (1) whatever
we say for tan-sec goes for cot-csc, and (2) tan-sec and cot-csc are grouped together whether for trig identities
or trig integrals.

Example 7—

f tan® x sec® x dx



m and n are odd; u = sec x; du = tan x sec x dx. Break off one tan and one sec. Write each remaining tan? x as
sec? x - 1.

~ -

tan® x sec’ x dx :J (sec? x — 1)(sec? x — 1)(sec® x)(tan x sec x) dx

- f (u® - 1){u* - 1)(u') du

o

r n? I’ uf

] ] 4 "
= | u"=2u"+u')du= — 4 +
J ( ) 9 7 5
sec’x 2sec’x  secx
- + +C
9 7 o
Example 8—
J' sect x dx

where m and n are even. Thisisone of my favorites. If m and n are even, and, in this problem, even though
there is no tangent, we let u = tan x, du = sec2 x dx, break off two of the secants, and write the remaining sec? x

astan?x + 1.

J- sec’ x dx = j (1 + tan® x)(sec® x) dx

u=tan x; du = sec® x dx

=J[1—-u”}du=u+u’*.f3+f!

=tan x + (tan® %)/3 + C

Example 9—

[ tan® x sec’ x dx

o+

where m (power of tan) is odd and n (power of sec) is even. We can let u = tan x or v = sec x. We will do it both
ways. Neither istoo bad.

Example 9A—

[ tan” x sac x dx u = tan x, du = sec® x dx

=J (tan® x)(tan® x + 1) sec® x dx

a u'!

=J wuf+1)du= “u“:vu"} d11=%+T+C

tan® x . tan® x

6 4

Example 9B—



j tan® % sec? x dx v =sec x; dv=tan x sec x dx

= j [sec® x — 1)[sec® x](tan x sec x) dx

B

= J’ h..:*. — 'l]["r'-]} dv = J [V'-' _ V.-:] dv = E . T +C

sec®x  sectx +C
6 4

Y ou might try to show that the answersto 9A and 9B are the same using the identity sec? x = tan2x + 1.

Example 10—
j sec’ x dx

Thisisthe worst case: m, the power of tan x, is even— m = 0—and n, the power of the sec x, isodd—n = 3. All
cases where mis even and n is odd are done by integrating by parts. They get long fast as the powers of mand n
increase, and all involve the same tricks.

u dv u v

[serf*'xdx: (secxseazxdx:ﬁenxtanx

v du

= [[tan x) tan x sec x dx

o

=sec x tan x — J [[sec® x — 1) sec x] dx

:senxtanx—Jﬁec"xdx+J sec ¥ dx

= sec ¥ fan % — [se-:“."’ x dx+In Isecx + tan x|

4

Solving for the unknown integral, we get

sec ¥ tan x + In | sec x + tan x|
2

+ O

J’ sec x dx =
Example 11—

J tan® x csc x dx

Anytime you have amixed integral, that is, where the tan is not with the sec, you will have to use trig identities
and usually tricks and sometimes long problems involving techniques that may not have been done here yet.
Theone I've given isarather mild one.
- 4 iy 1
J tan® x csc x dx = ( -?-I-%i Do
< COs™ X 81N X
1 = C0E X {hl'. = —-5in x dx
—du

= (— = || -1 du
o 11- 4

=1lfu=1/cosx+C=secx+C



We now have integrals involving square roots. Our goal isto get rid of theradicals. Thefirst area hereistrig
substitutions.

Typel
(22 - x¥9V2, Weuse x = asin u (dx = acos u du).

(a® — ¥®)¥* = [a® — a® gin® u)"* = [a%1 - sin* u}]"**=a cos u
and the square root is gone. Here are the other two cases.
Type?2
(22 + x?9)V2; we use x = atan u (dx = asec? u du)

(a® + x%)V* = [a* + a* tan® u)"* = [a*(1 + tan® a)]"* = a secu
Type3

(x2- @)V2; weuse x = asec u (dx = atan u sec u du)

(%2 —a?)?=(a’sectu-a?) " =[a%secfu-1)]"*=atanu

| have demonstrated each of the three types. However, it is essential that you know by sight what the answer is
without substituting. Otherwise, the problems will take forever. If | wake you up in the middle of the night and
ask you, "What do you get if you have (7 - x2)¥2?" Y ou should instantly say, "Square root of 7 cosine u—now
let me go back to sleep!!!!”

Example 12—
4 ,f’*'f
-
X
/Iﬁ
' fe—¢
J F@_d_x_gi]m x=4sin u; dx=4 cos udu

4 cos u du

/ 116 sin® u)(4 cos u)

+C

J du 3 ! cec® u du _ —cotu
16 sin*u 16 16

We didn't start with u; we started with x. We must draw atriangle with x = 4 sin u. sin u = x/4. Note the missing
side will be what the square root is.

—cntu_'_c___i(l-lﬁ—x") c
16 T X

(1

Example 13—



{' x” dx
| [1 B — x?]l"z

This problem appears to be exactly the same as the last except the x2 is on top instead of the bottom. This
problem is given to show that the techniques are different, even in problems that ook the sasme—some longer,
some shorter, some easier, some harder. The kind of problem is known only after lots of study. Do them and
hope they are short and easy.

Againlet x=4sinu.dx=4cosu
du.

f x* dx
(16 — x*)¥2
B [ (16 sin® u)(4 cos u)

d ' .
2. ’ 16 sin® u du
4 cosu 4

2

_ [ 1601~ cos 2u) du

;_-J 8 du —fﬁms 2u du
=8u=-4sin 2u
=fu—-8sinucosu

. ¢ (16 - x*)"*
= 8 arc sin (x/4) - B[g (6 -x) }F C

4
Notes
\
¥ M“‘LR
HH‘“,\\_\.
e —
¥ =4 sin u, */4 = gin u, sinYx/4) = u

—4 s5in 2u=-4(2 sin u cos u) = -8 sin u cos u

V16 - x*
4

x .
I =s5lnu 50 = 005 U

Asyou can see, these two problems are quite different, although they look basically the same.

We will finish by showing that the area of acirclerealy is nr2. We will find one-quarter the area of the circle x2
+y2 =2 and then multiply it by 4.

Example 14—

X=r sinu; dx=r cosu du.

4 r (r* = x1)"% dx

X=r,r=rsnu,l=sinu,u=n/2; Xx=0,0=r snhu,0=sinu,u=0.




ral2
=4 J (r cos ul(r cos u) du
[+]

(0.0

e 00

w2
= 4r* J cos” u du
(1]

L (™2 {1+ cos 2u) du
= 4
' L P

nia
= 2r¢ j (1 + cos 2u) du
1]

n'2

= zr“’[(% 4 gin :r:) — (0 -sin D]]

= 2r*(u + sin 2u) {
i

= 2r¥(n/2) = ar?
The areaof acircleredly isnr?, and you haven't been lied to all these years. It's nice to know.

Example 15—

x =5tan u; dx = 5 sec?u du.

J’ dx

(25 + x¥)1*

a J 5 sec? u du
- dsecu

=jsec u du

=ln lsecu+tanul +C

—|+C

"".,f‘25+znc1 X
=1ﬂ —_—
]

Example 16—

x=7Y2secu; dx = 7Y2tan u secu
du.




S

(___dx
J KI[J{E—?]TE

_ 7"*tanusecu du
(7 sec? u)(7V* tan u)

du f cosudun

7secu 7
1 . [xl _ ?]1-'2
=—ginu=———+0C
7 7X
Example 17—
Sometimes you use a trig substitution even though thereisno squareroot; x =3tan u. dx =3
sec2u du.
N .-"'--'f..
St § 7
,.a-'"'f H
____.-"'
i
3

d
J' (x* +MEI}2

_ [ 3sec’ udu _,( cos” u du _J’ (1+ cos 2u) du
81secu 27 54

= (1/54)u + (sin 2u)/108
=(1/54)u + (sin u cos u)/54 + C

—L‘tan“i+i( X _. 3 )+C
54 3 54\Vr+9 VP49

1 X X
=—tan"' = —— 4+ C

52 0 37 18(x*+9)

One last example, but be warned! A trig substitution may work, but another method may be alot easier.

Example 18—

x = 3tan u will work. But you may not finish for two years. Thebest? u = x2 + 9; du = 2x dx.

xZ + g}lﬂﬂ

J 2x dx
(



:J‘u'"'”duzl—l-ﬁﬂlz 1 __.c
_gg gg{x2 + g]‘.l?l

Another group of integrals are related to the last group. They can be very involved, but we will do two

moderate ones.

Example 19—

We do thisby completing the square: 3x? - 18x + 75 = 3(x2- 6x + 25) = 3(x2 - 6x + 9 + 16)= 3[(x
- 3)2 + 16].

[‘ (2x - 3) dx
J 3% —18x+75

U=X-3X=Uu+3;2x-3=2(u+3)-3=2u+ 3; du=dx.

J {zx - 3)dx
3[(x — 3% + 16]

Now split theintegral.

l({£u+$]du
"3 u+ 16

Both of these integrals should be
known by sight!

jEudu Jldu
T3Jut+16 ut + 16

1 1
—?ln [u2+1E]+Etan '[ufa)+C
1 . I | -
=3 In [x-—ﬁx+23]+ztan ix-3)/4]+C

snceu=x-3andw +16=(x-3)2+16=x2-6x +9+ 16 =x2 - 6x + 25.

Example 20—

Again we completethe square: 15+ 2x - x2= - 1(x2- 2x) + 15=-1(x2- 2x + 1) + 16 = 16 - (X -
1)2,

[ dx
J {15 + 2x — x3)"

Again you should be ableto tell thisisan arc sin; that is, [ dxi(a® = u’)'"™ wherea=4and u = x
- 1.

_J' X
416 - (x - 1)4

= arc sin [[x - 1)/4] + C



We now do the section | like the least. It is uninteresting, unimaginative, frequently overly long, and ...
necessary. Unless we have only linear factors, it is best to avoid this technique if possible.

We wish to do the integrals by partial fractions. Suppose we have R(x) = P(x)/Q(x), where the degree of P(x) is
less than the degree of Q(x). We wish to break up R(x) into simpler rational fractions; each pieceis called a
partial fraction. There will be one or more pieces for each linear factor x + a or quadratic factor x2 + b2 of Q(x).
Here's how it looks in a particular case:

P(x) A B N C N D N E
————————————————————— S — R S
-3 +4)P x % x-3 [x-3F (x-3)

2 from x 3 from (x - 3)

Fx + (2 Hx+1

+—
x+4 (¥ +4)F

2 from (x* + 4)

Notice that each linear factor gives pieces with constants on top, and each quadratic factor gives pieces with
first-degree polynomials on top. The bottoms of the partial fractions are powers of the factors running from 1 to
the power that occursin Q(x). The constants A, B, C, D, E, F, G, H, and | have to be solved for, which | hope
you never haveto do. If you added all the fractions on the right, you would get the left fraction.

One more thing. Suppose Ax3 + Bx2 + Cx + D = 4x3- 7x - 1. Two polynomials are equal if their coefficients
match. So,A=4,B=0,C=-7,D=-1

There are anumber of techniques that will allow you to solvefor A, B, C, and so on. Two of them
(combinations of) will serve us best.

Example 21—
Sincethe degree of thetop isgreater than or equal to the degree of the bottom, long-divide the
bottom into the top until the degree of thetop islessthan the degree of the bottom.
( X' —7Fx+18
- dx
X =9
L ook at the fractional part only.
rf 0 2x+18)
=[x+ 252 dx
o '-‘_ W — q JII
Wewill solvefor A and B in two different ways. We now add the fractions and equate the tops
sincethe bottoms ar e the same.
B

2%+ 18 _

ﬂ L
-9 x-3 x+3

2x+ 18 =Alx+3)+B[x-3)

Method 1

Multiply out left side and group
terms.




Alx+3)+Blx-3)=2x+18

Now match coefficients.

(A+Blx+(3A-3B)=2x+18

Solve two equationsin two unknowns. It isreally important for your algebra to be good.

A+B=2

iA-3B=148

IA+3B=6

Substitutein either equation.

3A-3B=18
BA =24
A=4

B=-

Method 2

Thisistruefor all valuesof x. If we substitutex = 3in both sidesand then x = -3 in both sides,
wewill get both A and B with no work.

Alx+3)+B(x-3)=2x+ 18

If x =3, A(3+3) +B(3-3)=2(3) +18; 6A = 24; A = 4. If x = -3, A(-3 + 3) + B(-3 - 3)= 2(-3) + 18; -6B = 12;
B=-2

Thisway is so much easier—why don't we always use it? It is only perfect if we have al linear factorsto the
first power. Otherwise, it will not totally work. If there are no linear factors, you can't use this method. That is
why both methods are needed. Let us finally finish the problem!

[’x—?x+lﬂdx J’ dx |4dx (—de

k=3 J x+3

2

="2 +4lnix-31-2Inlx+31+C

Note how easy the calculus part is. The algebra can be overwhelming.

Example 22—

J‘ Ox® = 5%+ 19 dx
(x* + 5)[x - 2]

Notice the degree of the top (2) is less than the degree of the bottom (3), so long division is not necessary. The
bottom is already factored. Thereis one quadratic factor and one linear factor. The formis



Ax+B C
. +
x4+ 5 x-2

9% -5x+19 Ax+B [

C+5)x-2] x+5 x-2

_ [Ax+ B)(x - 2) + Clx* + 5)
T ®+eilx-2)

We now multiply out the top on the right and set the left numerator equal to the right numerator.

O3 = 5x+ 19 =[A + Clx* + (-2A + Blx + (-2B + 5C)

A+C=9 (1)
-2A+B=-5 (2)
-2B+5C=19 (3]

These three equations in three unknowns are not bad but not particularly nice to solve. So we can use the other
technique. Going back to the original top on the right, we have (Ax + B)(x- 2) + C(x2 + 5) = 9x2-5x + 19. There
isonly one linear factor, x - 2, but it is enough. Substituting x = 2 in this equation, we get [A(2) + B](2- 2) +
C(22 +5) =9(2)2 - 5(2) + 19. From thiswe get 9C = 45 or C = 5. Substituting C = 5into Eq. (1), weget A = 4.
Substituting A = 4 into Eq. (2), weget B = 3.

[ Ox* - 5x+ 19 | _{_,'rqr}:lil_'_ 5 .‘][_]_
D E+5)x-2) x--11x9+5 Xx-2) "
Splitting the first fraction on the right,

COOx = 5x+ 19 2xdx [ 3Fdx 5 dx
[ox-ox+19 y ,[oxdx [ 3dx

(%% 4 5])(x-2) x*+5 Jxf+s 1 x-2

=2 In (x* +5) + (3/5"%) arc tan (x/5"%)

+5In Ix-21+0C

Example 23—

|“ (Bx*+17x—5) dx
(x - 3)[x+2)p

We have two linear factors, and 1 is to the second power—so000 .....

6x*+17x-5 A B C

x-3)x+2F x-3 x+2 (x+2P

Al +2) +Blx+ 2)(x - 3) + Clx - 3)
h [x - 3)(x+ 2)

B +17x—-5=A(x+ 2 +Bx+2)(x-3)+C[x-3) (1)

Multiply and group; we get:




=AX*+4x+4)+B(x*-x-6)+C(x-3) (2)

A+B=8 (3)
4A-B+C=17 (4]
4A -6B-3C=-5 (5)

Now there are two good numbers, -2 and 3, but, as we will see, 3 is enough. Putting x = 3 into both sides of Eq.
(1), we get A = 4. Putting A = 4into Eq. (3), we get B = 2. Putting B =2 and A = 4 into Egs. (4) or (5), we get
C=3.

fBx"+ 17x— 5 dx 4 dx jzdx J‘ 3 dx
J (x +2)°

= + —
(x+2)4x-3) x—3 Xx+2

=4ln lx-31+2ln lx+2] -3f[x+2]+0C

Thelast part of thislong integral chapter is called—

Miscellaneous

Miscellaneous means anything that doesn't fit into any other part. So al the extra goesinto this part, which
makes it more miserable for you.

Example 24—

|I- x(x+ 1) dx

Sometimes the simplest substitutions work. Welet u = x + 1. du = dx. Thistransfers the power to the monomial
and allows us to multiply out the expression (x = u - 1).

Jlﬁx[x +1)"dx = “ (u=1ju* du= f (u™ = u™) du

= (u*)/82 - (u*)/81 +C

_ {?{+ 1]|11 _ [}i+ 1}3:

+
82 81 ¢

Y ou sharp-eyed readers will note that there are at least two other ways to do this problem. Thefirst isto
multiply out the original. Thisis dismissed on grounds of sanity. The second is by parts.

Example 25—

' dx
J X172 _ X173

This oneis perhaps the easiest to identify. LCD for 1/2, 1/3is 6. So, we let u = x!/6; u2 = (x1/6)2 = x1/3; us = (x//6)3
= x!2; and u® = x. So 6u® du = dx. Substituting, we get ...

[ dx  r6u'du _ " u® du
1

11 = -

u? - u? 'uifu=-1)

JoxlE_y



wru+ 1+ Hu-1)
u-1Ju

=EJ [W*+u+1+1/{u-1)] du

=Buy/3I+uy2+u+Inlu-101+C
= 2(x¥) + 3P + 6xV +1n 1%V —11 +C

=2x" 4+ ax" + 6x" +1n X" =-1] +C
Note the nice pattern of the coefficients and the exponents of this answer. Well, | likeit!

Example 26—
j x dx
(

Thisintegral can be done in two new ways, both of which are useful.
Method A
Let u = thewholeradical.

u=(x2+4)V2, 2 =u2+4; x2 = u2- 4; 2x dx = 2u du; or x dx = u du. Substituting,

( wWdx 7 xfxdx [ (u? - 4)u du
[}{2 + 4]1!1 - {xl + 4]1.'2 - u
= J’ wWr-4)du=uv¥3-4u+C
2 e
_ *‘;] ~ 4(x? + 4)2 4+ C

Method B

Let v = what's under the radical sign.

V=X2+4; x2=v - 4; and 2x dx = dv. Substituting,



x* dx _lfoxdx IJ V- 4}d1.r
(t+ 4]V 2] (F+a)

=l J (w12 — gv 1) dv = 1 [[2/3)v*% — 8w + C

2 2 )

=(1/3) [ + 42 — 42+ 42 4 C

The sharp-eyed reader will discover there are many, many other ways to do this problem. When a publisher
becomes smart enough to publish this book, this problem will become a contest.

Hereis the weirdest miscellaneous item of al! If we have sin x or cos x in the denominator, and if they are
added or subtracted to each other (with one being multiplied by a number or bei ing added or subtracted by itself

Let us derive al the parts. Otherwise you would never believeit. Let tan (x/2) = u = u/1. Draw thetriangle for
x/2. We get sin (x/2) = u/(1 + u?)V2 and cos (x/2)= /(1 + u?)¥2,

sin x = 2 sin (x/2) cos (x/2)
u 1 _ 2u
(140" (1+u)"?  1+ud

Draw triangle for angle x.

1-=1u?
COS X = —
1+ u?

Finally if u=tan (x/2), then tan-l u = x/2. Taking differentials, we get

2du
1+uw
In summary,
2 du . 2u
u=tan (x/2) ——=dx gin x = :
(1+u 1+ u?
1-u?
008 X =

1+t



Example 27—

Trick—split theintegral instead of doing long division.

1+ sin x
1+cosx

|

21
1+u® 2du

Fl

1-u? 1+u?

1+u?
w+2u+1

L[aswzd

A wir1iow 1+

1 +u?
_J"uz+2u+1 2 du
B 2 1+ u*

1+

1+

w4+ 2u+1
=| —= du
u-+1

[ (W*+1)du 2udu T 2u du
_j u®+ 1 +[ 1+ u? _J 1 du+f 1+u?
=u+ln(uf+1)+C=tan (x/2)+In [tan?® (x/2) + 1]+ C

or, if you want to be fancy,
=tan (x/2] + In [sec® (x/2)] + C

| recently found a new miscellaneous example. It's not too bad if you know your trig.

Example 28—

Letu=tanlx; tanu=x=x/1

[sin (2 tan™ x) dx

Draw thetriangle

5 ( 2x
R T
sin 2u = 2 sin U cos U =
2 X I _
(I _._xl}hi [I _'_I:'}I'! -
x
| +x?

=ln(x*+1)+C

Pretty cute, eh??!!



Chapter 7—
L "hopital's Rule

There was alittle on L'Hopital's rule in the volume before. Let us give a complete discussion since we now
know logs.

L "hopital'sRule
flx)

lim ——= = 0/0 o eo/ea
1. == glx)

lim ﬁ =1
9 i g [x)

then

The value ais any number or plus or minus infinity, and L could be any number or infinity.

Thisrule statesthat, if the original limit is zero over zero or infinity over infinity or can be made into that form,
then by taking the derivative of the top and the derivative of the bottom instead of the quotient rule, we can find
the limit of the original.

Example 1—
0

1 -
w0+l 1

No L'Hopita'srule.

Example 2—

which means the limit does not exist. Also no L'Hopital's rule.

Example 3—
li sinx 0
11—1.1;:11 x - 0

Yay! L'Hopital's rule can be used.

[sin x) COs X

lim =lim =1/1=1
==l [x}; =3l '1
SO
. ginx
lim =1
a0 X
Example 4—

Also 0/0.



T lnx_l, (Inx)” .. [L"J-c]_1
ol X—1 e (X—1) =1

0

.1

lim —2% =1
X211 K —
Example 5—
m.."ca

Here we need to use L'Hopital's rule twice.

lim 2 = 3x+1 =lim dx-3_ 4 2/7
x5 —7X%  soe —14X —14
SO
.o 2x'-3x+1
lim —— =2/7
b b -7x
Example 6—
Thisturnsout to be zero timesinfinity (minusinfinity). Wemust rearrangeit so it iseither 0/0
or =l== Weusealittletrick to get it =af=,
lim (% In x)
w=kl]
, Imx ., (Imx) . 1/x .
limn = lim (In xJ =lim——=lim(—x)=0

=0 1/ % x—l [j.-"x}’ s —1 /%2 x—

]it‘ﬂ (x Inx)l=0

Example 7—

Trigidentity. Now it's 0/0.

{0 % oo 111':;1 (x cot x) = 1111;1 (x/tan x)

1i_n|;1 [x)/tan x) = 1/sect x=1/1=1 ]irﬂ (xcotx)=1
Example 8—

Trick—add the fractions, get 0/0.




lim (1/sin x = 1/x)

x—s0rt

. x—-sinx (1 -cos x)
lim —— =1lim -
a0t X BIN X ot X COSX+8in X

= lim anE =0/2=0
wt 2 cos X — (sin x)x

Using L'Hopital's rule twice, we find the original limit to be 0.

If you exclude the log examples, all of the preceding could have been done in the first semester. However, the
following examples require logs. Those requiring logs are of the form 00, =*, and 1".

Example 9—

lim x*; y=x".Iny=4xlnx—=0

Q0; x=0” by Exmaple 6. So,
y—e'=1
Example 10—

ea® lim x'™; y = x'; In y = (1/%) In x; 20/=e

W i

(ln x)’

lim — =lim =0/1=0
X b K—pre 1
Sinceln y—=0,vy—=e'= _
Example 11—

17 lim [1 4 (1/%)]*

N it

! X
y—(x+%) Iny=xIn[1+(1/x)] =

In [1.+ [1/%]] — 0/0
/%

Taking derivatives top and bottom, we get

—1/x%*

1+(1x) 1 1
—1/xt T 1+ (/%)

Thus, Iny— 1 soy—= el=g
Note

lim (1 + [(a/bx]]™ = e*'®

Example 12—
0~. No L'Hopital's rule, because Ok = O for al positive k.

Note

We use L'Hopital's rule if we have 0/0, ==/, 0 - = = ===, 0%, =", 1° |¢gano-no for 0/> /0, e - e, 07, =™



Chapter 8—
Improper Integrals

In discussing an improper integral, it would seem to be a good ideato recall what a proper integral is. In Calc,
we defined the integral of f(x) from ato b thisway: break up the interval (a,b) into n parts. Let w; be any point
in theinterval Ax,. Form the sum f(W.)Ax, + f(W,)AX, + f(W;)AX; + ... + f(W,).AX,. Form the sum Zi-1 flwi)Ax; |f
the limit exists as n goesto infinity and all the deltas go to zero, we have

(1]

]
lim > flw)Ax = [ fix)dx
all axs—n’ -

At the start, we usually take f(x) to be continuous, although that can be weakened. However, implied in the
definition isthat everything isfinite; that is, both aand b are finite and f(x) is aways finite. What happens if we
have an infinity? In effect we close our eyes and pretend the infinity is not there. We then take the limit aswe
go to that infinity. If the limit gives us a single finite number, we will say the integral converges to that number.
Otherwise, the integral diverges. Let us be more formal.

Example 1—

J‘“ 1 dx
.1+ %
We rewritethis as

. 1dx , . )
lllllj ——=limtan™" x [ =lim [tan™" a — tan™ (-1)]
g b_q 1 4 X" Ay -1 a—ta

an
=n/2 - (-n/4) = Y

You might ask, "Are they al this easy?' In most books, the vast majority of the improper integrals are relatively
easy in order to make sure that you understand what an improper integral is without worrying about a
complicated integral.

In summary, thisintegral converges to the value 3n/4.

Example 2—
rﬂ 1/xY* dx
g

We write

" .
lim | 1/x" dx=1lim | x "% dx

e A= g

a

= lim 2xM [ =lim 2a'* - 2(4)'"*

a q—t+=

But a2 goesto infinity as a—==, Therefore, thisintegral diverges.
Note

In the kind of integral of Example 2, if the exponent in the denominator is less than or equal to 1, the integral
diverges. If the exponent is greater than 1, the integral converges.



Example 3—

r cos X dx = lim J cos x dx = lim sin x [
I A= 1] = a
=L]._13 sina—sin 0
Thisintegral does not go to infinity. Yet it still diverges since, asa goesto infinity, sin (a) takes on every value
between -1 and 1. The integral diverges because it doesn't go to one finite value.

If we have . f(x) dx we break it up into two pieces, 1= fx) dx + [Z f(x) dx \yhere, for convenience, ¢ is often
0 but certainly does not have to be.

Example 4—

J— e dx

Whenever you have infinity at both ends, you should try to do the piece that diverges first. If you choose the
piece that diverges, you do not have to do the other piece, since the integral diverges (the whole integral
diverges). If thefirst piece converges, then you still must do the other piece. Y ou sharp-eyed readers have
probably spotted the fact that the negative infinity piece diverges since, roughly speaking, €' goesto infinity.
Notee ™ isO.

Let ustake alook at the other infinity kind of improper integral.

Example 5—

Theimproper part, f(x) = (x - 1)"Y2 isinfiniteat x= 1.

5 1dx
1 (x=1)4ve

.5 5
=lim | (x—1)" dx=lim ztx—nm[

a—+1 A A

= lﬂ‘{] 2(5 — 1)¥2 — 2(a — 1)*2
=4-0=4

Thisintegral convergesto 4.
Note

For thiskind of improper integral, if the exponent in the denominator islessthan 1, the integral converges; if
the exponent is greater than or equal to 1, it diverges.

Example 6—

First, notethat thisisan improper integral since f(3) isundefined. Second, most of the time, if
one piece diverges, both diverge, so that it is not important which piece to choosefirst.

J'E’ 1 dx
1, {X _ :j]-:"



{+

1]
—tim [ (x-3)dx+lim + | (x-3)7 dx
d—aT d

c—ET Jg
= lim —;F—]im —F
et Z(x =3P |, dast Z2(x-3)° |,
=lim l ! et —T—J
c—43 2(c -3¢  2(2-3)

+ lim |- ! + 1
d-sat 2(5-3)*  2[d-3F

Each bracketed piece goesto infinity. The integral diverges. However, if you did the problem, you should
calculate only one piece. Once it diverges, you need not do the other piece.

The next two are a couple of my most favorite examples. It makes you believe that mathematicians can do
anything. Thisis not true, of course, but the examples are extraordinary.

Example 7—

f 1 dx = lirjn (a 1 dx

X aewe dy X
= lim lnx[ :1-}1'1'11]'1&—11'1]—)5-&
Volumes are determined by sections. Much more on thisisin Chap. 11 in this book.

"

m Jl” (i:IJ dx=limn r X dx= l&i_.ri'l H[

o=
| I |
=k =

a=ea 1
. [ 1 1 ]
=lim= t—|=%
s | a1
Amazing!!'!!!l Infinite area rotated gives finite volume.

This one will totally blow your mind. We will now take afinite region, rotate it, and get an infinite volume,
which would seem impossible after the last example. It is not!!!!

Example 8—



19 ) 1 y B 1
f —= dx =lim i 2 dx = lim 3x*°
o M w—sll® oy a=ll*

hl

=lim (3-3a'") =3
a—0"

Integral converges. Areais 3.

Vil

|

1 1 2 1 3 1
:'rj ( 2..1) dx =lim E_L x ¥ dx = lim x(— T) [
0 HE f b—a* y bt x

]

=lim n(—3+%)=m

b—si*

Hereis one more example | like alot because it is slightly nasty, slightly tricky, and verrry instructive.

Example 9—

Factor—improper partisat "infinity."

- 1
L X+ 3x+2

Break up using partial fractions!

im | — 1 4
= L x+Ux+2)
a 1 1

= lim J[ - dx
L . = X+ 2

A—da

= lim 1n[x+‘l]—1n[x+2}[

Law 6 of logs!!!

=lim Infa+1)-In(a+2)-(In1-1n2)

e

a+l
im = |
Now &= a+2




a+1l

=lim In +In2
= a+?2

=In1+In2=1n 2.

Nice example!!!



Chapter 9—
Parameters, Polar Coordinates Arc Length, Surface of Revolution

If the cartesian coordinate system were superior to all others, this chapter would not be necessary. However, it
isnot. Parameters are variables that are introduced to make life easier.

Example 1—

}{'—ZT;}‘:IZH—'I;—EE’Lili

We need to make a table with three columns' t, x, and y. We will use only the x and y on the graph.

t X y

-2 -4 0

-1 -2 -3/4
0 0 1

1 2 -3/4
2 4 0

3 6 5/4
4 8 3

We can eliminatet: x = 2t; t = x/2; y = (X/2)2/4 - 1 = x2/16 - 1. It isclear we did not really need the parame ter t
in this case. However, we did not want to take an example that was too difficult in order to show the use of a
parameter.

Example 2—
Another common exampleis x = cost, y = sint. Again, we don't need a parameter, since x2 + y2=1,
Example 3—

Take acircle tangent to the x-axis at the origin. Put adot on that point. Roll the circle on the x-axis. If we trace
out the path of that dot, we will get a curve called a cycloid. Since this curveis derived in most books, we will
put the equations down and then draw the picture.



x=alt —sin t)

v =all - cos t)

&

o oo

In order to eliminate t, we solve for t in the equation for y: t = cos® (1 - y/a). Therefore, x = & cos? (1 - y/a) -sin
[cos?t (1-y/a)]}. Pretty awful, isn't it?! For all practical purposes, thisform isimpossible to use. Wereally need
parameters herel!!!

We wish to take derivatives using parameters. The first derivative will give us the slope, and the second will tell
its upness and downness.

Example 4—
x=t'+1,y=t"-5

dy/xt
dyfdx =375

dy/dt = 8t"
dx/dt = 4t* S0 dy/dx = 8t'/4t® = 2t*

Y ou might think we came up with d2y/dx2 by taking dy/dx and taking the derivative of the top over the
derivative of the bottom. Y ou'd be wrong. Y ou say, "Of course. Y ou must use the quotient rule!" Again you'd
be wrong. The second derivative is the derivative of the first derivative. So...

diy  d(y’)  d(y')/dt
dx dx  dx/dt

d(2t*)/dt 8t

TAf +1)/dt 4t

Again, in this particular example, you could eliminate the t, but in the cycloid, you really could not.

Example 5—

Thea'scancel.




Cycloid x = a(t — sin t), v=a(1 — cos t)
dx/dt = al1 — cos t) dy/dt=asint
dy/dx = (dy/dt)/(dx/dt) = (sin t)/(1 - cos t)

(1 —cos t)[cos t] — (sin t}(sin t)

dy’/dt =

(1 -cost)®

_ cost—cos’t—sin®t

h (1-cost)

_cost-1 -1

" (1-cost; 1-cost
dy’ dv‘!dx -1
— = —  — 1_ t=
dx dt | dt 1-—l:+:|stlia[ cos )

al1 - cos t)?

If you look at the picture of the cycloid, the second derivative shows the curve is always down, since the second
derivative is aways negative ais positive, except at multiples of 2w, where the curve comes to apoint. The
parameter is extremely useful here, asit awaysiswhen it isused.

Polar Coordinates

In the past, you should have had ateeny, tiny bit of experience with polar coordinates, namely how to graph a
point, say (4, ©/6). The following is asummary of al the things you should know on thistopic.

Rulel
Relationship between (x, y) and (r, 6):

A.r=[x2+y2)l2

B. 6 = angle measured from positive x-axis, positive in a counterclockwise direction

C.x=rcos0
D.y=rsn®
Rule 2

Every point has an infinite number of representations.

n integer

(3, n/6) = (3, n/6 * 2nn) = (-3, 7n/6 * 2Znm)

Rule3

A.r=aisacircle center at the origin, radius a.

B. 6 = cisalinethrough the origin.



(4.0

Rule4

Symmetriesto aid polar curve sketching:”

A. x-axis sym. If replacing (r,0) by (r,0) or (-r,t - 6) gives the same or equivalent equation.
B. y-axis sym. If replacing (r,0) by (-r,-6) or (r,n - 6) gives the same or equivalent equation.
C. Origin sym. If replacing (r,0) by (-r,0) or (r,x + 0) gives the same or equivalent equation.

There are several curves that you should know by looking at the equation. It is always easier to sketch a curve if
you know what it looks like before you start.

Rule5

=13 e B
r=asin@
r=acosf

Circles tangent to origin, radius |a|/2, x- or y-axisis the axis of symmetry.
Rule 6
Cardioid:

™
»,

r=all = cos @)

r=all = sin 8)

* Two of the symmetries mean all three hold.



Rule7

Rose-n positive odd:

r=a sin nd or a cos nd

n petals
Rule 8

Rose-n positive even:

r=a sin nd or a cos n@
2n petals
Rule9

Lemniscate;
= *acos 26

= *+a sin 26

Rule 10
Spirals:

v o= s 38 3 petals
|

r s s o, Pt'1ii:-

Spiral of Archimedes L ogarithmic
spiral




There are afew others, but these are the main ones. Let us graph a couple of these to show the technique.

Example 6—
Graphr =4(1 - cos0).

0 r

0 4-4=0

/6 4-2(3)V2=p
n/4 4-2(2Y2=12
/3 4-2=2

/2 4-0=4

2n/3 4+2=6

3n/4 4+2(2)V2=68
5r/6 4+2(3)V2=74
s 4+4=8

Note

We have symmetry with respect to the x-axis. So we need only values of 6 between 0 and  to reflect the image
in the x-axis. Note the chart. If you study the patterns, you should be able to do much of the table by sight. Also,
you know the approximate value of 2V2 (1.4) and 3V2 (1.7).

Note

There is a short way to draw the previous graph (and other graphs) if you know what the graph is. Find the
intercepts 0, /2, 6, 3r/2, and sketch the graph around them (which is exactly how | did the graph).

Example 7—



=9 cos 20

Symmetry is about x-axis, y-axis, and the origin. So we only need to graph the first quadrant and then repeat the
curve perfectly in the other three. However, since we have 26, we need 3 columns—20, 6, and r—with only the

last two on the graph.

20 6 r

0 0 3
/6 /12 2.8
/4 /8 25
/3 /6 21
/2 /4 0

Although this problem can be done without a calculator if you can approximate well, it is convenient to use a
calculator for this one.

We would now liketo find the areain polar coordinates. In almost any calc book, you will find the areais

1%
—J r* de.
2 b= U]

Example 8—
Find the area of the cardioid r =2 + 2 cos 0.
Aswe have seen before, this curve is symmetric with respect to the x-axis. We can integrate from 0 to 2r or

double theintegral from O to .

2(4%) J: (2 + 2 cos B)° dﬂzf (4 + B cos 6+ 4 cos® @) de

= J [4 + 8 cos 8 +4(1+cos 28)/2] do

( (6 +8 cos B+ 2 cos 20) db
0

=EB+SsinH+sin25‘[ = 6%

ol

Example 9—



Find area of lemniscate r2 =9 cos 26.

From Example 7 we have four-quadrant symmetry. So we will find the area in the first quadrant and multiply by
4,

=9

r \ i : x4
% | r* dﬁ—él(é] ( 9 cos 26 d8 =(2) (9) sin 29

J o 2 0

Here's alittle trick about finding the area of a curve with petals.
Example 10—

Find the areaof r = 4 sin 66.

Just like the previous example, the graph as 12 petals, but all cosines are symmetric with respect to the x-axis.
cos 0 = 1. Wefind the smallest positive 6 that makes cos 60 = 0.66 = /2. S0 6 = n/12. From 0 to n/12
represents one-half petal. So we have 24 ¥z petals to get the area. The integral is

e

[M]‘.«’zJ (4 cos 608)* d8, etc.

Here's another trick with this problem.

This has 12 petals. We will find the area of one of them and multiply by 12. To find the area of one petal, we
find the first two values, sin 60 = 0.60 =0 or 6 = 0. 60 = . 6 = n/6. So the integral is

e}
[12)% r (4 sin 68)* dB, and so on.
(1]

Note

| know thislast trick is one almost no one will use. But I've left it in because my original editor, David
Beckwith, was so great. Thisis one of his favorite tricks. Thanks, David.

Example 11—
Find the area of r = 4 cos 60.

We know we can slide the curve y = f(x) + a units to the right by replacing x by x - a. In the same way, we can
rotate r = f(6) through a counterclockwise angle +a by replacing 6 by 6 -a. Thus, by rotating our curve by 15° =

Rotating a curve doesn't affect its area. So... the answer must be the same as in Example 10!!

Just like with x-y coordinates, we would like to find the area between two curves. In the case of x -y, it was the
top curve minus the bottom curve or the right curve minus the left curve. In polar coordinates, it is the outside
curve minus the inside one. The formulais

&
b J’ [riumde - rfns:da] de

L2
where 0, and 0, are the intersection of the two curves.

Example 12—



7N
AN
})

Find the area of the region bounded by the cardioid r = 2 + 2 cos 6 (inside this curve) and the circler =3
(outside this curve).

Seethefigure.

Since the areaisinside the cardioid, the cardioid is the outside curve. Outside r = 3 makesthe circle the inside
curve. In order to find the limits of the integral, we set the r's equal to each other; 3 =2 + 2 cos 6; cos 6=Y%;
0=x1/3. Also, there is symmetry about the x-axis. So we can double the integral from O to /3.

w3 ]
2{1;’4] J&_n [fgulaidv. - rjiusid.r] dB = JU [[2 + 2- COs B]ﬁ - 3‘-"] dﬂ

T
= [ [8cos B +4cos*d—5]de

0

w3
= [ [8Bcos @+ (2+2cos 28) -5] db

]

=8 sin 8 +sin 28 - 3 =8(3)Y42 + 3V%/2 - 3(n/3)

_9v3
2

There are two more problems that we can illustrate with the same diagram.

Example 13—

Find the area outside the cardioid and inside the circle.

If it'sinside thecircler = 3, r = 3 becomes the outside r. "Outside the cardioid" meansr = 2 + 2 cos 6 becomes
the inside curve. Again, we have x-axis symmetry. Again, setting the curves equal, we get £7/3. The picture
tells us twice the integral from =/3 to . Since we did the last problem, we need not integrate twice, sinceit is
the same integral. We need only change all the signs.



2(%) [ [3* - (2 +2cos B)] dB =136 - B sin 8 — sin EH[

Jia 'l
=[3n- 8 sin t-sin 2n] = [t = & sin /3 - sin 2n/3]
—_ a3
=21 + ——
2

Example 14—

Find the area inside both the circle and the cardioid.

Now we know your instructor would never give such aproblem, but .... Thisisasplit region at therays 0 =
+7t/3. Region | is asector of the circle. Region 2 isthe "top" of the heart, the cardioid. So we get

o

2(4) L 3t d6 + 2(%4) [3 (2 +2 cos 0)* d6

T T
:J GdBvJ (6 +8cos B+ 2 cos 20) db

o T ]

n

.o w3

=1
:96*[ +63+Bsinﬂ+sin25[

= 2111:4—411—%:?11:— T:" 3

Please note that polar coordinates are really not hard. It isjust that many instructors rush through this section.
This makes this section appear difficult. It realy is not.

Arc Length and Surface Area of Revolution
The derivations are in most books. All that remains is memorizing the formulas and applying them.

Thearclengthis:

’ (14 fx)%]¥ dx or Jﬁd [1+f(y)]*" dy

i [

or, in parameters.



[ ltax/ay? + (dyfdep=ar o

t=14

Fﬂz [f(8)* + f(8)*]"* d8 with a curve of r = f(8)

0=8

The surface of revolution about the x-axis (distance isy) is:
I 4
2“?}?[1 - [}a’]zlls’z dx or j ZI}r[I + [xa]g]n‘z d}F
Parametric:

[ 7 2ryiax/dn: + dy/dipr d

I =1y

Polar form:

[*™" 2nf(e) sin 0 [f10)" + F(0)* de

&= By
For the y-axis, x replacesy and 6 sin 6 isreplaced by 6 cos 0.
Let us do one simple example, one clever example, and one known resullt.

Example 15—
x = fly) = (2/3)y"* arc length0 <y <1
Ply)=y"™  so  [1+P(y)?]"=(1+y)"

1

1
Arc length = j (1 +y)* dy = (2/3)(1 + y)** [
0

o

= (2/3)(2*% - 1)

Example 16 (Clever, Very Clever)—
v =f(x) = (1/3]x" + 1/(4x), arc length 1 < x < 2.
flx)=x - (1/4x?)  f(x)*=x'- 1%+ 1/16x* = (x* — 1/4x7)*
+1 =+1
1+ PP =x"+%+1/16x" = [x* + 1/4x*)*
[1+ Fx)PPe =%+ 1/4x*

Pretty clever ???? Not when you have to see thisfor yourself, it isn't.

2

2
Arc length = I 3%+ 1/4x) dx=x¥3 - 1/4x [
1

1

=(8/3 — %) - (1/3 - %) = 25/12



Exaple 17—

Find the surface area of a sphere of radius a.

A sphere is asemicircle rotated about the x-axis (or y-axis): x = acost; dx/dt =-asint; y = asint; dy/dt = acos
t.

SA = fn " 2ryl(dx/de)? + (dy/def): dt
= JI: 2na sin t[(—a sin t)* + (a cos t)*]Y* dt
The math under the square root sign simplifiesto a2. So we get...
SA = 2ma? L sin t dt = 2ma%(—cos 1) L = 2ma%(~(~1) + 1]

Again we haven't been lied to all these years. The surface area of a sphere really is 4na2.



Chapter 10—
Work, Work, Work

Thistopic isusually presented in a physics book and scares everyone to death. If done my way, I'm pretty sure
it won't bother you again. Work is defined as force times distance. However if the force is afunction of
distance, theory tells us that work isthe integral of F(x) dx. We give the usual examples. springs and a couple
on pumping water over the top.

Example 1—

It takes aforce of 20 pounds to stretch a 7-foot spring to 11 feet. How much work to pull out the spring from 13
feet to 27 feet?

For aspring force F = kx. F =20, and x = 11 - 7 = 4, the distance the spring is stretched from its natural length.
Sok=5and F =5x.

Lower limit =13 -7 = 6, upper limit
27-7=20.

Work = ( ko dx

20 rZ0
Work = [ 5x dx = (5x%/2) i = 5(20)%/2 - 5(6%)/2

“B

= 1000 - 90 = 910 foot-pounds

Example 2—

-
|/ \"
| |
\/

How much work is done to pump the water out of afull cylindrical can radius 10 feet, height 20 feet—if the
water is to be pumped over the top?

W = density (weight/volume) x volume x height over which the water is pumped. Each section of water pumped
isathin cylinder V = (10)2 dy. Height pumped (see the figure) is 20 - y. The density for water is
approximately 62.5 pounds per cubic foot.

241 4
62.51(10)%(20 - y) dy = 6250m(20y — v*/2)

o 0

= 1,250,000n foot-pounds

Note 1
If the outlet were 17 feet over the can, we would have 37 - y.

Note 2



If the can were three-fourths full, integral limits would be O to 15.

Note 3

If we did the same problem with a box, the cross section would be a thin sheet with length and width constant
and height dy.

Example 3—

How much work is done to pump water out of a cone, diameter 22 feet, height 10 feet, if the outlet is 7 feet over
the top of the cone and the cone isfilled 2 feet deegp?

First, adight trick. The diameter is 22, so theradiusis 11. Next, note the cross section is again athin cylinder,
but this time the radius changes: V = nr2h = x2 dy. We must see asimilar triangle x/y = 11/10 or x = 11y/10.
The height of the pipe makes the pumping distance 17 - y.

We |leave the integration to you.
o2
| 62.5r((11/10)y]%(17 - v) dy
-0

Note

A trough isasimilar problem except the horizontal cross section is arectangular sheet whose width changes but
whose length (length of the trough) remains the same.

Also note similar triangles, just like in the cone.



Chapter 11—
Volumes By Rotation and Section

This chapter isthefirst of two that are based on material from my first book, Calc Helper, the beginnings of this
course. The material in this chapter isin many Calc | courses. However, at my school, itisin CalcIl. The
material in the next chapter, "Conic Sections—Circle, Ellipse, Parabola, Hyperbola," is taught in either Calc | or
Calc I1, depending on the book and the course. In my schooal, it isin the non-math-major Calc | and math-major
Calc Il. Therefore, this subject deserves to be treated in both books.

The first topic isto find volumes of rotations. Thisisvery visual. If you see the picture, the volume is easy. If
not, thistopic isvery hard.

Imagine a perfectly formed apple with aline through the middle from top to bottom. We can find the volume
two different ways. One way is by making slices perpendicular to the line (axis). (We will do the other way
later with an onion.) Each dliceisadisc, athin cylinder. Its volume is ntr2h, where his very small. If we add up
all the discs, taking the limits properly, we get the volume.

We will take the same region in six different problems, rotating this region differently six times and getting six
different volumes.

Example 5—

Find the volume if the region R is rotated about the x-axis.

The volume of each discisnr2h: h=Ax; r =y. Sor2 =y2=x, and x goesfrom 0 to 9.

5o 4 et [1 81in
"'Iz"m"dh=rc X dx=— [:——
- JI}- =10 2 ] 2-



The integrals are almost always easy. Once you understand the picture, all will be easy. But it takes most people
time, studying the pictures.

Let us get back to our apple. Suppose we core it. When we take dlices perpendicular to the axis, we get aring.
The area of aring isthe area of the outside minus the area of the inside.

The volume of each disc is (Prauside = Triusiael, Again, Again, hissmall.

Example 6—

Find the volume if our region is rotated about the y-axis.

Asyou rotate this region, there is a hole. Outside radius is always 9 and the inside radius is always the x value.
Butx =y2. r2=x2=y4

3 3

(rri,—mri)dh=n [ (92 — ') dy
JD v

53 .
=1:{811,;—37-‘ =n(ﬂ1[:-1}— 3 ):Eu

5 |, 5 5

Example 7—

Find the volume of our gloriousregion if it is rotated about the linex = 9.

o 5

Notice that when we rotate the region about x = 9, thereisnohole. Vo =nrth.r=9-x=9-y2, r2= 81 -18y2 +
y4 h=Ay.



3
v :nj (81 - 18y* + y*) dy =81y - 6y +
[n]
]
= H[BIES} —6(3) + % - n} = '3'453“

Example 8—

ik

Find the volume if the same region R is rotated about the line x =-1.

r,l:|+x:|+f

Vsal:,tl-:-n = ﬂ[[ﬁm - r:fnJh'- Pout = 9+1= 1{}; Iin = 1+x=

1+y5r=1+2y"+y h=Ay

3 3
V= L (mri, —mf)dy=mn L [10° - (1 + 2y + y*)] dy

k! ) oyt 5 [3
=EL [GG—J}rz—}r"}d}f=99}r—Ty—%[ T

=n[99{3]—@—3—5—u]= 1152n

Example 9—

i}

Find the volume if our beloved region is rotated about y=>5.

g m—r

5




vf‘u\_llun = I[I.E'ul - r?l'l]h-: Lot = 5: Iin = 5 - ¥y= 3 - .‘-'(1';2;
i =25 - 10xY 4 3 h = Ax.
-0 0

V= || (mri, —mri)dx == f [25 — (25 — 10x"? + x]] dx
iy i}

4] 1 %
—J'EJ {llilx“'z—x]dx—ﬁx“—x— T
: 3 z |,

a A
= n(%_‘:’ gz & _ nJ =139.57
3 2

Example 10—

And for our final attraction, we will take the same region and rotate it about the liney = -2.

T _ 2 2 . — —_ — (12
1"' gecl = {1—-::||.I - r'.ll}h-- ]."._“ = 21 [l.l'.ll = 2 + 1'l'r = 2 + -}\1 &
r2,=d 4 4xV? 4,

-0 -0
V= J (i, —mri)dx=mn J (4 +4x" + %) — 4] dx
(k]

(4]

0
8 ., 9%\ 225m
=]'[(_'9"' +—|= .J
i ] 2

The next kind of volumes we will consider are rotations again, but we will do it a different way. Think about an
onion with each layer awhole piece. We will add up layer by layer until we get a volume. We will add up
cylindrical shells, tall cylindrical shells. We will see one of these shells, agenera illustration, and two
examples.



Tl

fot 8+ 42 @ £y

Top

U!]I.E.l. = nriuih - Er:l?l:l.h = Tth[rﬁu'l = rizn]
= ﬂh[rl:ll.ll + rin][rmn - ri-n.] =2 “h(%) Ar

= 2n - height - average radius - thickness

Thisis an example of arotation about the y-axis of the region bounded by y =f(x), y =0, x = a, x = b. Notice
the axis of the cylinder isthe axis which the curveis rotated around.

3
_____,,/>>j =
A=
g
| d y=b
— ‘ 4=0

Example 11—



Let ustry to do the same region R we had before and rotate it about the y-axis. We take the same region for two
reasons: (1) you do not have to worry about different curves, and (2) we would like to show the answers. are the
same.

"

Vv —J 21w - average radius - average height - thickness

’ ¥ 4 ..
=211:J x - x' dxzznj X"“zdx:?x""{ s
4] o o

i . ., O72n
=— (99" -0)=—
a2
e Y=L (4.3)
fh=ydy =4
_ |
S
- r_;.| ke y =y

Example 12—

We will do our region one last time about the x-axis.

3
V=2n " average radius - average height . thickness
Jyoo

3
=2n J y(9 -y} dy

e gyt A [
=21IJ;I (9y — y')dy = > il [ 2n

g(3)* 3¢ 81m
—2“[ 2 ‘T]—T

Thelast part of this chapter is volume by sections. The sections are not circles but other shapes. Examples are
given.

Example 13—

Find the volume of the following figure: base bounded by y = 1/4x2 and y = 4 in the x-y plane; sections
perpendicular to the y-axis are rectangles with height 1/3 the base.



A=bh=b(1/3b)=b*/3 b=x-(x)=
y=4x* x*=4y x=2y"" 2x=4y"=b
A = (4y"*)*/3 = 16y/3

The volume of each section = 16y/3 Ay.

C[tey , 8sy* ' 8(4) 80 128
U_L”d}" 3 L“ 3 3 3

Example 14—
Base x2 + y2 = 9 sections perpendicular to the x-axis are equilateral triangles. Find the volume.

3
-"M-—T

gt

)
3,00 \/H/ (3.0)

=4

L

r AX)dx A= Szf = [Z?Fﬁ = V3y? = V39 - x7]

v’"f (9 —x?) dx = wa{x--a—] =318 - (-18)]
= 36V3



Even though the base is a circle, we are adding triangular dlices. Since the area of atriangle does not involve T,
neither does our volume.

Example 15—

Base bounded by y = x¥2, x = 9, x-axis. Sections perpendicular to the x-axis are semicircles. Find the volume.

lug)
= [T
S IPEY h:a -

7] a 8
L3 xdx:f"."‘_[ _8in
. 16

Since we are adding circular slices (well, to be absolutely accurate, semicircular slices), the volume does have
aminit.



Chapter 12—
Conic Sections—Circle, Ellipse, Parabola, Hyperbola

Most books call the circle, parabola, ellipse, and hyperbola conic sections without explaining why. These curves
are found by passing a plane through the truncated (cut-off) right circular cone pictured here. They are formed
asfollows:

Circle Plane paralldl to the top or bottom

Ellipse Plane on the top or bottom not parallel to the top or bottom but hitting all parts of the outside.
Parabola A plane parallel to an edge of the cone

Hyperbola Figure formed by a plane intersecting the top and bottom

Definition

Circle—The set of pointsthat are equidistant from a point, the center (h, k). That distanceisr, the radius.
The distance formula:

r=[(x-h)p+(y-kF"

Squaring, we get (X - h)2 + (y - k)2=r2.

Example 1—

/ X
N /'

Find the radius and center if (X - 4)2 + (y + 1/2)2=11.r = 11 1/2, center (4, - 1/2).

Find the center and radius of the circle 2x2 + 2y2 + 8x - 16y + 6 = 0. In order to do this, we have to compl ete the
square, something we have not done since the derivation of the quadratic formula.



Example 2—

2%+ 2y +Bx - 16y +6=0

Divide by the coefficient of x2

Wy +4x-8y+3=0

Group thex termsand y terms, and get the constant to the other side.

X+ ax+ vyt~ By=-3

Take half of 4, squareit, add it to both sides; take half of -8, squareit, add it to both sides.

X+ 44X +44+ Yy -8By +16=-34+4+16

Factor into perfect squares (that wastheidea) and add theterms on theright.

(x+2)0°+(y-4)P=17
The center is(-2,4); r = 1712,

For the parabola, ellipse, and hyperbola, it is essential to relate the equation to the picture. If you do, these
curves are very simple.

Definition

Parabola—the set of all pointsthat are equidistant from a point, called a focus, and aline called a directrix.

Let us do this development algebraically. Let the vertex be at (0,0). Thefocusis (0,c). The directrix isy = -C.
Let (x,y) be any point on the parabola. The definition of a parabola says FP = PQ. Just like before, everything
on PQ has the same x value, and everything on RQ has the same y value. The coordinates of Q are (x,-c). Since
the x values are the same, the length of PQ =y - (-¢). Using the distance formulato get FP and setting it equal
to FP, we get [(x - 0)2 + (y - €)2]¥2 =y + c. Squaring, we get X2 + y2- 2cy + c2=y2 + 2cy + c2. Simplifying, we
get x2 = 4cy.

We will make asmall chart relating the vertex, focus, directrix, equation, and graph.



Vertex Focus Directrix Equation Graph Comment

(0,0) (0,0) y =-C X2 = 4cy ._fﬂ &) The original derivation
(0,0) (0,-c) y=c X2 = -4cy —==A4-==3°%  yreplaced by -y
> 0=
(0,0) (c,0) X =-C y2= 4cx v =l X,y interchangein 1
) :'  1e.0)
(0,0) (-¢c,0) X=c y2-4cx 0T x replaced by -x in 3

If you relate the picture to the original equation, the sketching will be easy.

Example 3—

|

|
.

|

|
Given y2 = -7x, sketch. Label the vertex, focus, and directrix.

From the chart, we know the sketch is picture 4. Now let 4c = 7 (ignore the minus sign); ¢ = 7/4. The vertex is
(0,0). Thefocusis (-7/4,0), because it is on x-axisto the left of the origin. The directrix isy = 7/4; y, avertical
line, = +7/4, because it isto the right of the origin.

Example 4—

Sketch (y- 3)2 =-7(x + 2).

To understand the following, we need only note the difference between x2 + y2= 25 and (x- 3)2 + (y + 6)2 = 25.
Has the shape changed? No. Has the radius changed? No. What has changed? The center. Instead of being at
the point (0,0), the center is at the point (3,-6).



In the case of the parabola, what has changed is the vertex. Instead of being at the point (0,0), the vertex is at
the point (-2,3). The shape isthe same. The value for 4c is till 7. So ¢ = 7/4. The focus now becomes (-2 -
7/14,3), 7/4 to the | eft of the vertex (-7/4 from the x coordinate). The directrix isx =-2 + 7/4.

Example 5—
Sketch the parabola 2X2 + 8X + 6y + 10 =0:

Original

2+ Bx+ 6y +10=0

Divide through by the coefficient of the squared variable

X*+4x+3y+5=0

On one side, get all thetermsthat have the squared letter; everything elseto the other side

X* 4 dx=-3y -5

Complete the square; add to both
sides.

X tdx+4=-3y-5+4

Factor and smplify.

(x+2)P==3y-1

Weird thing. No matter what the coefficient on the right sideis, factor the whole coefficient
out, even if thereisafraction in the parentheses.

(x +2) =-3{y + 1/3)

Sketch v(-2,-1/3), shape 2, M; 4c = 3, ¢ = 3/4; F(-2, -1/3, -3/4); directrix y =-1/3 + 3/4.

We will now look at the ellipse. Algebraically, the ellipseis defined as PF, + PF, = 2a, where 2a > 2c, the
distance between F, and F.. In words, given two points, F, and F,, you get two foci. If we find all points P, such
that if we go from F, to P and then from P to F,, add those two distances together, and always get the same
number, 2a, where awill be determined later, we will get an ellipse.

| know you would desperately like to know how to draw an ellipse. Thisis how. Take anonelastic string.
Attach both ends with thumbtacks to the table. Take the pencil point and stretch the string as far asit will go.
Go 360°. You will trace out an ellipse.



Some of you have seen the equation for an ellipse, but few of you have seen the derivation. It is an excellent
algebraic exercise for you to try. You will seethereisalot that goesinto arather simple equation.

PF] + PFZ = 2a
Vix-aF + [y - 0P+ Vix - o) + [y - 0= 2a

(Vi T 7 = (20 - VR P T
X+ 2ex + cf + y?

J—
=da’+x*-Zex+ct+yi —d4aVvix—c) +y*

Combineliketerms; isolate the
radical.

- i =a 3
dcx —4a*=—4aV(x-c)f +y*

- ——
(cx — @%) = [-aV(x = c)® + ¥]*
a' — 2a'cx + o = af(x* - 2ex + ¢ + vY)

a' - a’c® = a™x* - o' + a'y?

Rever se sides; take out common factors. Divide on both sides by a4a? - c2).

(a* - c”)x* +a'y* = a’la®-c)

(a*~cfa’ a’(a’ - c?) a’(a’ - ¢

Let a2- c2= b2

We are still not finished. What isaand what isb? Let'sinvestigate.

Since T isany point on the lipse, F,T + TF, = 2a. By symmetry, F,T = TF,. SoF,T=a. Sincea? - 2= b2, GT =
b. The coordinates of T are (0,b), and the coordinates of T' are (0,-b).



(0t}

We would like to find the coordinates of U, and we have used up the letters a, b, and c. Oh, well, let's see what
happens. F,U + UF, =2a, F,U=x-¢c; UF,=x+C; X+ C+ X - c=2a So x = a. The coordinates of U are (a,0).
The coordinates of U' are (-a,0).

Now, ¢ = half the distance between the foci; b = length of the semiminor axis, (semi means half, minor means
smaller, axis meansline); a = length of the semimajor axis = distance from afocus to a minor vertex; (+a,0) are
the major vertices; (0,+b) are the minor vertices or co-vertices. (+c,0) are the foci.

Although the derivation is very long, sketching should be short.

Example 6—

Sketch x2/11 +y2/8 = 1.

In the case of an ellipse, the longer axisisindicated by which number islarger under x2 or y2. That term is &.
(Try not to remember a or b—remember the figure.) This ellipse islonger in the x direction.
Letting y = 0, we get the major vertices (=V11,0), Letti ng x = 0, we get the minor vertices (0, +1/8),
c=%/11-8 Thefoci are(*"'3,0). Seethefigure.




Example 7—

Sketch x2/5 + y2/26 = 1.

Major vertices [0.= V/26): minor vertices (+V/5,0): foci (0,=V21)—foci are always on the longer axis.
(0./25)

\-— (0,31}

=00
/ (0,~ )

Example 8—

[x—51'+ [E'r+4]"=1
11 8

Thisisthe same as Example 12 except the center is no longer at the point (0,0). It is moved to the point (6,-4).
Now the major verticesare (6 = /11, —4), The minor vertices are (6. —4 = V8], Thefoci are(6 * V'3, 4],

l&,—4 +[8)

(& + [i-d)

il

(6-4)

&, —— 2}

Weird numbers are intentionally chosen so that you know exactly where they come from.



Just afew months after the first edition of this book went to press, | realized a second way to find the vertices
that made it much clearer to you, but my editor wouldn't change the book. So now | finally have a chance to
show you. The center isagain at the point (6,-4). The vertices are directly east-west and north-south of the point
(6,-4). All points east-west of (6,-4) must have the samey value, y = -4. So000, letting y =-4, we get

(=6 [a+daf

1
11 8

(x - 6)

+0=1
11

(- 6)7 = 11: X — 6 = £11

Therefore, x = 6 + 11V2 and the major vertices are (6 £ 11V/2,-4). Points north-south of (6,-4) have the same x
value, X = 6.

(6 - 6211+ (y+4)4/8=1
0 +(v+4)fa=1
(y+4)=8. y+4==x8"

Therefore, y = -4 + 8Y2, and the minor vertices are (6,-4 £ 8V2). For the same reasons the foci, always on the
major axis, are (6 + 3V2,-4). The sketch is, of course, the same.

Example 9—

Sketch and discuss 4x2 + 5y2 + 30y - 40x + 45 = 0. Here we must complete the square in adightly different
manner.

Ax*+ 5y + 30v —40x + 45 =10

4x* - 40x + 5y + 30y =45

4[x% - 10x + (—10/2)] + 5[y* + 6y + (6/2)7]
= —45 + 4(-10/2)" + 5(6/2)*

4(x -5 &5lv+3)* 100

100 100 100

_[_:-'{ _ ﬁ:l-' N [\‘-' + ‘-3]1'. _ 1
25 20

Center (5,-3); vertices (5 = V/25,-3); (5,-3 = V/20); ¢ = /25 — 20 = /5. foci (5 = V'5,-3), Of course, you
. F  — .
should put 5 instead of % 25. | leave the V' 25 for the sake of clarity.



(53 + J20)

N F -SG5 (5 + 353

The definition of the hyperbolais F,P - PF, = 2awhere the foci are (£c,0). The derivation is exactly the same as
for an ellipse. Once is enough!! The equation we get isx?/a? - y2/b? = 1, where & + b2 = ¢2. The coordinates
(xa,0) are called the transverse vertices. The hyperbola has asymptotes y = £(b/a)x.

Note 1

The shape of a hyperbolais determined by the location of the minus sign, not which number islarger under the
X2 or y2,

Note 2

In the case of the asymptote, the slope of the line b/ais the square root of the number under the y2 divided by
the square root of the term under the x2 term.

Example 10—

Sketch and label x2/7 - y2/11 = 1.

Transverse vertices, y = 0, X= =V7(:V7.,0) Notethat if x = 0, ¥ = =V=11 which isimaginary. The curve

does not hit the y-axis; ©=\/7 + 11; foci are (£V18.0); and ¥ = = (V11/V7)x_



Example 11—

Sketch and discuss yZ/5 - x2/17 = 1.

Transverse vertices (0. V/5): foci (0,£V22); asymptotes ¥ = * (V5/V17)x,

Example 12—

(y-62 [x+7)

Thesameform 5 7t

Thisisthe same as the previous sketch except the "center of the hyperbql a," the place where the asymptotes
Cross, isno Iorlger (0,0). It isnow (-7,6). Transverse vertices (=7.6 £ V5] foci (=76 = V22) asymptotes
(v - 6) = =(VE/V17)(x + 7).



Just like with the ellipse, let's clarify the location of the vertices. In this case, the vertices occur north-south of
the center (-7,6). So the x value of the verticesis the same as the center, x = -7. Substituting, we get

(v —B)/5 - (-7 +7)/17 =1
(v-6)P=5y=6 5"
The vertices are (-7,6 + 52),

For the same reason, the foci, always on the axis through the vertices, are (-7,6 + 2212). The asymptotes and the
sketch are the same!!

Example 13—
Sketch and discuss 25X 2 - 4y2 + 50x - 12y + 116 = 0.

For the last time, we will complete the square, again alittle bit differently.
25x% —4y* +50x - 12y + 116 =0

25x* + 50x — 4y* — 12y = -1186

25[x + 2x + (2/2)] - 4[y* + 3y + (3/2)*]

=116 + 25(2/2)? — 4(3/2)°

25(x +1)*  4ly +3/2)* _-100
-100 -100 T -100

(v +3/2) _x+ 1) _q
25 4
Center (-1,-3/2); vertices (-1,~3/2 = V25): fogi (-1,-3/2 = V29); asymptotes ¥ +3/2= =(V25/Va) - (x+1),

Sometimes we have a puzzle. Given some information, can we find the equation? Y ou must always draw the
picture and relate the picture to its equation.



Example 14—
Find the equation of the parabola with focus (1,3), directrix x = 11.

Draw F and the directrix. Y our sketch should match the figure. Vertex is halfway between the x numbers. So x
=(11+1)/2=6;V =(6,3); c = the distance between V and F = 5. The equation is (y - 3)2 = -4¢(x - 6) = -20(X -
6). Remember, the minus sign comes from the shape, and c is always positive for these problems.




Example 15—
Given vertices (2,3) and (12,3) and one focus (11,3), find the equation of the ellipse.

Two vertices give the center; (12 + 2)/(2,3) = (7,3). F(11,3). (x - 7)2/a2 + (y - 3)4? =1.a=12-7=5.c=11-
7=4.2-b2=c2.52- b2 b2=9 (noneed for b). (x - 7)425 + (y - 3)2/9=1.

Example 16—

Find the equation of the hyperbola with vertices (0,£6) and asymptotesy = + (3/2)x.

\
s

V(0,£6) says the center is (0,0) and its shape is y2/36 - x2/a2 = 1. The slope of the asymptotesis 3/2 = square
root of the number under y2 over the square root of the number under the x2 term. S0 3/2=6/ . So_=4. So &
=42=16. Theequation isy2/36 - x2/16 = 1.

Thiskind of question is shorter in length, but it does take practice. So practice!!



Chapter 13—
Oddsand Ends

Approximations, Approximations

In an age where computers and cal culators—especially those fun graphing cal culators—do so many things,
some things cannot be done exactly.

We know that all quadratics can be solved using the quadratic formula. Similarly, thereisa cubic formulaand a
quartic (4th-degree formula) that can solve all cubics or quartics (although they are truly ugly and messy).
However, in higher mathematics we can prove that most general 5th-degree equations cannot be solved. More
simply, an equation like 2x = cos x cannot be solved exactly. However, we can approximate a solution verrry
closdly.

Newton's Method

Suppose we have an equation y = f(x). Let ussay it crossesthex axisat x =r. That istheroot f(r) =0, but itis
not exact. If we can find f(a) < 0 and f(b) > 0O, then if f(X) is continuous, thereis apoint r such that f(r) =0

and r is between aand b. We can use Newton's method.

1. Let x, be the first approximation. Draw atangent line at the point [x,,f(x,)] until it hits the x-axis at x,, which
isusually closer to r than x,. Continue.

2. Let usgive aformula using point slope, y - f(x,) = f'(X,)(X- X,). If I'{x:)# 0, thelineis not parallel to the x-
axis, and the line hits it at, let's say, the point (x,,0). Substitute this point in the equation given.

3. 0-f(xy) =f'(X) (X2 - X,). We solve for x,.
=% — f(>.)
4.7" 7 I'x). Repeating, we get the general formula

fix.)
()

Kp+1=Xp—

Let us do an example.

Example 1—



Find the root of f(x) = x3- X - 3 using Newton's method. The graph in the figure was made using the fun Tl 82

calculator, f(x) = x2 - x - 3. Therefore, f'(x) = 3x2 - 1.
Newton's formula becomes

f(x.)

Xne1 =X = T

Fix,)

Wiox,—3
et }{ — me————ee —
* Ix; -1

Simplifying.......we get

2%x)+ 3
3t -1

Xni1=

f(1) =-3and f(2) = 3.

Let ustake x, = 1.5 for the first approximation. Probably x, = 1 or x, = 2 would work just fine.

yg = e - = 1.672080792

Continuuuuing, we would get
x, =1.671700271 ®; = 1.671699882
X, = 1.671699582

We have reached the accuracy of our calculator: nine decimal places, which is probably more accurate than we

would ever need.

Note 1

Sometimes the method doesn't work. A full study is left to other courses.

Note 2

When it works, it usually works very quickly and with great accuracy.



Note 3

This procedure, as well as the other two approximations, are suitable for many academic levels. Most
appropriately, they occur in either Calc | or I1.

The Trapezoidal Method

This method, the only one of the three that does not actually require calculus, approximates the area under the
curve by trapezoids by approximating the top of the region by aline. Divide the region into n equal parts. See
the trapezoids. They are standing on their heights. The area of atrapezoid is¥zh(b, + b,). All of the h's are the
same. For the first trapezoid, b, =y,

| )
15 4 a5 3235 4
and b, = y,; A =%h(y, +y,). For the second trapezoid, b, =y, and b, = y;; A =¥2h(y, + y,). Notice the lower

base of the first trapezoid is the upper base of the second trapezoid. Every base is doubled except the first upper
base and the last lower base. Theformulais A =Y2h(y, + 2y, + 2y, + ... + 2y, + Y,).

Example 2—
1

Approximate-: x dx using six equal subdivisions.
Theinterval isof length 4 - 1 = 3. Six equal parts? Each h = 3/6 = %%
¥ =1 yvo=1/1=1
X, =3/2  y,=1(3/2)=2/3
x;=2 vy;=1/2, x3=5/2 y;=2/5 y,=1/3,
y:=2/7, ys=1/4
A="hly,+ 2y, + 2y, + 2y; + 2y, + 2y, + ¥)

=%[1 + 2(2/3) + 2(%) + 2(2/5) + 2(1/3) + 2(2/7) + %]

=1.405357143

Parabolic Method



Je T i

EE

Another method is to approximate the region using parabolas on the top. We will isolate one of these regions.
Asyou will see, this method works only if nisan even number of intervals.

Let the parabolabe given by y = f(x) =ax2 + bx + c: y at the left end isy, = f(-h) = ah2 - bh + c; y in the middle
isyw =1(0) =c; andy at theright isys = f(h) = ah?+ bh + c.

The areaof thisregionis

h
[ [ax® + bx + ) dx
“~h

Ia
=ax*3+bx¥2 +cx [

=ah/3 + bh%*/2 + ch — [-ah*/'3 + bh%/2 — ch)

= 2ah%/3 + 2ch

Do something weird. Factor out h/3 because it works!!

= h/3(2ah® + 6ch)
= h/3(2ah® + 2ch + 4ch)

= h-‘ra[}rh + :'I'rH, + 4}"&[]

Just like before, the lower base of the first region is the upper base of the second region. Four times the middle
never changes. The formulaissss... A = h/3(y, + 4y, + 2y, + 4y, + ... + 4y, , +y,), n being even.

Example 3—

. 1
Let's do the same example. Approximate’: x dx

A=h/3v,+ 4y, + 2y, + 4y, + 2y, + 4y + V)
A=1/601+4(2/3) + 20%) + 4(2/5) + 2(1/3) + 4(2/7) + 4]
=1.387698413

As some of you know and the rest will find out soon, the approximate answer isthat In 4 = 1.386294361.
Example 4—
A. Graphy = xex. B. Find the area x>0. C. Find the volume if the region is rotated about the x-axis.

Graphing exponentialsis new, but we'll review graphing in general, areas, volumes of revolution, improper
integrals, L'Hopital's rule, and integration by parts.



A. Graphy =xex=x/ex; y' = (1 - x)ex=(1- x)/ex; y" = (x-2)ex = (x -2)/ex.

1. x intercept(s) y = 0; top of fraction = 0; x = 0; point (0,0).
2.(0,0) isdso they intercept.
3. No vertical asymptotes, since the bottom of y is never O.

4. Horizontal asymptote. Thisis different.

Asymptoteisy =0, but

since X is negative and eX getsvery big as X goesto —w

lim xe™ — —ee

K

We have a one-sided asymptote. Many exponentials have a one-sided asymptote.

5. Possiblemax, miny'=0;top=0; 1-x=0; x=1;y = /el (1,1/e) y"(1) = (1 - 2)/eisnegative, so (1,1/€) isa
max.

6. Possible inflection pointsy” = 0. Againthetop=0; (x - 2) =0; x = 2; y = 2/e2. The point is (2,2/€2). It isan
inflection point, sincey"(2+), y"(2-) are different signs.

Note

L), of course, means equal by L'Hopital's rule. If you need to review curve sketching, look at Calc | Helper.
Now let's find the area of the right part.

B. Find the area of y = x ex where x>0:

Theimproper part isinfinity.

o

JI x e dx
]

Integrate by parts. u = x and dv = X,

=lim lrdl x e dx

A i “0



=lim (-a/e* + 0/e" = 1/e* + 1/&")

B—am

= -0 + 0 - 0 + 1 =1 gguareunit.

C. Find the volume if the region y = x eX isrotated about the x-axis, where x > 0:

Improper part isagain infinity.

T’[J rE dx 1‘=}.‘=Xe'1; T2=}r3=x29-2.x
0

Again, integration by parts: u = x2, dv
= g2X,

u=x, dv=e?

na:’+nuz ?ta+n[} b1 +rc1
A 2&*‘* 2 [_-!D 2 e-1-a EEU 4 E-h'l 4 e“

T
= _D+D_D+G_DTI

The volume is /4 cubic units.



Chapter 14—
Infinite Sequences

This topic brings some controversy. Some people think it is very difficult. Some think it isvery easy. | believe
if you understand the beginning, the rest of the chapter is not too bad.

Definition

Sequence—A sequence of terms, technically, is afunction for which the domain is the positive integers.
Nontechnically, thereis afirst term called a, (read "a sub-one," where the "one" is a subscript, not an exponent)
denoting the first term, a2 ("a sub-two") denoting the second term, and so on. The notation for an infinite
sequenceis{a}.

Let us give some examples. We will list some sequences, write the first four terms, and then term number 100
by substituting 1, 2, 3, 4,...,100 for nin a,.

Example 1—
{an} 1st 2nd 3rd 4th 100th
{ n } 1 2 3 4 100
n+1 2 3 4 5 101
l' (~1)"*" (4n + 1]} 5 -9 13 -17 ~401
n®+1 2 5 10 17 10001
(6} 6 6 6 6 6

Definition (Nontechnical)
We write lim,,.... a; =L jf, the larger n gets, the closer an getsto L.

In this case, we say that {a,} convergesto L (or hasthelimit L). If an goesto plus or minus infinity or does not
go to asingle number, then {a,} diverges (or has no limit).

Example 2—

Find the limit of {(n + 9)/n2}.

a, = (n+9)/n2 =1/n+ 9/n2 Asn goesto infinity, both terms go to 0. Therefore, the sequence convergesto 0.
Example 3—

Find the limit of {(2n2 + 3n + 2)/(5 - 7n?)}.

Divide top and bottom of an by n2 We get [2 + (3/n) + (2/n2)]/[(5/n2 -7)]. As n goes to infinity, an goesto 2/(-
7). The sequence has the limit-2/7.

Note

This should look very familiar. Thisis how we found horizontal asymptotes. Also note that we can use
L'Hopital'srule.



Example 4—
Find thelimit of {a} ={In(n+ 1) - Inn}.

limlnn+1)l=-Ilnn= Ei_l.n In [[n + 1)/n]

N—ke=

=limn(1+1/Mml=Iln1=0

The sequence convergesto 0.

Example 5—

Does{(-1)"} have alimit?

Thissequenceis-1, +1,-1, +1,-1, .... Thereis no limit because the sequence does not go to one number.
Definition

lim, .. a,=Lif givenane >0, thereexistsan N > 0, such that if n> N, | a,-L | <e.

Note

It is not important that you know the technical definition of alimit to understand the rest of the chapter. But ...

at this point of your mathematical career, you should start understanding the background. It probably will help
you later on. It would also be niceif you could see the beauty and the depth of this material—the beginnings of
calculus. It truly isawonderful discovery.

Example 6—

Using &. N, show L (20+5)/(n+1] =2

Tin+1

n+1 n+1

n+1

in+5 ‘
- = < E

Zn+5 2[11+?J]‘ i 3

provided 3/e <n+ 1or 3/e - 1 < n. Wethen choose N as the whole-number part of 3/¢ - 1.
The following theorems are used often. They are proved in many books and will only be stated here.
Let limy. a, = L, limy,_. by =M: k = constant, f continuous. Then

lim (3, = b,) =L = M

5 !.“11 (a,b,) = LM

3 }‘u‘n [a,/by) = LIM M0

A }I_IE ka, =kL

5 lni(l} fla,) = f(L)

tp=d, e, and lime, =lime, =P Then limd,=P.
6_ Thim ki Th—hem

Example 7—



lim (sinn)/n=0

Show n—== )

Using part 6 above, -1<sinn< 1. So-1/n< (sinn)/n < 1/n. Asn goesto infinity, -1/n and 1/n go to O.
Therefore, so does (sin n)/n.

Definition 1

Anincreasing sequence is one where g, < a,., for al n.
Definition 2

A non decreasing sequence is one where a, < a,.; for all n.
Similarly we can define decreasing and nonin-creasing.
Definition 3

A sequenceis bounded if | &, | < M, some number M and al n.

Another theorem: Every bounded increasing (decreasing) sequence has alimit.

Infinite Series

| know thisis getting to be adrag, but it is essential to understand the terminology. This understanding will
make the rest of the chapter much easier. | don't know why, but it really seemsto.

Definition

Partial sums—Given sequence {a,}:
1st partial sum S, = &

2nd partial sum S, =a + &

3rd partidl sumS;=a+ta+a&

) E,._=a1+a;,_+a-d+'---+a_.,:£ak
nth partial sum k=1

Theinfinite series a, + a, + @ + ... or k=1 & js said to converge to the sum Siif limu—.. S.=S5_|f S does not
exist, the series diverges.

Example 8—
767676 ....

We can write this as an infinite series. .76 + .0076 + .000076 + .... Thisis ageometric series (infinite). Thisis
one of the few series we can find the exact sum of.

S=alll-r) a=.76 r=.01 S=.76/(1-.01)=76/99
More generdly, the seriesa+ ar + ar2+ ar3 + ... convergestoa/(1 - r) if |r| < 1.
Example 9—

4-8+16-32+--:a=4,r=-2; diverges.



Example 10—

1+1+1+1+1+-:a=1,r=1;diverges.

Example 11—

1-1+1-1+1--:a=1,r=-1; diverges.

Note that test 1 implies divergence in these three examples.

Example 12—

Using partial fractions

1 1 1

k(k+1) k k+1

Writing out the first few terms plus the n - 1 term plus the nth term, we get
S, =(1/1-1/2) + (1/2 - 1/3) + (1/3 — 1/4) + -
+[1/n-1/(n + 1]
Notice all the middle terms cancel out in pairs. So only the first and last terms remain:

S:=1-1/n+1) S=Lil:£15,,=1

Again, thisis one of the few sequences we can find the exact value for. (Thisis called a telescoping series—it
collapses like one of those toy or portable telescopes.) From this point on, for amost all of the converging
series, we will be able to tell that the series converges, but we won't be able to find its value. Later we will do
some approximating.

Example 13—

= 4(2¥) + 5k
NI
k=1

After splitting, we get two geometric series:

_ 4(2/7) 5/7 i 4 i
g = I_EF.?.+W—B.-"J+J.-"2—41flﬂ

If 5 a,=Land z b, = M, then E (ca, +b,)
n=1 n=1

=cL+ M.

Now that we have an idea about what a sequence is and what an infinite seriesis (hopefully a very good idea),
we would like to have some tests for when a series converges or diverges.

Test 1



It is necessary that @ — 0 for Zi- & to converge.

Note 1

If & does not go to 0, k=1 & diverges.

Note 2

If & doesgo to O, and that is all we know, we know nothing.
Example 14—

Tell whether Zi-1 k/(k + 1) converges.

k/(k + 1) goesto 1. Therefore Zk-1 k/(k + 1) giverges,
Example 15—

The harmonic series Zi-1 1/k

Since 1/k goesto 0, we don't know if this series converges or diverges. We shall shortly show that the harmonic
series diverges.

Example 16—

The p, series Zi -1 1/K*

Since 1/k2 goesto 0, again we can't tell. Shortly we shall show that the P, series converges.
Test 2

Given g and a > 0, a goesto O for k big enough. Suppose we have a continuous function f(x) such that f(k) =
a. Then Zi-1 & and |1 f09 i either both converge or both diverge.

Thistheorem is easily explained by examples.

Example 17—

Tell whether i1 k& converges or diverges.

The improper integral associated with Zi=1 ke ™ js [7%e™ gy | etting u = -x,, du =2x dx.

L%] _zxe—tz . ) - 'h:
- . dx = {1rn (-] J e du

1 —a J g

h—e Jy -

. 2 1
=lim -¥le™ - &) = —
h—sem a

Since the improper integral converges, so does the infinite series.
Note 1
The value of the improper integral is not the value of the infinite series. But we can say the following: If the

o
1

integral and the series together converge, then 17 f0x) dx < Zi- ay £ ay + [T (] gy



The bounds on Zi-1 ke™ are

| =t

1 < 2 1
— <> ke —+—,
2‘: in 23

»

[}

Note 2
In this case, thisis not too good an approximation.
We will get abetter oneif we take the fourth partial sum:

1 2 3 4

The "error," the estimate on the rest of the terms, is that

= - = ] ] 1
> ke'“ga:,+j xe™ dx =+ —5 1.4 x 107"
% 5 e 2e®

Thisis more accuracy than you will probably ever need!!! Lots of things you cannot even integrate.
Example 18—

The harmonic series Zi-: 1/k diverges.

=}
lim I 1/xdx=Inb,
b

1

which goesto infinity as b goes to infinity.

Example 19—

The p, series -1 1/k* converges.

111X gx = -1/b + 1. Since-1/b goesto 0 as b goesto infinity, thisimproper integral converges. So does the p..
Example 20—

S 1k

gt

If p>1, it converges, andif p <1, it diverges. Just use the integral test. It's easy.
Test 3

The comparison test. Given Zk=1 8 Zk-1 b where 0 < g, < b,

1. If Zk=1 bx converges, so does k-1 Ak,

2. If Zi-1 % diverges, so does Zk-1 b,

Let us talk through part 1. The second part can be shown to be equivalent. The partial sums S, of the Zk-1 bx
series are uniformly bounded because the first N terms are bounded by their maximum and the rest are bounded
by L + ¢. Therefore the partial sums of the Zi -1 @ series also are bounded, being respectfully smaller than those
of 2i=1 b, Moreover, since a, > 0, then the partial sums of the &, form an increasing sequence. Now we have an
increasing bounded sequence that has alimit. Therefore, i a converges.



Example 21—
Examine Zi-: 1/(4 + k'],

1/(4 + k%) < 1/k4. Zi -1 1/k* converges by the previous example. Since the given series is smaller termwise than
aconvergent series, it must converge by the comparison test.

Example 22—
Examine -1 (2 + In k)/k,

Zi-1 (2+Ink)k=> 2i., 2/k = twice adivergent series (the harmonic). Since the given seriesis larger term-
wise than adivergent series, the given series must diverge.

Test 4

Thisis the limit comparison test. Given Z&-1 8k and Zi-1 b 8c 20, b 2 0| lim... (a/b) =1 wherer isany
positive number, both series converge, or both diverge.

Example 23—

> 3/(5k* + 4)
k=1

Let us compare this serieswith Zik-1 1/k*,

Divide top and bottom by k4.

{i_lil [3/(5k" + 4) divided by 1/k*]

= lim 3K

~ k- 5k 4+ 4

= lim 3 =3/5
k== 5+ (4/k%)

Since the limit is a positive number, both series do the same thing. Since Zi=1 1/k* converges, so does
¥io13/6k + 4)

Test 5 (Ratio Test)

Givena, >0, lime... (a./a)=r1fr> 1, it diverges. If r < 1, it converges. If r = 1, use another test.
Example 24—

Examine Zi -1 k*/5*,

ay . ,/a, = (k + 1)*/5%* ! divided by k*/5*

(k+1)* 5% kK+2k+1
= =m 'E'I.c_—Fj_ W EE = e— - Ekz e —

The series conver ges.




3 o
lim 21— lim k__ k :l{'i 5 k/sk
=@ k= 5B &
Example 25—

Examine Zi-: 7°/k|

Note

6! means 6(5)(4)(3)(2)(2).

Also Note:

(k+ 21! =(k+ 1)(k!). That is, 10! = 10(9!), and so on.
Let us again use the ratio test.

a, = 75k + 1) divided by 75k!

7k+1 k! 7

{k+1]!x?‘~'k+1

The series converges.

Example 26—

Let'snow look at £i-1 K*/ki

Thisisalittle trickier than most. Again, we use the ratio test.

a, . fa, = (k+ 1) /(k + 1)! divided by kk/k!

Otk (ke e DR (k1)
SThA ) W kDR R

=(1+1/k)F

Since the limi .. [1+ 1/K)lF=e>1, X5, kl‘.-“k! diverges.

Example 27—

In order to show the third part of the previous theorem, you should apply the ratio test to both the harmonic
series and the p, series. Both give aratio of 1. Thefirst series diverges, and the second converges. So, if the
ratio is 1, we must indeed use another test.

Test 6 (Root Test)

Given Zi-: ay, Takelimi.. (@) =r (a2 0] |f r> 1, it diverges. If r < 1, it converges. If r = 1, use another
test.

Note



To show the third part (r = 1), we would again use the harmonic and P2 series. Let us give examples for the first
two parts(r >1andr<1).

Example 28—

> akk
k=1
Take (3¢/kk)k= 3/k. limy_... (3/k) =0 <1 Sp the series converges.

Example 29—

S 2y

k=1

Take (29k2)/ = 2/k2k, limy .. 2/k** = 2/1 =2 (limy_.. k** = limy_... 8% =& =1) Gince 2 > 1, the series
diverges.

Up to thistime, we have dealt exclusively with positive terms. Now we will deal with infinite series that have
terms that alternate from positive to negative. We will assume the first term is positive. The notation will be as
follows: alternating series Zi-1 (=1)**" ax where all g, are positive.

TEST 7

Given an alternating serieswhere (A) 0< A, <a, k=1,2, 3,4, ....and (b) limi... a. =0, the series converges
toSand S<a,

In clearer English, the only thing you must do to show an alternating series converges isto show the terms go to
zero. (If only all series were that easy?)

Example 30—

Alternating harmonic

= (0t
2 i

k=1

converges since the terms go to 0.

Definition

Absol utely convergent—A series 2k=1 & converges absolutely if Z&-1 k! converges.

Note

If aseries converges absolutely, it converges.

Definition

Conditionally convergent—A series Z-1 @ converges conditionally if it converges but Zi-1 !ax! diverges.
Note 1

If we have an alternating series and want to show that it converges conditionally, we only have to show its
terms go to zero. To find out whether it is absolutely convergent, we must use some other test.



Note 2

There are three possibilities for an alternating series: it diverges, converges conditionally, or converges
absolutely.

Let uslook at three alternating series.

Example 31—

Let uslook at Zi-1 (=1)*"*/(2k + 1) This series converges conditionally since (1) the terms go to zero, but (2)
using the limit comparison test with the harmonic series, the positive series behaves as the harmonic series and
diverges.

Example 32—
What about the series Zi-1 (=1)**'/(k* + 1)? This series converges absol utely by comparing to the p, series.
Example 33—

i-1 (=1)%* 'k*/(Kk* + 6] diverges since the terms don't go to 0.
Definition
Region of convergence—We have an infinite series whose terms are functions of x. The set of all points x for
which the series convergesis called the region of convergence.

Now let's get back to the series with x's in them. Series of this type are usually done with the ratio test. Thisis
to find the region of convergence. Then, you will test both the left and right end points. There are three testsin
all.

Example 34—

S Xtk

k=1
Using the ratio test,

lag.fa,l = [x** Yk + 1) divided by |x*kl
kx| kx

k+1!'1k1-{£l k+1

= [x|

k
=

So the region of convergenceis|x|<lor-1<x<1.

Let ustest both 1 and -1 by substituting those values into the original series. x = 1 givesus Zi-1 17k or

-1 1k the harmonic series that diverges. x = -1 gives us 2i-1 (=1)/K | the alternating harmonic series, or
rather the negative of the alternating harmonic series, since the first term is negative. We know this converges.
Therefore, the region of convergenceis-1<x<1.

Important Note

When you test the end points, anything is possible. Both ends could converge, both could diverge, the left could
converge and not the right, or the right could converge but not the left.

Example 35—



Let'slook at Zi-: (x —4)/3%,
Thisis ageometric seriesthat converges for

Irl = X242
T ——3 |{1

Thus, the region of convergenceis|x - 4|<3or 1<x < 7. Test x = 1 and substitute into the original series. We
get

i E3F o i (1) =-1+1-1+1-
k= k=
which diverges (Example 11). For x = 7, we get

3
2 51:1+1+1+1+"'
k=1

which diverges (Example 10).
Example 36—

Y. x4kl aniceone.

lag,Ja | = 1" Yk + 1)1 divided by |x*k!|

_ X“"___\ L] R N
Clk+2) T x| [k+1]k!‘_ k+1
. x
!:“;:E! k+1‘_nl

This says no matter what x is, the limit will always be less than 1. The region of convergenceis all real
numbers.

Example 37—

i (k + 3)'%*
K=1

lay .l = [k +4)x** | divided by | (k + 3)!x*|

ke 4)(k + 3)ixE
(k + 3)!x*

= | (k+ 4)x|

limy,.. [(k+4)x! — == except if x = 0. The region of convergenceisjust the point x = 0.
Which Test To Use

After finishing the original draft of this book but before running off copies, | finished student-testing this
section on infinite series. It became absolutely clear that this page is necessary.

1. Always see if the terms go to zero first. If they don't, the series diverges. If the terms go to zero, the series at
least converges Conditionally if it alternates.



2. Usetheintegral test if the infinite series looks like an integral you have done. By this time, you should have
so many integrals you should be familiar with and/or sick of them.

3. Don't usethe integral test if you can see an easier one or if thereis afactorial symbol.

4. My favoriteisthe ratio test. Alwaystry theratio test if thereisafactorial or an x in the problem. Also try the
ratio test if there is something to a power of k, such as 2k or k.

5. Use the limit comparison test or the comparison test if the series|ooks like one you know like the harmonic
series, p, series, and so on. Use the comparison if the algebrais not too bad. Use the limit comparison if the
algebralooks redlly terrible or even semiterrible.

6. Usetheroot test if thereis at least one term with k in the exponent and no factorial in the problem.

7. If there is a series where there are alot of messy-looking terms multiplying each other, the ratio test is
probably the correct one.

8. Sometimes you may not be able to tell the terms go to zero. The ratio test may give absolute convergence or
divergence immediately.

9. Practice factorial. It is new to most of you. Once again, note that (2n. 1)! = (2n. 1)(2n)! = (2n + 1)(2n)(2n -

10. Most of all, do alot of seriestesting. You will get better if you practice. The nice part is that the problems
are mostly very short.

A Preview of Power Series

We would like to have a polynomial approximation of a function in the vicinity of a given point. Polynomials
are very easy to work with. They can beintegrated easily, while many functions can't be integrated at all. Exact
answers are usually not needed, since we do not live in a perfect world.

We therefore have Taylor's theorem, which gives us a polynomial that approximates f(x) for every x
approximately equal to & the closer x isto a, the better the approximation for a given length. The "meat” of the
theorem is aformulafor the remainder, or error, when you replace the function by the polynomial. Thisis
necessary so that you know how close your answer is.

Taylor's Theorem
1. f(™1)(x), [n + 1 derivatives], continuous on some interval, |, where x isin the interval.

2. aisany number in the interval |, usualy its midpoint.

N f'la){x —a) f"(a)(x —a)?

Splx) =fla) 0 o

3.

f(a)(x - a)* - fi"la)(x — a)®

3! n!

Note

S.(X) isthe sum of the polynomial terms up to term of degreen.



4. The remainder R,(x) = f(x) - S\(x) for all xinl.
Then thereisapoint w in [—w is between a and x— such that

o f[n I:Ej[:{ _ El.:ln k1
Ralx) = (n+1)!

Let us give three examples worked out all the way.

Example 38—
fix)=e"a=0.

Write a polynomial of degree 2. Write the remainder. Find the approximate value for e.2 and estimate the
maximum error from the actual value of e.2.

This sounds like alot of work, but, aswe will see, this process for ex (e doesn't stand for "easy," but it should) is
really quite short.

f{x) =¢" P'(x) =e" f"(x) = e* f(x) = e
flo)=f0)=f"(0)=1 " (w)=e"

flalix —a) f"la)(x-a)P {"[w)lx-a)
fx) = fla) + ——7—+ ——5— + 3l

L o "l
g W

Sa(x) Ra(x)

ef=1+xM1+x%¥2 +e"xV6

Therefore, S(.2) =1+ .2+ (.2)42 = 1.22 and R,(.2) = e¥(.2)3/6, where w is between 0 and .2. Because exisan
increasing function, eV < e2 < e5 < (3)% < 2 (being very wasteful). Therefore, Ral-2) < 2(.2)"/6 = .00267  the
maximum error.

Thisis apretty good approximation. Remember, we were really rough-estimating the error, and thisisonly a
polynomial of degree 2.

Example 39—
Let us do the samefor In (1 + x), polynomial degree 3, a= 0, x = 1, estimate the error for In 1.1.

fix)=In(x+1) PR =x+17" £ =(1)x+1)?
f(x) = (=1)(-2)(x + 1) f*"(x) = (-1)(-2)(-3)(x + 1)
flo)=0 fFO)=1 f0)=-1 " 0)=2 w)=-6(w+1)"

fla)ix—af  f”(a)(x ~ a)

flx)=fla) + f'(a)(x - a) + o + T

£ (w)(x — a)*
* Py

In(1+x)=0+x-1x*/2 + 2xV/6 - 6[{w + 1)'x*/4!

Therefore 5,(x)=x-x¥2+x*/3and In (1.1) =
A-01)42+1(.1)%3=.088333 -, Ri(x) =—x"4(w+ 1)\



Let'sestimate O<w<.1,s01<w+1<11 Andsooooo, /1.1 < /(w + 1) <1; | Rs(.1) | = (1)¥A(W + 1)*<
.14/4 = .000025. Not bad!!

Example 40—

Let's do the same for f(x) = sin x except let a= 30° = /6 with a polynomial of degree 3, and x = 32°. Hold on to
your hats, 'cause thisis pretty messy.

fix)=sinx ¥ix)=cosx ["[x)=-sinx ["[x)=~cosx

fx)=sinx fln/6)=1% F(r/6)=3"42 (["(n/6)="%

f"(n/6) = 3%/2 f4w) = sin w

fla)(x —a)* £"(a)(x - a)®
2! 3!

f(x) = fla) + f'la)(x —a) +

9 [w)(x — a)t
4

[x = m/6)

sin x = ¥ + 3V¢/2 70

W(x — n/6)? [.’f}_’_"z_fz]{x - n/6)°

=

2! 3!

= =

(sin w)(x — n/6)*
4!

+

Now x = 32° = 321/180. So

32 30m m -
X — J'T.I'IEI - m - _']_-éa. = ﬁ = ,Dj-.'.:l

Using the above approximation for sin x,

%(.035)° ~ (3¥%/2)(.035)*
: 6

sin 32 =% + (3Y%/2)(.035) -
=.5299985
The accuracy is not guaranteed, since 7/90 should be more places.
Actudly, | couldn't bear thisinaccuracy. So /90 is.0349066 on my calculator, and if | hit the right buttons, sin

32°=.5299195 (and my calculator is OK). The remainder is (sin w)(.0349066)44! We know sin w is less than
1, so the remainder isless than (.0349066)4/4! = 6.1861288 x 108.

Even with these limited examples, we see different series get more accurate results with the same number of
terms. This can be studied in great detail.

Also, it isvery convenient to know certain power series by heart. We will list the most important together with
region of convergence.



all reals Tox+x420+ 33 ¢+ o+ x"/n! + -

n=0,1,2,3,...
sin % all reals %= A 4+ x5! = XTI (=R 2k 1)L
k=0,1,2,3,...
cos X all reals 1 -2+ x4l = x56! - (=1)™(2k) . ..
k=0,1,2,3,...
In(x+1) -1<x<1 X — X342+ xM3 — x4 - (1) xMk L
k=1,2,34,...
Here are some more.
1/{1 = x) —“lex<l T4+%+ %2+ x4+ xF 4o
k=0,1,2,13,...
Vix+1) -1<x<1 T-x+x*=x'+- -1 k=0,1,2,3,...
Binomial f{x) = (1 + x)? -1=x<1 1+ px+ plp - 1)x%/2!

+plp=1)p-2x"/3'+ - +plp-1) - [p-(n-1)]x"/n!. ..
n=0,1,23,...

Finally there are theorems found in many books that give the conditions under which you can add, subtract,
multiply, divide, differentiate, and integrate infinite series. We can amaze ourselves by the number of functions
we can approximate.

Example 41—

Find the infinite series for cosh x.

cosh x = (¢"+&™)/2

Substitute -x for x.

et =1 4+ 3+ 382 w330 1t e

e =1-x+x42 —27/3! + x4 — -

Add and divide by 2.

cosh x =1 + x*/2! + x*/4! + /6! + -
Pretty neat, eh? Moreto come.

Example 42—

1

]

o z
‘q dx, four terms:



" =14 x4+ x*/2! 4+ x*/3!
e =1-x*+x42-x%6
J: e dx = x — x¥/3 +x°/10 - x7/42
=1-1/3+1/10-1/42 = 78/105
Not too shabby. More to come.
Example 43—

The seriesfor x/(1 + x)2:

Differentiating, we get:

1-"[1+X}=1—X+xz—x1+xl+...

“U/+xP=-1+2x-3x"+4x" -5x" + -

Multiply by -x; our result is.

W1+ x)P=x—2x"+3x° —4x* + 5x° —

When mathematicians do things like this, you tend to believe that mathematics can do everything and any thing.

We can derive every property of the sine and cosine using infinite series, never, never mentioning triangles or
angles. Amazing, huh? Givensinx = x - x3/3! + x5/5! ... and cos x = 1 - x4/2! + x44! - x¢/6!.... How about cos
2x?C0S 2x = 1 - 2x2 + (2/3)x4 -(4/45)x5 ... [2x for X in cos X].

How about sin? x + cos? x = 1?
sin* x +cos® x={x -6 + /120 - )[x - x*/6 + x*/120 -]
+(1-x%2 +x"24 — x*/720 )
x (1 -x42+x'24 - x5/720 )
=x* = x"/3 + 2x%/45 - +1 = x*
+ %43 - 2x8/45 -
=140+040--=1
How about tan x? Well we would like tan x = sin x/cos X.

X + x93+ 2x9/15+17%7/315 -+ =tanx

1—x32 + %424 = x5/72 - JX = X6 + /120 = X /540 -

How about derivatives? If f(x) = sin x, we want f'(X) = cos x.
sinx=x-=x"6+x"/120 = x"/5040 -~
(sin x)" =1 - 3x%/6 + 5x*/120 — 7x5/5040 -

=1 =x%2 4+ x%24 = x%/720 .. =cos X



We could, of course, integrate cos x term by term and get sin x. We could go on and on, getting every property
of the sine and cosine and all other trig functions totally without angles or triangles. The beauty of these power

seriesisthat they are limits of polynomials and are easy to deal with. Y et there are things that are even more
powerful in mathematics. But they must wait for another book.

Late Note

My insightful publisher, in hisinfinite wisdom, has decided to publish my Calc I11. Please look for it in your
quality bookstore, the one that carries my books.



About Bob Miller .. .in HisOwn Words

| received my B.S. and M.S. in math from Brooklyn Poly, now Polytechnic University. After my first class,
which | taught as a substitute for afull professor, one student told another upon leaving the room that "at |east
now we have someone who can teach the stuff.” | was forever hooked on teaching. Since then | have taught at
West field State College, Westfield, Massachusetts; Rutgers; and the City College of New Y ork, where I've
been for the last 28° years. No matter how bad | feel before class, | aways feel great after | start teaching. |
especialy like to teach precalc and calc, and | am always delighted when a student tells me that he or she has
always hated math before and could never learn it, but that taking a class with me has made math
understandable and even enjoyable. | have afantastic wife, Marlene; awonderful daughter, Sheryl; aterrific
son, Eric; and agreat son-in-law, Glenn. The newest member of our family is my adorable, brilliant
granddaughter Kira Lynn, eight days old as of thiswriting. My hobbies are golf, bowling, bridge, and
crossword puzzles. Someday | hope a publisher will allow me to publish the ultimate high school text and the
ultimate calculus text so our country can remain number one forever.

To me, teaching math alwaysisagreat joy. | hope | can give some of thisjoy to you.
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