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Introduction

T 
he mere thought of having to take a required calculus course is enough to 
make legions of students break out in a cold sweat. Others who have no 

intention of ever studying the subject have this notion that calculus is impos-
sibly difficult unless you happen to be a direct descendant of Einstein.

Well, I’m here to tell you that you can master calculus. It’s not nearly as tough 
as its mystique would lead you to think. Much of calculus is really just very 
advanced algebra, geometry, and trig. It builds upon and is a logical exten-
sion of those subjects. If you can do algebra, geometry, and trig, you can do 
calculus.

But why should you bother — apart from being required to take a course? 
Why climb Mt. Everest? Why listen to Beethoven’s Ninth Symphony? Why 
visit the Louvre to see the Mona Lisa? Why watch South Park? Like these 
endeavors, doing calculus can be its own reward. There are many who say 
that calculus is one of the crowning achievements in all of intellectual his-
tory. As such, it’s worth the effort. Read this jargon-free book, get a handle on 
calculus, and join the happy few who can proudly say, “Calculus? Oh, sure, I 
know calculus. It’s no big deal.”

About This Book
Calculus For Dummies, 2nd Edition is intended for three groups of readers: 
students taking their first calculus course, students who need to brush up on 
their calculus to prepare for other studies, and adults of all ages who’d like a 
good introduction to the subject.

If you’re enrolled in a calculus course and you find your textbook less than 
crystal clear, this is the book for you. It covers the most important topics 
in the first year of calculus: differentiation, integration, and infinite series.

If you’ve had elementary calculus, but it’s been a couple of years and you 
want to review the concepts to prepare for, say, some graduate program, 
Calculus For Dummies, 2nd Edition will give you a thorough, no-nonsense 
refresher course.

Non-student readers will find the book’s exposition clear and accessible. 
Calculus For Dummies, 2nd Edition takes calculus out of the ivory tower and 
brings it down to earth.
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This is a user-friendly math book. Whenever possible, I explain the calculus 
concepts by showing you connections between the calculus ideas and easier 
ideas from algebra and geometry. I then show you how the calculus concepts 
work in concrete examples. Only later do I give you the fancy calculus formu-
las. All explanations are in plain English, not math-speak.

The following conventions keep the text consistent and oh-so-easy to follow:

	 ✓	Variables are in italics.

	 ✓	Calculus terms are italicized and defined when they first appear in the 
text.

	 ✓	In the step-by-step problem-solving methods, the general action you 
need to take is in bold, followed by the specifics of the particular 
problem.

It can be a great aid to true understanding of calculus — or any math topic 
for that matter — to focus on the why in addition to the how-to. With this in 
mind, I’ve put a lot of effort into explaining the underlying logic of many of 
the ideas in this book. If you want to give your study of calculus a solid foun-
dation, you should read these explanations. But if you’re really in a hurry, 
you can cut to the chase and read only the important introductory stuff, the 
example problems, the step-by-step solutions, and all the rules and defini-
tions next to the icons. You can then read the remaining exposition only if 
you feel the need.

I find the sidebars interesting and entertaining. (What do you expect? I wrote 
them!) But you can skip them without missing any essential calculus. No, you 
won’t be tested on this stuff.

Minor note: Within this book, you may note that some web addresses break 
across two lines of text. If you’re reading this book in print and want to visit 
one of these web pages, simply key in the web address exactly as it’s noted 
in the text, as though the line break doesn’t exist. If you’re reading this as an 
e-book, you’ve got it easy — just click the web address to be taken directly to 
the web page.

Foolish Assumptions
Call me crazy, but I assume . . . 

	 ✓	You know at least the basics of algebra, geometry, and trig.

		 If you’re rusty, Part II (and the online Cheat Sheet) contains a good 
review of these pre-calculus topics. Actually, if you’re not currently 
taking a calculus course, and you’re reading this book just to satisfy a 
general curiosity about calculus, you can get a good conceptual picture 
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of the subject without the nitty-gritty details of algebra, geometry, and 
trig. But you won’t, in that case, be able to follow all the problem solu-
tions. In short, without the pre-calculus stuff, you can see the calculus 
forest, but not the trees. If you’re enrolled in a calculus course, you’ve got 
no choice — you’ve got to know the trees as well as the forest.

	 ✓	You’re willing to do some w_ _ _ .

		 No, not the dreaded w-word! Yes, that’s w-o-r-k, work. I’ve tried to make 
this material as accessible as possible, but it is calculus after all. You 
can’t learn calculus by just listening to a tape in your car or taking a 
pill — not yet anyway.

Is that too much to ask?

Icons Used in This Book
Keep your eyes on the icons:

	 Next to this icon are the essential calculus rules, definitions, and formulas you 
should definitely know.

	 These are things you need to know from algebra, geometry, or trig, or things 
you should recall from earlier in the book.

	 The bull’s-eye icon appears next to things that will make your life easier. 
Take note.

	 This icon highlights common calculus mistakes. Take heed.

	 In contrast to the Critical Calculus Concepts, you generally don’t need to 
memorize the fancy-pants formulas next to this icon unless your calc teacher 
insists.
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Beyond the Book
There’s some great supplementary calculus material online that you might 
want to check out:

	 ✓	On the online Cheat Sheet, located at www.dummies.com/cheatsheet/
calculus, you’ll find a nice list of important formulas, theorems, defini-
tions, and so on from algebra, geometry, trigonometry, and calculus. This is 
a great place to go if you forget a formula.

	 ✓	At www.dummies.com/extras/calculus, there are articles on some 
calculus topics that many calculus courses skip. For example, the online 
article, “Finding Volume with the Matryoshka Doll Method (a.k.a. the 
Cylindrical Shell Method)” covers one of the methods for computing 
volume that used to be part of the standard calculus curriculum, but 
which is now often omitted. You’ll also find other interesting, off-the-
beaten-path calculus articles. Check them out if you just can’t get  
enough calculus.

Where to Go from Here
Why, Chapter 1, of course, if you want to start at the beginning. If you already 
have some background in calculus or just need a refresher course in one area 
or another, then feel free to skip around. Use the table of contents and index 
to find what you’re looking for. If all goes well, in a half a year or so, you’ll be 
able to check calculus off your list:

Run a marathon

Go skydiving

Write a book

✓   Learn calculus

Swim the English Channel

Cure cancer

Write a symphony

Pull an inverted 720° at the X-Games

For the rest of your list, you’re on your own.



Part I
An Overview of Calculus

	 For Dummies can help you get started with lots of subjects. Visit www.dummies.com 
to learn more.



In this part . . .
	 ✓	 A brief and straightforward explanation of just what calculus is. 

Hint: it’s got a lot to do with curves and with things that are 
constantly changing.

	 ✓	 Examples of where you might see calculus at work in the real 
world: curving cables, curving domes, and the curving path of a 
spacecraft.

	 ✓	 The first of the two big ideas in calculus: differentiation, which 
means finding a derivative. A derivative is basically just the 
fancy calculus version of a slope; and it’s a simple rate — a this 
per that.

	 ✓	 The second big calculus idea: integration. It’s the fancy calculus 
version of adding up small parts of something to get the total.

	 ✓	 An honest-to-goodness explanation of why calculus works: In 
short, it’s because when you zoom in on curves (infinitely far), 
they become straight.



Chapter 1

What Is Calculus?
In This Chapter
▶	You’re only in Chapter 1 and you’re already going to get your first calc test

▶	Calculus — it’s just souped-up regular math

▶	Zooming in is the key

▶	The world before and after calculus

“My best day in Calc 101 at Southern Cal was the day I had to cut class to get 
a root canal.”

— Mary Johnson

“I keep having this recurring dream where my calculus professor is coming 
after me with an axe.”

— Tom Franklin, Colorado College sophomore

“Calculus is fun, and it’s so easy. I don’t get what all the fuss is about.”

— Sam Einstein, Albert’s great grandson

I 
n this chapter, I answer the question “What is calculus?” in plain English, 
and I give you real-world examples of how calculus is used. After reading 

this and the following two short chapters, you will understand what calculus 
is all about. But here’s a twist: Why don’t you start out on the wrong foot by 
briefly checking out what calculus is not?
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What Calculus Is Not
No sense delaying the inevitable. Ready for your first calculus test? Circle 
True or False.

True or False: �Unless you actually enjoy wearing a pocket protector, 
you’ve got no business taking calculus.

True or False: Studying calculus is hazardous to your health.

True or False: Calculus is totally irrelevant.

False, false, false! There’s this mystique about calculus that it’s this ridiculously 
difficult, incredibly arcane subject that no one in their right mind would sign 
up for unless it was a required course.

Don’t buy into this misconception. Sure, calculus is difficult — I’m not going 
to lie to you — but it’s manageable, doable. You made it through algebra, 
geometry, and trigonometry. Well, calculus just picks up where they leave 
off — it’s simply the next step in a logical progression.

And calculus is not a dead language like Latin, spoken only by academics. It’s 
the language of engineers, scientists, and economists. Okay, so it’s a couple 
steps removed from your everyday life and unlikely to come up at a cocktail 
party. But the work of those engineers, scientists, and economists has a huge 
impact on your day-to-day life — from your microwave oven, cell phone, TV, 
and car to the medicines you take, the workings of the economy, and our 
national defense. At this very moment, something within your reach or within 
your view has been impacted by calculus.

So What Is Calculus Already?
Calculus is basically just very advanced algebra and geometry. In one sense, 
it’s not even a new subject — it takes the ordinary rules of algebra and geom-
etry and tweaks them so that they can be used on more complicated prob-
lems. (The rub, of course, is that darn other sense in which it is a new and 
more difficult subject.)

Look at Figure 1-1. On the left is a man pushing a crate up a straight incline. 
On the right, the man is pushing the same crate up a curving incline. The 
problem, in both cases, is to determine the amount of energy required to 
push the crate to the top. You can do the problem on the left with regular 
math. For the one on the right, you need calculus (assuming you don’t know 
the physics shortcuts).
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Figure 1-1: 
The 

difference 
between 

regular 
math and 

calculus: In 
a word, it’s 
the curve.

	

For the straight incline, the man pushes with an unchanging force, and the 
crate goes up the incline at an unchanging speed. With some simple physics 
formulas and regular math (including algebra and trig), you can compute 
how many calories of energy are required to push the crate up the incline. 
Note that the amount of energy expended each second remains the same.

For the curving incline, on the other hand, things are constantly changing. 
The steepness of the incline is changing — and not just in increments like 
it’s one steepness for the first 3 feet then a different steepness for the next 
3 feet. It’s constantly changing. And the man pushes with a constantly changing 
force — the steeper the incline, the harder the push. As a result, the amount 
of energy expended is also changing, not every second or every thousandth 
of a second, but constantly changing from one moment to the next. That’s 
what makes it a calculus problem. By this time, it should come as no surprise 
to you that calculus is described as “the mathematics of change.” Calculus 
takes the regular rules of math and applies them to fluid, evolving problems.

For the curving incline problem, the physics formulas remain the same, and the 
algebra and trig you use stay the same. The difference is that — in contrast to 
the straight incline problem, which you can sort of do in a single shot — you’ve 
got to break up the curving incline problem into small chunks and do each chunk 
separately. Figure 1-2 shows a small portion of the curving incline blown up to 
several times its size.

	

Figure 1-2: 
Zooming 
in on the 
curve —  
voilà, it’s 
straight 

(almost).
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When you zoom in far enough, the small length of the curving incline 
becomes practically straight. Then, because it’s straight, you can solve that 
small chunk just like the straight incline problem. Each small chunk can be 
solved the same way, and then you just add up all the chunks.

That’s calculus in a nutshell. It takes a problem that can’t be done with regu-
lar math because things are constantly changing — the changing quantities 
show up on a graph as curves — it zooms in on the curve till it becomes 
straight, and then it finishes off the problem with regular math.

What makes the invention of calculus such a fantastic achievement is that it 
does what seems impossible: it zooms in infinitely. As a matter of fact, every-
thing in calculus involves infinity in one way or another, because if something 
is constantly changing, it’s changing infinitely often from each infinitesimal 
moment to the next.

Real-World Examples of Calculus
So, with regular math you can do the straight incline problem; with calculus 
you can do the curving incline problem. Here are some more examples.

With regular math you can determine the length of a buried cable that runs 
diagonally from one corner of a park to the other (remember the Pythagorean 
theorem?). With calculus you can determine the length of a cable hung 
between two towers that has the shape of a catenary (which is different, by 
the way, from a simple circular arc or a parabola). Knowing the exact length 
is of obvious importance to a power company planning hundreds of miles of 
new electric cable. See Figure 1-3.

	

Figure 1-3: 
Without 

and with 
calculus.
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You can calculate the area of the flat roof of a home with ordinary geometry. 
With calculus you can compute the area of a complicated, nonspherical 
shape like the dome of the Minneapolis Metrodome. Architects designing 
such a building need to know the dome’s area to determine the cost of mate-
rials and to figure the weight of the dome (with and without snow on it). The 
weight, of course, is needed for planning the strength of the supporting struc-
ture. Check out Figure 1-4.

	

Figure 1-4: 
Sans 

and avec 
calculus.

	

With regular math and some simple physics, you can calculate how much a 
quarterback must lead his receiver to complete a pass. (I’m assuming here 
that the receiver runs in a straight line and at a constant speed.) But when 
NASA, in 1975, calculated the necessary “lead” for aiming the Viking I at Mars, 
it needed calculus because both the Earth and Mars travel on elliptical orbits 
(of different shapes) and the speeds of both are constantly changing — not 
to mention the fact that on its way to Mars, the spacecraft is affected by the 
different and constantly changing gravitational pulls of the Earth, the moon, 
Mars, and the sun. See Figure 1-5.

You see many real-world applications of calculus throughout this book. The 
differentiation problems in Part IV all involve the steepness of a curve — like 
the steepness of the curving incline in Figure 1-1. In Part V, you do integra-
tion problems like the cable-length problem shown back in Figure 1-3. These 
problems involve breaking up something into little sections, calculating each 
section, and then adding up the sections to get the total. More about that in 
Chapter 2.
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Figure 1-5: 
B.C.E. 

(Before the 
Calculus 
Era) and 
C.E. (the 
Calculus 

Era).
	



Chapter 2

The Two Big Ideas of Calculus: 
Differentiation and Integration — 

plus Infinite Series
In This Chapter
▶	Delving into the derivative: It’s a rate and a slope

▶	Investigating the integral — addition for experts

▶	Infinite series: Achilles versus the tortoise — place your bets

T 
his book covers the two main topics in calculus — differentiation and 
integration — as well as a third topic, infinite series. All three topics 

touch the earth and the heavens because all are built upon the rules of 
ordinary algebra and geometry and all involve the idea of infinity.

Defining Differentiation
Differentiation is the process of finding the derivative of a curve. And the 
word “derivative” is just the fancy calculus term for the curve’s slope or 
steepness. And because the slope of a curve is equivalent to a simple rate 
(like miles per hour or profit per item), the derivative is a rate as well as a 
slope.

The derivative is a slope
In algebra, you learned about the slope of a line — it’s equal to the ratio of 
the rise to the run. In other words, Slope= rise

run
. See Figure 2-1. Let me guess: 

A sudden rush of algebra nostalgia is flooding over you.
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Figure 2-1: 
The slope of 
a line equals 
the rise over 

the run.
	

In Figure 2-1, the rise is half as long as the run, so the line has a slope of 1/2.

On a curve, the slope is constantly changing, so you need calculus to determine 
its slope. See Figure 2-2.

	

Figure 2-2: 
The slope of 
a curve isn’t 

so simple.
	

Just like the line in Figure 2-1, the straight line between A and B in Figure 2-2 
has a slope of 1/2. And the slope of this line is the same at every point 
between A and B. But you can see that, unlike the line, the steepness of the 
curve is changing between A and B. At A, the curve is less steep than the line, 
and at B, the curve is steeper than the line. What do you do if you want the 
exact slope at, say, point C? Can you guess? Time’s up. Answer: You zoom in. 
See Figure 2-3.

	

Figure 2-3: 
Zooming 
in on the 

curve.
	

When you zoom in far enough — really far, actually infinitely far — the little 
piece of the curve becomes straight, and you can figure the slope the old-
fashioned way. That’s how differentiation works.



15 Chapter 2: The Two Big Ideas of Calculus

The derivative is a rate
Because the derivative of a curve is the slope — which equals rise

run
 or rise 

per run — the derivative is also a rate, a this per that like miles per hour or  
gallons per minute (the name of the particular rate simply depends on the 
units used on the x- and y-axes). The two graphs in Figure 2-4 show a relation-
ship between distance and time — they could represent a trip in your car.

	

Figure 2-4: 
Average 
rate and 
instanta-

neous rate.
	

A regular algebra problem is shown on the left in Figure 2-4. If you know 
the x- and y-coordinates of points A and B, you can use the slope formula 
(

Slope=
rise

run
=
y
2
−y

1

x
2
−x

1

)

 to calculate the slope between A and B, and, in this 

problem, that slope gives you the average rate in miles per hour for the inter-
val from A to B.

For the problem on the right, on the other hand, you need calculus. (You 
can’t use the slope formula because you’ve only got one point.) Using the 
derivative of the curve, you can determine the exact slope or steepness at 
point C. Just to the left of C on the curve, the slope is slightly lower, and just 
to the right of C on the curve, the slope is slightly higher. But precisely at C, 
for a single infinitesimal moment, you get a slope that’s different from the 
neighboring slopes. The slope for this single infinitesimal point on the curve 
gives you the instantaneous rate in miles per hour at point C.
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Investigating Integration
Integration is the second big idea in calculus, and it’s basically just fancy 
addition. Integration is the process of cutting up an area into tiny sections, 
figuring the areas of the small sections, and then adding up the little bits of 
area to get the whole area. Figure 2-5 shows two area problems — one that 
you can do with geometry and one where you need calculus.

	

Figure 2-5: 
If you can’t 
determine 

the area 
on the 

left, hang 
up your 

calculator.
	

The shaded area on the left is a simple rectangle, so its area, of course, equals 
length times width. But you can’t figure the area on the right with regular 
geometry because there’s no area formula for this funny shape. So what do you 
do? Why, zoom in, of course. Figure 2-6 shows the top portion of a narrow strip 
of the weird shape blown up to several times its size.

	

Figure 2-6: 
For the 

umpteenth 
time, when 

you zoom 
in, the curve 

becomes 
straight.

	

When you zoom in as shown in Figure 2-6, the curve becomes practically 
straight, and the further you zoom in, the straighter it gets. After zooming in, 
you get the shape on the right in Figure 2-6, which is practically an ordinary 
trapezoid (its top is still slightly curved). Well, with the magic of integration, 
you zoom in infinitely close (sort of — you can’t really get infinitely close, 
right?). At that point, the shape is exactly an ordinary trapezoid — or, if you 
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want to get really basic, it’s a triangle sitting on top of a rectangle. Because 
you can compute the areas of rectangles, triangles, and trapezoids with ordi-
nary geometry, you can get the area of this and all the other thin strips and 
then add up all these areas to get the total area. That’s integration.

Figure 2-7 has two graphs of a city’s electrical energy consumption on a typi-
cal summer day. The horizontal axes show the number of hours after mid-
night, and the vertical axes show the amount of power (in kilowatts) used by 
the city at different times during the day.

	

Figure 2-7: 
Total  

kilowatt-
hours of 

energy used 
by a city 
during a 

single day.
	

The crooked line on the left and the curve on the right show how the number 
of kilowatts of power depends on the time of day. In both cases, the shaded 
area gives the number of kilowatt-hours of energy consumed during a typical 
24-hour period. The shaded area in the oversimplified and unrealistic problem 
on the left can be calculated with regular geometry. But the true relationship 
between the amount of power used and the time of day is more complicated 
than a crooked straight line. In a realistic energy-consumption problem, you’d 
get something like the graph on the right. Because of its weird curve, you 
need calculus to determine the shaded area. In the real world, the relationship 
between different variables is rarely as simple as a straight-line graph. That’s 
what makes calculus so useful.

Sorting Out Infinite Series
Infinite series deal with the adding up of an infinite number of numbers. 
Don’t try this on your calculator unless you’ve got a lot of extra time on your 
hands. Here’s a simple example. The following sequence of numbers is gener-
ated by a simple doubling process — each term is twice the one before it:

1, 2, 4, 8, 16, 32, 64, 128, . . . 
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The infinite series associated with this sequence of numbers is just the sum of 
the numbers:

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + . . .

Divergent series
The preceding series of doubling numbers is divergent because if you continue 
the addition indefinitely, the sum will grow bigger and bigger without limit. And 
if you could add up “all” the numbers in this series — that’s all infinitely many 
of them — the sum would be infinity. Divergent usually means — there are 
exceptions — that the series adds up to infinity.

Divergent series are rather uninteresting because they do what you expect. 
You keep adding more numbers, so the sum keeps growing, and if you con-
tinue this forever, the sum grows to infinity. Big surprise.

Convergent series
Convergent series are much more interesting. With a convergent series, you 
also keep adding more numbers, the sum keeps growing, but even though 
you add numbers forever and the sum grows forever, the sum of all the 
infinitely many terms is a finite number. This surprising result brings me to 
Zeno’s famous paradox of Achilles and the tortoise. (That’s Zeno of Elea, of 
course, from the 5th century b.c.)

Achilles is racing a tortoise — some gutsy warrior, eh? Our generous hero 
gives the tortoise a 100-yard head start. Achilles runs at 20 mph; the tortoise 
“runs” at 2 mph. Zeno used the following argument to “prove” that Achilles 
will never catch or pass the tortoise. If you’re persuaded by this “proof,” by 
the way, you’ve really got to get out more.

Imagine that you’re a journalist covering the race for Spartan Sports Weekly, 
and you’re taking a series of photos for your article. Figure 2-8 shows the situ-
ation at the start of the race and your first two photos.

You take your first photo the instant Achilles reaches the point where the 
tortoise started. By the time Achilles gets there, the tortoise has “raced” 
forward and is now 10 yards ahead of Achilles. (The tortoise moves a tenth 
as fast as Achilles, so in the time it takes Achilles to travel 100 yards, the 
tortoise covers a tenth as much ground, or 10 yards.) If you do the math, you 
find that it took Achilles about 10 seconds to run the 100 yards. (For the sake 
of argument, let’s call it exactly 10 seconds.)
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Figure 2-8: 
Achilles 

versus the 
tortoise — 

 it’s a photo 
finish.

	

You have a cool app that allows you to look at your first photo and note pre-
cisely where the tortoise is as Achilles crosses the tortoise’s starting point. 
The tortoise’s position is shown as point A in the middle image in Figure 2-8. 
Then you take your second photo when Achilles reaches point A, which takes  
him about one more second. In that second, the tortoise has moved ahead 
1 yard to point B. You take your third photo (not shown) when Achilles 
reaches point B and the tortoise has moved ahead to point C.

Every time Achilles reaches the point where the tortoise was, you take 
another photo. There is no end to this series of photographs. Assuming you 
and your camera can work infinitely fast, you will take an infinite number of 
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photos. And every single time Achilles reaches the point where the tortoise 
was, the tortoise has covered more ground — even if only a millimeter or a 
millionth of a millimeter. This process never ends, right? Thus, the argument 
goes, because you can never get to the end of your infinite series of photos, 
Achilles can never catch or pass the tortoise.

Well, as everyone knows, Achilles does in fact reach and pass the tortoise — 
thus the paradox. The mathematics of infinite series explains how this infinite 
series of time intervals sums to a finite amount of time — the precise time 
when Achilles passes the tortoise. Here’s the sum for those who are curious:

10 sec.+1 sec.+0.1 sec.+0.01 sec.+0.001 sec.+ ...

=11.111... sec., or 11
1

9
seconds.

Achilles passes the tortoise after 11 1
9

 seconds at the 111 1
9
-yard mark.

Infinite series problems are rich with bizarre, counterintuitive paradoxes. 
You see more of them in Part V.



Chapter 3

Why Calculus Works
In This Chapter
▶	Using limits to zoom in on curves

▶	Slope equals rise over run

▶	Area of a triangle equals one-half base times height

▶	The Pythagorean theorem: a2+b2= c2

I 
n Chapters 1 and 2, I talk a lot about the process of zooming in on a curve 
till it looks straight. The mathematics of calculus works because of this 

basic nature of curves — that they’re locally straight — in other words, 
curves are straight at the microscopic level. The earth is round, but to us it 
looks flat because we’re sort of at the microscopic level when compared to 
the size of the earth. Calculus works because after you zoom in and curves 
look straight, you can use regular algebra and geometry with them. The 
zooming-in process is achieved through the mathematics of limits.

The Limit Concept: A Mathematical 
Microscope

The mathematics of limits is the microscope that zooms in on a curve. Here’s 
how a limit works. Say you want the exact slope or steepness of the parabola 
y=x

2 at the point (1, 1). See Figure 3-1.
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Figure 3-1: 
The 

parabola 
y = x 2 with a 
tangent line 

at (1, 1).
	

With the slope formula from algebra, you can figure the slope of the line 
between (1, 1) and (2, 4). From (1, 1) to (2, 4), you go over 1 and up 3, so the

slope is 3
1

, or just 3. But you can see in Figure 3-1 that this line is steeper than 

the tangent line at (1, 1) that shows the parabola’s steepness at that specific 
point. The limit process sort of lets you slide the point that starts at (2, 4) 
down toward (1, 1) till it’s a thousandth of an inch away, then a millionth, 
then a billionth, and so on down to the microscopic level. If you do the math, 
the slopes between (1, 1) and your moving point would look something like 
2.8, then 2.6, then 2.4, and so on, and then, once you get to a thousandth of 
an inch away, 2.001, 2.000001, 2.000000001, and so on. And with the almost 
magical mathematics of limits, you can conclude that the slope at (1, 1) is 
precisely 2, even though the sliding point never reaches (1, 1). (If it did, you’d 
only have one point left and you need two separate points to use the slope 
formula.) The mathematics of limits is all based on this zooming-in process, 
and it works, again, because the further you zoom in, the straighter the 
curve gets.

What Happens When You Zoom In
Figure 3-2 shows three diagrams of one curve and three things you might like 
to know about the curve: 1) the exact slope or steepness at point C, 2) the area 
under the curve between A and B, and 3) the exact length of the curve from 
A to B. You can’t answer these questions with regular algebra or geometry for-
mulas because the regular formulas for slope, area, and length work for straight 
lines (and simple curves like circles), but not for weird curves like this one.
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The first row of Figure 3-3 shows a magnified detail from the three diagrams 
of the curve in Figure 3-2. The second row shows further magnification, and 
the third row yet another magnification. For each little window that gets 
blown up (like from the first to the second row of Figure 3-3), I’ve drawn in 
a new dotted diagonal line to help you see how with each magnification, the 
blown up pieces of the curves get straighter and straighter. This process is 
continued indefinitely.

	

Figure 3-2:  
One 

curve —  
three 

questions.
	

	

Figure 3-3: 
Zooming 
in to the 

microscopic 
level.
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Finally, Figure 3-4 shows the result after an “infinite” number of 
magnifications — sort of. After zooming in forever, an infinitely small piece 
of the original curve and the straight diagonal line are now one and the same. 
You can think of the lengths 3 and 4 in Figure 3-4 (no pun intended) as 3 and 
4 millionths of an inch, no, make that 3 and 4 billionths of an inch, no, trillionths, 
no, gazillionths, . . . .

	

Figure 3-4: 
Your final 
destina-

tion —  
the sub, 

sub, sub . . .  
subatomic 

level.
	

Now that you’ve zoomed in “forever,” the curve is perfectly straight and you 
can use regular algebra and geometry formulas to answer the three questions 
about the curve in Figure 3-2.

For the diagram on the left in Figure 3-4, you can now use the regular slope 

formula from algebra to find the slope at point C. It’s exactly 3
4

 — that’s the 

answer to the first question in Figure 3-2. This is how differentiation works.

For the diagram in the middle of Figure 3-4, the regular triangle formula from 
geometry gives you an area of 6. Then you can get the shaded area inside 
the strip shown in Figure 3-2 by adding this 6 to the area of the thin rectangle 
under the triangle (the dark-shaded rectangle in Figure 3-2). Then you repeat 
this process for all the other narrow strips (not shown), and finally just add 
up all the little areas. This is how integration works.

And for the diagram on the right of Figure 3-4, the Pythagorean theorem from 
geometry gives you a length of 5. Then to find the total length of the curve 
from A to B in Figure 3-2, you do the same thing for the other minute sections 
of the curve and then add up all the little lengths. This is how you calculate 
arc length (another integration problem).

Well, there you have it. Calculus uses the limit process to zoom in on a curve 
till it’s straight. After it’s straight, the rules of regular-old algebra and geometry 
apply. Calculus thus gives ordinary algebra and geometry the power to handle 
complicated problems involving changing quantities (which on a graph show 
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up as curves). This explains why calculus has so many practical uses, because if 
there’s something you can count on — in addition to death and taxes — it’s that 
things are always changing.

Two Caveats, or Precision, Preschmidgen
Not everything in this chapter (or this book for that matter) will satisfy the 
high standards of the Grand Poobah of Precision in Mathematical Writing.

I may lose my license to  
practice mathematics
With regard to the middle diagrams in Figures 3-2 through 3-4, I’m playing a  
bit fast and loose with the mathematics. The process of integration — finding 
the area under a curve — doesn’t exactly work the way I explained. My 
explanation isn’t really wrong, it’s just a bit sideways. But — I don’t care 
what anybody says — that’s my story and I’m stickin’ to it. Actually, it’s not 
a bad way to think about how integration works, and, anyhow, this is only an 
introductory chapter.

What the heck does “infinity”  
really mean?
The second caveat is that whenever I talk about infinity — like in the last sec-
tion where I discussed zooming in an infinite number of times — I do something 
like put the word “infinity” in quotes or say something like “you sort of zoom 
in forever.” I do this to cover my butt. Whenever you talk about infinity, you’re 
always on shaky ground. What would it mean to zoom in forever or an infinite 
number of times? You can’t do it; you’d never get there. We can imagine — sort 
of — what it’s like to zoom in forever, but there’s something a bit fishy about 
the idea — and thus the qualifications.
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Part II
Warming Up with Calculus 

Prerequisites

	 Find out about determining volume using a calculus technique that works like those 
nested Russian dolls at www.dummies.com/extras/calculus.



In this part . . .
	 ✓	 Algebra review: Richard Feynman, the great 20th century 

physicist, said (tongue-in-cheek) that calculus was the lan-
guage that God spoke. Well, I don’t know about that, but I do 
know that algebra is the language of calculus. If you want to 
learn calculus, you’ve got to know your algebra.

	 ✓	 Logarithm review: What’s log 10? And ln 1? Hint for the first  
one: It’s the loneliest number. Hint for the second: There’s noth-
ing to it.

	 ✓	 Function review: Even and odd functions, exponential functions, 
inverse functions, function transformations, and so on.

	 ✓	 Some trig: The all-important unit circle. And the related geome-
try of the 30˚-60˚-90˚ and 45˚-45˚-90˚ triangles.

	 ✓	 More trig: SohCahToa and the graphs of sine, cosine, and 
tangent.



Chapter 4

Pre-Algebra and Algebra Review
In This Chapter
▶	Winning the fraction battle: Divide and conquer

▶	Boosting your powers and getting to the root of roots

▶	Laying down the laws of logarithms and having fun with factoring

▶	Hanging around the quad solving quadratics

A 
lgebra is the language of calculus. You can’t do calculus without knowing 
algebra any more than you can write Chinese poetry without knowing 

Chinese. So, if your pre-algebra and algebra are a bit rusty — you know, all 
those rules for algebraic expressions, equations, fractions, powers, roots, logs, 
factoring, quadratics, and so on — make sure you review the following basics.

Fine-Tuning Your Fractions
Open a calculus book to any random page and you’ll very likely see a 
fraction — you can’t escape them. Dealing with them requires that you 
know a few rules.

Some quick rules
First is a rule that’s simple but very important because it comes up time and 
time again in the study of calculus:

	 You can’t divide by zero! The denominator of a fraction can never equal zero.

0

5
 equals zero, but 5

0
 is undefined.
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It’s easy to see why 5
0

 is undefined when you consider how division works:

8

2
=4

This tells you, of course, that 2 goes into 8 four times; in other words, 
2+2+2+2=8. Well, how many zeros would you need to add up to make 5? 
You can’t do it, and so you can’t divide 5 (or any other number) by zero.

Here’s another quick rule.

	 Definition of reciprocal: The reciprocal of a number or expression is its mul-
tiplicative inverse — which is a fancy way of saying that the product of some-
thing and its reciprocal is 1. To get the reciprocal of a fraction, flip it upside 

down. Thus, the reciprocal of 3
4

 is 4
3

, the reciprocal of 6, which equals 6
1

, is 1
6

, 

and the reciprocal of x−2 is 1

x−2
.

Multiplying fractions
Adding is usually easier than multiplying, but with fractions, the reverse is 
true — so I want to deal with multiplication first.

Multiplying fractions is a snap — just multiply straight across the top and 
straight across the bottom:

2

5
⋅

3

4
=

6

20
=

3

10
and

a

b
⋅

c

d
=
ac

bd

Dividing fractions
Dividing fractions has one additional step: You flip the second fraction and 
then multiply — like this:

3

10
÷
4

5

=
3

10
⋅

5

4
=

15

40
(Now cancel a 5 from the numerator and denominator.)

=
3

8
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Note that you could have canceled before multiplying. Because 5 goes into 5 
one time, and 5 goes into 10 two times, you can cancel a 5:

Also note that the original problem could have been written as 

3

10

4

5

.

Adding fractions
You know that

2

7
+
3

7
=

2+3

7
=

5

7

You can add these up like this because you already have a common denomi-
nator. It works the same with variables:

a

c
+
b

c
=
a+b

c

Notice that wherever you have a 2 in the top equation, an a is in the bottom 
equation; wherever a 3 is in the top equation, a b is in the bottom equation; 
and ditto for 7 and c. This illustrates a powerful principle:

	 Variables always behave exactly like numbers.

If you’re wondering what to do with variables in a problem, ask yourself how 
you would do the problem if there were numbers in it instead of variables. 
Then do the problem with the variables the same way, like this:

a

b
+
c

d

You can’t add these fractions like you did in the previous example because 
this problem has no common denominator. Now, assuming you’re stumped, 
do the problem with numbers instead of variables. Remember how to add 
2

5
+
3

8
? I’m not going to simplify each line of the solution. You’ll see why in a 

minute.

	 1.	 Find the least common denominator (actually, any common denomi-
nator will work when adding fractions), and convert the fractions.
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		  The least common denominator is 5 times 8, or 40, so convert each frac-
tion into 40ths:

2

5
+
3

8

=
2

5
⋅

8

8
+
3

8
⋅

5

5

=
2 ⋅ 8

5 ⋅ 8
+
3 ⋅ 5

5 ⋅ 8

(8 ⋅5 equals 5 ⋅8 so you can reverse the order. These

fractions are 40ths, but I want to leave the 5 ⋅8 in the

denominators for now.)

	 2.	 Add the numerators and keep the common denominator unchanged:

=
2 ⋅8+3 ⋅5

5 ⋅8

(

You can see this equals
16+15

40
, or

31

40
.

)

Now you’re ready to do the original problem, a
b
+
c

d
. In this problem, you have 

an a instead of a 2, a b instead of a 5, a c instead of a 3, and a d instead of an 8. 
Just carry out the exact same steps as you do when adding 2

5
+
3

8
. You can 

think of each of the numbers in the above solution as stamped on one side 
of a coin with the corresponding variable stamped on the other side. For 
instance, there’s a coin with a 2 on one side and an a on the opposite side; 
another coin has an 8 on one side and a d on the other side, and so on. Now, 
take each step of the previous solution, flip each coin over, and voilà, you’ve 
got the solution to the original problem. Here’s the final answer:

ad + cb

bd

Subtracting fractions
Subtracting fractions works like adding fractions except instead of adding, 
you subtract. Insights like this are the reason they pay me the big bucks.

Canceling in fractions
Finishing calculus problems — after you’ve done all the calculus steps — 
sometimes requires some pretty messy algebra, including canceling. Make 
sure you know how to cancel and when you can and can’t do it.
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In the fraction, 
x
5
y
2

x
3
z

, three xs can be canceled from the numerator and denom-

inator, resulting in the simplified fraction, 
x
2
y
2

z
. If you write out the xs instead 

of using exponents, you can more clearly see how this works:

x
5
y
2

x
3
z

=
x ⋅ x ⋅x ⋅x ⋅x ⋅y ⋅y

x ⋅x ⋅x ⋅z

Now cancel three xs from the numerator and denominator:

That leaves you with 
x ⋅x ⋅y ⋅y

z
, or 

x
2
y
2

z
.

Express yourself
An algebraic expression or just expression is something like xyz or a2p3

√

q−6, 
basically anything without an equal sign (if it has an equal sign, it’s an equation). 
Canceling works the same way with expressions as it does for single variables. 
By the way, that’s a tip not just for canceling, but for all algebra topics.

	 Expressions always behave exactly like variables.

So, if each x in the preceding problem is replaced with (xyz−q), you’ve got

(xyz−q)
5
y
2

(xyz−q)
3
z

And three of the expression (xyz−q) cancel from the numerator and denomi-
nator, just as the three xs canceled. The simplified result is

(xyz−q)
2
y
2

z

The multiplication rule for canceling
Now you know how to cancel. You also need to know when you can cancel.

	 The multiplication rule: You can cancel in a fraction only when it has an 
unbroken chain of multiplication through the entire numerator and the entire 
denominator.
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Canceling is allowed in a fraction like this:

a
2
b
3
(xy−pq)

4
(c+d)

ab
4
z(xy−pq)

3

Think of multiplication as something that conducts electricity. Electrical 
current can flow from one end of the numerator to the other, from the a2 to 
the (c+d), because all the variables and expressions are connected with multi-
plication. (Note that an addition or subtraction sign inside parentheses — the 
“+” in (c+d) for instance — doesn’t break the current.) Because the denomi-
nator also has an unbroken chain of multiplication, canceling is allowed. You 
can cancel one a, three bs, and three of the expression (xy−pq). Here’s the 
result:

a(xy−pq)(c+d)

bz

When you can’t cancel: But adding an innocuous-looking 1 to the numerator 
(or denominator) of the original fraction changes everything:

a
2
b
3
(xy−pq)

4
(c+d)+1

ab
4
z(xy−pq)

3

The addition sign in front of the 1 breaks the electrical current, and no cancel-
ing is allowed anywhere in the fraction.

Absolute Value — Absolutely Easy
Absolute value just turns a negative number into a positive and does nothing 
to a positive number or zero. For example,

It’s a bit trickier when dealing with variables. If x is zero or positive, then the 
absolute value bars do nothing, and thus,

But if x is negative, the absolute value of x is positive, and you write
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For example, if x=−5, |

|

−5|
|

=−(−5)=5.

	 −x can be a positive number. When x is a negative number, −x (read as “nega-
tive x,” or “the opposite of x”) is a positive.

Empowering Your Powers
You are powerless in calculus if you don’t know the power rules:

	 ✓	x0
=1

		 This is the rule regardless of what x equals — a fraction, a negative, 
anything — except for zero (zero raised to the zero power is undefined). 
Let’s call it the kitchen sink rule (where the kitchen sink represents zero):

	 (everything but the kitchen sink)
0
=1

	 ✓	x−3
=

1

x
3
and x

−a
=

1

x
a

		 For example, 4−2= 1

4
2
=

1

16
. This is huge! Don’t forget it! Note that the 

power is negative, but the answer of 1
16

 is not negative.

	 ✓	

		 You can use this handy rule backwards to convert a root problem into 
an easier power problem.

	 ✓	x2
⋅x

3
=x

5
and x

a
⋅x

b
=x

a+b

		 You add the powers here. (By the way, you can’t do anything to x2 plus x3.  
You can’t add x2 to x3 because they’re not like terms. You can only add 
or subtract terms when the variable part of each term is the same, 
for instance, 3xy2z+4xy

2
z=7xy

2
z. This works for exactly the same 

reason — I’m not kidding — that 3 chairs plus 4 chairs is 7 chairs; and you 
can’t add unlike terms, just like you can’t add 5 chairs plus 2 cars.)

	 ✓	x
5

x
3
=x

2
and

x
2

x
6
=x

−4
and

x
a

x
b
=x

a−b

		 Here you subtract the powers.

	 ✓	(x2
)
3
=x

6
and (x

a
)
b
=x

ab

		 You multiply the powers here.
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	 ✓	(xyz)3=x3
y
3
z
3
and (xyz)

a
=x

a
y
a
z
a

		 Here you distribute the power to each variable.

	 ✓	

		 Here you also distribute the power to each variable.

	 ✓	(x + y)2=x2
+y

2 NOT!

		 Do not distribute the power in this case. Instead, multiply it out the long 
way: (x+y)2=(x+y)(x+y)=x

2
+xy+xy+y

2
=x

2
+2xy+y

2. Watch what 
happens if you erroneously use the preceding “law” with numbers: (3+5)

2 
equals 82, or 64, not 32+5

2, which equals 9+25, or 34.

Rooting for Roots
Roots, especially square roots, come up all the time in calculus. So knowing 
how they work and understanding the fundamental connection between roots 
and powers is essential. And, of course, that’s what I’m about to tell you.

Roots rule — make that, root rules
Any root can be converted into a power, for example, 3

√

x=x
1∕3, 

√

x=x
1∕2, and 

4
√

x
3
=x

3∕4. So, if you get a problem with roots in it, you can just convert each 
root into a power and use the power rules instead to solve the problem (this 
is a very useful technique). Because you have this option, the following root 
rules are less important than the power rules, but you really should know 
them anyway:

	 ✓	
√

0=0 and

√

1=1

		 But you knew that, right?

		 No negatives under even roots. You can’t have a negative number under 
a square root or under any other even number root — at least not in 
basic calculus.

	 ✓	
√

a ⋅

√

b=
√

a ⋅b,
3
√

a ⋅
3
√

b=
3
√

ab, and
n
√

a ⋅
n
√

b=
n
√

ab

	 ✓	

√

a
√

b

=

�

a

b
,

3
√

a

3
√

b

= 3

�

a

b
, and

n
√

a

n
√

b

= n

�

a

b
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	 ✓	

		 You multiply the root indexes.

	 ✓	
√
a
2
= �a� ,

4
√
a
4
= �a� ,

6
√
a
6
= �a� , and so on.

		 If you have an even number root, you need the absolute value bars on 
the answer, because whether a is positive or negative, the answer is 
positive. If it’s an odd number root, you don’t need the absolute value 
bars. Thus,

	 ✓	
3
√

a
3
=a,

5
√

a
5
=a, and so on.

	 ✓	   NOT!

		 Make this mistake and go directly to jail. Try solving it with numbers: 
√

2
2
+3

2
=
√

13, which does not equal 2+3.

Simplifying roots
Here are two last things on roots. First, you need to know the two methods 
for simplifying roots like 

√

300 or 
√

504.

The quick method works for 
√

300 because it’s easy to see a large perfect 
square, 100, that goes into 300. Because 300 equals 100 times 3, the 100 comes 
out as its square root, 10, leaving the 3 inside the square root. The answer is 
thus 10

√

3.

For 
√

504, it’s not as easy to find a large perfect square that goes into 504, so 
you’ve got to use the longer method:

	 1.	 Break 504 down into a product of all of its prime factors.

		
√

504=
√

2 ⋅2 ⋅2 ⋅3 ⋅3 ⋅7

	 2.	 Circle each pair of numbers.

		
√

2 ⋅2 ⋅2 ⋅3 ⋅3 ⋅7

	 3.	 For each circled pair, take one number out.

		 2 ⋅3
√

2 ⋅7

	 4.	 Simplify.

		 6
√

14
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The last thing about roots is that, by convention, you don’t leave a root in the 
denominator of a fraction — it’s a silly, anachronistic convention, but it’s still 

being taught, so here it is. If your answer is, say, 2
√

3

, you multiply it by 

√

3
√

3

:

2
√

3

⋅

√

3
√

3

=
2

√

3

3

Logarithms — This Is Not an Event  
at a Lumberjack Competition

A logarithm is just a different way of expressing an exponential relationship 
between numbers. For instance,

2
3
=8, so,

 (read as “log base 2 of 8 equals 3”).

These two equations say precisely the same thing. You could think of 23=8 
as the way we write it in English and  as the way they write it in Latin. 
And because it’s easier to think and do math in English, make sure — when you 
see something like  — that you can instantly “translate” it into 3x =81. 
The base of a logarithm can be any number greater than zero other than 1, and 
by convention, if the base is 10, you don’t write it. For example, log 1000=3 
means . Also, log base e (e≈2.72) is written ln instead of log

e
.

You should know the following logarithm properties:

	 ✓	log
c
1=0

	 ✓	log
c
c=1

	 ✓	log
c
(ab)= log

c
a+ log

c
b

	 ✓	log
c

(

a

b

)

= log
c
a− log

c
b

	 ✓	

	 ✓	
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		 With this property, you can compute something like log
3
20 on a calculator 

that only has log buttons for base 10 (the “log” button) and base e (the 

“ln” button) by entering 
log 20

log 3
, using base 10 for c. On many newer-model 

calculators, you can compute log
3
20 directly.

	 ✓	log
a
a
b
=b

	 ✓	alogab=b

Factoring Schmactoring — When  
Am I Ever Going to Need It?

When are you ever going to need it? For calculus, that’s when.

Factoring means “unmultiplying,” like rewriting 12 as 2 ⋅2 ⋅3. You won’t run 
across problems like that in calculus, however. For calculus, you need to be 
able to factor algebraic expressions, like factoring 5xy+10yz as 5y(x+2z). 
Algebraic factoring always involves rewriting a sum of terms as a product. What 
follows is a quick refresher course.

Pulling out the GCF
The first step in factoring any type of expression is to pull out — in other words, 
factor out — the greatest thing that all of the terms have in common — that’s 
the greatest common factor or GCF. For example, each of the three terms of 
8x

3
y
4
+12x

2
y
5
+20x

4
y
3
z contains the factor 4x2

y
3, so it can be pulled out like 

this: 4x2
y
3
(2xy+3y

2
+5x

2
z). Make sure you always look for a GCF to pull out 

before trying other factoring techniques.

Looking for a pattern
After pulling out the GCF if there is one, the next thing to do is to look for one 
of the following three patterns. The first pattern is huge; the next two are much 
less important.

Difference of squares
Knowing how to factor the difference of squares is critical:

a
2
−b

2
=(a−b)(a+b)
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If you can rewrite something like 9x4
−25 so that it looks like (this)2−(that)

2, 
then you can use this factoring pattern. Here’s how:

9x
4
−25=(3x

2
)
2
−(5)

2

Now, because (this)2−(that)
2
= (this− that)(this+ that), you can factor the 

problem:

(3x
2
)
2
−(5)

2
=(3x

2
−5)(3x

2
+5)

	 A difference of squares, a2
−b

2, can be factored, but a sum of squares, , 
cannot be factored. In other words, a2+b2, like the numbers 7 and 13, is 
prime — you can’t break it up.

Sum and difference of cubes
You might also want to memorize the factor rules for the sum and difference 
of cubes:

a
3
+b

3
=(a+b)(a

2
−ab+b

2
)

a
3
−b

3
=(a−b)(a

2
+ab+b

2
)

Trying some trinomial factoring
Remember regular old trinomial factoring from your algebra days?

	 Several definitions: A trinomial is a polynomial with three terms. A polynomial 
is an expression like 4x5

−6x
3
+x

2
−5x+2 where, except for the constant (the 

2 in this example), all the terms have a variable raised to a positive integral 
power. In other words, no fraction powers or negative powers allowed (So, 1

x
 

is not a polynomial because it equals x−1). And no radicals, no logs, no sines 
or cosines, or anything else — just terms with a coefficient, like the 4 in 4x5, 
multiplied by a variable raised to a power. The degree of a polynomial is the 
polynomial’s highest power of x. The polynomial at the beginning of this para-
graph, for instance, has a degree of 5.

It wouldn’t be a bad idea to get back up to speed with problems like

6x
2
+13x−5=(2x+5)(3x−1)

where you have to factor the trinomial on the left into the product of the two 
binomials on the right. A few standard techniques for factoring a trinomial 
like this are floating around the mathematical ether — you probably learned 
one or more of them in your algebra class. If you remember one of the 
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techniques, great. You won’t have to do a lot of trinomial factoring in calcu-
lus, but it does come in handy now and then, so, if your skills are a bit rusty, 
check out Algebra II For Dummies by Mary Jane Sterling (Wiley, 2007).

Solving Quadratic Equations
A quadratic equation is any second degree polynomial equation — that’s when 
the highest power of x, or whatever other variable is used, is 2.

You can solve quadratic equations by one of three basic methods.

Method 1: Factoring
Solve 2x2

−5x=12.

	 1.	 Bring all terms to one side of the equation, leaving a zero on the other 
side.

		 2x2
−5x−12=0

	 2.	 Factor.

		 (2x+3)(x−4)=0

		  You can check that these factors are correct by multiplying them. Does 
FOIL (First, Outer, Inner, Last) ring a bell?

	 3.	 Set each factor equal to zero and solve (using the zero product 
property).

		

So, this equation has two solutions: x=−
3

2
 and x=4.

	 The discriminant tells you whether a quadratic is factorable. Method 1 will 
work only if the quadratic is factorable. The quick test for that is a snap. A 
quadratic is factorable if the discriminant, b2−4ac, is a perfect square number 
like 0, 1, 4, 9, 16, 25, etc. (The discriminant is the stuff under the square root 
symbol in the quadratic formula — see Method 2 below.) In the quadratic 
equation from Step 1 above, 2x2

−5x−12=0, for example, a=2, b=−5, and 
c=−12. b2−4ac equals, therefore, (−5)2−4(2)(−12) which equals 121. Since 121 
is a perfect square (112), the quadratic is factorable. Because trinomial factor-
ing is often so quick and easy, you may choose to just dive into the problem 
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and try to factor it without bothering to check the value of the discriminant. 
But if you get stuck, it’s not a bad idea to check the discriminant so you don’t 
waste more time trying to factor an unfactorable quadratic trinomial. (But 
whether or not the quadratic is factorable, you can always solve it with the 
quadratic formula discussed in the next section.)

Method 2: The quadratic formula
The solution or solutions of a quadratic equation, ax2

+bx+c=0, are given by 
the quadratic formula:

x=
−b±

√

b
2
−4ac

2a

Now solve the same equation from Method 1 with the quadratic formula:

	 1.	 Bring all terms to one side of the equation, leaving a zero on the other 
side.

		 2x2
−5x−12=0

	 2.	 Plug the coefficients into the formula.

		  In this example, a equals 2, b is −5, and c is , so

		

		  This agrees with the solutions obtained previously — the solutions 
better be the same because we’re solving the same equation.

Method 3: Completing the square
The third method of solving quadratic equations is called completing the 
square because it involves creating a perfect square trinomial that you can 
solve by taking its square root.
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Solve 3x2
=24x+27.

	 1.	 Put the x2 and the x terms on one side and the constant on the other.

		 3x2
−24x=27

	 2.	 Divide both sides by the coefficient of x2 (unless, of course, it’s 1).

		 x2
−8x=9

	 3.	 Take half of the coefficient of x, square it, then add that to both sides.

		  Half of −8 is −4 and (−4)2 is 16, so add 16 to both sides:

		 x2
−8x+16=9+16

	 4.	 Factor the left side into a binomial squared. Notice that the factor always 
contains the same number you found in Step 3 (–4 in this example).

		 (x−4)
2
=25

	 5.	 Take the square root of both sides, remembering to put a ± sign on the 
right side.

		

√

(x−4)
2
=
√

25

x−4=±5

	 6.	 Solve.
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Chapter 5

Funky Functions and Their  
Groovy Graphs

In This Chapter
▶	Figuring out functions and relations

▶	Learning about lines

▶	Getting particular about parabolas

▶	Grappling with graphs

▶	Transforming functions and investigating inverse functions

V 
irtually everything you do in calculus concerns functions and their graphs 
in one way or another. Differential calculus involves finding the slope or 

steepness of various functions, and integral calculus involves computing the 
area underneath functions. And not only is the concept of a function critical for 
calculus, it’s one of the most fundamental ideas in all of mathematics.

What Is a Function?
Basically, a function is a relationship between two things in which the numerical 
value of one thing in some way depends on the value of the other. Examples are 
all around us: The average daily temperature for your city depends on, and is a 
function of, the time of year; the distance an object has fallen is a function of how 
much time has elapsed since you dropped it; the area of a circle is a function of 
its radius; and the pressure of an enclosed gas is a function of its temperature.

The defining characteristic of a function
	 A function has only one output for each input.

Consider Figure 5-1.
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Figure 5-1: 
The Coke 

machine is 
a function. 

The slot 
machine  

is not.
	

The Coke machine is a function because after plugging in the inputs (your 
choice and your money), you know exactly what the output is. With the slot 
machine, on the other hand, the output is a mystery, so it’s not a function. 
Look at Figure 5-2.

	

Figure 5-2: 
f is a  

function;  
g is not.

	

The squaring function, f, is a function because it has exactly one output 
assigned to each input. It doesn’t matter that both 2 and −2 produce the 
same output of 4 because given an input, say −2, there’s no mystery about 
the output. When you input 3 into g, however, you don’t know whether the 
output is 1 or 2. (For now, don’t worry about how the g rule turns its inputs 
into its outputs.) Because no output mysteries are allowed in functions, g is 
not a function.

	 Good functions, unlike good literature, have predictable endings.

	 Definitions of domain and range: The set of all inputs of a function is called 
the domain of the function; the set of all outputs is the range of the function.
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Some people like to think of a function as a machine. Consider again the 
squaring function, f, from Figure 5-2. Figure 5-3 shows two of the inputs and 
their respective outputs.

	

Figure 5-3: 
A function 
machine: 

Meat goes 
in, sausage 
comes out.

	

You pop a 1 into the function machine, and out pops a 1; you put in a −2 and 
a 4 comes out. A function machine takes an input, operates on it in some way, 
then spits out the output.

Independent and dependent variables
	 Definitions of dependent variable and independent variable: In a function, 

the thing that depends on the other thing is called the dependent variable; the 
other thing is the independent variable. Because you plug numbers into the 
independent variable, it’s also called the input variable. After plugging in a 
number, you then calculate the output or answer for the dependent variable, 
so the dependent variable is also called the output variable. When you graph 
a function, the independent variable goes on the x-axis, and the dependent 
variable goes on the y-axis.

Sometimes the dependence between the two things is one of cause and 
effect — for example, raising the temperature of a gas causes an increase 
in the pressure. In this case, temperature is the independent variable and 
pressure the dependent variable because the pressure depends on the 
temperature.

Often, however, the dependence is not one of cause and effect, but just some 
sort of association between the two things. Usually, though, the independent 
variable is the thing we already know or can easily ascertain, and the depen-
dent variable is the thing we want to figure out. For instance, you wouldn’t say 
that time causes an object to fall (gravity is the cause), but if you know how 
much time has passed since you dropped an object, you can figure out how 
far it has fallen. So, time is the independent variable, and distance fallen is the 
dependent variable; and you would say that distance is a function of time.
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Whatever the type of correspondence between the two variables, the depen-
dent variable (the y-variable) is the thing we’re usually more interested in. 
Generally, we want to know what happens to the dependent or y-variable as 
the independent or x-variable goes to the right: Is the y-variable (the height 
of the graph) rising or falling and, if so, how steeply, or is the graph level, 
neither going up nor down?

Function notation
A common way of writing the function y=5x

3
−2x

2
+3 is to replace the “y” 

with “f (x)” and write f (x)=5x
3
−2x

2
+3. It’s just a different notation for the 

same thing. These two equations are, in every respect, mathematically identi-
cal. Students are often puzzled by function notation when they see it the first 
time. They wonder what the “f ” is and whether f (x) means f times x. It does 
not. If function notation bugs you, my advice is to think of f (x) as simply the 
way y is written in some foreign language. Don’t consider the f and the x sepa-
rately; just think of f (x) as a single symbol for y.

You can also think of f (x) (read as “f of x”) as short for “a function of x.” You 
can write y= f (x)=3x

2, which is translated as “y is a function of x and that 
function is 3x2.” However, sometimes other letters are used instead of f — such 
as g(x) or p(x) — often just to differentiate between functions. The function 
letter doesn’t necessarily stand for anything, but sometimes the initial letter of 
a word is used (in which case you use an uppercase letter). For instance, you 
know that the area of a square is determined by squaring the length of its side: 
Area= side

2 or A= s
2. The area of a square depends on, and is a function of, the 

length of its side. With function notation, you can write A(s)= s2. (Quick quiz: 
How does f (x)=x2 differ from the area of a square function, A(s)= s2  ? Answer: 
for f (x)=x2, x can equal any number, but with A(s)= s2, s must be positive, 
because the length of a side of a square cannot be negative or zero. The two 
functions thus have different domains.)

Consider, again, the squaring function y=x2 or f (x)=x2. When you input 3 for x,  
the output is 9. Function notation is convenient because you can concisely 
express the input and the output by writing f (3)=9 (read as “f of 3 equals 9”). 
Remember that f (3)=9 means that when x is 3, f (x) is 9; or, equivalently, it tells 
you that when x is 3, y is 9.

Composite functions
A composite function is the combination of two functions. For example, the 
cost of the electrical energy needed to air condition your place depends on 
how much electricity you use, and usage depends on the outdoor temperature. 
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Because cost depends on usage and usage depends on temperature, cost will 
depend on temperature. In function language, cost is a function of usage, usage 
is a function of temperature, and thus cost is a function of temperature. This 
last function, a combination of the first two, is a composite function.

Let f (x)=x2 and g(x)=5x−8. Input 3 into g(x): g(3)=5 ⋅3−8, which equals 7. 
Now take that output, 7, and plug it into f (x): f (7)=7

2
=49. The machine meta-

phor shows what I did here. Look at Figure 5-4. The g machine turns the 3 into 
a 7, and then the f machine turns the 7 into a 49.

	

Figure 5-4: 
Two 

function 
machines.

	

You can express the net result of the two functions in one step with the following 
composite function:

f (g(3))=49

You always calculate the inside function of a composite function first: g(3)=7. 
Then you take the output, 7, and calculate f (7), which equals 49.

To determine the general composite function, f (g(x)), plug g(x), which equals 
5x−8, into f (x). In other words, you want to determine f (5x−8). The f function 
or f machine takes an input and squares it. Thus,

f (5x−8)= (5x−8)
2

=(5x−8)(5x−8)

=25x
2
−40x−40x+64

=25x
2
−80x+64

Thus, f (g(x))=25x
2
−80x+64.

	 With composite functions, the order matters. As a general rule, f (g(x))≠g(f (x)).



50 Part II: Warming Up with Calculus Prerequisites 

What Does a Function Look Like?
I’m no math historian, but everyone seems to agree that René Descartes 
(1596–1650) came up with the x-y coordinate system shown in Figure 5-5.

	

Figure 5-5: 
The 

Cartesian 
(for 

Descartes) 
or x–y 

coordinate 
system.

	

Isaac Newton (1642–1727) and Gottfried Leibniz (1646–1716) are credited with 
inventing calculus, but it’s hard to imagine that they could have done it with-
out Descartes’ contribution several decades earlier. Think of the coordinate 
system (or the screen on your graphing calculator) as your window into the 
world of calculus. Virtually everything in your calculus textbook and in this 
book involves (directly or indirectly) the graphs of lines or curves — usually 
functions — in the x-y coordinate system.

Consider the four graphs in Figure 5-6.

These four curves are functions because they satisfy the vertical line test. 
(Note: I’m using the term curve here to refer to any shape, whether it’s 
curved or straight.)

	 The vertical line test: A curve is a function if a vertical line drawn through the 
curve — regardless of where it’s drawn — touches the curve only once. This 
guarantees that each input within the function’s domain has exactly one output.

No matter where you draw a vertical line on any of the four graphs in Figure 5-6, 
the line touches the curve at only one point. Try it.

If, however, a vertical line can be drawn so that it touches a curve two or 
more times, then the curve is not a function. The two curves in Figure 5-7, for 
example, are not functions.
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Figure 5-6: 
Four 

functions.
	

	

Figure 5-7: 
These two 

curves 
are not 

functions 
because 
they fail 

the vertical 
line test. 

They are, 
however, 
relations.
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So, the four curves in Figure 5-6 are functions, and the two in Figure 5-7 are 
not, but all six of the curves are relations.

	 Definition of relation: A relation is any collection of points on the x-y coordi-
nate system.

You spend a little time studying some non–function relations in calculus — 
circles, for instance — but the vast majority of calculus problems involve 
functions.

Common Functions and Their Graphs
You’re going to see hundreds of functions in your study of calculus, so it 
wouldn’t be a bad idea to familiarize yourself with the basic ones in this section: 
the line, the parabola, the absolute value function, the cubing and cube root 
functions, and the exponential and logarithmic functions.

Lines in the plane in plain English
A line is the simplest function you can graph on the coordinate plane. (Lines are 
important in calculus because you often study lines that are tangent to curves 
and because when you zoom in far enough on a curve, it looks and behaves like 
a line.) Figure 5-8 shows an example of a line: y=3x+5.

	

Figure 5-8: 
The graph 
of the line 
y = 3x +5.
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Hitting the slopes
The most important thing about the line in Figure 5-8 — at least for your study 
of calculus — is its slope or steepness. Notice that whenever x goes 1 to the 
right, y goes up by 3. A good way to visualize slope is to draw a stairway 
under the line (see Figure 5-9). The vertical part of the step is called the rise, 
the horizontal part is called the run, and the slope is defined as the ratio of 
the rise to the run:

Slope=
rise

run
=

3

1
=3

	

Figure 5-9: 
The line 

y = 3x +5 
has a slope 

of 3.
	

You don’t have to make the run equal to 1. The ratio of rise to run, and thus 
the slope, always comes out the same, regardless of what size you make the 
steps. If you make the run equal to 1, however, the slope is the same as the 
rise because a number divided by 1 equals itself. This is a good way to think 
about slope — the slope is the amount that a line goes up (or down) as it 
goes 1 to the right.

	 Definitions of positive, negative, zero, and undefined slopes: Lines that go 
up to the right have a positive slope; lines that go down to the right have a 
negative slope. Horizontal lines have a slope of zero, and vertical lines do not 
have a slope — you say that the slope of a vertical line is undefined.
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Here’s the formula for slope:

Slope=
y
2
−y

1

x
2
−x

1

Pick any two points on the line in Figure 5-9, say (1, 8) and (3, 14), and plug them 
into the formula to calculate the slope:

Slope=
14−8

3−1
=

6

2
=3

This computation involves, in a sense, a stairway step that goes over 2 and 
up 6. The answer of 3 agrees with the slope you can see in Figure 5-9.

Any line parallel to this one has the same slope, and any line perpendicular 
to this one has a slope of − 1

3
, which is the opposite reciprocal of 3.

	 Parallel lines have the same slope. Perpendicular lines have opposite 
reciprocal slopes.

Graphing lines
If you have the equation of the line, y=3x+5, but not its graph, you can 
graph the line the old-fashioned way or with your graphing calculator. The 
old-fashioned way is to create a table of values by plugging numbers into x 
and calculating y. If you plug 0 into x, y equals 5; plug 1 into x, and y equals 8; 
plug 2 into x, and y is 11, and so on. Table 5-1 shows the results.

Table 5-1	 Points on the Line y = 3x + 5

Plot the points, connect the dots, and put arrows on both ends — there’s 
your line. This is a snap with a graphing calculator. Just enter y=3x+5 and 
your calculator graphs the line and produces a table like Table 5-1.

Slope-intercept and point-slope forms
You can see that the line in Figure 5-9 crosses the y-axis at 5 — this point is 
the y-intercept of the line. Because both the slope of 3 and the y-intercept of 5 
appear in the equation y=3x+5, this equation is said to be in slope-intercept 
form. Here’s the form written in the general way:
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Slope-intercept form:

y=mx+b

(Where m is the slope and b is the y-intercept.)

(If that doesn’t ring a bell — even a distant, faint bell — go directly to the 
registrar and drop calculus, but do not under any circumstances return 
this book.)

All lines, except for vertical lines, can be written in this form. Vertical lines are 
written like x=6, for example. The number tells you where the vertical line 
crosses the x–axis.

The equation of a horizontal line also looks different, y=10 for example. But it 
technically fits the form y=mx+b — it’s just that because the slope of a hori-
zontal line is zero, and because zero times x is zero, there is no x-term in the 
equation. (But, if you felt like it, you could write y=10 as y=0x+10.)

	 Definition of a constant function: A line is the simplest type of function, and 
a horizontal line (called a constant function) is the simplest type of line. It’s 
nonetheless fairly important in calculus, so make sure you know that a hori-
zontal line has an equation like y=10 and that its slope is zero.

If m=1 and b=0, you get the function y=x. This line goes through the origin 
(0, 0) and makes a 45° angle with both coordinate axes. It’s called the identity 
function because its outputs are the same as its inputs.

	 Point-slope form: In addition to the slope-intercept form for the equation of a 
line, you should also know the point-slope form:

y−y
1
=m(x−x

1
)

To use this form, you need to know — you guessed it — a point on a line and the 
line’s slope. You can use any point on the line. Consider the line in Figure 5-9 
again. Pick any point, say (2, 11), and then plug the x- and y-coordinates of the 
point into x

1
 and y

1
, and plug the slope, 3, into m:

y−11=3(x−2)

With a little algebra, you can convert this equation into the one we already 
know, y=3x+5. Try it.
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Parabolic and absolute value 
functions — even steven
You should be familiar with the two functions shown in Figure 5-10: the parabola, 
f (x)=x

2, and the absolute value function, g(x)= |x|.

	

Figure 5-10: 
The graphs 
of f (x )= x 2 

and 
g(x )= |x | .

	

Notice that both functions are symmetric with respect to the y-axis. In other 
words, the left and right sides of each graph are mirror images of each other. 
This makes them even functions. A polynomial function like y=9x

4
−4x

2
+3, 

where all powers of x are even, is one type of even function. (Such an even 
polynomial function can contain — but need not contain — a constant term 
like the 3 in the preceding function. This makes sense because 3 is the same 
as 3x0 and zero is an even number.) Another even function is y=cos(x) (see 
Chapter 6).

A couple oddball functions
Graph f (x)=x3 and g(x)= 3

√

x on your graphing calculator. These two functions 
illustrate odd symmetry. Odd functions are symmetric with respect to the 
origin which means that if you were to rotate them 180° about the origin, they 
would land on themselves. A polynomial function like y=4x

5
−x

3
+2x, where 

all powers of x are odd, is one type of odd function. (Unlike an even polyno-
mial function, an odd polynomial function cannot contain a constant term.) 
Another odd function is y = sin(x) (see Chapter 6).
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Many functions are neither even nor odd, for example y=3x
2
−5x. My high 

school English teacher said a paragraph should never have just one sentence, 
so voilà, now it’s got two.

Exponential functions
An exponential function is one with a power that contains a variable, such as 
f (x)=2

x or g(x)=10
x. Figure 5-11 shows the graphs of both these functions on 

the same x-y coordinate system.

	

Figure 5-11: 
The graphs 
of f (x )= 2

x 
and 

g(x )= 10
x.

	

Both functions go through the point (0, 1), as do all exponential functions of 
the form f (x)=bx. When b is greater than 1, you have exponential growth. All 
such functions get higher and higher without limit as they go to the right 
toward positive infinity. As they go to the left toward negative infinity, they 
crawl along the x-axis, always getting closer to the axis, but never touching 
it. You use these and related functions for figuring things like investments, 
inflation, and growing population.

When b is between 0 and 1, you have an exponential decay function. The graphs 
of such functions are like exponential growth functions in reverse. Exponential 
decay functions also cross the y-axis at (0, 1), but they go up to the left forever, 
and crawl along the x-axis to the right. These functions model things that 
shrink over time, such as the radioactive decay of uranium.

Logarithmic functions
A logarithmic function is simply an exponential function with the x- and y-axes 
switched. In other words, the up-and-down direction on an exponential graph 
corresponds to the right-and-left direction on a logarithmic graph, and the 
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right-and-left direction on an exponential graph corresponds to the up-and-
down direction on a logarithmic graph. (If you want a refresher on logs, see 
Chapter 4.) You can see this relationship in Figure 5-12, in which both f (x)=2

x

and g(x)= log
2
x are graphed on the same set of axes.

	

Figure 5-12: 
The graphs 
of f (x )= 2

x 
and 

g(x )= log
2
x .

	

Both exponential and logarithmic functions are monotonic. A monotonic func-
tion either goes up over its entire domain (called an increasing function) or goes 
down over its whole domain (a decreasing function). (I’m assuming here — as is 
almost always the case — that the motion along the function is from left to right.)

Notice the symmetry of the two functions in Figure 5-12 about the line y=x. 
This makes them inverses of each other, which brings us to the next topic.

Inverse Functions
The function f (x)=x2

(for x≥0) and the function f −1(x)=
√

x (read as “f 
inverse of x”) are inverse functions because each undoes what the other 
does. In other words, f (x)=x2 takes an input of, say, 3 and produces an 
output of 9 (because 32=9); f −1(x)=

√

x takes the 9 and turns it back into 
the 3 (because 

√

9=3). Notice that f (3)=9 and f −1(9)=3. You can write all of 
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this in one step as f −1(f (3))=3. It works the same way if you start with f −1(x). 
f
−1
(16)=4 (because 

√

16=4), and f (4)=16 (because 42=16). If you write this 
in one step, you get f (f −1(16))=16. (Note that while only f −1(x) is read as f 
inverse of x, both functions are inverses of each other.)

	 The inverse function rule: The fancy way of summing up all of this is to say that 
f (x) and f −1(x) are inverse functions if and only if f −1(f (x))=x and f (f −1(x))=x.

	 Don’t confuse the superscript  in f −1
(x) with the exponent −1. The  

exponent −1 gives you the reciprocal of something, for example x−1
=

1

x
. But 

f
−1
(x) is the inverse of f (x). It does not equal 1

f (x)
, which is the reciprocal of 

f (x). So why is the exact same symbol used for two different things? Beats me.

When you graph inverse functions, each is the mirror image of the other, 
reflected over the line y=x. Look at Figure 5-13, which graphs the inverse 
functions f (x)=x2

(for x≥0) and f −1(x)=
√

x.

	

Figure 5-13: 
The graphs 
of f (x )= x 2, 
(x ≥ 0), and 
f −1(x )=

√

x .

	

If you rotate the graph in Figure 5-13 counterclockwise so that the line y=x 
is vertical, you can easily see that f (x) and f −1(x) are mirror images of each 
other. One consequence of this symmetry is that if a point like (2, 4) is on one 
of the functions, the point (4, 2) will be on the other. Also, the domain of f is 
the range of f −1, and the range of f is the domain of f −1.
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Shifts, Reflections, Stretches,  
and Shrinks

Any function can be transformed into a related function by shifting it hori-
zontally or vertically, flipping it over horizontally or vertically, or stretching 
or shrinking it horizontally or vertically. I do the horizontal transformations 
first. Consider the exponential function y=2

x. See Figure 5-14.

	

Figure 5-14: 
The graph of 

y = 2
x
.

	  

Horizontal transformations
Horizontal changes are made by adding a number to or subtracting a number 
from the input variable x or by multiplying x by some number. All horizontal 
transformations, except reflection, work the opposite way you’d expect: 
Adding to x makes the function go left, subtracting from x makes the function 
go right, multiplying x by a number greater than 1 shrinks the function, and 
multiplying x by a number less than 1 expands the function. For example, 
the graph of y=2

x+3 has the same shape and orientation as the graph in 
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Figure 5-14; it’s just shifted three units to the left. Instead of passing through 
(0, 1) and (1, 2), the shifted function goes through (−3, 1) and (−2, 2). And the 
graph of y=2

x−3 is three units to the right of y=2
x. The original function and 

both transformations are shown in Figure 5-15.

If you multiply the x in y=2
x by 2, the function shrinks horizontally by a factor 

of 2. So every point on the new function is half of its original distance from the 
y-axis. The y-coordinate of every point stays the same; the x-coordinate is cut 

in half. For example, y=2
x goes through (1, 2), so y=2

2x goes through ( 1
2
, 2);  

y=2
x goes through (−4, 1

16
), so y=2

2x goes through (−2, 1

16
). Multiplying x by 

a number less than 1 has the opposite effect. When y=2
x is transformed into 

y=2
(1∕4)x, every point on y=2

x is pulled away from the y-axis to a distance 4 
times what it was. To visualize the graph of y=2

(1∕4)x, imagine you’ve got the 
graph of y=2

x on an elastic coordinate system. Grab the coordinate system 
on the left and right and stretch it by a factor of 4, pulling everything away 
from the y-axis, but keeping the y-axis in the center. Now you’ve got the graph 
of y=2

(1∕4)x. Check these transformations out on your graphing calculator.

	

Figure 5-15: 
The graphs 

of y = 2
x
, 

y = 2
x+3

,  
and y = 2

x−3
.

	

The last horizontal transformation is a reflection over the y-axis. Multiplying 
the x in y=2

x by  reflects it over or flips it over the y-axis. For instance, the 

point (1, 2) becomes  and (−2, 1
4
) becomes (2, 1

4
). See Figure 5-16.
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Figure 5-16: 
The graphs 

of y = 2
x and 

y = 2
−x
.

	

Vertical transformations
To transform a function vertically, you add a number to or subtract a number 
from the entire function or multiply the whole function by a number. To do 
something to an entire function, say y=10

x, imagine that the entire right side of 
the equation is inside parentheses, like y=(10

x
). Now, all vertical transforma-

tions are made by placing a number somewhere on the right side of the equation 
outside the parentheses. (Often, you don’t actually need the parentheses, but 
sometimes you do.) Unlike horizontal transformations, vertical transformations 
work the way you expect: Adding makes the function go up, subtracting makes 
it go down, multiplying by a number greater than 1 stretches the function, and 
multiplying by a number less than 1 shrinks the function. For example, consider 
the following transformations of the function y=10

x: 

y=10
x
+6 shifts the original function up 6 units.

y=10
x
−2 shifts the original function down 2 units.

y=5 ⋅10
x stretches the original function vertically by a factor of 5.

y=
1

3
⋅10

x shrinks the original function vertically by a factor of 3.

Multiplying the function by −1 reflects it over the x-axis, or, in other words, flips 
it upside down. Look at these transformations on your graphing calculator.

As you saw in the previous section, horizontal transformations change only 
the x-coordinates of points, leaving the y-coordinates unchanged. Conversely, 
vertical transformations change only the y-coordinates of points, leaving the 
x-coordinates unchanged.



Chapter 6

The Trig Tango
In This Chapter
▶	Socking it to ’em with SohCahToa

▶	Everybody’s got an angle: 30°, 45°, 60°

▶	Circumnavigating the unit circle

▶	Graphing trig functions

▶	Investigating inverse trig functions

M 
any calculus problems involve trigonometry, and the calculus itself is 
enough of a challenge without having to relearn trig at the same time. 

So, if your trig is rusty — I’m shocked — review these trig basics, or else!

Studying Trig at Camp SohCahToa
The study of trig begins with the right triangle. The three main trig functions 
(sine, cosine, and tangent) and their reciprocals (cosecant, secant, and cotan-
gent) all tell you something about the lengths of the sides of a right triangle 
that contains a given acute angle — like angle x in Figure 6-1. The longest side 
of this right triangle (or any right triangle), the diagonal side, is called the 
hypotenuse. The side that’s 3 units long in this right triangle is referred to as 
the opposite side because it’s on the opposite side of the triangle from angle 
x, and the side of length 4 is called the adjacent side because it’s adjacent to, 
or touching, angle x.

	

Figure 6-1: 
Sitting 

around the 
campfire, 
studying 

a right 
triangle.
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SohCahToa is a meaningless mnemonic device that helps you remember the 
definitions of the sine, cosine, and tangent functions. SohCahToa uses the 
initial letters of sine, cosine, and tangent, and the initial letters of hypotenuse, 
opposite, and adjacent to help you remember the following definitions. (To 
remember how to spell SohCahToa, note its pronunciation and the fact that it 
contains three groups of three letters each.) For any angle, �,

Soh Cah Toa

sin�=
O

H
cos�=

A

H
tan�=

O

A

For the triangle in Figure 6-1,

sin x=
O

H
=

3

5
cos x=

A

H
=

4

5
tan x=

O

A
=

3

4

The other three trig functions are reciprocals of these: Cosecant (csc) is the 
reciprocal of sine, secant (sec) is the reciprocal of cosine, and cotangent 
(cot) is the reciprocal of tangent.

csc �=
1

sin �
=

1

O

H

=
H

O
sec �=

1

cos �
=

1

A

H

=
H

A
cot �=

1

tan �
=

1

O

A

=
A

O

So for the triangle in Figure 6-1,

csc x=
H

O
=

5

3
sec x=

H

A
=

5

4
cot x=

A

O
=

4

3

Two Special Right Triangles
Because so many garden variety calculus problems involve 30°, 45°, and 60° 
angles, it’s a good idea to memorize the two right triangles in Figure 6-2.

	

Figure 6-2: 
The  

45°-45°-90° 
triangle  
and the 

30°-60°-90° 
triangle.
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The 45°-45°-90° triangle
Every 45°-45°-90° is the shape of a square cut in half along its diagonal. The 
45°-45°-90° triangle in Figure 6-2 is half of a 1-by-1 square. The Pythagorean 

theorem gives you the length of its hypotenuse, 
√

2, or about 1.41.

	 The Pythagorean theorem: For any right triangle, a2+b2= c2, where a and b 
are the lengths of the triangle’s legs (the sides touching the right angle) and 
c is the length of its hypotenuse.

When you apply the SohCahToa trig functions and their reciprocals to the 45° 
angle in the 45°-45°-90° triangle, you get the following trig values:

sin 45
◦

=
O

H
=

1
√

2

=

√

2

2
≈0.71 csc 45

◦

=
H

O
=

√

2

1
=
√

2≈1.41

cos 45
◦

=
A

H
=

1
√

2

=

√

2

2
≈0.71 sec 45

◦

=
H

A
=

√

2

1
=
√

2≈1.41

tan 45
◦

=
O

A
=

1

1
=1 cot 45

◦

=
A

O
=

1

1
=1

The 30°-60°-90° triangle
Every 30°-60°-90° triangle is half of an equilateral triangle cut straight down 
the middle along its altitude.

The 30°-60°-90° in Figure 6-2 is half of a 2-by-2-by-2 equilateral triangle. It has 

legs of lengths 1 and 
√

3 (about 1.73), and a 2-unit long hypotenuse.

	 Don’t make the common error of switching the 2 with the 
√
3 in a 30°-60°-90° 

triangle. Remember that 2 is more than 
√

3 (
√

4 equals 2, so 
√

3 be must be less 
than 2) and that the hypotenuse is always the longest side of a right triangle.

	 When you sketch a 30°-60°-90° triangle, exaggerate the fact that it’s wider 
than it is tall (or taller than wide if you tip it up). This makes it obvious that 
the shortest side (length of 1) is opposite the smallest angle (30°).

Here are the trig values for the 30° angle in the 30°-60°-90° triangle:

sin 30
◦

=
O

H
=

1

2
csc 30

◦

=
H

O
=

2

1
=2

cos 30
◦

=
A

H
=

√

3

2
≈0.87 sec 30

◦

=
H

A
=

2
√

3

=
2

√

3

3
≈1.15

tan 30
◦

=
O

A
=

1
√

3

=

√

3

3
≈0.58 cot 30

◦

=
A

O
=

√

3

1
=
√

3≈1.73
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The 30°-60°-90° triangle kills two birds with one stone because it also gives 
you the trig values for a 60° angle. Look at Figure 6-2 again. For the 60° 

angle, the 
√

3 side of the triangle is now the opposite side for purposes of 
SohCahToa because it’s on the opposite side of the triangle from the 60° 
angle. The 1-unit side becomes the adjacent side for the 60° angle, and the 
2-unit side is still, of course, the hypotenuse. Now use SohCahToa again to 
find the trig values for the 60° angle:

sin 60
◦

=
O

H
=

√

3

2
≈0.87 csc 60

◦

=
H

O
=

2
√

3

=
2

√

3

3
≈1.15

cos 60
◦

=
A

H
=

1

2
sec 60

◦

=
H

A
=

2

1
=2

tan 60
◦

=
O

A
=

√

3

1
=
√

3≈1.73 cot 60
◦

=
A

O
=

1
√

3

=

√

3

3
≈0.58

The mnemonic device SohCahToa, along with the two oh-so-easy-to-remember 
right triangles in Figure 6-2, gives you the answers to 18 trig problems!

Circling the Enemy with the Unit Circle
SohCahToa only works with right triangles, and so it can only handle acute 
angles — angles less than 90°. (The angles in a triangle must add up to 180°; 
because a right triangle has a 90° angle, the other two angles must each be 
less than 90°.) With the unit circle, however, you can find trig values for any 
size angle. The unit circle has a radius of one unit and is set in an x-y coordi-
nate system with its center at the origin. See Figure 6-3.

	

Figure 6-3: 
The  

so-called 
unit circle.
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Figure 6-3 has quite a lot of information, but don’t panic; it will all make 
perfect sense in a minute.

Angles in the unit circle
	 Measuring angles: To measure an angle in the unit circle, start at the positive 

x-axis and go counterclockwise to the terminal side of the angle.

For example, the 150° angle in Figure 6-3 begins at the positive x-axis and 

ends at the segment that hits the unit circle at 
�

−

√

3

2
,
1

2

�

. If you go clockwise 

instead, you get an angle with a negative measure (like the −70◦ angle in the 
figure).

Measuring angles with radians
You know all about degrees. You know what 45° and 90° angles look like; you 
know that about face means a turn of 180° and that turning all the way around 
till you’re back to where you started is a 360° turn.

But degrees aren’t the only way to measure angles. You can also use radians. 
Degrees and radians are just two different ways to measure angles, like 
inches and centimeters are two ways to measure length.

	 Definition of radian: The radian measure of an angle is the length of the arc 
along the circumference of the unit circle cut off by the angle.

Look at the 30° angle in quadrant I of Figure 6-3. Do you see the bolded sec-
tion of the circle’s circumference that is cut off by that angle? Because a 
whole circle is 360°, that 30° angle is one-twelfth of the circle. So the length 
of the bold arc is one-twelfth of the circle’s circumference. Circumference is 
given by the formula C =2�r. This circle has a radius of 1, so its circumfer-
ence equals 2�. Because the bold arc is one-twelfth of that, its length is �

6
, 

which is the radian measure of the 30° angle.

	 360
◦ equals 2� radians. The unit circle’s circumference of 2� makes it easy to 

remember that 360° equals 2� radians. Half the circumference has a length of �, 
so 180° equals � radians.

If you focus on the fact that 180° equals � radians, other angles are easy:

	 ✓	90° is half of 180°, so 90° equals half of �, or �
2

 radians.

	 ✓	60° is a third of 180°, so 60° equals a third of �, or �
3

 radians.
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	 ✓	45° is a fourth of 180°, so 45° equals a fourth of �, or �
4

 radians.

	 ✓	30° is a sixth of 180°, so 30° equals a sixth of �, or �
6

 radians.

	 Formulas for converting from degrees to radians and vice versa:

	 ✓	To convert from degrees to radians, multiply the angle’s measure by �

180
◦
.

	 ✓	To convert from radians to degrees, multiply the angle’s measure by 180
◦

�

.

By the way, the word radian comes from radius. Look at Figure 6-3 again. An 
angle measuring 1 radian (about 57°) cuts off an arc along the circumference 
of this circle of the same length as the circle’s radius. This is true not only of 
unit circles, but of circles of any size. In other words, take the radius of any 
circle, lay it along the circle’s circumference, and that arc creates an angle of 
1 radian.

	 Radians are preferred over degrees. In this or any other calculus book, some 
problems use degrees and others use radians, but radians are the preferred 
unit. If a problem doesn’t specify the unit, do the problem in radians.

Honey, I shrunk the hypotenuse
Look at the unit circle in Figure 6-3 again. See the 30°-60°-90° triangle in quad-
rant I? It’s the same shape but half the size of the one in Figure 6-2. Each of its 
sides is half as long. Because its hypotenuse now has a length of 1, and because 
when H is 1, O

H
 equals O, the sine of the 30° angle, which equals O

H
, ends up 

equaling the length of the opposite side. The opposite side is 1
2

, so that’s the 

sine of 30°. Note that the length of the opposite side is the same as the  

y-coordinate of the point 
�
√

3

2
,
1

2

�

. If you figure the cosine of 30° in this triangle, 

it ends up equaling the length of the adjacent side, which is the same as the 

x-coordinate of 
�
√

3

2
,
1

2

�

. Notice that these values for sin 30° and cos 30° are the 

same as the ones given by the 30°-60°-90° triangle in Figure 6-2. This shows you, 
by the way, that shrinking a right triangle down (or blowing it up) has no effect 
on the trigonometric values for the angles in the triangle.

Now look at the 30°-60°-90° triangle in quadrant II in Figure 6-3. Because it’s 
the same size as the 30°-60°-90° triangle in quadrant I, which hits the circle 

at 
�
√

3

2
,
1

2

�

, the triangle in quadrant II hits the circle at a point that’s straight 

across from and symmetric to 
�
√

3

2
,
1

2

�

. The coordinates of the point in 
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quadrant II are . But remember that angles on the unit circle are all 

measured from the positive x-axis, so the hypotenuse of this triangle indi-
cates a 150° angle; and that’s the angle, not 30°, associated with the point 

. The cosine of 150° is given by the x-coordinate of this point, −

√

3

2
, 

and the sine of 150° equals the y-coordinate, 1
2

.

	 Coordinates on the unit circle tell you an angle’s cosine and sine. The termi-
nal side of an angle in the unit circle hits the circle at a point whose x-coordinate 
is the angle’s cosine and whose y-coordinate is the angle’s sine. Here’s a mne-
monic: x and y are in alphabetical order as are cosine and sine.

Putting it all together
Look at Figure 6-4. Now that you know all about the 45°-45°-90° triangle, you 
can easily work out — or take my word for it — that a 45°-45°-90° triangle in 

quadrant I hits the unit circle at 
�
√

2

2
,

√

2

2

�

. And if you take the 30°-60°-90° 

triangle in quadrant I that hits the unit circle at 
�
√

3

2
,
1

2

�

 and flip it on its side, 

you get another 30°-60°-90° triangle with a 60° angle that hits the circle at 
�

1

2
,

√

3

2

�

. As you can see, this point has the same coordinates as those for 

the 30° angle but reversed.

	

Figure 6-4: 
Quadrant I 
of the unit 
circle with 

three angles 
and their 

coordinates.
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	 How to draw a right triangle in the unit circle: Whenever you draw a 
right triangle in the unit circle, put the acute angle you care about at the 
origin — that’s (0, 0) — and then put the right angle on the x-axis — never on 
the y-axis.

	
√
3

2
 is greater than 1

2
. To keep from mixing up the numbers 1

2
 and 

√

3

2
 when 

dealing with a 30° or a 60° angle, note that because 
√

3 is more than 1, 
√

3

2
 

must be greater than 1
2

 
�

1

2
=0.5;

√

3

2
≈0.87

�

. Thus, because a 30° angle hits 

the circle further out to the right than up, the x-coordinate must be greater 

than the y-coordinate. So, the point must be , not the other way 

around. It’s vice versa for a 60° angle.

Now for the whole enchilada. Because of the symmetry in the four quadrants, 
the three points in quadrant I in Figure 6-4 have counterparts in the other 
three quadrants, giving you 12 known points. Add to these the four points 
on the axes, (1, 0), (0, 1), (−1, 0), and (0, −1), and you have 16 total points, each 
with an associated angle, as shown in Figure 6-5.

	

Figure 6-5: 
The unit 

circle with 
16 angles 
and their 

coordinates.
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These 16 pairs of coordinates automatically give you the cosine and sine 
of the 16 angles. And because tan �= sin �

cos �
, you can obtain the tangent of 

these 16 angles by dividing an angle’s y-coordinate by its x-coordinate. (Note 
that when the cosine of an angle equals zero, the tangent will be undefined 
because you can’t divide by zero.) Finally, you can find the cosecant, secant, 
and cotangent of the 16 angles because these trig functions are just the recip-
rocals of sine, cosine, and tangent. (Same caution: whenever sine, cosine, or 
tangent equals zero, the reciprocal function will be undefined.) You’ve now 
got, at your fingertips — okay, maybe that’s a bit of a stretch — the answers 
to 96 trig questions.

	 Learn the unit circle. Knowing the trig values from the unit circle is quite 
useful in calculus. So quiz yourself. Start by memorizing the 45°-45°-90° and 
the 30°-60°-90° triangles. Then picture how these triangles fit into the four 
quadrants of the unit circle. Use the symmetry of the quadrants as an aid. 
With some practice, you can get pretty quick at figuring out the values for the 
six trig functions of all 16 angles. (Try to do this without looking at something 
like Figure 6-5.) And quiz yourself with radians as well as with degrees. That 
would bring your total to 192 trig facts! Quick — what’s the secant of 210°, and 

what’s the cosine of 2�
3

? Here are the answers (no peeking): − 2

√

3

3
and −

1

2
.

	 All Students Take Calculus. Here’s a final tip to help you with the unit circle 
and the values of all the trig functions. Take any old unit circle (like the one in 
Figure 6-5) and write the initial letters of All Students Take Calculus in the four 
quadrants: Put an A in quadrant I, an S in quadrant II, a T in quadrant III, and a 
C in quadrant IV. These letters now tell you whether the various trig functions 
have positive or negative values in the different quadrants. The A in quadrant 
I tells you that All six trig functions have positive values in quadrant I. The S 
in quadrant II tells you that Sine (and its reciprocal, cosecant) are positive in 
quadrant II and that all other trig functions are negative there. The T in quad-
rant III tells you that Tangent (and its reciprocal, cotangent) are positive in 
quadrant III and that the other functions are negative there. Finally, the C in 
quadrant IV tells you that Cosine (and its reciprocal, secant) are positive there 
and that the other functions are negative. That’s a wrap.

Graphing Sine, Cosine, and Tangent
Figure 6-6 shows the graphs of sine, cosine, and tangent, which you can, of 
course, produce on a graphing calculator.

	 Definitions of periodic and period: Sine, cosine, and tangent — and their 
reciprocals, cosecant, secant, and cotangent — are periodic functions, which 
means that their graphs contain a basic shape that repeats over and over 
indefinitely to the left and the right. The period of such a function is the length 
of one of its cycles.
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Figure 6-6: 
The graphs 
of the sine, 

cosine, and 
tangent 

functions.
	

If you know the unit circle, you can easily reproduce these three graphs by 
hand. First, note that the sine and cosine graphs are the same shape — cosine 
is the same as sine, just slid 90° to the left. Also, notice that their simple wave 
shape goes as high as 1 and as low as −1 and goes on forever to the left and 
right, with the same shape repeating every 360°. That’s the period of both 
functions, 360°. (It’s no coincidence, by the way, that 360° is also once around 
the unit circle.) The unit circle tells you that sin 0◦=0, sin 90◦=1, sin 180◦=0, 
sin 270

◦

=−1, and that sin 360◦=0. If you start with these five points, you can 
sketch one cycle. The cycle then repeats to the left and right. You can use the 
unit circle in the same manner to sketch the cosine function.

Notice in Figure 6-6 that the period of the tangent function is 180°. If you 
remember that and the basic pattern of repeating backward S-shapes, sketch-
ing it isn’t difficult. Because tan �= y

x
, you can use the unit circle to deter-

mine that tan(−45◦)=−1, tan 0◦=0, and tan 45◦=1. That gives you the points 
(−45◦,−1), (0, 0), and (45◦, 1). Since tan(−90◦) and tan 90◦ are both undefined 
(because y

x
 at these points gives you a zero in the denominator), you draw 

vertical asymptotes at −90◦ and 90°.

	 Definition of vertical asymptote: A vertical asymptote is an imaginary line 
that a curve gets closer and closer to (but never touches) as the curve goes 
up toward infinity or down toward negative infinity. (In Chapters 7 and 8, you 
see more vertical asymptotes and also some horizontal asymptotes.)
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The two asymptotes at −90◦ and 90° and the three points at (−45◦, −1), (0, 0), and 
(45

◦

, 1) show you where to sketch one backward S. The S-shapes then repeat 
every 180° to the left and the right.

Inverse Trig Functions
An inverse trig function, like any inverse function, reverses what the original 

function does. For example, sin 30◦= 1

2
, so the inverse sine function — written 

as sin−1 — reverses the input and output. Thus, sin−1 1

2
=30

◦. It works the 
same for the other trig functions.

	 The negative 1 superscript in the sine inverse function is not a negative 
1 power, despite the fact that it looks just like it. Raising something to the 
negative 1 power gives you its reciprocal, so you might think that sin−1

x is 
the reciprocal of sin x, but the reciprocal of sine is cosecant, not sine inverse. 
Pretty weird that the same symbol is used to mean two different things. Go 
figure.

The only trick with inverse trig functions is memorizing their ranges — that’s 
the interval of their outputs. Consider sine inverse, for example. Because 
both sin 30◦= 1

2
 and sin 150◦= 1

2
, you wouldn’t know whether sin−1 1

2
 equals 

30° or 150° unless you know how the interval of sine inverse outputs is 
defined. And remember, in order for something to be a function, there can’t 
be any mystery about the output for a given input. If you reflect the sine func-
tion over the line y=x to create its inverse, you get a vertical wave that isn’t 
a function because it doesn’t pass the vertical line test. (See the definition 
of the vertical line test in Chapter 5.) To make sine inverse a function, you 
have to take a small piece of the vertical wave that does pass the vertical line 
test. The same thing goes for the other inverse trig functions. Here are their 
ranges:

The range of sin−1
x is , or .

The range of cos−1x is , or .

The range of tan−1
x is , or .

The range of cot−1x is , or .

Note the pattern: the range of sin−1
x is the same as tan−1

x, and the range of 
cos

−1
x is the same as cot−1x.

Believe it or not, calculus authors don’t agree on the ranges for the secant 
inverse and cosecant inverse functions. You’d think they could agree on this 
like they do with just about everything else in mathematics. Humph. Use the 
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ranges given in your particular textbook. If you don’t have a textbook, use 
the sin−1

x range for its cousin csc−1x, and use the cos−1x range for sec−1x. 
(By the way, I don’t refer to csc−1x as the reciprocal of sin−1

x because it’s not 
its reciprocal — even though csc x is the reciprocal of sin x. Ditto for cos−1x 
and sec−1x.)

Identifying with Trig Identities
Remember trig identities like sin2

x+cos
2
x=1 and sin 2x=2 sin x cos x? Tell 

the truth now — most people remember trig identities about as well as they 
remember nineteenth century vice-presidents. They come in handy in 
calculus though, so a list of other useful ones is in the online Cheat Sheet at 
www.dummies.com/extras/calculus/.



Part III
Limits

	 If you’re up for an advanced challenge, check out my online article on the partial frac-
tions technique where the denominators contain repeated linear or quadratic factors at 
www.dummies.com/extras/calculus.



In this part . . .
	 ✓	 Limits: The mathematical microscope that lets you sort of zoom 

in on a curve to the sub-, sub-, sub-atomic level, where it 
becomes straight.

	 ✓	 Limits, asymptotes, and infinity : Far out, man.

	 ✓	 The mathematical mumbo jumbo about continuity . Plus the plain 
English meaning: Not lifting your pencil off the paper.

	 ✓	 Calculating limits with algebra.

	 ✓	 Calculating limits with your calculator.



Chapter 7

Limits and Continuity
In This Chapter
▶	Taking a look at limits

▶	Evaluating functions with holes — break out the mothballs

▶	Exploring continuity and discontinuity

L 
imits are fundamental for both differential and integral calculus. The 
formal definition of a derivative involves a limit as does the definition of 

a definite integral. (If you’re a real go-getter and can’t wait to read the actual 
definitions, check out Chapters 9 and 13.) Now, it turns out that after you 
learn the shortcuts for calculating derivatives and integrals, you won’t need 
to use the longer limit methods anymore. But understanding the mathematics of 
limits is nonetheless important because it forms the foundation upon which 
the vast architecture of calculus is built (Okay, so I got a bit carried away). 
In this chapter, I lay the groundwork for differentiation and integration by 
exploring limits and the closely related topic, continuity.

Take It to the Limit — NOT
Limits can be tricky. Don’t worry if you don’t grasp the concept right away.

	 Informal definition of limit (the formal definition is in a few pages): The 
limit of a function (if it exists) for some x-value c, is the height the function 
gets closer and closer to as x gets closer and closer to c from the left and 
the right. (Note: This definition does not apply to limits where x approaches 
infinity or negative infinity. More about those limits later in the chapter and 
in Chapter 8.)

Got it? You’re kidding! Let me say it another way. A function has a limit for 
a given x-value c if the function zeros in on some height as x gets closer 
and closer to the given value c from the left and the right. Did that help? 
I didn’t think so. It’s much easier to understand limits through examples than 
through this sort of mumbo jumbo, so take a look at some.
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Using three functions to illustrate 
the same limit
Consider the function f (x)=3x+1 on the left in Figure 7-1. When we say that 
the limit of f (x) as x approaches 2 is 7, written as lim

x→2

f (x)=7, we mean that as 

x gets closer and closer to 2 from the left and the right, f (x) gets closer and 
closer to a height of 7. By the way, as far as I know, the number 2 in this exam-
ple doesn’t have a formal name, but I call it the arrow-number. The arrow-
number gives you a horizontal location in the x direction. Don’t confuse it 
with the answer to the limit problem or simply the limit, both of which refer to 
a y-value or height of the function (7 in this example). Now, look at Table 7-1.

	

Figure 7-1: 
The graphs 
of the func-
tions of f, g, 

and h.
	

Table 7-1	 Input and Output Values of f (x )= 3x+1 as x Approaches 2

Table 7-1 shows that y is approaching 7 as x approaches 2 from both the left 
and the right, and thus the limit is 7. If you’re wondering what all the fuss is 
about — why not just plug the number 2 into x in f (x)=3x+1 and obtain the 
answer of 7 — I’m sure you’ve got a lot of company. In fact, if all functions 
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were continuous (without gaps) like f, you could just plug in the arrow-number 
to get the answer, and this type of limit problem would basically be pointless. 
We need to use limits in calculus because of discontinuous functions like g and 
h that have holes.

Function g in the middle of Figure 7-1 is identical to f except for the hole at 
(2, 7) and the point at (2, 5). Actually, this function, g(x), would never come 
up in an ordinary calculus problem — I only use it to illustrate how limits 
work. (Keep reading. I have a bit more groundwork to lay before you see why 
I include it.)

The important functions for calculus are the functions like h on the right in 
Figure 7-1, which come up frequently in the study of derivatives. This third 
function is identical to f (x) except that the point (2, 7) has been plucked out, 
leaving a hole at (2, 7) and no other point where x equals 2.

Imagine what the table of input and output values would look like for g(x) and 
h(x). Can you see that the values would be identical to the values in Table 7-1 
for f (x)? For both g and h, as x gets closer and closer to 2 from the left and the 
right, y gets closer and closer to a height of 7. For all three functions, the limit 
as x approaches 2 is 7.

This brings us to a critical point: When determining the limit of a function as 
x approaches, say, 2, the value of f (2) — or even whether f (2) exists at all — is 
totally irrelevant. Take a look at all three functions again where  
equals 7, g(2) is 5, and h(2) doesn’t exist (or, as mathematicians say, it’s 
undefined). But, again, those three results are irrelevant and don’t affect the 
answer to the limit problem.

	 You don’t get to the limit. In a limit problem, x gets closer and closer to the 
arrow-number c, but technically never gets there, and what happens to the 
function when x equals the arrow-number c has no effect on the answer to the 
limit problem (though for continuous functions like f (x) the function value 
equals the limit answer and it can thus be used to compute the limit answer).

Sidling up to one-sided limits
One-sided limits work like regular, two-sided limits except that x approaches 
the arrow-number c from just the left or just the right. The most important 
purpose for such limits is that they’re used in the formal definition of a regular 
limit (see the next section on the formal definition of a limit).
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To indicate a one-sided limit, you put a little superscript subtraction sign 
on the arrow-number when x approaches the arrow-number from the left or 
a superscript addition sign when x approaches the arrow-number from the 
right. Like this:

lim
x→5

−
f (x) or lim

x→0
+
g(x)

Look at Figure 7-2. The answer to the regular limit problem, lim
x→3

p(x), is that 

the limit does not exist because as x approaches 3 from the left and the right, 
p(x) is not zeroing in on the same height.

	

Figure 7-2: 
p(x ) : An 

illustration 
of two one-
sided limits.

	

However, both one-sided limits do exist. As x approaches 3 from the left, p(x) 
zeros in on a height of 6, and when x approaches 3 from the right, p(x) zeros 
in on a height of 2. As with regular limits, the value of p(3) has no effect on 
the answer to either of these one-sided limit problems. Thus,

lim
x→3

−
p(x)=6 and lim

x→3
+
p(x)=2

A function like p(x) in Figure 7-2 is called a piecewise function because it’s got 
separate pieces. Each part of a piecewise function has its own equation — like, 
for example, the following three-piece function:
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Sometimes a chunk of a piecewise function connects with its neighboring 
chunk, in which case the function is continuous there. And sometimes, like 
with p(x), a piece does not connect with the adjacent piece — this results in a 
discontinuity.

The formal definition of a limit — just 
what you’ve been waiting for
Now that you know about one-sided limits, I can give you the formal math-
ematical definition of a limit. Here goes:

	 Formal definition of limit: Let f be a function and let c be a real number.

lim
x→c

f (x) exists if and only if

	 1.	 lim
x→c

−
f (x) exists,

	 2.	 lim
x→c

+
f (x) exists, and

	 3.	 lim
x→c

−
f (x)= lim

x→c
+
f (x).

Calculus books always present this as a three-part test for the existence of a 
limit, but condition 3 is the only one you need to worry about because 1 and 
2 are built into 3. You just have to remember that you can’t satisfy condition 
3 if the left and right sides of the equation are both undefined or nonexistent; 
in other words, it is not true that undefined = undefined or that nonexistent = 
nonexistent. (I think this is why calc texts use the 3-part definition.) As long as 
you’ve got that straight, condition 3 is all you need to check.

	 When we say a limit exists, it means that the limit equals a finite number. 
Some limits equal infinity or negative infinity, but you nevertheless say that 
they do not exist. That may seem strange, but take my word for it. (More about 
infinite limits in the next section.)

Limits and vertical asymptotes
A rational function like f (x)= (x+2)(x−5)

(x−3)(x+1)
 has vertical asymptotes at x=3 

and x=−1. Remember asymptotes? They’re imaginary lines that the graph of 
a function gets closer and closer to as it goes up, down, left, or right toward 
infinity or negative infinity. f (x) is shown in Figure 7-3.
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Figure 7-3:  
A typical 
rational 

function.
	

Consider the limit of the function in Figure 7-3 as x approaches 3. As x 
approaches 3 from the left, f (x) goes up to infinity, and as x approaches 3 
from the right, f (x) goes down to negative infinity. Sometimes it’s informative 
to indicate this by writing,

lim
x→3

−
f (x)=∞ and lim

x→3
+
f (x)=−∞

But it’s also correct to say that both of these limits do not exist because infinity 
is not a real number. And if you’re asked to determine the regular, two-sided 
limit, lim

x→3

f (x), you have no choice but to say that it does not exist because the 

limits from the left and from the right are unequal.

Limits and horizontal asymptotes
Up till now, I’ve been looking at limits where x approaches a regular, finite 
number. But x can also approach infinity or negative infinity. Limits at infinity 
exist when a function has a horizontal asymptote. For example, the function in 
Figure 7-3 has a horizontal asymptote at y=1, which the function gets closer 
and closer to as it goes toward infinity to the right and negative infinity to the 
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left. (Going left, the function crosses the horizontal asymptote at x=−7 and 
then gradually comes down toward the asymptote. Going right, the function 
stays below the asymptote and gradually rises up toward it.) The limits equal 
the height of the horizontal asymptote and are written as

lim
x→∞

f (x)=1 and lim
x→−∞

f (x)=1

You see more limits at infinity in Chapter 8.

Calculating instantaneous  
speed with limits
If you’ve been dozing up to now, WAKE UP! The following problem, which 
eventually turns out to be a limit problem, brings you to the threshold of 
real calculus. Say you and your calculus-loving cat are hanging out one day 
and you decide to drop a ball out of your second-story window. Here’s the 
formula that tells you how far the ball has dropped after a given number of 
seconds (ignoring air resistance):

h(t)=16 t
2

(where h is the height the ball has fallen, in feet, and t is the amount of 
time since the ball was dropped, in seconds)

If you plug 1 into t, h is 16; so the ball falls 16 feet during the first second. 
During the first 2 seconds, it falls a total of 16 ⋅22, or 64 feet, and so on. Now, 
what if you wanted to determine the ball’s speed exactly 1 second after you 
dropped it? You can start by whipping out this trusty ol’ formula:

Distance= rate ⋅ time, so Rate=
distance

time

	 Using the rate, or speed formula, you can easily figure out the ball’s aver-
age speed during the 2nd second of its fall. Because it dropped 16 feet after 
1 second and a total of 64 feet after 2 seconds, it fell 64−16, or 48 feet from 
t =1 second to t =2 seconds. The following formula gives you the average 
speed:

Average speed =
total distance

total time

=
64−16

2−1

=48 feet per second
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But this isn’t the answer you want because the ball falls faster and faster as 
it drops, and you want to know its speed exactly 1 second after you drop 
it. The ball speeds up between 1 and 2 seconds, so this average speed of 48 
feet per second during the 2nd second is certain to be faster than the ball’s 
instantaneous speed at the end of the 1st second. For a better approximation, 
calculate the average speed between t =1 second and t =1.5 seconds. After 
1.5 seconds, the ball has fallen 16 ⋅1.52, or 36 feet, so from t =1 to t =1.5, it falls 
36−16, or 20 feet. Its average speed is thus

Average speed =
36−16

1.5−1

=40 feet per second

If you continue this process for elapsed times of a quarter of a second, a 
tenth of a second, then a hundredth, a thousandth, and a ten-thousandth of 
a second, you arrive at the list of average speeds shown in Table 7-2.

Table 7-2	 Average Speeds from 1 Second to t Seconds

As t gets closer and closer to 1 second, the average speeds appear to get 
closer and closer to 32 feet per second.

Here’s the formula we used to generate the numbers in Table 7-2. It gives you 
the average speed between 1 second and t seconds:

(In the line immediately above, recall that t cannot equal 1 because that 
would result in a zero in the denominator of the original equation. This 
restriction remains in effect even after you cancel the t−1.)

Figure 7-4 shows the graph of this function.
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Figure 7-4: 
f (t ) is the 

average 
speed 

between 
1 second 

and t 
seconds.

	

This graph is identical to the graph of the line y=16t+16 except for the hole 
at (1, 32). There’s a hole there because if you plug 1 into t in the average speed 
function, you get

Average speed =
16(1

2
− 1)

1 − 1
=

0

0

which is undefined. And why did you get 0
0

 ? Because you’re trying to determine 

an average speed — which equals total distance divided by elapsed time — from 
t =1 to t =1. But from t =1 to t =1 is, of course, no time, and “during” this point in 

time, the ball doesn’t travel any distance, so you get zero feet

zero seconds
 as the aver-

age speed from t =1 to t =1.

Obviously, there’s a problem here. Hold on to your hat, you’ve arrived at one 
of the big “Ah ha!” moments in the development of differential calculus.

	 Definition of instantaneous speed: Instantaneous speed is defined as the 
limit of the average speed as the elapsed time approaches zero.

For the falling-ball problem, you’d have 
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The fact that the elapsed time never gets to zero doesn’t affect the precision 
of the answer to this limit problem — the answer is exactly 32 feet per second, 
the height of the hole in Figure 7-4. What’s remarkable about limits is that they 
enable you to calculate the precise, instantaneous speed at a single point in 
time by taking the limit of a function that’s based on an elapsed time, a period 
between two points of time.

Linking Limits and Continuity
Before I expand on the material on limits from the earlier sections of this 
chapter, I want to introduce a related idea — continuity. This is such a simple 
concept. A continuous function is simply a function with no gaps — a function 
that you can draw without taking your pencil off the paper. Consider the four 
functions in Figure 7-5.

	

Figure 7-5: 
The graphs 

of the 
functions f, 
g, p, and q.

	

Whether or not a function is continuous is almost always obvious. The first 
two functions in Figure 7-5, f (x) and g(x), have no gaps, so they’re continu-
ous. The next two, p(x) and q(x), have gaps at x=3, so they’re not continuous. 
That’s all there is to it. Well, not quite. The two functions with gaps are not 
continuous everywhere, but because you can draw sections of them without 
taking your pencil off the paper, you can say that parts of those functions are 
continuous. And sometimes a function is continuous everywhere it’s defined. 
Such a function is described as being continuous over its entire domain, which 
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means that its gap or gaps occur at x-values where the function is undefined. 
The function p(x) is continuous over its entire domain; q(x), on the other 
hand, is not continuous over its entire domain because it’s not continuous at 
x=3, which is in the function’s domain. Often, the important issue is whether 
a function is continuous at a particular x-value. It is unless there’s a gap 
there.

	 Continuity of polynomial functions: All polynomial functions are continuous 
everywhere.

	 Continuity of rational functions: All rational functions — a rational function is 
the quotient of two polynomial functions — are continuous over their entire 
domains. They are discontinuous at x-values not in their domains — that is, 
x-values where the denominator is zero.

Continuity and limits usually  
go hand in hand
Look at the four functions in Figure 7-5 where x=3. Consider whether each 
function is continuous there and whether a limit exists at that x-value. The 
first two, f and g, have no gaps at x=3, so they’re continuous there. Both 
functions also have limits at x=3, and in both cases, the limit equals the 
height of the function at x=3, because as x gets closer and closer to 3 from 
the left and the right, y gets closer and closer to f (3) and g(3), respectively.

Functions p and q, on the other hand, are not continuous at x=3 (or you can 
say that they’re discontinuous there), and neither has a regular, two-sided limit 
at x=3. For both functions, the gaps at x=3 not only break the continuity, but 
they also cause there to be no limits there because, as you move toward x=3 
from the left and the right, you do not zero in on some single y-value.

So there you have it. If a function is continuous at an x-value, there must be 
a regular, two-sided limit for that x-value. And if there’s a discontinuity at an 
x-value, there’s no two-sided limit there . . . well, almost. Keep reading for the 
exception.

The hole exception tells the whole story
The hole exception is the only exception to the rule that continuity and 
limits go hand in hand, but it’s a huge exception. And, I have to admit, it’s a 
bit odd for me to say that continuity and limits usually go hand in hand and 
to talk about this exception because the exception is the whole point. When 
you come right down to it, the exception is more important than the rule. 
Consider the two functions in Figure 7-6.
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Figure 7-6: 
The graphs 

of the  
functions r 

and s.
	

These functions have gaps at x=2 and are obviously not continuous there, 
but they do have limits as x approaches 2. In each case, the limit equals the 
height of the hole.

	 The hole exception: The only way a function can have a regular, two-sided 
limit where it is not continuous is where the discontinuity is an infinitesimal 
hole in the function.

So both functions in Figure 7-6 have the same limit as x approaches 2; the limit 
is 4, and the facts that r(2)=1 and that s(2) is undefined are irrelevant. For 
both functions, as x zeros in on 2 from either side, the height of the function 
zeros in on the height of the hole — that’s the limit. This bears repeating, even 
an icon:

	 The limit at a hole: The limit at a hole is the height of the hole.

“That’s great,” you may be thinking. “But why should I care?” Well, stick with 
me for just a minute. In the falling ball example in the “Calculating instanta-
neous speed with limits” section earlier in this chapter, I tried to calculate 

the average speed during zero elapsed time. This gave me zero distance

zero time
. 

Because 0
0

 is undefined, the result was a hole in the function. Function holes 

often come about from the impossibility of dividing zero by zero. It’s these 
functions where the limit process is critical, and such functions are at the 
heart of the meaning of a derivative, and derivatives are at the heart of differ-
ential calculus.

	 The derivative-hole connection: A derivative always involves the unde-
fined fraction 0

0
 and always involves the limit of a function with a hole. (If 

you’re curious, all the limits in Chapter 9 — where the derivative is formally 
defined — are limits of functions with holes.)
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Sorting out the mathematical  
mumbo jumbo of continuity
All you need to know to fully understand the idea of continuity is that a func-
tion is continuous at some particular x-value if there is no gap there. However, 
because you may be tested on the following formal definition, I suppose you’ll 
want to know it.

	 Definition of continuity: A function f (x) is continuous at a point x=a if the fol-
lowing three conditions are satisfied:

	 1.	 f (a) is defined,

	 2.	 lim
x→a

f (x) exists, and

	 3.	 f (a)= lim
x→a

f (x).

Just like with the formal definition of a limit, the definition of continuity is 
always presented as a 3-part test, but condition 3 is the only one you really 
need to worry about because conditions 1 and 2 are built into 3. You must 
remember, however, that condition 3 is not satisfied when the left and right 
sides of the equation are both undefined or nonexistent.

The 33333 Limit Mnemonic
Here’s a great memory device that pulls a lot of information together in one 
swell foop. It may seem contrived or silly, but with mnemonic devices, con-
trived and silly work. The 33333 limit mnemonic helps you remember five 
groups of three things: two groups involving limits, two involving continuity, 
and one about derivatives. (I realize we haven’t gotten to derivatives yet, 
but this is the best place to present this mnemonic. Take my word for it — 
nothing’s perfect.)

First, note that the word limit has five letters and that there are five 3s in this 
mnemonic. Next, write limit with a lower case “l” and uncross the “t” so it 
becomes another “l” — like this:

 l i m i l

Now, the two “l”s are for limits, the two “i”s are for continuity (notice that 
the letter “i” has a gap in it, thus it’s not continuous), and the “m” is for slope 
(remember y=mx+b ?), which is what derivatives are all about (you’ll see 
that in Chapter 9 in just a few pages).
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Each of the five letters helps you remember three things — like this:

l i m i l

3 3 3 3 3

	 ✓	3 parts to the definition of a limit:

		 Look back to the definition of a limit in “The formal definition of a 
limit — just what you’ve been waiting for” section. Remembering that it 
has three parts helps you remember the parts — trust me.

	 ✓	3 cases where a limit fails to exist:

	 •	At a vertical asymptote — called an infinite discontinuity — like at 
x=3 on function p in Figure 7-5.

	 •	At a jump discontinuity, like where x=3 on function q in Figure 7-5.

	 •	With a limit at infinity of an oscillating function like sin x which goes 
up and down forever, never zeroing in on a single height.

	 ✓	3 parts to the definition of continuity:

		 Just as with the definition of a limit, remembering that the definition of 
continuity has 3 parts helps you remember the 3 parts (see the section 
“Sorting out the mathematical mumbo jumbo of continuity”).

	 ✓	3 types of discontinuity:

	 •	A removable discontinuity — that’s a fancy term for a hole — like 
the holes in functions r and s in Figure 7-6.

	 •	An infinite discontinuity like at x=3 on function p in Figure 7-5.

	 •	A jump discontinuity like at x=3 on function q in Figure 7-5.

		 Note that the three types of discontinuity (hole, infinite, and jump) 
begin with three consecutive letters of the alphabet. Since they’re 
consecutive, there are no gaps between h, i, and j, so they’re con-
tinuous letters. Hey, was this book worth the price or what?

	 ✓	3 cases where a derivative fails to exist:

		 (I explain this in Chapter 9 — keep your shirt on.)

	 •	At any type of discontinuity.

	 •	At a sharp point on a function, namely, at a cusp or a corner.

	 •	At a vertical tangent (because the slope is undefined there).

Well, there you have it. Did you notice that another way this mnemonic works 
is that it gives you 3 cases where a limit fails to exist, 3 cases where continu-
ity fails to exist, and 3 cases where a derivative fails to exist? Holy triple trio 
of nonexistence, Batman, that’s yet another 3 — the 3 topics of the mnemonic: 
limits, continuity, and derivatives!



Chapter 8

Evaluating Limits
In This Chapter
▶	Calculating limits with a calculator

▶	Multiplying conjugates

▶	Solving limits with a sandwich

▶	Finding limits at infinity

C 
hapter 7 introduces the concept of a limit. This chapter gets down to the 
nitty-gritty and presents several techniques for calculating the answers 

to limits problems. And while I suspect that you were radically rapt and 
totally transfixed by the material in Chapter 7 — and, don’t get me wrong, 
that’s important stuff — it’s the problem-solving methods in this chapter that 
really pay the bills.

Easy Limits
A few limit problems are very easy. So easy that I don’t have to waste your 
time with unnecessary introductory remarks and unneeded words that take 
up space and do nothing to further your knowledge of the subject — instead, 
I can just cut to the chase and give you only the critical facts and get to the 
point and get down to business and . . . Okay, so are you ready?

Limits to memorize
You should memorize the following limits. If you fail to memorize the limits in 
the last three bullets, you could waste a lot of time trying to figure them out.

	 ✓	lim
x→a

c= c

		 (y= c is a horizontal line, so the limit — which is the function height — 
must equal c regardless of the arrow-number.)

	 ✓	 lim
x→0

+

1

x
=∞



92 Part III: Limits 

	 ✓	 lim
x→0

−

1

x
=−∞

	 ✓	 lim
x→∞

1

x
=0

	 ✓	 lim
x→−∞

1

x
=0

	 ✓	lim
x→0

sin x

x
= lim

x→0

x

sin x
=1

	 ✓	lim
x→0

cos x−1

x
=0

	 ✓	

Plugging and chugging
Plug-and-chug problems make up the second category of easy limits. Just 
plug the arrow-number into the limit function, and if the computation results 
in a number, that’s your answer (but see the following warning). For example,

lim
x→3

(x
2
−10)=−1

(Don’t forget that for this method to work, the result you get after plugging 
in must be an ordinary number, not infinity or negative infinity or something 
that’s undefined.)

If you’re dealing with a function that’s continuous everywhere (like the one 
in the example above) or a function that’s continuous over its entire domain, 
this method will always work. These are well-duh limit problems, and, to be 
perfectly frank, there’s really no point to them. The limit is simply the func-
tion value. If you’re dealing with any other type of function, this method will 
only sometimes work — read on. . . .

	 Beware of discontinuities. The plug-and-chug method works for any type of 
function, including piecewise functions, unless there’s a discontinuity at the 
arrow-number you plug in. In that case, if you get a number after plugging in, 
that number is not the limit; the limit might equal some other number or it 
might not exist. (See Chapter 7 for a description of piecewise functions.)

	 What happens when plugging in gives you a non-zero number over zero? 
If you plug the arrow-number into a limit like lim

x→5

10

x−5
 and you get any number 

(other than zero) divided by zero — like 10
0

 — then you know that the limit does 
not exist, in other words, the limit does not equal a finite number. (The answer 
might be infinity or negative infinity or just a plain old “does not exist.”)
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The “Real Deal” Limit Problems
Neither of the quick methods I present in the preceding section work for 
most limit problems. If you plug the arrow-number into the limit expression 
and the result is undefined (excluding the case covered in the previous tip), 
you’ve got a “for real” limit problem — and a bit of work to do. This is the 
main focus of this section. These are the interesting limit problems, the ones 
that likely have infinitesimal holes, and the ones that are important for differ-
ential calculus — you see more of them in Chapter 9.

When you plug in the arrow-number and the result is undefined (often because 
you get 0

0
), you can try four things: your calculator, algebra, making a limit 

sandwich, and L’Hôpital’s rule (which is covered in Chapter 18).

Figuring a limit with your calculator
Say you want to evaluate the following limit: lim

x→5

x
2
−25

x−5
. The plug-and-chug 

method doesn’t work because plugging 5 into x produces the undefined 
result of 0

0
, but as with most limit problems, you can solve this one on your 

calculator.

	 Note on calculators and other technology. With every passing year, there 
are more and more powerful calculators and more and more resources on 
the Internet that can do calculus for you. These technologies can give you 
an answer of, for example, 5x3

−4x, when the problem calls for an algebraic 
answer, or an answer of, for example, 

√

2 (not merely an approximation of 
1.414), when the problem calls for a numerical answer. Older calculator 
models can’t give you algebraic answers, and, although they can give you 
exact answers to many numerical problems, they can’t give you an exact 
numerical answer like 

√

2 — and they also can’t give you an exact answer to 
the limit problem in the preceding paragraph.

A calculator like the TI-Nspire (or any other calculator with CAS — Computer 
Algebra System) can actually do that limit problem (and all sorts of much 
more difficult calculus problems) and give you the exact answer. The same is 
true of websites like Wolfram Alpha (www.wolframalpha.com).
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Different calculus teachers have different policies on what technology they 
allow in their classes. Many do not allow the use of CAS calculators and com-
parable technologies because they basically do all the calculus work for you. 
So, the following discussion (and the rest of this book) assumes you’re using 
a more basic calculator (like the TI-84) without CAS capability.

Method one
The first calculator method is to test the limit function with two numbers: 
one slightly less than the arrow-number and one slightly more than it. So here’s 

what you do for the above problem, lim
x→5

x
2
−25

x−5
. If you have a calculator like 

a Texas Instruments TI-84, enter the first number, say 4.9999, on the home 
screen, press the Sto (store) button, then the x button, and then the Enter 

button (this stores the number into x). Then enter the function, x
2
−25

x−5
,  

and hit Enter. The result, 9.9999, is extremely close to a round number, 10, 
so 10 is likely your answer. Now take a number a little more than the arrow-
number, like 5.0001, and repeat the process. Since the result, 10.0001, is also 
very close to 10, that clinches it. The answer is 10 (almost certainly). By the 
way, if you’re using a different calculator model, you can likely achieve the 
same result with the same technique or something very close to it.

Method two
The second calculator method is to produce a table of values. Enter y= x

2
−25

x−5
  

in your calculator’s graphing mode. Then go to “table set up” and enter the 
arrow-number, 5, as the “table start” number, and enter a small number, 
say 0.001, for ΔTbl — that’s the size of the x-increments in the table. Hit the 
Table button to produce the table. Now scroll up until you can see a couple 
numbers less than 5, and you should see a table of values something like the 
one in Table 8-1.

Table 8-1	 TI-84 Table for x
2
−25

x−5
 After Scrolling Up to 4.998

x y

4.998 9.998

4.999 9.999

5 error

5.001 10.001

5.002 10.002

5.003 10.003
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Because y gets very close to 10 as x zeros in on 5 from above and below, 10 
is the limit (almost certainly . . . you can’t be absolutely positive with these 
calculator methods, but they almost always work).

These calculator techniques are useful for a number of reasons. Your calculator 
can give you the answers to limit problems that are impossible to do alge-
braically. And it can solve limit problems that you could do with paper and 
pencil except that you’re stumped. Also, for problems that you do solve on 
paper, you can use your calculator to check your answers. And even when 
you choose to solve a limit algebraically — or are required to do so — it’s a 
good idea to create a table like Table 8-1 not just to confirm your answer, but 
to see how the function behaves near the arrow-number. This gives you a 
numerical grasp on the problem, which enhances your algebraic understand-
ing of it. If you then look at the graph of the function on your calculator, you 
have a third, graphical or visual way of thinking about the problem.

	 Many calculus problems can be done algebraically, graphically, and 
numerically. When possible, use two or three of the approaches. Each 
approach gives you a different perspective on a problem and enhances your 
grasp of the relevant concepts.

Use the calculator methods to supplement algebraic methods, but don’t 
rely too much on them. First of all, the non-CAS-calculator techniques 
won’t allow you to deduce an exact answer unless the numbers your calcu-
lator gives you are getting close to a number you recognize — like 9.999 is 
close to 10, or 0.333332 is close to 1

3
; or perhaps you recognize that 1.414211 

is very close to 
√

2. But if the answer to a limit problem is something like  
1

2

√

3

, you probably won’t recognize it. The number 1

2

√

3

 is approximately 

equal to 0.288675. When you see numbers in your table close to that decimal, 
you won’t recognize 1

2

√

3

 as the limit — unless you’re an Archimedes, a Gauss, 

or a Ramanujan (members of the mathematics hall of fame). However, even 
when you don’t recognize the exact answer in such cases, you can still learn 
an approximate answer, in decimal form, to the limit question.

	 Gnarly functions may stump your calculator. The second calculator limitation 

is that it won’t work at all with some peculiar functions like  .  

This limit equals zero, but you can’t get that result with your calculator.

By the way, even when the non-CAS-calculator methods work, these calcu-
lators can do some quirky things from time to time. For example, if you’re 
solving a limit problem where x approaches 3, and you put numbers in your 
calculator that are too close to 3 (like 3.0000000001), you can get too close to 
the calculator’s maximum decimal length. This can result in answers that get 
further from the limit answer, even as you input numbers closer and closer to 
the arrow-number.
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The moral of the story is that you should think of your calculator as one 
of several tools at your disposal for solving limits — not as a substitute for 
algebraic techniques.

Solving limit problems with algebra
You use two main algebraic techniques for “real” limit problems: factoring 
and conjugate multiplication. I lump other algebra techniques in the section 
“Miscellaneous algebra.” All algebraic methods involve the same basic idea. 
When substitution doesn’t work in the original function — usually because of 
a hole in the function — you can use algebra to manipulate the function until 
substitution does work (it works because your manipulation plugs the hole).

Fun with factoring
Here’s an example. Evaluate lim

x→5

x
2
−25

x−5
, the same problem you did with a 

calculator in the preceding section:

	 1.	 Try plugging 5 into x — you should always try substitution first.

		 You get 0
0

 — no good, on to plan B.

	 2.	 x2
−25 can be factored, so do it.

		 limx→5

x
2
−25

x−5
= lim

x→5

(x−5)(x+5)

x−5

	 3.	 Cancel the (x−5) from the numerator and denominator.

		 = lim
x→5

(x+5)

	 4.	 Now substitution will work.

		 =5+5=10

So, lim
x→5

x
2
−25

x−5
=10, confirming the calculator answer.

By the way, the function you got after canceling the (x−5), namely y=(x+5),  

is identical to the original function, y= x
2
−25

x−5
, except that the hole in the 

original function at (5, 10) has been plugged. And note that the limit as x 
approaches 5 is 10, which is the height of the hole at (5, 10).

Conjugate multiplication — no, this has  
nothing to do with procreation
Try this method for fraction functions that contain square roots. Conjugate 
multiplication rationalizes the numerator or denominator of a fraction, which 

means getting rid of square roots. Try this one: Evaluate lim
x→4

√

x−2

x−4
.
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	 1.	 Try substitution.

		  Plug in 4: that gives you 0
0

 — time for plan B.

	 2.	 Multiply the numerator and denominator by the conjugate of 
√
x−2, 

which is 
√
x+2.

		  Definition of conjugate: The conjugate of a two-term expression is just 
the same expression with subtraction switched to addition or vice versa. 
The product of conjugates always equals the first term squared minus the 
second term squared.

		  Now do the rationalizing.

lim
x→4

√

x−2

x−4

= lim
x→4

(
√

x−2)

(x−4)
⋅

(
√

x+2)

(
√

x+2)

= lim
x→4

(
√

x)
2

−2
2

(x−4)(
√

x+2)

= lim
x→4

(x−4)

(x−4)(
√

x+2)

	 3.	 Cancel the (x−4) from the numerator and denominator.

= lim
x→4

1
√

x+2

	 4.	 Now substitution works.

=
1

√

4+2

=
1

4

So, lim
x→4

√

x−2

x−4
=

1

4
.

As with the factoring example, this rationalizing process plugged the hole 
in the original function. In this example, 4 is the arrow-number, 1

4
 is the limit 

answer, and the function 

√

x−2

x−4
 has a hole at (4, 1

4
).

Miscellaneous algebra
When factoring and conjugate multiplication don’t work, try some other 
basic algebra, like adding or subtracting fractions, multiplying or dividing 
fractions, canceling, or some other form of simplification. Here’s an example: 

Evaluate lim
x→0

1

x+4
−
1

4

x
.
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	 1.	 Try substitution.

		  Plug in 0: That gives you 0
0

 — no good.

	 2.	 Simplify the complex fraction (that’s a big fraction that contains little 
fractions) by multiplying the numerator and denominator by the least 
common denominator of the little fractions, namely 4(x+ 4).

		  Note: You can also simplify a complex fraction by adding or subtracting 
the little fractions in the numerator and/or denominator, but the method 
described here is a bit quicker.

	 3.	 Now substitution works.

=
−1

4(0+4)
=−

1

16

That’s the limit.

Take a break and make yourself  
a limit sandwich
When algebra doesn’t work, try making a limit sandwich. The best way to 
understand the sandwich or squeeze method is by looking at a graph. See 
Figure 8-1.

Look at functions f, g, and h in Figure 8-1: g is sandwiched between f and h. Since 
near the arrow-number of 2, f is always higher than or the same height as g, and 
g is always higher than or the same height as h, and since lim

x→2

f (x)= lim
x→2

h (x), 
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then g(x) must have the same limit as x approaches 2 because it’s sandwiched 
or squeezed between f and h. The limit of both f and h as x approaches 2 is 3. 
So, 3 has to be the limit of g as well. It’s got nowhere else to go. 

	

Figure 8-1: 
The 

sandwich 
method 

for solv-
ing a limit. 
Functions 

f and h are 
the bread, 

and g is the 
salami.

	

Here’s another example: Evaluate .

	 1.	 Try substitution.

		  Plug 0 into x. That gives you 0 ⋅sin 1

0
 — no good, can’t divide by zero. 

On to plan B.

	 2.	 Try the algebraic methods or any other tricks you have up your 
sleeve.

		  Knock yourself out. You can’t do it. Plan C.

	 3.	 Try your calculator.

		  It’s always a good idea to see what your calculator tells you even if this 
is a “show your work” problem. To graph this function, set your graphing 
calculator’s mode to radian and the window to

		  Figure 8-2 shows what the graph looks like.

		  It definitely looks like the limit of g is zero as x approaches zero from the 
left and the right. Now, check the table of values on your calculator (set 
TblStart to 0 and ΔTbl to 0.001). Table 8-2 gives some of the values from 
the calculator table.
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Figure 8-2: 
The graph 
of 

.
	

Table 8-2	 Table of Values for 

x g (x )

0 Error

0.001 0.0008269

0.002 −0.000936

0.003 0.0009565

0.004 −0.003882

0.005 −0.004366

0.006 −0.000969

0.007 −0.006975

0.008 −0.004928

0.009 −0.008234

		  These numbers sort of look like they’re getting closer and closer to zero 
as x gets close to zero, but they’re not convincing. This type of table 
doesn’t work so great for oscillating functions like sine or cosine. (Some 
function values on the table, for example −0.000969 for x=0.006, are 
closer to zero than other values higher on the table where x is smaller. 
That’s the opposite of what we want to see.)

		  A better way of seeing that the limit of g is zero as x approaches zero 
is to use the first calculator method I discuss in the section “Figuring a 
limit with your calculator.” Enter the function on the home screen and 
successively plug in the x-values listed in Table 8-3 to obtain the corre-
sponding function values. (Note: Don’t be confused: Table 8-3 is called 
a “table,” but it is not a table generated by a calculator’s table function. 
Get it?)
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Table 8-3	 Another Table of Values for 

x g (x )

0.1 −0.054

0.01 −0.0051

0.001 0.00083

0.0001 −0.000031

0.00001 0.00000036

		  Now you can definitely see that g is headed toward zero.

	 4.	 Now you need to prove the limit mathematically even though you’ve 
already solved it on your calculator. To do this, make a limit sand-
wich. (Fooled you — bet you thought Step 3 was the last step.)

		  The hard part about using the sandwich method is coming up with the 
“bread” functions. (Functions f and h are the bread, and g is the salami.) 
There’s no automatic way of doing this. You’ve got to think about the 
shape of the salami function, and then use your knowledge of functions 
and your imagination to come up with some good prospects for the 
bread functions.

		  Because the range of the sine function is from negative 1 to positive 1, 
whenever you multiply a number by the sine of anything, the result 
either stays the same distance from zero or gets closer to zero. Thus, 

 will never get above |x| or below . So try graphing the func-

tions f (x)= |x| and  along with g(x) to see if f and h make  
adequate bread functions for g. Figure 8-3 shows that they do.

		  We’ve shown — though perhaps not to a mathematician’s satisfaction, 
egad! — that f (x)≥g(x)≥h(x). And because lim

x→0

f (x)= lim
x→0

h(x)=0, it 

follows that g (x) must have the same limit: voilà — lim
x→0

g(x)=0.

	

Figure 8-3: 
A graph of 
f (x )= |x | , 
h(x )=−|x | , 

and 

.  

It’s a bow 
tie!
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The long and winding road
Consider the function,  shown in 

Figures 8-2 and 8-3 and discussed in the sec-
tion about making a limit sandwich. It’s defined 
everywhere except at zero. If we now alter it 
slightly — by renaming it f (x ) and then defin-
ing f (0) to be 0 — we create a new function 
with bizarre properties. The function is now 
continuous everywhere; in other words, it has 
no gaps. But at (0, 0), it seems to contradict 
the basic idea of continuity that says you can 
trace the function without taking your pencil 
off the paper.

Imagine starting anywhere on f (x )  —  which 
looks exactly like g(x ) in Figures  8-2 and 
8-3 — to the left of the y-axis and driving along 
the winding road toward the origin, (0, 0). Get 
this: You can start your drive as close to the 
origin as you like — how about the width of a 
proton away from (0, 0) — and the length of road 
between you and (0, 0) is infinitely long! That’s 
right. It winds up and down with such increas-
ing frequency as you get closer and closer to 
(0, 0) that the length of your drive is actually infi-
nite, despite the fact that each “straight-away” 
is getting shorter and shorter. On this long and 
winding road, you’ll never get to her door.

This altered function is clearly continuous 
at every point — with the possible exception 
of (0, 0) — because it’s a smooth, connected, 
winding road. And because  

(see the limit sandwich section for proof), and 
because f (0) is defined to be 0, the three-part 

test for continuity at 0 is satisfied. The function 
is thus continuous everywhere.

But tell me, how can the curve ever reach (0, 0) 
or connect to (0, 0) from the left (or the right)? 
Assuming you can traverse an infinite dis-
tance by driving infinitely fast, when you finally 
drive through the origin, are you on one of the 
up legs of the road or one of the down legs? 
Neither seems possible because no matter how 
close you are to the origin, you have an infinite 
number of legs and an infinite number of turns 
ahead of you. There is no last turn before you 
reach (0, 0). So it seems that the function can’t 
connect to the origin and that, therefore, it can’t 
be continuous there — despite the fact that the 
math tells us that it is.

Here’s another way of looking at it. Imagine 
a vertical line drawn on top of the function at 
x =−0.2. Now, keeping the line vertical, slowly 
slide the line to the right over the function until 
you pass over (0, 0). There are no gaps in the 
function, so at every instance, the vertical line 
crosses the function somewhere. Think about 
the point where the line intersects with the 
function. As you drag the line to the right, that 
point travels along the function, winding up 
and down along the road, and, as you drag the 
line over the origin, the point reaches and then 
passes (0, 0). Now tell me this: When the point 
hits (0, 0), is it on its way up or down? How can 
you reconcile all this? I wish I knew.

Stuff like this really messes with your mind.
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Evaluating Limits at Infinity
In the previous sections, I look at limits as x approaches a finite number, 
but you can also have limits where x approaches infinity or negative infinity. 
Consider the function f (x)= 1

x
 and check out its graph in Figure 8-4.

	

Figure 8-4: 
The graph of 

f (x )= 1

x
.

	

You can see on the graph (in the first quadrant) that as x gets bigger and 
bigger — in other words, as x approaches infinity — the height of the func-
tion gets lower and lower but never gets to zero. This is confirmed by con-
sidering what happens when you plug bigger and bigger numbers into 1

x
: 

the outputs get smaller and smaller and approach zero. This graph thus has 
a horizontal asymptote of y=0 (the x-axis), and we say that lim

x→∞

1

x
=0. The 

fact that x never actually reaches infinity and that f never gets to zero has 
no relevance. When we say that lim

x→∞

1

x
=0, we mean that as x gets bigger and 

bigger without end, f is closing in on a height of zero (or f is ultimately getting 
infinitely close to a height of zero). If you look at the third quadrant, you can 
see that the function f also approaches zero as x approaches negative infinity, 
which is written as lim

x→−∞

1

x
=0.

Limits at infinity and horizontal 
asymptotes
Limits at infinity and horizontal asymptotes go hand in hand. Determining the 
limit of a function as x approaches infinity or negative infinity is the same as 
finding the height of the horizontal asymptote.
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Let’s begin by considering rational functions. Here’s how you find the limit at 
infinity and negative infinity (and the height of the horizontal asymptote) of 

a rational function (something like f (x)= 3x−7

2x+8
). First, note the degree of the 

numerator (that’s the highest power of x in the numerator) and the degree of 
the denominator. There are three cases:

	 ✓	If the degree of the numerator is greater than the degree of the denomi-

nator, for example f (x)= 6x
4
+x

3
−7

2x
2
+8

, there’s no horizontal asymptote, 

and the limit of the function as x approaches infinity (or negative infin-
ity) does not exist (the limit will be positive or negative infinity).

	 ✓	If the degree of the denominator is greater than the degree of the numer-

ator, for example g(x)= 4x
2
−9

x
3
+12

, the x-axis (that’s the line y=0) is the 

horizontal asymptote, and lim
x→∞

g(x) = lim
x→−∞

g(x)=0.

	 ✓	If the degrees of the numerator and denominator are equal, take the 
coefficient of the highest power of x in the numerator and divide it by 
the coefficient of the highest power of x in the denominator. That quo-
tient gives you the answer to the limit problem and the height of the 

asymptote. For example, if h(x)= 4x
3
−10x+1

5x
3
+2x

2
−x

, lim
x→∞

h(x) = lim
x→−∞

h(x)=
4

5
, 

and h has a horizontal asymptote at y= 4

5
.

	 Talk like a professor. To impress your friends, point your index finger upward, 
raise one eyebrow, and say in a professorial tone, “In a rational function where 
the numerator and denominator are of equal degrees, the limit of the function 
as x approaches infinity or negative infinity equals the quotient of the coeffi-
cients of the leading terms. A horizontal asymptote occurs at this same value.”

	 ∞

∞
 does not equal 1. Substitution doesn’t work for the problems in this section. 

If you try plugging ∞ into x in any of the rational functions in this section, you 
get ∞∞ but that does not necessarily equal 1 (∞∞ sometimes equals 1, but it 
often does not). A result of ∞

∞
 tells you nothing about the answer to a limit 

problem.

Solving limits at infinity with a calculator
Here’s a problem that can’t be done by the method in the previous section 

because it’s not a rational function: lim
x→∞

�√

x
2
+x−x

�

. But it’s a snap with a 

calculator. Enter the function in graphing mode, then go to table setup and set 

TblStart to 100,000 and ΔTbl to 100,000. Table 8-4 shows the results.
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Table 8-4	 Table of Values for 
√
x
2
+x−x

x y
100,000 0.4999988

200,000 0.4999994

300,000 0.4999996

400,000 0.4999997

500,000 0.4999998

600,000 0.4999998

700,000 0.4999998

800,000 0.4999998

900,000 0.4999999

You can see that y is getting extremely close to 0.5 as x gets larger and 
larger. So 0.5 is the limit of the function as x approaches infinity, and there’s 
a horizontal asymptote at y=0.5. If you have any doubts that the limit 
equals 0.5, go back to table setup and put in a humongous TblStart and ΔTbl,  
say 1,000,000,000, and check the table results again. All you see is a column 
of 0.5s. That’s the limit. (By the way, unlike with the rational functions in the 
two previous sections, the limit of this function as x approaches nega-
tive infinity doesn’t equal the limit as x approaches positive infinity: 

lim
x→−∞

�√

x
2
+x−x

�

=∞, because when you plug in −∞ you get ∞+∞ which 

equals ∞.) One more thing: Just as with regular limits, using a non-CAS 
(Computer Algebra System) calculator for infinite limits won’t give you an 
exact answer unless the numbers in the table are getting close to a number 
you recognize, like 0.5.

	 ∞−∞ does not equal zero. Substitution does not work for the problem above, 

lim
x→∞

�√

x
2
+x−x

�

. If you plug ∞ into x, you get ∞−∞ which does not necessar-

ily equal zero (∞−∞ sometimes equals zero, but it often does not). A result of 
∞−∞ tells you nothing about the answer to a limit problem.

Solving limits at infinity with algebra
Now try some algebra for the problem lim

x→∞

�√

x
2
+x−x

�

. You got the answer 

with a calculator, but all things being equal, it’s better to solve the problem 
algebraically because then you have a mathematically airtight answer. The 
calculator answer in this case is very convincing, but it’s not mathematically 
rigorous, so if you stop there, the math police may get you.
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	 1.	 Try substitution — always a good idea.

		  No good. You get ∞−∞, which tells you nothing — see the Warning in 
the previous section. On to plan B.

		  Because 
�√

x
2
+x−x

�

 contains a square root, the conjugate multiplication 

method would be a natural choice, except that that method is used for 
fraction functions. Well, just put 

�√

x
2
+x−x

�

 over the number 1 and, voilà, 

you’ve got a fraction: 

√

x
2
+x−x
1

. Now do the conjugate multiplication.

	 2.	 Multiply the numerator and denominator by the conjugate of �√
x
2
+x−x

�
 and simplify.

	

lim
x→∞

√

x
2
+x−x

1

= lim
x→∞

(
√

x
2
+x−x)

1
⋅

(
√

x
2
+x+x)

(
√

x
2
+x+x)

= lim
x→∞

x
2
+x−x

2

√

x
2
+x+x

(First, cancel the x
2
s in the numerator.

Then factor x out of the denominator.

Yes, you heard that right.)

= lim
x→∞

x

x

�
�

1+
1
x
+1

�
(Now, cancel the xs.)

= lim
x→∞

1
�

1+
1

x
+1

	 3.	 Now substitution works.

=
1

�

1+
1

∞
+1

=
1

√

1+0+1

(Recall that lim
x→∞

1

x
=0 from the “Limits to memorize” section.)

=
1

1+1
=

1

2

Thus, lim
x→∞

�√

x
2
+x−x

�

=
1

2
, which confirms the calculator answer.



Part IV
Differentiation

	 Check out my online article on integrating powers of the six trigonomic functions at 
www.dummies.com/extras/calculus.



In this part . . .
	 ✓	 The meaning of a derivative: It’s a slope and a rate — more 

specifically, a derivative tells you how fast y is changing com-
pared to x.

	 ✓	 How to calculate derivatives with the product rule, the quotient 
rule, and the chain rule.

	 ✓	 Implicit differentiation, logarithmic differentiation, and the 
differentiation of inverse functions.

	 ✓	 What a derivative tells you about the shape of a curve: Local 
minimums, local maximums, steepness, inflection points, 
concavity, critical numbers, and so on.

	 ✓	 Differentiation word problems: Position, velocity, and acceleration, 
optimization, related rates, linear approximation, and tangent and 
normal lines.



Chapter 9

Differentiation Orientation
In This Chapter
▶	Discovering the simple algebra behind the calculus

▶	Getting a grip on weird calculus symbols

▶	Differentiating with Laurel and Hardy

▶	Finding the derivatives of lines and curves

▶	Tackling the tangent line problem and the difference quotient

D 
ifferential calculus is the mathematics of change and the mathematics 
of infinitesimals. You might say that it’s the mathematics of infinitesimal 

changes — changes that occur every gazillionth of a second.

Without differential calculus — if you’ve got only algebra, geometry, and 
trigonometry — you’re limited to the mathematics of things that either don’t 
change or that change or move at an unchanging rate. Remember those 
problems from algebra? One train leaves the station at 3 p.m. going west at 
80 mph. Two hours later another train leaves going east at 50 mph . . . . You 
can handle such a problem with algebra because the speeds or rates are 
unchanging. Our world, however, isn’t one of unchanging rates — rates are in 
constant flux.

Think about putting man on the moon. Apollo 11 took off from a moving launch 
pad (the earth is both rotating on its axis and revolving around the sun). As 
the Apollo flew higher and higher, the friction caused by the atmosphere 
and the effect of the earth’s gravity were changing not just every second, not 
just every millionth of a second, but every infinitesimal fraction of a second. 
The spacecraft’s weight was also constantly changing as it burned fuel. All 
of these things influenced the rocket’s changing speed. On top of all that, the 
rocket had to hit a moving target, the moon. All of these things were changing, 
and their rates of change were changing. Say the rocket was going 1,000 mph 
one second and 1,020 mph a second later — during that one second, the rock-
et’s speed literally passed through the infinite number of different speeds 
between 1,000 and 1,020 mph. How can you do the math for these ephemeral 
things that change every infinitesimal part of a second? You can’t do it without 
differential calculus.
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And differential calculus is used for all sorts of terrestrial things as well. 
Much of modern economic theory, for example, relies on differentiation. In 
economics, everything is in constant flux. Prices go up and down, supply and 
demand fluctuate, and inflation is constantly changing. These things are con-
stantly changing, and the ways they affect each other are constantly chang-
ing. You need calculus for this.

Differential calculus is one of the most practical and powerful inventions in 
the history of mathematics. So let’s get started already.

Differentiating: It’s Just  
Finding the Slope

Differentiation is the first of the two major ideas in calculus (the other is inte-
gration, which I cover in Part V). Differentiation is the process of finding the 
derivative of a function like y=x2. The derivative is just a fancy calculus term 
for a simple idea you know from algebra: slope. Slope, as you know, is the 
fancy algebra term for steepness. And steepness is the fancy word for . . . No! 
Steepness is the ordinary word you’ve known since you were a kid, as in, 
“Hey, this road sure is steep.” Everything you study in differential calculus all 
relates back to the simple idea of steepness.

	 In differential calculus, you study differentiation, which is the process of 
deriving — that’s finding — derivatives. These are big words for a simple 
idea: Finding the steepness or slope of a line or curve. Throw some of these 
terms around to impress your friends. By the way, the root of the words differ-
ential and differentiation is difference — I explain the connection at the end of 
this chapter in the section on the difference quotient.

Consider Figure 9-1. A steepness of 1
2

 means that as the stickman walks one 

foot to the right, he goes up 1
2

 foot; where the steepness is 3, he goes up 3 

feet as he walks 1 foot to the right. Where the steepness is zero, he’s at the 
top, going neither up nor down; and where the steepness is negative, he’s 
going down. A steepness of −2, for example, means he goes down 2 feet for 
every foot he goes to the right. This is shown more precisely in Figure 9-2.

	 Negative slope: To remember that going down to the right (or up to the left) is 
a negative slope, picture an uppercase N, as shown in Figure 9-3.
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Figure 9-1: 
Differen

tiating just 
means 

finding the 
steepness 

or slope.
	

	

Figure 9-2: 
The 

derivative = 
slope = 

steepness.
	

	

Figure 9-3: 
This N 

line has a 
Negative 

slope.
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Don’t be among the legions of students who mix up the slopes of vertical 
and horizontal lines. How steep is a flat, horizontal road? Not steep at all, of 
course. Zero steepness. So, a horizontal line has a slope of zero. (Like where 
the stick man is at the top of the hill in Figure 9-1.) What’s it like to drive 
up a vertical road? You can’t do it. And you can’t get the slope of a vertical 
line — it doesn’t exist, or, as mathematicians say, it’s undefined.

The slope of a line
Keep going with the slope idea — by now you should know that slope is what 
differentiation is all about. Take a look at the graph of the line, y=2x+3, in 
Figure 9-4.

You remember from algebra — I’m totally confident of this — that you can find 
points on this line by plugging numbers into x and calculating y: plug 1 into x 
and y equals 5, which gives you the point located at (1, 5); plug 4 into x and y 
equals 11, giving you the point (4, 11), and so on.

Variety is the spice of life
Everyone knows that 32= 9. Now, wouldn’t it be 
weird if the next time you read this math fact, it 

was written as 23= 9 or 
2
3= 9? How does 

2

3= 9 
grab you? Or 3

2

= 9? Variety is not the spice of 

mathematics. When mathematicians decide 
on a way of expressing an idea, they stick 
to it — except, that is, with calculus. Are you 
ready? Hold on to your hat. All of the following 
are different symbols for the derivative — they 

all mean exactly the same thing: 
dy

dx
 or df

dx
 or 

df (x )

dx
 or D

x
y  or d

dx
f (x ) or f �(x ) or y ′ or 

∙

f  or 
∙
y  or 

D
x
f  or Df  or D

x
f (x ). There are more. Now, you’ve 

got two alternatives: 1) Beat your head against 
the wall trying to figure out things like why some 
author uses one symbol one time and a different 
symbol another time, and what exactly does the 
d or f mean anyway, and so on and so on, or 2) 
Don’t try to figure it out; just treat these different 
symbols like words in different languages for the 
same idea — in other words, don’t sweat it. I 
strongly recommend the second option.
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Figure 9-4: 
The graph of 
y = 2x +3.

	

I’m sure you also remember how to calculate the slope of this line. I realize that 
no calculation is necessary here — you go up 2 as you go over 1, so the slope 
is automatically 2. You can also simply note that y=2x+3 is in slope-intercept 
form (y=mx+b) and that, since m=2, the slope is 2. (See Chapter 5 if you want 
to review y=mx+b.) But bear with me because you need to know what follows. 
First, recall that

Slope=
rise

run
=

y
2
−y

1

x
2
−x

1

The rise is the distance you go up (the vertical part of a stair step), and the run 
is the distance you go across (the horizontal part of a stair step). Now, take 
any two points on the line, say, (1, 5) and (6, 15), and figure the rise and the run. 
You rise up 10 from (1, 5) to (6, 15) because 5 plus 10 is 15 (or you could say 
that 15 minus 5 is 10). And you run across 5 from (1, 5) to (6, 15) because 1 plus 5 
is 6 (or in other words, 6 minus 1 is 5). Next, you divide to get the slope:

Slope=
rise

run
=

10

5
=2
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Here’s how you do the same problem using the slope formula:

Slope=
y
2
−y

1

x
2
−x

1

Plug in the points (1, 5) and (6, 15):

Slope=
15−5

6−1
=

10

5
=2

Okay, let’s summarize what we know about this line. Table 9-1 shows six 
points on the line and the unchanging slope of 2.

Table 9-1	 Points on the Line y = 2x + 3 and  
	 the Slope at Those Points

The derivative of a line
The preceding section showed you the algebra of slope. Now, here’s the calcu-
lus. The derivative (the slope) of the line in Figure 9-4 is always 2, so you write

dy

dx
=2 (Read dee y dee x equals 2.)

Another common way of writing the same thing is

y
�
=2 (Read y prime equals 2.)

And you say,

The derivative of the function, y=2x+3, is 2.

(Read The derivative of the function, y=2x+3, is 2. That was a joke.)
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The Derivative: It’s Just a Rate
Here’s another way to understand the idea of a derivative that’s even more 
fundamental than the concept of slope: A derivative is a rate. So why did I 
start the chapter with slope? Because slope is in some respects the easier of 
the two concepts, and slope is the idea you return to again and again in this 
book and any other calculus textbook as you look at the graphs of dozens 
and dozens of functions. But before you’ve got a slope, you’ve got a rate. A 
slope is, in a sense, a picture of a rate; the rate comes first, the picture of it 
comes second. Just like you can have a function before you see its graph, 
you can have a rate before you see it as a slope.

Calculus on the playground
Imagine Laurel and Hardy on a teeter-totter — check out Figure 9-5.

	

Figure 9-5: 
Laurel and 

Hardy —  
blithely 

unaware of 
the calculus 
implications.

	

Assuming Hardy weighs twice as much as Laurel, Hardy has to sit twice as 
close to the center as Laurel for them to balance. And for every inch that 
Hardy goes down, Laurel goes up two inches. So Laurel moves twice as much 
as Hardy. Voilà, you’ve got a derivative!

	 A derivative is a rate. A derivative is simply a measure of how much one thing 
changes compared to another — and that’s a rate.

Laurel moves twice as much as Hardy, so with calculus symbols you write

dL=2dH
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Loosely speaking, dL can be thought of as the change in Laurel’s position and 
dH as the change in Hardy’s position. You can see that if Hardy goes down 
10 inches then dH is 10, and because dL equals 2 times dH, dL is 20 — so 
Laurel goes up 20 inches. Dividing both sides of this equation by dH gives you

dL

dH
=2

And that’s the derivative of Laurel with respect to Hardy. (It’s read as, “dee L, 
dee H,” or as, “the derivative of L with respect to H.”) The fact that dL

dH
=2 

simply means that Laurel is moving 2 times as much as Hardy. Laurel’s rate of 
movement is 2 inches per inch of Hardy’s movement.

Now let’s look at it from Hardy’s point of view. Hardy moves half as much as 
Laurel, so you can also write

dH =
1

2
dL

Dividing by dL gives you

dH

dL
=

1

2

This is the derivative of Hardy with respect to Laurel, and it means that Hardy 
moves 1

2
 inch for every inch that Laurel moves. Thus, Hardy’s rate is 1

2
 inch 

per inch of Laurel’s movement. By the way, you can also get this derivative 

by taking dL
dH

=2, which is the same as dL
dH

=
2

1
, and flipping it upside down to 

get dH
dL

=
1

2
.

These rates of 2 inches per inch and 1
2

 inch per inch may seem a bit odd because 
we often think of rates as referring to something per unit of time, like miles per 
hour. But a rate can be anything per anything. So, whenever you’ve got a this per 
that, you’ve got a rate; and if you’ve got a rate, you’ve got a derivative.

Speed — the most familiar rate
Speaking of miles per hour, say you’re driving at a constant speed of 60 miles 
per hour. That’s your car’s rate, and 60 miles per hour is the derivative of your 
car’s position, p, with respect to time, t. With calculus symbols, you write

dp

dt
=60

miles

hour
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This tells you that your car’s position changes 60 miles for each hour that 
the time changes. Or you can say that your car’s position (in miles) changes 
60 times as much as the time changes (in hours). Again, a derivative just tells 
you how much one thing changes compared to another.

And just like the Laurel and Hardy example, this derivative, like all deriva-
tives, can be flipped upside down:

dt

dp
=

1

60

hours

mile

This hours-per-mile rate is certainly much less familiar than the ordinary 
miles-per-hour rate, but it’s nevertheless a perfectly legitimate rate. It tells you 
that for each mile you go the time changes 1

60
 of an hour. And it tells you that 

the time (in hours) changes 1
60

 as much as the car’s position (in miles).

	 There’s no end to the different rates you might see. We just saw miles per hour 
and hours per mile. Then there’s miles per gallon (for gas mileage), gallons per 
minute (for water draining out of a pool), output per employee (for a factory’s 
productivity), and so on. Rates can be constant or changing. In either case, 
every rate is a derivative, and every derivative is a rate.

The rate-slope connection
Rates and slopes have a simple connection. All of the previous rate examples 
can be graphed on an x-y coordinate system, where each rate appears as a 
slope. Consider the Laurel and Hardy example again. Laurel moves twice as 
much as Hardy. This can be represented by the following equation:

L=2H

Figure 9-6 shows the graph of this function.

	

Figure 9-6: 
The graph of 

L= 2H .
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The inches on the H-axis indicate how far Hardy has moved up or down from 
the teeter-totter’s starting position; the inches on the L-axis show how far 
Laurel has moved up or down. The line goes up 2 inches for each inch it goes 

to the right, and its slope is thus 2
1

, or 2. This is the visual depiction of dL
dH

=2, 
showing that Laurel’s position changes 2 times as much as Hardy’s.

One last comment. You know that slope= rise

run
. Well, you can think of dL as the 

rise and dH as the run. That ties everything together quite nicely.

	
slope=

rise

run
=

dL

dH
=rate

 

Remember, a derivative is just a slope, and a derivative is also just a rate.

The Derivative of a Curve
The sections so far in this chapter have involved linear functions — straight 
lines with unchanging slopes. But if all functions and graphs were lines with 
unchanging slopes, there’d be no need for calculus. The derivative of the 
Laurel and Hardy function graphed previously is 2, but you don’t need calcu-
lus to determine the slope of a line. Calculus is the mathematics of change, 
so now is a good time to move on to parabolas, curves with changing slopes. 
Figure 9-7 is the graph of the parabola, y= 1

4
x
2.

	

Figure 9-7: 
The graph of 

y = 1

4
x 2.
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Notice how the parabola gets steeper and steeper as you go to the right. You 
can see from the graph that at the point (2, 1), the slope is 1; at (4, 4), the slope 
is 2; at (6, 9), the slope is 3, and so on. Unlike the unchanging slope of a line, the 
slope of a parabola depends on where you are; it depends on the x-coordinate 
of wherever you are on the parabola. So, the derivative (or slope) of the func-
tion y= 1

4
x
2 is itself a function of x — namely 1

2
x (I show you how I got that 

in a minute). To find the slope of the curve at any point, you just plug the 
x-coordinate of the point into the derivative, 1

2
x, and you’ve got the slope. 

For instance, if you want the slope at the point (3, 2.25), plug 3 into the x, and 
the slope is 1

2
 times 3, or 1.5. Table 9-2 shows some points on the parabola 

and the steepness at those points.

Table 9-2	 Points on the Parabola y = 1

4
x
2 and  

	 the Slopes at Those Points

Here’s the calculus. You write

dy

dx
=

1

2
x or y

�
=

1

2
x

And you say,

The derivative of the function y= 1

4
x
2 is 1

2
x.

Or you can say,

The derivative of 1
4
x
2 is 1

2
x.

I promised to tell you how to derive this derivative of y= 1

4
x
2, so here you go:

	 1.	 Beginning with the original function, 1
4
x
2, take the power and put it in 

front of the coefficient.
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	 2.	 Multiply.

		 2 times 1
4

 is 1
2

 so that gives you 1
2
x
2.

	 3.	 Reduce the power by 1.

		 In this example, the 2 becomes a 1. So the derivative is

		 1
2
x
1 or just 1

2
x.

This and many other differentiation techniques are discussed in Chapter 10.

The Difference Quotient
Sound the trumpets! You come now to what is perhaps the cornerstone of dif-
ferential calculus: the difference quotient, the bridge between limits and the 
derivative. (But you’re going to have to be patient here, because it’s going to 
take me a few pages to explain the logic behind the difference quotient before 
I can show you what it is.) Okay, so here goes. I keep repeating — have you 
noticed? — the important fact that a derivative is just a slope. You learned 
how to find the slope of a line in algebra. In Figure 9-7, I gave you the slope of 
the parabola at several points, and then I showed you the short-cut method 
for finding the derivative — but I left out the important math in the middle. 
That math involves limits, and it takes us to the threshold of calculus. Hold 
on to your hat.

	 Slope is defined as rise
run

, and Slope=
y
2
−y

1

x
2
−x

1

.

To compute a slope, you need two points to plug into this formula. For a line, 
this is easy. You just pick any two points on the line and plug them in. But it’s 
not so simple if you want, say, the slope of the parabola f (x)=x2 at the point 
(2, 4). Check out Figure 9-8.

You can see the line drawn tangent to the curve at (2, 4). Because the slope 
of the tangent line is the same as the slope of the parabola at (2, 4), all you 
need is the slope of the tangent line to give you the slope of the parabola. But 
you don’t know the equation of the tangent line, so you can’t get the second 
point — in addition to (2, 4) — that you need for the slope formula.

Here’s how the inventors of calculus got around this roadblock. Figure 9-9 
shows the tangent line again and a secant line intersecting the parabola at 
(2, 4) and at (10, 100).

	 Definition of secant line: A secant line is a line that intersects a curve at two 
points. This is a bit oversimplified, but it’ll do.
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Figure 9-8: 
The graph of 
f (x )= x 2 (or 
y = x 2) with 

a tangent 
line at (2, 4).

	

	

Figure 9-9: 
The graph 

of f (x )= x 2 
with a 

tangent 
line and a 

secant line.
	

The slope of this secant line is given by the slope formula:

Slope=
rise

run
=
y
2
−y

1

x
2
−x

1

=
100−4

10−2
=

96

8
=12

You can see that this secant line is steeper than the tangent line, and thus the 
slope of the secant, 12, is higher than the slope you’re looking for.

Now add one more point at (6, 36) and draw another secant using that point 
and (2, 4) again. See Figure 9-10.
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Figure 9-10: 
The graph 

of f (x )= x 2 
with a tan-

gent line 
and two 

secant lines.
	

Calculate the slope of this second secant:

Slope=
36−4

6−2
=

32

4
=8

You can see that this secant line is a better approximation of the tangent line 
than the first secant.

Now, imagine what would happen if you grabbed the point at (6, 36) and slid 
it down the parabola toward (2, 4), dragging the secant line along with it. Can 
you see that as the point gets closer and closer to (2, 4), the secant line gets 
closer and closer to the tangent line, and that the slope of this secant thus 
gets closer and closer to the slope of the tangent?

So, you can get the slope of the tangent if you take the limit of the slopes of 
this moving secant. Let’s give the moving point the coordinates (x

2
,y

2
). As this 

point (x
2
,y

2
) slides closer and closer to (x

1
,y

1
), namely (2, 4), the run, which 

equals x
2
−x

1
, gets closer and closer to zero. So here’s the limit you need:
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Watch what happens to this limit when you plug in four more points on the 
parabola that are closer and closer to (2, 4):

When the point (x
2
,y

2
) slides to (3, 9), the slope is 9−4

3−2
, or 5.

When the point slides to (2.1, 4.41), the slope is 4.41−4

2.1−2
, or 4.1.

When the point slides to (2.01, 4.0401), the slope is 4.01.

When the point slides to (2.001, 4.004001), the slope is 4.001.

Sure looks like the slope is headed toward 4. (By the way, the fact that the 
slope at (2, 4) — which you’ll see in a minute does turn out to be 4 — is the 
same as the y-coordinate of the point is a meaningless coincidence, as is the 
pattern you may have noticed in the above numbers between the y-coordi-
nates and the slopes.)

As with all limit problems, the variable in this problem, x
2
, approaches but 

never actually gets to the arrow-number (2 in this case). If it got to 2 — which 
would happen if you slid the point you grabbed along the parabola until it 

was actually on top of (2, 4) — you’d get 4−4

2−2
=

0

0
, which is undefined. But, of 

course, the slope at (2, 4) is precisely the slope you want — the slope of the 
line when the point does land on top of (2, 4). Herein lies the beauty of the 
limit process. With this limit, you get the exact slope of the tangent line at (2, 4) 

even though the limit function, 
y
2
−4

x
2
−2

, generates slopes of secant lines.

Here again is the equation for the slope of the tangent line:

Slope= lim
x
2
→2

y
2
−4

x
2
−2

And the slope of the tangent line is — you guessed it — the derivative.

	 Meaning of the derivative: The derivative of a function f (x) at some number 
x= c, written as f �(c), is the slope of the tangent line to f drawn at c.

The slope fraction 
y
2
−4

x
2
−2

 is expressed with algebra terminology. Now let’s 

rewrite it to give it that highfalutin calculus look. But first, finally, the defini-
tion you’ve been waiting for.

Definition of the difference quotient: There’s a fancy calculus term for the 
general slope fraction, rise

run
 or 

y
2
−y

1

x
2
−x

1

, when you write it in the fancy calculus 

way. A fraction is a quotient, right? And both y
2
−y

1
 and x

2
−x

1
 are differences, 

right? So, voilà, it’s called the difference quotient. Here it is:

f (x+h)− f (x)

h
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(This is the most common way of writing the difference quotient. You may 
run across other, equivalent ways.) In the next two pages, I show you how 
y
2
−y

1

x
2
−x

1

 morphs into the difference quotient.

Okay, let’s lay out this morphing process. First, the run, x
2
−x

1
 (in this exam-

ple, x
2
−2), is called — don’t ask me why — h. Next, because x

1
=2 and the 

run equals h, x
2
 equals 2+h. You then write y

1
 as f (2) and y

2
 as f (2+h). Making 

all the substitutions gives you the derivative of x2 at x=2:

f
�
(2)= lim

run→0

rise

run

= lim
x
2
→2

y
2
−4

x
2
−2

= lim
h→0

f (2+h)− f (2)

(2+h)−2

= lim
h→0

f (2+h)− f (2)

h

	 lim
h→0

f (2+h)− f (2)

h
 is simply the shrinking rise

run
 stair step you can see in 

Figure 9-10 as the point slides down the parabola toward (2, 4).

Figure 9-11 is basically the same as Figure 9-10 except that instead of exact 
points like (6, 36) and (10, 100), the sliding point has the general coordinates of 
(2+h, f (2+h)), and the rise and the run are expressed in terms of h. Figure 9-11 

is the ultimate figure for .

	

Figure 9-11: 
Graph of 
f (x )= x 2 
showing 

how a limit 
produces 

the slope of 
the tangent 
line at (2, 4).
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Have I confused you with these two figures? Don’t sweat it. They both show the 

same thing. Both figures are visual representations of .  

I just thought it’d be a good idea to show you a figure with exact coordinates 
before showing you Figure 9-11 with all that strange-looking f and h stuff in it.

Doing the math gives you, at last, the slope of the tangent line at (2, 4):

f
�
(2)= lim

h→0

f (2+h)− f (2)

h

= lim
h→0

(2+h)
2
−(2)

2

h

(The function is f (x)=x
2
,

so f (2+h)= (2+h)
2
, right?)

= lim
h→0

(4+4h+h
2
)−4

h

= lim
h→0

4h+h
2

h

= lim
h→0

h(4+h)

h

= lim
h→0

(4+h)

=4+0=4

So the slope at the point (2, 4) is 4.

Main definition of the derivative: If you replace the point (2, f (2)) in the limit 
equation above with the general point (x, f (x)), you get the general definition 
of the derivative as a function of x:

f
�
(x)= lim

h→0

f (x+h)− f (x)

h

So at last you see that the derivative is defined as the limit of the difference 
quotient.

Figure 9-12 shows this general definition graphically. Note that Figure 9-12 is 
virtually identical to Figure 9-11 except that xs replace the 2s in Figure 9-11 
and that the moving point in Figure 9-12 slides down toward any old point 
(x, f (x)) instead of toward the specific point (2, f (2)).
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Figure 9-12: 
Graph of 
f (x )= x 2 
showing 

how a limit 
produces 

the slope of 
the tangent 

line at the 
general 

point 
(x , f (x )).

	

Now work out this limit and get the derivative for the parabola f (x)=x2:

Thus for this parabola, the derivative (which is the slope of the tangent line 
at each value x) equals 2x. Plug any number into x, and you get the slope of 
the parabola at that x-value. Try it.

To close this section, let’s look at one final figure. Figure 9-13 sort of sum-
marizes (in a simplified way) all the difficult preceding ideas about the differ-
ence quotient. Like Figures 9-10, 9-11, and 9-12, Figure 9-13 contains a basic 
slope stair-step, a secant line, and a tangent line. The slope of the secant 
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line is rise
run

, or Δy
Δx

. The slope of the tangent line is dy
dx

. You can think of dy
dx

 as 

a little (ultimately infinitesimal) bit of y

a little (ultimately infinitesimal) bit of x
, and you can see why this is one of the 

symbols used for the derivative. As the secant line stair-step shrinks down to 
nothing, or, in other words, in the limit as Δx and Δy go to zero,

dy

dx
(the slope of the tangent line)=

Δy

Δx
(the slope of the secant line).

	

Figure 9-13: 
In the limit, 
dy

dx
=

Δy

Δx
.

	

Average Rate and Instantaneous Rate
Returning once again to the connection between slopes and rates, a slope is 
just the visual depiction of a rate: The slope, rise

run
, just tells you the rate at 

which y changes compared to x. If, for example, the y-coordinate tells you 
distance traveled (in miles), and the x-coordinate tells you elapsed time (in 
hours), you get the familiar rate of miles per hour.

Each secant line in Figures 9-9 and 9-10 has a slope given by the formula 
y
2
−y

1

x
2
−x

1

. That slope is the average rate over the interval from x
1
to x

2
. If y is in 

miles and x is in hours, you get the average speed in miles per hour during the 
time interval from x

1
to x

2
.

When you take the limit and get the slope of the tangent line, you get the instan-
taneous rate at the point (x

1
,y

1
). Again, if y is in miles and x is in hours, you get 

the instantaneous speed at the single point in time, x
1
. Because the slope of the 

tangent line is the derivative, this gives us another definition of the derivative.
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	 Another definition of the derivative: The derivative of a function f (x) at some 
x-value is the instantaneous rate of change of f with respect to x at that value.

To Be or Not to Be? Three Cases Where 
the Derivative Does Not Exist

I want to discuss the three situations where a derivative fails to exist (see the 
“33333 Limit Mnemonic” section in Chapter 7). By now you certainly know 
that the derivative of a function at a given point is the slope of the tangent 
line at that point. So, if you can’t draw a tangent line, there’s no derivative — 
that happens in the first two cases below. In the third case, there’s a tangent 
line, but its slope and the derivative are undefined.

	 ✓	There’s no tangent line and thus no derivative at any type of discontinu-
ity: removable, infinite, or jump. (These types of discontinuity are dis-
cussed and illustrated in Chapter 7.) Continuity is, therefore, a necessary 
condition for differentiability. It’s not, however, a sufficient condition as 
the next two cases show. Dig that logician-speak.

	 ✓	There’s no tangent line and thus no derivative at a sharp corner on 
a function (or at a cusp, a really pointy, sharp turn). See function f in 
Figure 9-14.

	 ✓	Where a function has a vertical tangent line (which occurs at a vertical 
inflection point), the slope is undefined, and thus the derivative fails to 
exist. See function g in Figure 9-14. (Inflection points are explained in 
Chapter 11.)

	

Figure 9-14: 
Cases II and 

III where 
there’s no 

derivative.
	



Chapter 10

Differentiation Rules — Yeah, 
Man, It Rules

In This Chapter
▶	Learning the rules whether you like it or not — sorry buddy, but those are the rules

▶	Mastering the basic differentiation rules and graduating to expert rules

▶	Figuring out implicit differentiation

▶	Using logarithms in differentiation

▶	Differentiating inverse functions

C 
hapter 9 gives you the basic idea of what a derivative is — it’s just a rate 
like speed and it’s simply the slope of a function. It’s important that you 

have a solid, intuitive grasp of these fundamental ideas.

You also now know the mathematical foundation of the derivative and its 
technical definition involving the limit of the difference quotient. Now, I’m 
going to be forever banned from the Royal Order of Pythagoras for saying this, 
but, to be perfectly candid, you can basically forget that limit stuff — except 
that you need to know it for your final — because in this chapter I give you 
shortcut techniques for finding derivatives that avoid the difficulties of limits 
and the difference quotient.

Some of this material is unavoidably dry. If you have trouble staying awake 
while slogging through these rules, look back to the last chapter and take a 
peek at the next three chapters to see why you should care about mastering 
these differentiation rules. Countless problems in business, economics, medi-
cine, engineering, and physics, as well as other disciplines, deal with how 
fast a function is rising or falling, and that’s what a derivative tells us. And it’s 
often important to know where a function is rising or falling the fastest (the 
largest and smallest slopes) and where its peaks and valleys are (where the 
slope is zero). Before you can do these interesting problems, you’ve got to 
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learn how to find derivatives. If Chapters 11, 12, and 13 are like playing the 
piano, then this chapter is like learning your scales — it’s dull, but you’ve got 
to do it. You may want to order up a latte with an extra shot.

Basic Differentiation Rules
Calculus can be difficult, but you’d never know it judging by this section 
alone. Learning these first half dozen or so rules is a snap. If you get tired of 
this easy stuff, however, I promise plenty of challenges in the next section.

The constant rule
This is simple. f (x)=5 is a horizontal line with a slope of zero, and thus its 
derivative is also zero. So, for any number c, if f (x)= c, then f �(x)=0. Or you 
can write d

dx
c=0. End of story.

The power rule
Say f (x)=x5. To find its derivative, take the power, 5, bring it in front of the x, 
and then reduce the power by 1 (in this example, the power becomes a 4). That 
gives you f �(x)=5x

4. To repeat, bring the power in front, then reduce the power 
by 1. That’s all there is to it.

In Chapter 9, I differentiated y=x2 with the difference quotient:

y=x
2

y
�
= lim

h→0

(x+h)
2
−x

2

h

= lim
h→0

x
2
+2xh+h

2
−x

2

h

= lim
h→0

2xh+h
2

h

= lim
h→0

(2x+h)

=2x
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That takes some doing. Instead of all that, just use the power rule: Bring the 2 
in front, reduce the power by 1, which leaves you with a power of 1 that you 
can drop (because a power of 1 does nothing). Thus,

y=x
2

y
�
=2x

Because this is so simple, you may be wondering why we didn’t skip the 
complicated difference quotient stuff and just go straight to the shortcut 
method. Well, admittedly, that would have saved some time, especially 
considering the fact that once you know this and other shortcut methods, 
you’ll never need the difference quotient again — except for your final exam. 
But the difference quotient is included in every calculus book and course 
because it gives you a fuller, richer understanding of calculus and its foun-
dations — think of it as a mathematical character builder. Or because math 
teachers are sadists. You be the judge.

The power rule works for any power: a positive, a negative, or a fraction:

If f (x)=x
−2

then f
�
(x)=−2x

−3

If g(x)=x
2∕3

then g
�
(x)= 2

3
x
−1∕3

If h(x)=x then h
�
(x)=1

	 The derivative of x is 1. Make sure you remember how to do the derivative of 
the last function in the above list. It’s the simplest of these functions, yet the 
easiest one to miss.

The best way to understand this derivative is to realize that h(x)=x is a line 
that fits the form y=mx+b because h(x)=x is the same as h(x)=1x+0 (or 
y=1x+0). The slope (m) of this line is 1, so the derivative equals 1. Or you 
can just memorize that the derivative of x is 1. But if you forget both of these 
ideas, you can always use the power rule. Rewrite h(x)=x as h(x)=x1, then 
apply the rule: Bring the 1 in front and reduce the power by 1 to zero, giving 
you h�(x)=1x

0. Because x0 equals 1, you’ve got h�(x)=1.

	 Rewrite functions so you can use the power rule. You can differentiate radi-
cal functions by rewriting them as power functions and then using the power 
rule. For example, if f (x)=

3
√

x
2, rewrite it as f (x)=x2∕3 and use the power 

rule. You can also use the power rule to differentiate functions like f (x)= 1

x
3
. 

Rewrite this as f (x)=x−3, then use the power rule.
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The constant multiple rule
What if the function you’re differentiating begins with a coefficient? Makes no 
difference. A coefficient has no effect on the process of differentiation. You 
just ignore it and differentiate according to the appropriate rule. The coef-
ficient stays where it is until the final step when you simplify your answer by 
multiplying by the coefficient.

Differentiate y=4x
3.

Solution: You know by the power rule that the derivative of x3 is 3x2, so the 
derivative of 4(x3

) is 4(3x2
). The 4 just sits there doing nothing. Then, as a 

final step, you simplify: 4(3x2
) equals 12x2. So . (By the way, most 

people just bring the 3 to the front, like this: , which gives you the 
same result.)

Differentiate y=5x.

Solution: This is a line of the form y=mx+b with m=5, so the slope is 5, and 
thus the derivative is 5: y�=5. (It’s important to think graphically like this 
from time to time.) But you can also solve the problem with the power rule: 
d

dx
x
1
=1x

0
=1; so d

dx
5(x

1
)=5(1)=5.

One final example: Differentiate y= 5x
1∕3

4
.

Solution: The coefficient here is 5
4

. So, because d
dx

x
1∕3

=
1

3
x
−2∕3 (by the power 

rule), .

	 pi, e, c, k, etc. are not variables! Don’t forget that � (~3.14) and e (~2.72) are 
numbers, not variables, so they behave like ordinary numbers. Constants in 
problems, like c and k also behave like ordinary numbers. (By the way, the 
number e, named for the great mathematician Leonhard Euler, is perhaps the 
most important number in all of mathematics, but I don’t get into that here.)

Thus, if y=�x, y�=� — this works exactly like differentiating y=5x. And 
because �3 is just a number, if y=�

3 then y�=0 — this works exactly like dif-
ferentiating y=10. You’ll also see problems containing constants like c and k. 
Be sure to treat them like regular numbers. For example, the derivative of 
y=5x+2k

3 (where k is a constant) is 5, not 5+6k
2.
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The sum rule — hey, that’s  
some rule you got there
When you want the derivative of a sum of terms, take the derivative of each 
term separately.

What’s f �(x) if f (x)=x6
+x

3
+x

2
+x+10?

Solution: Just use the power rule for each of the first four terms and the con-
stant rule for the final term. Thus, f �(x)=6x

5
+3x

2
+2x+1.

The difference rule — it 
makes no difference
If you’ve got a difference (that’s subtraction) instead of a sum, it makes 
no difference. You still differentiate each term separately. Thus, if 
y=3x

5
−x

4
−2x

3
+6x

2
+5x, then . The addition and 

subtraction signs are unaffected by the differentiation.

Differentiating trig functions
Ladies and gentlemen: I have the high honor and distinct privilege of intro-
ducing you to the derivatives of the six trig functions:

d
dx

sin x=cos x d
dx

cos x=−sin x

d
dx

tan x=sec
2
x d

dx
cot x=−csc

2
x

d
dx

sec x=sec x tan x d
dx

csc x=−csc x cot x

Make sure you memorize the derivatives of sine and cosine. They’re a snap, 
and I’ve never known anyone to forget them. If you’re good at rote memoriza-
tion, memorize the other four as well. Or, if you’re not wild about memoriza-
tion or are afraid that this knowledge will crowd out the date of the Battle 
of Hastings (1066) — which is much more likely to come up in a board game 
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than trig derivatives — you can figure out the last four derivatives from 
scratch by using the quotient rule (see the section “The quotient rule” later 
on). A third option is to use the following mnemonic trick.

	 Psst, what’s the derivative of cosecant? Imagine you’re taking a test and 
can’t remember those four last trig derivatives. You lean over to the guy 
next to you and whisper, “Psst, what’s the derivative of csc x?” Now, the last 
three letters of psst (sst) are the initial letters of sec, sec, tan. Write these 
three down, and below them write their cofunctions: csc, csc, cot. Put a  
negative sign on the csc in the middle. Finally, add arrows like in the following 
diagram:

(This may seem complicated, but, take my word for it, you’ll remember the 
word psst, and after that the diagram is very easy to remember.)

Look at the top row. The sec on the left has an arrow pointing to sec tan — so 
the derivative of sec x is sec x tan x. The tan on the right has an arrow pointing 
to sec sec, so the derivative of tan x is sec2x. The bottom row works the same 
way except that both derivatives are negative.

Differentiating exponential  
and logarithmic functions
Caution: Memorization ahead.

Exponential functions
If you can’t memorize the next rule, hang up your calculator.

d

dx
e
x
=e

x

That’s right — break out the smelling salts — the derivative of ex is itself! This 
is a special function: ex and its multiples, like 5ex, are the only functions that 
are their own derivatives. Think about what this means. Look at the graph of 
y=e

x in Figure 10-1.
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Figure 10-1: 
The graph of 

y =ex .

	

Pick any point on this function, say (2, ∼7.4), and the height of the function at 
that point, ∼7.4, is the same as the slope at that point.

If the base is a number other than e, you have to tweak the derivative by mul-
tiplying it by the natural log of the base:

If y=2
x

then y
�
=2

x
ln 2

If y=10
x

then y
�
=10

x
ln 10

Logarithmic functions
And now — what you’ve all been waiting for — the derivatives of logarithmic 
functions. (See Chapter 4 if you want to brush up on logs.) Here’s the deriva-
tive of the natural log — that’s the log with base e:

d

dx
ln x=

1

x

If the log base is a number other than e, you tweak this derivative — like with 
exponential functions — except that you divide by the natural log of the base 
instead of multiplying. Thus,

d

dx
log

2
x=

1
x

ln 2
=

1

x ln 2
, and

d

dx
log x=

1

x ln 10
(Recall that log x means log

10
x, so the base is 10.)
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Differentiation Rules for Experts — Oh, 
Yeah, I’m a Calculus Wonk

Now that you’ve totally mastered all the basic rules, take a breather and rest 
on your laurels for a minute. . . . Okay, ready for a challenge? The following 
rules, especially the chain rule, can be tough. But you know what they say: 
“No pain, no gain,” “No guts, no glory,” yada, yada, yada.

The product rule
You use this rule for — hold on to your hat — the product of two functions like

y=x
3
⋅sin x

The product rule:

If y= this ⋅ that ,

then y
�
= this

�
⋅ that+ this ⋅ that

�

So, for y=x3
⋅sin x,

y
�
= (x

3
)
�
⋅sin x+x

3
⋅ (sin x)

�

=3x
2
sin x+x

3
cos x

The quotient rule
I have a feeling that you can guess what this rule is for — the quotient of two 
functions like

y=
sin x

x
4

The quotient rule:

If y=
top

bottom
,

then y
�
=
top

�
⋅bottom− top ⋅bottom

�

bottom
2

Just about every calculus book I’ve ever seen gives this rule in a slightly  
different form that’s harder to remember. And some books give a “mnemonic” 
involving the words lodeehi and hideelo or hodeehi and hideeho, which is 
very easy to get mixed up — great, thanks a lot.
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Memorize the quotient rule the way I’ve written it. You’ll have no problem 
remembering what goes in the denominator — no one ever forgets it. The 
trick is knowing the order of the terms in the numerator. Think of it like this: 
You’re doing a derivative, so the first thing you do is to take a derivative. And 
is it more natural to begin at the top or the bottom of a fraction? The top, 
of course. So the quotient rule begins with the derivative of the top. If you 
remember that, the rest of the numerator is almost automatic. (Note that the 
product rule begins with the derivative of the first function you read as you 
read the product of two functions from left to right. In the same way, the quo-
tient rule begins with the derivative of the first function you read as you read 
the quotient of two functions from top to bottom.) Focus on these points and 
you’ll remember the quotient rule ten years from now — oh, sure.

So here’s the derivative of y= sin x

x
4

:

y
�
=

(sin x)
�
⋅x

4
−sin x ⋅ (x

4
)
�

(x
4
)
2

=
x
4
cos x−4x

3
sin x

x
8

=
x
3
(x cos x−4 sin x)

x
8

=
x cos x−4 sin x

x
5

In the “Differentiating trig functions” section, I promised to show you how 
to find the derivatives of four trig functions — tangent, cotangent, secant, and 
cosecant — with the quotient rule. I’m a man of my word, so here goes. All 
four of these functions can be written in terms of sine and cosine, right? (See 

Chapter 6.) For instance, tan x= sin x

cos x
. Now, if you want the derivative of tan x, 

you can use the quotient rule:
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Granted, this is quite a bit of work compared to just memorizing the answer 
or using the mnemonic device presented several pages back, but it’s nice to 
know that you can get the answer this way as a last resort. The other three 
functions are no harder. Give them a try.

The chain rule
The chain rule is by far the trickiest derivative rule, but it’s not really that 
bad if you carefully focus on a few important points. Let’s begin by differenti-
ating y=

√

4x
3
−5. You use the chain rule here because you’ve got a composite 

function, that’s one function (4x3
−5) inside another function (the square root 

function).

	 How to spot a composite function: y=
√

x is not a composite function 
because the argument of the square root function — that’s the thing you take 
the square root of — is simply x. Whenever the argument of a function is any-
thing other than a plain old x, you’ve got a composite function. Be careful to 
distinguish a composite function from something like y=

√

x ⋅sin x, which is 
the product of two functions, 

√

x and sin x, each of which does have just a plain 
old x as its argument.

Okay, so you’ve got this composite function, y=
√

4x
3
−5. Here’s how to dif-

ferentiate it with the chain rule:

	 1.	 You start with the outside function, 
√

, and differentiate that, 
IGNORING what’s inside. To make sure you ignore the inside, tempo-
rarily replace the inside function with the word stuff.

		  So you’ve got y=
√

stuff . Okay, now differentiate y=
√

stuff  the same 
way you’d differentiate y=

√

x. Because y=
√

x is the same as y=x1∕2, 
the power rule gives you y� = 1

2
x
−1∕2. So for this problem, you begin with 

1

2
stuff

−1∕2.

	 2.	 Multiply the result from Step 1 by the derivative of the inside func-
tion, stuff ′.

y
�
=

1

2
stuff

−1∕2
⋅stuff

�

		  Take a good look at this. All chain rule problems follow this basic idea. 
You do the derivative rule for the outside function, ignoring the inside 
stuff, then multiply that by the derivative of the stuff.
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	 3.	 Differentiate the inside stuff.

		  The inside stuff in this problem is 4x3
−5 and its derivative is 12x2 by the 

power rule.

	 4.	 Now put the real stuff and its derivative back where they belong.

y
�
=

1

2
(4x

3
−5)

−1∕2
⋅ (12x

2
)

	 5.	 Simplify.

y
�
=6x

2
(4x

3
−5)

−1∕2

		  Or, if you’ve got something against negative powers, y�= 6x
2

(4x
3
−5)

1∕2
.

		  Or, if you’ve got something against fraction powers, y�= 6x
2

√

4x
3
−5

.

Let’s try differentiating another composite function, y=sin(x
2
):

	 1.	 The outside function is the sine function, so you start there, taking the 
derivative of sine and ignoring the inside stuff, x2. The derivative of 
sin x is cos x, so for this problem, you begin with

cos(stuff )

	 2.	 Multiply the derivative of the outside function by the derivative of  
the stuff.

y
�
=cos(stuff ) ⋅stuff

�

	 3.	 The stuff in this problem is x2, so stuff ′ is 2x. When you plug these 
terms back in, you get

y
�
=cos (x

2
) ⋅2x

=2x cos (x
2
)

Sometimes figuring out which function is inside which can be a bit 
tricky — especially when a function is inside another and then both of them 
are inside a third function (you can have four or more nested functions, but 
three is probably the most you’ll see). Here’s a tip.

	 Parentheses are your friend. For chain rule problems, rewrite a composite 
function with a set of parentheses around each inside function, and rewrite 
trig functions like sin2

x with the power outside a set of parentheses: (sin x)2.
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For example — this is a tough one, gird your loins — differentiate 
y=sin

3
(5x

2
−4x). First, rewrite the cubed sine function: y=(sin(5x

2
−4x))

3. 
Now it’s easy to see the order in which the functions are nested. The inner-
most function is inside the innermost parentheses — that’s 5x2

−4x. Next, 
the sine function is inside the next set of parentheses — that’s sin(stuff ). Last, 
the cubing function is on the outside of everything — that’s stuff 3. (Because 
I’m a math teacher, I’m honor bound to point out that the stuff in stuff 3 is dif-
ferent from the stuff in sin(stuff ). It’s quite unmathematical of me to use the 
same term to refer to different things, but don’t sweat it. I’m just using the 
term stuff to refer to whatever is inside any function.) Okay, now that you 
know the order of the functions, you can differentiate from outside in:

	 1.	 The outermost function is stuff 3 and its derivative is given by the 
power rule.

3stuff
2

	 2.	 As with all chain rule problems, you multiply that by stuff ′.

3stuff
2
⋅stuff

′

	 3.	 Now put the stuff, sin(5x2
−4x), back where it belongs.

3(sin(5x
2
−4x))

2
⋅ (sin(5x

2
−4x))

�

	 4.	 Use the chain rule again.

		  You can’t finish this problem quickly by just taking a simple deriva-
tive because you have to differentiate another composite function, 
sin(5x

2
−4x). Just treat sin(5x2

−4x) as if it were the original problem and 
take its derivative. The derivative of sin x is cos x, so the derivative of 
sin(stuff ) begins with cos(stuff ). Multiply that by stuff ′. Thus, the deriva-
tive of sin(stuff ) is

cos(stuff ) ⋅stuff
�

	 5.	 The stuff for this step is 5x2
−4x and its derivative is 10x−4. Plug 

those things back in.

cos(5x
2
−4x) ⋅ (10x−4)
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	 6.	 Now that you’ve got the derivative of sin(5x2
−4x), plug this result into 

the result from Step 3, giving you the whole enchilada.

3(sin(5x
2
−4x))

2
⋅cos(5x

2
−4x) ⋅ (10x−4)

	 7.	 This can be simplified a bit.

(30x−12)sin
2
(5x

2
−4x) cos(5x

2
−4x)

I told you it was a tough one.

It may have occurred to you that you can save some time by not switching to 
the word stuff and then switching back. That’s true, but some people like to 
use the technique because it forces them to leave the stuff alone during each 
step of a problem. That’s the critical point.

	 Make sure you . . . DON’T TOUCH THE STUFF.

As long as you remember this, you don’t need to actually use the word 
stuff when doing a chain rule problem. You’ve just got to be sure you don’t 
change the inside function while differentiating the outside function. Say 
you want to differentiate f (x)= ln(x

3
). The argument of this natural logarithm 

function is x3. Don’t touch it during the first step of the solution, which is to 

use the natural log rule: d
dx

ln x=
1

x
. This rule tells you to put the argument 

of the function in the denominator under the number 1. So, after the first 
step in differentiating ln(x3

), you’ve got 1
x
3
. You then finish the problem by 

multiplying that by the derivative of x3 which is 3x2. Final answer after sim-
plifying: 3

x
.

	 With the chain rule, don’t use two derivative rules at the same time. 
Another way to make sure you’ve got the chain rule straight is to remember 
that you never use more than one derivative rule at a time.

In the example above, ln(x3
), you first use the natural log rule, then, as a 

separate step, you use the power rule to differentiate x3. At no point in any 
chain rule problem do you use both rules at the same time. For example, with 
ln(x

3
), you do not use the natural log rule and the power rule at the same time 

to come up with 1

3x
2
.

Here’s the chain rule mumbo jumbo.
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	 The chain rule (for differentiating a composite function):

If y= f (g(x)),

then y
�
= f

�
(g(x)) ⋅g

�
(x)

Or, equivalently,

See the sidebar, “Why the chain rule works,” for a plain-English explanation of 
this mumbo jumbo.

Why the chain rule works
You wouldn’t know it from the difficult math in this 
section or the fancy chain rule mumbo jumbo, but 
the chain rule is based on a very simple idea. Say 
one person is walking, another jogging, and a third 
is riding a bike. If the biker goes four times as fast 
as the jogger, and the jogger goes twice as fast as 
the walker, then the biker goes 4 times 2, or 8 times 
as fast as the walker, right? That’s the chain rule 
in a nutshell — you just multiply the relative rates.

Remember Figure 9-5 showing Laurel and Hardy 
on a teeter-totter? Recall that for every inch 
Hardy goes down, Laurel goes up 2 inches. So, 
Laurel’s rate of movement is twice Hardy’s rate, 
and therefore dL

dH
= 2. Now imagine that Laurel 

has one of those party favors in his mouth (the 
kind that unrolls as you blow into it) and that for 

every inch he goes up, he blows the noisemaker 
out 3 inches. The rate of movement of the noise-
maker (N) is thus 3 times Laurel’s rate of move-
ment. In calculus symbols, dN

dL
= 3. So, how fast 

is the noisemaker moving compared to Hardy? 
This is just common sense. The noisemaker is 
moving 3 times as fast as Laurel, and Laurel is 
moving 2 times as fast as Hardy, so the noise-
maker is moving 3 times 2, or 6 times as fast as 
Hardy. Here it is in symbols (note that this is the 
same as the formal definition of the chain rule 
next to the Mumbo Jumbo icon):

dN
dH

=
dN
dL

⋅

dL
dH

= 3 ⋅2= 6

Mere child’s play.
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One final example and one last tip. Differentiate 4x2
sin(x

3
). This problem has 

a new twist — it involves the chain rule and the product rule. How should 
you begin?

	 Where do I begin? If you’re not sure where to begin differentiating a complex 
expression, imagine plugging a number into x and then evaluating the expres-
sion on your calculator one step at a time. Your last computation tells you the 
first thing to do.

Say you plug the number 5 into the xs in 4x2
sin(x

3
). You evaluate 4 ⋅52 — that’s 

100; then, after getting 53=125, you do sin(125), which is about −0.616. Finally, 
you multiply 100 by −0.616. Because your last computation is multiplication, 
your first step in differentiating is to use the product rule. (Had your last com-
putation been instead something like sin(125), then you’d begin with the chain 
rule.) Remember the product rule?

The product rule:

If y= this ⋅ that , then y
�
= this

�
⋅ that+ this ⋅ that

�
.

So for f (x)=4x
2
sin(x

3
),

f
�
(x)= (4x

2
)
�
(sin(x

3
))+(4x

2
)(sin(x

3
))

�

You finish the problem by taking the derivative of 4x2 with the power rule and 
the derivative of sin(x3

) with the chain rule:

f
�
(x)= (8x)(sin(x

3
))+(4x

2
)(cos(x

3
) ⋅3x

2
)

And now simplify:

f
�
(x)=8x sin(x

3
)+12x

4
cos(x

3
)

Differentiating Implicitly
All the differentiation problems presented in previous sections of this chapter 
are functions like y=x2

+5x or y=sin x. In such cases, y is written explicitly as 
a function of x. This means that the equation is solved for y; in other words, y is 
by itself on one side of the equation. (Note that y was sometimes written as f (x) 
as in f (x)=x3

−4x
2, but remember that that’s the same thing as y=x3

−4x
2.)

Sometimes, however, you are asked to differentiate an equation that’s not 
solved for y, like y5+3x

2
=sin x−4y

3. This equation defines y implicitly as a 
function of x, and you can’t write it as an explicit function because it can’t 
be solved for y. For such a problem, you need implicit differentiation. When 
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differentiating implicitly, all the derivative rules work the same, with one 
exception: When you differentiate a term with a y in it, you use the chain rule 
with a little twist.

Remember using the chain rule to differentiate something like sin(x3
) with the 

stuff technique? The derivative of sine is cosine, so the derivative of sin(stuff ) 
is cos(stuff ) ⋅stuff �. You finish the problem by finding the derivative of the stuff, 
x
3, which is 3x2, and then making the substitutions to give you cos(x3

) ⋅3x
2. 

With implicit differentiation, a y works like the word stuff. Thus, because

The twist is that while the word stuff is temporarily taking the place of some 
known function of x (x3 in this example), y is some unknown function of x 
(you don’t know what the y equals in terms of x). And because you don’t 
know what y equals, the y and the y′ — unlike the stuff and the stuff ′— must 
remain in the final answer. But the concept is exactly the same, and you treat y 
just like the stuff. You just can’t make the switch back to xs at the end of the 
problem like you can with a regular chain rule problem.

I suppose you’re wondering whether I’m ever going to get around to actually 
doing the problem. Here goes. Again, differentiate y5+3x

2
=sin x−4y

3:

	 1.	 Differentiate each term on both sides of the equation.

y
5
+3x

2
=sin x−4y

3

		 For the first and fourth terms, you use the power rule and, because 
these terms contain ys, you also use the chain rule. For the second 
term, you use the regular power rule. And for the third term, you 
use the regular sine rule.

5y
4
⋅y

�
+6x=cos x−12y

2
⋅y

�

	 2.	 Collect all terms containing a y′ on the left side of the equation and all 
other terms on the right side.

		 5y4 ⋅y� +12y
2
⋅y

�
=cos x−6x

	 3.	 Factor out y′.

		 y
�
(5y

4
+12y

2
)=cos x−6x
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	 4.	 Divide for the final answer.

y
�
=

cos x−6x

5y
4
+12y

2

Note that this derivative, unlike the others you’ve done so far, is expressed in 
terms of x and y instead of just x. So, if you want to evaluate the derivative to 
get the slope at a particular point, you need to have values for both x and y to 
plug into the derivative.

Also note that in many textbooks, the symbol dy
dx

 is used instead of y′ in every 

step of solutions like the one above. I find y′ easier and less cumbersome to 

work with. But dy
dx

 does have the advantage of reminding you that you’re find-

ing the derivative of y with respect to x. Either way is fine. Take your pick.

Getting into the Rhythm with 
Logarithmic Differentiation

Say you want to differentiate f (x)= (x
3
−5)(3x

4
+10)(4x

2
−1)(2x

5
−5x

2
−10). 

Now, you could multiply the whole thing out and then differentiate, but that 
would be a huge pain. Or you could use the product rule a few times, but that 
would also be too tedious and time-consuming. The better way is to use loga-
rithmic differentiation:

	 1.	 Take the natural log of both sides.

ln f (x)= ln
(

(x
3
−5)(3x

4
+10)(4x

2
−1)(2x

5
−5x

2
−10)

)

	 2.	 Now use the property for the log of a product, which you remember  
of course (if not, see Chapter 4).

	ln f (x)= ln(x
3
−5)+ ln(3x

4
+10)+ ln(4x

2
−1)+ ln(2x

5
−5x

2
−10)

	 3.	 Differentiate both sides.

		  According to the chain rule, the derivative of ln f (x) is 1

f (x)
⋅ f

�
(x), or 

f
�
(x)

f (x)
. 

(The f (x) works just like the word stuff in a regular chain rule problem or 
a y in an implicit differentiation problem.) For each of the four terms on 
the right side of the equation, you use the chain rule:

f
�
(x)

f (x)
=

3x
2

(x
3
−5)

+
12x

3

(3x
4
+10)

+
8x

(4x
2
−1)

+
10x

4
−10x

(2x
5
−5x

2
−10)
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	 4.	 Multiply both sides by f (x) and you’re done.

f
�
(x)=

(

3x
2

(x
3
−5)

+
12x

3

(3x
4
+10)

+
8x

(4x
2
−1)

+
10x

4
−10x

(2x
5
−5x

2
−10)

)

⋅

(x
3
−5)(3x

4
+10)(4x

2
−1)(2x

5
−5x

2
−10)

		  (Note: Make sure you read this monster equation correctly. The right 
side of the first line gets multiplied by the second line.)

Granted, this answer is pretty hairy, and the solution process isn’t exactly a 
walk in the park, but, take my word for it, this method is much easier than the 
other alternatives.

Differentiating Inverse Functions
There’s a difficult-looking formula involving the derivatives of inverse func-
tions, but before we get to it, look at Figure 10-2, which nicely sums up the 
whole idea.

	

Figure 10-2: 
The graphs 

of inverse 
functions, 
f (x ) and 

g(x ).

	



147 Chapter 10: Differentiation Rules — Yeah, Man, It Rules

Figure 10-2 shows a pair of inverse functions, f and g. Recall that inverse 
functions are symmetrical with respect to the line, y=x. As with any pair of 
inverse functions, if the point (10, 4) is on one function, (4, 10) is on its inverse. 
And, because of the symmetry of the graphs, you can see that the slopes at 
those points are reciprocals: At (10, 4) the slope is 1

3
 and at (4, 10) the slope is 

3

1
. That’s how the idea works graphically, and if you’re with me so far, you’ve 

got it down at least visually.

The algebraic explanation is a bit trickier, however. The point (10, 4) on f can 
be written as (10, f (10)) and the slope at this point — and thus the deriva-
tive — can be expressed as f �(10). The point (4, 10) on g can be written as 
(4, g(4)). Then, because f (10)=4, you can replace the 4s in (4, g(4)) with f (10)s 
giving you 

(

f (10), g(f (10))
)

. The slope and derivative at this point can be 
expressed as g�(f (10)). These two slopes are reciprocals, so that gives you the 
equation

f
�
(10)=

1

g
�
(f (10))

This difficult equation expresses nothing more and nothing less than the two 
triangles on the two functions in Figure 10-2.

Using x instead of 10 gives you the general formula:

	 The derivative of an inverse function: If f and g are inverse functions, then

f
�
(x)=

1

g
�
(f (x))

In words, this formula says that the derivative of a function, f, with respect to x, 
is the reciprocal of the derivative of its inverse function with respect to f.

Okay, so maybe it was a lot trickier.

Scaling the Heights of Higher  
Order Derivatives

Finding a second, third, fourth, or higher derivative is incredibly simple. The 
second derivative of a function is just the derivative of its first derivative. 
The third derivative is the derivative of the second derivative, the fourth 
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derivative is the derivative of the third, and so on. For example, here’s a func-
tion and its first, second, third, and subsequent derivatives. In this example, 
all the derivatives are obtained by the power rule:

f (x)=x
4
−5x

2
+12x−3

f
�
(x)=4x

3
−10x+12

f
��
(x)=12x

2
−10

f
���
(x)=24x

f
(4)
(x)=24

f
(5)
(x)=0

f
(6)
(x)=0

etc.=0

etc.=0

All polynomial functions like this one eventually go to zero when you dif-

ferentiate repeatedly. Rational functions like f (x)= x
2
−5

x+8
, on the other hand, 

get messier and messier as you take higher and higher derivatives. And the 
higher derivatives of sine and cosine are cyclical. For example,

y=sin x

y
�
=cos x

y
��
=−sin x

y
���
=−cos x

y
(4)
=sin x

The cycle repeats indefinitely with every multiple of four.

In Chapters 11 and 12, I show you several uses of higher derivatives — mainly 
second derivatives. (Here’s a sneak preview: The first derivative of position is 
velocity, and the second derivative of position is acceleration.) But for now, 
let me give you just one of the main ideas in a nutshell. A first derivative, as 
you know, tells you how fast a function is changing — how fast it’s going up 
or down — that’s its slope. A second derivative tells you how fast the first 
derivative is changing — or, in other words, how fast the slope is changing. 
A third derivative tells you how fast the second derivative is changing, which 
tells you how fast the rate of change of the slope is changing. If you’re getting 
a bit lost here, don’t worry about it — I’m getting lost myself. It gets increas-
ingly difficult to get a handle on what higher derivatives tell you as you go 
past the second derivative, because you start getting into a rate of change of 
a rate of change of a rate of change, and so on.



Chapter 11

Differentiation and the  
Shape of Curves

In This Chapter
▶	Weathering the ups and downs of moody functions

▶	Locating extrema

▶	Using the first and second derivative tests

▶	Interpreting concavity and points of inflection

▶	Comparing the graphs of functions and derivatives

▶	Muzzling the mean value theorem — GRRRRR

I 
f you’ve read Chapters 9 and 10, you’re probably an expert at finding 
derivatives. Which is a good thing, because in this chapter you use deriva-

tives to understand the shape of functions — where they rise and where they 
fall, where they max out and bottom out, how they curve, and so on. Then 
in Chapter 12, you use your knowledge about the shape of functions to solve 
real-world problems.

Taking a Calculus Road Trip
Consider the graph of f (x) in Figure 11-1.

Imagine that you’re driving along this function from left to right. Along your 
drive, there are several points of interest between a and l. All of them, except 
for the start and finish points, relate to the steepness of the road — in other 
words, its slope or derivative.

Now, prepare yourself — I’m going to throw lots of new terms and definitions 
at you all at once here. You shouldn’t, however, have much trouble with these 
ideas because they mostly involve commonsense notions like driving up or 
down an incline, or going over the crest of a hill.
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Figure 11-1: 
The graph 

of f (x ) with 
several 

points of 
interest.

	

Climb every mountain, ford every stream: 
Positive and negative slopes
First, notice that as you begin your trip at a, you’re climbing up. Thus the 
function is increasing and its slope and derivative are therefore positive. You 
climb the hill till you reach the top at b where the road levels out. The road is 
level there, so the slope and derivative equal zero.

Because the derivative is zero at b, point b is called a stationary point of the func-
tion. Point b is also a local maximum or relative maximum of f because it’s the 
top of a hill. To be a local max, b just has to be the highest point in its immediate 
neighborhood. It doesn’t matter that the nearby hill at g is even higher.

After reaching the crest of the hill at b, you start going down — duh. So, after b, 
the slope and derivative are negative and the function is decreasing. To the left of 
every local max, the slope is positive; to the right of a max, the slope is negative.

I can’t think of a travel metaphor for this 
section: Concavity and inflection points
The next point of interest is c. Can you see that as you go down from b to c, 
the road gets steeper and steeper, but that after c, although you’re still going 
down, the road is gradually starting to curve up again and get less steep? 
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The little down arrow between b and c in Figure 11-1 indicates that this sec-
tion of the road is curving down — the function is said to be concave down 
there. As you can see, the road is also concave down between a and b.

	 Concavity poetry: Down looks like a frown, up looks like a cup. A portion of 
a function that’s concave down looks like a frown. Where it’s concave up, like 
between c and e, it looks like a cup.

Wherever a function is concave down, its derivative (and slope) are decreasing; 
wherever a function is concave up, its derivative (and slope) are increasing.

Okay, so the road is concave down until c where it switches to concave 
up. Because the concavity switches at c, it’s a point of inflection. The point 
c is also the steepest point on this stretch of the road. Inflection points 
are always at the steepest — or least steep — points in their immediate 
neighborhoods.

	 Be careful with function sections that have a negative slope. Point c is the 
steepest point in its neighborhood because it has a bigger negative slope 
than any other nearby point. But remember, a big negative number is actu-
ally a small number, so the slope and derivative at c are actually the smallest 
of all the points in the neighborhood. From b to c the derivative of the func-
tion is decreasing (because it’s becoming a bigger negative). From c to d, the 
derivative is increasing (because it’s becoming a smaller negative). Got it?

This vale of tears: A local minimum
Let’s get back to your drive. After point c, you keep going down till you reach 
d, the bottom of a valley. Point d is another stationary point because the road 
is level there and the derivative is zero. Point d is also a local or relative mini-
mum because it’s the lowest point in its immediate neighborhood.

A scenic overlook: The absolute maximum
After d, you travel up, passing e, which is another inflection point. It’s the 
steepest point between d and g and the point where the derivative is greatest. 
You stop at the scenic overlook at g, another stationary point and another 
local max. Point g is also the absolute maximum on the interval from a to l 
because it’s the very highest point on the road from a to l.
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Car trouble: Teetering on the corner
Going down from g, you pass another inflection point, h, another local min, i, 
then you go up to j where you foolishly try to drive over the peak. Your front 
wheels make it over, but your car’s chassis gets stuck on the precipice, leav-
ing you teetering up and down with your wheels spinning. Your car teeters 
at j because you can’t draw a tangent line there. No tangent line means no 
slope; and no slope means no derivative, or you can say that the derivative 
at j is undefined. A sharp turning point like j is called a corner. (By the way, be 
careful with the expressions “no slope” and “no derivative.” In this context, 
“no” means nonexistent, NOT zero.)

It’s all downhill from here
After dislodging your car, you head down, the road getting less and less steep 
until it flattens out for an instant at k. (Again, note that because the slope 
and the derivative are becoming smaller and smaller negative numbers on 
the way to k, they are actually increasing.) Point k is another stationary point 
because its derivative is zero. It’s also another inflection point because the 
concavity switches from up to down at k. After passing k, you go down to l, 
your final destination. Because l is the endpoint of the interval, it’s not a local 
min — endpoints never qualify as local mins or maxes — but it is the absolute 
minimum on the interval because it’s the very lowest point from a to l.

Hope you enjoyed your trip.

Your travel diary
I want to review your trip and some of the previous terms and definitions and 
introduce yet a few more terms:

	 ✓	The function f in Figure 11-1 has a derivative of zero at stationary points 
(level points) b, d, g, i, and k. At j, the derivative is undefined. These 
points where the derivative is either zero or undefined are the critical 
points of the function. The x-values of these critical points are called 
the critical numbers of the function. (Note that critical numbers must be 
within a function’s domain.)

	 ✓	All local maxes and mins — the peaks and valleys — must occur at criti-
cal points. However, not all critical points are necessarily local maxes or 
mins. Point k, for instance, is a critical point but neither a max nor a min. 
Local maximums and minimums — or maxima and minima — are called, 
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collectively, local extrema of the function. Use a lot of these fancy plurals 
if you want to sound like a professor. A single local max or min is a local 
extremum. The absolute max is the highest point on the road from a to l. 
The absolute min is the lowest point.

	 ✓	The function is increasing whenever you’re going up, where the deriva-
tive is positive; it’s decreasing whenever you’re going down, where the 
derivative is negative. The function is also decreasing at point k, a hori-
zontal inflection point, even though the slope and derivative are zero 
there. I realize that seems a bit odd, but that’s the way it works — take 
my word for it. At all horizontal inflection points, a function is either 
increasing or decreasing. At local extrema b, d, g, i, and j, the function is 
neither increasing nor decreasing.

	 ✓	The function is concave up wherever it looks like a cup or a smile 
(some say where it “holds water”) and concave down wherever it 
looks like a frown (or “spills water”). Inflection points c, e, h, and k are 
where the concavity switches from up to down or vice versa. Inflection 
points are also the steepest or least steep points in their immediate 
neighborhoods.

Finding Local Extrema — My Ma,  
She’s Like, Totally Extreme

Now that you have the preceding section under your belt and know what 
local extrema are, you need to know how to do the math to find them. You 
saw in the last section that all local extrema occur at critical points of a 
function — that’s where the derivative is zero or undefined (but don’t forget 
that critical points aren’t always local extrema). So, the first step in finding 
a function’s local extrema is to find its critical numbers (the x-values of the 
critical points).

Cranking out the critical numbers
Find the critical numbers of f (x)=3x

5
−20x

3. See Figure 11-2.

Here’s what you do:

	 1.	 Find the first derivative of f using the power rule.

f (x)=3x
5
−20x

3

f
�
(x)=15x

4
−60x

2
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Figure 11-2: 
The graph 
of f (x )= 3x 5

f (x )= 3x 5−20x 3.
	

	 2.	 Set the derivative equal to zero and solve for x.

15x
4
−60x

2
=0

15x
2
(x

2
−4)=0

15x
2
(x+2)(x−2)=0

15x
2
=0 or x+2=0 or x−2=0

x=0 or x=−2 or x=2

These three x-values are critical numbers of f. Additional critical numbers 
could exist if the first derivative were undefined at some x-values, but 
because the derivative, 15x4

−60x
2, is defined for all input values, the above 

solution set,  is the complete list of critical numbers. Because 
the derivative of f equals zero at these three critical numbers, the curve has 
horizontal tangents at these numbers. In Figure 11-2, you can see the little 
horizontal tangent lines drawn where x=−2 and x=2. The third horizontal 
tangent line where x=0 is the x-axis.

	 A curve has a horizontal tangent line wherever its derivative is zero, namely, 
at its stationary points. A curve will have horizontal tangent lines at all of its 
local mins and maxes (except for sharp corners like point j in Figure 11-1) and 
at all of its horizontal inflection points.
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Now that you’ve got the list of critical numbers, you need to determine 
whether peaks or valleys or inflection points occur at those x-values. You 
can do this with either the first derivative test or the second derivative test. 
I suppose you may be wondering why you have to test the critical numbers 
when you can see where the peaks and valleys are by just looking at the 
graph in Figure 11-2 — which you can, of course, reproduce on your graph-
ing calculator. Good point. Okay, so this problem — not to mention countless 
other problems you’ve done in math courses — is somewhat contrived and 
impractical. So what else is new?

The first derivative test
The first derivative test is based on the Nobel-Prize-caliber ideas that as you 
go over the top of a hill, first you go up and then you go down, and that when 
you drive into and out of a valley, you go down and then up. This calculus 
stuff is pretty amazing, isn’t it?

Here’s how you use the test. Take a number line and put down the critical 
numbers you found above: . See Figure 11-3.

	

Figure 11-3: 
The critical 

numbers 
of f (x )= 3x 5

f (x )= 3x 5−20x 3.

	

This number line is now divided into four regions: to the left of −2, from −2 to 0, 
from 0 to 2, and to the right of 2. Pick a value from each region, plug it into the 
first derivative, and note whether your result is positive or negative. Let’s use 
the numbers  1, and 3 to test the regions:
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By the way, if you had noticed that this first derivative is an even function, 
you’d have known, without doing the computation, that f (1)= f (−1) and that 
f (3)= f (−3). (Chapter 5 discusses even functions. A polynomial function with 
all even powers, like f �(x) above, is one type of even function.)

These four results are, respectively, positive, negative, negative, and positive. 
Now, take your number line, mark each region with the appropriate positive or 
negative sign, and indicate where the function is increasing (where the deriva-
tive is positive) and decreasing (where the derivative is negative). The result 
is a so-called sign graph. See Figure 11-4. (The four right-pointing arrows at the 
top of the figure simply indicate that “increasing” and “decreasing” tell you 
what’s happening as you move along the function from left to right.)

	

Figure 11-4: 
The sign 

graph  
for f (x )= 3x 5

f (x )= 3x 5−20x 3.

	

Figure 11-4 simply tells you what you already know if you’ve looked at the 
graph of f — that the function goes up until −2, down from −2 to 0, further 
down from 0 to 2, and up again from 2 on.

Now here’s the rocket science. The function switches from increasing to 
decreasing at −2; in other words, you go up to −2 and then down. So at −2 you 
have the top of a hill or a local maximum. Conversely, because the function 
switches from decreasing to increasing at 2, you have the bottom of a valley 
there or a local minimum. And because the sign of the first derivative doesn’t 
switch (from positive to negative or vice versa) at zero, there’s neither a min 
nor a max at that x-value (you usually — like here — get a horizontal inflec-
tion point when this happens).

The last step is to obtain the function values, in other words the heights, of 
these two local extrema by plugging the x-values into the original function:

f (x)=3x
5
−20x

3

f (−2)=3(−2)
5
−20(−2)

3
=64

f (2)=3(2)
5
−20(2)

3
=−64

Thus, the local max is located at (−2, 64) and the local min is at (2, −64). 
You’re done.
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	 Local extrema don’t occur at points of discontinuity. To use the first deriv-
ative test to test for a local extremum at a particular critical number, the 
function must be continuous at that x-value.

The second derivative test — no, 
no, anything but another test!
The second derivative test is based on two more prize-winning ideas: First, 
that at the crest of a hill, a road has a hump shape — in other words, it’s 
curving down or concave down; and second, that at the bottom of a valley, a 
road is cup-shaped, so it’s curving up or concave up.

The concavity of a function at a point is given by its second derivative: a posi-
tive second derivative means the function is concave up, a negative second 
derivative means the function is concave down, and a second derivative of 
zero is inconclusive (the function could be concave up, concave down, or 
there could be an inflection point there). So, for our function f, all you have 
to do is find its second derivative and then plug in the critical numbers you 
found, −2, 0, and 2, and note whether your results are positive, negative, or 
zero. To wit —

f (x)=3x
5
−20x

3

f
�
(x)=15x

4
−60x

2
(power rule)

f
��
(x)=60x

3
−120x (power rule)

f
��
(−2)=60(−2)

3
−120(−2)=−240

f
��
(0)=60(0)

3
−120(0)=0

f
��
(2)=60(2)

3
−120(2)=240

At x=−2, the second derivative is negative (−240). This tells you that f is con-
cave down where x equals −2, and therefore that there’s a local max there. 
The second derivative is positive (240) where x is 2, so f is concave up and 
thus there’s a local min at x=2. Because the second derivative equals zero 
at x=0, the second derivative test fails for that critical number — it tells you 
nothing about the concavity at x=0 or whether there’s a local min or max 
there. When this happens, you have to use the first derivative test.

Now go through the first and second derivative tests one more time 
with another example. Find the local extrema of g(x)=2x−3x

2∕3
+ 4. See 

Figure 11-5.
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Figure 11-5: 
The graph 

of g(x )=
2x −3x 2∕3+4.

	

	 1.	 Find the first derivative of g.

g(x)=2x−3x
2∕3

+4

g
�
(x)=2−2x

−1∕3
(power rule)

	 2.	 Set the derivative equal to zero and solve.

2−2x
−1∕3

=0

−2x
−1∕3

=−2

x
−1∕3

=1

(x
−1∕3

)
−3
=1

−3

x=1

		 Thus 1 is a critical number.

	 3.	 Determine whether the first derivative is undefined for any x-values.

		 2x−1∕3 equals 2

3
√

x
. Now, because the cube root of zero is zero, if you plug 

in zero to 2

3
√

x
, you’d have 2

0
, which is undefined. So the derivative, 

		 2−2x
−1∕3, is undefined at x=0, and thus 0 is another critical number. 

From Steps 2 and 3, you’ve got the complete list of critical numbers of 
g : 0 and 1.

	 4.	 Plot the critical numbers on a number line, and then use the first 
derivative test to figure out the sign of each region.
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		  You can use −1, 0.5, and 2 as test numbers:

g
�
(x)=2−2x

−1∕3

g
�
(−1)=4 (pos.)

g
�
(0.5)≈−0.52 (neg.)

g
�
(2)≈0.41 (pos.)

		  Figure 11-6 shows the sign graph.

	

Figure 11-6: 
The sign 
graph of 
g(x )= 

2x −3x 2∕3+4.

	

		  Because the first derivative of g switches from positive to negative at 0, 
there’s a local max there. And because the first derivative switches from 
negative to positive at 1, there’s a local min at x=1.

	 5.	 Plug the critical numbers into g to obtain the function values (the 
heights) of these two local extrema.

g(x)=2x−3x
2∕3

+4
g(0)=4

g(1)=3

	 So, there’s a local max at (0, 4) and a local min at (1, 3). You’re done.

You could have used the second derivative test instead of the first deriva-
tive test in Step 4. First, you need the second derivative of g, which is, as you 
know, the derivative of its first derivative:

g
�
(x)=2−2x

−1∕3

g
��
(x)=

2

3
x
−4∕3

Evaluate the second derivative at x=1 (the critical number from Step 2):

g
��
(1)=

2

3
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Because g��(1) is positive, you know that g is concave up at x=1 and, therefore, 
that there’s a local min there.

At the other critical number, x=0 (from Step 3), the first derivative is undefined. 
The second derivative test is no help where the first derivative is undefined, so 
you’ve got to use the first derivative test for that critical number.

Finding Absolute Extrema  
on a Closed Interval

Every function that’s continuous on a closed interval has to have an absolute 
maximum value and an absolute minimum value in that interval — in other 
words, a highest and lowest point — though, as you see in the following 
example, there can be a tie for the highest or lowest value.

	 A closed interval like 
[
2, 5

]
 includes the endpoints 2 and 5. An open interval 

like (2, 5) excludes the endpoints.

Finding the absolute max and min is a snap. All you do is compute the critical 
numbers of the function in the given interval, determine the height of the func-
tion at each critical number, and then figure the height of the function at the 
two endpoints of the interval. The greatest of this set of heights is the absolute 
max; and the least, of course, is the absolute min. Here’s an example: Find the 

absolute max and min of h(x)=cos(2x)−2 sin x in the closed interval 
[

�

2
, 2�

]

.

	 1.	 Find the critical numbers of h in the open interval 
(
�

2
, 2�

)
.

		  (See Chapter 6 if you’re a little rusty on trig functions.)

h(x)=cos(2x)−2 sin x

h
�
(x)=−sin(2x) ⋅2−2 cos x (by the chain rule)

0=−2 sin(2x)−2 cos x (now divide both sides by −2)

0=sin(2x)+cos x (now use a trig identity)

0=2 sin x cos x+cos x (factor out cos x)

0=cos x(2 sin x+1)

cos x=0 or 2 sin x+1=0

x=
3�

2
sin x=−

1

2

x=
7�

6
,
11�

6

		  Thus, the zeros of h′ are 7�
6

, 3�
2

, and 11�
6

, and because h′ is defined for 

all input numbers, this is the complete list of critical numbers.



161 Chapter 11: Differentiation and the Shape of Curves

	 2.	 Compute the function values (the heights) at each critical number.

	 3.	 Determine the function values at the endpoints of the interval.

		  So, from Steps 2 and 3, you’ve found five heights: 1.5, 1, 1.5, −3, and 1. 
The largest number in this list, 1.5, is the absolute max; the smallest, −3, 
is the absolute min.

The absolute max occurs at two points: 
(

7�

6
,1.5

)

 and 
(

11�

6
,1.5

)

. The absolute 

min occurs at one of the endpoints, 
(

�

2
, −3

)

, and is thus called an endpoint 

extremum.

Table 11-1 shows the values of h(x)=cos(2x)−2 sin x at the three critical num-
bers in the interval from �

2
 to 2� and at the interval’s endpoints; Figure 11-7 

shows the graph of h.

Table 11-1	 Values of h(x )=cos (2x )−2sinx  at the Critical  
	  Numbers and Endpoints for the Interval 

[
�

2
, 2�

]
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A couple observations. First, as you can see in Figure 11-7, the points 
(

7�

6
, 1.5

)

 and 
(

11�

6
, 1.5

)

 are both local maxima of h, and the point 
(

3�

2
, 1

)

 is 

a local minimum of h. However, if you want only to find the absolute extrema 
on a closed interval, you don’t have to pay any attention to whether critical 
points are local maxes, mins, or neither. And thus you don’t have to bother 
to use the first or second derivative tests. All you have to do is determine the 
heights at the critical numbers and at the endpoints and then pick the larg-
est and smallest numbers from this list. Second, the absolute max and min in 
the given interval tell you nothing about how the function behaves outside 
the interval. Function h, for instance, might rise higher than 1.5 outside the 
interval from �

2
 to 2� (although it doesn’t), and it might go lower than −3 

(although it never does).

	

Figure 11-7: 
The graph 
of h(x )=cos

h(x )=cos(2x )−

h(x )=cos(2x )−2 sin x .

	

Finding Absolute Extrema over  
a Function’s Entire Domain

A function’s absolute max and absolute min over its entire domain are the 
highest and lowest values (heights) of the function anywhere it’s defined. 
Unlike in the previous section where you saw that a continuous function 
must have both an absolute max and min on a closed interval, when you con-
sider a function’s entire domain, a function can have an absolute max or min 
or both or neither. For example, the parabola y=x2 has an absolute min at 
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the point (0, 0) — the bottom of its cup shape — but no absolute max because 
it goes up forever to the left and the right. You might think that its absolute 
max would be infinity, but infinity is not a number and thus it doesn’t qualify 
as a maximum (ditto for using negative infinity as an absolute min).

On the one hand, the idea of a function’s very highest point and very lowest 
point seems pretty simple, doesn’t it? But there’s a wrench in the works. The 
wrench is the category of things that don’t qualify as maxes or mins.

I already mentioned that infinity and negative infinity don’t qualify. Then 
there are empty “endpoints” like (3, 4) on f (x) in Figure 11-8. f (x) doesn’t 
have an absolute max. Its max isn’t 4 because it never gets to 4, and its max 
can’t be anything less than 4, like 3.999, because it gets higher than that, 
say 3.9999. Similarly, an infinitesimal hole in a function can’t qualify as a 
max or min. For example, consider the absolute value function, y= |x|, you 
know, the V-shaped function with the sharp corner at the origin; if you can’t 
picture it, look back at function g in Figure 7-8. y= |x| has no absolute max 
because it goes up to infinity. Its absolute min is zero (at (0, 0) of course). 
But now, say you alter the function slightly by plucking out the point at (0, 0) 
and leaving an infinitesimal hole there. Now the function has no absolute 
minimum.

Now consider g(x) in Figure 11-8. It shows another type of situation that 
doesn’t qualify as a min (or max). g(x) has no absolute min. Going left, g 
crawls along the horizontal asymptote at y=0, always getting lower and 
lower, but never getting as low as zero. Since it never gets to zero, zero can’t 
be the absolute min, and there can’t be any other absolute min (like, say, 
0.0001) because at some point way to the left, g will get below any small 
number you can name.

Keeping the above in mind, here’s a step-by-step approach for locating a func-
tion’s absolute maximum and minimum (if there are any):

	 1.	 Find the height of the function at each of its critical numbers. (Recall 
that a function’s critical numbers are the x-values within the function’s 
domain where the derivative is zero or undefined.)

		  You just did this in the previous section, but this time you consider all 
the critical numbers, not just those in a given interval. The highest of 
these values will be the function’s absolute max unless the function 
goes higher than that point in which case the function won’t have an 
absolute max. The lowest of those values will be the function’s abso-
lute min unless the function goes lower than that point in which case 
it won’t have an absolute min. Steps 2 and 3 will help you figure out 



164 Part IV: Differentiation 

whether the function goes higher than the highest critical point and/or  
lower than the lowest critical point. If you apply Step 1 to g(x) in 
Figure 11-8, you’ll find that it has no critical points. When this hap-
pens, you’re done. The function has neither an absolute max nor an 
absolute min.

	 2.	 Check whether the function goes up to infinity and/or down to negative 
infinity.

		  If a function goes up to positive infinity or down to negative infinity, it 
does so at its extreme right or left or at a vertical asymptote. So, evaluate 
lim
x→∞

f (x) and lim
x→−∞

f (x) — the so-called end behavior of the function — and 
the limit of the function as x approaches each vertical asymptote (if 
there are any) from the left and from the right. If the function goes up to 
infinity, it has no absolute max; if it goes down to negative infinity, it has 
no absolute min.

	 3.	 Graph the function to check for horizontal asymptotes and weird 
features like the jump discontinuity in f (x) in Figure 11-8.

		  Look at the graph of the function. If you see that the function gets 
higher than the highest of its critical points, it has no absolute max; if 
it goes lower than the lowest of its critical points, it has no absolute 
min. Applying this 3-step process to f (x) in Figure 11-8, Step 1 would 
reveal two critical points: the endpoint at (3, 1) and the local max at 
roughly (4.1, 1.3). In Step 2, you would find that f goes down to negative 
infinity and thus has no absolute min. Finally, in Step 3, you’d see that 
f goes higher than the higher of the critical points, (4.1, 1.3), and that it, 
therefore, has no absolute max. You’re done!

	

Figure 11-8: 
Two func-
tions with 

no absolute 
extrema.
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Locating Concavity and Inflection Points
Look back at the function f (x)=3x

5
−20x

3 in Figure 11-2. You used the three 
critical numbers of f, −2, 0, and 2, to find the function’s local extrema: 
(−2, 64) and . This section investigates what happens elsewhere on 
this function — specifically, where it’s concave up or down and where the 
concavity switches (the inflection points).

The process for finding concavity and inflection points is analogous to using 
the first derivative test and the sign graph to find local extrema, except that 
now you use the second derivative. (See the section “Finding Local Extrema”) 
Here’s what you do to find the intervals of concavity and the inflection points 
of f (x)=3x

5
−20x

3:

	 1.	 Find the second derivative of f.

f (x)=3x
5
−20x

3

f
�
=15x

4
−60x

2
(the power rule)

f
��
=60x

3
−120x (the power rule)

	 2.	 Set the second derivative equal to zero and solve.

60x
3
−120x=0

60x(x
2
−2)=0

60x=0 or x
2
−2=0

x=0 x
2
=2

x=±
√

2

	 3.	 Determine whether the second derivative is undefined for any x-values.

		  f �� =60x
3
−120x is defined for all real numbers, so there are no other 

x-values to add to the list from Step 2. Thus, the complete list is −
√

2, 0, 
and 

√

2.

		  Steps 2 and 3 give you what you could call “second derivative critical 
numbers” of f because they’re analogous to the critical numbers of f that 
you find using the first derivative. But, as far as I’m aware, this set of 
numbers has no special name. The important thing to know is that this 
list is made up of the zeros of f ′′ plus any x-values where f ′′ is undefined.
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	 4.	 Plot these numbers on a number line and test the regions with the 
second derivative.

		  Use −2, , 1, and 2 as test numbers.

		  Figure 11-9 shows the sign graph.

	

Figure 11-9: 
A second 
derivative 

sign graph 
for f (x )= 3

f (x )= 3x 5−20x 3.

	

		  A positive sign on this sign graph tells you that the function is concave 
up in that interval; negative means concave down. The function has an 
inflection point (usually) at any x-value where the signs switch from 
positive to negative or vice versa.

		  Because the signs switch at , 0, and 
√

2, and because these three 
numbers are zeros of f ′′, inflection points occur at these x-values. If, how-
ever, you have a problem where the signs switch at a number where f ′′ 
is undefined, you have to check one additional thing before concluding 
that there’s an inflection point there. An inflection point exists at a given 
x-value only if you can draw a tangent line to the function at that number. 
This is the case if the first derivative exists at that number or if the tan-
gent line is vertical there.

	 5.	 Plug these three x-values into f to obtain the function values of the 
three inflection points.
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		  The square root of two equals about 1.4, so there are inflection points at 
about , (0, 0), and about . You’re done.

Figure 11-10 shows f’s inflection points as well as its local extrema and its 
intervals of concavity.

	

Figure 11-10: 
A graph 

of f (x )= 3x 5

f (x )= 3x 5−20x 3 
showing 
its local 

extrema, its 
inflection 

points, and 
its intervals 

of concavity.
	

Looking at Graphs of Derivatives 
Till They Derive You Crazy

You can learn a lot about functions and their derivatives by looking at their 
graphs side by side and comparing their important features. Let’s keep 
going with the same function, f (x)=3x

5
−20x

3; we’re going to travel along f 
from left to right (see Figure 11-11), pausing to note its points of interest and 
also observing what’s happening to the graph of f � =15x

4
−60x

2 at the same 
points. But first, check out the (long) warning beneath the figure.
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Figure 11-11: 
f (x )= 3x 5−20x 3

f (x )= 3x 5−20x 3 
and its first 
derivative, 
f � = 15x 4−60x 2.

f � = 15x 4−60x 2.

	

	 This is NOT the function! As you look at the graph of f ′ in Figure 11-11, or the 
graph of any other derivative, you may need to slap yourself in the face every 
minute or so to remind yourself that “This is the derivative I’m looking at, not the 
function! You’ve looked at hundreds and hundreds of graphs of functions over 
the years, so when you start looking at graphs of derivatives, you can easily 
lapse into thinking of them as regular functions. You might, for instance, look 
at an interval that’s going up on the graph of a derivative and mistakenly con-
clude that the original function must also be going up in the same interval — an 
understandable mistake. You know the first derivative is the same thing as 
slope. So when you see the graph of the first derivative going up, you may think, 
“Oh, the first derivative (the slope) is going up, and when the slope goes up 
that’s like going up a hill, so the original function must be rising.” This sounds 
reasonable because, loosely speaking, you can describe the front side of a hill as 
a slope that’s going up, increasing. But mathematically speaking, the front side of 
a hill has a positive slope, not necessarily an increasing slope. So, where a func-
tion is increasing, the graph of its derivative will be positive, but that derivative 
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graph might be going up or down. Say you’re going up a hill. As you approach 
the top of the hill, you’re still going up, but, in general, the slope (the steepness) 
is going down. It might be 3, then 2, then 1, and then, at the top of the hill, the 
slope is zero. So the slope is getting smaller or decreasing, even as you’re climb-
ing the hill or increasing. In such an interval, the graph of the function is increas-
ing, but the graph of its derivative is decreasing. Got that?

Okay, let’s get back to the f and its derivative in Figure 11-11. Beginning on the 
left and traveling toward the right, f increases until the local max at (−2, 64).  
It’s going up, so its slope is positive, but f is getting less and less steep so its 
slope is decreasing — the slope decreases until it becomes zero at the peak. 
This corresponds to the graph of f ′ (the slope) which is positive (because 
it’s above the x-axis) but decreasing as it goes down to the point (−2, 0). Let’s 
summarize your entire trip along f and f ′ with the following list of rules.

	 Rules are rules:

	 ✓	An increasing interval on a function corresponds to an interval on the 
graph of its derivative that’s positive (or zero for a single point if the 
function has a horizontal inflection point). In other words, a function’s 
increasing interval corresponds to a part of the derivative graph that’s 
above the x-axis (or that touches the axis for a single point in the case of 
a horizontal inflection point). See intervals A and F in Figure 11-11.

	 ✓	A local max on the graph of a function (like (−2, 64) corresponds to a 
zero (an x-intercept) on an interval of the graph of its derivative that 
crosses the x-axis going down (like at (−2, 0)).

		 On a derivative graph, you’ve got an m-axis. When you’re looking at var-
ious points on the derivative graph, don’t forget that the y-coordinate of a 
point, like (−2, 0), on a graph of a first derivative tells you the slope of the 
original function, not its height. Think of the y-axis on the first derivative 
graph as the slope-axis or the m-axis; you could think of general points on 
the first derivative graph as having coordinates (x,m).

	 ✓	A decreasing interval on a function corresponds to a negative interval on 
the graph of the derivative (or zero for a single point if the function has 
a horizontal inflection point). The negative interval on the derivative 
graph is below the x-axis (or in the case of a horizontal inflection point, 
the derivative graph touches the x-axis at a single point). See intervals 
B, C, D, and E in Figure 11-11 (but consider them as a single section), 
where f goes down all the way from the local max at (−2, 64) to the local 
min at (−2, 64) and where f ′ is negative between (−2, 0) and (2, 0) except 
for at the point (0, 0) on f ′ which corresponds to the horizontal inflection 
point on f.

	 ✓	A local min on the graph of a function corresponds to a zero (an x-intercept) 
on an interval of the graph of its derivative that crosses the x-axis going up 
(like at (2, 0)).
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Now let’s take a second trip along f to consider its intervals of concavity and 
its inflection points. First, consider intervals A and B in Figure 11-11. The 
graph of f is concave down — which means the same thing as a decreasing 
slope — until it gets to the inflection point at about .

So, the graph of f ′ decreases until it bottoms out at about . These 
coordinates tell you that the inflection point at  on f has a slope of −60. 
Note that the inflection point on f at  is the steepest point on that 
stretch of the function, but it has the smallest slope because its slope is a 
larger negative than the slope at any other nearby point.

Between  and the next inflection point at (0, 0), f is concave up, which 
means the same thing as an increasing slope. So the graph of f ′ increases from 
about  to where it hits a local max at (0, 0). See interval C in Figure 11-11. 
Let’s take a break from our trip for some more rules.

	 More rules:

	 ✓	A concave down interval on the graph of a function corresponds to a 
decreasing interval on the graph of its derivative (intervals A, B, and D in 
Figure 11-11). And a concave up interval on the function corresponds to 
an increasing interval on the derivative (intervals C, E, and F).

	 ✓	An inflection point on a function (except for a vertical inflection point 
where the derivative is undefined) corresponds to a local extremum on 
the graph of its derivative. An inflection point of minimum slope (in its 
neighborhood) corresponds to a local min on the derivative graph; an 
inflection point of maximum slope (in its neighborhood) corresponds to 
a local max on the derivative graph.

Resuming our trip, after (0, 0), f is concave down till the inflection point at 
about  — this corresponds to the decreasing section of f ′ from (0, 0) 
to its min at  (interval D in Figure 11-11). Finally, f is concave up the 
rest of the way, which corresponds to the increasing section of f ′ beginning at 

 (intervals E and F in the figure).

Well, that pretty much brings you to the end of the road. Going back and forth 
between the graphs of a function and its derivative can be very trying at first. 
If your head starts to spin, take a break and come back to this stuff later.

If I haven’t already succeeded in deriving you crazy — aren’t these calculus 
puns fantastic? — perhaps this final point will do the trick. Look again at 
the graph of the derivative, f ′, in Figure 11-11 and also at the sign graph for f ′ 
in Figure 11-9. That sign graph, because it’s a second derivative sign graph, 
bears exactly (well, almost exactly) the same relationship to the graph of f ′ as 
a first derivative sign graph bears to the graph of a regular function. In other 
words, negative intervals on the sign graph in Figure 11-9 (to the left of  
and between 0 and 

√

2) show you where the graph of f ′ is decreasing; positive 
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intervals on the sign graph (between  and 0 and to the right of 
√

2) show 
you where f ′ is increasing. And points where the signs switch from positive 
to negative or vice versa (at , 0, and 

√

2) show you where f ′ has local 
extrema. Clear as mud, right?

The Mean Value Theorem — GRRRRR
You won’t use the mean value theorem a lot, but it’s a famous theorem — one 
of the two or three most important in all of calculus — so you really should 
learn it. It’s very simple and has a nice connection to the mean value theorem 
for integrals which I show you in Chapter 17. Look at Figure 11-12.

	

Figure 11-12: 
An 

Illustration 
of the 

mean value 
theorem.

	

Here’s the formal definition of the theorem.

	 The mean value theorem: If f is continuous on the closed interval 
[

a, b
]

 and 
differentiable on the open interval (a, b) then there exists at least one number 
c in (a, b) such that

f
�
(c)=

f (b)− f (a)

b−a

Now for the plain-English version. First you need to take care of the fine print. 
The requirements in the theorem that the function be continuous and differ-
entiable just guarantee that the function is a regular, smooth function without 
gaps or corners. But because only a few weird functions have gaps or corners, 
you don’t often have to worry about these fine points.
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Here’s what the theorem means. The secant line connecting points (a, f (a)) 
and (b, f (b)) in Figure 11-12 has a slope given by the slope formula:

Slope=
y
2
−y

1

x
2
−x

1

=
f (b)− f (a)

b−a

Note that this is the same as the right side of the equation in the mean value 
theorem. The derivative at a point is the same thing as the slope of the tan-
gent line at that point, so the theorem just says that there must be at least 
one point between a and b where the slope of the tangent is the same as 
the slope of the secant line from a to b. The result is parallel lines, like in 
Figure 11-12.

Why must this be so? Here’s a visual argument. Imagine that you grab the 
secant line connecting (a, f (a)) and (b, f (b)), and then you slide it up, keep-
ing it parallel to the original secant line. Can you see that the two points of 
intersection between this sliding line and the function — the two points that 
begin at (a, f (a)) and (b, f (b)) — will gradually get closer and closer to each 
other until they come together at (c, f (c))? If you raise the line any further, 
you break away from the function entirely. At this last point of intersection, 
(c, f (c)), the sliding line touches the function at a single point and is thus tan-
gent to the function there, and it has the same slope as the original secant 
line. Well, that does it. This explanation is a bit oversimplified, but it’ll do.

Here’s a completely different sort of argument that should appeal to your 
common sense. If the function in Figure 11-12 gives your car’s odometer 
reading as a function of time, then the slope of the secant line from a to b 
gives your average speed during that interval of time, because dividing the 
distance traveled, f (b)− f (a), by the elapsed time, b−a, gives you the average 
speed. The point (c, f (c)), guaranteed by the mean value theorem, is a point 
where your instantaneous speed — given by the derivative f �(c) — equals 
your average speed.

Now, imagine that you take a drive and average 50 miles per hour. The mean 
value theorem guarantees that you are going exactly 50 mph for at least one 
moment during your drive. Think about it. Your average speed can’t be 50 mph 
if you go slower than 50 the whole way or if you go faster than 50 the whole 
way. To average 50 mph, either you go exactly 50 for the whole drive, or you 
have to go slower than 50 for part of the drive and faster than 50 at other times. 
And if you’re going less than 50 at one point and more than 50 at a later point 
(or vice versa), you’ve got to hit exactly 50 at least once as you speed up (or 
slow down). You can’t jump over 50 — like going 49 one moment then 51 the 
next — because speeds go up by sliding up the scale, not jumping. At some 
point your speedometer slides past 50, and for at least one instant, you’re going 
exactly 50 mph. That’s all the mean value theorem says.



Chapter 12

Your Problems Are Solved: 
Differentiation to the Rescue!

In This Chapter
▶	Getting the most bang for your buck — optimization problems

▶	Position, velocity, and acceleration — VROOOOM

▶	Related rates — brace yourself

I 
n the Introduction, I argue that calculus has changed the world in countless 
ways, that its impact is not limited to Ivory Tower mathematics, but is all 

around us in down-to-earth things like microwave ovens, cell phones, and 
cars. Well, it’s now Chapter 12, and I’m finally ready to show you how to use 
calculus to solve some practical problems.

Getting the Most (or Least) Out  
of Life: Optimization Problems

One of the most practical uses of differentiation is finding the maximum or 
minimum value of a real-world function: the maximum output of a factory, the 
maximum strength of a beam, the minimum time to accomplish some task, 
the maximum range of a missile, and so on. Let’s get started with a couple 
standard geometry examples.

The maximum volume of a box
A box with no top is to be manufactured from a 30-inch-by-30-inch piece of 
cardboard by cutting and folding it, as shown in Figure 12-1.
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Figure 12-1: 
The box is 

made from 
a 30"-by-30" 

piece of 
cardboard 
by cutting 

off the 
corners and 

folding up 
the sides.

	

What dimensions will produce a box with the maximum volume? Mathematics 
often seems abstract and impractical, but here’s an honest-to-goodness practi-
cal problem (well . . . almost). If a manufacturer can sell bigger boxes for more 
and is making 100,000 boxes, you’d better believe he or she wants the exact 
answer to this question. Here’s how you do it:

	 1.	 Express the thing you want maximized, the volume, as a function of 
the unknown, the height of the box (which is the same as the length of 
the cut).

V = l ⋅w ⋅h

V (h)= (30−2h)(30−2h) ⋅h
(You can see in Figure 12-1 that both

the length and width equal 30−2h.)

= (900−120h+4h
2
) ⋅h

=4h
3
−120h

2
+900h

	 2.	 Determine the domain of your function.

		  The height can’t be negative, and because the length (and width) of the 
box equals 30−2h, which can’t be negative, h can’t be greater than 15. 
Thus, sensible values for h are 0≤h≤15. You now want to find the maxi-
mum value of V (h) in this interval. You use the method from the “Finding 
Absolute Extrema on a Closed Interval” section in Chapter 11.

	 3.	 Find the critical numbers of V (h) in the open interval (0, 15) by setting 
its derivative equal to zero and solving. And don’t forget to check for 
numbers where the derivative is undefined.



175 Chapter 12: Your Problems Are Solved: Differentiation to the Rescue!

V (h)=4h
3
−120h

2
+900h

V
�
(h)=12h

2
−240h+900 (power rule)

0=12h
2
−240h+900

0=h
2
−20h+75 (dividing both sides by 12)

h=(h−15)(h−5) (ordinary trinomial factoring)

h=15 or 5

		  Because 15 is not in the open interval (0, 15), it doesn’t qualify as a criti-
cal number (though this is a moot point because you end up testing it 
in Step 4 anyway). And because this derivative is defined for all input 
values and is, thus, of course, never undefined, there are no additional 
critical numbers. So 5 is the only critical number.

	 4.	 Evaluate the function at the critical number, 5, and at the endpoints of 
the interval, 0 and 15, to locate the function’s max.

V (h)=4h
3
−120h

2
+900h

V (0)=0

V (5)=2000

V (15)=0

	 Test the endpoints. The extremum (dig that fancy word for maximum or mini-
mum) you’re looking for doesn’t often occur at an endpoint, but it can — so 
don’t fail to evaluate the function at the interval’s two endpoints.

So, a height of 5 inches produces the box with maximum volume (2,000 cubic 
inches). Because the length and width equal 30−2h, a height of 5 gives a 
length and width of 30−2 ⋅5, or 20, and thus the dimensions of the desired 
box are 5��×20

��
×20

��. That’s it.

The maximum area of a corral — yeehaw!
A rancher can afford 300 feet of fencing to build a corral that’s divided into 
two equal rectangles. See Figure 12-2.

What dimensions will maximize the corral’s area? This is another practical prob-
lem. The rancher wants to give his animals as much room as possible given the 
length of fencing he can afford. Like all businesspeople, he wants the most bang 
for his buck.
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Figure 12-2: 
Calculus for 
cowboys — 
maximizing 

a corral.
	

	 1.a.	 Express the thing you want maximized (area) as a function of the two 
unknowns (x and y).

A= l ⋅w

=(2x)(y)

		  In the cardboard box example in the previous section, you can easily 
write the volume as a function of one variable — which is always what 
you need. But here, the area is a function of two variables (x and y), so 
Step 1 has the following two extra sub-steps that will eliminate one of 
the variables.

	 1.b.	 Use the given information to relate the two variables to each other.

		  The 300 feet of fencing is used for seven sections, thus

300=x+x+x+x+y+y+y

300=4x+3y

	 1.c.	 Solve this equation for y and plug the result in for y in the equation 
from Step 1.a. This gives you what you need — a function of one 
variable.

4x+3y=300

3y=300−4x

y=
300−4x

3

y=100−
4

3
x (Now do the substitution.)

A=(2x)(y)

A(x)= (2x)(100−
4

3
x)

A(x)=200x−
8

3
x
2
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	 2.	 Determine the domain of the function.

		  You can’t have a negative length of fence, so x can’t be negative, and the 
most x can be is 300 divided by 4, or 75. Thus, 0≤x≤75.

	 3.	 Find the critical numbers of A(x) in the open interval (0, 75) by setting 
its derivative equal to zero and solving (and check whether the deriv-
ative is undefined anywhere in the interval).

A(x)=200x−
8

3
x
2

A
�
(x)=200−

16

3
x (power rule)

0=200−
16

3
x

16

3
x=200

x=200 ⋅
3

16

=37.5

		  Because A′ is defined for all x-values, 37.5 is the only critical number.

	 4.	 Evaluate the function at the critical number, 37.5, and at the end-
points of the interval, 0 and 75.

A(x)=200x−
8

3
x
2

A(0)=0

A(37.5)=3750

A(75)=0

		  Note: Evaluating a function at the endpoints of a closed interval is a 
standard step in finding an absolute extremum on the interval. However, 
you could have skipped this step here had you noticed that A(x) is an 
upside-down parabola and that, therefore, its peak at (37.5, 3750) must 
be higher than either endpoint.

The maximum value in the interval is 3,750, and thus, an x-value of 37.5 feet 
maximizes the corral’s area. The length is 2x, or 75 feet. The width is y, which 

equals 100− 4

3
x. Plugging in 37.5 gives you 100− 4

3
(37.5), or 50 feet. So the 

rancher will build a 75'  ×   50' corral with an area of 3,750 square feet.
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Yo-Yo a Go-Go: Position, Velocity, 
and Acceleration

Every time you get in your car, you witness differentiation. Your speed is the 
first derivative of your position. And when you step on the accelerator or the 
brake — accelerating or decelerating — you experience a second derivative.

	 The derivative of position is velocity, and the derivative of velocity is 
acceleration. If a function gives the position of something as a function of 
time, you differentiate the position function to get the velocity function, and 
you differentiate the velocity function to get the acceleration function. Stated 
a different but equivalent way, the first derivative of position is velocity, and 
the second derivative of position is acceleration.

Here’s an example. A yo-yo moves straight up and down. Its height above the 
ground, as a function of time, is given by the function H (t)= t

3
−6t

2
+5t+30,  

where t is in seconds and H (t) is in inches. At t =0, it’s 30 inches above the 
ground, and after 4 seconds, it’s at a height of 18 inches. See Figure 12-3.

	

Figure 12-3: 
The yo-yo’s 

height,  
from 0 to  

4 seconds.
	

Velocity, V (t), is the derivative of position (height, in this problem), and accel-
eration, A(t), is the derivative of velocity. Thus:

H (t)= t
3
−6t

2
+5t+30

V (t)=H
�
(t)=3t

2
−12t+5 (power rule)

A(t)=V
�
(t)=H

��
(t)=6t−12 (power rule)
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Take a look at the graphs of these three functions in Figure 12-4.

	

Figure 12-4: 
The graphs 

of the 
yo-yo’s 
height, 

velocity, and 
acceleration 

functions 
from 0 to 

4 seconds.
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Using the three functions and their graphs, I want to discuss several things 
about the yo-yo’s motion:

	 ✓	Maximum and minimum height

	 ✓	Maximum, minimum, and average velocity

	 ✓	Total displacement

	 ✓	Maximum, minimum, and average speed

	 ✓	Total distance traveled

	 ✓	Positive and negative acceleration

	 ✓	Speeding up and slowing down

Because this is a lot to cover, I’ll cut some corners — like not always checking 
endpoints when looking for extrema if it’s obvious that they don’t occur at 
the endpoints. Do you mind? I didn’t think so. (Position, velocity, and accel-
eration problems make use of several ideas from Chapter 11 — local extrema, 
concavity, inflection points — so you may want to take a look back at those 
definitions if you’re a little hazy.) But before tackling the bulleted topics, let’s 
go over a few things about velocity, speed, and, acceleration.

Velocity, speed, and acceleration
None of your friends will complain — or even notice — if you use the words 
“velocity” and “speed” interchangeably, but your friendly mathematician 
will complain. Here’s the difference. For the velocity function in Figure 12-4, 
upward motion by the yo-yo is defined as a positive velocity, and downward 
motion is a negative velocity. This is the standard way velocity is treated in 
most calculus and physics problems. (Or, if the motion is horizontal, going 
right is a positive velocity and going left is a negative velocity.)

Speed, on the other hand, is always positive (or zero). If a car goes by at 50 mph, 
for instance, you say its speed is 50, and you mean positive 50, regardless of 
whether it’s going to the right or the left. For velocity, the direction matters; 
for speed, it does not. In everyday life, speed is a simpler idea than velocity 
because it’s always positive and because it agrees with our commonsense 
notion about how fast something is moving. But in calculus, speed is actually 
the trickier idea because it doesn’t fit nicely into the three-function scheme 
shown in Figure 12-4.

	 You’ve got to keep the velocity-speed distinction in mind when analyzing 
velocity and acceleration. The way we talk about velocity, speed, and 
acceleration — in calculus class, as opposed to in everyday life — can get 
pretty weird. For example, if an object is going down (or to the left) faster and 
faster, its speed is increasing, but its velocity is decreasing because its velocity 



181 Chapter 12: Your Problems Are Solved: Differentiation to the Rescue!

is becoming a bigger and bigger negative (and bigger negatives are smaller 
numbers). This seems weird, but that’s the way it works. And here’s another 
strange thing: Acceleration is defined as the rate of change of velocity, not 
speed. So, if an object is slowing down while going in the downward direction 
and thus has an increasing velocity — because the velocity is becoming a 
smaller and smaller negative — the object has a positive acceleration. In every-
day English, you’d say that the object is decelerating (slowing down), but in 
calculus class, though you could still say the object is slowing down, you’d 
say that the object has a negative velocity and a positive acceleration. (By the 
way, deceleration isn’t exactly a technical term, so you should probably avoid 
it in calculus class. It’s best to use the following vocabulary: positive accelera-
tion, negative acceleration, positive velocity, negative velocity, speeding up, and 
slowing down.) I could go on with this stuff, but I bet you’ve had enough.

Maximum and minimum height
The maximum and minimum height of the yo-yo, in other words, the max and 
min of H (t), occur at the local extrema you can see in Figure 12-4. To locate 
them, set the derivative of H (t) (that’s V (t)) equal to zero and solve:

These two numbers are the zeros of H �
(t) (which is V (t)) and the t-coordinates, 

that’s time-coordinates, of the max and min of H (t), which you can see in 
Figure 12-4. In other words, these are the times when the yo-yo reaches its 
maximum and minimum heights. Plug these numbers into H (t) to obtain the 
heights:

H (0.47)≈31.1

H (3.53)≈16.9
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So the yo-yo gets as high as about 31.1 inches above the ground at t ≈0.47 
seconds and as low as about 16.9 inches at t ≈3.53 seconds. (By the way, do 
you see why the max and min of the yo-yo’s height would occur when the 
yo-yo’s velocity is zero?)

Velocity and displacement
As I explain in the “Velocity versus speed” section, velocity is basically like 
speed except that while speed is always positive (or zero), velocity can be 
positive (when going up or to the right) or negative (when going down or to 
the left). The connection between displacement and distance traveled is simi-
lar: Distance traveled is always positive (or zero), but going down (or left) 
counts as negative displacement. In everyday speech, speed and distance 
traveled are the more user-friendly ideas, but when it comes to calculus and 
physics, velocity and displacement are the more fundamental ideas.

Total displacement
Let’s get back to our yo-yo analysis. Total displacement is defined as final 
position minus initial position. So, because the yo-yo starts at a height of 30 
and ends at a height of 18,

Total displacement =18−30=−12 inches

This is negative because the net movement is downward.

Average velocity
Average velocity is given by total displacement divided by elapsed time. We 
just calculated the total distance (−12 inches), and time runs from 0 seconds 
to 4 seconds, so the elapsed time is 4 seconds. Thus,

Average velocity=
−12 inches

4 seconds
=−3 inches per second

This answer of negative 3 tells you that the yo-yo is, on average, going down 
3 inches per second.

Maximum and minimum velocity
To determine the yo-yo’s maximum and minimum velocity during the inter-
val from 0 to 4 seconds, set the derivative of V (t) (that’s A(t)) equal to zero 
and solve:
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V
�
(t)=A(t)= 6t−12

6t−12=0

6t =12

t =2

(Look again at Figure 12-4. At t =2, you get the zero of A(t), the local min of 
V (t), and the inflection point of H (t). But you already knew that, right? If not, 
check out Chapter 11.)

Now, evaluate V (t), at the critical number, 2, and at the interval’s endpoints, 
0 and 4:

V (t) = 3t
2
− 12t + 5

V (0)=5

V (2)=−7

V (4)=5

So, the yo-yo has a maximum velocity of 5 inches per second twice — at both 
the beginning and the end of the interval. It reaches a minimum velocity of 
−7 inches per second at t =2 seconds.

Speed and distance traveled
As mentioned in the previous section, velocity and displacement are the more 
technical concepts, while speed and distance traveled are the more common-
sense ideas. Speed, of course, is the thing you read on your speedometer, and 
you can read distance traveled on your odometer or your “tripometer” after 
setting it to zero.

Total distance traveled
To determine total distance, add up the distances traveled on each leg of the 
yo-yo’s trip: the up leg, the down leg, and the second up leg.

First, the yo-yo goes up from a height of 30 inches to about 31.1 inches (where 
the first turn-around point is). That’s a distance of about 1.1 inches. Next, it 
goes down from about 31.1 to about 16.9 (the height of the second turn-around 
point). That’s a distance of 31.1 minus 16.9, or about 14.2 inches. Finally, the 
yo-yo goes up again from about 16.9 inches to its final height of 18 inches. 
That’s another 1.1 inches. Add these three distances to obtain the total 
distance traveled: ∼1.1+∼14.2+∼1.1≈16.4 inches. (Note: Compare this answer 
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to the total displacement of  −12. The displacement is negative because the net 
movement is downward. And the positive amount of the displacement (namely 
12) is less than the distance traveled of 16.4 because with displacement the up 
legs of the yo-yo’s trip cancel out part of the down leg distance. Check out the 
math: 1.1−14.2+1.1=−12. Get it?)

Average speed
The yo-yo’s average speed is given by the total distance traveled divided by 
the elapsed time. Thus,

Average speed ≈
16.4

4
≈4.1 inches per second

Maximum and minimum speed
You previously determined the yo-yo’s maximum velocity (5 inches per second) 
and its minimum velocity (−7 inches per second). A velocity of −7 is a speed of 7,  
so that’s the yo-yo’s maximum speed. Its minimum speed of zero occurs at the 
two turnaround points.

A good way to analyze maximum and minimum speed is to consider the speed 
function and its graph. (Or, if you’re a glutton for punishment, check out the 
mumbo jumbo below.) Speed equals the absolute value of velocity. So, for 
our yo-yo problem, the speed function, S(t), equals .  

Check out the graph of S(t) in Figure 12-5. Looking at this graph, it’s easy to 
see that the yo-yo’s maximum speed occurs at t =2 (the maximum speed is 

) and that the minimum speed is zero at the two 

x-intercepts.

	

Figure 12-5: 
The yo-yo’s 

speed func-
tion, S(t )=

.
	

	 Minimum and maximum speed: For a continuous velocity function, the 
minimum speed is zero whenever the maximum and minimum velocities are of 
opposite signs or when one of them is zero. When the maximum and minimum 
velocities are both positive or both negative, then the minimum speed is the 
lesser of the absolute values of the maximum and minimum velocities. In all 
cases, the maximum speed is the greater of the absolute values of the maxi-
mum and minimum velocities. Is that a mouthful or what?
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Burning some rubber with acceleration
Let’s go over acceleration: Put your pedal to the metal.

Positive and negative acceleration
The graph of the acceleration function at the bottom of Figure 12-4 is a simple 
line, A(t)=6t−12. It’s easy to see that the acceleration of the yo-yo goes 

from a minimum of  at t =0 seconds to a maximum of 

12
inches per second

second
 at t =4 seconds, and that the acceleration is zero at t =2 

when the yo-yo reaches its minimum velocity (and maximum speed). When the 
acceleration is negative — on the interval [0, 2) — that means that the velocity 
is decreasing. When the acceleration is positive — on the interval (2, 4] — the 
velocity is increasing.

Speeding up and slowing down
Figuring out when the yo-yo is speeding up and slowing down is probably 
more interesting and descriptive of its motion than the info in the preced-
ing section. An object is speeding up (what we call “acceleration” in every-
day speech) whenever the velocity and the calculus acceleration are both 
positive or both negative. And an object is slowing down (“deceleration” 
in everyday speech) when the velocity and the calculus acceleration are of 
opposite signs.

Look at all three graphs in Figure 12-4 again. From t =0 to about t =0.47,  
the velocity is positive and the acceleration is negative, so the yo-yo is 
slowing down while moving upward (till its velocity becomes zero and it 
reaches its maximum height). In plain English, the yo-yo is decelerating 
from 0 to about 0.47 seconds. The greatest deceleration occurs at t =0 

when the deceleration is 12 inches per second

second
 (the graph shows negative 12, 

but I’m calling it positive 12 because I’m calling it a deceleration, get it?)

From about t =0.47 to t =2, both velocity and acceleration are negative, so the 
yo-yo is speeding up while moving downward. From t =2 to about t =3.53,  
velocity is negative and acceleration is positive, so the yo-yo is slowing 
down again as it continues downward (till it bottoms out at its lowest height). 
Finally, from about t =3.53 to t =4, both velocity and acceleration are positive, 
so the yo-yo is speeding up again. The yo-yo reaches its greatest acceleration 

of 12 inches per second

second
 at t =4 seconds.
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Tying it all together
Note the following connections among the three graphs in Figure 12-4. The 
negative section on the graph of A(t) — from t =0 to t =2 — corresponds 
to a decreasing section of the graph of V (t) and a concave down section of 
the graph of H (t). The positive interval on the graph of A(t) — from t =2 to 
t =4 — corresponds to an increasing interval on the graph of V (t) and a con-
cave up interval on the graph of H (t). When t =2 seconds, A(t) has a zero, V (t) 
has a local minimum, and H (t) has an inflection point.

Related Rates — They Rate, Relatively
Say you’re filling up your swimming pool and you know how fast water is 
coming out of your hose, and you want to calculate how fast the water level 
in the pool is rising. You know one rate (how fast the water is being poured 
in), and you want to determine another rate (how fast the water level is 
rising). These rates are called related rates because one depends on the 
other — the faster the water is poured in, the faster the water level will rise. 
In a typical related rates problem (like the one just described), the rate or 

What the heck is a second squared?
Note that I use the unit inches per second

second
 

for acceleration instead of the equivalent but 

weird-looking unit, inches

second
2
. You often see 

acceleration given in terms of a unit of distance 
over second2, or you might see something like 
inches per second

2. But what the heck is a 
second

2 ? It’s meaningless, and something like 
inches/second

2 is a bad way to think about 
acceleration. The best way to understand accel-
eration is as a change in speed per unit of time. If 
a car can go from 0 to 60 mph in 6 seconds, that’s 
an increase in speed of 60 mph in 6 seconds, or, 
on average, 10 mph each second — that’s an 

acceleration of 10 mph

second
. It’s slightly more 

confusing when the speed has a unit like feet/
second and the unit of time for the acceleration 

is also a second, because then the word second 
appears twice. But it still works like the car 
example. Say an object starts at rest and speeds 
up to 10 feet/second after 1 second, then up 
to 20 feet/second after 2 seconds, to 30 feet/
second after 3 seconds, and so on. Its speed 
is increasing 10 feet/second each second, and 

that’s an acceleration of 10 feet per second

second
 or 

10
feet/second

second
. (By the way, it’s helpful to write 

the acceleration unit in either of these ways 
(using a vertical fraction) as a speed over the 
unit of time  —  instead of horizontally like 10 
feet per second per second or 10 feet/second/
second — to emphasize that acceleration is a 
change in speed per unit of time.) Think of accel-
eration this way, not in terms of that second2 
nonsense.
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rates in the given information are constant, unchanging, and you have to 
figure out a related rate that is changing with time. You have to determine 
this related rate at one particular point in time. (If this isn’t crystal clear, 
you’ll see what I mean in a minute when you work through the following 
problems.)

Solving these problems can be tricky at first, but with practice you’ll get the 
hang of it. The strategies and tips are a big help — let’s do three examples.

Blowing up a balloon
You’re blowing up a balloon at a rate of 300 cubic inches per minute. When 
the balloon’s radius is 3 inches, how fast is the radius increasing?

	 1.	 Draw a diagram, labeling it with any unchanging measurements (there 
aren’t any in this unusually simple problem) and making sure to assign 
a variable to anything in the problem that’s changing (unless it’s irrel-
evant to the problem). See Figure 12-6.

	

Figure 12-6: 
Blowing up 

a balloon — 
time to party!

	

		  Notice that the radius in Figure 12-6 is labeled with the variable r. 
The radius needs a variable because as the balloon is being blown up, 
the radius is changing. I put the 3 in parentheses to emphasize that the 
number 3 is not an unchanging measurement. The problem asks you to 
determine something when the radius is 3 inches, but remember, the 
radius is constantly changing.

		  Changing or unchanging? In related rates problems, it’s important to 
distinguish between what is changing and what is not changing.

		  The volume of the balloon is also changing, so you need a variable for 
volume, V. You could put a V on your diagram to indicate the changing 
volume, but there’s really no easy way to mark part of the balloon with a 
V like you can show the radius with an r.

	 2.	 List the given rate and the rate you’re asked to determine as deriva-
tives with respect to time.
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		  You’re pumping up the balloon at 300 cubic inches per minute. That’s a 
rate — a change in volume (cubic inches) per change in time (minutes). So, 

dV

dt
=300 cubic inches per minute

		  You have to figure out a related rate, namely, how fast the radius is 
changing, so 

dr

dt
= ?

	 3.	 Write down the formula that connects the variables in the problem, 
V and r.

		  Here’s the formula for the volume of a sphere:

V =
4

3
�r

3

	 4.	 Differentiate your formula with respect to time, t.

		  When you differentiate in a related rates problem, all variables are treated 
like the ys are treated in a typical implicit differentiation problem.

dV

dt
=

4

3
� ⋅3r

2 dr

dt

=4�r
2 dr

dt

		  You need to add the dr
dt

 just like the way you add on a y′ or a dy
dx

 with 

implicit differentiation.

	 5.	 Substitute known values for the rate and variables in the equation 
from Step 4, and then solve for the thing you’re asked to determine.

		  It’s given that dV
dt

=300, and you’re asked to figure out dr
dt

 when r =3, so 

plug in these numbers and solve for dr
dt

.

		  Differentiate before you plug in. Be sure to differentiate (Step 4) before 
you plug the given information into the unknowns (Step 5).

dV

dt
=4�r

2 dr

dt

300=4� ⋅3
2 dr

dt

300=36�
dr

dt

300

36�
=
dr

dt

dr

dt
≈2.65 inches per minute
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So the radius is increasing at a rate of about 2.65 inches per minute when the 
radius measures 3 inches. Think of all the balloons you’ve blown up since 
your childhood. Now you finally have the answer to the question that’s been 
bugging you all these years.

By the way, if you plug 5 into r instead of 3, you get an answer of about 0.95 inches 
per minute. This should agree with your balloon-blowing-up experience: The 
bigger the balloon gets, the slower it grows. It’s a good idea to check things like 
this every so often to see that the math agrees with common sense.

Filling up a trough
Here’s another related rates problem. A trough is being filled up with swill. 
The trough is 10 feet long, and its cross-section is an isosceles triangle with a 
base of 2 feet and a height of 2 feet 6 inches (with the vertex at the bottom, of 
course). Swill’s being poured in at a rate of 5 cubic feet per minute. When the 
depth of the swill is 1 foot 3 inches, how fast is the swill level rising?

	 1.	 Draw a diagram, labeling it with any unchanging measurements and 
assigning variables to any changing things. See Figure 12-7.

		  Note that Figure 12-7 shows the unchanging dimensions of the trough, 
2 feet, 2 feet 6 inches, and 10 feet, and that these dimensions do not have 
variable names like l for length or h for height. And note that the changing 
things — the height (or depth) of the swill and the width of the surface 
of the swill (which gets wider as the swill gets deeper) — have variable 
names, h for height and b for base (I say base instead of width because 
it’s the base of the upside-down triangle shape made by the swill). The 
volume of the swill is also changing, so you can call that V.

	

Figure 12-7: 
Filling a 

trough with 
swill — 

lunch time.
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	 2.	 List the given rate and the rate you’re asked to figure out as deriva-
tives with respect to time.

dV

dt
=5 cubic feet per minute

dh

dt
= ?

	 3.a.	 Write down the formula that connects the variables in the problem: V, 
h, and b.

		  I’m absolutely positive that you remember the formula for the volume of 
a right prism (the shape of the swill in the trough):

V =(area of base)(height)

		  Note that this “base” is the base of the prism (the whole triangle at the 
end of the trough), not the base of the triangle which is labeled b in 
Figure 12-6. Also, this “height” is the height of the prism (the length of 
the trough), not the height labeled h in Figure 12-7. Sorry about the con-
fusion. Deal with it.

		  The area of the triangular base equals 1
2
bh, and the “height” of the prism 

is 10 feet, so the formula becomes

V =
1

2
bh ⋅10

V =5bh

		  Now, unlike the formula in the balloon example, this formula contains 
a variable, b, that you don’t see in your list of derivatives in Step 2. So 
Step 3 has a second part — getting rid of this extra variable.

	 3.b.	 Find an equation that relates the unwanted variable, b, to some other 
variable in the problem so you can make a substitution that leaves 
you with only V and h. 

		  The triangular face of the swill in the trough is similar to the triangular 
face of the trough itself, so the base and height of these triangles are 
proportional. (Recall from geometry that similar triangles are triangles of 
the same shape; their sides are proportional.) Thus,

b

2
=

h

2.5
(Be careful: 2

�
6
��
isnot 2.6 feet.)

2.5b=2h (cross multiplication)

b=
2h

2.5

b=0.8h



191 Chapter 12: Your Problems Are Solved: Differentiation to the Rescue!

		  Be on the lookout for similar triangles. Similar triangles come up a lot 
in related rates problems. Look for them whenever the problem involves 
a triangle, a triangular prism, or a cone shape.

		  Now substitute 0.8h for b in your formula from Step 3.a.

V =5bh

V =5 ⋅0.8h ⋅h

V =4h
2

	 4.	 Differentiate this equation with respect to t.

dV

dt
=8h

dh

dt
(the power rule with the implicit differentiation

dh

dt
)

	 5.	 Substitute known values for the rate and variable in the equation 
from Step 4 and then solve.

		  You know that dV
dt

=5 cubic feet per minute, and you want to determine 

dh

dt
 when h equals 1 foot 3 inches, or 1.25 feet, so plug in 5 and 1.25 and 

solve for dh
dt

:

dV

dt
=8h

dh

dt

5=8 ⋅1.25 ⋅
dh

dt

5=10 ⋅
dh

dt

dh

dt
=

1

2

That’s it. The swill’s level is rising at a rate of 1
2

 foot per minute when the 

swill is 1 foot 3 inches deep. Dig in.

Fasten your seat belt: You’re approaching 
a calculus crossroads
Ready for another common related rates problem? One car leaves an inter-
section traveling north at 50 mph, another is driving west toward the inter-
section at 40 mph. At one point, the north-bound car is three-tenths of a mile 
north of the intersection, and the west-bound car is four-tenths of a mile east 
of it. At this point, how fast is the distance between the cars changing?
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	 1.	 Do the diagram thing. See Figure 12-8.

		  Variable or fixed? Before going on with this problem, I want to mention 
a similar problem you may run across if you’re using a standard calculus 
textbook. It involves a ladder leaning against and sliding down a wall. 
Can you see that the diagram for such a ladder problem would be very 
similar to Figure 12-8 except that the y-axis would represent the wall, 
the x-axis would be the ground, and the diagonal line would be the 
ladder? These problems are quite similar, but there’s an important differ-
ence. The distance between the cars is changing so the diagonal line in 
Figure 12-8 is labeled with a variable, s. A ladder, on the other hand, has 
a fixed length, so the diagonal line in your diagram for the ladder prob-
lem would be labeled with a number, not a variable.

	

Figure 12-8: 
Calculus — 

it’s a drive in 
the country.

	

	 2.	 List all given rates and the unknown rate.

		  As Car A travels north, the distance y is growing at 50 miles per hour. 
That’s a rate, a change in distance per change in time. So,

change in distance in y direction

change in time
=
dy

dt
=50 mph

		  As Car B travels west, the distance x is shrinking at 40 miles per hour. 
That’s a negative rate:

change in distance in x direction

change in time
=
dx

dt
=−40 mph
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		  You have to figure out how fast s is changing, so,

change in distance in s direction

change in time
=
ds

dt
= ?

	 3.	 Write the formula that relates the variables in the problem: x, y, and s.

		  The Pythagorean theorem, a2+b2= c2, will do the trick for this right tri-
angle problem. In this problem, x and y are the legs of the right triangle, 
and s is the hypotenuse, so x2

+y
2
= s

2.

		  The Pythagorean theorem is used a lot in related rates problems. If 
there’s a right triangle in your problem, it’s quite likely that a2+b2= c2 is 
the formula you’ll need.

		  Because this formula contains the variables x, y, and s which all appear 
in your list of derivatives in Step 2, you don’t have to tweak this formula 
like you did in the trough problem.

	 4.	 Differentiate with respect to t.

s
2
=x

2
+y

2

2s
ds

dt
=2x

dx

dt
+2y

dy

dt

(implicit differentiation

with the power rule)

		  (Remember, in a related rates problem, all variables are treated like the 
ys in an implicit differentiation problem.)

	 5.	 Substitute and solve for ds
dt

.

x=0.4, y=0.3,
dx

dt
=−40,

dy

dt
=50, and s= .....

		  “Holy devoid distance lacking length, Batman. How can we solve for ds
dt

 

unless we have values for the rest of the unknowns in the equation?” 
“Take a chill pill, Robin — just use the Pythagorean theorem again.”

s
2
=x

2
+y

2

s
2
=0.4

2
+0.3

2

s
2
=0.16+0.09

s
2
=0.25

s=±0.5 (square rooting both sides)

		  You can reject the negative answer because s obviously has a positive 
length. So s=0.5.
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		  Now plug everything into your equation:

2s
ds

dt
=2x

dx

dt
+2y

dy

dt

2 ⋅0.5 ⋅
ds

dt
=2 ⋅0.4 ⋅ (−40)+2 ⋅0.3 ⋅50

1 ⋅
ds

dt
=−32+30

ds

dt
=−2

This negative answer means that the distance, s, is decreasing.

Thus, when car A is 3 blocks north of the intersection and car B is 4 blocks 
east of it, the distance between them is decreasing at a rate of 2 mph.



Chapter 13

More Differentiation Problems: 
Going Off on a Tangent

In This Chapter
▶	Tangling with tangents

▶	Negotiating normals

▶	Lining up for linear approximations

▶	Profiting from business and economics problems

I 
n this chapter, you see three more applications of differentiation: tangent 
and normal line problems, linear approximation problems, and economics 

problems. The common thread tying these problems together is the idea of a 
line tangent to a curve — which should come as no surprise since the mean-
ing of the derivative of a curve is the slope of the tangent line.

Tangents and Normals: Joined at the Hip
By now you know what a line tangent to a curve looks like — if not, one or both 
of us has definitely dropped the ball. A normal line is simply a line perpendicu-
lar to a tangent line at the point of tangency. Problems involving tangents and 
normals are common applications of differentiation.

The tangent line problem
I bet there have been several times, just in the last month, when you’ve wanted 
to determine the location of a line through a given point that’s tangent to a given 
curve. Here’s how you do it.
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Example: Determine the points of tangency of the lines through the point 
(1, −1) that are tangent to the parabola y=x2.

Solution: If you graph the parabola and plot the point, you can see that there 
are two ways to draw a tangent line from (1, −1): up to the right and up to the 
left. See Figure 13-1.

	

Figure 13-1: 
The 

parabola 
y = x 2 and 

two tangent 
lines 

through 
(1, −1).

	

The key to this problem is in the meaning of the derivative: Don’t forget — 
The derivative of a function at a given point is the slope of the tangent line at 
that point. So, all you have to do is set the derivative of the parabola equal to 
the slope of the tangent line and solve:

	 1.	 Because the equation of the parabola is y=x2, you can take a general 
point on the parabola, (x, y), and substitute x2 for y.

		  So, label the two points of tangency (x, x2
).

	 2.	 Take the derivative of the parabola.

y = x
2

y
�
= 2x

	 3.	 Using the slope formula, 
y
2
−y

1

x
2
−x

1

, set the slope of each tangent line 

from (1, −1) to (x,x2
) equal to the derivative at (x,x2

) which is 2x, and 
solve for x.
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		  (By the way, the math you do in this step may make more sense to you if 
you think of it as applying to just one of the tangent lines — say the one 
going up to the right — but the math actually applies to both tangent 
lines simultaneously.)

		  So, the x-coordinates of the points of tangency are 1+
√

2 and 1−
√

2.

	 4.	 Plug each of these x-coordinates into y=x2 to obtain the 
y-coordinates.

		

y=(1+
√

2)
2

=1+2

√

2+2

=3+2

√

2

y=(1−
√

2)
2

=1−2

√

2+2

=3−2

√

2

		  Thus, the two points of tangency are (1+
√

2, 3+2

√

2) and 
(1−

√

2, 3−2

√

2), or about (2.4, 5.8) and (−0.4, 0.2).

The normal line problem
Here’s the companion problem to the tangent line problem in the previous 
section. Find the points of perpendicularity for all normal lines to the parabola, 
y=

1

16
x
2, that pass through the point (3, 15).



198 Part IV: Differentiation 

	 Definition of normal line: A line normal to a curve at a given point is the line 
perpendicular to the line that’s tangent to the curve at that same point.

Graph the parabola and plot the point (3, 15). Now, before you do the math, 
try to estimate the locations of all normal lines. How many can you see? It’s 
fairly easy to see that, starting at (3, 15), one normal line goes down and to 
the right and another goes down to the left. But did you see that there’s actu-
ally a second normal line that goes down to the left? No worries if you didn’t 
see it, because when you do the math, you get all three solutions.

	 Making commonsense estimates enhances mathematical understanding. 
When doing calculus, or any math for that matter, come up with a common 
sense, ballpark estimate of the solution to a problem before doing the math 
(when possible and time permitting). This deepens your understanding of the 
concepts involved and provides a check to the mathematical solution. (This is 
a powerful math strategy — take my word for it — despite the fact that in this 
particular problem, most people will find at most two of the three normal lines 
using an eyeball estimate.)

Figure 13-2 shows the parabola and the three normal lines.

	

Figure 13-2: 
The 

parabola 

y = 1

16
x 2 

and three 
normal lines 

through 
(3, 15).

	

Looking at the figure, you can appreciate how practical this problem is. It’ll 
really come in handy if you happen to find yourself standing inside the curve 
of a parabolic wall, and you want to know the precise location of the three 
points on the wall where you could throw a ball and have it bounce straight 
back to you.
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The solution is very similar to the solution of the tangent line problem, 
except that in this problem you use the rule for perpendicular lines:

	 Slopes of perpendicular lines. The slopes of perpendicular lines are opposite 
reciprocals.

Each normal line in Figure 13-2 is perpendicular to the tangent line drawn 
at the point where the normal meets the curve. So the slope of each normal 
line is the opposite reciprocal of the slope of the corresponding tangent 
line — which, of course, is given by the derivative. So here goes:

	 1.	 Take a general point, (x, y), on the parabola y= 1

16
x
2, and substitute 

1

16
x
2 for y.

		  So, label each point of perpendicularity 
(

x,
1

16
x
2

)

.

	 2.	 Take the derivative of the parabola.

y=
1

16
x
2

y
�
=

1

8
x

	 3.	 Using the slope formula, 
y
2
−y

1

x
2
−x

1

, set the slope of each normal line 

from (3, 15) to 
(
x,

1

16
x
2

)
 equal to the opposite reciprocal of the deriva-

tive at 
(
x,

1

16
x
2

)
, and solve for x.

	

		  Now, there’s no easy way to get exact solutions to this cubic (3rd degree) 
equation like the way the quadratic formula gives you the exact solutions 
to a 2nd degree equation. Instead, you can graph y=x3

−112x−384, and 
the x-intercepts give you the solutions, but with this method, there’s no 
guarantee you’ll get exact solutions. (If you don’t, the decimal approxima-
tions you get will be good enough.) Here, however, you luck out — actually, 
I had something to do with it — and get the exact solutions of −8, −4, and 
12. (You should graph the cubic function so you see how this works.)
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	 4.	 Plug each of these x-coordinates into y =

1

16
x
2 to obtain the 

y-coordinates.

y= 1
16

(−8)
2

y= 1
16

(−4)
2

y= 1
16

(12)
2

=4 =1 =9

		  Thus, the three points of normalcy are (−8, 4), (−4, 1), and (12, 9) — play ball!

Straight Shooting with  
Linear Approximations

Because ordinary functions are locally linear (that’s straight) — and the 
further you zoom in on them, the straighter they look — a line tangent to a 
function is a good approximation of the function near the point of tangency. 
Figure 13-3 shows the graph of f (x)=

√

x and a line tangent to the function at 
the point (9, 3). You can see that near (9, 3), the curve and the tangent line are 
virtually indistinguishable.

	

Figure 13-3: 
The graph of 
f (x )=

√

x  
and a line 
tangent to 

the curve at 
(9, 3).

	

Determining the equation of this tangent line is a breeze. You’ve got a point, 
(9, 3), and the slope is given by the derivative of f at 9:

f (x)=
√

x=x
1∕2

f
�
(x)=

1

2
x
−1∕2

=
1

2
√

x

(power rule)

f
�
(9)=

1

2

√

9

=
1

6
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Now just take this slope (this derivative) of 1
6

 and the point (9, 3), and plug 
them into point-slope form:

That’s the equation of the line tangent to f (x)=
√

x at (9, 3). I suppose you 

may be wondering why I wrote the equation as y=3+
1

6
(x−9). It might seem 

more natural to put the 3 to the right of 1
6
(x−9), which, of course, would 

also be correct. And I could have simplified the equation further, writing it in 
y=mx+b form. I explain later in this section why I wrote it the way I did.

(If you have your graphing calculator handy, graph f (x)=
√

x and the tangent 
line. Zoom in on the point (9, 3) a couple times. You’ll see that — as you zoom 
in — the curve gets straighter and straighter and the curve and tangent line 
get closer and closer to each other.)

Now, say you want to approximate the square root of 10. Because 10 is pretty 
close to 9, and because you can see from Figure 13-3 that f (x) and its tangent 
line are close to each other at x=10, the y-coordinate of the line at x=10 is a 
good approximation of the function value at x=10, namely 

√

10.

Just plug 10 into the line equation for your approximation:

y=3+
1

6
(x−9)

=3+
1

6
(10−9)

=3+
1

6

=3
1

6

Thus, the square root of 10 is about 3 1
6

. This is only about 0.004 more than 

the exact answer of 3.1623. . . . The error is roughly a tenth of a percent.

Now I can explain why I wrote the equation for the tangent line the way I did. 
This form makes it easier to do the computation and easier to understand 
what’s going on when you compute an approximation. Here’s why. You know 
that the line goes through the point (9, 3). right? And you know the slope of 

the line is 1
6

. So, you can start at (9, 3) and go to the right (or left) along the 
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line in the stair-step fashion, as shown in Figure 13-4: over 1, up 1
6

; over 1, 

up 1
6

; and so on. (Note that since slope= rise

run
, when the run is 1 (as shown in 

Figure 13-4), the rise equals the slope.)

	

Figure 13-4: 
The linear 

approxima-
tion line and 

several of 
its points.

	

So, when you’re doing an approximation, you start at a y-value of 3 and go 

up 1
6

 for each 1 you go to the right. Or if you go to the left, you go down 1
6

 for 

each 1 you go to the left. When the line equation is written in the above form, 
the computation of an approximation parallels this stair-step scheme.

Figure 13-4 shows the approximate values for the square roots of 7, 8, 10, 11, 
and 12. Here’s how you come up with these values. To get to 8, for example, 

from (9, 3), you go 1 to the left, so you go down 1
6

 to 2 5
6

; or to get to 11 from 

(9, 3), you go two to the right, so you go up two-sixths to 3 2
6
or 3

1

3
. (If you go 

to the right one half to 9 1
2

, you go up half of a sixth, that’s a twelfth, to 3 1

12
, 

the approximate square root of 9 1
2

.)

The following list shows the size of the errors for the approximations shown in 
Figure 13-4. Note that the errors grow as you get further from the point of tan-
gency (9, 3). Also, the errors grow faster going down from 9 to 8 then 7, etc. than 
going up from 9 to 10 then 11, etc.; errors often grow faster in one direction 
than the other with linear approximations because of the shape of the curve.

√

7: 0.8% error
√

8: 0.2% error
√

10: 0.1% error
√

11: 0.5% error

√

12: 1.0% error
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	 Linear approximation equation: Here’s the general form for the equation of 
the tangent line that you use for a linear approximation. The values of a func-
tion f (x) can be approximated by the values of the tangent line l(x) near the 
point of tangency, (x

0
, f (x

0
)), where

l(x)= f (x
0
)+ f

�
(x

0
)(x−x

0
)

This is less complicated than it looks. It’s just the gussied-up calculus ver-
sion of the point-slope equation of a line you’ve known since Algebra I, 
y−y

1
=m(x−x

1
), with the y

1
 moved to the right side:

y=y
1
+m(x−x

1
)

This equation and the equation for l(x) differ only in the symbols used; the 
meaning of both equations — term for term — is identical. And notice how 
they both resemble the equation of the tangent line in Figure 13-4.

	 Look for algebra-calculus and geometry-calculus connections. Whenever 
possible, try to see the basic algebra or geometry concepts at the heart of 
fancy-looking calculus concepts.

Business and Economics Problems
Believe it or not, calculus is actually used in the real world of business and 
economics — learn calculus and increase your profits! Tell me: When you’re 
driving around an upscale part of town and you pass by a huge home, what’s 
the first thing that comes to your mind? I bet it’s “Just look at that home! That 
guy (gal) must know calculus.”

Managing marginals in economics
Look again at Figures 13-3 and 13-4 in the previous section. Recall that the 
derivative and thus the slope of y=

√

x at (9, 3) is 1
6

, and that the tangent line at 
this point can be used to approximate the function near the point of tangency. 
So, as you go over 1 from 9 to 10 along the function itself, you go up about 1

6
. 

And, thus, 
√

10 is about 1
6

 more than 
√

9. The mathematics of marginals works 
exactly the same way.
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	 Marginal cost, marginal revenue, and marginal profit work a lot like linear 
approximation. Marginal cost, marginal revenue, and marginal profit all involve 
how much a function goes up (or down) as you go over 1 to the right — just 
like with linear approximation.

Say you’ve got a cost function that gives you the total cost, C (x) of producing 
x items. See Figure 13-5.

	

Figure 13-5: 
The graph of 
a cost func-

tion C(x ).
	

Look at the blown-up square on the right in the figure. The derivative of C (x) 
at the point of tangency gives you the slope of the tangent line and thus 
the amount you go up as you go 1 to the right along the tangent line. (This 
amount is labeled in the figure as marginal cost.) Going 1 to the right along 
the cost function itself shows you the increase in cost of producing one more 
item. (This is labeled as the extra cost.) Because the tangent line is a good 
approximation of the cost function, the derivative of C — called the mar-
ginal cost — is the approximate increase in cost of producing one more item. 
Marginal revenue and marginal profit work the same way.

	 Definition of marginal cost, marginal revenue, and marginal profit:

Marginal cost equals the derivative of the cost function.

Marginal revenue equals the derivative of the revenue function.

Marginal profit equals the derivative of the profit function.

Before doing an example involving marginals, there’s one more piece of busi-
ness to take care of. A demand function tells you how many items will be 
purchased (what the demand will be) given the price. The lower the price, 
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of course, the higher the demand; and the higher the price, the lower the 
demand. You’d think that the number purchased should be a function of the 
price — input a price and find out how many items people will buy at that 
price — but traditionally, a demand function is written the other way around. 
The price is expressed as a function of the number demanded. I know that 
seems a bit odd, but don’t sweat it — the function works either way. Think 
of it like this: If a retailer wants to sell a given number of items, the demand 
function tells the retailer what he or she should set the selling price at.

Okay, so here’s the example. A widget manufacturer determines that the 
demand function for his widgets is

p=
1000
√

x

where p is the price of a widget and x is the number of widgets demanded. 
The cost of producing x widgets is given by the following cost function:

C (x)=10x+100

√

x+10,000

Determine the marginal cost, marginal revenue, and marginal profit at x=100 
widgets. Also, how many widgets should be manufactured, and what should 
they be sold for to produce the maximum profit, and what is that maximum 
profit? (If you get through all this, I’ll nominate you for the Nobel Prize in 
Economics.)

Marginal cost
Marginal cost is the derivative of the cost function, so take the derivative and 
evaluate it at x=100:

C (x)=10x+100

√

x+10,000

C
�
(x)=10x+

50
√

x

(power rule)

C
�
(100)=10+

50
√

100

=10+
50

10

=15

Thus, the marginal cost at x=100 is $15 — this is the approximate cost of 
producing the 101st widget.
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Marginal revenue
Revenue, R(x), equals the number of items sold, x, times the price, p:

R(x)=x ⋅p

=x ⋅
1000
√

x

(using the above demand function)

=
1000x
√

x

⋅

√

x
√

x

(rationalizing the denominator)

=
1000x

√

x

x

=1000

√

x

Marginal revenue is the derivative of the revenue function, so take the deriva-
tive of R(x) and evaluate it at x=100:

R(x)=1000

√

x

R
�
(x)=

500
√

x

(power rule)

R
�
(100)=

500
√

100

=50

Thus, the approximate revenue from selling the 101st widget is $50.

Marginal profit
Profit, P(x), equals revenue minus cost. So,

Marginal profit is the derivative of the profit function, so take the derivative 
of P(x), and evaluate it at x=100:
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Selling the 101st widget brings in an approximate profit of $35.

	 Marginal profit short cuts: Did you notice either of the two shortcuts you 
could have taken here? First, you can use the fact that

P
�
(x)=R

�
(x)−C

�
(x)

to determine P �
(x) directly, without first determining P(x). Then, after getting 

P
�
(x), you just plug 100 into x for your answer.

And, if all you want to know is P �
(100), you can use the following really short 

shortcut:

P
�
(100)=R

�
(100)−C

�
(100)

=50−15

=35

This is common sense. If it costs you about $15 to produce the 101st widget 
and you sell it for about $50, then your profit is about $35.

I did it the long way because you need both the profit function, P(x), and the 
marginal profit function, P �

(x), for the problems below.

Maximum profit
To determine maximum profit, set the derivative of profit — that’s marginal 
profit — equal to zero, solve for x, and then plug the result into the profit 
function:

So, maximum profit occurs when 2,025 widgets are sold. Plug this into P(x):
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Thus, the maximum profit is $10,250. (Extra credit: Did you see where I got a 
bit lazy here? The derivative of the profit function is zero at x = 2025, but that 
doesn’t guarantee that there’s a max at that x-value. There could instead be a 
min or an inflection point there. You could use either the first or second deriv-
ative test (see Chapter 11) to show that it’s actually a max. But I just peaked 
at a graph of the profit function and saw that it’s sort of an upside-down cup 
shape, so I knew that there was a max at the top of the cup at x = 2025.)

Finally, plug the number sold into the demand function to determine the 
profit-maximizing price:

p=
1000
√

x

p=
1000
√

2025

≈22.22

So, the maximum profit of $10,250 occurs when the price is set at $22.22. At 
this price, 2,025 widgets will be sold. Figure 13-6 sums up these results. Note 
that because profit equals revenue minus cost, the vertical distance or gap 
between the revenue and cost functions at a given x-value gives the profit at 
that x-value. Maximum profit occurs where the gap is greatest.

	

Figure 13-6: 
The revenue 

and cost 
functions. 

The vertical 
distance 
between 
them, at 
a given 

x-value, 
represents 

the profit.
	

And here’s another thing. Because maximum profit occurs where P �
(x)=0, 

and because P �
(x)=R

�
(x)−C

�
(x), it follows that the profit will be greatest where 

0=R
�
(x)−C

�
(x) — in other words, where R�

(x)=C
�
(x). And when R�

(x)=C
�
(x), the 

slopes of the functions’ tangent lines are equal. So, if you were to draw tangent 
lines to R(x) and C (x) where the gap between the two is greatest, these tan-
gents would be parallel. Right about now you’re probably thinking something 
like — Such symmetry, such simple elegance, such beauty! Verily, the mathematics 
muse seduces the heart as much as the mind. Yeah, it’s nice all right, but let’s not 
get carried away.

(Note that although the scale of this graph 
makes C(x )= 10x +100

√

x +10,000 look like a 
straight line, its middle term of 100

√

x  means 
that it is not exactly straight.)



Part V
Integration and Infinite 

Series

	 Check out my online article, “Integration by Parts and Going in Circles” at 
www.dummies.com/extras/calculus.



In this part . . .
	 ✓	 The meaning of integration: Integration is basically just fancy 

calculus addition. It works by sort of slicing up something into 
tiny bits (actually infinitesimal bits) and then adding up the bits 
to get the total. This allows you to find the total of things — say, 
the total volume of some weird bell-shaped object — that can’t 
be handled by simple, pre-calculus formulas.

	 ✓	 The fundamental theorem of calculus: Integration is basically 
differentiation in reverse — namely, antidifferentiation. There’s 
an intimate yin/yang connection between integration and differ-
entiation which this part looks at from several angles.

	 ✓	 Techniques for calculating antiderivatives: Substitution, inte-
gration by parts, trig integrals, and partial fractions.

	 ✓	 Integration word problems: Calculating the area between 
curves, finding volume with the washer method, computing arc 
length and surface area, and improper integrals.

	 ✓	 L’Hôpital’s rule: A nice trick for solving limit problems.

	 ✓	 Taming infinity: Ten tests for the convergence or divergence of 
infinite series.



Chapter 14

Intro to Integration and 
Approximating Area

In This Chapter
▶	Integrating — adding it all up

▶	Approximating areas and sizing up sigma sums

▶	Using the definite integral to get exact areas

▶	Totaling up trapezoids

▶	Simpson’s rule: Calculus for Bart and Homer

S 
ince you’re still reading this book, I presume that means you survived 
differentiation (Chapters 9 through 13). Now you begin the second 

major topic in calculus: integration. Just as two simple ideas lie at the heart 
of differentiation — rate (like miles per hour) and the steepness or slope 
of a curve — integration can also be understood in terms of two simple 
ideas — adding up small pieces of something and the area under a curve. In 
this chapter, I introduce you to these two fundamental concepts.

Integration: Just Fancy Addition
Consider the lamp on the left in Figure 14-1. Say you want to determine the 
volume of the lamp’s base. Why would you want to do that? Beats me. Anyway, 
a formula for the volume of such a weird shape doesn’t exist, so you can’t cal-
culate the volume directly.

You can, however, calculate the volume with integration. Imagine that the 
base is cut up into thin, horizontal slices as shown on the right in Figure 14-1.
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Figure 14-1: 
A lamp with 

a curvy 
base and 
the base 

cut into thin 
horizontal 

slices.
	

Can you see that each slice is shaped like a thin pancake? Now, because there is 
a formula for the volume of a pancake (a pancake is just a very short cylinder), 
you can determine the total volume of the base by simply calculating the 
volume of each pancake-shaped slice and then adding up the volumes. That’s 
integration in a nutshell.

But, of course, if that’s all there was to integration, there wouldn’t be such a 
fuss about it — certainly not enough to vault Newton, Leibnitz, and the other 
all-stars into the mathematics hall of fame. What makes integration one of the 
great achievements in the history of mathematics is that — to continue with 
the lamp example — it gives you the exact volume of the lamp’s base by sort 
of cutting it into an infinite number of infinitely thin slices. Now that is some-
thing. If you cut the lamp into fewer than an infinite number of slices, you 
can get only a very good approximation of the total volume — not the exact 
answer — because each pancake-shaped slice would have a weird, curved edge 
which would cause a small error when computing the volume of the slice with 
the cylinder formula.

Integration has an elegant symbol: . You’ve probably seen it before — maybe 
in one of those cartoons with some Einstein guy in front of a blackboard filled 
with indecipherable gobbledygook. Soon, this will be you. That’s right: You’ll 
be filling up pages in your notebook with equations containing the integration 
symbol. Onlookers will be amazed and envious.

You can think of the integration symbol as just an elongated S for “sum up.” 
So, for our lamp problem, you can write

where dB means a little bit of the base — actually an infinitely small piece. So 
the equation just means that if you sum up all the little pieces of the base from 
the bottom to the top, the result is B, the volume of the whole base.
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This is a bit oversimplified — I can hear the siren of the math police now — but 
it’s a good way to think about integration. By the way, thinking of dB as a little 
or infinitesimal piece of B is an idea you saw before with differentiation (see 

Chapter 9), where the derivative or slope, dy
dx

, is equal to the ratio of a little 

bit of y to a little bit of x, as you shrink the rise
run

 stair step down to an infinitesi-

mal size (see Figure 9-13). Thus, both differentiation and integration involve 
infinitesimals.

So, whenever you see something like

it just means that you add up all the little (infinitesimal) pieces of the mumbo 
jumbo from a to b to get the total of all of the mumbo jumbo from a to b. Or 
you might see something like

which means to add up the little pieces of distance traveled between 0 and 
20 seconds to get the total distance traveled during that time span.

To sum up — that’s a pun! — the mathematical expression to the right of the 
integration symbol stands for a little bit of something, and integrating such an 
expression means to add up all the little pieces between some starting point 
and some ending point to determine the total between the two points.

Finding the Area Under a Curve
As I discuss in Chapter 9, the most fundamental meaning of a derivative is that 
it’s a rate, a this per that like miles per hour, and that when you graph the this as 
a function of the that (like miles as a function of hours), the derivative becomes 
the slope of the function. In other words, the derivative is a rate, which on a 
graph appears as a slope.

It works in a similar way with integration. The most fundamental meaning of inte-
gration is to add up (you might be adding up distances or volumes, for example). 
And when you depict integration on a graph, you can see the adding up process 
as a summing up of little bits of area to arrive at the total area under a curve. 
Consider Figure 14-2.
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Figure 14-2: 
Integrating 
f (x ) from 
x =a to 

x =b means 
finding the 
area under 

the curve 
between 
a and b.

	

The shaded area in Figure 14-2 can be calculated with the following integral:

b

∫
a

f (x)dx

Look at the thin rectangle in Figure 14-2. It has a height of f (x) and a width of dx 
(a little bit of x), so its area (length times width, of course) is given by f (x) ⋅dx. The 
above integral tells you to add up the areas of all the narrow rectangular strips 
between a and b under the curve f (x). As the strips get narrower and narrower, 
you get a better and better estimate of the area. The power of integration lies in 
the fact that it gives you the exact area by sort of adding up an infinite number of 
infinitely thin rectangles.

If you’re doing a problem where both the x and y axes are labeled in a unit of 
length, say, feet, then each thin rectangle measures so many feet by so many 
feet, and its area — length times width — is some number of square feet. In this 
case, when you integrate to get the total area under the curve between a and 
b, your final answer will be an amount of — what else? — area. But you can use 
this adding-up-areas-of-rectangles scheme to add up tiny bits of anything —  
distance, volume, or energy, for example. In other words, the area under the 
curve doesn’t have to stand for an actual area.

If, for example, the units on the x-axis are hours and the y-axis is labeled in 
miles per hour, then, because rate times time equals distance (and because 
miles

hour
⋅hours=miles), the area of each rectangle represents an amount of dis-

tance (in miles), and the total area gives you the total distance traveled during 
the given time interval. Or if the x-axis is labeled in hours and the y-axis in 
kilowatts of electrical power — in which case the curve gives power usage as a 
function of time — then the area of each rectangular strip (kilowatts times hours) 
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represents a number of kilowatt-hours of energy. In that case, the total area under 
the curve gives you the total number of kilowatt-hours of energy consumption 
between two points in time.

Figure 14-3 shows how you would do the lamp volume problem — from ear-
lier in this chapter — by adding up areas. In this graph, the function A(h) 
gives the cross-sectional area of a thin pancake slice of the lamp as a func-
tion of its height measured from the bottom of the lamp. So this time, the 
h-axis is labeled in inches (that’s h as in height from the bottom of the lamp), 
and the y-axis is labeled in square inches, and thus each thin rectangle has a 
width measured in inches and a height measured in square inches. Its area, 
therefore, represents inches times square inches, or cubic inches of volume.

	

Figure 14-3: 
This shaded 

area gives 
you the 

volume of 
the base of 
the lamp in 
Figure 14-1.

	

The area of the thin rectangle in Figure 14-3 represents the volume of the thin 
pancake slice of the lamp 5 inches up from the bottom of the base. The total 
shaded area and thus the volume of the lamp’s base is given by the following 
integral:

Volume= cross-sectional area × thickness

V =

15

0

A(h)dh

This integral tells you to add up the volumes of all the thin pancake slices 
from 0 to 15 inches (that is, from the bottom to the top of the lamp’s base), 
each slice having a volume given by A(h) (its cross-sectional area) times dh 
(its height or thickness). (By the way, Figure 14-3 resembles the left half of the 
lamp’s base (tilted on its side), but it’s not that. It has a similar shape because 
where the lamp base is wide, the corresponding circular slice has a large area.)

Okay, enough of this introductory stuff. In the next section, you actually calculate 
some areas.
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Approximating Area
Before explaining how to calculate exact areas, I want to show you how to 
approximate areas. The approximation method is useful not only because it 
lays the groundwork for the exact method — integration — but because for 
some curves, integration is impossible, and an approximation of area is the 
best you can do.

Approximating area with left sums
Say you want the exact area under the curve f (x)=x2

+1 between x=0 and 
x=3. See the shaded area on the graph on the left in Figure 14-4.

	

Figure 14-4: 
The exact 

area under 
f (x )= x 2+1 

between 
x = 0 and 
x = 3  (left) 
is approxi-

mated by 
the area 
of three 

rectangles 
(right).

	

You can get a rough estimate of the total area by drawing three rectangles under 
the curve, as shown on the right in Figure 14-4, and then adding up their areas.

The rectangles in Figure 14-4 represent a so-called left sum because the height 
of each rectangle is determined by where the upper left corner of each rect-
angle touches the curve. Each rectangle has a width of 1 and the height of each 
is given by the height of the function at the rectangle’s left edge. So, rectangle 
number 1 has a height of f (0)=0

2
+1=1; its area (length ⋅width or height ⋅width) 

is thus 1 ⋅1, or 1. Rectangle 2 has a height of f (1)=1
2
+1=2, so its area is 2 ⋅1, or 2.  

And rectangle 3 has a height of f (2)=2
2
+1=5, so its area is 5 ⋅1, or 5. Adding 

these three areas gives you a total of 1+2+5, or 8. You can see that this is an 
underestimate of the total area under the curve because of the three gaps 
between the rectangles and the curve shown in Figure 14-4.

For a better estimate, double the number of rectangles to six. Figure 14-5 shows 
six “left” rectangles under the curve and also how the six rectangles begin to 
fill up the three gaps you see in Figure 14-4.
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Figure 14-5: 
Six “left” 

rectangles 
approxi-
mate the 

area under 
f (x )= x 2+1.

	

See the three small shaded rectangles in the graph on the right in Figure 14-5? 
They sit on top of the three rectangles from Figure 14-4 and represent how 
much the area estimate has improved by using six rectangles instead of three.

Now total up the areas of the six rectangles. Each has a width of 0.5 and the 
heights are f (0), f (0.5), f (1), f (1.5), and so on. I’ll spare you the arithmetic. 
Here’s the total: 0.5+0.625+1+1.625+2.5+3.625=9.875. This is a better esti-
mate, but it’s still an underestimate because of the six small gaps you can see 
on the left graph in Figure 14-5.

Table 14-1 shows the area estimates given by 3, 6, 12, 24, 48, 96, 192, and 384 
rectangles. You don’t have to double the number of rectangles each time like 
I’ve done here. You can use any number of rectangles of equal width that you 
want. I just like the doubling scheme because, with each doubling, the gaps 
are plugged up more and more in the way shown in Figure 14-5. Any guesses 
as to where the estimates in Table 14-1 are headed? Looks like 12 to me. 

Table 14-1	 Estimates of the Area Under f (x )=x 2
+1  Given by  

	 Increasing Numbers of “Left” Rectangles

Number of Rectangles Area Estimate
3

6

12

24

48

96

192

384

8

9.875

∼ 10.906

∼ 11.445

∼ 11.721

∼ 11.860

∼ 11.930

∼ 11.965
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Here’s the fancy-pants formula for a left-rectangle sum:

	 The left rectangle rule: You can approximate the exact area under a curve 

between a and b, 
b

∫

a

f (x)dx, with a sum of left rectangles of equal width given by 

the following formula. In general, the more rectangles, the better the estimate.

where n is the number of rectangles, b−a
n

 is the width of each rectangle, x
0
 

through x
n−1

 are the x-coordinates of the left edges of the n rectangles, and the 
function values are the heights of the rectangles.

I’d better explain this formula a bit. Look back to the six rectangles shown in 
Figure 14-5. The width of each rectangle equals the length of the total span 
from 0 to 3 (which of course is 3−0, or 3) divided by the number of rectangles, 
6. That’s what the b−a

n
 does in the formula.

Now, what about those xs with the subscripts? The x-coordinate of the left 
edge of rectangle 1 in Figure 14-5 is called x

0
, the right edge of rectangle 1 

(which is the same as the left edge of rectangle 2) is at x
1
, the right edge of 

rectangle 2 is at x
2
, the right edge of rectangle 3 is at x

3
, and so on all the way 

up to the right edge of rectangle 6, which is at x
6
. For the six rectangles in 

Figure 14-5, x
0
 is 0, x

1
 is 0.5, x

2
 is 1, x

3
 is 1.5, x

4
 is 2, x

5
 is 2.5, and x

6
 is 3. The 

heights of the six left rectangles in Figure 14-5 occur at their left edges, which 
are at x

0
 through x

5
. You don’t use the right edge of the last rectangle, x

6
, in a 

left sum. That’s why the list of function values in the formula stops at x
n−1

. 
This all becomes clearer — cross your fingers — when you look at the for-
mula for right rectangles in the next section.

Here’s how to use the formula for the six rectangles in Figure 14-5:

L
6
=

3−0

6

[

f (x
0
)+ f (x

1
)+ f (x

2
)+ f (x

3
)+ f (x

4
)+ f (x

5
)
]

=
1

2

[

f (0)+ f (0.5)+ f (1)+ f (1.5)+ f (2)+ f (2.5)
]

=
1

2
(1+1.25+2+3.25+5+7.25)

=
1

2
(19.75)

=9.875

Note that had I distributed the width of 1
2

 to each of the heights after the third 

line in the solution, you’d have seen the sum of the areas of the six rectangles —  
which you saw two paragraphs below Figure 14-5. The formula just uses the 
shortcut of first adding up the heights and then multiplying by the width.
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Approximating area with right sums
Now estimate the same area under f (x)=x2

+1 from 0 to 3 with right rectangles. 
This method works like the left sum method except each rectangle is drawn so 
that its right upper corner touches the curve. See Figure 14-6.

	

Figure 14-6: 
Three right 
rectangles 

used to 
approxi-
mate the 

area under 
f (x )= x 2+1 .

	

The heights of the three rectangles in Figure 14-6 are given by the function 
values at their right edges: f (1)=2, f (2)=5, and f (3)=10. Each rectangle has a 
width of 1, so the areas are 2, 5, and 10, which total 17. You don’t have to be a 
rocket scientist to see that this time you get an overestimate of the actual area 
under the curve, as opposed to the underestimate that you get with the left-
rectangle method I detail in the previous section (more on that in a minute). 
Table 14-2 shows the improving estimates you get with more and more right 
rectangles.

Table 14-2	 Estimates of the Area Under f (x )=x 2
+1   Given by  

		  Increasing Numbers of “Right” Rectangles

Number of Rectangles Area Estimate
3

6

12

24

48

96

192

384

17

14.375

∼ 13.156

∼ 12.570

∼ 12.283

∼ 12.141

∼ 12.070

∼ 12.035
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Looks like these estimates are also headed toward 12. Here’s the formula for 
a right rectangle sum.

	 The right rectangle rule: You can approximate the exact area under a curve 

between a and b, 
b

∫

a

f (x)dx, with a sum of right rectangles given by the following 

formula. In general, the more rectangles, the better the estimate.

R
n
=
b−a
n

[

f (x
1
)+ f (x

2
)+ f (x

3
)+ ..........+ f (x

n
)
]

,

where n is the number of rectangles, b−a
n

 is the width of each rectangle, x
1
 

through x
n
 are the x-coordinates of the right edges of the n rectangles, and the 

function values are the heights of the rectangles.

If you compare this formula to the one for a left rectangle sum, you get the 
complete picture about those subscripts. The two formulas are the same 
except for one thing. Look at the sums of the function values in both formulas. 
The right sum formula has one value, f (x

n
), that the left sum formula doesn’t 

have, and the left sum formula has one value, f (x
0
), that the right sum formula 

doesn’t have. All the function values between those two appear in both formu-
las. You can get a better handle on this by comparing the three left rectangles 
from Figure 14-4 to the three right rectangles from Figure 14-6. Their areas and 
totals, which we earlier calculated, are

Three left rectangles: 1+2+5=8

Three right rectangles: 2+5+10=17

The values used in the sums of the areas are the same except for the left-most 
left rectangle value and the right-most right rectangle value. Both sums include 
rectangles with areas 2 and 5. If you look at how the rectangles are constructed, 
you can see that the second and third rectangles in Figure 14-4 are the same as 
the first and second rectangles in Figure 14-6.

Approximating area with midpoint sums
A third way to approximate areas with rectangles is to make each rectangle 
cross the curve at the midpoint of its top side. A midpoint sum is usually a much 
better estimate of area than either a left or a right sum. Figure 14-7 shows why.
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Figure 14-7: 
Three mid-
point rect-

angles give 
you a much 
better esti-
mate of the 
area under 

f (x )= x 2+1.

	

You can see in Figure 14-7 that the part of each rectangle that’s above the curve 
looks about the same size as the gap between the rectangle and the curve. A 
midpoint sum produces such a good estimate because these two errors roughly 
cancel out each other.

For the three rectangles in Figure 14-7, the widths are 1 and the heights are 
f (0.5)=1.25, f (1.5)=3.25, and f (2.5)=7.25. The total area comes to 11.75. 
Table 14-3 lists the midpoint sums for the same number of rectangles used in 
Tables 14-1 and 14-2.

Table 14-3	 Estimates of the Area Under f (x )=x 2
+1   Given by  

		  Increasing Numbers of “Midpoint” Rectangles
Number of Rectangles Area Estimate

3

6

12

24

48

96

192

384

11.75

11.9375

∼ 11.9844

∼ 11.9961

∼ 11.9990

∼ 11.9998

∼ 11.9999

∼ 11.99998

If you had any doubts that the left and right sums in Tables 14-1 and 14-2 
were heading to 12, Table 14-3 should dispel them. Spoiler alert: Yes, in fact, 
the exact area is 12. (I show you how to calculate that in about 5 or 6 pages.) 
And to see how much faster the midpoint approximations approach the exact 
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answer of 12 than the left or right approximations, compare the three tables. 
The error with 6 midpoint rectangles is about the same as the error with 192 
left or right rectangles! Here’s the mumbo jumbo.

	 The midpoint rule: You can approximate the exact area under a curve 

between a and b, 
b

∫

a

f (x)dx, with a sum of midpoint rectangles given by the  

following formula. In general, the more rectangles, the better the estimate.

M
n
=
b−a
n

[

f

(

x
0
+x

1

2

)

+ f

(

x
1
+x

2

2

)

+ f

(

x
2
+x

3

2

)

+ ..........+ f

(

x
n−1

+x
n

2

)]

,

where n is the number of rectangles, b−a
n

 is the width of each rectangle, x
0
 

through x
n
 are the n+1 evenly spaced points from a to b, and the function 

values are the heights of the rectangles.

	 Definition of Riemann sum: All three sums — left, right, and midpoint — are 
called Riemann sums, after the great German mathematician Bernhard Riemann 
(1826-66). Basically, any approximating sum made up of rectangles is a Riemann 
sum, including weird sums consisting of rectangles of unequal width. Luckily, 
you won’t have to deal with those in this book or your calculus course.

The left, right, and midpoint sums in Tables 14-1, 14-2, and 14-3 are all heading 
toward 12, and if you could slice up the area into an infinite number of rect-
angles, you’d get the exact area of 12. But I’m getting ahead of myself.

Getting Fancy with Summation Notation
Before I get to the formal definition of the definite integral — that’s the incredible 
calculus tool that sort of cuts up an area into an infinite number of rectangles 
and thereby gives you the exact area — there’s one more thing to take care of: 
summation notation.

Summing up the basics
For adding up long series of numbers like the rectangle areas in a left, right, 
or midpoint sum, summation or sigma notation comes in handy. Here’s how 
it works. Say you wanted to add up the first 100 multiples of 5 — that’s from 
5 to 500. You could write out the sum like this:

5+10+15+20+25+ ......... +490+495+500
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But with sigma notation (sigma, 
∑

, is the 18th letter of the Greek alphabet) 
the sum is much more condensed and efficient, and, let’s be honest, it looks 
pretty cool:

100
∑

i=1

5i

This notation just tells you to plug 1 in for the i in 5i, then plug 2 into the i in 
5i, then 3, then 4, and so on, up to 100. Then you add up the results. So that’s 
5 ⋅1 plus 5 ⋅2 plus 5 ⋅3, and so on, up to 5 ⋅100. This produces the same thing as 
writing out the sum the long way. By the way, the letter i has no significance. 

You can write the sum with a j, 
100
∑

j=1

5 j, or any other letter.

Here’s one more. If you want to add up 102+11
2
+12

2
+ .........+29

2
+30

2, you 
can write the sum with sigma notation as follows:

There’s really nothing to it.

Writing Riemann sums  
with sigma notation
You can use sigma notation to write out the right-rectangle sum for the curve 
x
2
+1 we’ve been looking at. By the way, you don’t need sigma notation for 

the math that follows. It’s just a “convenience” — oh, sure. Cross your fingers 
and hope your teacher decides not to cover this. It gets pretty gnarly.

Recall the formula for a right sum from the earlier “Approximating area with 
right sums” section:

R
n
=
b−a
n

[

f (x
1
)+ f (x

2
)+ f (x

3
)+ ..........+ f (x

n
)
]

Here’s the same formula written with sigma notation:

R
n
=

n
∑

i=1

[

f (x
i
) ⋅
b−a
n

]
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(Note that I could have written this instead as , which would 

have more nicely mirrored the above formula where the b−a
n

 is on the out-

side. Either way is fine — they’re equivalent — but I chose to keep the b−a
n

 

on the inside so that the 
∑

 sum is actually a sum of rectangles. In other words, 

with the b−a
n

 on the inside, the expression after the 
∑

 symbol, f (x
i
) ⋅
b−a
n

, 

which the 
∑

 symbol tells you to add up, is the area of each rectangle, namely 

height times base.)

Now work this out for the six right rectangles in Figure 14-8.

	

Figure 14-8: 
Six right 

rectangles 
approxi-
mate the 

area under 
f (x )= x 2+1 

between 
0 and 3.

	

You’re figuring the area under x2
+1 between x=0 and x=3 with six rectangles, 

so the width of each, b−a
n

, is 3−0

6
, or 3

6
, or 1

2
. So now you’ve got

R
6
=

6
∑

i=1

[

f (x
i
) ⋅

1

2

]

Next, because the width of each rectangle is 1
2

, the right edges of the six rect-

angles fall on the first six multiples of 1
2

: 0.5, 1, 1.5, 2, 2.5, and 3. These numbers 

are the x-coordinates of the six points x
1
 through x

6
; they can be generated by 

the expression 1
2
i, where i equals 1 through 6. You can check that this works 

by plugging 1 in for i in 1
2
i, then 2, then 3, up to 6. So now you can replace the 

x
i
 in the formula with 1

2
i, giving you
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R
6
=

6
∑

i=1

[

f

(

1

2
i

)

⋅

1

2

]

Our function, f (x), is x2
+1 so , and so now you can write

If you plug 1 into i, then 2, then 3, and so on up to 6 and do the math, you get 
the sum of the areas of the rectangles in Figure 14-8. This sigma notation is 
just a fancy way of writing the sum of the six rectangles.

Are we having fun? Hold on, it gets worse — sorry. Now you’re going to write 
out the general sum for an unknown number, n, of right rectangles. The total 
span of the area in question is 3, right? You divide this span by the number of 
rectangles to get the width of each rectangle. With 6 rectangles, the width of 

each is 3
6

; with n rectangles, the width of each is . And the right edges of the 

n rectangles are generated by , for i equals 1 through n. That gives you

R
n
=

n
∑

i=1

[

f

(

3

n
i

)

⋅

3

n

]

Or, because f (x)=x2
+1,
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For this last step, you pull the 27
n
3
 and the  through the summation symbols — 

you’re allowed to pull out anything except for a function of i, the so-called index 
of summation. Also, the second summation in the last step has just a 1 after it 
and no i. So there’s nowhere to plug in the values of i. This situation may seem a 
bit weird, but all you do is add up n 1s, which equals n (I do this below).

You’ve now arrived at a critical step. With a sleight of hand, you’re going to 
turn the above Riemann sum into a formula in terms of n. (This formula is 
what you use in the next section to obtain the exact area under the curve.)

Now, as almost no one knows, the sum of the first n square numbers, 

1
2
+2

2
+3

2
+ .......+n

2, equals n(n+1)(2n+1)

6
. (By the way, this 6 has nothing to 

do with the fact that we used 6 rectangles a couple pages back.) So, you can 

substitute that expression for the 
n
∑

i=1

i
2 in the last line of the sigma notation 

solution, and at the same time substitute n for :

R
n
=

27

n
3

n
∑

i=1

i
2
+

3

n

n
∑

i=1

1

=
27

n
3
⋅

n(n+1)(2n+1)

6
+

3

n
⋅n

=
27

n
3
⋅

2n
3
+3n

2
+n

6
+3

=
27

n
3
⋅

(

n
3

3
+
n
2

2
+
n

6

)

+3

=9+
27

2n
+

9

2n
2
+3

=12+
27

2n
+

9

2n
2

The end. Finally! This is the formula for the area of n right rectangles between 
x=0 and x=3 under the function f (x)=x2

+1. You can use this formula to 
produce the approximate areas given in Table 14-2. But once you’ve got such 
a formula, it’d be kind of pointless to produce a table of approximate areas, 
because you can use the formula to determine the exact area. And it’s a snap. 
I get to that in a minute in the next section.



227 Chapter 14: Intro to Integration and Approximating Area

But first, here are the formulas for n left rectangles and n midpoint rectangles 
between x=0 and x=3 under the same function, x2

+1. These formulas gener-
ate the area approximations in Tables 14-1 and 14-3. The algebra for deriving 
these formulas is even worse than what you just did for the right rectangle 
formula, so I decided to skip it. Do you mind? I didn’t think so.

L
n
=12−

27

2n
+

9

2n
2

M
n
=12−

9

4n
2

And now, what you’ve all been waiting for . . . 

Finding Exact Area with  
the Definite Integral

Having laid all the necessary groundwork, you’re finally ready to move on to 
determining exact areas — which is the whole point of integration. You don’t 
need calculus to do all the approximation stuff you just did.

As you saw with the left, right, and midpoint rectangles in the “Approximating 
Area” sections, the more rectangles you use, the better the approximation. So, 
“all” you’d have to do to get the exact area under a curve is use an infinite number 
of rectangles. Now, you can’t really do that, but with the fantastic invention of 
limits, this is sort of what happens. Here’s the definition of the definite integral 
that’s used to compute exact areas.

The definite integral (“simple” definition): The exact area under a curve 
between x=a and x=b is given by the definite integral, which is defined as 
the limit of a Riemann sum:

b

∫
a

f (x)dx= lim
n→∞

n
∑

i=1

[

f (x
i
) ⋅
b−a
n

]

Is that a thing of beauty or what? The summation above (everything to the 
right of “lim”) is identical to the formula for n right rectangles, R

n
, that I give 

a few pages back. The only difference here is that you take the limit of that 
formula as the number of rectangles approaches infinity (∞).
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This definition of the definite integral is the simple version based on the right 
rectangle formula. I give you the real-McCoy definition later, but because all 
Riemann sums for a specific problem have the same limit — in other words, 
it doesn’t matter what type of rectangles you use — you might as well use the 
right-rectangle definition. It’s the least complicated and it’ll always suffice.

Let’s have a drum roll. Here, finally, is the exact area under our old friend 
f (x)=x

2
+1 between x=0 and x=3:

3

∫
0

(x
2
+1)dx= lim

n→∞

n
∑

i=1

[

f (x
i
) ⋅
b−a
n

]

= lim
n→∞

(

12+
27

2n
+

9

2n
2

)

(This is what we got in the

“Writing Riemann sums

with sigma notation” sec-

tion after all those steps.)

=12+
27

2 ⋅∞
+

9

2 ⋅∞
2

=12+
27

∞
+

9

∞

=12+0+0
(Remember, in a limit problem, any

number divided by infinity equals zero.)

=12

Big surprise.

This result is pretty amazing if you think about it. Using the limit process, you 
get an exact answer of 12 — sort of like 12.00000000 . . . to an infinite number of 
decimal places — for the area under the smooth, curving function f (x)=x2

+1,  
based on the areas of flat-topped rectangles that run along the curve in a 
jagged, sawtooth fashion. Let me guess — the sheer power of this mathematical 
beauty is bringing tears to your eyes.

Finding the exact area of 12 by using the limit of a Riemann sum is a lot of work 
(remember, you first had to determine the formula for n right rectangles). This 
complicated method of integration is comparable to determining a derivative the 
hard way by using the formal definition that’s based on the difference quotient 
(see Chapter 9). And just as you stopped using the formal definition of the deriv
ative after you learned the differentiation shortcuts, you won’t have to use the 
formal definition of the definite integral based on a Riemann sum after you 
learn the shortcut methods in Chapters 15 and 16 — except, that is, on your 
final exam.

Because the limit of all Riemann sums is the same, the limits at infinity of 
n left rectangles and n midpoint rectangles — for f (x)=x2

+1 between x = 0 
and x = 3 — should give us the same result as the limit at infinity of n right 
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rectangles. The expressions after the following limit symbols are the formulas 
for n left rectangles and n midpoint rectangles that appear at the end of the 
“Writing Riemann sums with sigma notation” section earlier in the chapter. 
Here’s the left rectangle limit:

And here’s the midpoint rectangle limit:

3

∫
0

(x
2
+1)dx=M

∞
= lim

n→∞

(

12−
9

4n
2

)

=12−
9

4 ⋅∞
2

=12−
9

∞

=12−0

=12

If you’re somewhat incredulous that these limits actually give you the exact 
area under f (x)=x2

+1 between 0 and 3, you’re not alone. After all, in these 
limits, as in all limit problems, the arrow-number (∞ in this example) is only 
approached; it’s never actually reached. And on top of that, what would it mean 
to reach infinity? You can’t do it. And regardless of how many rectangles you 
have, you always have that jagged, sawtooth edge. So how can such a method 
give you the exact area?

Look at it this way. You can tell from Figures 14-4 and 14-5 that the sum of the 
areas of left rectangles, regardless of their number, will always be an under-
estimate (this is the case for functions that are increasing over the span in 
question). And from Figure 14-6, you can see that the sum of the areas of right 
rectangles, regardless of how many you have, will always be an overestimate 
(for increasing functions). So, because the limits at infinity of the underesti-
mate and the overestimate are both equal to 12, that must be the exact area. 
(A similar argument works for decreasing functions.)
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	 All Riemann sums for a given problem have the same limit. Not only are the 
limits at infinity of left, right, and midpoint rectangles the same for a given 
problem, the limit of any Riemann sum also gives you the same answer. You 
can have a series of rectangles with unequal widths; you can have a mix of left, 
right, and midpoint rectangles; or you can construct the rectangles so they 
touch the curve somewhere other than at their left or right upper corners or 
at the midpoints of their top sides. The only thing that matters is that, in the 
limit, the width of all the rectangles tends to zero (and from this it follows that 
the number of rectangles approaches infinity). This brings us to the following 
totally extreme, down-and-dirty integration mumbo jumbo that takes all these 
possibilities into account.

The definite integral (real-McCoy definition): The definite integral from x=a 

to x=b, 
b

∫

a

f (x)dx, is the number to which all Riemann sums tend as the width of 

all rectangles tends to zero and as the number of rectangles approaches infinity:

b

∫
a

f (x)dx= lim
maxΔx

i
→0

n
∑

i=1

f (c
i
)Δx

i
,

where Δx
i
 is the width of the ith rectangle and c

i
 is the x-coordinate of the point 

where the ith rectangle touches f (x). (That “maxΔx
i
→0” simply guarantees that 

the width of all the rectangles approaches zero and that the number of rect-
angles approaches infinity.)

Approximating Area with the Trapezoid 
Rule and Simpson’s Rule

This section covers two more ways to estimate the area under a function. You 
can use them if for some reason you only want an estimate and not an exact 
answer — maybe because you’re asked for that on an exam. But these approx
imation methods and the others we’ve gone over are useful for another 
reason. There are certain types of functions for which the exact area method 
doesn’t work. (It’s beyond the scope of this book to explain why this is the 
case or exactly what these functions are like, so just take my word for it.) So, 
using an approximation method may be your only choice if you happen to get 
one of these uncooperative functions.
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The trapezoid rule
With the trapezoid rule, instead of approximating area with rectangles, you 
do it with — can you guess? — trapezoids. See Figure 14-9.

	

Figure 14-9: 
Three 

trapezoids 
approxi-
mate the 

area under 
f (x )= x 2+1 

between 
0 and 3.

	

Because of the way trapezoids hug the curve, they give you a much better area 
estimate than either left or right rectangles. And it turns out that a trapezoid 
approximation is the average of the left rectangle and right rectangle approxi-
mations. Can you see why? (Hint: The area of a trapezoid — say trapezoid 2 in 
Figure 14-9 — is the average of the areas of the two corresponding rectangles in 
the left and right sums, namely, rectangle number 2 in Figure 14-4 and rectangle 2 
in Figure 14-6.)

Table 14-4 lists the trapezoid approximations for the area under f (x)=x2
+1 

between x=0 and x=3.

Table 14-4	 Estimates of the Area Under f (x )=x 2
+1  between  

		  x = 0 and x = 3 Given by Increasing Numbers of 
					    Trapezoids 

Number of Trapezoids Area Estimate
3

6

12

24

48

96

192

384

12.5

12.125

∼ 12.031

∼ 12.008

∼ 12.002

∼ 12.0005

∼ 12.0001

∼ 12.00003
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From the look of Figure 14-9, you might expect a trapezoid approximation to 
be better than a midpoint estimate, but in fact, as a general rule, midpoint esti-
mates are about twice as good as trapezoid estimates. You can confirm this by 
comparing Tables 14-3 and 14-4. For instance, Table 14-3 lists an area estimate 
of 11.9990 for 48 midpoint rectangles. This differs from the exact area of 12 by 
0.001. The area estimate with 48 trapezoids given in Table 14-4, namely 12.002, 
differs from 12 by twice as much.

	 A trapezoid approximation is the average of the corresponding left-rectangle 
approximation and the right-rectangle approximation. If you’ve already 
worked out the left- and right-rectangle approximations for a particular func-
tion and a certain number of rectangles, you can just average them to get the 
corresponding trapezoid estimate. If not, here’s the formula:

	 The trapezoid rule: You can approximate the exact area under a curve between 

x=a and x=b, 
b

∫

a

f (x)dx, with a sum of trapezoids given by the following formula. 

In general, the more trapezoids, the better the estimate.

T
n
=
b−a

2n

[

f (x
0
)+2f (x

1
)+2f (x

2
)+2f (x

3
)+ ..........+2f (x

n−1
)+ f (x

n
)
]

,

where n is the number of trapezoids, b−a
2n

 is half the “height” of each side-

ways trapezoid, and x
0
 through x

n
 are the n+1 evenly spaced points from x=a 

to x=b. (By the way, using that half-the-height expression is completely unin-
tuitive considering that the formula for the area of a trapezoid uses its height, 
not half its height. For extra credit, see if you can figure out why that b − a is 
divided by 2n instead of just n.)

Even though the formal definition of the definite integral is based on the sum of 
an infinite number of rectangles, I prefer to think of integration as the limit of the 
trapezoid rule at infinity. The further you zoom in on a curve, the straighter it 
gets. When you use a greater and greater number of trapezoids and then zoom 
in on where the trapezoids touch the curve, the tops of the trapezoids get closer 
and closer to the curve. If you zoom in “infinitely,” the tops of the “infinitely 
many” trapezoids become the curve and, thus, the sum of their areas gives you 
the exact area under the curve. This is a good way to think about why integra-
tion produces the exact area — and it makes sense conceptually — but it’s not 
actually done this way.

Simpson’s rule — that’s Thomas  
(1710–1761), not Homer (1987–)
Now I really get fancy and draw shapes that are sort of like trapezoids except 
that instead of having slanting tops, they have curved, parabolic tops. See 
Figure 14-10.
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Figure 14-10: 
Three curvy-

topped 
“trapezoids” 
approximate 

the area 
under g(x ) 
between 1 

and 4.
	

Note that with Simpson’s rule each “trapezoid” spans two intervals instead of 
one; in other words, “trapezoid” number 1 goes from x

0
 to x

2
, “trapezoid” 2 goes 

from x
2
 to x

4
, and so on. Because of this, the total span must always be divided 

into an even number of intervals.

Simpson’s rule is by far the most accurate approximation method discussed 
in this chapter. In fact, it gives the exact area for any polynomial function of 
degree three or less. In general, Simpson’s rule gives a much better estimate 
than either the midpoint rule or the trapezoid rule.

You can use a midpoint sum with a trapezoid sum to calculate a Simpson 
sum. A Simpson’s rule sum is sort of an average of a midpoint sum and a trap-
ezoid sum, except that you use the midpoint sum twice in the average. So, if 
you already have the midpoint sum and the trapezoid sum for some number 
of rectangles/trapezoids, you can obtain the Simpson’s rule approximation 
with the following simple average:

S
2n
=
M
n
+M

n
+T

n

3

Note the subscript of 2n. This means that if you use, say, M
3
 and T

3
, you get a 

result for S
6
 . But S

6
, which has six intervals, has only three curvy “trapezoids” 

because each of them spans two intervals. Thus, the above formula always 
involves the same number of rectangles, trapezoids, and Simpson’s rule 
“trapezoids.”

If you don’t have the midpoint and trapezoid sums for the above shortcut, you 
can use the following formula for Simpson’s rule.
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	 Simpson’s rule: You can approximate the exact area under a curve between 

x=a and x=b, 
b

∫

a

f (x)dx, with a sum of parabola-topped “trapezoids” given by 

the following formula. In general, the more “trapezoids,” the better the 
estimate.

S
n
=
b−a

3n

[

f (x
0
)+4 f (x

1
)+2 f (x

2
)+4 f (x

3
)+2 f (x

4
)+ ..........+4 f (x

n−1
)+ f (x

n
)
]

,

where n is twice the number of “trapezoids” and x
0
 through x

n
 are the n+1 

evenly spaced points from x=a to x=b.

To close this chapter, here’s a warning about functions that go below the 
x-axis. I didn’t include any such functions in this chapter, because I thought 
you already had enough to deal with. You see the full explanation and an 
example in Chapter 17.

	 Areas below the x-axis count as negative areas. Whether approximating areas 
with right-, left-, or midpoint rectangles or with the trapezoid rule or Simpson’s 
rule, or computing exact areas with the definite integral, areas below the x-axis 
and above the curve count as negative areas.



Chapter 15

Integration: It’s Backwards 
Differentiation

In This Chapter
▶	Using the area function

▶	Getting familiar with the fundamental theorem of calculus

▶	Finding antiderivatives

▶	Figuring exact areas the easy way

C 
hapter 14 shows you the hard way to calculate the area under a function 
using the formal definition of integration — the limit of a Riemann sum. 

In this chapter, I calculate areas the easy way, taking advantage of one of the 
most important and amazing discoveries in mathematics — that integration 
(finding areas) is just differentiation in reverse. That reverse process was a 
great discovery, and it’s based on some difficult ideas, but before we get to 
that, let’s talk about a related, straightforward reverse process, namely. . . .

Antidifferentiation
The derivative of sinx is cosx, so the antiderivative of cosx is sinx; the deriva-
tive of x3 is 3x2, so the antiderivative of 3x2 is x3 — you just go backwards. 
There’s a bit more to it, but that’s the basic idea. Later in this chapter, I show 
you how to find areas by using antiderivatives. This is much easier than find-
ing areas with the Riemann sum technique.

Now consider x3 and its derivative 3x2 again. The derivative of x3
+10 is also 

3x
2, as is the derivative of x3

−5. Any function of the form x3
+C , where C is 

any number, has a derivative of 3x2. So, every such function is an antideriva-
tive of 3x2.
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	 Definition of the indefinite integral: The indefinite integral of a function f (x), 
written as 

∫
f (x) dx, is the family of all antiderivatives of the function. For exam-

ple, because the derivative of x3 is 3x2, the indefinite integral of 3x2 is x3
+C, 

and you write

You probably recognize this integration symbol, 
∫
, from the discussion of the def-

inite integral in Chapter 14. The definite integral symbol, however, contains two 

little numbers like 
10

∫

4

 that tell you to compute the area under a function between 

those two numbers, called the limits of integration. The naked version of the 
symbol, 

∫
, indicates an indefinite integral or an antiderivative. This chapter is all 

about the intimate connection between these two symbols, these two ideas.

Figure 15-1 shows the family of antiderivatives of 3x2, namely x3
+C . Note that 

this family of curves has an infinite number of curves. They go up and down 
forever and are infinitely dense. The vertical gap of 2 units between each 
curve in Figure 15-1 is just a visual aid.

	

Figure 15-1: 
The family 
of curves 
x 3+C . All 

these func-
tions have 
the same 

derivative, 
3x 2.

	

Consider a few things about Figure 15-1. The top curve on the graph is 
y=x

3
+6; the one below it is y=x3

+4; the bottom one y=x3
−6. By the power 

rule, these three functions, as well as all the others in this family of functions, 
have a derivative of 3x2. Now, consider the slope of each of the curves where 
x equals 1 (see the tangent lines drawn on the curves). The derivative of each 
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function is 3x2, so when x equals 1, the slope of each curve is 3 ⋅12, or 3. Thus, 
all these little tangent lines are parallel. Next, notice that all the functions in 
Figure 15-1 are identical except for being slid up or down (remember vertical 
shifts from Chapter 5?). Because they differ only by a vertical shift, the steep-
ness at any x-value, like at x=1, is the same for all the curves. This is the visual 
way to understand why each of these curves has the same derivative, and, 
thus, why each curve is an antiderivative of the same function.

Vocabulary, Voshmabulary: What 
Difference Does It Make?

In general, definitions and vocabulary are very important in mathematics, 
and it’s a good idea to use them correctly. But with the current topic, I’m 
going to be a bit lazy about precise terminology, and I hereby give you per-
mission to do so as well.

If you’re a stickler, you should say that the indefinite integral of 3x2 is x3
+C  

and that x3
+C is the family or set of all antiderivatives of 3x2 (you don’t say 

that x3
+C is the antiderivative), and you say that x3

+10, for instance, is an 
antiderivative of 3x2. And on a test, you should definitely write . 
If you leave the C off, you’ll likely lose some points.

But, when discussing these matters, no one will care or be confused if you get 
tired of saying “+ C” after every indefinite integral and just say, for example, 
that the indefinite integral of 3x2 is x3, and you can skip the indefinite and 
just say that the integral of 3x2 is x3. And instead of always talking about that 
family of functions business, you can just say that the antiderivative of 3x2 
is x3

+C  or that the antiderivative of 3x2 is x3. Everyone will know what you 
mean. It may cost me my membership in the National Council of Teachers of 
Mathematics, but at least occasionally, I use this loose approach.

The Annoying Area Function
This is a tough one — gird your loins. Say you’ve got any old function, f (t).  
Imagine that at some t-value, call it s, you draw a fixed vertical line. See 
Figure 15-2.

Then you take a moveable vertical line, starting at the same point, s (“s” is for 
starting point), and drag it to the right. As you drag the line, you sweep out a 
larger and larger area under the curve. This area is a function of x, the posi-
tion of the moving line. In symbols, you write
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Figure 15-2: 
Area under 
f  between 

s and x 
is swept 

out by the 
moving line 

at x.
	

Note that t is the input variable in f (t) instead of x because x is already 
taken — it’s the input variable in A

f
(x). The subscript f in A

f
 indicates that 

A
f
(x) is the area function for the particular curve f or f (t). The dt is a little 

increment along the t-axis — actually an infinitesimally small increment.

Here’s a simple example to make sure you’ve got a handle on how an area 
function works. By the way, don’t feel bad if you find this extremely hard 
to grasp — you’ve got lots of company. Say you’ve got the simple function, 
f (t)=10, that’s a horizontal line at y=10. If you sweep out area beginning at 
s=3, you get the following area function:

A
f
(x)=

x

∫
3

10 dt

You can see that the area swept out from 3 to 4 is 10 because, in dragging 
the line from 3 to 4, you sweep out a rectangle with a width of 1 and a height 
of 10, which has an area of 1 times 10, or 10. See Figure 15-3.

	

Figure 15-3: 
Area under 
f (t )= 10 
between 

3 and x 
is swept 

out by the 
moving 

vertical line 
at x.
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So, A
f
(4), the area swept out as you hit 4, equals 10. A

f
(5) equals 20 because 

when you drag the line to 5, you’ve swept out a rectangle with a width of 2 and 
height of 10, which has an area of 2 times 10, or 20. A

f
(6) equals 30, and so on.

Now, imagine that you drag the line across at a rate of one unit per second. 
You start at x=3, and you hit 4 at 1 second, 5 at 2 seconds, 6 at 3 seconds, 
and so on. How much area are you sweeping out per second? Ten square units 
per second because each second you sweep out another 1-by-10 rectangle. 
Notice — this is huge — that because the width of each rectangle you sweep 
out is 1, the area of each rectangle — which is given by height times width — is 
the same as its height because anything times 1 equals itself. You see why 
this is huge in a minute. (By the way, the real rate we care about here is not 
area swept out per second, but, rather, area swept out per unit change on the 
x-axis. I explain it in terms of per second because it’s easier to think about a 
sweeping-out-area rate this way. And since you’re dragging the line across at 
one x-axis unit per one second, both rates are the same. Take your pick.)

	 The derivative of an area function equals the rate of area being swept out. 
Okay, are you sitting down? You’ve reached another one of the big Ah ha! 
moments in the history of mathematics. Recall that a derivative is a rate. So, 
because the rate at which the previous area function grows is 10 square units 
per second, you can say its derivative equals 10. Thus, you can write

d

dx
A
f
(x)=10

Again, this just tells you that with each 1 unit increase in x, A
f
 (the area func-

tion) goes up 10. Now here’s the critical thing: Notice that this rate or deriva-
tive of 10 is the same as the height of the original function f (t)=10 because as 
you go across 1 unit, you sweep out a rectangle that’s 1 by 10, which has an 
area of 10, the height of the function.

And the rate works out to 10 regardless of the width of the rectangle. Imagine 
that you drag the vertical line from x=4 to x=4.001. At a rate of one unit per 
second, that’ll take you 1/1000th of a second, and you’ll sweep out a skinny 
rectangle with a width of 1/1000, a height of 10, and thus an area of 10 times 
1/1000, or 1/100 square units. The rate of area being swept out would be, 

therefore, 1∕100 square units

1∕1000 seconds
  which equals 10 square units per second.  

So you see that with every small increment along the x-axis, the rate of area 
being swept out equals the function’s height.

This works for any function, not just horizontal lines. Look at the function 
g(t) and its area function A

g
(x) that sweeps out area beginning at s=2 in 

Figure 15-4.
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Figure 15-4: 
Area 

under g(t ) 
between 

2 and x 
is swept 

out by the 
moving 

vertical line 
at x.

	

Between x=3.6 and x=3.7, A
g
(x) grows by the area of that skinny, dark 

shaded “rectangle” with a width of 0.1 and a height of about 15. (As you 
can see, it’s not really a rectangle; it’s closer to a trapezoid, but it’s not that 
either because its tiny top is curving slightly. But, in the limit, as the width 
gets smaller and smaller, the skinny “rectangle” behaves precisely like a real 
rectangle.) So, to repeat, A

g
(x) grows by the area of that dark “rectangle” 

which has an area extremely close to 0.1 times 15, or 1.5. That area is swept 

out in 0.1 seconds, so the rate of area being swept out is 1.5 square units

0.1 seconds
, or 

15 square units per second, the height of the function. This idea is so impor-
tant that it deserves an icon. . . .

	 The sweeping out area rate equals the height. The rate of area being swept 
out under a curve by an area function at a given x-value is equal to the height 
of the curve at that x-value.

The Power and the Glory of  
the Fundamental Theorem  
of Calculus

Sound the trumpets! Now that you’ve seen the connection between the rate 
of growth of an area function and the height of the given curve, you’re ready 
for the fundamental theorem of calculus — what some say is one of the most 
important theorems in the history of mathematics.

	 The fundamental theorem of calculus: Given an area function A
f
 that sweeps 

out area under f (t),
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the rate at which area is being swept out is equal to the height of the original 
function. So, because the rate is the derivative, the derivative of the area 
function equals the original function:

d

dx
A
f
(x)= f (x).

Because  you can also write the above equation as follows:

Break out the smelling salts. 

Now, because the derivative of A
f
(x) is f (x), A

f
(x) is by definition an antide-

rivative of f (x). Check out how this works by returning to the simple function 

from the previous section, f (t)=10, and its area function, A
f
(x)=

x

∫

s

10 dt.

According to the fundamental theorem, d
dx

A
f
(x)=10. Thus A

f
 must be an 

antiderivative of 10; in other words, A
f
 is a function whose derivative is 10. 

Because any function of the form 10x+C, where C is a number, has a deriva
tive of 10, the antiderivative of 10 is 10x+C . The particular number C 
depends on your choice of s, the point where you start sweeping out area. 
For a particular choice of s, the area function will be the one function (out of 
all the functions in the family of curves 10x+C) that crosses the x-axis at s. 
To figure out C, set the antiderivative equal to zero, plug the value of s into x, 
and solve for C.

For this function with an antiderivative of 10x+C, if you start sweeping out 

area at, say, s=0, then 10 ⋅0+C =0, so C =0, and thus, , or 

just 10x. (Note that C does not necessarily equal s. In fact, it usually doesn’t (espe-
cially when s≠0). When s=0, C often also equals 0, but not for all functions.)

Figure 15-5 shows why A
f
(x)=10x is the correct area function if you start 

sweeping out area at zero. In the top graph in the figure, the area under the 
curve from 0 to 3 is 30, and that’s given by A

f
(3)=10 ⋅3=30. And you can see 

that the area from 0 to 5 is 50, which agrees with the fact that A
f
(5)=10 ⋅5=50.
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Figure 15-5: 
Three area 

functions for 
f (t )= 10.

	

If instead you start sweeping out area at s=−2 and define a new area function, 

B
f
(x)=

x

∫

−2

10 dt, then 10 ⋅ (−2)+C =0, so C equals 20 and B
f
(x) is thus 10x+20. 

This area function is 20 more than A
f
(x), which starts at s=0, because if you 

start at s=−2, you’ve already swept out an area of 20 by the time you get to 
zero. Figure 15-5 shows why B

f
(3) is 20 more than A

f
(3).
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And if you start sweeping out area at s=3, 10 ⋅3+C =0, so C =−30 and the 

area function is C
f
(x)=

x

∫

3

10 dt =10x−30. This function is 30 less than A
f
(x) 

because with C
f
(x), you lose the 3-by-10 rectangle between 0 and 3 that A

f
(x) 

has (see the bottom graph in Figure 15-5).

	 An area function is an antiderivative. The area swept out under the horizon-
tal line f (t)=10, from some number s to x, is given by an antiderivative of 10, 
namely 10x+C , where the value of C depends on where you start sweeping 
out area.

Now let’s look at graphs of A
f
(x), B

f
(x), and C

f
(x). (Note that Figure 15-5 

doesn’t show the graphs of A
f
(x), B

f
(x), and C

f
(x). You see three graphs of 

the horizontal line function, f (t)=10; and you see the areas swept out under 
f (t) by A

f
(x), B

f
(x), and C

f
(x), but you don’t actually see the graphs of these 

three area functions.) Check out Figure 15-6.

	

Figure 15-6: 
The actual 
graphs of 

A
f
(x ),B

f
(x ), and C

f
(x ).

A
f
(x ),B

f
(x ), and C

f
(x ).

	

Figure 15-6 shows the graphs of the equations of A
f
(x), B

f
(x), and C

f
(x) which 

we worked out before: A
f
(x)=10x, B

f
(x)=10x+20, and C

f
(x)=10x−30. (As 

you can see, all three are simple, y=mx+b lines.) The y-values of these 
three functions give you the areas swept out under f (t)=10 that you see in 
Figure 15-5. Note that the three x-intercepts you see in Figure 15-6 are the 
three x-values in Figure 15-5 where sweeping out area begins.

We worked out above that A
f
(3)=30 and that A

f
(5)=50. You can see those 

areas of 30 and 50 in the top graph of Figure 15-5. In Figure 15-6, you see these 
results on A

f
 at the points (3, 30) and (5, 50). You also saw in Figure 15-5 that 
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B
f
(3) was 20 more than A

f
(3); you see that result in Figure 15-6 where (3, 50) on 

B
f
 is 20 higher than (3, 30) on A

f
. Finally, you saw in Figure 15-5 that C

f
(x) is 30 

less than A
f
(x). Figure 15-6 shows that in a different way: at any x-value, the C

f
 

line is 30 units below the A
f
 line.

A few observations. You already know from the fundamental theorem that 
d

dx
A
f
(x)= f (x)=10 (and the same for B

f
(x) and C

f
(x)). That was explained 

above in terms of rates: For A
f
, B

f
, and C

f
, the rate of area being swept out 

under f (t)=10 equals 10. Figure 15-6 also shows that d
dx

A
f
(x)=10 (and the 

same for B
f
 and C

f
), but here you see the derivative as a slope. The slopes, 

of course, of all three lines equal 10. Finally, note that — like you saw in 
Figure 15-1 — the three lines in Figure 15-6 differ from each other only by a 
vertical translation. These three lines (and the infinity of all other vertically 
translated lines) are all members of the class of functions, 10x+C , the family 
of antiderivatives of f (x)=10.

For the next example, look again at the parabola y=x2
+1, our friend from 

Chapter 14 which we analyzed in terms of the sum of the areas of rectangles 
(Riemann sums). Flip back to Figure 14-4, and check out the shaded region 
under y=x2

+1. Now you can finally compute the exact area of the shaded 
region the easy way.

The area function for sweeping out area under x2
+1 is A

f
(x)=

x

∫

s

(t
2
+1) dt. 

By the fundamental theorem, d
dx

A
f
(x)=x

2
+1, and so A

f
 is an antiderivative of 

x
2
+1. Any function of the form 1

3
x
3
+x+C  has a derivative of x2

+1 (try it), so 

that’s the antiderivative. For Figure 14-6, you want to sweep out area begin-
ning at 0, so s=0. Set the antiderivative equal to zero, plug the value of s into 
x, and solve for C: 1

3
⋅0

3
+0+C =0, so C =0, and thus

A
f
(x)=

x

∫
0

(t
2
+1) dt =

1

3
x
3
+x+0

The area swept out from 0 to 3 — which we did the hard way in Chapter 14 
by computing the limit of a Riemann sum — is simply A

f
(3):

A
f
(x)=

1

3
x
3
+x

A
f
(3)=

1

3
⋅3

3
+3=9+3=12

Piece o’ cake. That was much less work than doing it the hard way.
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And after you know that the area function that starts at zero, 
x

∫

0

(t
2
+1) dt , equals

1

3
x
3
+x, it’s a snap to figure the area of other sections under the parabola that 

don’t start at zero. Say, for example, you want the area under the parabola 
between 2 and 3. You can compute that area by subtracting the area between 
0 and 2 from the area between 0 and 3. You just figured the area between 0 and 
3 — that’s 12. And the area between 0 and 2 is A

f
(2)=

1

3
⋅2

3
+2=4

2

3
. So the area 

between 2 and 3 is 12−4
2

3
, or 7 1

3
. This subtraction method brings us to the next 

topic — the second version of the fundamental theorem.

The Fundamental Theorem  
of Calculus: Take Two

Now we finally arrive at the super-duper shortcut integration theorem that 
you’ll use for the rest of your natural born days — or at least till the end of 
your stint with calculus. This shortcut method is all you need for the integra-
tion word problems in Chapters 17 and 18.

	 The fundamental theorem of calculus (second version or shortcut version): 
Let F be any antiderivative of the function f; then

This theorem gives you the super shortcut for computing a definite integral 

like 
3

∫

2

(x
2
+1) dx, the area under the parabola y=x2

+1 between 2 and 3. As I 

show in the previous section, you can get this area by subtracting the area 
between 0 and 2 from the area between 0 and 3, but to do that you need to 
know that the particular area function sweeping out area beginning at zero, 
x

∫

0

(t
2
+1) dt, is 1

3
x
3
+x  (with a C value of zero).

The beauty of the shortcut theorem is that you don’t have to even use an 

area function like A
f
(x)=

x

∫

0

(t
2
+1) dt. You just find any antiderivative, F (x), of 

your function, and do the subtraction, F (b)−F (a). The simplest antiderivative 
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to use is the one where C =0. So here’s how you use the theorem to find the 

area under our parabola from 2 to 3. F (x)= 1

3
x
3
+x is an antiderivative of 

x
2
+1. Then the theorem gives you:

3

∫
2

(x
2
+1)dx=F (3)−F (2)

F (3)−F (2) can be written as

[

1

3
x
3
+x

]3

2

, and thus,

3

∫
2

(x
2
+1)dx=

[

1

3
x
3
+x

]3

2

=

(

1

3
⋅3

3
+3

)

−

(

1

3
⋅2

3
+2

)

=12−4
2

3

=7
1

3

Granted, this is the same computation I did in the previous section using the 
area function with s=0, but that’s only because for the y=x2

+1 function, 
when s is zero, C is also zero. It’s sort of a coincidence, and it’s not true for all 
functions. But regardless of the function, the shortcut works, and you don’t 
have to worry about area functions or s or C. All you do is F (b)−F (a).

Here’s another example: What’s the area under f (x)=ex between x=3 and 
x=5  ? The derivative of ex is ex, so ex is an antiderivative of ex, and thus

5

∫
3

e
x
dx=

[

e
x
]5

3

= e
5
−e

3

≈148.4−20.1

≈128.3

What could be simpler?

	 Areas above the curve and below the x-axis count as negative areas. Before 
going on, I’d be remiss if I didn’t touch on negative areas (this is virtually the 
same caution made at the very end of Chapter 14). Note that with the two 
examples above, the parabola, y=x2

+1, and the exponential function, y=ex, 
the areas we’re computing are under the curves and above the x-axis. These 
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areas count as ordinary, positive areas. But, if a function goes below the x-axis, 
areas above the curve and below the x-axis count as negative areas. This is the 
case whether you’re using an area function, the first version of the fundamental 
theorem of calculus, or the shortcut version. Don’t worry about this for now. 
You see how this works in Chapter 17.

Okay, so now you’ve got the super shortcut for computing the area under a 
curve. And if one big shortcut wasn’t enough to make your day, Table 15-1 
lists some rules about definite integrals that can make your life much easier.

Table 15-1	 Five Easy Rules for Definite Integrals

Now that I’ve given you the shortcut version of the fundamental theorem, 
that doesn’t mean you’re off the hook. Below are three different ways to 
understand why the theorem works. This is difficult stuff — brace yourself.

Alternatively, you can skip these explanations if all you want to know is how to 
compute an area: forget about C and just subtract F (a) from F (b). I include these 
explanations because I suspect you’re dying to learn extra math just for the 
love of learning — right? Other books just give you the rules; I explain why they 
work and the underlying principles — that’s why they pay me the big bucks.

Actually, in all seriousness, you should read at least some of this material. The 
fundamental theorem of calculus is one of the most important theorems in all 
of mathematics, so you ought to spend some time trying hard to understand 
what it’s all about. It’s worth the effort. Of the three explanations, the first is the 
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easiest. But if you only want to read one or two of the three, I’d read just the 
third, or the second and the third. Or, you could begin with the figures accom-
panying the three explanations, because the figures really show you what’s 
going on. Finally, if you can’t digest all of this in one sitting — no worries — 
you can revisit it later.

Why the theorem works: Area 
functions explanation
One way to understand the shortcut version of the fundamental theorem is by 
looking at area functions. As you can see in Figure 15-7, the dark-shaded area 
between a and b can be figured by starting with the area between s and b, then 
cutting away (subtracting) the area between s and a. And it doesn’t matter 
whether you use 0 as the left edge of the areas or any other value of s. Do you 
see that you’d get the same result whether you use the graph on the left or the 
graph on the right?

	

Figure 15-7: 
Figuring 
the area 

between a 
and b with 
two differ-

ent area 
functions.

	

Take a look at f (t)=10 (see Figure 15-8). Say you want the area between 5 and 8 
under the horizontal line f (t)=10, and you are forced to use calculus.

	

Figure 15-8: 
The shaded 
area equals 

30 — well, 
duh, it’s 

a 3-by-10 
rectangle.
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Look back at two of the area functions for f (t)=10 in Figure 15-5: A
f
(x) starting 

at 0 (in which C =0) and B
f
(x) starting at :

If you use A
f
(x) to compute the area between 5 and 8 in Figure 15-8, you get 

the following:

8

∫
5

10dx=A
f
(8)−A

f
(5)

=10 ⋅8−10 ⋅5

=80−50
(80 is the area of the rectangle from 0 to 8;

50 is the area of the rectangle from 0 to 5.)

=30

If, on the other hand, you use B
f
(x) to compute the same area, you get the 

same result:

8

∫
5

10dx=B
f
(8)−A

f
(5)

= (10 ⋅8+20)−(10 ⋅5+20)

= (80+20)−(50+20)

(This is 100−70, of course;

100 is the area of the rectangle from −2 to 8;

70 is the area of the rectangle from −2 to 5.)

=30

Notice that the two 20s in the second line from the bottom cancel. Recall that all 
antiderivatives of f (t)=10 are of the form 10x+C. Regardless of the value of C, 
it cancels out as in this example. Thus, you can use any antiderivative with any 
value of C. For convenience, everyone just uses the antiderivative with C =0, so 
that you don’t mess with C at all. And the choice of s (the point where the area 
function begins) is irrelevant. So when you’re using the shortcut version of the 
fundamental theorem, and computing an area with F (b)−F (a), you’re sort of 
using a mystery area function with a C value of zero and an unknown starting 
point, s. Get it?



250 Part V: Integration and Infinite Series 

Why the theorem works: The integration-
differentiation connection
The next explanation of the shortcut version of the fundamental theorem 
involves the yin/yang relationship between differentiation and integration. 
Check out Figure 15-9.

	

Figure 15-9: 
The 

essence of 
differen-

tiation and 
integration 
in a single 
figure! It’s 
a yin/yang 

thing.
	

The figure shows a function, f (x)=x2
+x, and its derivative, f �(x)=2x+1. Look 

carefully at the numbers 4, 6, and 8 on both graphs. The connection between 4, 
6, and 8 on the graph of f — which are the amounts of rise between consecutive 
points on the curve — and 4, 6, and 8 on the graph of f ′ — which are the areas of 
the trapezoids under f ′ — shows the intimate relationship between integration 
and differentiation. Figure 15-9 is a picture worth a thousand symbols and equa-
tions, encapsulating the essence of integration in a single snapshot. It shows 
how the shortcut version of the fundamental theorem works because it shows 
that the area under f �(x) between 1 and 4 equals the total rise on f (x) between 
(1, 2) and (4, 20), in other words that

Note that I’ve called the two functions in Figure 15-9 and in the above equation 
f and f ′ to emphasize that 2x+1 is the derivative of x2

+x. I could have instead 
referred to x2

+x as F and referred to 2x+1 as f which would emphasize that 
x
2
+x is an antiderivative of 2x+1. In that case you would write the above area 

equation in the standard way,
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Either way, the meaning’s the same. I use the derivative version to point out how 
finding area is differentiation in reverse. Going from left to right in Figure 15-9 is 
differentiation: The slopes of f correspond to heights on f ′. Going from right to 
left is integration: Areas under f ′ correspond to the change in height between 
two points on f.

Okay, here’s how it works. Imagine you’re going up along f from (1, 2) to (2, 6). 
Every point along the way has a certain steepness, a slope. This slope is plot-
ted as the y-coordinate, or height, on the graph of f ′. The fact that f ′ goes up 
from (1, 3) to (2, 5) tells you that the slope of f goes up from 3 to 5 as you travel 
between (1, 2) and (2, 6). This all follows from basic differentiation.

Now, as you go along f from (1, 2) to (2, 6), the slope is constantly changing. 
But it turns out that because you go up a total rise of 4 as you run across 1, 
the average of all the slopes on f between (1, 2) and (2, 6) is 4

1
, or 4. Because 

each of these slopes is plotted as a y-coordinate or height on f ′, it follows that 
the average height of f ′ between (1, 3) and (2, 5) is also 4. Thus, between two 
given points, average slope on f equals average height on f ′.

Hold on, you’re almost there. Slope equals rise
run

, so when the run is 1, the slope 

equals the rise. For example, from (1, 2) to (2, 6) on f, the curve rises up 4 and 
the average slope between those points is also 4. Thus, between any two 
points on f whose x-coordinates differ by 1, the average slope is the rise.

The area of a trapezoid like the ones on the right in Figure 15-9 equals its width 
times its average height. (This is true of any other similar shape that has a 
bottom like a rectangle; the top can be any crooked line or funky curve you 
like.) So, because the width of each trapezoid is 1, and because anything times 
1 is itself, the average height of each trapezoid under f ′ is its area; for instance, 
the area of that first trapezoid is 4 and its average height is also 4.

Are you ready for the grand finale? Here’s the whole argument in a nutshell. 
On f, rise=average slope; going from f to f ′, average slope=average height; on 
f
′, average height =area. So that gives you rise= slope=height =area, and thus, 

finally, rise=area. And that’s what the second version of the fundamental 
theorem says:
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These ideas are unavoidably difficult. You may have to read it two or three 
times for it to really sink in.

Notice that it makes no difference to the relationship between slope and 
area if you use any other function of the form x2

+x+C  instead of x2
+x. Any 

parabola like x2
+x+10 or x2

+x−5 is exactly the same shape as x2
+x; it’s 

just been slid up or down vertically. Any such parabola rises up between x=1 
and x=4 in precisely the same way as the parabola in Figure 15-9. From 1 to 2 
these parabolas go over 1, up 4. From 2 to 3 they go over 1, up 6, and so on. 
This is why any antiderivative can be used to find area. The total area under 
f
′ between 1 to 4, namely 18, corresponds to the total rise on any of these 

parabolas from 1 to 4, namely 4+6+8, or 18.

At the risk of beating a dead horse, I’ve got a third explanation of the funda-
mental theorem for you. You might prefer it to the first two because it’s less 
abstract — it’s connected to simple, commonsense ideas encountered in our 
day-to-day world. This explanation has a lot in common with the previous 
one, but the ideas are presented from a different angle.

Why the theorem works: A connection 
to — egad! — statistics 
Don’t let the title of this section put you off. I realize that many readers of 
this calculus book may not have studied statistics. No worries; the statistics 
connection I explain below involves a very simple thing covered in statistics 
courses, but you don’t need to know any statistics at all to understand this 
idea. The simple idea is the relationship between a frequency distribution 
graph and a cumulative frequency distribution graph (you may have run 
across such graphs in a newspaper or magazine). Consider Figure 15-10.

The upper graph in the figure shows a frequency distribution histogram of 
the annual profits of Widgets-R-Us from January 1, 2001 through December 
31, 2013. The rectangle marked ’07, for example, shows that the company’s 
profit for 2007 was $2,000,000 (their best year during the period 2001–2013).

The lower graph in the figure is a cumulative frequency distribution histogram 
for the same data used for the upper graph. The difference is simply that in the 
cumulative graph, the height of each column shows the total profits earned 
since 1/1/2001. Look at the ’02 column in the lower graph and the ’01 and ’02 
rectangles in the upper graph, for example. You can see that the ’02 column 
shows the ’02 rectangle sitting on top of the ’01 rectangle which gives that ’02 
column a height equal to the total of the profits from ’01 and ’02. Got it? As you 
go to the right on the cumulative graph, the height of each successive column 
simply grows by the amount of profits earned in the corresponding single year 
shown in the upper graph.
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Figure 15-10: 
A frequency 
distribution 

histogram 
(above) and 

a cumulative 
frequency 

distribution 
histogram 

(below) for 
the annual 

profits of 
Widgets-

R-Us  
show the 

connection 
between 
differen-

tiation and 
integration.

	

Okay. So here’s the calculus connection. (Bear with me; it takes a while to 
walk through all this.) Look at the top rectangle of the ’08 column on the 
cumulative graph (let’s call that graph C for short). At that point on C, you 
run across 1 year and rise up $1,250,000, the ’08 profit you see on the fre-
quency distribution graph (F for short). Slope= rise∕run, so, since the run 
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equals 1, the slope equals 1,250,000/1, or just 1,250,000, which is, of course, 
the same as the rise. Thus, the slope on C (at ’08 or any other year) can be 
read as a height on F for the corresponding year. (Make sure you see how this 
works.) Since the heights (or function values) on F are the slopes of C, F is the 
derivative of C. In short, F, the derivative, tells us about the slope of C.

The next idea is that since F is the derivative of C, C, by definition, is the anti-
derivative of F (for example, C might equal 5x3 and F would equal 15x2 ). Now, 
what does C, the antiderivative of F, tell us about F ? Imagine dragging a verti-
cal line from left to right over F. As you sweep over the rectangles on F — year 
by year — the total profit you’re sweeping over is shown climbing up along C.

Look at the ’01 through ’08 rectangles on F. You can see those same rectangles 
climbing up stair-step fashion along C (see the rectangles labeled A, B, C, etc. 
on both graphs). The heights of the rectangles from F keep adding up on C as 
you climb up the stair-step shape. And I’ve shown how the same ’01 through 
’08 rectangles that lie along the stair-step top of C can also be seen in a verti-
cal stack at year ’08 on C. I’ve drawn the cumulative graph his way so it’s even 
more obvious how the heights of the rectangles add up. (Note: Most cumula-
tive histograms are not drawn this way.)

Each rectangle on F has a base of 1 year, so, since area=base×height, the area 
of each rectangle equals its height. So, as you stack up rectangles on C, you’re 
adding up the areas of those rectangles from F. For example, the height of the 
’01 through ’08 stack of rectangles on C ($8.5 million) equals the total area of 
the ’01 through ’08 rectangles on F. And, therefore, the heights or function 
values of C — which is the antiderivative of F — give you the area under the 
top edge of F. That’s how integration works.

Okay, we’re just about done. Now let’s go through how these two graphs 
explain the shortcut version of the fundamental theorem of calculus and the 
relationship between differentiation and integration. Look at the ’06 through ’12 
rectangles on F (with the bold border). You can see those same rectangles in 
the bold portion of the ’12 column of C. The height of that bold stack, which 
shows the total profits made during those 7 years, $7.75 million, equals the 
total area of the 7 rectangles in F. And to get the height of that stack on C, you 
simply subtract the height of the stack’s bottom edge from the height of its 
upper edge. That’s really all the shortcut version of the fundamental theorem 
says: The area under any portion of a function (like F) is given by the change 
in height on the function’s antiderivative (like C).

In a nutshell (keep looking at those rectangles with the bold border in both 
graphs), the slopes of the rectangles on C appear as heights on F. That’s differ-
entiation. Reversing direction, you see integration: the change in heights on C 
shows the area under F. Voilà: differentiation and integration are two sides of 
the same coin.
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(Note: Mathematical purists may object to this explanation of the fundamen-
tal theorem because it involves discrete graphs (for example, the fact that the 
cumulative distribution histogram in Figure 15-10 goes up at one-year incre-
ments), whereas calculus is the study of smooth, continuously changing graphs 
(the calculus version of the cumulative distribution histogram would be a 
smooth curve that would show the total profits growing every millisecond—
actually, in theory, every infinitesimal fraction of a second). Okay — objection 
noted — but the fact is that the explanation here does accurately show how 
integration and differentiation are related and does correctly show how the 
shortcut version of the fundamental theorem works. All that’s needed to turn 
Figure 15-10 and the accompanying explanation into standard calculus is to 
take everything to the limit, making the profit interval shorter and shorter 
and shorter: from a year to a month to a day, etc., etc. In the limit, the discrete 
graphs in Figure 15-10 would meld into the type of smooth graphs used in cal-
culus. But the ideas wouldn’t change. The ideas would be exactly as explained 
here. This is very similar to what you saw in Chapter 14 where you first approx-
imated the area under a curve by adding up the areas of rectangles and then 
were able to compute the exact area by using the limit process to narrow the 
widths of the rectangles till their widths became infinitesimal.)

Well, there you have it — actual explanations of why the shortcut version 
of the fundamental theorem works and why finding area is differentiation 
in reverse. If you understand only half of what I’ve just written, you’re way 
ahead of most students of calculus. The good news is that you probably 
won’t be tested on this theoretical stuff. Now let’s come back down to earth.

Finding Antiderivatives: 
Three Basic Techniques

I’ve been talking a lot about antiderivatives, but just how do you find them? 
In this section, I give you three easy techniques. Then in Chapter 16, I give 
you four advanced techniques. By the way, you will be tested on this stuff.

Reverse rules for antiderivatives
The easiest antiderivative rules are the ones that are the reverse of derivative 
rules you already know. (You can brush up on derivative rules in Chapter 10 if 
you need to.) These are automatic, one-step antiderivatives with the exception 
of the reverse power rule, which is only slightly harder.
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No-brainer reverse rules
You know that the derivative of sin x is cos x, so reversing that tells you that an 
antiderivative of cos x is sin x. What could be simpler? But don’t forget that all 
functions of the form sin x+C are antiderivatives of cos x. In symbols, you write

Table 15-2 lists the reverse rules for antiderivatives.

Table 15-2	 Basic Antiderivative Formulas

The slightly more difficult reverse power rule
By the power rule for differentiation, you know that

Here’s the simple method for reversing the power rule. Use y=5x
4 for your 

function. Recall that the power rule says to
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	 1.	 Bring the power in front where it will multiply the rest of the derivative.

5x
4
→4 ⋅5x

4

	 2.	 Reduce the power by one and simplify.

4 ⋅5x
4
→4 ⋅5x

3
=20x

3

		  Thus, y� =20x
3.

To reverse this process, you reverse the order of the two steps and reverse 
the math within each step. Here’s how that works for the above problem:

	 1.	 Increase the power by one.

		  The 3 becomes a 4.

20x
3
→20x

4

	 2.	 Divide by the new power and simplify.

20x
4
→

20

4
x
4
=5x

4

		  And thus you write ∫20x
3
dx=5x

4
+C .

	 The reverse power rule does not work for a power of negative one. The 
reverse power rule works for all powers (including negative and decimal powers) 
except for a power of negative one. Instead of using the reverse power rule, you 
should just memorize that the antiderivative of x−1 is ln| x |+C (rule 3 in 
Table 15-2).

	 Test your antiderivatives by differentiating them. Especially when you’re 
new to antidifferentiation, it’s a good idea to test your antiderivatives by dif-
ferentiating them — you can ignore the C. If you get back to your original func-
tion, you know your antiderivative is correct.

With the antiderivative you just found and the shortcut version of the funda-
mental theorem, you can determine the area under 20x3 between, say, 1 and 2:

∫
20x

3
dx=5x

4
+C , thus

2

∫
1

20x
3
dx=

[

5x
4
]2

1

=5 ⋅2
4
−5 ⋅1

4

=80−5

=75
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Guessing and checking
The guess-and-check method works when the integrand (that’s the expression 
after the integral symbol not counting the dx, and it’s the thing you want to 
antidifferentiate) is close to a function that you know the reverse rule for. For 
example, say you want the antiderivative of cos(2x). Well, you know that the 
derivative of sine is cosine. Reversing that tells you that the antiderivative of 
cosine is sine. So you might think that the antiderivative of cos(2x) is sin(2x). 
That’s your guess. Now check it by differentiating it to see if you get the origi-
nal function, cos(2x):

d

dx
sin(2x)

=cos(2x) ⋅2 (sine rule and chain rule)

=2 cos(2x)

This result is very close to the original function, except for that extra coefficient 
of 2. In other words, the answer is 2 times as much as what you want. Because 
you want a result that’s half of this, just try an antiderivative that’s half of your 
first guess: So your new guess is . Check this second guess by differen-

tiating it, and you get the desired result.

Here’s another example. What’s the antiderivative of (3x−2)
4   ?

	 1.	 Guess the antiderivative.

		  This looks sort of like a power rule problem, so try the reverse power 

rule. The antiderivative of x4 is 1
5
x
5 by the reverse power rule, so your 

guess is 1
5
(3x−2)

5.

	 2.	 Check your guess by differentiating it.

d

dx

[

1

5
(3x−2)

5

]

=5 ⋅
1

5
(3x−2)

4
⋅3 (power rule and chain rule)

=3(3x−2)
4

	 3.	 Tweak your first guess.

		  Your result, 3(3x−2)
4 is three times too much, so make your second 

guess a third of your first guess — that’s 1
3
⋅

1

5
(3x−2)

5, or 1
15

(3x−2)
5.
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	 4.	 Check your second guess by differentiating it.

		  This checks. You’re done. The antiderivative of (3x−2)
4 is 1

15
(3x−2)

5
+C .

The two previous examples show that guess and check works well when the 
function you want to antidifferentiate has an argument like 3x or 3x+2 (where 
x is raised to the first power) instead of a plain old x. (Recall that in a func-
tion like 

√

5x, the 5x is called the argument.) In this case, all you have to do 
is tweak your guess by the reciprocal of the coefficient of x: the 3 in 3x+2, for 
example (the 2 in 3x+2 has no effect on your answer). In fact, for these easy 
problems, you don’t really have to do any guessing and checking. You can 
immediately see how to tweak your guess. It becomes sort of a one-step pro-
cess. If the function’s argument is more complicated than 3x+2 — like the x2 
in cos(x2

) — you have to try the next method, substitution.

The substitution method
If you look back at the examples of the guess and check method in the previ-
ous section, you can see why the first guess in each case didn’t work. When 
you differentiate the guess, the chain rule produces an extra constant: 2 in 
the first example, 3 in the second. You then tweak the guesses with 1

2
 and 1

3
 

to compensate for the extra constant.

Now say you want the antiderivative of cos(x2
) and you guess that it is sin(x2

). 
Watch what happens when you differentiate sin(x2

) to check it:

d

dx
sin(x

2
)

=cos(x
2
) ⋅2x (sine rule and chain rule)

=2xcos(x
2
)

Here the chain rule produces an extra 2x — because the derivative of x2 is 
2x — but if you try to compensate for this by attaching a 1

2x
 to your guess, it 

won’t work. Try it.

So, guessing and checking doesn’t work for antidifferentiating cos(x2
) — actually 

no method works for this simple-looking integrand (not all functions have 
antiderivatives) — but your admirable attempt at differentiation here reveals 
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a new class of functions that you can antidifferentiate. Because the derivative 
of sin(x2

) is 2xcos(x2
), the antiderivative of 2xcos(x2

) must be sin(x2
). This func-

tion, 2xcos(x2
), is the type of function you can antidifferentiate with the substi-

tution method.

	 Keep your eyes peeled for the derivative of the function’s argument. The 
substitution method works when the integrand contains a function and the 
derivative of the function’s argument — in other words, when it contains that 
extra thing produced by the chain rule — or something just like it except for a 
constant. And the integrand must not contain any other extra stuff.

The derivative of ex
3

 is ex
3

· 3x2 by the ex rule and the chain rule. So, the anti-
derivative of ex

3

⋅3x
2 is ex

3

. And if you were asked to find the antiderivative of 
e
x
3

⋅3x
2, you would know that the substitution method would work because 

this expression contains 3x2, which is the derivative of the argument of ex
3

, 
namely x3.

By now, you’re probably wondering why this is called the substitution 
method. I show you why in the step-by-step method below. But first, I want 
to point out that you don’t always have to use the step-by-step method. 
Assuming you understand why the antiderivative of ex

3

⋅3x
2 is ex

3

, you may 
encounter problems where you can just see the antiderivative without doing 
any work. But whether or not you can just see the answers to problems like 
that one, the substitution method is a good technique to learn because, for 
one thing, it has many uses in calculus and other areas of mathematics, and 
for another, your teacher may require that you know it and use it. Okay, so 
here’s how to find  with substitution:

	 1.	 Set u equal to the argument of the main function.

		  The argument of cos (x2
) is x2, so you set u equal to x2.

	 2.	 Take the derivative of u with respect to x.

u=x
2
so

du

dx
=2x

	 3.	 Solve for dx.
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	 4.	 Make the substitutions.

		  In , u takes the place of x2 and du
2x

 takes the place of dx. So 

now you’ve got . The two 2xs cancel, giving you .

	 5.	 Antidifferentiate using the simple reverse rule.

	 6.	 Substitute x2 back in for u, coming full circle.

		  u equals x2, so x2 goes in for the u:

		  That’s it. So .

If the original problem had been  instead of , you 
follow the same steps except that in Step 4, after making the substitution, you 

arrive at . The xs still cancel — that’s the important thing — but 

after canceling you get , which has that extra 5
2

 in it. No worries. 

Just pull the 5
2

 through the ∫ symbol, giving you 5
2

∫cos udu. Now you finish 

this problem just as you did in Steps 5 and 6, except for the extra 5
2

:

Because C is any old constant, 5
2
C  is still any old constant, so you can get rid 

of the 5
2

 in front of the C. That may seem somewhat (grossly?) unmathemati-

cal, but it’s right. Thus, your final answer is  5
2
sin(x

2
)+C . You should check 

this by differentiating it.

Here are a few examples of antiderivatives you can do with the substitution 
method so you can learn how to spot them:

	 ✓	

		 The derivative of x3 is 3x2, but you don’t have to pay any attention to the 
3 in 3x2 or the 4 in the integrand. Because the integrand contains x2 and 
no other extra stuff, substitution works. Try it.
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	 ✓	

		 The integrand contains a function, etan x, and the derivative of its argu-
ment (tanx) — which is sec2x. Because the integrand doesn’t contain 
any other extra stuff (except for the 10, which doesn’t matter), substitu-
tion works. Do it.

	 ✓	

		 Because the integrand contains the derivative of sin x, namely cos x, and 
no other stuff except for the 2

3
, substitution works. Go for it.

You can do the three problems just listed with a method that combines sub-
stitution and guess-and-check (as long as your teacher doesn’t insist that you 
show the six-step substitution solution). Try using this combo method to anti-
differentiate the first example, ∫4x

2
cos(x

3
)dx. First, you confirm that the inte-

gral fits the pattern for substitution — it does, as pointed out in the first item 
on the checklist. This confirmation is the only part substitution plays in the 
combo method. Now you finish the problem with the guess-and-check method:

	 1.	 Make your guess.

		  The antiderivative of cosine is sine, so a good guess for the antideriva-
tive of 4x2

cos(x
3
) is sin(x3

).

	 2.	 Check your guess by differentiating it.

d

dx
sin(x

3
)=cos(x

3
) ⋅3x

2
(sine rule and chain rule)

=3x
2
cos(x

3
)

	 3.	 Tweak your guess.

		  Your result from Step 2, 3x2
cos(x

3
) is 3

4
 of what you want, 4x2

cos(x
3
), so 

make your guess 4
3

 bigger (note that 4
3

 is the reciprocal of 3
4

). Your second 

guess is thus 4
3
sin(x

3
).

	 4.	 Check this second guess by differentiating it.

		  Oh, heck, skip this — your answer’s got to work.

Finding Area with Substitution Problems
You can use the shortcut version of the fundamental theorem to calculate the 
area under a function that you integrate with the substitution method. You 
can do this in two ways. In the previous section, I use substitution, setting u 
equal to x2, to find the antiderivative of :



263 Chapter 15: Integration: It’s Backwards Differentiation

If you want the area under this curve from, say, 0.5 to 1, the fundamental 
theorem does the trick:

Another method, which amounts to the same thing, is to change the limits of 
integration and do the whole problem in terms of u. Refer back to the six-step 
solution in the section “The substitution method.” What follows is very simi-
lar, except that this time you’re doing definite integration rather than indefi-

nite integration. Again, you want the area given by 
1

∫

0.5

2xcos(x
2
)dx:

	 1.	 Set u equal to x2.

	 2.	 Take the derivative of u with respect to x.

du

dx
=2x

	 3.	 Solve for dx.

dx=
du

2x

	 4.	 Determine the new limits of integration.

u=x
2
, so when x=

1

2
, u=

1

4

and when x=1, u=1

	 5.	 Make the substitutions, including the new limits of integration, and 
cancel the two 2xs.

		  (In this problem, only one of the limits is new because when x=1, u=1.)
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	 6.	 Use the antiderivative and the fundamental theorem to get the desired 
area without making the switch back to x2.

It’s a case of six of one, half a dozen of another with the two methods; they 
require about the same amount of work. So you can take your pick — however 
most teachers and textbooks emphasize the second method, so you probably 
should learn it.



Chapter 16

Integration Techniques  
for Exper  ts

In This Chapter
▶	Breaking down integrals into parts and finding trigonometric integrals

▶	Returning to your roots with SohCahToa

▶	Understanding the As, Bs, and Cs of partial fractions

▶	LIATE: Lilliputians In Africa Tackle Elephants

I 
 figure it wouldn’t hurt to give you a break from the kind of theoretical 
groundwork stuff that I lay on pretty thick in Chapter 15, so this chapter 

cuts to the chase and shows you just the nuts and bolts of several integra-
tion techniques. In Chapter 15, you saw three basic integration methods: 
the reverse rules, the guess-and-check method, and substitution. Now you 
graduate to four advanced techniques: integration by parts, trigonometric 
integrals, trigonometric substitution, and partial fractions. Ready?

Integration by Parts:  
Divide and Conquer

Integrating by parts is the integration version of the product rule for differ-
entiation. Just take my word for it. The basic idea of integration by parts is 
to transform an integral you can’t do into a simple product minus an integral 
you can do. Here’s the formula:

	 Integration by parts formula: ∫udv=uv− ∫vdu
And here’s a memory aid for it: In the first two chunks, 

∫
udv and uv, the u and 

v are in alphabetical order. If you remember that, you can remember that 
the integral on the right is just like the one on the left, except the u and v are 
reversed.
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Don’t try to understand the formula yet. You’ll see how it works in a minute. 
And don’t worry about understanding the first example below until you get to 
the end of it. The integration by parts process may seem pretty convoluted 
your first time through it, so you’ve got to be patient. After you work through 
a couple examples, you’ll see it’s really not that bad at all.

	 The integration by parts box: The integration by parts formula contains four 
things: u, v, du, and dv. To help keep everything straight, organize your prob-
lems with a box like the one in Figure 16-1.

	

Figure 16-1: 
The 

integration 
by parts 

box.
	

For our first example, let’s do . The integration by parts formula 
will convert this integral, which you can’t do directly, into a simple product 
minus an integral you’ll know how to do. First, you’ve got to split up the inte-
grand into two chunks — one chunk becomes the u and the other the dv that 
you see on the left side of the formula. For this problem, the ln(x) will become 

your u chunk. Then everything else is the dv chunk, namely 
√

xdx. (  In the 
next section, I show you how to decide what goes into the u chunk; then, 
whatever is left over is automatically the dv chunk.) After rewriting the above 
integrand, you’ve got the following for the left side of the formula:

Now it’s time to do the box thing. For each new problem, you should draw an 
empty four-square box, then put your u (  ln(x) in this problem) in the upper-
left square and your dv (

√

xdx in this problem) in the lower-right square. See 
Figure 16-2.

	

Figure 16-2: 
Filling in 
the box.
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Next, you differentiate u to get your du, and you integrate dv to get your v. The 
arrows in Figure 16-2 remind you to differentiate on the left and to integrate 
on the right. Think of differentiation — the easier thing — as going down (like 
going downhill), and integration — the harder thing — as going up (like going 
uphill).

Now complete the box: 

u= ln(x)

du

dx
=

1

x

du=
1

x
dx

Figure 16-3 shows the completed box.

	

Figure 16-3: 
The 

completed 
box for 

	

You can also use the four-square box to help you remember the right side of 
the integration-by-parts formula: start in the upper-left square and draw (or 
just picture) a number 7 going straight across to the right, then down diago-
nally to the left. See Figure 16-4.

	

Figure 16-4: 
A box with 

a 7 in it. 
Who says 

calculus 
is rocket 
science?
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Remembering how you “draw” the 7, look back to Figure 16-3. The right 
side of the integration-by-parts formula tells you to do the top part of 

the 7, namely ln(x) ⋅ 2
3
x
3∕2 minus the integral of the diagonal part of the 7, 

. By the way, all of this is much easier to do than to explain. Try 

it. You’ll see how this four-square-box scheme helps you learn the formula 
and organize these problems.

Ready to finish? Plug everything into the formula: 

∫
udv=uv−

∫
vdu

∫

√

x ln(x)dx= ln(x) ⋅
2

3
x
3∕2

−
∫

2

3
x
3∕2

⋅

1

x
dx

=
2

3
x
3∕2

ln(x)−
2

3 ∫
x
1∕2
dx

=
2

3
x
3∕2

ln(x)−
2

3

�

2

3
x
3∕2

+C

�

(reverse power rule)

=
2

3
x
3∕2

ln(x)−
4

9
x
3∕2

−
2

3
C

=
2

3
x
3∕2

ln(x)−
4

9
x
3∕2

+C , or

=
2

3

√

x
3
ln(x)−

4

9

√

x
3
+C

In the last step, you replace the  − 2

3
C  with C because  − 2

3
 times any old 

number is still just any old number.

Picking your u
Here’s a great mnemonic device for how to choose your u chunk (again, once 
you’ve selected your u, everything else is automatically the dv chunk).

The LIATE mnemonic: Herbert E. Kasube came up with the acronym LIATE to 
help you choose your u (calculus nerds can check out Herb’s article in the 
American Mathematical Monthly 90, 1983 issue):

L Logarithmic	 (like log(x))
I Inverse trigonometric	 (like arctan(x))
A Algebraic	 (like 5x2

+3)
T Trigonometric	 (like cos(x))
E Exponential	 (like 10x )
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To pick your u chunk, go down this list in order; the first type of function on 
this list that appears in the integrand is the u.

Here are some helpful hints on how to remember the acronym LIATE. How 
about Let’s Integrate Another Tantalizing Example. Or maybe you prefer 
Lilliputians In Africa Tackle Elephants, or Lulu’s Indigo And Turquoise Earrings. 
The last one’s not so good because it could also be Lulu’s Turquoise And 
Indigo Earrings — whoops: Now you’ll never remember it.

Here’s an example. Integrate . (Note, integration by parts some-
times works for integrands like this one that contain a single function.)

	 1.	 Go down the LIATE list and pick the u.

		  You see that there are no logarithmic functions in arctan(x)dx, but 
there is an inverse trigonometric function, arctan(x). So that’s your u. 
Everything else is your dv, namely, plain old dx.

	 2.	 Do the box thing.

		  See Figure 16-5 (and see Table 15-2 for the derivative of arctan(x)).

	

Figure 16-5: 
The box 

thing.
	

	 3.	 Plug everything into the integration by parts formula or just draw the 
imaginary 7 in the box on the right in Figure 16-5.

∫
udv=uv−

∫
vdu

∫
arctan(x)dx=x arctan(x)−

∫
x ⋅

1

1+x
2
dx

		  Now you can finish this problem by integrating 
∫
x ⋅

1

1+x
2
dx with the 

substitution method, setting u=1+x
2. Try it (see Chapter 15 for more 

on the substitution method). Note that the u in u=1+x
2 has nothing 

to do with the integration-by-parts u. Your final answer should be 

.
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Here’s another one. Integrate 
∫
x sin(3x)dx:

	 1.	 Go down the LIATE list and pick the u.

		  Going down the LIATE list, the first type of function you find in  
is a very simple algebraic one, namely x, so that’s your u. Everything 
else is your dv.

	 2.	 Do the box thing.

		  See Figure 16-6.

	

Figure 16-6: 
Yet more 

boxes.
	

	 3.	 Plug everything into the integration by parts formula or draw an 
imaginary 7 over the box on the right in Figure 16-6.

		  You can easily integrate  with substitution or the guess-and-

check method. Go for it. Your final answer:  − 1

3
x cos(3x)+

1

9
sin(3x)+C .

Integration by parts: Second  
time, same as the first
Sometimes you have to use the integration by parts method more than once 
because the first run through the method takes you only partway to the 
answer. Here’s an example. Find 

∫
x
2
e
x
dx:

	 1.	 Go down the LIATE list and pick the u.

		  x2
e
x
dx contains an algebraic function, x2, and an exponential function, ex.  

(It’s an exponential function because there’s an x in the exponent.) The 
first on the LIATE list is x2, so that’s your u.
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	 2.	 Do the box thing.

		  See Figure 16-7.

	

Figure 16-7: 
The 

boxes for 

∫
x 2exdx .

	

	 3.	 Use the integration by parts formula — or the “7” mnemonic.

∫
x
2
e
x
dx=x

2
e
x
−
∫
e
x
⋅2xdx

=x
2
e
x
−2

∫
xe

x
dx

		  You end up with another integral, 
∫
x
2
e
x
dx, that can’t be done by any of 

the simple methods — reverse rules, guess and check, and substitution. 
But note that the power of x has been reduced from 2 to 1, so you’ve made 
some progress. When you use integration by parts again for 

∫
xe

x
dx, the x 

disappears entirely and you’re done. Here goes:

	 4.	 Integrate by parts again.

		  I’ll let you do most of this one on your own. Here’s the final step:

∫
xe

x
dx=xe

x
−
∫
e
x
dx

=xe
x
−e

x
+C

	 5.	 Take the result from Step 4 and substitute it for the  in the 

answer from Step 3 to produce the whole enchilada.

∫
x
2
e
x
dx=x

2
e
x
−2(xe

x
−e

x
+C )

=x
2
e
x
−2xe

x
+2e

x
−2C

=x
2
e
x
−2xe

x
+2e

x
+C
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Going around in circles
Sometimes if you use integration by parts twice, you get back to where you 
started from — which, unlike getting lost, is not a waste of time. For an example 
of one of these odd merry-go-round type of integration by parts problems, see 
the free online article on the topic at www.dummies.com/extras/calculus/.

Tricky Trig Integrals
In this section (and the accompanying online article at www.dummies.
com/extras/calculus/), you integrate powers of the six trigonomet-
ric functions, like  and , and products or quotients of 

different trig functions, like  and 
∫

csc
2
(x)

cot (x)
dx. This is pretty 

tedious — time to order up a double espresso.

To use the following techniques, you must either have an integrand that 
contains just one of the six trig functions like  or a certain pairing 
of trig functions, like . If the integrand has two trig func-
tions, the two must be one of these three pairs: sine with cosine, secant with 
tangent, or cosecant with cotangent. If you have an integrand containing 
something other than one of these three pairs, you can easily convert the 
problem into one of these pairs by using trig identities like sin(x)= 1

csc(x)
 and 

tan(x)=
sin(x)

cos(x)
. For instance,

After doing any needed conversions, you want to get one of the following 
three cases:

,

where either m or n (or both) is a positive integer.
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The basic idea with most of the following trig integrals is to organize the inte-
grand so that you can make a handy u-substitution and then integrate with 
the reverse power rule. You’ll see what I mean in a minute.

Integrals containing sines and cosines
This section covers integrals with — can you guess? — sines and cosines.

Case 1: The power of sine is odd and positive 
If the power of sine is odd and positive, lop off one sine factor and put it to 
the right of the rest of the expression, convert the remaining sine factors to 
cosines with the Pythagorean identity, and then integrate with the substitu-
tion method where u=cos(x).

	 The Pythagorean identity: The Pythagorean identity tells you that, for any angle 
x, sin2

(x)+cos
2
(x)=1. And thus sin2

(x)=1−cos
2
(x) and cos2(x)=1−sin

2
(x).

Now integrate :

	 1.	 Lop off one sine factor and move it to the right.

	 2.	 Convert the remaining sines to cosines using the Pythagorean identity 
and simplify.

	 3.	 Integrate with the substitution method, where u=cos (x).

u=cos(x)

du

dx
=−sin(x)

du=−sin(x)dx

		  Shortcut for the u-substitution integration method. You can save a little 
time in all substitution problems by just solving for du — as I did here — 
and not bothering to solve for dx. You then tweak the expression inside 
integral so that it contains the thing du equals and compensate for 
that tweaking by adding something outside the integral. In the current 
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problem, du equals −sin(x)dx. The integral contains a sin(x)dx, so you 
multiply it by −1 to turn it into −sin(x)dx and then compensate for that −1 
by multiplying the whole integral by −1. This is a wash because −1 times 
−1 equals 1. This may not sound like much of a shortcut, but it’s a good 
time saver once you get used to it.

		  So tweak your integral: 

		  Now substitute and solve by the reverse power rule: 

=−
∫
(u

4
−u

6
) du

=−
1

5
u
5
+
1

7
u
7
+C

=−
1

5
cos

5
(x)+

1

7
cos

7
(x)+C or

1

7
cos

7
(x)−

1

5
cos

5
(x)+C

Case 2: The power of cosine is odd and positive
This problem works exactly like Case 1, except that the roles of sine and 

cosine are reversed. Find 
∫

cos
3
(x)

√

sin(x)
dx.

	 1.	 Lop off one cosine factor and move it to the right.

	 2.	 Convert the remaining cosines to sines with the Pythagorean identity 
and simplify.



275 Chapter 16: Integration Techniques for Experts

	 3.	 Integrate with substitution, where u= sin(x).

u=sin(x)

du

dx
=cos(x)

du=cos(x)dx

		  Now substitute:

=
∫
(u

−1∕2
−u

3∕2
) du

		  And finish integrating as in Case 1.

Case 3: The powers of both sine and cosine are even and nonnegative
Here you convert the integrand into odd powers of cosines by using the fol-
lowing trig identities.

Two handy trig identities:

sin
2
(x)=

1−cos (2x)

2
and cos

2
(x)=

1+cos (2x)

2

Then you finish the problem as in Case 2. Here’s an example: 

The first in this string of integrals is a no-brainer; the second is a simple 
reverse rule with a little tweak for the 2; you do the third integral by using the 
cos

2
(x) identity a second time; and the fourth integral is handled by following 

the steps in Case 2. Do it. Your final answer should be

1

16
x−

1

64
sin(4x)−

1

48
sin

3
(2x)+C

A veritable cake walk.
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	 Don’t forget your trig identities. If you get a sine-cosine problem that doesn’t 
fit any of the three cases discussed above, try using a trig identity like 

sin
2
(x)+cos

2
(x)=1 or cos2(x)= 1+cos (2x)

2
 to convert the integral into one 

you can handle.

For example, 
∫

sin
4
(x)

cos
2
(x)

dx doesn’t fit any of the three sine-cosine cases, but 

you can use the Pythagorean identity to convert it to 
∫

(1−cos
2
(x))

2

cos
2
(x)

dx=
∫

1−2 cos
2
(x)+cos

4
(x)

cos
2
(x)

dx

∫

(1−cos
2
(x))

2

cos
2
(x)

dx=
∫

1−2 cos
2
(x)+cos

4
(x)

cos
2
(x)

dx. This splits up into , 

and the rest is easy. Try it. See whether you can differentiate your result and 
arrive back at the original problem.

Integrals containing secants and tangents 
or cosecants and cotangents
The method for solving integrals containing the secant-tangent pairing or 
the cosecant-cotangent pairing is very similar to the method used for the 
sine-cosine problems. For examples, check out the online article on tricky 
trig integrals at www.dummies.com/extras/calculus/.

Your Worst Nightmare: Trigonometric 
Substitution

With the trigonometric substitution method, you can do integrals contain-

ing radicals of the following forms: 
√

u
2
+a

2
,

√

a
2
−u

2
, and 

√

u
2
−a

2 (as well as 
powers of those roots), where a is a constant and u is an expression contain-

ing x. For instance, 
√

3
2
−x

2 is of the form 
√

a
2
−u

2.

You’re going to love this technique . . .  about as much as sticking a hot poker 
in your eye.

	 Desperate times call for desperate measures. Consider pulling the fire alarm 
on the day your teacher is presenting this topic. With any luck, your teacher 
will decide that he can’t afford to get behind schedule and he’ll just omit this 
topic from your final exam.
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Before I show you how trigonometric substitution works, I’ve got some silly 
mnemonic tricks to help you keep the three cases of this method straight. 
(Remember, with mnemonic devices, silly (and vulgar) works.) First, the 
three cases involve three trig functions, tangent, sine, and secant. Their initial 
letters, t, s, and s, are the same letters as the initial letters of the name of this 
technique, trigonometric substitution. Pretty nice, eh?

Table 16-1 shows how these three trig functions pair up with the radical 
forms listed in the opening paragraph.

Table 16-1	 A Totally Radical Table

tan(�) ⟷

√

u2+ a2

sin(�) ⟷

√

a2−u
2

sec(�) ⟷

√

u2−a2

To keep these pairings straight, note that the plus sign in 
√

u
2
+a

2 looks like 

a little t for tangent, and that the other two forms, 
√

a
2
−u

2 and 
√

u
2
−a

2, con-
tain a subtraction sign — s is for sine and secant. To memorize what sine and 

secant pair up with, note that 
√

a
2
−u

2 begins with the letter a, and it’s a sin 
to call someone an ass. Okay, I admit this is pretty weak. If you can come up 
with a better mnemonic, use it!

Ready to do some problems? I’ve stalled long enough.

Case 1: Tangents
Find 

∫

dx
√

9x
2
+4

. First, note that this can be rewritten as , so it fits 

the form 
√

u
2
+a

2 where u=3x and a=2; you can see that this pairs up with 
tangent in Table 16-1.

	 1.	 Draw a right triangle — basically a SohCahToa triangle — where 

tan(�) equals u
a

, which is 3x
2

.

		  Because you know that tan(�)= O

A
 (from SohCahToa — see Chapter 6), 

your triangle should have 3x as O, the side opposite the angle �, and 2 as 

A, the adjacent side. Then, your radical, , or 
√

9x
2
+4,  
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will automatically be the correct length for the hypotenuse. It’s not a 
bad idea to confirm this with the Pythagorean theorem, a2+b2= c2. See 
Figure 16-8.

	

Figure 16-8: 
A 

SohCahToa 
triangle for 

the 
√

u2+a2 
case. What 

sinister 
mind dreamt 

up this 
technique?

	

	 2.	 Solve tan(�)= 3x

2
 for x, differentiate, and solve for dx.

3x

2
= tan(�)

3x=2 tan(�)

x=
2

3
tan(�)

dx

d�
=

2

3
sec

2
(�)

dx=
2

3
sec

2
(�)d�

	 3.	 Find which trig function is represented by the radical over the a, and 
then solve for the radical.

		  Look at the triangle in Figure 16-8. The radical is the hypotenuse and 

a is 2, the adjacent side, so 

√

9x
2
+4

2
 is H

A
, which equals secant. So 

sec(�)=

√

9x
2
+4

2
, and thus 

√

9x
2
+4=2sec(�).

	 4.	 Use the results from Steps 2 and 3 to make substitutions in the original 
problem and then integrate.

		  From Steps 2 and 3 you have dx= 2

3
sec

2
(�)d� and 

√

9x
2
+4=2sec (�). 

Now you can finally do the integration.
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	 5.	 Substitute the x expressions from Steps 1 and 3 back in for sec(�) 
and tan(�). You can also get the expressions from the triangle in 
Figure 16-8.

Now tell me, when was the last time you had so much fun? Before tackling 
Case 2, here are a couple tips.

Step 1 is u
a

. For all three cases in trigonometric substitution, Step 1 always 

involves drawing a triangle in which the trig function in question equals u
a

:

Case 1 is tan(�)=
u

a
.

Case 2 is sin(�)=
u

a
.

Case 3 is sec(�)=
u

a
.

The fact that the u goes in the numerator of this u
a

 fraction should be easy to 

remember because u is an expression in x and something like 3x
2

 is somewhat 

simpler and more natural to see than 2
3x

. Just remember the x goes on top.
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	 Step 3 is 
√

a
. For all three cases, Step 3 always involves putting the radical 

over the a. The three cases are given below, but you don’t need to memorize 
the trig functions in this list because you’ll know which one you’ve got by 
just looking at the triangle — assuming you know SohCahToa and the recipro-
cal trig functions (flip back to Chapter 6 if you don’t know them). I’ve left out 
what goes under the radicals because by the time you’re doing Step 3, you’ve 
already got the right radical expression.

Case 1 is sec(�)=

√

a
.

Case 2 is cos(�)=

√

a
.

Case 3 is tan(�)=

√

a
.

In a nutshell, just remember u
a

 for Step 1 and 

√

a
 for Step 3.

Case 2: Sines
Integrate 

∫

dx

x
2

√

16−x
2

, rewriting it first as 
∫

dx

x
2

√

4
2
−x

2

  so that it fits the form 

√

a
2
−u

2, where a=4 and u=x.

	 1.	 Draw a right triangle where sin(�)= u

a
, which is x

4
.

		  Sine equals O
H

, so the opposite side is x and the hypotenuse is 4. The 

length of the adjacent side is then automatically equal to your radical, 
√

16−x
2. (Confirm this with the Pythagorean theorem.) See Figure 16-9.

	

Figure 16-9: 
A 

SohCahToa 
triangle for 

the 
√

a2−u2 
case.

	

	 2.	 Solve sin(�)= x

4
 for x, differentiate, and solve for dx.
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x

4
=sin(�)

x=4 sin(�)

dx

d�
=4 cos(�)

dx=4 cos(�)d�

	 3.	 Find which trig function equals the radical over the a, and then solve 
for the radical.

		  Look at the triangle in Figure 16-9. The radical, 
√

16−x
2, over the a, 4, is 

A

H
, which you know from SohCahToa equals cosine. That gives you

cos(�)=

√

16−x
2

4
√

16−x
2
=4 cos(�)

	 4.	 Use the results from Steps 2 and 3 to make substitutions in the original 
problem and then integrate.

		  Note that you have to make three substitutions here, not just two like in 
the first example. From Steps 2 and 3 you’ve got

x=4 sin(�), dx=4 cos(�)d�, and

√

16−x
2
=4 cos(�), so

∫

dx

x
2

√

16−x
2

=
∫

4 cos(�)d�

(4 sin(�))
2
4 cos(�)

=
∫

d�

16sin
2
(�)

=
1

16 ∫
csc

2
(�)d�

=−
1

16
cot(�)+C

	 5.	 The triangle shows that cot(�)=

√
16−x

2

x
. Substitute back for your 

final answer.

=−
1

16
⋅

√

16−x
2

x
+C

=−

√

16−x
2

16x
+C

It’s a walk in the park.
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Case 3: Secants
In the interest of space — and sanity — I’m going to skip this case. But you 
won’t have any trouble with it because all the steps are basically the same as 
in Cases 1 and 2.

Try this one. Integrate 
∫

√

x
2
−9

x
dx. I’ll get you started. In Step 1, you draw a 

triangle, where sec(�)= u

a
, that’s x

3
. Now take it from there. Here’s the answer 

(no peeking if you haven’t done it yet): 
√

x
2
−9 − 3 arctan

�

√

x
2
−9

3

�

+C , or 

, or .

The As, Bs, and Cxs of  
Partial Fractions 

Just when you thought it couldn’t get any worse than trigonometric substitu-
tion, I give you the partial fractions technique.

You use the partial fractions method to integrate rational functions like 
6x

2
+3x−2

x
3
+2x

2
. The basic idea involves “unadding” a fraction: Adding works like 

this: 1
2
+
1

3
=

5

6
. So, you can “unadd” 5

6
 by splitting it up into 1

2
 plus 1

3
. This 

is what you do with the partial fraction technique except that you do it with 
complicated rational functions instead of ordinary fractions.

Before using the partial fractions technique, you have to check that your inte-
grand is a “proper” fraction — that’s one where the degree of the numerator 
is less than the degree of the denominator. If the integrand is “improper,” like 

∫

2x
3
+x

2
−10

x
3
−3x−2

dx, you first have to do long polynomial division to transform 

the improper fraction into a sum of a polynomial (which sometimes will be 
just a number) and a proper fraction. Here’s the division for this improper 
fraction. Basically, it works like regular long division:

2

x
3
−3x−2

)

2x
3
+x

2
+0x−10

2x
3

−6x −4

x
2
+6x −6
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With regular division, if you divide, say, 23 (the dividend) by 4 (the divi-
sor), you get a quotient of 5 and a remainder of 3, which tells you that 23

4
 

equals 5+ 3

4
, or 5 3

4
. The four pieces in the above polynomial division (the 

dividend, the divisor, the quotient, and the remainder) work the same way. 

The quotient is 2 and the remainder is x2
+6x−6, thus  equals 

2+
x
2
+6x−6

x
3
−3x−2

. The original problem, 
∫

2x
3
+x

2
−10

x
3
−3x−2

dx, therefore becomes 

∫
2dx+

∫

x
2
+6x−6

x
3
−3x−2

dx. The first integral is just 2x+C . You would then do the 

second integral with the partial fractions method. Here’s how it works. First a 
basic example and then a more advanced one.

Case 1: The denominator contains  
only linear factors
Integrate 

∫

5

x
2
+x−6

dx. This is a Case 1 problem because the factored denom

inator (see Step 1) contains only linear factors — in other words, first degree 
polynomials.

	 1.	 Factor the denominator.

5

x
2
+x−6

=
5

(x−2)(x+3)

	 2.	 Break up the fraction on the right into a sum of fractions, where each 
factor of the denominator in Step 1 becomes the denominator of a 
separate fraction. Then put capital-letter unknowns in the numerator 
of each fraction.

5

(x−2)(x+3)
=

A

(x−2)
+

B

(x+3)

	 3.	 Multiply both sides of this equation by the left side’s denominator.

		  This is algebra I, so you can’t possibly want to see the steps, right?

5=A(x+3)+B(x−2)
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	 4.	 Take the roots of the linear factors and plug them — one at a time — into 
x in the equation from Step 3, and solve for the capital-letter unknowns.

	

	 5.	 Plug these results into the A and B in the equation from Step 2.

5

(x−2)(x+3)
=

1

(x−2)
+

−1

(x+3)

	 6.	 Split up the original integral into the partial fractions from Step 5 and 
you’re home free.

Case 2: The denominator contains 
irreducible quadratic factors
Sometimes you can’t factor a denominator all the way down to linear factors 
because some quadratics are irreducible — like prime numbers, they can’t be 
factored.

	 Check the discriminant. You can easily check whether a quadratic (ax2
+bx+c) 

is reducible or not by checking its discriminant, b2−4ac. If the discriminant is 
negative, the quadratic is irreducible. If the discriminant is a perfect square like 
0, 1, 4, 9, 16, 25, etc., the quadratic can be factored into factors like you’re used 
to seeing like (2x−5)(x+5). This is what happens in a Case 1 problem. The last 
possibility is that the discriminant equals a non-square positive number, as with 
the quadratic x2

+10x+1, for example, that has a discriminant of 96. In that case, 
the quadratic can be factored, but you get ugly factors involving square roots. 
You almost certainly will not get a problem like that.
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Using the partial fractions technique with irreducible quadratics is a bit dif-

ferent. Here’s a problem: Integrate .

	 1.	 Factor the denominator.

		  It’s already done! Don’t say I never did anything for you. Note that x2
+4 

is irreducible because its discriminant is negative.

	 2.	 Break up the fraction into a sum of “partial fractions.”

		  If you have an irreducible quadratic factor (like the x2
+4), the numerator 

for that partial fraction needs two capital-letter unknowns instead of just 
one. You write them in the form of Px+Q.

5x
3
+9x−4

x(x−1)(x
2
+4)

=
A

x
+

B

x−1
+
Cx+D

x
2
+4

	 3.	 Multiply both sides of this equation by the left-side denominator.

5x
3
+9x−4=A(x−1)(x

2
+4)+B(x)(x

2
+4)+(Cx+D)(x)(x−1)

	 4.	 Take the roots of the linear factors and plug them — one at a 
time — into x in the equation from Step 3, and then solve.

	

		  Unlike in the Case 1 example, you can’t solve for all the unknowns by 
plugging in the roots of the linear factors, so you have more work to do.

	 5.	 Plug into the Step 3 equation the known values of A and B and any 
two values for x not used in Step 4 (low numbers make the arithmetic 
easier) to get a system of two equations in C and D.

A=1 and B=2, so
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	 6.	 Solve the system: 1=−C+D and 7=2C+D.

		  You should get C =2 and D=3.

	 7.	 Split up the original integral and integrate.

		  Using the values obtained in Steps 4 and 6, A=1, B=2, C =2, and D=3, 
and the equation from Step 2, you can split up the original integral into 
three pieces:

		  And with simple algebra, you can split up the third integral on the right 
into two pieces, resulting in the final partial fraction decomposition:

		  The first two integrals are easy. For the third, you use substitution with 
u=x

2
+4 and du=2xdx. The fourth is done with the arctangent rule, 

which you should memorize: 
∫

dx

a
2
+x

2
=

1

a
arctan

x

a
+C .

Case 3: The denominator contains repeated 
linear or quadratic factors
It’s likely that you won’t get one of these messier problems. But if you’d like 
to see an example, check out the online article, “Partial Fractions Technique 
Where the Denominator Contains Repeated Linear or Quadratic Factors” at 
www.dummies.com/extras/calculus/.

Bonus: Equating coefficients  
of like terms
Here’s another method for finding the capital-letter unknowns that you 
should have in your bag of tricks. Say you get the following for your Step 3 
equation (this comes from a problem with two irreducible quadratic factors):

2x
3
+x

2
−5x+4=(Ax+B)(x

2
+1)+(Cx+D)(x

2
+2x+2)
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This equation has no linear factors, so you can’t plug in the roots to get the 
unknowns. Instead, expand the right side of the equation: 

2x
3
+x

2
−5x+4=Ax

3
+Ax+Bx

2
+B+Cx

3
+2Cx

2
+2Cx+Dx

2
+2Dx+2D

And collect like terms: 

2x
3
+x

2
−5x+4=(A+C )x

3
+(B+2C +D)x

2
+(A+2C +2D)x+(B+2D)

Then equate the coefficients of like terms from the left and right sides of the 
equation:

2=A+C

1=B+2C +D

−5=A+2C +2D

4=B+2D

You then solve this system of simultaneous equations to get A, B, C, and D.

	 How about a shortcut? You can finish the Case 2 example a couple pages 
back by using a shortcut version of the equating of coefficients method. Once 
you have the values for A and B from Step 4, you could look back at the equa-
tion in Step 3, and equate the coefficients of the x3 term on the left and right 
sides of the equation. Can you see, without actually doing the expansion, that 
on the right you’d get (A+B+C )x3  ? So, 5x3

=(A+B+C )x
3, which means that 

5=A+B+C, and because A=1 and B=2 (from Step 4), C must equal 2. Then, 
using these values for A, B, and C, and any value of x (other than 0 or 1), you 
can get D. How about that for a simple shortcut?

	 Practice makes perfect. In a nutshell, you have three ways to find your capital-
letter unknowns: 1) Plugging in the roots of the linear factors of the denomina-
tor if there are any, 2) Plugging in other values of x and solving the resulting 
system of equations, and 3) Equating the coefficients of like terms. With 
practice, you’ll get good at combining these methods to find your unknowns 
quickly.
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Chapter 17

Forget Dr. Phil: Use the Integral  
to Solve Problems 

In This Chapter
▶	One mean theorem: “Random acts of kindness!? Don’t make me laugh.”

▶	Adding up the area between curves

▶	Figuring out volumes of odd shapes with the deli meat method

▶	Mastering the disk and washer methods

▶	Finding arc length and surface area

A 
s I say in Chapter 14, integration is basically just adding up small pieces 
of something to get the total for the whole thing — really small pieces, 

actually, infinitely small pieces. Thus, the integral

20 sec.

∫
5 sec.

little piece of distance

tells you to add up all the little pieces of distance traveled during the 15-second 
interval from 5 to 20 seconds to get the total distance traveled during that 
interval.

In all problems, the little piece after the integration symbol is always an expres-
sion in x (or some other variable). For the above integral, for instance, the little 
piece of distance might be given by, say, x2

dx, Then the definite integral

20

∫
5

x
2
dx

would give you the total distance traveled. Because you’re now an expert at 
computing integrals like the one immediately above, that’s no longer the 
issue; your main challenge in this chapter is simply to come up with the 
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algebraic expression for the little pieces you’re adding up. But before we 
begin the adding-up problems, I want to cover a couple other integration 
topics: mean value and average value.

The Mean Value Theorem for  
Integrals and Average Value

The best way to understand the mean value theorem for integrals is with a 
diagram — look at Figure 17-1.

	

Figure 17-1: 
A visual 

“proof” of 
the mean 

value 
theorem for 

integrals.
	

The graph on the left in Figure 17-1 shows a rectangle whose area is clearly 
less than the area under the curve between 2 and 5. This rectangle has a height 
equal to the lowest point on the curve in the interval from 2 to 5. The middle 
graph shows a rectangle whose height equals the highest point on the curve. 
Its area is clearly greater than the area under the curve. By now you’re thinking, 
“Isn’t there a rectangle taller than the short one and shorter than the tall one 
whose area is the same as the area under the curve?” Of course. And this rectan-
gle obviously crosses the curve somewhere in the interval. This so-called “mean 
value rectangle,” shown on the right, basically sums up the mean value theorem 
for integrals. It’s really just common sense. But here’s the mumbo jumbo.

	 The mean value theorem for integrals: If f (x) is a continuous function on 
the closed interval 

[

a, b
]

, then there exists a number c in the closed interval 
such that

b

∫
a

f (x)dx= f (c) ⋅ (b−a)

The theorem basically just guarantees the existence of the mean value rectangle. 
(Note that there can only be one mean value rectangle, but its top will some-
times cross the function more than once. Thus, there can be more than one 
c value that satisfies the theorem.)
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The area of the mean value rectangle — which is the same as the area under 
the curve — equals length times width, or base times height, right? So, if you 

divide its area, 
b

∫

a

f (x)dx by its base, (b−a), you get its height, f (c). This height 

is the average value of the function over the interval in question.

	 Average value: The average value of a function f (x) over a closed interval 
[

a, b
]

 is

1

b−a

b

∫
a

f (x)dx

which is the height of the mean value rectangle.

Here’s an example. What’s the average speed of a car between t =9 seconds 
and t =16 seconds whose speed in feet per second is given by the function 
f (t)=30

√

t? The definition of average value gives you the answer in one step: 

the average speed is 1

16−9

16

∫

9

30

√

t dt. Evaluate that integral and you’re done. 

(That’s all there is to it, so the two-step process below is somewhat superfluous. 
However, it shows the logic underlying the average value idea.)

	 1.	 Determine the area under the curve between 9 and 16.

		  This area, by the way, is the total distance traveled during the period 
from 9 to 16 seconds, namely 740 feet. Do you see why? Consider the 
mean value rectangle for this problem. Its height is a speed (because the 
function values, or heights, are speeds) and its base is an amount of time, 
so its area is speed times time which equals distance. Alternatively, recall 
that the derivative of position is velocity (see Chapter 12). So, the anti-
derivative of velocity — what I just did in this step — is position, and the 
change of position from 9 to 16 seconds gives the total distance traveled.

	 2.	 Divide this area, total distance, by the time interval from 9 to 16, 
namely 7.

Average speed =
total distance

total time
=

740 feet

7 seconds
≈105.7 feet per second
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		  The definition of average value tells you to multiply the total area by 
1

b−a
, which in this problem is 1

16−9
, or

1

7
. But because dividing by 7 

is the same as multiplying by 1
7

, you can divide like I do in this step. It 
makes more sense to think about these problems in terms of division: 
area equals base times height, so the height of the mean value rectangle 
equals its area divided by its base. 

The MVT for integrals and for derivatives:  
Two peas in a pod

Remember the mean value theorem for deriva-
tives from Chapter 11? The graph on the left in 
the figure shows how it works for the function 
f (x )= x 3. The basic idea is that there’s a point 
on the curve between 0 and 2 where the slope 
is the same as the slope of the secant line from 
(0, 0) to (2, 8) — that’s a slope of 4. When you 

do the math, you get x = 2

√

3

3
 for this point. 

Well, it turns out that the point guaranteed by the 
mean value theorem for integrals — the point 
where the mean value rectangle crosses the 

derivative of this curve (shown on the right 
in the figure)  —  has the very same x-value. 
Pretty nice, eh?

If you really want to understand the intimate rela-
tionship between differentiation and integration, 
think long and hard about the many connec-
tions between the two graphs in the accom-
panying figure. This figure is a real gem, if I do 
say so myself. (For more on the differentiation/ 
integration connection, check out my other 
favorites, Figures 15-9 and 15-10.)

• At x = the slope is 4 and that’s the32
3 • At x = the height is 4 and that’s the32

3

• The least slope of f  in the interval is 0. 

• The greatest slope of f  in the interval is 12. 

• The total rise along f  from 0 to 2 is 8. 

• The least height of f’ in the interval is 0. 

• The greatest height of f’ in the interval is 12. 

• The total area under f’ from 0 to 2 is 8. 

average slope of f  between 0 and 2. average height of f’ between 0 and 2.
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The Area between Two Curves —  
Double the Fun

This is the first of several topics in this chapter where your task is to come 
up with an expression for a little bit of something, then add up the bits by 
integrating. For this first problem type, the little bit is a narrow rectangle that 
sits on one curve and goes up to another. Here’s an example: Find the area 
between y=2−x

2 and y= 1

2
x from x=0 to x=1. See Figure 17-2.

	

Figure 17-2: 
The area 
between 
y = 2−x 2 

and y = 1

2
x

from x = 0 to 
x = 1 .

	

To get the height of the representative rectangle in Figure 17-2, subtract the 
y-coordinate of its bottom from the y-coordinate of its top — that’s (2−x2

)−
1

2
x. 

Its base is the infinitesimal dx. So, because area equals height times base,

Area of representative rectangle=((2−x
2
)−

1

2
x)dx

Now you just add up the areas of all the rectangles from 0 to 1 by integrating:
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Now to make things a little more twisted, in the next problem the curves 
cross (see Figure 17-3). When this happens, you have to split the total shaded 
area into two separate regions before integrating. Try this one: Find the area 
between 3

√

x and x3 from x=0 to x=2.

	

Figure 17-3: 
Who’s on 

top?
	

	 1.	 Determine where the curves cross.

		  They cross at (1, 1), so you’ve got two separate regions: one from 0 to 1 
and another from 1 to 2.

	 2.	 Figure the area of the region on the left.

		  For this region, 3
√

x is above x3. So the height of a representative rect-
angle is 3

√

x−x
3, its area is height times base, or ( 3

√

x−x
3
)dx, and the area 

of the region is, therefore,

	 3.	 Figure the area of the region on the right.

		  In the right-side region, x3 is above 3
√

x, so the height of a rectangle is 
 and thus you’ve got
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	 4.	 Add up the areas of the two regions to get the total area.

0.5+∼2.61≈3.11 square units

	 Height equals top minus bottom. Note that the height of a representative rect-
angle is always its top minus its bottom, regardless of whether these numbers 
are positive or negative. For instance, a rectangle that goes from 20 up to 30 
has a height of 30−20, or 10; a rectangle that goes from −3 up to 8 has a height 
of , or 11; and a rectangle that goes from −15 up to   has a height of 

, or 5.

If you think about this top-minus-bottom method for figuring the height of a rect-
angle, you can now see — assuming you didn’t already see it — why the definite 
integral of a function counts area below the x-axis as negative. (I mention this in 
Chapters 14 and 15.) For example, consider Figure 17-4.

	

Figure 17-4: 
What’s the 

shaded 
area? Hint: 

it’s not 
3�∕2

∫

0

sin(x )dx .

	

If you want the total area of the shaded region shown in Figure 17-4, you have 
to divide the shaded region into two separate pieces like you did in the last 
problem. One piece goes from 0 to �, and the other from � to 3�

2
.
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For the first piece, from 0 to �, a representative rectangle has a height equal 
to the function itself, y=sin(x), because its top is on the function and its 
bottom is at zero — and of course, anything minus zero is itself. So the area 

of this first piece is given by the ordinary definite integral .

But for the second piece from � to 3�
2

, the top of a representative rectangle 

is at zero — recall that the x-axis is the line y=0 — and its bottom is on 
y=sin(x), so its height is 0−sin(x), or just −sin(x). So, to get the area of this 
second piece, you figure the definite integral of the negative of the function, 
3�∕2

∫

�

(−sin(x))dx, which is the same as    .

Because this negative integral gives you the ordinary, positive area of the piece 

below the x-axis, the positive definite integral 
3�∕2

∫

�

sin(x)dx gives a negative area. 

That’s why if you figure the definite integral 
3�∕2

∫

0

sin(x)dx over the entire span, 

the piece below the x-axis counts as a negative area, and the answer gives you 
the net of the area above the x-axis minus the area below the axis — rather 
than the total shaded area.

Finding the Volumes of Weird Solids
In geometry, you learned how to figure the volumes of simple solids like 
boxes, cylinders, and spheres. Integration enables you to calculate the vol-
umes of an endless variety of much more complicated shapes.

The meat-slicer method
This metaphor is actually quite accurate. Picture a hunk of meat being cut 
into very thin slices on one of those deli meat slicers. That’s the basic idea 
here. You slice up a three-dimensional shape, then add up the volumes of the 
slices to determine the total volume.

Here’s a problem: What’s the volume of the solid whose length runs along the 
x-axis from 0 to � and whose cross sections perpendicular to the x-axis are 
equilateral triangles such that the midpoints of their bases lie on the x-axis 
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and their top vertices are on the curve y=sin(x)? Is that a mouthful or what? 
This problem is almost harder to describe and to picture than it is to do. Take 
a look at this thing in Figure 17-5.

	

Figure 17-5: 
One weird 

hunk of 
pastrami.

	

So what’s the volume?

	 1.	 Determine the area of any old cross section.

		  Each cross section is an equilateral triangle with a height of sin(x). 
(The height of the second triangle from the left is shown in the figure.) 

If you do the geometry, you’ll see that the base of each triangle is 2
√

3

3
 

times its height, or 2
√

3

3
⋅sin(x). (Hint: Half of an equilateral triangle is 

a 30°-60°-90° triangle.) So, the triangle’s area, given by A=
1

2
(b)(h) is 

1

2

�

2

√

3

3
⋅sin(x)

�

sin(x), or 

√

3

3
sin

2
(x).

	 2.	 Find the volume of a representative slice.

		  The volume of a slice is just its cross-sectional area times its infinitesimal 
thickness, dx. So you’ve got the volume:

Volumeof representative slice=

√

3

3
sin

2
(x)dx

	 3.	 Add up the volumes of the slices from 0 to � by integrating.

		  If the following seems a bit difficult, well, heck, you better get used to 
it. This is calculus after all. (Actually, it’s not really that bad if you go 
through it patiently, step by step.)
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�

∫
0

√

3

3
sin

2
(x)dx

=

√

3

3

�

∫
0

sin
2
(x)dx

=

√

3

3

�

∫
0

1−cos(2x)

2
dx

(trig integrals with sines and cosines,

Case 3, from Chapter 16)

=

√

3

6

⎛

⎜

⎜

⎝

�

∫
0

1 dx−

�

∫
0

cos(2x)dx

⎞

⎟

⎟

⎠

=

√

3

6

�

[x]
�

0
−

�

sin(2x)

2

�

�

0

�

=

√

3

6

�

�−0−

�

sin(2�)

2
−
sin(0)

2

��

=

√

3

6
(�−0−(0−0))

=
�

√

3

6

≈0.91 cubic units

It’s a piece o’ cake slice o’ meat.

The disk method
This technique is basically the same as the meat slicer method — actually it’s 
a special case of the meat slicer method that you use when the cross-sections 
are all circles. Here’s how it works. Find the volume of the solid — between 
x=2 and x=3 — generated by rotating the curve y=ex about the x-axis. See 
Figure 17-6.

	 1.	 Determine the area of any old cross section.

		  Each cross section is a circle with radius ex. So, its area is given by the 
formula for the area of a circle, A=�r

2. Plugging ex into r gives you

A=�(e
x
)
2
=�e

2x
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	 2.	 Tack on dx to get the volume of an infinitely thin representative disk.

Volumeof disk=

area

⏞⏞⏞

�e
2x

⋅

thickness

⏞⏞⏞

dx

	 3.	 Add up the volumes of the disks from 2 to 3 by integrating.

Total volume=

3

∫
2

�e
2x
dx

=�

3

∫
2

e
2x
dx

=
�

2

3

∫
2

e
2x
2dx

(The two new 2s are to tweak the integral for

the u-substitution; see next line of equation.)

=
�

2

6

∫
4

e
u
du

(by substitution with u=2x and du=2dx;

when x=2, u=4; when x=3, u=6)

=
�

2

[

e
u
]6

4

=
�

2

(

e
6
−e

4
)

≈ 548 cubic units

	

Figure 17-6: 
A sideways 

stack of 
disks.
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		  A representative disk is located at no particular place. Note that 
Step 1 refers to “any old” cross section. I call it that because when you 
consider a representative disk like the one shown in Figure 17-6, you 
should focus on a disk that’s in no place in particular. The one shown 
in Figure 17-6 is located at an unknown position on the x-axis, and its 
radius goes from the x-axis up to the curve y=ex. Thus, its radius is 
the unknown length of ex. If, instead, you use some special disk like the 
left-most disk at x=2, you’re more likely to make the mistake of think-
ing that a representative disk has some known radius like e2. (This tip 
also applies to the meat-slicer method in the previous section and the 
washer method in the next section.)

The Washer Method
The only difference between the washer method and the disk method is that 
now each slice has a hole in its middle that you have to subtract. There’s 
nothing to it.

Here you go. Take the area bounded by y=x2 and y=
√

x, and generate a 
solid by revolving that area about the x-axis. See Figure 17-7.

	

Figure 17-7: 
A sideways 

stack of 
washers — 
just add up 

the volumes 
of all the 

washers.
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Just think: All the forces of the evolving universe and all the twists and turns 
of your life have brought you to this moment when you are finally able to 
calculate the volume of this solid — something for your diary. So what’s the 
volume of this bowl-like shape?

	 1.	 Determine where the two curves intersect.

		  It should take very little trial and error to see that y=x2 and y=
√

x 
intersect at x=0 and x=1 — how nice is that? So the solid in question 
spans the interval on the x-axis from 0 to 1.

	 2.	 Figure the cross-sectional area of a thin representative washer.

		  Each slice has the shape of a washer — see Figure 17-8 — so its cross-
sectional area equals the area of the entire circle minus the area of the hole.

	

Figure 17-8: 
The shaded 
area equals 
�R 2

−�r 2: 
The whole 
minus the 

hole —  
get it?

	

The area of the circle minus the hole is �R2
−�r

2, where R is the outer radius 
(the big radius) and r is the hole’s radius (the little radius). For this problem, 
the outer radius is 

√

x and the hole’s radius is x2, giving you

A=�

�

√

x

�2

−� (x
2
)
2

=�x−�x
4

	 3.	 Multiply this area by the thickness, dx, to get the volume of a repre-
sentative washer.

Volume=(�x−�x
4
)dx
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	 4.	 Add up the volumes of the even-thinner-than-paper-thin washers from 
0 to 1 by integrating.

Volume=

1

∫
0

(�x−�x
4
)dx

=�

1

∫
0

(x−x
4
)dx

=�

[

1

2
x
2
−
1

5
x
5

]1

0

=�

[(

1

2
−
1

5

)

−(0−0)

]

=
3

10
�

≈0.94 cubic units

	 Area equals big circle minus little circle. Focus on the simple fact that the 
area of a washer is the area of the entire disk, �R2, minus the area of the 

hole, �r2: Thus, Area=�R
2
−�r

2. When you integrate, you get .  

If you factor out the pi, and bring it to the outside of the integral, you get 

 which is the formula given in most books. But if you just learn 

that formula by rote, you may forget it. You’re more likely to remember the for-
mula and how to do these problems if you understand the simple big-circle-
minus-little-circle idea.

The matryoshka-doll method
Another method for calculating volume (which may not be covered in your 
calculus course) is the cylindrical shell method. Instead of cutting up the 
volume in question into slices, disks, or washers, you cut it up into thin concen-
tric cylinders. The concentric cylinders fit inside each other like those nested 
Russian dolls. For an example of one of these problems, check out my online 
article on the matryoshka doll method at www.dummies.com/go/calculus/.

Analyzing Arc Length
So far in this chapter, you’ve added up the areas of thin rectangles to get total 
area and the volumes of thin slices to get total volume. Now, you’re going to 
add up minute lengths along a curve to get the whole length.
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I could just give you the formula for arc length (the length along a curve), but 
I’d rather show you why it works and how to derive it. Lucky you. The idea 
is to divide a length of curve into tiny sections, figure the length of each sec-
tion, and then add up all the lengths. Figure 17-9 shows how each section of a 
curve can be approximated by the hypotenuse of a tiny right triangle.

	

Figure 17-9: 
The Pythag

orean  
theorem, 

a2+b2=c2,  
is the key 
to the arc 

length 
formula.

	

You can imagine that as you zoom in further and further, dividing the curve 
into more and more sections, the minute sections of the curve get straighter 
and straighter, and thus the perfectly straight hypotenuses become better 
and better approximations of the curve. That’s why — when this process of 
adding up smaller and smaller sections is taken to the limit — you get the 
precise length of the curve.

So, all you have to do is add up all the hypotenuses along the curve between 
your start and finish points. The lengths of the legs of each infinitesimal tri-
angle are dx and dy, and thus the length of the hypotenuse — given by the 
Pythagorean theorem — is

√

(dx)
2
+(dy)

2

To add up all the hypotenuses from a to b along the curve, you just integrate:

b

∫
a

√

(dx)
2
+(dy)

2

A little tweaking and you have the formula for arc length. First, factor out a 
(dx)

2 under the square root and simplify:
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Now you can take the square root of (dx)2 — that’s dx, of course — and bring 
it outside the radical, and, voilà, you’ve got the formula. . . .

	 Arc length formula: The arc length along a curve, y= f (x), from a to b, is given 
by the following integral:

The expression inside this integral is simply the length of a representative 
hypotenuse.

Try this one: What’s the length along y=(x−1)
3∕2 from x=1 to x=5?

	 1.	 Take the derivative of your function.

y=(x−1)
3∕2

dy

dx
=

3

2
(x−1)

1∕2

	 2.	 Plug this into the formula and integrate.
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		  (See how I got that? It’s the guess-and-check integration technique with 
the reverse power rule. The 4

9
 is the tweak amount you need because of 

the coefficient 9
4

.)

Now if you ever find yourself on a road with the shape of y=(x−1)
3∕2 and 

your odometer is broken, you can figure the exact length of your drive. Your 
friends will be very impressed — or very concerned.

Surfaces of Revolution —  
Pass the Bottle ’Round

A surface of revolution is a three-dimensional surface with circular cross sec-
tions, like a vase or a bell or a wine bottle. For these problems, you divide the 
surface into narrow circular bands, figure the surface area of a representative 
band, and then just add up the areas of all the bands to get the total surface 
area. Figure 17-10 shows such a shape with a representative band.

	

Figure 17-10: 
The wine 

bottle 
problem. If 
you’re sick 

of calculus, 
chill out and 

take a look 
at Wine For 

Dummies.
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What’s the surface area of a representative band? Well, if you cut the band 
and unroll it, you get sort of a long, narrow rectangle whose area, of course, 
is length times width. The rectangle wraps around the whole circular surface, 
so its length is the circumference of the circular cross section, or 2�r, where r 
is the height of the function (for garden-variety problems anyway). The width 
of the rectangle or band is the same as the length of the infinitesimal hypot-

enuse you used in the section on arc length, namely .  

Thus, the surface area of a representative band, from length times width, is 

, which brings us to the formula.

	 Surface of revolution formula: A surface generated by revolving a function, 
y= f (x), about an axis has a surface area — between a and b — given by the 
following integral:

If the axis of revolution is the x-axis, r will equal f (x) — as shown in Figure 17-10.  
If the axis of revolution is some other line, like y=5, it’s a bit more complicated —  
something to look forward to.

Now try one: What’s the surface area — between x=1 and x=2 — of the surface 
generated by revolving y=x3 about the x-axis? See Figure 17-11.

	

Figure 17-11: 
A surface 
of revolu-

tion — this 
one’s 

shaped sort 
of like the 

end of a 
trumpet.
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	 1.	 Take the derivative of your function.

y=x
3

dy

dx
=3x

2

		  Now you can finish the problem by just plugging everything into the for-
mula, but I’ll do it step by step to reinforce the idea that whenever you 
integrate, you write down a representative little bit of something — that’s 
the integrand — then you add up all the little bits by integrating.

	 2.	 Figure the surface area of a representative narrow band.

		  The radius of the band is x3, so its circumference is 2�x3 — that’s the 

band’s “length.” Its width, a tiny hypotenuse, is 
√

1+

(

dy

dx

)2

dx=

√

1+(3x
2
)
2

dx. And, thus, its area — length times width — is 

2�x
3

√

1+(3x
2
)
2

dx.

	 3.	 Add up the areas of all the bands from 1 to 2 by integrating.

That’s a wrap.
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Chapter 18

Taming the Infinite with 
Improper Integrals

In This Chapter
▶	The hospital rule — in case studying calculus makes you ill

▶	Meeting integrals without manners

▶	The paradox of Gabriel’s horn

I 
n Chapter 17, you used down-to-earth integrals to compute some relatively 
ordinary things like the area between curves, the volumes of 3-D shapes, 

the lengths of curves, etc. I say these things are down-to-earth because all of 
them involved finite things — things with a beginning and an end, things (like 
a bowl-shaped 3-D object) that you could sort of hold in your hand. In this 
chapter, you enter the twilight zone of integrals that go to infinity. These are 
fascinating problems that often have surprising results. But first, we have to 
take care of L’Hôpital’s rule — a handy technique to put into your calculus 
bag of tricks.

L’Hôpital’s Rule: Calculus for the Sick
L’Hôpital’s rule is a great shortcut for doing limit problems. Remember limits — 

from way back in Chapters 7 and 8 — like lim
x→3

x
2
−9

x−3
 ? By the way, if you’re won-

dering why I’m showing you this limit shortcut now, it’s because (a) you may 
need it someday to solve some improper integral problems (the topic of the 
next section in this chapter), though we don’t do such an example, and (b) you 
also need it for some of the infinite series problems in Chapter 19.
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As with most limit problems — not counting no-brainer problems — you can’t 

do lim
x→3

x
2
−9

x−3
 with direct substitution: plugging 3 into x gives you 0

0
, which is 

undefined. In Chapter 8, you learned to do this problem by factoring the numer-
ator into (x−3)(x+3) and then canceling the (x−3). That left you with lim

x→3

(x+3) , 
which equals 6.

Now watch how easy it is to take the limit with L’Hôpital’s rule. Simply take 
the derivative of the numerator and the derivative of the denominator. Don’t 
use the quotient rule; just take the derivatives of the numerator and denomi-
nator separately. The derivative of x2

−9 is 2x and the derivative of x−3 is 1.  
L’Hôpital’s rule lets you replace the numerator and denominator by their 
derivatives like this:

lim
x→3

x
2
−9

x−3
= lim

x→3

2x

1

The new limit is a no-brainer: lim
x→3

2x

1
=

2 ⋅3

1
=6

That’s all there is to it. L’Hôpital’s rule transforms a limit you can’t do with 
direct substitution into one you can do with substitution. That’s what makes 
it such a great shortcut.

Here’s the mumbo jumbo.

	 L’Hôpital’s rule: Let f and g be differentiable functions. If the limit of f (x)
g(x)

 as x 

approaches c produces 0
0
or

±∞
±∞

  when you substitute the value of c into x, then

lim
x→c

f (x)

g(x)
= lim

x→c

f
�
(x)

g
�
(x)

Note that c can be a number or ±∞. And note that in the ±∞ over ±∞ case, both 
infinities can be of the same sign or one can be positive and the other negative.

Here’s an example involving ∞
∞

: What’s lim
x→∞

ln(x)

x
 ? Direct substitution gives 

you ∞
∞

, so you can use L’Hôpital’s rule. The derivative of ln(x) is 1
x

, and the 

derivative of x is 1, so

lim
x→∞

ln(x)

x
= lim

x→∞

1

x

1
=

1

∞
1

=
0

1
=0

Try another one: Evaluate lim
x→0

e
3x
−1

x
. Substitution gives you 0

0
 so L’Hôpital’s 

rule applies. The derivative of e3x−1 is 3e3x and the derivative of x is 1, thus

lim
x→0

e
3x
−1

x
= lim

x→0

3e
3x

1
=

3 ⋅1

1
=3
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	 You must have zero over zero or infinity over infinity. The mumbo jumbo 

says that to use L’Hôpital’s rule, substitution must produce either 0
0
or

±∞
±∞

. 

You must get one of these acceptable “indeterminate” forms in order to apply 
the shortcut. Don’t forget to check this.

Getting unacceptable forms into shape
If substitution produces one of the unacceptable forms, ±∞ ⋅0 or ∞−∞, 
you first have to tweak the problem to get an acceptable form before using 
L’Hôpital’s rule.

For instance, find lim
x→∞

�

e
−x
√

x
�

. Substituting infinity into x gives you 0 ⋅∞ so 

you’ve got to tweak it:

lim
x→∞

�

e
−x
√

x
�

= lim
x→∞

�

√

x

e
x

�

Now you’ve got the ∞∞ case, so you’re all set to use L’Hôpital’s rule. The deriv-

ative of 
√

x is 1

2
√

x
, and the derivative of ex is ex, so

lim
x→∞

�

√

x

e
x

�

= lim
x→∞

⎛

⎜

⎜

⎝

1

2
√

x

e
x

⎞

⎟

⎟

⎠

=

1

2
√

∞

e
∞ =

1
∞
∞ =

0
∞ =0

Here’s another problem: What’s lim
x→0

+

(

1

1−cos x
−

1

x

)

 ? (Recall from Chapter 7 

that lim
x→0

+
 means that x approaches 0 from the right only; this is a one-sided 

limit.) First, substitute zero into x (actually, since x is approaching zero from 
the right, you must imagine plugging a tiny positive number into x, or you can 
sort of think of it as plugging a “positive” zero into x). Substitution gives you 
(

1

1−0.999999...
−

1

0
+

)

, which results in ∞−∞, one of the unacceptable forms. 

So tweak the limit expression with some algebra:
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Now substitution gives you 0
0

, so you can finish with L’Hôpital’s rule:

lim
x→0

+

(

x−1+cos x

x(1−cos x)

)

= lim
x→0

+

(

1−sin x

1(1−cos x)+x(sin x)

)

=
1−0

+

1 ⋅0
+
+0

+
⋅0

+

=
1

0
+

=+∞

That’s it.

Three more unacceptable forms
When substitution of the arrow-number into the limit expression produces one 
of the unacceptable forms 1±∞, 00, or ∞0, you use the following logarithm trick 
to turn it into an acceptable form. Here’s how it works. Let’s find lim

x→0
+
(sinx)

x. 

Substitution gives you (sin 0)0, which equals 00, so you do the following:

	 1.	 Set the limit equal to y.

		 y= lim
x→0

+
(sin x)

x

	 2.	 Take the log of both sides.

		

ln( y)= ln

(

lim
x→0

+
(sin x)

x

)

= lim
x→0

+

(

ln(sin x)
x
)

(Take my word for it.)

= lim
x→0

+
(x ln(sin x))

(Better review the log rules in

Chapter 4 if you don’t get this.)

	 3.	 This limit is a 0 ⋅ (−∞) case, so tweak it.

		

	 4.	 Now you’ve got a −∞
∞

 case, so you can use L’Hôpital’s rule.

		  The derivative of ln(sin x) is 1

sin x
⋅cos x, or cot x, and the derivative of 1

x
 

is − 1

x
2
, so
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	 5.	 This is a 0
0

 case, so use L’Hôpital’s rule again.

		

= lim
x→0

+

(

−2x

sec
2
x

)

=
0

1

=0

		  Hold your horses! This is not the answer.

	 6.	 Solve for y.

		  Do you see that the answer of 0 in Step 5 is the answer to the equation 

from way back in Step 2: ln(y)= ln

(

lim
x→0

+
(sin x)

x

)

 ? So, the 0 in Step 5 tells 

you that ln(y)=0. Now solve for y:

		
ln(y)=0

y=1

		  Because you set your limit equal to y in Step 1, this, finally, is your answer:

		  lim
x→0

+
(sin x)

x
=1

	 Ordinary math doesn’t work with infinity (or zero to the zero power). Don’t 
make the mistake of thinking that you can use ordinary arithmetic or the laws 
of exponents when dealing with any of the acceptable or unacceptable inde-
terminate forms. It might look like ∞−∞ should equal zero, for example, but it 

doesn’t. By the same token, 0 ⋅∞≠0, 0
0
≠1, ∞

∞
≠1, 00≠1, ∞0

≠1, and 1∞≠1.

Improper Integrals: Just Look at the Way 
That Integral Is Holding Its Fork!

Definite integrals are improper when they go infinitely far up, down, right, or left. 

They go up or down infinitely far in problems like  that have one or more 

vertical asymptotes. They go infinitely far to the right or left in problems like  
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∞

∫

5

1

x
2
dx or 

∞

∫

−∞

1

x
4
+1

dx, where one or both of the limits of integration are infinite.  

(There are a couple other weird types of improper integrals, but they’re rare — 
don’t worry about them.) It would seem to make sense to just use the term infinite 
instead of improper to describe these integrals, except for the remarkable fact 
that many of these “infinite” integrals give you a finite area. More about this in a 
minute.

You solve both types of improper integrals by turning them into limit problems. 
Take a look at some examples.

Improper integrals with  
vertical asymptotes
There are two cases to consider here: problems where there’s a vertical 
asymptote at one of the edges of the area in question and problems where 
there’s a vertical asymptote somewhere in the middle of the area.

A vertical asymptote at one of the limits of integration
What’s the area under y= 1

x
2
 from 0 to 1? This function is undefined at x=0, 

and it has a vertical asymptote there. So you’ve got to turn the definite integral 
into a limit where c approaches the x-value of the asymptote:

1

∫
0

1

x
2
dx= lim

c→0
+

1

∫
c

1

x
2
dx

(The area in question is to the right of zero,

so c approaches zero from the right.)

= lim
c→0

+

[

−
1

x

]1

c

(reverse power rule)

= lim
c→0

+

(

(−1)−

(

−
1

c

))

=−1−(−∞)

=−1+∞

=∞

This area is infinite, which probably doesn’t surprise you because the curve 
goes up to infinity. But hold on to your hat — the next function also goes up 
to infinity at x=0, but its area is finite!
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Find the area under y= 1

3
√

x

  from 0 to 1. This function is also undefined at 

x=0, so the process is the same as in the previous example:

	 Convergence and divergence: You say that an improper integral converges if 
the limit exists — that is, if the limit equals a finite number like in the second 
example. Otherwise, an improper integral is said to diverge — like in the first 
example. When an improper integral diverges, the area in question (or part of 
it) usually (but not always) equals ∞ or −∞.

A vertical asymptote between the limits of integration
If the undefined point of the integrand is somewhere in between the limits of 
integration, you split the integral in two — at the undefined point — then turn 

each integral into a limit and go from there. Evaluate 
8

∫

−1

1

3
√

x

dx. This integrand 

is undefined at x=0.

	 1.	 Split the integral in two at the undefined point.

		
8

∫
−1

1

3
√

x

dx=

0

∫
−1

1

3
√

x

dx+

8

∫
0

1

3
√

x

dx

	 2.	 Turn each integral into a limit and evaluate.

		  For the 
0

∫

−1

 integral, the area is to the left of zero, so c approaches zero 

from the left. For the 
8

∫

0

 integral, the area is to the right of zero, so c 

approaches zero from the right.
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	 Keep your eyes peeled for x-values where an integrand is undefined. If you 
fail to notice that an integrand is undefined at an x-value between the limits 
of integration, and you integrate the ordinary way, you may get the wrong 

answer. The above problem, 
8

∫

−1

1

3
√

x

dx (undefined at x=0), happens to work out 

correctly if you do it the ordinary way. However, if you do  (also unde-

fined at x=0) the ordinary way, not only do you get the wrong answer, you get 
the totally absurd answer of negative 2, despite the fact that the area in ques-
tion is above the x-axis and is therefore a positive area. The moral: Don’t risk it.

	 If a part diverges, the whole diverges. If either part of the split up integral 
diverges, the original integral diverges. You can’t get, say, −∞ for one part and 
∞ for the other part and add them up to get zero.

Improper integrals with one or two  
infinite limits of integration
You do these improper integrals by turning them into limits where c approaches 

infinity or negative infinity. Two examples: 
∞

∫

1

1

x
2
dx and 

∞

∫

1

1

x
dx.
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So this improper integral converges.

In the next integral, the denominator is smaller, x instead of x2, and thus the 

fraction is bigger, so you’d expect 
∞

∫

1

1

x
dx to be bigger than 

∞

∫

1

1

x
2
dx, which it is. 

But it’s not just bigger, it’s way bigger:

This improper integral diverges.

Figure 18-1 shows these two functions. The area under 1
x
2
 from 1 to ∞ is 

exactly the same as the area of the 1-by-1 square to its left: 1 square unit. The 
area under  from 1 to ∞ is much, much bigger — actually, it’s infinitely bigger 

than a square large enough to enclose the Milky Way Galaxy. Their shapes are 
quite similar, but their areas couldn’t be more different.

	

Figure 18-1: 
The area 
under 1

x 2
 

from 1 to ∞ 
and the area 

under 1
x

 
from 1 to ∞.

	

By the way, these two functions make another appearance in Chapter 19 on 
infinite series. Deciding whether an infinite series converges or diverges — a 
distinction quite similar to the difference between these two functions — is 
one of the main topics in Chapter 19.
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When both of the limits of integration are infinite, you split the integral in two 
and turn each part into a limit. Splitting up the integral at x=0 is convenient 
because zero’s an easy number to deal with, but you can split it up anywhere 
you like. Zero may also seem like a good choice because it looks like it’s in 
the middle between −∞ and ∞. But that’s an illusion because there is no 
middle between −∞ and ∞, or you could say that any point on the x-axis is 
the middle.

Here’s an example: 

	 1.	 Split the integral in two.

		

∞

∫
−∞

1

x
2
+1

dx=

0

∫
−∞

1

x
2
+1

dx+

∞

∫
0

1

x
2
+1

dx

	 2.	 Turn each part into a limit.

		 = lim
c→−∞

0

∫
c

1

x
2
+1

dx+ lim
c→∞

c

∫
0

1

x
2
+1

dx

	 3.	 Evaluate each part and add up the results.

		

Why don’t you do this problem again, splitting up the integral somewhere 
other than at x=0, to confirm that you get the same result.

	 If either “half” integral diverges, the whole, original integral diverges.

Blowing Gabriel’s horn
	 This horn problem may blow your mind.
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Gabriel’s horn is the solid generated by revolving about the x-axis the 

unbounded region between y= 1

x
 and the x-axis (for x≥1). See Figure 18-2. 

Playing this instrument poses several not-insignificant challenges: 1) It has 
no end for you to put in your mouth; 2) Even if it did, it would take you till 
the end of time to reach the end; 3) Even if you could reach the end and put 
it in your mouth, you couldn’t force any air through it because the hole is 
infinitely small; 4) Even if you could blow the horn, it’d be kind of pointless 
because it would take an infinite amount of time for the sound to come out. 
There are additional difficulties — infinite weight, doesn’t fit in universe, and 
so on — but I suspect you get the picture.

	

Figure 18-2: 
Gabriel’s 

horn.
	

Believe it or not, Gabriel’s horn has a finite volume, but an infinite surface 
area! You use the disk method to figure its volume (see Chapter 17). Recall 
that the volume of each representative disk is �r2dx. For this problem, the 

radius is 1
x

, so the little bit of volume is . You find the total volume 

by adding up the little bits from 1 to ∞:

Volume=

∞

∫
1

�

(

1

x

)2

dx

=�

∞

∫
1

1

x
2
dx

In the section on improper integrals, we calculated that 
∞

∫

1

1

x
2
dx=1, so the 

volume is � ⋅1, or just �.

To determine the surface area, you first need the function’s derivative (the 
method for calculating surface area is covered in the “Surfaces of Revolution” 
section in Chapter 17):
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y=
1

x

dy

dx
=−

1

x
2

Now plug everything into the surface area formula:

In the previous section, we determined that 
∞

∫

1

1

x
dx=∞, and because  1

x

√

1+
1

x
4

 

is always greater than  in the interval [1,∞),   must also equal ∞. 

Finally, 2� times ∞ is still ∞, of course, so the surface area is infinite.

Bonus question for those with a philosophical bent: Assuming Gabriel is 
omnipotent, could he overcome the above-mentioned difficulties and blow 
this horn? Hint: All the calculus in the world won’t help you with this one.



Chapter 19

Infinite Series 
In This Chapter
▶	Segueing from sequences into series

▶	An infinite series — the rain delays just wouldn’t end

▶	Getting musical with the harmonic series

▶	Taking a close look at telescoping series

▶	Rooting for the root test

▶	Testing for convergence

▶	Analyzing alternating series

A 
s with just about every topic in calculus, the subject of this chapter 
involves the idea of infinity — specifically, series that continue to 

infinity. An infinite series is the sum of an endless list of numbers like 
1

2
+
1

3
+
1

4
+
1

5
+ ... . Because the list is unending, it’s not surprising that such a 

sum can be infinite. What’s remarkable is that some infinite series add up to 
a finite number. This chapter covers ten tests for deciding whether the sum 
of a series is finite or infinite.

What you do in this chapter is quite fantastic when you think about it. Consider 
the series 0.1+0.01+0.001+0.0001+ ... . If you go out far enough, you’ll find 
a number that has so many zeros to the right of the decimal point that even 
if each zero were as small as a proton, there wouldn’t be enough room in the 
entire universe just to write it down! As vast as our universe is, anything in it — 
say the number of elementary particles — is a proverbial drop in the bucket 
next to the things you look at in this chapter. Actually, not even a drop in the 
bucket, because next to infinity, any finite thing amounts to nothing. You’ve 
probably heard Carl Sagan get emotional about the “billions and billions” of 
stars in our galaxy. “Billions and billions” — pffffftt.
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Sequences and Series: What  
They’re All About

Here’s a sequence: 1
2
,
1

4
,
1

8
,
1

16
, ... . Change the commas to addition signs and 

you’ve got a series: 1
2
+
1

4
+
1

8
+

1

16
+ ... . Pretty simple, eh? Investigating series 

is what this chapter is all about, but I need to briefly discuss sequences to lay 
the groundwork for series.

Stringing sequences
A sequence is simply a list of numbers. An infinite sequence is an unending list 
of numbers. That’s the only kind we’re interested in here, and whenever the 
term sequence (or series) is used alone in this chapter, it means an infinite 
sequence (or infinite series).

Here’s the general form for an infinite sequence:

a
1
,a

2
,a

3
,a

4
, ... , a

n
, ...

where n runs from 1 (usually) to infinity (sometimes n starts at zero or 
another number). The fourth term of this sequence, for example, is a

4
 (read 

“a sub 4”); the nth term is a
n
 (read “a sub n”). The thing we care about is 

what happens to a sequence infinitely far out to the right, or as mathemati-
cians say, “in the limit.” A shorthand notation for this sequence is 

{

a
n

}

.

A few paragraphs back, I mentioned the following sequence. It’s defined by 

the formula a
n
=

1

2
n :

1

2
,
1

4
,
1

8
,
1

16
, ... ,

1

2
n
, ...

What happens to this sequence as n approaches infinity should be pretty 
easy to see. Each term gets smaller and smaller, right? And if you go out far 
enough, you can find a term as close to zero as you want, right? So,

lim
n→∞

a
n
= lim

n→∞

1

2
n
=

1

2
∞ =

1

∞
=0

Recall from Chapters 7 and 8 how to interpret this limit: As n approaches infinity 
(but never gets there), a

n
  gets closer and closer to zero (but never gets there).
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Convergence and divergence of sequences
Because the limit of the previous sequence is a finite number, you say that 
the sequence converges.

	 Convergence and divergence: For any sequence 
{

a
n

}

, if lim
n→∞

a
n
=L, where L is 

a real number, then the sequence converges to L. Otherwise, the sequence is 
said to diverge.

Sequences that converge sort of settle down to some particular number — 
plus or minus some miniscule amount — after you go out to the right far 
enough. Sequences that diverge never settle down. Instead, diverging 
sequences might . . .

	 ✓	Increase forever, in which case lim
n→∞

a
n
=∞. Such a sequence is said to 

“blow up.” A sequence can also have a limit of negative infinity.

	 ✓	Oscillate (go up and down) like the sequence 

	 ✓	Exhibit no pattern at all — this is rare.

Sequences and functions go hand in hand

The sequence  can be thought of as an infinite 

set of discrete points (discrete is a fancy math word for separate) along the 
continuous function f (x)= 1

2
x . Figure 19-1 shows the curve f (x)= 1

2
x  and the 

points on the curve that make up the sequence.

	

Figure 19-1: 
The points 

on the curve 
f (x )= 1

2
x  

make up the 
sequence 

.
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The sequence is made up of the outputs (the y-values) of the function where 
the inputs (the x-values) are positive integers (1, 2, 3, 4, . . . ).

A sequence and the related function go hand in hand. If the limit of the func-
tion as x approaches infinity is some finite number, L, then the limit of the 
sequence is also L, and thus, the sequence converges to L. Also, the graph of 
such a convergent function/sequence pair has a horizontal asymptote at y=L;  
the graph in Figure 19-1 has an asymptote with the equation y=0.

Determining limits with L’Hôpital’s rule
Remember L’Hôpital’s rule from Chapter 18? You’re going to use it now to find 

limits of sequences. Does the sequence a
n
=
n
2

2
n  converge or diverge? By plug-

ging in 1, then 2, then 3, and so on into n
2

2
n , you generate the first few terms of 

the sequence:

1

2
, 1,

9

8
, 1,

25

32
,
36

64
,
49

128
,
64

256
, ...

What do you think? After going up for a couple terms, the sequence goes down 
and it appears that it’ll keep going down — looks like it will converge to zero. 
L’Hôpital’s rule proves it. You use the rule to determine the limit of the function 

f (x)=
x
2

2
x , which goes hand in hand with the sequence n

2

2
n .

	 Take two separate derivatives. To use L’Hôpital’s rule, take the derivative of 
the numerator and the derivative of the denominator separately; you do not 
use the quotient rule.

For this problem, you have to use L’Hôpital’s rule twice:

Because the limit of the function is 0, so is the limit of the sequence, and thus 

the sequence  converges to zero.

Summing series
An infinite series (or just series for short) is simply the adding up of the infinite 
number of terms of a sequence. Here’s the sequence from the previous section 

again, a
n
=

1

2
n :

1

2
,
1

4
,
1

8
,
1

16
, ...
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And here’s the series associated with this sequence:

1

2
+
1

4
+
1

8
+

1

16
+ ...

You can use fancy summation notation to write this sum in a more compact 
form:

∞
∑

n=1

1

2
n

The summation symbol tells you to plug 1 in for n, then 2, then 3, and so on, 
and then to add up all the terms (more on summation notation in Chapter 14). 
Nitpickers may point out that you can’t actually add up an infinite number of 
terms. Okay, so here’s the fine print for the nitpickers. An infinite sum is tech-
nically a limit. In other words,

∞
∑

n=1

1

2
n
= lim

b→∞

b
∑

n=1

1

2
n

To find an infinite sum, you take a limit — just like you do for improper (infi-
nite) integrals (see Chapter 18). From here on, though, I just write infinite sums 

like  and dispense with the limit mumbo jumbo.

Partial sums
Continuing with the same series, take a look at how the sum grows by listing 
the “sum” of one term (kind of like the sound of one hand clapping), the sum 
of two terms, three terms, four, and so on:

Each of these sums is called a partial sum of the series.

	 Partial sum: The nth partial sum, S
n
 , of an infinite series is the sum of the first 

n terms of the series.
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The convergence or divergence of a series — the main event
If you now list the preceding partial sums, you have the following sequence of 
partial sums:

1

2
,
3

4
,
7

8
,
15

16
, ...

The main point of this chapter is figuring out whether such a sequence of 
partial sums converges — homes in on a finite number — or diverges. If the 
sequence of partial sums converges, you say that the series converges; other
wise, the sequence of partial sums diverges and you say that the series 
diverges. The rest of this chapter is devoted to the many techniques used in 
making this determination.

By the way, if you’re getting a bit confused by the terms sequence and series 
and the connection between them, you’re not alone. Keeping the ideas straight 
can be tricky. For starters, note that there are two sequences associated with 

every series. With the series 1
2
+
1

4
+
1

8
+

1

16
+ ... , for example, you have the 

underlying sequence, 1
2
,
1

4
,
1

8
,
1

16
, ... , and also the sequence of partial sums, 

1

2
,
3

4
,
7

8
,
15

16
, ... . It’s not a bad idea to try to keep these things straight, but all 

you really need to worry about is whether the series adds up to some finite 
number or not. If it does, it converges; if not, it diverges. The reason for get-
ting into the somewhat confusing notion of a sequence of partial sums is that 
the definitions of convergence and divergence are based on the behavior of 
sequences, not series. But — I hope it goes without saying — ideas are more 
important than terminology, and again, the important idea you need to focus 
on is whether or not a series sums up to a finite number.

What about the previous series? Does it converge or diverge? It shouldn’t 
take too much imagination to see the following pattern:
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Finding the limit of this sequence of partial sums is a no brainer:

So, this series converges to 1. In symbols,

∞
∑

n=1

1

2
n
=

1

2
+
1

4
+
1

8
+

1

16
+ .......=1

By the way, this may remind you of that paradox about walking toward a wall, 
where your first step is halfway to the wall, your second step is half of the 
remaining distance, your third step is half the remaining distance, and so on. 
Will you ever get to the wall? Answer: It depends. More about that later.

Convergence or Divergence? 
That Is the Question

This section contains nine ways of determining whether a series converges 
or diverges. (Then, in the next section on alternating series, we look at a final 
tenth test for convergence/divergence.) Note that all of the series we investi-
gate in this section are made up of positive terms.

A no-brainer divergence test:  
The nth term test
If the individual terms of a series (in other words, the terms of the series’ 
underlying sequence) do not converge to zero, then the series must diverge. 
This is the nth term test for divergence.

	 The nth term test: If lim
n→∞

a
n
≠0, then 

∑

a
n
 diverges. (I presume you figured out 

that with this naked summation symbol, n runs from 1 to infinity.)

(Note: The nth term test not only works for ordinary positive series like the 
ones in this section, it also works for series with positive and negative terms. 
More about this at the end of this chapter in the “Alternating Series” section.)

If you think about it, the nth term test is just common sense. When a series 
converges, the sum is homing in on a certain number. The only way this 
can happen is when the numbers being added are getting infinitesimally 

small — like in the series I’ve been talking about: 1
2
+
1

4
+
1

8
+

1

16
+ ... .  
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Imagine, instead, that the terms of a series are converging, say, to 1, like in 
the series 1

2
+
2

3
+
3

4
+
4

5
+
5

6
+ ... , generated by the formula a

n
=

n

n+1
. In that 

case, when you add up the terms, you are adding numbers extremely close 

to 1 over and over and over forever — and this must add up to infinity. So, 
in order for a series to converge, the terms of the series must converge to 
zero. But make sure you understand what this nth term test does not say.

	 When the terms of a series converge to zero, that does not guarantee that 
the series converges. In hifalutin’ logicianese — the fact that the terms of a 
series converge to zero is a necessary but not sufficient condition for conclud-
ing that the series converges to a finite sum.

Because this test is often very easy to apply, it should be one of the first 
things you check when trying to determine whether a series converges or 

diverges. For example, if you’re asked to determine whether  

converges or diverges, note that every term of this series is a number greater 
than 1 being raised to a positive power. This always results in a number 
greater than 1, and thus, the terms of this series do not converge to zero, and 
the series must therefore diverge.

Three basic series and their convergence/
divergence tests
In this subsection, we look at geometric series, p-series, and telescoping series. 
Geometric series and p-series are relatively simple but important series that, 
in addition to being interesting in their own right, can be used as benchmarks 
when determining the convergence or divergence of more complicated series. 
Telescoping series don’t come up much, but many calculus texts describe 
them, so who am I to buck tradition?

Geometric series
A geometric series is a series of the form

a+ar+ar
2
+ar

3
+ar

4
+ ...=

∞
∑

n=0

ar
n

The first term, a, is called the leading term. Each term after the first equals 
the preceding term multiplied by r, which is called the ratio.

For example, if a is 5 and r is 3, you get

5+5 ⋅3+5 ⋅3
2
+5 ⋅3

3
+ ... =5+15+45+135+ ...
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You just multiply each term by 3 to get the next term. By the way, the 3 in this 
example is called the ratio because the ratio of any term divided by its pre-
ceding term equals 3, but I think it makes a lot more sense to think of the 3 as 
your multiplier.

If a is 100 and r is 0.1, you get

100+100 ⋅0.1+100 ⋅0.1
2
+100 ⋅0.1

3
+100 ⋅0.1

4
+ ...

=100+10+1+0.1+0.01+ ...

If that rings a bell, you’ve got a good memory. It’s the series for the Achilles 
versus the tortoise paradox (go way back to Chapter 2).

And if a is 1
2

 and r is also 1
2

, you get the series I’ve been talking so much about:

1

2
+
1

4
+
1

8
+

1

16
+ ...

The convergence/divergence rule for geometric series is a snap.

	 Geometric series rule: If 0< |r|<1, the geometric series 
∞
∑

n=0

ar
n converges to 

a

1− r
. If  |r|≥1, the series diverges. (Note that this rule works when , in 

which case you get an alternating series; more about that at the end of this 
chapter.)

In the first example, a=5 and r =3, so the series diverges. In the second 

example, a is 100 and r is 0.1, so the series converges to 100

1−0.1
=

100

0.9
=111

1

9
. 

That’s the answer to the Achilles versus the tortoise problem: Achilles passes 

the tortoise after running 111 1
9

 meters. And in the third example, a= 1

2
 and 

r =
1

2
, so the series converges to 1∕2

1−1∕2
=1. This is how far you walk if you 

start 1 yard from the wall, then step half way to the wall, then half of the 
remaining distance, and so on and so on. You take an infinite number of steps, 
but travel a mere yard. And how long will it take you to get to the wall? Well, 
if you keep up a constant speed and don’t pause between steps (which, of 
course, is impossible), you’ll get there in the same amount of time it would 
take you to walk any old yard. If you do pause between steps, even for a bil-
lionth of a second, you’ll never get to the wall.

p-series
A p-series is of the form

∞
∑

n=1

1

n
p
=

1

1
p
+

1

2
p
+

1

3
p
+

1

4
p
+ ...
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(where p is a positive power). The p-series for p=1 is called the harmonic 
series. Here it is:

1

1
+
1

2
+
1

3
+
1

4
+
1

5
+
1

6
+ ...

Although this grows very slowly — after 10,000 terms, the sum is only about 
9.79! — the harmonic series in fact diverges to infinity.

By the way, this is called a harmonic series because the numbers in the 
series have something to do with the way a musical string like a guitar string 
vibrates — don’t ask. For history buffs, in the 6th century b.c., Pythagoras 
investigated the harmonic series and its connection to the notes of the lyre.

Here’s the convergence/divergence rule for p-series:

	 p-series rule: The p-series 
∞
∑

n=1

1

n
p  converges if p>1 and diverges if p≤1.

As you can see from this rule, the harmonic series forms the convergence/
divergence borderline for p-series. Any p-series with terms larger than the 
terms of the harmonic series diverges, and any p-series with terms smaller 
than the terms of the harmonic series converges.

The p-series for p=2 is another common series:

1 +
1

2
2
+

1

3
2
+

1

4
2
+

1

5
2
+

1

6
2
+ ...

= 1 +
1

4
+

1

9
+

1

16
+

1

25
+

1

36
+ ...

The p-series rule tells you that this series converges. Note, however, that the 
p-series rule can’t tell you what number this series converges to. (Contrast 
that to the geometric series rule, which can answer both questions.) By other 
means — beyond the scope of this book — it can be shown that this sum 

converges to �
2

6
.

Telescoping series
You don’t see many telescoping series, but the telescoping series rule is a 
good one to keep in your bag of tricks — you never know when it might come 
in handy. Consider the following series:

∞
∑

n=1

1

n (n+1)
=

1

2
+
1

6
+

1

12
+

1

20
+

1

30
+ ...



 Chapter 19: Infinite Series 331
To see that this is a telescoping series, you have to use the partial fractions 
technique from Chapter 16 — sorry to have to bring that up again — to 

rewrite 1

n(n+1)
 as 1

n
−

1

n+1
. Now you’ve got

Do you see how all these terms will now collapse, or telescope? The 1
2

  s 

cancel, the 1
3

  s cancel, the 1
4

  s cancel, and so on. All that’s left is the first term, 

1, (actually, it’s only half a term) and the “last” half-term, − 1

n+1
. So the sum 

of the first n terms is simply 1− 1

n+1
. In the limit, as n approaches infinity, 

1

n+1
 converges to zero, and thus the sum converges to 1−0, or 1.

Each term in a telescoping series can be written as the difference of two half-
terms — call them h-terms. The telescoping series can then be written as

(h
1
−h

2
)+(h

2
−h

3
)+(h

3
−h

4
)+(h

4
−h

5
)+ ...+(h

n
−h

n+1
) + . . ..

I bet you’re dying for another rule, so here’s the next one.

	 Telescoping series rule: A telescoping series of the above form converges if 
h
n+1

 converges to a finite number. In that case, the series converges to 
h
1
− lim
n→∞

h
n+1

. If h
n+1

 diverges, the series diverges.

Note that this rule, like the rule for geometric series, lets you determine what 
number a convergent telescoping series converges to. These are the only two 
rules I cover where you can do this. The other eight rules for determining con-
vergence or divergence don’t allow you to determine what a convergent series 
converges to. But hey, you know what they say, “two out of ten ain’t bad.”

Three comparison tests for convergence/
divergence 
Say you’re trying to figure out whether a series converges or diverges, but it 
doesn’t fit any of the tests you know. No worries. You find a benchmark series 
that you know converges or diverges and then compare your new series to 
the known benchmark. For the next three tests, if the benchmark converges, 
your series converges; and if the benchmark diverges, your series diverges.
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The direct comparison test
This is a simple, common-sense rule. If you’ve got a series that’s smaller than 
a convergent benchmark series, then your series must also converge. And if 
your series is larger than a divergent benchmark series, then your series must 
also diverge. Here’s the mumbo jumbo.

	 Direct comparison test: Let 0≤a
n
≤b

n
 for all n.

If 
∞
∑

n=1

b
n
 converges, then 

∞
∑

n=1

a
n
 converges.

If 
∞
∑

n=1

a
n
 diverges, then 

∞
∑

n=1

b
n
 diverges.

How about an example? Determine whether  converges or diverges. 

Piece o’ cake. This series resembles 
∞
∑

n=1

1

3
n , which is a geometric series with 

r equal to 1
3

. (Note that you can rewrite this in the standard geometric series 

form as .) Because 0< |r|<1, this series converges. And because 

1

5+3
n  is less than 1

3
n  for all values of n,  must also converge.

Here’s another one: Does 
∞
∑

n=1

lnn

n
 converge or diverge? This series resembles 

∞
∑

n=1

1

n
, the harmonic p-series that is known to diverge. Because lnn

n
 is greater 

than 1
n

 for all values of n≥3, then 
∞
∑

n=1

lnn

n
 must also diverge. By the way, if 

you’re wondering why I’m allowed to consider only the terms where n≥3, 
here’s why:

	 Feel free to ignore initial terms. For any of the convergence/divergence tests, 
you can disregard any number of terms at the beginning of a series. And if 
you’re comparing two series, you can ignore any number of terms from the 
beginning of either or both of the series — and you can ignore a different 
number of terms in each of the two series.

This utter disregard of innocent beginning terms is allowed because the first, 
say, 10 or 1,000 or 1,000,000 terms of a series always sum to a finite number 
and thus never have any effect on whether the series converges or diverges. 
Note, however, that disregarding a number of terms would affect the total that 
a convergent series converges to.

(Are you wondering why this disregard of beginning terms doesn’t violate the 
direct comparison test’s requirement that 0≤a

n
≤b

n
 for all n? Everything’s 

copacetic because you can lop off any number of terms at the beginning of 
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each series and let the counter, n, start at 1 anywhere in each series. Thus 
the “first” terms a

1
 and b

1
 can actually be located anywhere along each series. 

See what I mean?)

	 Fore! (That was a joke.) The direct comparison test tells you nothing if the 
series you’re investigating is greater than a known convergent series or less 
than a known divergent series.

For example, say you want to determine whether 
∞
∑

n=1

1

10+
√

n
 converges. This 

series resembles , which is a p-series with p equal to 1
2

. The p-series 

test says that this series diverges, but that doesn’t help you because your 
series is less than this known divergent benchmark.

Instead, you should compare your series to the divergent harmonic series, 
∞
∑

n=1

1

n
. Your series, 1

10+
√

n
, is greater than 1

n
 for all n≥14 (it takes a little work 

to show this; give it a try). Because your series is greater than the divergent 
harmonic series, your series must also diverge.

The limit comparison test
The idea behind this test is that if you take a known convergent series and 
multiply each of its terms by some number, then that new series also con-
verges. And it doesn’t matter whether that multiplier is, say, 100, or 10,000, or 

1

10,000
 because any number, big or small, times the finite sum of the original 

series is still a finite number. The same thing goes for a divergent series mul-
tiplied by any number. That new series also diverges because any number, 
big or small, times infinity is still infinity. This is oversimplified — it’s only in 
the limit that one series is sort of a multiple of the other — but it conveys the 
basic principle.

You can discover whether such a connection exists between two series by 
looking at the ratio of the nth terms of the two series as n approaches infinity. 
Here’s the test.

	 Limit comparison test: For two series, 
∑

a
n
 and 

∑

b
n
 , if  and 

 , where L is finite and positive, then either both series converge 

or both diverge.

	 Use this test when your series goes the wrong way. This is a good test to use 
when you can’t use the direct comparison test for your series because it goes 
the wrong way — in other words, your series is larger than a known convergent 
series or smaller than a known divergent series.
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Here’s an example: Does 
∞
∑

n=2

1

n
2
− lnn

 converge or diverge? This series resem-

bles the convergent p-series, 1
n
2
, so that’s your benchmark. But you can’t use 

the direct comparison test because the terms of your series are greater than 
1

n
2
. Instead, you use the limit comparison test.

Take the limit of the ratio of the nth terms of the two series. It doesn’t matter 
which series you put in the numerator and which in the denominator, but 
putting the known, benchmark series in the denominator makes it a little 
easier to do these problems and grasp the results.

Because the limit is finite and positive and because the benchmark series 

converges, your series must also converge. Thus,  converges.

	 Use this test for rational functions. The limit comparison test is a good one 
for series where the general term is a rational function — in other words, 
where the general term is a quotient of two polynomials.

For example, determine the convergence or divergence of .

	 1.	 Determine the benchmark series.

		  Take the highest power of n in the numerator and the denominator — 
ignoring any coefficients and all other terms — then simplify. Like this:

		  That’s the benchmark series, 1
n

, the divergent harmonic series.
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	 2.	 Take the limit of the ratio of the nth terms of the two series.

	 3.	 Because the limit from Step 2 is finite and positive and because the 
benchmark series diverges, your series must also diverge.

		  Thus,  diverges.

	 Okay, so I’m a rebel. The limit comparison test is always stated as it appears at 
the beginning of this section, but I want to point out — recklessly ignoring the 
noble tradition of calculus textbook authors — that in a sense it’s incomplete. 
The limit, L, doesn’t have to be finite and positive for the test to work. First, if 
the benchmark series is convergent, and you put it in the denominator of the 
limit, and the limit is zero, then your series must also converge. Note that if 
the limit is infinity, you can’t conclude anything. And second, if the benchmark 
series is divergent, and you put it in the denominator, and the limit is infinity, 
then your series must also diverge. If the limit is zero, you can’t conclude 
anything.

The integral comparison test
The third benchmark test involves comparing the series you’re investigating 
to its companion improper integral (see Chapter 18 for more on improper 
integrals). If the integral converges, your series converges; and if the integral 
diverges, so does your series. By the way, to the best of my knowledge, no 
one else calls this the integral comparison test — but they should because 
that’s the way it works.

Here’s an example. Determine the convergence or divergence of 
∞
∑

n=2

1

n lnn
. 

The direct comparison test doesn’t work because this series is smaller than 
the divergent harmonic series, 1

n
. Trying the limit comparison test is the next 



336 Part V: Integration and Infinite Series 

natural choice, but it doesn’t work either — try it. But if you notice that the 
series is an expression you know how to integrate, you’re home free (you did 
notice that, right?). Just compute the companion improper integral with the 
same limits of integration as the index numbers of the summation — like this:

=(ln(ln ∞)− ln(ln 2)

=∞− ln(ln 2)

=∞

Because the integral diverges, your series diverges.

After you’ve determined the convergence or divergence of a series with the 
integral comparison test, you can then use that series as a benchmark for 
investigating other series with the direct comparison or limit comparison 
tests.

For instance, the integral test just told you that 
∞
∑

n=2

1

n lnn
 diverges. Now you 

can use this series to investigate 
∞
∑

n=3

1

n lnn−
√

n
 with the direct comparison 

test. Do you see why? Or you can investigate, say, 
∞
∑

n=1

1

n lnn+
√

n
 with the 

limit comparison test. Try it.

	 Don’t forget the integral test. The integral comparison test is fairly easy to 
use, so don’t neglect to ask yourself whether you can integrate the series 
expression or something close to it. If you can, it’s a BINGO.
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By the way, in Chapter 18, you saw the following two improper integrals: 

, which diverges and , which converges. Look back at Figure 18-1.  

Now that you know the integral comparison test, you can appreciate the con-
nection between those integrals and their companion p-series: the divergent 

harmonic series, 
∞
∑

n=1

1

n
, and the convergent p-series, 

∞
∑

n=1

1

n
2
.

Here’s the mumbo jumbo for the integral comparison test. Note the fine print.

	 Integral comparison test: If f (x) is positive, continuous, and decreasing for all 

x≥1 and if a
n
= f (n), then 

∞
∑

n=1

a
n
 and 

∞

∫

1

f (x)dx either both converge or both diverge.

The two “R” tests: Ratios and roots
Unlike the three benchmark tests from the previous section, the ratio and 
root tests don’t compare a new series to a known benchmark. They work by 
looking only at the nature of the series you’re trying to figure out. They form 
a cohesive pair because the results of both tests tell you the same thing. If 
the result is less than 1, the series converges; if it’s more than 1, the series 
diverges; and if it’s exactly 1, you learn nothing and must try a different test. 
(As presented here, the ratio and root tests are used for series of positive 
terms. In other books, you may see a different version of each test that uses 
the absolute value of the terms. These absolute value versions can be used 
for series made up of both positive and negative terms. Don’t sweat this; the 
different versions amount to the same thing.)

The ratio test
The ratio test looks at the ratio of a term of a series to the immediately preced-
ing term. If, in the limit, this ratio is less than 1, the series converges; if it’s more 
than 1 (this includes infinity), the series diverges; and if it equals 1, the test is 
inconclusive.

	 When to use the ratio test. The ratio test works especially well with series 
involving factorials like n! or where n is in the power like 3n.

	 Definition of the factorial symbol. The factorial symbol, !, tells you to 
multiply like this: 6!=6 ⋅5 ⋅4 ⋅3 ⋅2 ⋅1. And notice how things cancel when 
you have factorials in the numerator and denominator of a fraction: 
6!
5!

=
6⋅ ̸5⋅ ̸4⋅ ̸3⋅ ̸2⋅ ̸1

̸5⋅ ̸4⋅ ̸3⋅ ̸2⋅ ̸1
=6 and . In both cases, everything 

cancels but the 6. In the same way, (n+1)!

n!
=n+1 and n!

(n+1)!
=

1

n+1
; every-

thing cancels but the (n+1). Lastly, it seems weird, but 0!=1 — just take my 
word for it.
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Try this one: Does 
∞
∑

n=0

3
n

n!
 converge or diverge? Here’s what you do. You look 

at the limit of the ratio of the (n+1)st term to the nth term:

Because this limit is less than 1,  converges.

Here’s another series: 
∞
∑

n=1

n
n

n!
. What’s your guess — does it converge or diverge? 

Look at the limit of the (n+1)st term over the nth term:

Because the limit is greater than 1,  diverges.
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The root test
Like the ratio test, the root test looks at a limit. This time you investigate the 
limit of the nth root of the nth term of your series. The result tells you the 
same thing as the results of the ratio test: If the limit is less than 1, the series 
converges; if it’s more than 1 (including infinity), the series diverges; and if 
the limit equals 1, you learn nothing.

	 The root test is a good one to try if the series involves nth powers.

Try this one: Does 
∞
∑

n=1

e
2n

n
n  converge or diverge? Here’s what you do:

Because the limit is less than 1, the series converges. By the way, you can 
also do this series with the ratio test, but it’s harder — take my word for it.

	 Making a good guess about convergence/divergence: Sometimes it’s useful 
to make an educated guess about the convergence or divergence of a series 
before you launch into one or more of the convergence/divergence tests. Here’s 
a tip that helps with some series. The following expressions are listed from 
“smallest” to “largest”: n10, 10n,n!,nn. (The 10 is an arbitrary number; the size of 
the number doesn’t affect this ordering.) A series with a “smaller” expression 

over a “larger” one converges, for example, 
∞
∑

n=1

n
50

n!
 or 

∞
∑

n=1

n!
n
n  ; and a series with 

a “larger” expression over a “smaller” one diverges, for instance, 
∞
∑

n=1

n
n

100
n  or 

∞
∑

n=1

25
n

n
100

.

Alternating Series
In the previous sections, you’ve been looking at series of positive terms. Now 
you look at alternating series — series where the terms alternate between 
positive and negative — like this:

1−
1

2
+
1

4
−
1

8
+

1

16
−

1

32
+

1

64
− ...
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Finding absolute versus conditional 
convergence
Many divergent series of positive terms converge if you change the signs of 
their terms so they alternate between positive and negative. For example, 
you know that the harmonic series diverges:

1+
1

2
+
1

3
+
1

4
+
1

5
+
1

6
+ ...

But, if you change every other sign to negative, you obtain the alternating har-
monic series, which converges:

1−
1

2
+
1

3
−
1

4
+
1

5
−
1

6
+ ...

By the way, although I’m not going to show you how to compute it, this series 
converges to ln 2, which equals about 0.6931.

	 Definition of conditional convergence: An alternating series is said to be 
conditionally convergent if it’s convergent as it is but would become divergent 
if all its terms were made positive.

	 Definition of absolute convergence: An alternating series is said to be abso-
lutely convergent if it would be convergent even if all its terms were made 
positive. And any such absolutely convergent alternating series is also auto-
matically convergent as it is.

Here’s an example. Determine the convergence or divergence of the following 
alternating series:

If all these terms were positive, you’d have the familiar geometric series,

which, by the geometric series rule, converges to 2. Because the positive 
series converges, the alternating series must also converge (though to a dif-
ferent result — see the following) and you say that the alternating series is 
absolutely convergent.
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The fact that absolute convergence implies ordinary convergence is just 
common sense if you think about it. The previous geometric series of posi-
tive terms converges to 2. If you made all the terms negative, it would sum to 
−2, right? So, if some of the terms are positive and some negative, the series 
must converge to something between −2 and 2.

Did you notice that the above alternating series is a geometric series as it is 

with r =−
1

2
? (Recall that the geometric series rule works for alternating series 

as well as for positive series.) The rule gives its sum: a

1− r
=

1

1−

(

−
1

2

) =
2

3
.

The alternating series test
	 Alternating series test: An alternating series converges if two conditions 

are met:

	 1.	 Its nth term converges to zero.

	 2.	 Its terms are non-increasing — in other words, each term is less than or 
equal to its predecessor (ignoring the minus signs).

		  (Note that you are free to ignore any number of initial terms when check-
ing whether condition 2 is satisfied.)

Using this simple test, you can easily show many alternating series to be con-
vergent. The terms just have to converge to zero and get smaller and smaller 
(they rarely stay the same). The alternating harmonic series converges by 
this test:

As do the following two series:

	 The alternating series test can’t tell you whether a series is absolutely or 
conditionally convergent. The alternating series test can only tell you whether 
an alternating series itself converges. The test says nothing about the corre-
sponding positive-term series. In other words, the test cannot tell you whether 
a series is absolutely convergent or conditionally convergent. To answer that, 
you must investigate the positive series with a different test.
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Now try a few problems. Determine the convergence or divergence of the 
following series. If convergent, determine whether the convergence is condi-
tional or absolute.

∞
∑

n=3

(−1)
n+1 lnn

n

	 1.	 Check that the nth term converges to zero.

		  Consider the nth term. Always check the nth term first because if it 
doesn’t converge to zero, you’re done — the alternating series and the 
positive series will both diverge. Note that the nth term test of diver-
gence (see the section on the nth term test) applies to alternating series 
as well as positive series.

	 2.	 Check that the terms decrease or stay the same (ignoring the minus 
signs).

		  To show that lnn
n

 decreases, take the derivative of the function f (x)= ln x

x
. 

Remember differentiation? I know it’s been a while.

		  This is negative for all x≥3 (because the natural log of anything 3 or 
greater is more than 1 and x2, of course, is always positive), so the 
derivative and thus the slope of the function are negative, and therefore 
the function is decreasing. Finally, because the function is decreasing, 
the terms of the series are also decreasing (when n≥3). That does it: 

 converges by the alternating series test.

	 3.	 Determine the type of convergence.

		  You can see that for n≥3 the positive series, lnn
n

, is greater than the 

divergent harmonic series, 1
n

, so the positive series diverges by the 

direct comparison test. Thus, the alternating series is conditionally 
convergent.
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	 I can’t think of a good title for this warning. If the alternating series fails to 

satisfy the second requirement of the alternating series test, it does not follow 
that your series diverges, only that this test fails to show convergence.

You’re getting so good at this, so how about another problem? Test the con-

vergence of . Because the positive series lnn
n
3

 resembles the con-

vergent p-series, 1
n
3
, you guess that it converges.

	 You might want to consider the positive series first. If you think you can 
show that the positive series converges or diverges, you may want to try that 
before using the alternating series test, because . . .

	 ✓	You may have to do this later anyway to determine the type of conver-
gence, and

	 ✓	If you can show that the positive series converges, you’re done in one step, 
and you’ve shown that the alternating series is absolutely convergent.

So try to show the convergence of the positive series . The limit com-

parison test seems appropriate here, and  is the natural choice for the 

benchmark series, but with that benchmark, the test fails — try it. When this 
happens, you can sometimes get home by trying a larger convergent series. 

So try the limit comparison test with the convergent p-series, :

Because this limit is zero, the positive series  converges (see the sec-

tion “The limit comparison test”); and because the positive series converges, 

so does the given alternating series. Thus,  converges absolutely.

One last problem and I’ll let you go. Test the convergence of    

  This is an easy one.
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The nth term of this series (ignoring the minus signs) converges to 1 (it’s a 
L’Hôpital’s rule no-brainer), so you’re done. Because the nth term does not 
converge to zero, the series diverges by the nth term test.

Keeping All the Tests Straight
You now probably feel like you know — have a vague recollection of? — a 
gazillion convergence/divergence tests and are wondering how to keep track 
of all of them. Actually, I’ve given you only ten tests in all — that’s a nice, 
easy-to-remember round number. Here’s how you can keep the tests straight.

First are the three series with names: the geometric series, p-series, and tele-
scoping series. A geometric series converges if 0< |r|<1. A p-series converges 
if p>1. A telescoping series converges if the second “half term” converges to 
a finite number.

Next are the three comparison tests: the direct comparison, limit compari-
son, and integral comparison tests. All three compare a new series to a 
known benchmark series. If the benchmark series converges, so does the 
series you’re investigating; if the benchmark diverges, so does your new 
series.

And then you have the two “R” tests: the ratio test and the root test. Both 
analyze just the series in question instead of comparing it to a benchmark 
series. Both involve taking a limit, and the results of both are interpreted the 
same way. If the limit is less than 1, the series converges; if the limit is greater 
than 1, the series diverges; and if the limit equals 1, the test is inconclusive.

Finally, you have two tests that form bookends for the other eight — the 
nth term test of divergence and the alternating series test. These two form a 
coherent pair. You can remember them as the nth term test of divergence and 
the nth term test of convergence. The alternating series test involves more 
than just testing the nth term, but this is a good memory aid.

Well, there you have it: Calculus, schmalculus.



Part VI
The Part of Tens

	 For an extra Part of Tens chapter on cool calculus tips, head on over to  
www.dummies.com/extras/calculus.



In this part . . .
	 ✓	 Ten simple things you absolutely must know

	 ✓	 Ten common mistakes you positively must avoid

	 ✓	 Ten things to try as a last resort



Chapter 20

Ten Things to Remember

T 
his chapter contains ten things you should definitely remember. That’s 
not too much to ask, is it? If your mind is already crammed to capacity, 

you can make some room by first reading Chapter 21, “Ten Things to Forget.”

Your Sunglasses
If you’re going to have to study calculus, you might as well look good.

	 If you wear sunglasses and a pocket protector, it’ll ruin the effect.

This factor pattern is quasi-ubiquitous and somewhat omnipresent; it’s used 
in a plethora of problems and forgetting it will cause a myriad of mistakes. In 
short, it’s huge. Don’t forget it.

0
5
=0, but 5

0
 Is Undefined

8

2
=4, and so 4 times 2 is 8. If 5

0
 had an answer, that answer times zero would 

have to equal 5. But that’s impossible, making 5
0

 undefined.

Anything0=1

The only exception is 00, which is undefined. The rule holds for everything else, 
including negatives and fractions. This may seem a bit weird, but it’s true.
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SohCahToa
No, this isn’t a famous Indian chief, just a mnemonic for remembering your 
three basic trig functions:

sin �=
O

H
cos �=

A

H
tan �=

O

A

Trig Values for 30, 45, and 60 Degrees

sin2�+cos2�=1
This identity holds true for any angle. Divide both sides of this equation by 
sin

2
� to get 1+cot

2
�=csc

2
�; divide by cos2� to get tan2

�+1=sec
2
�.

The Product Rule
. Piece o’ cake.

The Quotient Rule
: In contrast to the product rule, many students forget 

the quotient rule. But you won’t if you just remember to begin the answer 
with the derivative of the top of your fraction, u. This is easy to remember 
because it’s the most natural way to begin. The rest falls into place.

Where You Put Your Keys
No one can predict what score you’ll get on your next calculus exam — unless, 
that is, you don’t show up.
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Ten Things to Forget

T 
his is without question the easiest chapter in the book. There’s nothing 
to study, nothing to comprehend, nothing to learn. Just kick back, crank 

up the music, and forget this stuff.

(a+b)2=a2+b2 — Wrong!
Don’t confuse this with (ab)2=a2b2, which is right. (a+b)2 equals a2+2ab+b

2.

√

a2+b2=a+b — Wrong!
Don’t confuse this with 

√

a
2
b
2
=ab, which is right. 

√

a
2
+b

2 can’t be simplified.

Slope = x2−x1y
2
−y

1
 — Wrong!

This is upside down. Slope equals 
y
2
−y

1

x
2
−x

1

.

3a+b
3a+c

=
b
c
 — Wrong!

You can’t cancel the 3as because it’s not a factor of the numerator and the 
denominator. With 3ab

3ac
=
b

c
, however, you can cancel the 3as.

d
dx

�
3
=3�2 — Wrong!

Pi (�) is a number, not a variable, so �3 is also just a number, and the deriva-
tive of any number is zero. Thus, d

dx
�
3
=0.
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If k Is a Constant,  — Wrong!
You don’t use the product rule here. Constants work like numbers, not vari-
ables, so d

dx
kx works just like d

dx
3x, which equals 3. Thus, d

dx
kx=k. (Extra 

credit: Do you see why, in fact, the above is not technically wrong?)

The Quotient Rule Is 
d
dx

(

u
v

)

=
v�u−vu�

v2
 — Wrong!

See the second from the last point in Chapter 20, “Ten Things to Remember.”

 — Wrong!

Do you C why this is wrong?

 — Wrong!

The derivative of cosine is negative sine, so the derivative of negative cosine 
is sine, and thus ∫ (sin x) dx=− cos x+C .

Green’s Theorem

∫
c

(Mdx+Ndy)=
∫∫
R

(

�N

�x
−
�M

�y

)

dA

This one’s right, but forget trying to remember it.
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Ten Things You Can’t  
Get Away With

T 
he original title of this chapter was “Ten Things You Can Get Away With If 
Your Calculus Teacher Was Born Yesterday,” but the legal department was 

afraid someone would actually try some of these stunts, get caught, and then 
file a lawsuit. So they changed the title to the boring one you have now.

Give Two Answers on Exam Questions
If you can’t make up your mind about which of two answers is correct, put 
them both down with both of them sort of circled and both sort of crossed 
out. If one of your two answers is correct, your teacher will give you the 
benefit of the doubt.

Write Illegibly on Exams
Get an answer on your calculator and then scribble your “work” so sloppily 
that your teacher can’t read it. Because you got the correct answer, he’ll 
assume that you knew what you were doing and give you full credit.

Don’t Show Your Work on Exams
Get an answer on your calculator and write the following next to the problem, 
“Easy problem — did work in my head.” Your teacher will take your word for it.

Don’t Do All of the Exam Problems
If an exam is, say, four pages long and stapled together, find the page with the 
worst-looking problems on it, remove the staple, put the bad page in your 
pocket, and carefully replace the staple. Your teacher will assume that the 
page was omitted at the copy center. When you later complete the “missing” 
part of the test perfectly, your teacher will suspect nothing.
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Blame Your Study Partner for Low Grade
Tell your teacher that the person you studied with explained everything 
wrong, so it’s not your fault. Your teacher will let you retake the exam.

Tell Your Teacher You Need an “A” in Calculus 
to Impress Your Significant Other

Your teacher, being a romantic at heart — and remembering his days as an 
undergraduate when he aced calculus and then became a babe magnet —  
will give you the “A.”

Claim Early-Morning Exams Are Unfair Because 
You’re Not a “Morning Person”

Explain that your biological clock is out of sync with your school’s old-
school, early-to-bed-early-to-rise Protestant ethic. Your teacher will let you 
take your exams in the afternoon and trust you to not talk with friends who 
take the morning exams.

Protest the Whole Idea of Grades
Make a political stink about teachers who have the nerve to presume that they 
have the right to give you a grade. Who are they to be evaluating you? Claim 
to be a conscientious objector when it comes to grades. Argue that giving 
grades reflects an unfair talent and intelligence bias — that the whole system is 
classist and IQist. Your teacher will be impressed with the depth and sincerity 
of your philosophical convictions and will let you take all exams pass/fail.

Pull the Fire Alarm During an Exam
This one’s a bit juvenile — in contrast, of course, to the preceding tips.

Use This Book as an Excuse
If you get caught trying these stunts, tell your teacher that you thought it was 
okay because you read it in a book. Your teacher will let you off the hook.
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absolute convergence

versus conditional convergence, 340–341
defined, 340

absolute extrema
finding on closed interval, 160–162
finding over domain of function, 162–164

absolute maximum
curves, 151
function, 162

absolute minimum
curves, 152
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absolute value, 34–35
absolute value functions, 56
acceleration

negative, 185
overview, 178–180
positive, 185
second squared, 186
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velocity-speed distinction and, 180–181

Achilles and the tortoise paradox, 18–20
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up area between two curves, 293–296
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adding, 31–32
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overview, 29–30
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power rules, 35–36
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root rules, 36–37
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conjugate multiplication, 96–97
factoring, 96
miscellaneous algebra, 97–98

solving quadratic equations
completing the square method, 42–43
factoring method, 41–42
quadratic formula method, 42

alternating series test, for convergence/
divergence of infinite series, 341–344

angles
measuring with radians, 67–68
in unit circle, 67

antiderivatives, finding
guess-and-check method, 258–259
reverse rules for, 255–257
substitution method, 259–262

antidifferentiation, 235–237, 257
approximating area

with left sums, 216–218
with midpoint sums, 220–222
with right sums, 219–220
with Simpson’s rule, 232–234
with trapezoid rule, 231–232
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arc length, finding, 302–305
area

approximating
with left sums, 216–218
with midpoint sums, 220–222
with right sums, 219–220
with Simpson’s rule, 232–234
with trapezoid rule, 231–232

of dome, computing, 11
finding under curve, 213–215
finding with definite integral, 227–230
finding with substitution problems, 

262–264
maximum area of corral example, 175–177
negative, 234, 246–247
positive, 247
surface area, 305–307, 319–320
between two curves, adding up, 293–296

area functions, 237–240, 248–249
arrow-number, limits, 78
asymptotes

horizontal
limits and, 82–83
limits at infinity and, 103–104

vertical
defined, 72
improper integrals and, 314–316
limits and, 81–82

average rate, 127
average value, 291–292
average velocity, 182

• B •
business

marginal cost, 204, 205
marginal profit, 204, 205, 206–208
marginal revenue, 204, 205, 206
marginals, 203–205

• C •
calculator

Computer Algebra System, 93–94
solving limits at infinity with, 104–105
solving limits with, 93–96

calculus
defined, 8–9
fundamental theorem of

general discussion, 240–245
shortcut version, 245–255

misconceptions about, 8
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algebra, 34–43, 96–98, 105–106
functions, 45–62, 323–324
trigonometry, 63–73, 348

real-world examples
computing area of dome, 11
hanging cable between two towers, 10
space travel, 11–12

canceling fractions
expressions, 33
multiplication rule, 33–34
overview, 32–33

CAS (Computer Algebra System) 
calculators, 93–94

catenary, 10
chain differentiation rule, 138–143
changing distances example, 191–194
closed interval, finding absolute extrema 

on, 160–162
coefficients of like terms, equating, 286–287
commonsense estimates, 198
comparison tests, convergence/divergence 

of infinite series
direct test, 332–333
integral test, 335–337
limit test, 333–335

completing the square method, solving 
quadratic equations, 42–43

complicated shapes, finding volume of
disk method, 298–300
matryoshka-doll method, 302
meat-slicer method, 296–298
washer method, 300–302

composite functions
chain differentiation rule and, 138
overview, 48–49

Computer Algebra System (CAS) 
calculators, 93–94

concave down (decreasing slope), 151, 153, 
157, 166, 170
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concave up (increasing slope), 151, 153, 
157, 166, 170

concavity, 150–151, 165–167
conditional convergence

versus absolute convergence, 340–341
defined, 340

conjugate multiplication, 96–97
conjugates, 97
constant differentiation rule, 130
constant functions, 55
constant multiple differentiation rule, 132
continuity, limits and

defined, 89
hole exception, 87–88
overview, 86–87

continuous functions, 86
convergence

absolute, 340–341
conditional, 340–341
of improper integrals, 315, 317
infinite series

alternating series test, 341–344
direct comparison test, 332–333
finding absolute versus conditional 

convergence, 340–341
geometric series, 328–329
integral comparison test, 335–337
limit comparison test, 333–335
nth term test, 327–328
overview, 326–327
p-series, 329–330
ratio test, 337–338
root test, 339
telescoping series, 330–331

of sequences, 323
convergent series, 18–20
coordinates

unit circle, 69
x-y coordinate system, 50–52

corners (cusps), function, 152, 172
cosecants, trig integrals containing, 276
cosines

graphs, 71–73
trig integrals containing, 273–276

cost, marginals, 204, 205
cotangents, trig integrals containing, 276

critical numbers, function, 152, 153–155
critical points, function, 152–153
cumulative frequency distribution 

histogram, 253
curves

absolute extrema
finding on closed interval, 160–162
finding over domain of function, 162–164

absolute maximum, 151
absolute minimum, 152
concavity, 150–151, 165–167
critical numbers, 153–155
critical points, function, 152–153
derivative tests, 155–160
derivatives, 118–120
finding area under, 213–215
function extrema, 152–153
graphs of derivatives, 167–171
inflection points, 151, 153, 165–167
local minimum, 151
mean value theorem, 171–172
negative slopes, 150
overview, 149–150
positive slopes, 150
undefined derivative, 152

curving incline problem, 8–10
cusps (corners), function, 152, 172
cylindrical shell method, finding volume of 

complicated shapes, 302

• D •
decreasing functions, 58
decreasing interval, functions, 169
decreasing slope (concave down), 151, 153, 

157, 166, 170
definite integral

defined, 227, 230
finding exact area with, 227–230
rules for, 247
symbol, 236

degrees
30 degrees, trig values for, 348
45 degrees, trig values for, 348
60 degrees, trig values for, 348
defined, 67
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denominator
adding fractions, 31–32
canceling fractions, 33–34
containing irreducible quadratic factors, 

284–286
containing only linear factors, 283–284
containing repeated linear or quadratic 

factors, 286
dividing fractions, 29–30

dependent variables, functions, 47–48
derivatives. See also rate

curves, 118–120, 155–160
defined, 13, 115, 123
derivative-hole connection, 88
L’Hôpital’s rule and, 324
mean value theorem for, 292
overview, 115–116
rate, 15
rate-slope connection, 117–118
slope of line, 13–14
speed, 116–117
tangent lines and, 128
of trig functions, 133–134
undefined, 152

Descartes, René, 50
difference differentiation rule, 133
difference of squares pattern, 

factoring, 39–40
difference quotient, 120–127
differentiation

acceleration
negative, 185
overview, 178–180
positive, 185
second squared, 186
speeding up/slowing down, 185
velocity-speed distinction and, 180–181

average rate, 127
chain rule, 138–143
constant multiple rule, 132
constant rule, 130
curves

absolute extrema, 160–164
absolute maximum, 151
absolute minimum, 152
concavity, 150–151, 165–167
critical numbers, 153–155
critical points, function, 152–153

derivative tests, 155–160
derivatives, 118–120
finding area under, 213–215
function extrema, 152–153
graphs of derivatives, 167–171
inflection points, 151, 153, 165–167
local minimum, 151
mean value theorem, 171–172
negative slopes, 150
overview, 149–150
positive slopes, 150
undefined derivative, 152

defined, 13
derivatives

curves, 118–120
higher, 147–148
overview, 115–116
rate-slope connection, 117–118
speed, 116–117
tangents lines and, 128
of trig functions, 133–134

difference quotient, 120–127
difference rule, 133
exponential functions, 134–135
finding slope

derivative of a line, 114
overview, 110–112
slope of a line, 112–114

implicit, 143–145
instantaneous rate, 127–128
inverse functions, 146–147
linear approximations, 200–203
logarithmic, 145–146
logarithmic functions, 135
marginals

cost, 204, 205
overview, 203–205
profit, 204, 205, 206–208
revenue, 204, 205, 206

maximum height, 181–182
minimum height, 181–182
normals, 197–200
optimization problems

maximum area of corral example, 
175–177

maximum volume of box example, 
173–175

overview, 109–110
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position, 178–180
power rule, 35–36, 130–131
product rule, 136, 348
quotient rule, 136–138, 348
rate, 15
related rates

changing distances example, 191–194
filling trough example, 189–191
inflating balloon example, 187–189
overview, 186–187

slope of line, 13–14
speed and distance, 183–184
sum rule, 133
tangents, 195–197
velocity

displacement and, 182–183
overview, 178–180
versus speed, 180–181

direct comparison test, for convergence/
divergence of infinite series, 332–333

discontinuity
hole, 90
infinite, 90
jump, 90

discrete points, sequences and, 323
discriminant

checking for irreducible quadratic 
factors, 284

quadratic equations, 41–42
disk method, finding volume of 

complicated shapes, 298–300
displacement

total, 182
velocity and, 182–183

distance
changing distances example, 191–194
speed and, 183–184

distribution histograms
cumulative frequency, 253
frequency, 253

divergence
of improper integrals, 315, 317
infinite series

alternating series test, 341–344
direct comparison test, 332–333
finding absolute versus conditional 

convergence, 340–341

geometric series, 328–329
integral comparison test, 335–337
limit comparison test, 333–335
nth term test, 327–328
overview, 326–327
p-series, 329–330
ratio test, 337–338
root test, 339
telescoping series, 330–331

of sequences, 323
divergent series, 18
dividing fractions, 30–31
domains, function

defined, 46
finding absolute extrema, 162–164

dome, computing area of, 11

• E •
economics

marginal cost, 204, 205
marginal profit, 204, 205, 206–208
marginal revenue, 204, 205, 206
marginals, 203–205

Einstein, Sam, 7
endpoint extremum, function, 161
equating coefficients of like terms, 286–287
equations

defined, 33
quadratic, solving

completing the square method, 42–43
factoring method, 41–42
quadratic formula method, 42

even functions, 56
exact area, finding with definite integral, 

227–230
examples

optimization problems
maximum area of corral example, 

175–177
maximum volume of box example, 

173–175
real-world examples of calculus

computing area of dome, 11
hanging cable between two towers, 10
space travel, 11–12
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related rates
changing distances example, 191–194
filling trough example, 189–191
inflating balloon example, 187–189

Yo-Yo example
acceleration, 178–181, 185–186
maximum height, 181–182
minimum height, 181–182
speed and distance, 183–184
velocity, 178–183

existent limits, 81
exponential decay functions, 57
exponential functions

defined, 57
differentiation and, 134–135

expressions, canceling fractions, 33

• F •
factorial symbol (!), 337
factoring

greatest common factor, 39
patterns

difference of cubes, 40
difference of squares, 39–40
sum of cubes, 40

solving limits problems, 96
solving quadratic equations, 41–42
trinomial, 40–41

factors
linear, 283–284
quadratic, 284–286

filling trough example, 189–191
finding

absolute extrema
on closed interval, 160–162
over domain of function, 162–164

absolute versus conditional convergence, 
340–341

antiderivatives
guess-and-check method, 258–259
reverse rules for, 255–257
substitution method, 259–262

arc length, 302–305

area
under curve, 213–215
with definite integral, 227–230
with substitution problems, 262–264

limits at infinity and negative infinity, 104
slope

derivative of a line, 114
overview, 110–112
slope of a line, 112–114

surface area, 305–307
surfaces of revolution, 305–307
volume of complicated shapes

disk method, 298–300
matryoshka-doll method, 302
meat-slicer method, 296–298
washer method, 300–302

45°-45°-90° triangle, 65
45 degrees, trig values for, 348
four-square-box scheme, integration by 

parts, 266–268
fractions

adding, 31–32
canceling

expressions, 33
multiplication rule, 33–34
overview, 32–33

dividing, 30–31
multiplying, 30
overview, 29–30
subtracting, 32

Franklin, Tom, 7
frequency distribution histogram, 253
function extrema, curves, 152–153
functions

absolute value, 56
area, 237–240, 248–249
composite, 48–49, 138
constant, 55
continuous, 86
corners, 152, 172
critical numbers, 152, 153–155
critical points, 152–153
decreasing, 58
decreasing interval, 169
defined, 45

examples (continued)



359359 Index

dependent variables, 47–48
domains

defined, 46
finding absolute extrema, 162–164

endpoint extremum, 161
even, 56
exponential, 57, 134–135
exponential decay, 57
gaps, 172
horizontal transformations, 60–62
identity, 55
increasing, 58
increasing interval, 169
independent variables, 47–48
inverse, 58–59, 73–74, 146–147
lines

defined, 52
graphing, 54
point-slope forms, 54–55
slope-intercept, 54
slopes, 53–54

logarithmic, 57–58, 135
monotonic, 58
notation, 48
odd, 56–57
overview, 45–47
parabolic, 56
periodic, 71
periods, 71–72
piecewise, 80–81
polynomial

continuity of, 87
defined, 56

ranges
defined, 46
inverse trig functions, 73–74

rational
continuity of, 87
finding limits at infinity and negative 

infinity, 104
limit comparison test, 334
vertical asymptotes and, 81–82

sequences and, 323–324
stationary points, 150
vertical transformations, 62
x-y coordinate system, 50–52

fundamental theorem of calculus
general discussion, 240–245
shortcut version

area functions and, 248–249
general discussion, 245–248
integration-differentiation connection, 

250–252
statistics connection, 252–255

• G •
Gabriel’s horn, 318–320
gaps, function, 172
GCF (greatest common factor), 39
geometric series, convergence/divergence 

tests, 328–329
graphs

cosine, 71–73
of derivatives, 167–171
graphing lines, 54
sign, 156, 166
sine, 71–73
tangent, 71–73

greatest common factor (GCF), 39
Green’s theorem, 350
guess-and-check method, for finding 

antiderivatives, 258–259

• H •
hanging cable between two towers, 10
harmonic series, 330
higher order derivatives, 147–148
histograms

cumulative frequency distribution, 253
frequency distribution, 253

hole discontinuity, 90
hole exception, limits, 87–88
horizontal asymptotes

limits and, 82–83
limits at infinity and, 103–104

horizontal lines, 55
horizontal transformations, functions, 60–62
hypotenuse

triangle, 63–64
unit circle, 68–69
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• I •
identities, trigonometry, 74
identity functions, 55
implicit differentiation, 143–145
improper fractions, 282–283
improper integrals

Gabriel’s horn, 318–320
with infinite limits of integration, 316–318
overview, 313–314
vertical asymptotes and, 314–316

increasing functions, 58
increasing interval, functions, 169
increasing slope (concave up), 151, 153, 

157, 166, 170
indefinite integrals, 236
independent (input) variables, 

functions, 47–48
index of summation, 226
infinite discontinuity, 90
infinite series

convergence/divergence tests
alternating series test, 341–344
direct comparison test, 332–333
finding absolute versus conditional 

convergence, 340–341
geometric series, 328–329
integral comparison test, 335–337
limit comparison test, 333–335
nth term test, 327–328
p-series, 329–330
ratio test, 337–338
root test, 339
telescoping series, 330–331

convergent, 18–19
defined, 17–18
divergent, 18
sequences

convergence of, 323
determining limits with L’Hôpital’s 

rule, 324
divergence of, 323
functions and, 323–324
overview, 322

summing
convergence of series, 326–327
divergence of series, 326–327

overview, 324–325
partial sums, 325

infinitesimals, 109
infinity. See also infinite series

defined, 25
improper integrals, 313–320
L’Hôpital’s rule, 309–313
limits and

horizontal asymptotes and, 103–104
overview, 103
solving with algebra, 105–106
solving with calculator, 104–105

inflating balloon example, 187–189
inflection points, 170

curves, 151, 153, 165–167
input (independent) variables, functions, 

47–48
instantaneous rate, 127–128
instantaneous speed

calculating with limits, 83–86
defined, 85–86

integral comparison test, for convergence/
divergence of infinite series, 335–337

integrals
improper

Gabriel’s horn, 318–320
with infinite limits of integration,  

316–318
overview, 313–314
vertical asymptotes and, 314–316

indefinite, 236
mean value theorem for, 290–291, 292
trig

containing cosecants, 276
containing cosines, 273–276
containing cotangents, 276
containing secants, 276
containing sines, 273–276
containing tangents, 276
overview, 272–273

integration
adding up area between two curves, 

293–296
antidifferentiation, 235–237, 257
approximating area

with left sums, 216–218
with midpoint sums, 220–222



361361 Index

with right sums, 219–220
with Simpson’s rule, 232–234
with trapezoid rule, 231–232

area function, 237–240
average value, 291–292
defined, 16–17
finding antiderivatives

guess-and-check method, 258–259
reverse rules for, 255–257
substitution method, 259–262

finding arc length, 302–305
finding area

under curve, 213–215
with definite integral, 227–230
with substitution problems, 262–264

finding surfaces of revolution, 305–307
finding volume of complicated shapes

disk method, 298–300
matryoshka-doll method, 302
meat-slicer method, 296–298
washer method, 300–302

fundamental theorem of calculus, 
240–255

general discussion, 240–245
shortcut version, 245–255

improper integrals
Gabriel’s horn, 318–320
with infinite limits of integration, 

316–318
overview, 313–314
vertical asymptotes and, 314–316

integration by parts
four-square-box scheme, 266–268
overview, 265–266
second pass, 270–272
u chunk, 268–270

L’Hôpital’s rule
overview, 309–311
unacceptable forms and, 311–313

mean value theorem, 171–172,  
290–291, 292

overview, 211–213
partial fractions technique

equating coefficients of like terms, 
286–287

irreducible quadratic factors, 284–286

linear factors, 283–284
overview, 282–283
repeated linear or quadratic factors, 286

summation notation
overview, 222–223
writing Riemann sums with, 223–227

trig integrals
containing cosecants, 276
containing cosines, 273–276
containing cotangents, 276
containing secants, 276
containing sines, 273–276
containing tangents, 276
overview, 272–273

trigonometric substitution method
overview, 276–277
secants, 282
sines, 280–281
tangents, 277–280

vocabulary, 237
integration by parts

four-square-box scheme, 266–268
overview, 265–266
second pass, 270–272
u chunk, 268–270

integration-differentiation connection, 
fundamental theorem of calculus, 
250–252

inverse functions, 58–59, 73–74, 146–147
irreducible quadratic factors, 284–286

• J •
Johnson, Mary, 7
jump discontinuity, 90

• K •
Kasube, Herbert E., 268

• L •
leading term, geometric series, 328
left rectangle rule, 218
left rectangles, 216–218
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left sums, approximating area with, 
216–218

Leibniz, Gottfried, 50
L’Hôpital’s rule

determining limits with, 324
overview, 309–311
unacceptable forms and, 311–313

LIATE mnemonic, 268–270
limit comparison test, for convergence/

divergence of infinite series, 333–335
limits

calculating instantaneous speed with, 
83–86

continuity and
defined, 89
hole exception, 87–88
overview, 86–87

defined, 21–22, 81
existent, 81
horizontal asymptotes and, 82–83
illustrating with three functions, 78–79
improper integrals

Gabriel’s horn, 318–320
with infinite limits of integration, 

316–318
overview, 313–314
vertical asymptotes and, 314–316

infinity and
horizontal asymptotes and, 103–104
overview, 103
solving with algebra, 105–106
solving with calculator, 104–105

L’Hôpital’s rule
determining limits with, 324 
overview, 309–311
unacceptable forms and, 311–313

limits to memorize, 91–92
nonexistent, 81
one-sided, 79–81
overview, 77
plug-and-chug problems, 92
sandwich method, 98–102
solving problems with algebra

conjugate multiplication, 96–97
factoring, 96
miscellaneous algebra, 97–98

solving with calculator, 93–96
33333 mnemonic, 89–90
vertical asymptotes and, 81–82
zooming on curves, 22–25

limits of integration, 236
linear approximations, 200–203
linear factors, 283–284
lines

defined, 52
graphing, 54
parallel, 54
perpendicular, 54, 199
point-slope forms, 54–55
positive slope, 53
secant, 120–123
slope-intercept, 54
slopes, 53–54
tangent, 121–123, 128, 195–197
undefined slope, 53
vertical

vertical line test, 50–52
vertical tangent line, 128
writing, 55

zero slope, 53
local (relative) maximum, curves, 169
local (relative) minimum, curves, 151, 170
logarithmic differentiation, 145–146
logarithmic functions, 57–58, 135
logarithms, 38–39

• M •
m-axis, derivative graph, 169
magnifying curves, 22–25
marginals

cost, 204, 205
overview, 203–205
profit, 204, 205, 206–208
revenue, 204, 205, 206

matryoshka-doll method, finding volume of 
complicated shapes, 302

maxima, 152–153
maximum area of corral example, 175–177
maximum height, 181–182
maximum velocity, 182–183
maximum volume of box example, 173–175
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mean value theorem (MVT)
integration, 290–291, 292
overview, 171–172

meat-slicer method, finding volume of 
complicated shapes, 296–298

methods
finding antiderivatives

guess-and-check method, 258–259
substitution method, 259–262

for finding volume of complicated shapes
disk method, 298–300
matryoshka-doll method, 302
meat-slicer method, 296–298
washer method, 300–302

for solving quadratic equations
completing the square method, 42–43
factoring method, 41–42
quadratic formula method, 42

squeeze method, limits, 98–102
trigonometric substitution method

overview, 276–277
secants, 282
sines, 280–281
tangents, 277–280

midpoint rectangles, 220–222
midpoint rule, 222
midpoint sums, approximating area 

with, 220–222
minima, 152–153
minimum height, 181–182
minimum velocity, 182–183
misconceptions about calculus, 8
mnemonics

LIATE, 268–270
SohCahToa

defined, 348
overview, 63–64
trigonometric substitution method 

and, 277–281
33333, 89–90

monotonic functions, 58
multiplication

conjugate, solving limits problems 
with, 96–97

multiplication rule, canceling 
fractions, 33–34

multiplying fractions, 30

MVT (mean value theorem)
integration, 290–291, 292
overview, 171–172

• N •
natural log, 135
negative acceleration, 185
negative area, 234, 246–247
negative displacement, 182
negative slopes, 53, 110–112, 150
negative velocity, 180
negatives, roots and, 36–37
Newton, Isaac, 50
nonexistent limits, 81
normals, 197–200
notation

function, 48
summation

infinite series, 325
overview, 222–223
writing Riemann sums with, 223–227

nth term test, for convergence/divergence 
of infinite series, 327–328

• O •
odd functions, 56–57
one-sided limits, 79–81
opposite reciprocals, 54
opposite side, triangle, 63–64
optimization problems

maximum area of corral example, 
175–177

maximum volume of box example, 
173–175

output variables, functions, 47–48

• P •
parabolas, 22, 118, 126
parabolic functions, 56
parallel lines, 54
parentheses

chain rule problems, 139–140
vertical transformations and, 62
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partial fractions technique
equating coefficients of like terms, 

286–287
irreducible quadratic factors, 284–286
linear factors, 283–284
overview, 282–283
repeated linear or quadratic factors, 286

partial sums, infinite series, 325
patterns, factoring

difference of cubes, 40
difference of squares, 39–40
sum of cubes, 40

periodic functions, 71
periods, function, 71–72
perpendicular lines, 54, 199
piecewise function, 80–81
plug-and-chug problems, limits, 92
point-slope form, 55
point-slope form lines, 54–55
polynomial functions

continuity of, 87
defined, 56

polynomials, 40
position, differentiation and, 178–180
positive acceleration, 185
positive area, 247
positive displacement, 182
positive slopes, 53, 150
positive velocity, 180
power rules, 35–36, 130–131
pre-algebra. See algebra
pre-requisites, calculus

algebra
absolute value, 34–35
factoring, 39–41
fractions, 29–34
logarithms, 38–39
power rules, 35–36
roots, 36–38
solving limits at infinity, 105–106
solving limits problems with, 96–98
solving quadratic equations, 41–43

functions
absolute value, 56
composite, 48–49

defined, 45
dependent variables, 47–48
exponential, 57
horizontal transformations, 60–62
independent variables, 47–48
inverse, 58–59
lines, 52–55
logarithmic, 57–58
notation, 48
odd, 56–57
overview, 45–47
parabolic, 56
sequences and, 323–324
vertical transformations, 62
x-y coordinate system, 50–52

trigonometry
cosine graphs, 71–73
identities, 74
inverse functions, 73–74
right triangles, 64–66
sine graphs, 71–73
SohCahToa, 63–64
tangent graphs, 71–73
unit circle, 66–71
values, 348

product differentiation rule, 136, 348
profit, marginals, 204, 205, 206–208
p-series, convergence/divergence tests, 

329–330
Pythagorean identity, 273
Pythagorean theorem

arc length formula, 303–304
defined, 65
related rates problems, 193

• Q •
quadrants, unit circle, 69–71
quadratic equations, solving

completing the square method, 42–43
factoring method, 41–42
quadratic formula method, 42

quadratic factors, partial fractions 
technique and, 284–286

quotient differentiation rule, 136–138, 348
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• R •
radians

defined, 67
measuring angles with, 67–68

ranges, function
defined, 46
inverse trig functions, 73–74

rate
acceleration

negative, 185
overview, 178–180
positive, 185
second squared, 186
speeding up/slowing down, 185
velocity-speed distinction and, 

180–181
average, 127
defined, 15
derivatives, 116–117
distance and, 183–184
instantaneous, 83–86, 127–128
rate-slope connection, 117–118
related

changing distances example, 191–194
filling trough example, 189–191
inflating balloon example, 187–189
overview, 186–187

speeding up/slowing down, 185
versus velocity, 180–181

ratio, geometric series, 328
ratio test, for convergence/divergence of 

infinite series, 337–338
rational functions

continuity of, 87
finding limits at infinity and negative 

infinity, 104
limit comparison test, 334
vertical asymptotes and, 81–82

real-world examples of calculus
computing area of dome, 11
hanging cable between two towers, 10
space travel, 11–12

reciprocals
defined, 30
opposite, 54

rectangles
left, 216–218
midpoint, 220–222
representative, finding area of, 293–296
right, 219–220

related rates
changing distances example, 191–194
filling trough example, 189–191
inflating balloon example, 187–189
overview, 186–187

relations, x-y coordinate system, 51–52
relative (local) maximum, curves, 151, 

169, 170
representative rectangle, finding area of, 

293–296
revenue, marginal, 204, 205, 206
reverse rules, antiderivatives, 255–257
Riemann sums

defined, 222
writing with summation notation, 223–227

right rectangle rule, 220
right rectangles, 219–220
right sums, approximating area with, 

219–220
right triangles

30°-60°-90° triangle, 65–66
45°-45°-90° triangle, 65
overview, 64

rise, slope, 13–14, 53, 113
root test, for convergence/divergence of 

infinite series, 339
roots

root rules, 36–37
simplifying, 37–38

rules
for definite integral, 247
differentiation

chain rule, 138–143
constant multiple rule, 132
constant rule, 130
difference rule, 133
power rule, 35–36, 130–131
product rule, 136, 348
quotient rule, 136–138, 348
sum rule, 133

left rectangle rule, 218
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L’Hôpital’s rule
determining limits with, 324
overview, 309–311
unacceptable forms and, 311–313

midpoint rule, 222
multiplication rule, canceling fractions, 

33–34
reverse, for finding antiderivatives, 

255–257
right rectangle rule, 220
root, 36–37
Simpson’s rule, 232–234
trapezoid rule, 231–232

run, slope, 13–14, 53, 113

• S •
sandwich (squeeze) method, limits, 98–102
secants

secant lines, 120–123
trig integrals containing, 276
trigonometric substitution method, 282

second squared, acceleration, 186
sequences. See also infinite series

convergence of, 323
determining limits with L’Hôpital’s 

rule, 324
divergence of, 323
functions and, 323–324
overview, 322

series
convergent, 18–20
divergent, 18
geometric, 328–329
harmonic, 330
infinite

alternating series test, 341–344
direct comparison test, 332–333
finding absolute versus conditional 

convergence, 340–341
geometric series, 328–329
integral comparison test, 335–337
limit comparison test, 333–335
nth term test, 327–328
p-series, 329–330

ratio test, 337–338
root test, 339
sequences, 322–324
summing, 324–327
telescoping series, 330–331

shapes
complicated, finding volume of

disk method, 298–300
matryoshka-doll method, 302
meat-slicer method, 296–298
washer method, 300–302

rectangles
left, 216–218
midpoint, 220–222
representative, finding area of, 293–296
right, 219–220

right triangles
30°-60°-90° triangle, 65–66
45°-45°-90° triangle, 65
overview, 64

triangles
adjacent side, 63–64
hypotenuse, 63–64
opposite side, 63–64

unit circle
angles in, 67
hypotenuse, 68–69
overview, 66–67
quadrants, 69–71
radians, 67–68

shortcut version, fundamental theorem of 
calculus

area functions and, 248–249
general discussion, 245–248
integration-differentiation connection, 

250–252
statistics connection, 252–255

sigma (summation) notation
infinite series, 325
overview, 222–223
writing Riemann sums with, 223–227

sign graphs, 156, 166
simplifying, roots, 37–38
Simpson’s rule, approximating area with, 

232–234
sine graphs, 71–73

rules (continued)



367367 Index

sines
trig integrals containing, 273–276
trigonometric substitution method, 

280–281
60 degrees, trig values for, 348
slope

decreasing, 151, 153, 157, 166, 170
derivative of a line, 114
increasing, 151, 153, 157, 166, 170
lines, 53–54
negative, 53, 110–112, 150
overview, 110–112
perpendicular lines, 199
positive, 53, 150
rate-slope connection, 117–118
rise, 13–14, 53, 113
run, 13–14, 53, 113
slope of a line, 13–14, 112–114
slope-intercept lines, 54

SohCahToa mnemonic
defined, 348
overview, 63–64
trigonometric substitution method and

sines, 280–281
tangents, 277–280

solving
limits at infinity, 104–106
limits problems, 93–98

with calculator, 93–96
conjugate multiplication, 96–97
factoring, 96
miscellaneous algebra, 97–98

quadratic equations
completing the square method, 42–43
factoring method, 41–42
quadratic formula method, 42

space travel, 11–12
speed

acceleration
negative, 185
overview, 178–180
positive, 185
second squared, 186
speeding up/slowing down, 185
velocity-speed distinction and, 

180–181

average, 127
defined, 15
derivatives, 116–117
distance and, 183–184
instantaneous, 83–86, 127–128
rate-slope connection, 117–118
related rates

changing distances example, 191–194
filling trough example, 189–191
inflating balloon example, 187–189
overview, 186–187

speeding up/slowing down, 185
versus velocity, 180–181

squeeze (sandwich) method, limits, 98–102
stationary points, function, 150
statistics connection, fundamental 

theorem of calculus, 252–255
steepness

decreasing slope, 151, 153, 157, 166, 170
derivative of a line, 114
increasing slope, 151, 153, 157, 166, 170
lines, 53–54
negative slope, 53, 110–112, 150
overview, 110–112
perpendicular lines, 199
positive slope, 53, 150
rate-slope connection, 117–118
rise, 13–14, 53, 113
run, 13–14, 53, 113
slope of a line, 13–14, 112–114
slope-intercept lines, 54

straight incline problem, 8–9
substitution method

finding antiderivatives with, 259–262
finding area with, 262–264
trigonometric

overview, 276–277
secants, 282
sines, 280–281
tangents, 277–280

subtracting fractions, 32
sum differentiation rule, 133
summation (sigma) notation

infinite series, 325
overview, 222–223
writing Riemann sums with, 223–227
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summing, infinite series
convergence of series, 326–327
divergence of series, 326–327
overview, 324–325
partial sums, 325

sums
approximating area with

left sums, 216–218
midpoint sums, 220–222
right sums, 219–220

partial, 325
Riemann, 223–227

surface area
finding, 305–307
Gabriel’s horn, 319–320

surfaces of revolution, 305–307
swept out area, area function, 237–240. 

See also fundamental theorem of 
calculus

symbols
definite integral, 236
factorial, 337
integration, 212
sigma notation

infinite series, 325
overview, 222–223
writing Riemann sums with, 223–227

• T •
tangent graphs, 71–73
tangent lines

derivatives and, 128
difference quotient, 121–123
vertical, 128

tangents
tangent line problem, 195–197
trig integrals containing, 276
trigonometric substitution method, 

277–280
telescoping series, convergence/

divergence tests, 330–331
tests

convergence/divergence
alternating series test, 341–344
direct comparison test, 332–333
finding absolute versus conditional 

convergence, 340–341

geometric series, 328–329
integral comparison test, 335–337
limit comparison test, 333–335
nth term test, 327–328
p-series, 329–330
ratio test, 337–338
root test, 339
telescoping series, 330–331

derivative, 155–160
vertical line, 50–52

theorems
fundamental theorem of calculus

general discussion, 240–245
shortcut version, 245–255

Green’s theorem, 350
mean value theorem

integration, 290–291, 292
overview, 171–172

Pythagorean theorem
arc length formula, 303–304
defined, 65
related rates problems, 193

30 degrees, trig values for, 348
30°-60°-90° triangle, 65–66
33333 mnemonic, limits, 89–90
total displacement, 182
transformations

horizontal, 60–62
vertical, 62

trapezoid rule, approximating area with, 
231–232

triangles
adjacent side, 63–64
hypotenuse, 63–64
opposite side, 63–64
right

30°-60°-90° triangle, 65–66
45°-45°-90° triangle, 65
overview, 64

trig identities, 74, 275–276
trig integrals

containing cosecants, 276
containing cosines, 273–276
containing cotangents, 276
containing secants, 276
containing sines, 273–276
containing tangents, 276
overview, 272–273
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trigonometric substitution method
overview, 276–277
secants, 282
sines, 280–281
tangents, 277–280

trigonometry
cosine graphs, 71–73
identities, 74, 275–276
integrals

containing cosecants, 276
containing cosines, 273–276
containing cotangents, 276
containing secants, 276
containing sines, 273–276
containing tangents, 276
overview, 272–273

inverse functions, 73–74
right triangles

30°-60°-90° triangle, 65–66
45°-45°-90° triangle, 65
overview, 64

sine graphs, 71–73
SohCahToa

defined, 348
overview, 63–64
trigonometric substitution method 

and, 277–281
tangent graphs, 71–73
unit circle

angles in, 67
hypotenuse, 68–69
overview, 66–67
quadrants, 69–71
radians, 67–68

values, 348
trinomial factoring, 40–41

• U •
u chunk, integration by parts, 268–270
undefined derivatives, 152
undefined slope, lines, 53
unit circle

angles in, 67
hypotenuse, 68–69
overview, 66–67

quadrants, 69–71
radians, 67–68

• V •
values

absolute, 34–35, 56
average, 291–292
mean value theorem, 290–292
trigonometry, 348

variables
adding fractions, 31–32
dependent, 47–48
independent, 47–48

velocity
acceleration

negative, 185
overview, 178–180
positive, 185
second squared, 186
speeding up/slowing down, 185
velocity-speed distinction and,  

180–181
average, 182
displacement and, 182–183
maximum, 182–183
minimum, 182–183
overview, 178–180
versus speed, 180–181

vertical asymptotes
defined, 72
improper integrals and, 314–316
limits and, 81–82

vertical lines
vertical line test, 50–52
vertical tangent line, 128
writing, 55

vertical transformations, functions, 62
volume

of complicated shapes, finding
disk method, 298–300
matryoshka-doll method, 302
meat-slicer method, 296–298
washer method, 300–302

maximum volume of box example,  
173–175
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• W •
washer method, finding volume of 

complicated shapes, 300–302

• X •
x-y coordinate system

functions, 50–52
relations, 51–52

• Y •
Yo-Yo example

acceleration
negative, 185
overview, 178–180

positive, 185
second squared, 186
speeding up/slowing down, 185
velocity-speed distinction and, 180–181

maximum height, 181–182
minimum height, 181–182
speed and distance, 183–184
velocity

displacement and, 182–183
overview, 178–180
versus speed, 180–181

• Z •
zero slope, lines, 53
zooming, limits, 22–25
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