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PREFACE

This book was written to help you solve problems and understand concepts
covered in a business calculus course. To make the material easy to absorb, only
one idea is covered in each section. Examples and solutions are given in detail so
that you will not be distracted by missing algebra and/or calculus steps. Topics
that students find difficult are written with extra care.

Each section contains an explanation of a concept along with worked out
examples. At the end of each section is a set of practice problems to help you
master the computations, and solutions are given in detail. Each chapter ends with
a chapter test so that you can see how well you have learned the material, and
there is a final exam at the end of the book.

If you have recently taken an algebra course, you can probably skip the algebra
review at the beginning of the book. The material in Chapters 1 and 2 lay the
foundation for the concept of the derivative, which is introduced in Chapter 3. The
formulas in Chapter 4 are used throughout the book and should be memorized.
Calculus techniques and other formulas are covered in Chapters 6, 7, 8, 9, and 11.
Calculus can solve many business problems, such as finding the price (or quantity)
that maximizes revenue, finding the dimensions that minimize the cost to construct
a box, and finding how fast the profit is changing at different production levels.
These applications and others can be found in Chapters 5, 7, 10, 11, and 12.
Integral calculus and its applications are introduced in the last three chapters.

I hope you find this book easy to use and that you come to appreciate the beauty
of this powerful subject.

Rhonda Huettenmueller

— @

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.



This page intentionally left blank



7SN

= 4

BUSINESS CALCULUS
DEMYSTIFIED



This page intentionally left blank



eo"

Algebra Review

Success in calculus requires a solid algebra background. Although most of the
algebra steps (as well as calculus steps) are provided in the book, it is worth
reviewing algebra basics. In this chapter, we will briefly review how to factor,
simplify fractions, solve equations, find equations of lines, and more.

Factoring

One of the most important properties in mathematics is the distributive property:
a(b+c) = ab+ac. This property allows us to either add b and ¢ before multiplying
by a or to multiply b and ¢ by a before adding. For example, 2(4 4+ 5) could be
computed either as 2 x 9 or as 8 + 10. Factoring is working with the distributive
property in reverse. To factor an expression means to write the sum or difference
as a product.

—&
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EXAMPLES

Factor the expression. The common factor is in bold print.
e Ox+9xy

Each of 6x and 9xy is divisible by 3x: 6x =2 -3x and 9xy = 3 -3x - y.
When we divide 6x by 3x, we are left with 2. When we divide 9xy by 3x,
we are left with 3y.

6x+9xy=2-3x+3-3x-y=3x(2+3y)
o x’y+4xy?+5x=x-xy+4-x-y2+5-x=x(xy+4y>+5)
o 8xh—2xyh+7Tyh*+h = 8x-h—2xy-h+Tyh-h+1-h = h(8x—2xy+Tyh+1)

Using the distributive property on such quantities as (x + 2)(y — 3) requires
several steps. In this book, we will use the FOIL method. The letters in “FOIL”
help us to keep track of which quantities are multiplied and which are added.
The “F” stands for “first times first.” We multiply the first two quantities. In
(x + 2)(y — 3), this means we multiply x and y. “O” stands for “outer times
outer.” We multiply the outside quantities: x and —3. “I” stands for “inner times
inner.” We multiply the inside quantities: 2 and y. “L” stands for “last times last.”
We multiply the last quantities: 2 and —3.

FxF 0Ox0 IxI LxL
A —— =~
x+2)(y—=3)="xy +(-3)x+ 2y +2(-3)=xy—3x+2y—6

EXAMPLES

o 2x—-5(x+3)=2x-x+2x-3+(=5x+(-5)3
=22+ 6x—5x—15=2x2+x—15

o (4x —3)(4x +3) =4x -dx +4x -3 4 (=3)4x + (—3)3
=16x2 4+ 12x — 12x —9 = 16x> — 9

o P+ =2 =x>x4+x32(=2)+7 x+7(=2)
=x 22 +7x - 14

Expressions in the form ax? + bx + ¢ are quadratic expressions. The letters
a, b, and c stand for fixed numbers.
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EXAMPLES

e xX—_x—-6 a=1 = —1 c=-6
o x>4+7x410 a=1 b= c=10
o 3x>4+10x—38 a=3 b =10 c=-8
o 9x?—4 a=9 bh=0 c=—4
o 2x%+4x a=2 bh=1 c=0

Many quadratic expressions can be factored with little trouble. We will begin
with expressions of the form x2+bx +c. The first step is to write (x )(x )
so that when we use the FOIL method, the first term is x - x = x2. Next, we will
choose two numbers whose product is ¢. For example, if we factor x* + 6x + 5,
we would try 5 and 1: (x 5)(x 1). Finally, we will decide if we need to use
two plus signs, two minus signs, or one of each. The second sign in x> + 6x + 5
tells us whether or not the signs are the same. If the second sign is plus, then both
signs are the same. The second sign is plus, so both signs in (x  5)(x 1) are
the same. If the signs are the same, then they will be the first sign. In x> 4+ 6x 4+ 5
the first sign is plus, so we need to plus signsin (x  5)(x 1): (x +5)(x + 1).
We will use the FOIL method on (x + 5)(x + 1) to see if our factorization is
correct.

x+x+D=x-x4+x-14+5-x+5-1=x>+6x+5V

EXAMPLE

e Factor x2 — 2x — 15.

We have several choices for (x )(x ). Beginning with the factors
of 15, we need to choose between 1 and 15 or 3 and 5. That is, we
eitherwant (x 1)(x 15 or(x 3)(x 5).Because the second sign in
x2 —2x — 15 is a minus sign, the signs in the factors are different. We have
four possibilities.

(x—1x+15) x+1D(x—-15) (x=3)(x+5) x+3)(x=5)

The last possibility is correct: (x + 3)(x — 5) = x2—5x4+3x—15 =
x? —2x —15.

If both signs in the factors are the same, b is the sum of the factors of c. If the
signs in the factors are different, the difference of the factors of ¢ is b. In the first
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example, the sum of 1 and 5 is 6. In the second example, the difference of 5 and
3is 2.

EXAMPLES

2—x—6=0(x— )x+ )

The signs are different, so the difference of the factors of 6 is 1. We will
choose 2 and 3 (instead of 6 and 1, whose difference is 5). The first sign
in x> — x — 6 is a minus sign, so the larger factor has the minus sign. The
factorization is (x — 3)(x + 2).

24+ Tx4+10=(x+ )x+ )

Both signs are plus, so the sum of the factors of 10 is 7. The sum of 5 and
2 is 7. The factorization is x% + 7x 4+ 10 = (x + 2)(x + 5).

3x2+10x — 8

When a is not 1 (here a is 3), factoring is a little more work. We always
begin factoring by deciding what two factors give us ax?. Here we need
two factors that give us 3x2. We will try 3x and x. Because the signs in
3x2+10x —8 are different, one of (3x ) and (x ) has a plus sign and the
other has a minus sign. Now we have 3x+ )(x— )and B3x— )(x+ ).
We have two pairs of factors of 8 to try: 1 and 8 and 2 and 4. There are
eight possibilities.

Gx+Dx—8 Gx—DE+8) Grx—2x+4 Gx+2)(x—4)
Gx+8)(x—1) GBx—=8)x+1) Gx—-Hx+2) Gr+dHx—2)

The correct factorization is (3x — 2)(x +4) = 3x2 + 12x — 2x — 8 =
3x2 + 10x — 8.

9x? —4

We factor quadratic expressions of the form (ax)? — ¢> with the formula
A? — B2 = (A — B)(A + B). In this example, 9x2 is (3x)? and 4 is 2°.
A2 B? A-B A+B
—~— P
02 —4=0Gx)> = 22 =GBx—-2)(Bx+2)

When the FOIL method is used on expressions of the form (A — B)(A+ B),
the middle terms always cancel.

Bx —2)Bx +2) =924+ 6x —6x —4=9x2 — 4
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Some quadratic expressions do not factor easily. For example, x2 + x + 1
cannot be factored using the techniques we have learned so far.

PRACTICE
Use the FOIL method for problems 1—4. Factor the expression in problems 5-10.
I. (x—8)(x+3)
2. (5x —2)(x +4)
3. (x—=3)(x+3)
4. (4x —5)% = (4x —5)(4x —5)
5. x2=3x+2
6. x2—3x—4
7. x2+5x -6
8. x2—16
9. 25x2 -9
10. 4x?+11x -3
SOLUTIONS
I. (x—8)(x+3)=x2+3x —8x —24=x>—5x—24
2. 5x —2)(x +4) =5x24+20x —2x —8 =5x%>+ 18x — 8
3. 0 =N +3)=x2+3x-3x-9=x>-9
4. (4x—5)% = (4x—5)(4x —5) = 16x> —20x —20x +25 = 16x%—40x +25
5. 2 =3x4+2=(x—-1Dx—-2)
6. x2=3x—-4=x—-dHx+1D
7. X2 4+5x—6=(x+6)(x —1)
8. 2 —16=(x —4(x+4)
9. 25x2 —9 = (5x —3)(5x +3)

H
e

4x2 + 11x =3 = (dx — D)(x +3)
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Fractions

A fraction is reduced to its lowest terms, or simplified, when the numerator and
denominator have no common factors. The fraction %x is not reduced to its lowest
terms because the numerator, 2x, and denominator, 6, are each divisible by 2.
We simplify fractions by factoring the numerator and denominator, using their
common factors, and canceling.

EXAMPLES

Reduce the fraction to its lowest terms.

2x_2-x_x

6 2.3 3

4x%y  2xy-2x  2x
o = = —

6xy 2xy -3 3

10xy? —8xy  2xy(5y —4) 5y —4
12x2y2 2xy-6xy  6xy

3xh—h*+h  h(Bx—h+1) 3x—h+1
4h B h-4 B 4

x243x—18  (x —3)(x +6)
= =x+6
x—3 x=3)-1

43 +2  (x+Dx+1)  x+1
3x+6  (x+2-3 3

+5x+4  (x+Dx+4)  x+4
2—-1  G+Dx=-1D x-1

Only factors can be canceled in a fraction. For example, 2% cannot be reduced.

It is incorrect to “cancel” the 2 from the numerator and denominator, 2% is not
the same as x nor as 1 + x. We can rewrite the expression as the sum of two

fractions and reduce one of them.

24+ x
2

_2+x_1+x
22 2
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PRACTICE

Reduce the fraction to lowest terms.

1.

15xy?
20x2y
2.
4h?
h
3.
12x2y + 6xy?
Gxy — 18xy?
4.
x2—x—12
5.
x2 —9x +20
Cx2-25
SOLUTIONS
1.
15xy>  Sxy-3y 3y
20x2y ::5xy-4x " 4x
2.
4h>  h-4h
W
3.
12x2y + 6xy2  6xyQ2x +y) 2x+y
6xy — 18xy2 _ 6xy(1 —3y)  1—3y
4.

x2—x—12  (x4+3)x—-4 x-—4
x2+4x+3 x+DE+1D) x+1
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5.

-9 +20 (x-5x—-4) x—4
x2—-25  (x—=5x+5 x+5

Compound fractions have a fraction in the numerator, denominator, or both. Often
these fractions can be simplified by writing the compound fraction as a product
of two separate fractions. Remember that the fraction 7 is another way of writing

. a . c: a d
afbandthatzfglsthesameasB-E.

EXAMPLES
Simplify the fraction.
2 2 1 22 4
o =Lt o=LT=x
3 3 2 31 3
X 5y 5x 1 5x 5-x «x
o —=—+15=— —=—=—=—
15 3 3 15 45 5 9
xzx,g x 1 X x =3 x—=3)-x X
[ ] = - f . — —
)ﬁ x2-9 " x—=3 x2-9 1 x=3)(x+3) x+3
Sh
. i _ 5h o 5h l: 5
h x+h x+h h x+h
11
x+h X

1

We will begin by writing ﬁ — + as one fraction.

1 1 1 x | x+h
x+h x x+h x x x+h
X x+h x—(x+h)
T X+ h) x(x+h) x(x+h)
xX—x—h —h

x(x +h) B x(x + h)
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We will renl 11 ith —=~
€ wWill replace TR X wit YO+
1 1 —h
o X _ ey _ —ho o, —h
h h x(x+h) x(x +h)
PRACTICE
Simplify the fraction.
1.
14x
BN
7
2.
3
4
4
5
3.
4n?
h+x
h
4.
S5 _5
x+h X
h
SOLUTIONS
1.
B 4 l4x 1 2x
y y
2.
3 3.4 35 15
$7475 4 416
3.
4h>
Br _ an* _ 4h? L 4n
h h+x h+x h h+x
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4,
S > S_ X _ 3 xth
x+h x _ x+h x X  x+h
hoo h
S5x—5(x+h) Sx—5x—5h
x(x+h) x(x+h)
h h
 h x(x+h)
—5h 1 -5

x(x +h) 'E:x(x—i-h)

Exponents and Roots

In order to use two important formulas in calculus, we need exponent and root
properties to rewrite expressions as quantities raised to a power. Properties 5-7
below are the most important.

1.a" .- 4" = am+n 2 ﬂ —gmn
a
3. (@' =a™ 4.4°=1
1 —n n 1/n
L =a 6. Ja=a
a

7. Yam = a"'"

EXAMPLES

Use Properties 5—7 to rewrite the original expression as a quantity to a power.

o Jx=x'3 Property 6
1 -6

e < =X Property 5
x

o Jx=Yx=x'? Property 6

o Vid=+vx3=x32 Property 7
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Properties 6 and 5

=(x—87!/3 Properties 6 and 5

PRACTICE
Use Properties 5-7 to rewrite the original expression as a quantity to a power.
1.
1
x
2.
x2
3.
4 x3
4.
1
4 x3
5.
1
(3x2 4 4)2
6.
1
Vx+4
SOLUTIONS
1.
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2.

1 -2

x2 -
3.

J/x3 = x3/4
4.

L _ L s

v3 o oA

5.
1 2 -2

G =G

6.
1 1

_ — —-1/2
i Gra s E Y

Miscellaneous Notation

Interval notation is used to describe regions on the number line. The infinity
symbols, oo and —oo, are used for unbounded intervals. A parenthesis around a
number means that the number is not included in the interval. A bracket around a
number means that the number is included in the interval (see Figure R.1).

(a, 00)
a
L [av OO)
a

(—OO, a)
a
. (=00, a]
a

Fig. R.1.

The region between two numbers x = a and x = b (with a smaller than b), is
one of (a, b), (a, b], [a, b) or [a, b], depending on whether a and/or b is included
in the interval (see Figure R.2).
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o 0 (a,b)
o ? (a,b]
. 0 [a,b)
. ’ [a,b]
Fig. R.2.
EXAMPLE
Match the shaded regions in Figure R.3 with the interval.
A *
1
B O
1
c 2 4
D o A
2 4
Fig. R.3.

2,4) (2, 4] (1, 0c0) (—o0, 1]

(2,4) describes Graph D. (2, 4] describes Graph C. (1, co) describes Graph B.
(—o0, 1] describes Graph A.

The union symbol, “U,” is used to describe two or more regions. For example,
(—00,3) U (5, 00) describes all numbers smaller than 3 or all numbers larger
than 5 (see Figure R.4).

Fig. R4.
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EXAMPLE

Match the shaded regions in Figure R.5 with the intervals.

—Q
we
(@) ]
(o] ]

B ®
2 3
C °
2 3
D o ®
4 6

Fig. R.5.

(2,3] (—00,2)U[3, 00) [1,3]U[6, 8] (—00,4] U [6, 00)

(2, 3] describes Graph C. (—o0, 2) U [3, 0o) describes Graph B. [1, 3] U [6, 8]
describes graph A. (—o00, 4] U [6, co) describes Graph D.

PRACTICE

Match the shaded regions in Figures R.6 and R.7 with the intervals.

A q
B 1
¢ 1 S
b 7 3

Fig. R.6.
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® N W

Eal

(—00, 4]
(1,5]
[1,5)
(4, 00)

0

e

+~0

e

—Q

e

(—00,2]U (4, o0)
[0, 11U [2, c0)
(—00,0) U (1,2]
(—00,2) U (4, 0c0)

SOLUTIONS

® NN Nk LW =
> O O w » 0

B

p—

Fig. R.7.

e
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The Greek letter sigma, “X,” is used in Chapter 14 to describe a sum. There is
usually a subscript and a superscript on X. The subscript tells us where the sum
begins, and the superscript tells us where the sum ends.

4
. 231'
i=1

This sum begins at 3-1(i = 1) and ends at 3 -4 (i = 4).
i=1 i=2 i=3 i=4

4 —— = = =
231' =31)+32)+33)+3@4) =3+6+9+12=30
i=1
The absolute value of a number is its distance from 0. The absolute value of —5

is 5 because it is 5 units away from 0. The absolute value of a positive number is
the number itself. The absolute value of a quantity is denoted with absolute value
bars, “||.” The absolute value of —5 is denoted “| — 5|.” This notation is used on
occasion beginning in Chapter 13.

Solving Equations

We will solve many equations in this book, most of them linear equations or
quadratic equations. Linear equations are the easiest to solve. Our goal is to write
the equation so that the term(s) having an x is (are) on one side of the equation
and terms without an x are on the other side. Once this is done, we will divide
both sides of the equation by the coefficient of x (the number multiplying x).

EXAMPLES

e 4x+10=0
4x+10=0
—-10 —10 Move the non-x term to the right side.
4x = —10
X = _—10 Divide both sides by 4, the coefficient of x.
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2
—x—8=
3
2 .
gx =38 Add 8 to both sides.
3 - 2, o 3
X = 3 8 Dividing by 3 is the same as multiplying by 3
x =12

A quadratic equation is an equation that can be put in the form ax>+bx+c = 0.
Most quadratic equations in this book can be solved by factoring. We will use the
quadratic formula on others. No matter which method we use, we need to have
a zero on one side of the equation. Once this is done, we will try to factor the
quadratic expression ax” + bx + c. If it factors easily, we will set each factor
equal to zero and will solve for x. If it does not factor easily, we will use the
quadratic formula. Most of these equations have two solutions.

EXAMPLES
o x2—2x—-3=0

x2 — 2x — 3 factors as (x — 3)(x + 1). We will set each of x — 3 and x + 1
equal to zero.
x2—2x—-3=0
x—-3)x+1)=0

x—3=0 x+1=0
x=3 x=-1
e 3x24+x-2=0
3x24+x—-2=0
BGx—=2)x+1)=0
3x—-2=0 x+1=0
3x=2 x=-1
2
X ==
3
The quadratic formula can solve any quadratic equation. If ax?+bx+c = 0,
then
—b + Vb? —4dac
X = .

2a
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o 22— x—-4=0
We have a =2, b = —1, and ¢ = —4.

L —(—D /(=12 —4Q)(-4) 1£J/T=(=32) 1++33

2(2) 4 4
1+ 4/33 1 —4/33
1 and 2

When an equation is in the form “fraction = fraction,” we will cross-multiply
to solve for x. That is, we will multiply the numerator of each fraction by
the denominator of the other fraction.

%22 Multiply a by d and c by b.
ad = bc
4x 1
o — = —
5 X
4x - x=5-1
4x* =5

4x% = 5 is a quadratic equation. We could use the quadratic formula for
4x%2 — 5 = 0, but we can solve it more quickly by dividing both sides of
the equation by 4 and then taking the square root of each side.

=2

4
x::t _——= — -, —_
4 4" Va4

PRACTICE
Solve the equation.
I 3x+8=0
2. x2—2x—-8=0
3. 5x2-7x—-6=0
4. x? —3x — 6 =0 (Hint: use the quadratic formula.)
5. 224 7x+1=0
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6.
2x_ 5
3 Tx
SOLUTIONS
1.
4 +8=0
sPTeT
4
—x =-8
5
5
x=--—-8=-10
4
2.
x2—2x—-8=0
x—Hx+2)=0
x—4=0 x+2=0
x=4 x=-2
3.

52 —7x—6=0
Gx+3)(x—2)=0

5*x+3=0 x—2=0
5X=—3 X =

3

X =—=

5

4, a=1,b=—-3,andc = —6

L TEDEVEI A0 3O+ 34 V33

2(1)

—34+4/33 —3—-4/33
= 5 and 5

2

2
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5. a=2,b="7,and c =1

L ~T£ V7 —4Q)(1)  —-T+£/49-8 —7+./41

2(2) 4 4
—TH VAL -7 /41
= and
4 4
6.
2x . 5
3 Ix
2x - Tx =3-5
14x> =15
1
2o
14

15 (15 /15
X==4—=—/—, —
14 14 14

The Equation of a Line

Throughout much of the book, we find equations of lines. Although there are
several forms for the equation of a line, we will use the form y = mx + b. We
will be given an x-value, a y-value, and m. (Later, we will use a formula to find
m.) Having values for x, y, and m, gives us enough information to find b.

EXAMPLES

Find an equation of the line with the given values.
e x=2y=8 andm =3

We will substitute 2 for x, 8 for y, and 3 for m in y = mx + b to find b.

8=32)+b
8=6+4+0
2=0>

The equation is y = 3x + 2.
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° x:—l,y:S,andm:%
1
5=—=(-1 b
2( )+
5+1—b
5=
11
—=b
2

The equation is y = %x + 17

—

PRACTICE

Find an equation of the line with the given values.

. x=4,y=-3,andm =2
2. x=-2,y=5,andm = —1

SOLUTIONS

—3=24)+b
—11=5>
The line is y = 2x — 11.

5=—-1(-2)+b
3=0>
The lineisy=—-1-x+3=—x+3.

Functions and Their Graphs

The definition of a function is a relation between two sets A and B such that every
element in set A is paired with exactly one element in set B. Functions in this
book are equations, usually with the variables x and y. At times, we will use the
name of the function such as f(x), C(x), R(x), etc., instead of y. Here are some
examples of functions.

o y=2x—1 e f)=x*+x-2 e R(x)=.x
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To evaluate a function at a number or expression means to substitute the number
or expression for x. This gives us the y-value, also called the functional value,

for a particular x-value. The notation “ f(6)” means that 6 has been substituted
in the equation for x.

EXAMPLES

Evaluate the function at the given value of x.

o f(x)=x*>+3x—-4;1,5

f=D*+3()—4=0 F5) =5 +35)—4=36
o f(x)=+vx-35;5,14

fG)=v5-5=+/0=0 f14) =14 —5=+/9=73
° C(x):x+15,10,40

cioy =2 =20 -2 cupy =20 __W_ 4

10+15 25 5
o f(x)=100;6,28

0+15 55 11
f(x) =100 is a linear function whose slope is 0. No matter what value x
has, the functional value (the y-value) is always 100.

f(6) =100 f(28) =100

In Chapter 3, we evaluate functions at algebraic expressions. Again, we will
substitute the given quantity for x.

EXAMPLES

Evaluate the function at the given quantity.

e f(x)=4x+3;a+2band>5l

fla+2b)=4(a+2b)+3=4a+8b+3
f(l) =4(50)+3 =20l +3
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o f(x)=x%>+8x—10;5wand+3

Fw) = (5w)? + 8(5w) — 10 = 25w + 40w — 10
fA+3)=+3)?+8(0+3)—10=(+3)( +3)+8(+3)— 10

=P +6l+9+8+24—10=1>+ 14l +23
o f(x)=x*>+3;x+h

fax+h=x+h>+3=x+h(x+h) +3=x>+2xh+h*+3

° f(x)=2x+1; x+h
xX—+h xX+h
S = 41 x4 2n+1
7
o f(x)= ; X+ h
x—3
Jer =3
PRACTICE

Evaluate the function at the given quantity.

1. f(x)=-3x+10;0,4
g(x)=x3—x2+x—1;l,3
f)=vVx24+1;-4,5
f)=Vx+9;1—-4,31
fx)=—6x+2;x+h
gx)=x>+4x+1;x+h
f(x)=+4x =8, x+h

R(x) = x+h

e o

1 .
x+2°
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SOLUTIONS
1.

£(0) ==3(0)+10= 10
f@)=-3@+10=-2

2.
g =1 -1+ M —-1=0
g3 =03’ -0B’+0B) —1=20
3.
fEH =V +1=V16+1=V17
FG) =v52+1=v25+1=+26
4,
fl—4)=VI—4+9=+1+5 f@3) =3+9
5.
fx+h) =—6(x+h)+2=—6x—6h+2
6.
gx+h) =@ +h*+4(x+h) +1=@+h)+h)+4x+h) +1
=x>4+2xh+h> +dx +4h+ 1
7.
fx+h)=4x+h)—8=+/d4x +4h — 8
8.

R h)y=——
x +h) xX+h+2

The graph of an equation shows all the pairs of x and y that make the equation
true. The graph in Figure R.8 shows the graph of x +y = 4 (or y = —x +4). For
every point (x, y) on the graph, the sum of the x-coordinate and y-coordinate is
4. For example, (3, 1) is on the graph because 3 4+ 1 = 4.

The graph of a line having a zero slope is a horizontal line. The graph in
Figure R.9 is the graph of y =5 (or y = Ox + 5).
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10—

N~ ©
]

We can look at the graph of a function to find functional values. The y-
coordinate of the point (the second number) is the functional value for the
x-coordinate of the point (the first number). For example, the point (2,5) is
on the graph of f(x) = x? + 1 because f(2) =2>+1=35.
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EXAMPLES

e The graph in Figure R.10 is the graph of f(x) = x> — 3. Use the graph to
find f(—1), £(0), and f(2).

—_— N W R~ W
T

The point (—1, —2) is on the graph, so f(—1) = —2. The point (0, —3) is
on the graph, so f(0) = —3. The point (2, 1) is on the graph, so f(2) = 1.
e The graph in Figure R.11 is the graph of a function f(x). Find f(4), f(-3),
and f(—4).
The point (4, 1) is on the graph, so f(4) = 1. The point (—3, 1) is on
the graph, so f(—3) = 1. There is a hole in the curve at x = —4, so the
curve does not give us the functional value at x = —4. The dot at (—4, —2)
indicates that the function is defined there for x = —4. The dot is the point
(=4, -2),s0 f(—4) = 2.

PRACTICE
1. The graph of f(x) = /x is given in Figure R.12. Find f(4) and f(9).
2. The graph of f(x) is given in Figure R.13. Find f(2), f(4), and f(1).
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2 3 4 5

1

4 3 2 -1

-5

Fig. R.11.

9.3

(4,2)

23456 78 910

1

-2 -1

Fig. R.12.
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SOLUTIONS

1. The point (4, 2) is on the graph, so f(4) = 2. The point (9, 3) is on the
graph, so f(9) = 3.

2. The point (2, 4) is on the graph, so f(2) = 4. The point (4, 0) is on the
graph, so f(4) = 0. There is a hole in the curve at x = 1, so f(1) is not
on the curve. There is a dot at (1, 4), indicating that this point is part of
the function, so f(1) = 4.



CHAPTER

The Slope of a Line
and the Average
Rate of Change

Calculus is the study of the rate of change. We use the slope of a line to describe
the rate of change of a function. Instead of thinking of the slope of a line as a
simple “rise over run,” we need to think of it as a number that measures how one
variable changes compared to a change in the other variable. The numerator of
the slope describes the change in y, and the denominator describes the change
in x. For example, a slope of % says that as x increases by 5, y increases by 3.

A slope of %3 says that as x increases by 5, y decreases by 3.

— @
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EXAMPLES

Interpret the slope.
o y= %x +15

As x increases by 3, y increases by 2.
o y= —Tzox +4

As x increases by 9, y decreases by 20.
e y= %x -6

As x increases by 8, y increases by 1.
o y=-003x+10==5%x+10

As x increases by 1, y decreases by 0.03. If we view —0.03 as % instead,
we see that as x increases by 100, y decreases by 3.

e y=x= %x
As x increases by 1, y increases by 1.
e y =7 (This is the same as y = Ox + 7.)

The slope of this line is 0. If we think of 0 as %, then we see that as
x increases by 1, y does not increase nor does it decrease. In other words,
the y-value does not change. In fact, x can change by any amount and
y does not change.

e The daily cost of producing x units of a product is given by the equation
y = 3.52x 4+ 490.

The cost is y, and x is the number of units produced. The slope of 3.52 =
¥ tells us that as x increases by 1, y increases by 3.52. In other words,
each unit costs $3.52 to produce.

e The property tax for a property valued at x dollars is y = %.9081)&

As the value of property increases by $100, the tax increases by $0.5981.
e The demand function for a product is given by y = —%‘x + 300, where
v units are demanded when x is the price per unit.

As the demand increases by 5 units, the price decreases by $4. (We could
also interpret this slope to mean that as the price decreases by $4, demand
increases by 5 units.)

e The monthly salary for an office manager is given by the equation y = 3800.

The slope of the line for this equation is 0, which means that no matter what
happens to x, the y-value is always $3800. No matter how much (or how
little) the manager works, her monthly salary stays the same.
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PRACTICE

Interpret the slope.

1. y:%x—S
y=-2x+1
y=-—x
y=10

The sales tax on purchases costing x dollars is y = 0.08x.

AR

The pressure on a certain object submerged in the ocean is approximated
by y = 170x 4 6000, where x is the depth of the object, in feet, and y is
the pressure, in pounds.

7. The nonfarm average weekly pay from 1997 to 2002 can be approximated
by the equation y = 15.09x —29708. (This equation is based on data from
The Statistical Abstract of the United States, 123rd edition.)

SOLUTIONS

As x increases by 3, y increases by 7.
As x increases by 1, y decreases by 2.
As x increases by 1, y decreases by 1.

No matter how x changes, y does not change.

A I S

As the amount spent on purchases increases by $1, the sales tax increases
by $0.08.

6. As the depth increases by 1 foot, the pressure on the object increases
by 170 1bs.

7. The average weekly nonfarm wage increased by $15.09 each year from
1997 to 2002.

The rate of change for most functions is not the same for all x-values as
it is with linear functions. For example, if a cup of hot coffee sits on a
table for ten minutes, it will cool down faster in the third minute than in the
eighth minute. So, the rate of temperature change varies for different periods
of time. For most of the functions in this book, the y-values will increase
or decrease at different rates for different values of x. In fact, for some val-
ues of x, the y-values can increase and for other values of x, the y-values
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can decrease. We will look at the average rate of change of a function between
two x-values. The average rate of change of the function between two val-
ues of x is the slope of the line containing the two points on the graph of the
function.

EXAMPLES

Find the average rate of change for f(x) = x2 — x — 2 between (1, —2)
and (3, 4) and between (—2, 4) and (0, —2).

The average rate of change between (1, —2) and (3, 4) is the slope of the
line between these two points.

- 4—(=2 6 3
Average rate of change = m = 2T =2 =—=-=3
X3 — X1 3—-1 2 1

Between x = 1 and x = 3, the average increase of the function is 3 as x
increases by 1. See Figure 1.1.

Fig. 1.1.

The rate of change between (—2, 4) and (0, —2) is

-y  —2-4 -6 -3
xm—x; 0—(=2) 2 1

Average rate of change = m =
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Between x = —2 and x = 0, the average decrease of the function is 3 as x
increases by 1. See Figure 1.2.

[—
W —
N .
wn

Fig. 1.2.
e Find the average rate of change for f(x) = +/x 4+ 1 between x = 3 and
x =38.

Once we have computed the y-values for x = 3 and x = 8, we will put the
points into the slope formula.

yi=fx)=f3)=+v3+1=2 n=[fx)=f@ =+v8+1=3
The points are (3, 2) and (8, 3). The average rate of change is

w-y 3-2 1
X2 — X1 8—3 5

Average rate of change = m =

Between x = 3 and x = 8, the function increases by 1 on average as x
increases by 5.

e Find the average rate of change for f(x) = %x“ - %xz —3 between x = —2
and x = 2. See Figure 1.3.

- -5—(=5 0
Average rate of change =m = 2T (=5 =—-=0
Xy — X1 2—(=2) 4
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\ 10—

-10 -
Fig. 1.3.

Because the slope of the line is 0, the average rate of change of the function
is zero between x = —2 and x = 2. The function obviously changes in
value but the changes negate each other.

e Find the average rate of change for f(x) = %x — 4 between x = —3 and
x = 0 and between x = 6 and x = 12.

We will first find the y-values for x = —3 and x = 0.

2
yi=fl)=f(=3)= §(_3)_4= —6

2
2= f) = f(0) = 3(0) —4=—4

— —4 — (-6 2

Average rate of change = m = 20 _ (=9 ==

X2 — X1 0—(-3) 3
Between x = —3 and x = 0, the function increases, on average, by 2 as
x increases by 3. The average rate of change is the same between x = 6

and x = 12.

2
y1=f(x1)=f(6)=§(6)—4:0

2
= f)=f12) = 5(12)—4:4



CHAPTER 1 Slope and Rate of Change _\@

— 4-0 4 2
Average rate of change = m = 270 _ =-==
X2 — X1 12—-6 6 3
The average rate of change for a linear function is the same between any
two points on its graph.

PRACTICE

Find the average rate of change.

1. f(x)= x3 + x2 — 4 between the points (—1, —4) and (2, 8).
2. f(x) =x*—4x?, between x = —3 and x = 0.

3. f(x)zijrg between x = 0 and x = 2.

4. See Figure 1.4.

SOLUTIONS

1.
8—(—-4) 12 4
Average rate of change = —— = — = - =
2—(—1) 3 1
Between x = —1 and x = 2, the function increases by 4, on average,
as x increases by 1.
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2.
vi=f@)=f(=3)=(-3)*-4(=3>=45
v2=f(x) = f(0) =0"-4(0)>=0
0—45 —45 —15
Average rate of change = = = =—15
0—(-3) 3 1
Between x = 0 and x = —3, the function decreases, on average, by 15
as x increases by 1.
3.
fan=10=0"2="2" f=f@=22=7=0
=T =03 T 3 e T 3T s T
0-(-%H % 2 2 1 1
Average rate of change = —— == =-+2=-. - = —
2-0 2 3 3 2 3

Between x = 0 and x = 2, the function increases, on average, by 1 as x
increases by 3.

4. We need to find the average rate of change of the function between
(—=1,—1) and (1, 1).
1—(—1 2 1
Average rate of change = # =—=-=
1I-(—-1H 2 1
Between x = —1 and x = 1, the function increases, on average, by 1 as
x increases by 1.

CHAPTER 1 REVIEW

1. The value of a certain car can be approximated by y = —1500x + 9000,
x years after the car’s purchase. What does the slope mean?
(a) The car decreases in value $150 per year.

(b) The car decreases in value $1500 per year.
(¢) The car decreases in value $900 per year.
(d) The car decreases in value $9000 per year.

2. The monthly bill for a family’s electricity usage is y = 0.05x + 18, when
x kilowatt hours are used. Which of the following is true?
(a) Each kilowatt of electricity costs $0.05.

(b) Each kilowatt of electricity costs $0.50.
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(¢) Each kilowatt of electricity costs $1.80.

(d) Each kilowatt of electricity costs $0.18.

3. What is the average rate of change of the function f (x) = x3—2x?+x—5
between x = —1 and x = 27
@ —%
5
() 3
(c) 2
(d -2
4. What is the average rate of change of the function f(x) = 25 between

x =3 and x = §?
(a) 3

(b) 8
© 3
(d 0
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5. What is the average rate of change of the function whose graph is in
Figure 1.5 (see page 37) between the indicated points?
(a) 3

(b) -3
© 3
d) -3

SOLUTIONS
I.Lb  2a 3¢ 4d 50



CHAPTER

The Limit and
Continuity

The Limit

An important concept in calculus is that of the limit of a function. The ancient
Greeks used the notion of a limit to approximate the area inside a curve (like a
circle) by using the area of a polygon because they could easily find the area of a
polygon. Take, for example, using the area of polygons to approximate the area of
a circle. The more sides the polygon has, the better the approximation. The area
of the square in Figure 2.1 is not a good approximation of the area of the circle.
The area of the hexagon in Figure 2.2 is a better approximation, and the area
of the 12-sided polygon in Figure 2.3 is even better. The Greeks called this the
method of exhaustion. In modern language, we say that as the number of sides of
the polygon increases, the area of the polygon approaches the area of the circle.

— @
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Four sides
Fig. 2.1.

Six sides
Fig. 2.2.

Another example of a limit involves the irrational number e (you probably
have an e or ¢* key on your calculator). The value of e can be approximated
by rational numbers of the form (1 + 1/n)". The decimal approximation for e
is 2.718281828.... As you can see from Table 2.1, the larger n is, the better
the approximation for ¢. Using mathematical terms, we say that e is the limit of
(14 1/n)" as n gets large without bound.

We will work with the limits of functions. Usually, x will get close to a fixed
number. As x is getting closer to the fixed number, we want to know what y
is getting close to (if anything). In Tables 2.2 and 2.3 x is “approaching” the
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Twelve sides

Fig. 2.3.
Table 2.1
n 1+ %)n
n=>5 (1+1)° =2.48832
n=10 (1+ 15)"0 = 2.59374246
n =100 (1 + 755)'% = 2704813829
n = 1000

141000
(1+ 1o00) = 2716923932
1

n=10,000 (14 o) """ =2.718145927

Table 2.2

x y
45 2.9155
4.6 2.9326
4.8 2.9665
4.9 2.9833
4.99 2.9983
4.999 2.9983

5 ?
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Table 2.3

4.5
4.6
4.8
4.9
4.99
4.999

19.25
20.16
22.04
23.01
23.90
23.99

CHAPTER 2 The Limit and Continuity

number 5, and we will observe what y is approaching. The y-values in Table 2.2
appear to be getting closer to 3. We say that the limit of y as x approaches 5 is 3.
The y-values in Table 2.3 appear to be getting closer to 24. We say the limit of y

as x approaches 5 is 24.

PRACTICE

1. See Table 2.4. As x approaches

Table 2.4
x y
35 55
3.8 6.4
39 6.7
3.99 6.97
3.999 6.997
3.9999 6.9997
4 ?
2. See Table 2.5. As x approaches
Table 2.5
x y
75 2.9574
7.8 2.9832
7.9 2.9916
7.99 2.9992
7.999 2.9999

y approaches

y approaches
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SOLUTIONS

1. As x approaches 4, y approaches 7.
2. As x approaches 8, y approaches 3.

We can find the limit of a function (the y-values) by looking at the function’s
graph. Consider the function whose graph is in Figure 2.4. Suppose we want to
find the limit of the function as x approaches 4. Look at the region of the graph
near x = 4, what are the y-values of this region close to? The y-values (for
example 1.73, 1.87, 1.97) are approaching 2: as x approaches 4, the limit of the
function is 2.

y=2

Fig. 2.4.

EXAMPLES
Find the limit.

e The graph of a function is given in Figure 2.5. Find the limit of y as x
approaches 1.

1r y = 0.970299— ¢ <y =?

Fig. 2.5.
The y-values approach 1 as x approaches 1, so the limit of y is also 1.
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e The graph of a function is given in Figure 2.6. Find the limit of y as x
approaches —1.

3~
y=225—
y=1.6267 21
y = 1.8371>e_|

y —

L | |

-3 -2 -1

Fig. 2.6.

The limit of y as x approaches —1 is 1.5.
e The graph of y = —(x + 1)(x — 1)? is given in Figure 2.7. What is the limit
of y as x approaches 2?

Fig. 2.7.

If we are on the graph near the point x = 2 and move toward the point at
x = 2, the y-values move close to —3 (Figure 2.8). As x approaches 2, the
limit of y is —3.
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|

2

y approaches —3
J

< x approaches 2

Fig. 2.8.

e The graph of a function is given in Figure 2.9. What is the limit of the
function as x approaches 1?

\ ! ! ! ! 1 ! J
4 3 -2 -1 | 1 2 3 4

-1+

2L
Fig. 2.9.

If we are on the graph near the point whose x-coordinate is 1 and move
toward this point. What is the y-coordinate of this point? The y-values
approach 0.5, so as x approaches 1, the limit of the function is 0.5.



Q’_ CHAPTER 2 The Limit and Continuity
PRACTICE

1. For the graph in Figure 2.10, what is the limit of y as x approaches 1.5?

5
4
3
2
1

Fig. 2.10.

2. For the graph in Figure 2.11, what is the limit of y as x approaches %‘?

7 X\

N —
= —
—_

Fig. 2.11.
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SOLUTIONS

1. The limit of y as x approaches 1.5 is 1.

2. The limit of y as x approaches % is 1.

Strictly speaking, in order to say “the limit of y as x approaches 2 is 6,” the
y-values must approach 6 when x approaches 2 from both the left (such as 1.9,
1.99, 1.999, ...) and the right (such as 2.1, 2.01, 2.001,...). Refer to Table 2.6.
The y-values approach 12 as x approaches 4 from both the left and the right.

Table 2.6

x y
Approaching 39 11.31
4 from 3.99 11.93
the left 3.999 11.993

4 ?
Approaching 4.001 12.007
4 from the 4.01 12.07
right 4.1 12.71

For the numbers in Table 2.7, we would say the limit of y as x approaches 4
does not exist. The reason the limit does not exist is that the y-values approach
12 as x approaches 4 from the left, but the y-values approach 20 as x approaches
4 from the right. In order for the limit to exist, the y-values need to approach the
same number on both sides of x.

Table 2.7
x y
3.9 11.31
3.99 11.93
3.999 11.993
4 ?
4.001 20.009
4.01 20.09
4.1 20.91

We can tell from the graph of a function if a limit exists. If there is a big
gap in the graph, then the limit will not exist at the gap. Consider the graph in
Figure 2.12. The limit of y as x approaches 3 does not exist.
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- Approach 3
B from the right.
b
Approach 3 4+ L —
from the left. L
—
O
(I R (I R
3

Fig. 2.12.

The y-values approach 4 as x approaches 3 from the right, but the y-values
approach 2 as x approaches 3 from the left.

EXAMPLE

— D W kA N3
T

Fig. 2.13.
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e There is a gap in the graph shown in Figure 2.13 at x = —3. When x
approaches —3 from the right, the y-values approach 1. When x approaches
—3 from the left, the y-values approach 5. The limit of y as x approaches
—3 does not exist. Although the limit of y as x approaches —3 does not
exist for the graph above, both one-sided limits do exist. The limit of y as
x approaches —3 from the left is 5. The limit as x approaches —3 from the
right is 1.

The notation x — a means “x approaches a.” The notation

lim f(x) =b

is saying, “the limit of y as x approaches a is b,” where we use f(x) for y.

EXAMPLES
o lim f(x) =12

The limit of f(x) as x approaches 7 is 12.
o limx?—2x)=-1
x—1

The limit of y (or of x> — 2x) as x approaches 1 is —1.
e The graph in Figure 2.14 is the graph of a function f(x).
The limit as x approaches —1 is —3.

linl1 f(x)=-3
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The notation for a one-sided limit uses a plus or minus sign as a superscript
to the right of the number. lim,_, ,- f(x) means “the limit of f(x) as x
approaches a from the left.” lim,_, ,+ f(x) means “the limit of f(x) as x
approaches a from the right.”
e The graph of f(x) is given in Figure 2.15.
5 —

—_— N W A

1
Y
[ ]

4+

S5t
Fig. 2.15.

As we approach x = 2 from the right, the y-values approach 4.

lim f(x) =4

x—2t

As we approach x = 2 from the left, the y-values approach —3.

lim f(x)=-3

x—>2~

PRACTICE

1. Refer to Table 2.8.
(a)
lim f(x) =

x—>2-

(b)

lim f(x) =
x—2+
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Table 2.8

=

fx)

1.9
1.999
1.999

2.001
2.01
2.1

4.959
5.8906
5.9892

6.011
6.1106
7.161

(¢) Does limy,_ f(x) exist? If so, what is it?

2. Refer to Table 2.9

Table 2.9

fx)

—4.1
—4.01
—4.001
—4
~3.999
~3.99
-39

73.02
68.49
68.05

11.993
11.93
19.11

(a)
lim f(x)=

x——4-
(b)
Iim f(x)=

x——4+t

(c) Does limy_,_4 f(x) exist? If so, what is it?

3. The graph in Figure 2.16 is the graph of a function f(x).

(a)
lim f(x) =

x—>1-

_\@



CHAPTER 2 The Limit and Continuity

@’_

(b)
lim f(x) =

x—1t

(¢) Does limy_1 f(x) exist? If so, what is it?

4. The graph in Figure 2.17 is the graph of a function g(x).
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(@)
lim B gx) =

x——2

(b)

lim =
x——=2t g(X)

(c) Does lim,_,_5 g(x) exist? If so, what is it?

SOLUTIONS
1. (a)
limi fx) =6
x—2

(b)
lim f(x)=6

x—27F

(c) Yes, both one-sided limits are the same number, so lim,_» f(x) = 6.

lim47 f(x) =68
(b)
lirn4+ fx)=12

(¢) limy_ _4 f(x) does not exist because the left limit, 68, is not the
same as the right limit, 12.

lim f(x) = —2

x—>1-
(b)
lim_f(x) =2

(¢) lim,_ f(x) does not exist because the left limit, —2, is not the same
as the right limit, 2.
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(a)
lim g(x)=-3

x—>—2"

(b)
lim . gx)=-3

x—>—2

(¢) limy,_ _5 g(x) exists because both one-sided limits are the same
number. The limit is —3.

We are ready to evaluate limits directly from the function, without having to
look at a graph or a table. We will begin with some important limit properties.

1.
2.

limy ., x =a

For a constant number, ¢, lim,_.,¢c =c¢

For the rest of the properties, assume lim,_, f(x) = L and
lim,,, g(x) = M.

limyq[f(x) £ g(x)] = limy—, f(x) £limy—,8(x) =L+ M

We can find the limit of the sum (or difference) of two functions by first
finding their individual limits, then adding (or subtracting).

limeq f(x) - g(x) = [limyq fO)] - [limesq g(x)] =L -M
We can find the limit of the product of two functions by first finding their
individual limits, then multiplying.

. fx)  limys, f(x) L
lim = — = —
x—a g(x) limy—4 g(x)

We can find the limit of the quotient of two functions by first finding their
individual limits, then dividing.

(provided M # 0)

For any real number n, limy_,,(f(x))" = [limy_, f(x)]" = L"
We can find the limit of a function to a power by first finding the limit of
the function, then raising the limit to the power.

. For any positive integer n, limy_, V/F(x) = Jlim, f(x) = VL,

when 7 is even, we must have L > 0.
We can find the limit of the nth root of a function by first finding the limit
of the function, then by taking the nth root of the limit.

For a constant number ¢, limy_,c- f(x) =c-limy—, f(x) =c-L
We can find the limit of a constant times a function by first finding the
limit of the function, then by multiplying the limit by the constant.
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EXAMPLES
We will use examples to see why these properties work.

o lim, ,gx =7
A table of values is given in Table 2.10 and its graph is given in Figure 2.18.

Table 2.10
X y=x
5.9 5.9
5.99 5.99
5.999 5.999
6 ?
6.001 6.001
6.01 6.01
6.1 6.1
10~
8 —
6 %¢ y gets
close to 6
T
4 —
2 —
x gets close to 6
\ I TR J
2 2 4 6 8 10
2L

Fig. 2.18.

Because y approaches 6 as x approaches 6, lim,_,¢x = 6.
o lim,, ,3=?
A table of values is given in Table 2.11 and its graph is given in Figure 2.19

The y-values are 3 no matter what x is, so as x approaches —2, y approaches 3.
Now we can see that lim,_, _»,3 = 3.
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Table 2.11
X y=3
-1.9 3
—1.99 3
—1.999 3
-2 ?
—2.001 3
-2.01 3
-2.1 3
=
4
— <«
—3
s
1+
[ | | | | | | | | J
S 4 -3 -2 -1 1 2 3 4 5
-1F
2
3+
4+
St
Fig. 2.19.

These properties allow us to evaluate many limits by simply substituting a for x.

EXAMPLES

Evaluate the limit.

o lim,,1(3x*2—x+2)
By Properties 1, 2, 3, 6, and 8, all we have to do is to substitute 1 for x.

lim 3x%2 — x + 2 = lim 3x2 — lim x + lim 2
x—1 x—1 x—1 x—1

= 3(lim x)? — lim x + lim 2
x—1 x— x—1

=3()* - () +2=4



CHAPTER 2 The Limit and Continuity _\@

o limo(5x —6) =5(0)—6=—6
o lim, 2(7—x+x%)=7—(=2)+(=2)>=13
. x+1 841 9
o limy,g—=——=—=
x—1 8—1 7
o lim,4(x—2P°=@4-2)3=38
o limy3/x+6=+/3+6=3

What happens to lim,_, 4 % if letting x = a causes a zero in the denominator?

Sometimes the limit exists, sometimes it does not. If letting x = a gets us 0/0,
then very often the limit does exist. When we get 0/0, we will reduce the fraction
to lowest terms, then let x = a. If we get a number, then the limit is this number.
If we get honzeronumber - ¢hon the Jimit will not exist, or might be infinite (more
about this later).

EXAMPLE

 x2—4
e lim
x—2 x —2
224 0 0 :
If we let x = 2, we have 55 = ¢ Of course, g 1s not a number, but

this limit might exist. We will look at both a table of values and the graph.

As we can see from the Table 2.12 and Figure 2.20, limy_» );2%24 =4. We
can find this limit algebraically. Factor the numerator and denominator and
reduce the fraction to lowest terms. Then try letting x = 2.

Cox2—4 L x=2(x+2)
hm = 111’1’1 _—
x—2 x —2 x—2 x—2

—lim(x+2)=2+2=4
x—2

Table 2.12
x );2-_24
1.9 3.9
1.99 3.99
1.999 3.999
2 ?
2.001 4.001
2.01 4.01

2.1 4.1
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5 4 -3°2
2
3
4
5L
Fig. 2.20.
. x2+x—6
im —————
x—>-3x24+4x +3
Letting x = —3 gives us 0/0, so we will factor the numerator and

denominator and reduce the fraction to lowest terms.

o x24x-6 D=2 . x—=2 =3-2 5
hm _—_— = 111’1’1 _—_— 1m = = —
x—>—3 x2+4x—|—3 —-3x+3)x+1) x—>-3x+1 -3+1 2

Sometimes 0/0 means the limit does not exist (or is infinite).

x2+5x+4

lim ———

x——1 x2 +2x+1
Once we reduce the fraction to lowest terms and let x = —1, we will have

nonzero number -y hich s not a number. This means the limit will not exist (or
is infinite).

. x*4+5x+4 . (x+D(x+4

im ——= 1lim ——

x—>—1x24+2x +1 ——-1(x+Dx+1)
_ x+4 3

= lim = — This is not a number.
x—>—1x+1 0

The limit does not exist (or is infinite).
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PRACTICE

Evaluate the limit, if it exists.

1. limy_o(4x?—6) =

o ox2 41
lim =
x—2 x2 —1

3. limy74/x+2=

4. limy_, _3(x>—x+5) =

3x2 4 2x

x—0 X

Iim ——— =
x—4 x2—2x—8

. x2—6x+5
Iim — —
x—>5x2 —10x 4+ 25

SOLUTIONS

. limy_0(4x2 —6) =4(0)2 — 6= —6

DN =

Cox24+1 2241 5
lim = = —
x—>2x2—1 22—1 3

3. limy7/x+2=V7+2=3

4, limy _3(x2—x 45 =(=3)2=(=3)+5=17

3x24+2x . x(Bx+2)
m—

lim —— = —|i =limBx+2)=30)4+2=2
x—0 X x—0 X x—0

6.
22 —Ix—4 . x=dHx+1 . 2x+1
hm _— = =

= = 11m
x—>4 x2—2x —8 =4 (x—4H(x+2) x—>4 x4+ 2
2@+1 9 3

442 6 2
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o o x2—6x+5 == . x-1
hm _—_ = hm _— = hm
x—5x2 —10x + 25 x—=5(x —5(x—15) x=>5x—15

We cannot let x = 5in (x — 1) /(x —5) because we would have 4/0, so this
limit does not exist (or is infinite).

Sometimes as x approaches a zero in the denominator, the y-values get large.

For example, as x approaches 3 in f(x) = ﬁ, the y get larger and larger (see

Table 2.13 and Figure 2.21). When this happens, we say the limit is infinite:

1
lim ——— = oc.
x—=3 (x — 3)2

Table 2.13
1
¥ =32
2.9 100
2.99 10,000
2.999 1,000,000
3 ?
3.001 1,000,000
3.01 10,000
3.1 100
8 [
6 ot
y values get larger
4 [
2 [
| | J
2 2 8
oL

Fig. 2.21.



The limit does not exist, however, when the y-values get larger in different
directions. For example, the limit does not exist for lim,_,» ﬁ because the
y-values get large in the positive direction on the right of x = 2, but they get
large in the negative direction to the left of x = 2 (see Figure 2.22).

T

y values get larger
in the positive direction

y values get larger
in the negative direction

Fig. 2.22.

How can we tell if a limit is a number, is infinite, or does not exist? First, we
need to make sure that the fraction is reduced to lowest terms. If letting x = a
in the fraction gives a number, this number is the limit. Otherwise, the limit will
either be infinite or will not exist. We can determine which is the case by letting
x be a number a little to the left of x = a and again with x a number a little to the
right of x = a. If we get both numbers to be large positive numbers, the limit will
be positive infinity (co). If we get both numbers to be large negative numbers,
the limit will be negative infinity (—o00). If one number is a large positive number
and the other a large negative number, the limit will not exist.

EXAMPLES

Evaluate the limit.

x+6

[ ] mm
x—>—-5x+5
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The fraction is reduced to lowest terms. We will let x = —4.99 as our number

that is a little to the right of x = —5 and x = —5.01 as our number that is a little
to the left of x = —5.

—4.99+6 101 —501+6
—499+5 —501+5

These large numbers have different signs, so the limit does not exist.

-99

x—1

e lim 3
x—1lxc—1

This fraction can be reduced.

.oox—1 . x—1 . 1 1 1
lim ——=1lim ——— = lim = =_
x>1x2—1 x>1l(x—=Dkx+1) x>1x4+1 1+1 2
. x+5
e Ilim 5
x—>0 X
This fraction is reduced to lowest terms. We will let x = —0.1 and x = 0.1 to see

if the y-values are both large positive numbers, both negative numbers, or one
positive and one negative number.

—0.1+5 0145

— = —— =510

(—0.1)2 (0.1)2
Both y-values are large positive numbers, so the limit is positive infinity:
lim,_,¢ ’%25 = o0.

PRACTICE

Evaluate the limit.

1.

x+1
im =
x—>—42x +8
2.
. 2x
lim — =
x—=9 (9 — x)2
3.
—4
lim —

x—4 x2 — 16 -
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=1
lim — =
x—0 X

SOLUTIONS

1. The fraction is reduced to lowest terms.
—-399+1

For x = -3.99, ———— = —149.5,
2(—3.99) + 8
—4.01+1
for x = —-4.01, ——— =150.5
2(—4.01) + 8

These large y-values have different signs, so the limit does not exist.

2. The fraction is reduced to lowest terms.
2(9.1)

Forx =9.1, ——~
(9—9.1)2

= 1820, forx = 8.9,

(9 —8.9)2

= 1780

These large y-values are both positive, so the limit is infinite.

2x

limy_,9 —— = o0.
1My 9(9_)6)2 (0. ¢]

3. We need to reduce the fraction to lowest terms, and then try to let x = 4.

x—4 . x—4 1

lim —— =Ilim ———— = lim —— =
x—>4x2 =16 x—4 x—4Hx+4 x—4x +4

4. The fraction is reduced to lowest terms.

(0.1)2

11
444 8
= —100

—1
For x = -0.1, ——— = —100, forx =0.1,
(—0.1)2
These large y-values are both negative, so the limit is infinite.
-1
lim,_ —5 = —%.
X

When we take the limit of an algebraic expression that has more than one
variable, the limit is usually another algebraic expression instead of a number.
The variables that do not “move” are treated as if they were fixed numbers when
the limit is taken. In the limit lim,_, (x> + xy + y?), only x is changing. We let

x “go to 1” but leave y and y? as they are.

liml<x2+xy+y2) =P +1)+y =1+y+y?
xX—
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In the next chapter, we will work with limits of functions having an x (or ¢) as
well as & as variables. We will take the limit as & goes to 0.

EXAMPLES

Evaluate the limit.
e lim(y — 6xy? + 5x)
x—2
We only need to replace x with 2.
limz(y —6xy? 4+ 5x) =y —6(2)y* +5Q2) =y — 12y + 10
x—
o limG?—2xh+4)=x>-2x(0)+4=x>+4
h—0

. 10+ A 10+0
m =
h—0(x+h+1Dx+1) (x+01-(i)- D&x+1

B 10
S+ Dx+D x4+ D2

h2
lim —
h—02xh
If we let h = 0, we would get 0/0. We must reduce the fraction before
attempting to let 4 = 0.
. h? . h 0
Iim — =lm — = — =0
h—02xh h—02x  2x
. 2xh+h*—2h
o lim ——
h—0 h
Again, if we let & = 0, we would get 0/0. First we will factor 4 from each
term in the numerator. And then we can reduce the fraction and take the

limit.
2xh + h? —2h hQx+h—2
fim 2T =20 PR D o h -2
h—0 h h—0 h h—0
=2x+0—-2=2x -2
PRACTICE

Evaluate the limit.

L. 1imx—>—3(x2 +xy—2x +4y) =
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. X+Yy
lim 7 =
x—>4 X —Yy

Txh —3
im ——— =
h—0 h2+2

4. limy,_0(Bx — 8h) =

. 2xh
lim — =
h—0 h

_ 4xh?® —2h
lim ————
h—0 h

~ 2xh —3h*?
hm _—
h—0 h

_ 5xh —3x%h + h?
Iim =
h—0 h

SOLUTIONS
L.
Jim (4 xy =2 +4y) = (=3)7 + (=3)y —2(=3) + 4y
=9-3y+6+4y=15+y

.o Xx+y 44y
lim =
x—=>4 X — y2 4 — y2

. Ixh—-3 7x(0) -3 3
lim = = ——
h—0 h2+2 0242 2

4. limp—o(3x —8h) = 3x — 8(0) = 3x

2
lim 2 i 2x = 2x
h—0 h h—0
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6.
. 4xh*—2h . h(@4xh-2)
Iim —— = lim ——— = lim@xh —2) =4x(0) — 2 = -2
h—0 h h—0 h h—0
7.
. 2xh—3h* . h(Qx-=3h) .
Iim ——— = lim ———= = lim 2x — 3h) = 2x — 3(0) = 2x
h—0 h h—0 h h—0
8.
. Sxh—=3x2h+h®> . h(5x —3x%*+h)
lim = lim
h—0 h h—0 h
:I}imO(Sx —3x2 4+ h) =5x —3x>+0=5x — 3x?
Continuity

A function is continuous at an x-value if its graph can be drawn through the point.
A graph is not continuous at an x-value if there is a break at the x-value. The
graph in Figure 2.23 is not continuous at both x = —2 and x = 1. The graph in
Figure 2.24 is not continuous at x = 1.
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EXAMPLES

Determine where the functions are not continuous.

N%
Wl
~L
w

4
-S54
Fig. 2.25.

_\@

e The function shown in Figure 2.25 is not continuous at x = —2 and

atx = 2.
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e The function shown in Figure 2.27 is not continuous at x = 2.
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Each of the functions above failed to be continuous for different reasons. The
function whose graph is in Figure 2.25 is f(x) = )62"—_4. It is not defined for
x = —2 and x = 2. These x-values cause a zero in the denominator. The function
whose graph is in Figure 2.26 is not continuous at x = —1 because the left limit
is different from the right limit, so the limit does not exist. The function whose
graph is in Figure 2.27 is not continuous at x = 2 because there is a hole at x = 2,
even though the function is defined at x = 2. The limit (as x approaches 2) exists
but is different from the value of the function there.

In short, a function f(x) is continuous at x = a if all three of the following
are true.

1. f(a) exists. (There is a point on the graph for x = a.)
2. limy_,, f(x) exists. (The left limit is the same number as the right limit.)

3. limy—, f(x) = f(a). (The limit exists and is the same number as the
y-value for x = a.)

PRACTICE

Determine where the function is not continuous and which of the three conditions
it fails.

1. The function of Figure 2.28.

—_ N W R W
I

p—
N -
W —
N
W
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2. The function of Figure 2.29.

[ e N e
I

|

(U e
1
N
1
w
1
o
1

—_—
p—
[\ N
W
AN
W =
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SOLUTIONS

1. The function is not continuous at x = 1. Even though the function exists
atx = 1 (its y-value is —2) and the limit exists (it is 2), these two numbers
are not the same, so the function is not continuous at x = 1. It fails the
third condition, limy— | # f(1).

2. The function is not continuous at x = —1 because there is no point on the
graph for x = —1. The function is not continuous at x = —1 because it
fails the first condition, f(—1) does not exist.

3. The function is not continuous at x = —2 because the limit does not exist
(the left limit is —1 and the right limit is 1.5).

CHAPTER 2 REVIEW

1. Estimate the lim,_, 19 y from the numbers in Table 2.14.

Table 2.14

X y
9.5 —14
9.9 —14.8
9.99 —14.98

10 ?
10.01 —15.02
10.1 —15.2
10.5 —16

a) 10 b) —15

¢) 25 d) The limit does not exist.

2. Estimate limy_, o y from the numbers in Table 2.15.

Table 2.15

x y

9.5 —14

9.9 —14.8

9.99 —14.98

10 ?
10.01 25.02

10.1 25.2

10.5 26

a) 10 b) —15 <¢) 25 d) The limit does not exist.
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3. Use the graph of f(x) in Figure 2.31 to find lim,_.1 f(x).
5 —

—_ N W A

4+

5L
Fig. 2.31.

a) 2 b) =3 «¢) 1 d) The limit does not exist.

4. Use the graph of f(x) in Figure 2.31 to find lim, _, ;- f(x).
a) 2 b) =3 c¢) 1 d) The limit does not exist.

5. Use the graph of f(x) in Figure 2.31 to determine where f(x) is not

continuous.
a) x=2 b)) x=-3 c¢) x=1 d) The function is continuous

everywhere.

6. Use the graph of g(x) in Figure 2.32 to find lim,_, _» g(x).
a) 3 b) 2 c¢) —5 d) The limit does not exist.

7. Use the graph of f(x) in Figure 2.33 to find lim,_,3 f(x).
a) 10 b) —oo ¢) oo d) The limit does not exist.

8.
x2 =2
lim =
x—0 x +4
9 a) —2 b —% ¢) 2 d) The limit does not exist.
|
lim =
=1 x—1

a) 2 b) 0/0 c¢) 0 d) The limit does not exist.
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5
4%
3
2%
1%

[ | | | | | | |
S5 4 43 2 -1 2 3 4 5
-1 -
2=
3
4
-S54
Fig. 2.32

10— ’
8 |
6% I
|
4+
2%
L | | | J
-2 2 4 6 8 10
-
Fig. 2.33.

10. The graph of f(x) is in Figure 2.34. Why is the function not continuous
atx =17
a) f(1) does not exist b) lim,_, | f(x) does not exist
c) limy,_ 1 f(x) # f(1) d) None of the above
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Fig. 2.34.

11. limp_o(@x% —2x +h) =
(a) 4x% —2x
(b) 0
(c) 4x?
(d) 4x% —2x +1

12.
6xh —3h
1m =
h—0 h

(@ 3

(b) -3
(c) 6x

(d) 6x —3

SOLUTIONS

1.b 2.d 3.d 4.b S5.c 6. a
7. c 8.b 9.a 10. ¢ 11. a 12.d



CHAPTER

The Derivative

Suppose the graph in Figure 3.1 represents the relationship between the weekly
sales budget and the number of cars sold for a small car dealership. As the budget
increases from $1000 to $2000 (from x = 1 to x = 2 on the graph), the number
of cars sold increases from 2 to 4 (y = 2 to y = 4 on the graph). As the budget
increases from $3000 to $4000, the number of cars sold increases from 8 to 16.
This shows that an extra $1000 in the sales budget from $3000 to $4000 results
in an extra 8 cars sold; whereas, an extra $1000 in the sales budget from $1000
to $2000 results in only an extra 2 cars sold.

The graph in Figure 3.2 shows the annual revenue for a product during the
years 1990 to 2005. From 1991 to 1992, the revenue increased about half a
million dollars. From 2004 to 2005, though, sales hardly increased at all.

These examples show us that the rate of change of a function can be different
for different values of x. Calculus gives us a way to find and describe the rate of
change at different x-values. The slope of the rangent line describes the rate of
change at different x-values, and the slope of the tangent line is found using the
derivative.

— @
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Fig. 3.2.



Before learning about the tangent line and the derivative, we need to learn

about secant lines. A secant line on the graph of a function is formed by drawing
a line through two points on the graph (see Figure 3.3).

A secant line  ~
is a line

through two
points on a graph.

N
AN

Fig. 3.3.

Suppose we have a series of secant lines that all go through a fixed point on
the graph. Each of its other points gets closer and closer to the fixed point. For
the graphs in Figures 3.4-3.6, one point is fixed and the other point of the graph
is moving closer to the fixed point. We are interested in the slope of these lines.
Consider the distance between the x-values of these points. This distance is called
h (see Figure 3.7). What is the slope of the secant line between the point (x, f(x))
(the fixed point) and (x+ 4, f(x+h)) (the point moving closer to the fixed point)?
Using the slope formula with x| = x, y; = f(x), x2 = x+h, and y» = f(x+h),
the slope of a secant line is

_nmn _fGEh) - f@) _ fath) = f@)

X2 — X1 x+h—x h

Fig. 3.4.
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< This point
is closer.

Fig. 3.5.

< Fixed Point
< This point is
even closer.

Fig. 3.6.
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EXAMPLE

° f(x):xz—x

_\®

Let x = 3, f(x) = 6 be the fixed point. We will find the slope of the secant
line between x = 3 and x = 3.5, between x = 3 and x = 3.1, and between

x =3 and x = 3.01 (see Table 3.1).

Table 3.1
— 2 — 2N _ y=6
x+h h y=@+h)*—(x+h) m= 2ol ==
35 35-3=05 352 -3.5=8.75 $-6 =55
3.1 31-3=0.1 3.12 -3.1 =6.51 8316 — 5.1
3.01 3.01 -3 =001 3.012 — 3.01 = 6.0501 605016 = 5.01

Fig. 3.8.

The slope of the tangent line is the limit of the slope of the secant lines as the
moving point approaches the fixed point. In the above example, the slope of the
tangent line is 5. For the graph in Figure 3.8, the tangent line (the solid line) is

the limit of the secant lines (the dashed lines).
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CHAPTER 3 The Derivative

1. Fill in Table 3.2 for f(x) = x4 5x and the fixed point (3, 24).

Table 3.2
x+h h y=&+ M+ 5 +h m=¥2
(Slope of the secant line)
35
3.1
3.01

2.  What appears to be the slope of the tangent line?

1. See Table 3.3.
Table 3.3
x+h h y=(x+ )2+ 5x+h) m=272
(Slope of the secant line)
3.5 0.5 3.52 +5(3.5) = 29.75 B2 = 115
3.1 0.1 3.12453.1)=25.11 Bl —
3.01 0.01 3.01% +5(3.01) = 24.1101 2.1101=24 — 11,01

2. The slope of the tangent line appears to be 11.

The slope of the tangent line is the slope of the secant lines as /& approaches 0.

h) —
Tangent slope = lim fx+h) —fx)
h—0 h

Once this limit is simplified, we have a formula for the slope of the tangent line
for any x. This formula is called the derivative. It has many notations, among

them are y’ (pronounced “y-prime”), f’(x) (pronounced “f prime of x”), and



g—)yc (pronounced “dee-y, dee-x""). We will practice evaluating this limit for various

kinds of functions. In the next chapter, we will see that there are formulas that
can eliminate most of the messy algebra.

EXAMPLES
e Find f/(x) for f(x) = x2.

We will find and simplify lim,_o L“=/0) "We will begin by finding
and simplifying f (x4/). Then we will put this as well as x? in the formula.
Finally, we will simplify the fraction and take the limit.

fx4+h) =@x+hm>=x+h)(x+h) =x>+2xh+ h?

fx+h) fx)
— —~ =
f'(x) = lim fx+m = [ = lim x* 4 2ch + b= x°
h—0 h h—0 h
2xh + h?
= }}imo % Factor i from 2xh + hz, leaving 2x + h.
—
h(2 h
= }}in%) % h in the numerator and denominator cancels.
—

=1limQ@2x+h)=2x4+0=2x
h—0

e Find y' for y = 3x — 4.

The “ f (x)” part of the formula is “3x — 4 and the “f(x 4 h)” part of the
formula is “3(x + h) — 4.”

fx+h) fx)
— —_——~—
;o fx+h) = fx) . 3(x+h)—4—-0Cx—4)
y' = lim = lim
h—0 h h—0 h
o 3x+3h—-4—-3x+4 . 3h
= lim = lim — =3
h—0 h h—0 h

Any time the function is linear (in the form f(x) = mx + b), the slope

of the tangent line for any point on the graph is the same as the slope of
the line.
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e Find % for y = 2x — 3x2.

In the derivative formula, replace f(x) with 2x — 3x2 and f(x 4+ h) with
2(x +h) — 3(x + h)2.

dy . f(x+h—fx) . 2(x+h) —3(x+h)?*—(2x —3x?)
—~ = lim = lim
dx  h—0 h h—0 h
i 2(x +h) = 3(x + h)(x + h) — 2x — 3x?)
= 11m
h—0 h
i 2(x + h) —3(x2 4 2xh + h?) — 2x — 3x?)
= l1m
h—0 h

2x +2h — 3x2 — 6xh — 3h? — 2x + 3x2

h—0 h
. 2h — 6xh — 3h?
= lim Factor h.
h—0 h
. h(2—6x—3h)
= hm _—
h—0 h

=}}irr{)(2—6x—3h):2—6x—3(0)=2—6x

e Find f/(x) for f(x) = 10.
For this function the y-value is always 10, so both f(x) and f(x + h)

are 10.
f/(x) = lim foath) = f0 o, 1021000
h—0 h h—0 h h—0h
' (O )
=1lim0=0 -—=0
h—0 h
PRACTICE

Find the derivative.
. fx)=x*>+4
(=) _

[l = Jim
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—&r

2. y:%x—l
. ( )—( )
/:1 _— =
Y hl—IR) h

3. y=4x2—x+6
dy C )»=CH_

— = lim
dx  h—0 h
4, f(x) =8
. ( )—(C )
/ :1 _—_—
fx) Jim ;
SOLUTIONS
1.
, AP AR+ ) +4— (P4 4)
f(x) = lim = lim
h—0 h h—0 h
O xX242xh+ K2 4+4—x2—4  2xh+h?
= lim = lim ——
h—0 h h—0 h
h(2 h
— gim P G ) = 20 +0 = 2x
h—0 h h—0
2.
1 1 1 1 1
h—0 h h—0 h
_sh 11
=1lim = =1lim - = —
h—0 h h—02 2
3.
dy _ . A6+’ —(r+h)+6— (@4’ —x+6)
dx  h—0 h
_lim4(x+h)(x+h)—(x+h)—|—6—(4x2—x—|—6)
=0 h

i 407420k ) — ) 6 — (47— x 4 6)
NG A
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452 + 8xh +4h?> —x —h+6 —4x>2+x — 6

= lim
h—0 h
8xh +4h> — h ,
= lim ——————— Factor / in the numerator.
h—0 h
h(8 4h — 1
i P D S+ 4k — 1) = 8y +4(0) — 1
h—0 h h—0
=8x —1

4. Both f(x) and f(x + h) are 8.

— 0
f/x)=1lim —— =1lim —=1m0=0
h—0 h h—»0h  h—0

The functions in the next set of problems will contain fractions. These fractions
make the algebra of the limit more tedious. To make matters a little easier, we
will use the following shortcut.

(ab)/c b
a c

Here is why the shortcut works.

(ab)/c  ab ab 1 ab b
= — == —+ = — = —
a c c a ac c
Now we can simplify expressions such as
24—
hx” +2x—1) x+_2f D B x24+2x—1
h o ox—1

without having to go through these steps:

2 _
MO hel42e—D) L bGP 420—1) 1 a7 4201

h x—1 i x—1 R ox-—1

Once we have factored 4 from the numerator (of the main numerator), it will
cancel the /4 in the main denominator.
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—&

EXAMPLES
e Find f'(x) for f(x) = 1.
1 _1
/ =1 x+h X
£ = lim =——=
. o 1 1
We will take a few steps to simplify —— — —.
+h x

1 X 1 x+h

x+h x X  x+h

X _ _x+h
— lim x(x+h) x(x+h)

h—0 h

x—(x+h) x—x—h
= lim EICE T lim xath)
h—0 h h—0 h

_=h
x(x+h)

= lim

= lim —— This is the shortcut.
h—0x(x + h)

-1

- Now it is safe to let 4 = 0.
x(x +0)

10 x+1 10 x+h+1

— lim x+h+1  x+1 x+1  x+h+1
h—0 h

10(x+1)—10(x+h+1)
— lim (x+h+1D)(x+1)

h—0 h
10x+10—10x—10A—10
. h+1 1
— 1im GFAFD(xF1)
h—0 h
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Sy—

—10h

— Lm (x+h+1)(x+1)

h—0 h

. —10 ..

= lim This is the shortcut.

=0 (x+h+1)(x+1)
B —10 B —10
x40+ Dx+1D x+DEx+D
. —10
(12

e Find y fory = 575

x+h o x
. 2(x+h)+3 2x+3
y = lim (x+h)+ x+
h—0 h
x+h  2x43 _ _x  2x+m)+3
- 2(x+h)+3 0 2x43 2x+3  2(x+h)+3
= lim
h—0 h

(x+h)(2x+3)—x[2(x+h)+3]
— lim [2(x+h)+3]1(2x+3)

h—0 h

2x243x+2xh+3h—x 2x+2h+3)
— Lim 2x+2h+3)(2x1+3)

h—0 h

2x243x+2xh+3h—2x2—2xh—3x
— 1im 2x+2h+3)(2x+3)

h—0 h

3h

— lim (2x+2h+3)(2x+3)

h—0 h

. 3

= 1um

h—0 2x +2h + 3)(2x + 3)
. 3
C (2x+2-04+3)2x +3)
. 3 . 3
T 2x+3)2x+3)  (2x +3)2

This is the shortcut.
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PRACTICE
Find the derivative.
1. y= %
6
2. fX) =755
3. f0) =2
SOLUTIONS
1.
2 2
2 _ i XL
dx  h—0 h
2 . x _ 2 x+h
— 1im x+h x x x+h
h—0 h
2x—2(x+h)
= lim _xath)
h—0 h
2x—2x—2h
— lim x(x+h)
h—0 h
—2h
— lim x(x+h)
h—0 h
= lim ———
h—0 x(x 4+ h)
B -2 _ -2 _ -2
Cx(x+0) x-x  x2
2.
6 6
/ . 2(x+h)+1 2x+1
x) = lim
@ h—0 h
6 2x4l _ _6  20x+h)+l
— lim 2(x+h)+1  2x+1 2x+1  2(x+h)+1
h—0 h
6(2x+1) 6[2(x+h)+1]

— lim Cx+DRE+)+1] — x+DR2G+h)+I1]
h—0 h
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G

12x46 6Qx+2h+1)
_ i &FD@x42FD T Cxt D225+

h—0 h

12x+6—12x—12h—6
. 2x+1)2x+2h+1
— 1lim (2x+1)2x+2h+1)

h—0 h

—12h
_ i ZEFDCH2RET)

h—0 h

, -12
= lim

h—0 2x + D)(2x +2h + 1)
B -12 B -12 -2
S 2x+DCx 42041 x+DCRx+1) Qx4+ 1)2

x+h)(x—D)—x(x+h—1)
— lim x+h—D(x—1)
h—0 h

x2—x+xh—h—x2—xh+x
— lim (x+h—1)(x—1)
h—0 h

—h
— lim (x+h—1)(x—1)
h—0 h
. -1
= lim
=0 (x+h—1(x-—1)
_ —1 . —1 _ —1
S 40-Dx—-1 @-Dx-1 (x-—1)?

The limit property lim,_,4[ f (x) £ g(x)] = limy_,, f(x)£lim,_,, g(x) allows
us to differentiate functions one term at a time. The limit property lim,_,, cf (x) =
climy_,, f(x) allows us to take the derivative of a quantity either before or after
multiplying the quantity by a constant.
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Fig. 3.9.

If f(x) and g(x) are differentiable functions, and if y = f(x) £ g(x),
then y' = f/(x) + g’ (x).
If y =cf(x), then y' = cf’(x).

The derivative is a formula for the slope of a tangent line for a function. For
example, the derivative of f(x) = 3x> +x — 4 is f/'(x) = 6x + 1. With this
formula, we can find the slope of the tangent line for any x-value. For example,
the slope of the tangent line at x = 2 is f/(2) = 6(2) + 1 = 13. The slope of the
tangent line at x = —% is f/(—%) = 6(—%) + 1 = —2 (see Figure 3.9).

Later, after we have learned some derivative formulas, we will practice finding
equations of tangent lines.

CHAPTER 3 REVIEW

1.  What appears to be the slope of the tangent line at x = 2 for the numbers
in Table 3.4 (see page 90)?
a)2 b) 3 c)4 d)5

2. Find y’ for y = 4x% +5.
a) 8x b) 8x +5 c) 8x + 5h d)8x—nh

3. Find f/(x) for f(x) =17.
a)7 b) 0 c) 49 d) f’/(x) does not exist.
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Table 3.4

x+h fx+h) h f(x+h’2—f(x)

Secant slope
1.5 0.75 1.5-2=-05 2.5
1.9 1.71 1.9-2=-0.1 2.9
1.99 1.9701 1.99 —2 = -0.01 2.99

?

2.01 2.0301 2.01 -2 =0.01 3.01
2.1 2.31 21-2=0.1 3.1
2.5 3.75 25-2=05 35

4. Find f'(x) for f(x) = -

x+5°
1 -1
) ThTs b 75
_1 =1
) 33 4 e

5. Find f'(x) for f(x) =6 — 3x.
a) —1 b) -3 )6 d) 3

SOLUTIONS
I.Lb 2a 3b 4d 5b



CHAPTER

Three Important
Formulas

There are fewer than ten differentiation formulas that you will need to know, and
three of them are in this chapter. They should be memorized as they will be used
extensively throughout most of this book (as well as in any calculus course).

The Power Rule

For a function of the form f(x) = x", where n is any real number, the derivative
is f/(x) = nx"~'. The old power moves in front of x and the new power is the
old power minus 1.

— @

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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EXAMPLES
o f(x)= x3

We will write the old power, 3, in front of x. The new power on x is
3 — 1 = 2. Now we can see that f/'(x) = 3x2.

o f(x)=x
n=-5n—1=-5—1= —6 The derivative is f'(x) = —5x76,
° y=x

Here,n =1,son —1=1—1=0and y = nx""! becomes y’ = 1-x°.

Because x* = 1, this means that y’ = 1.
o fl(x)=x3*
n= %, n—1= %—1 = —}1 and f'(x) = nx"~! becomes f'(x) = %x‘
o g(1)=1"1?
n = —%, n—1= —% -1 = —% and g'(r) = nt"~! becomes g'(r) =
—1t732

1/4.

PRACTICE
Use the power rule to find the derivative.
f@)=x'
f@)=x7

y=x"

g0y =1'7

fo =t fx)=x""

y=x"" flx) = x4
9. f(x)=x2 10. y=x"/"

SOLUTIONS

f/(x) = 10x10-1 = 10x°

y = —6x701 = —6x77

Flx) =7x771 = 7x6

&) = %t1/3—1 _ %t1/3—3/3 _ %t—z/s

NV =
SRR

ffiy=1-t""1=1./=1

flx)=—1x"1"1 = —x72

) 2.-2/3-1_ 2.-2/3-3/3 _ _2.-5/3
Y = —2xAl 2 22 o 2y

flx) = %x9/4—1 _ %x9/4—4/4 _ %x5/4

A S AR R B A

fl(x) = —2x"2"1= 2573
r_ _5.-5/T—-1 _ _5.-5/7-7/1 _ _5,.—12/7
= 7x = 7x = 7x

,_
e

Yy



CHAPTER 4 Three Important Formulas _\®

Sometimes we need to use algebra to put a function into a form that looks like a
derivative formula. For example, we do not have formulas for functions such as
f(x) = /x and f(x) = 1/x, but we do have exponent properties that allow us
to write these functions in the form of x to a power. Then we can use the power
rule to find their derivatives.

Sxm = xmin and — =x"

EXAMPLES

e f)=15
Using the fact that xln = x ", we can rewrite the function as f(x) = x73,
and use the power rule: f/(x) = —3x~4.
o y=4.x
12

Using the fact that ¥/x™ = x™/", we can rewrite the function as y = x
and use the power rule: y’ = %xl/z_l = %x‘l/z.

¢ f=1
We can rewrite this function as f(x) = x~!. The derivative is fl(x) =
—1-x = —x~
We need to use both properties for this function.
1 1 4
- - __ 43
y= A x4 =X
oy — A 431 _ 4. -7/3
Now we can use the power rule: y' = —3 31 = —3X 73,
PRACTICE
Use the power rule to find the derivative.
Ly=5 2. fx)=x
3.y =Vl 4 fo=%
1 1
Sg(t):;l 6. y:\;/—gl
7-f(x)_3/—ﬁ 8 f(x)=\z/—§

SOLUTIONS

1. y=x2andy = —-5x7

2. f@x)=x"andy = Jx!37 1= 15723
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3. f(x)=x*3and f'(x) = 2x231 = 2x713

4. f(x)=x"*and f'(x) = —4x>

5. gy =t""and g'(t) = —172

6. y=x""3andy = —%xilﬂ*] = —%x*4/3

7. f(x)=x"?and f'(x) = —%x‘zﬁ_l = —%x‘5/3
8. f(x)=x"2and f'(x) = —3x /21 = -3x77/2

Some instructors want the derivative to look like the original function. For
example, if x is in a denominator or under a square root in the original function,
then x needs to be in a denominator or under a square root in the derivative.
Also, evaluating functions and derivatives is easier when there are no negative
exponents and fraction exponents. In this section, we will write the solutions to
the previous examples and practice problems in the same form as the original
function. This means that we will write the derivatives without using negative
exponents and fraction exponents.

EXAMPLES
Write the derivatives without using negative exponents and fraction exponents.
o f)=2%
We found f/(x) = —3x~*. We can rewrite this as
fl(x)=-3 (%) = ;—f.
o y=4x

We found that y’ = %x‘l/ 2. We can rewrite this as

11 1

11
r_ Lt - _ 1 .
VT2 T2 AT 2

1

° = 5=
YT e
We found that y’ = —%x‘7/ 3. We can rewrite this as

L4 1 4
Y==3\m) = e
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PRACTICE

_\@

Write the derivatives without using negative exponents and fraction exponents.

These are the same functions as before.

Ly=%
2. f) =
3. (x) = Va2
4. f) =4
5 8 =1
6. y= 3%
70 =5
8. f(0) =5
SOLUTIONS

Loy =-5x0==5(k)=3

2. fllo)y=4x"23 =

2.,.— 2 1 21 2

We can use the power rule together with the properties in Chapter 3 to find
the derivative for a large family of functions. First, we will use the power rule
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with the property that says if y = af (x), then y’ = af’(x). Putting this property
together with the power rule, we have a new rule.

If y = ax", then y’ = nax"~"', for any real number n.

EXAMPLES
Find the derivative.
o f(x)=4x>
Here, a = 4, n = 5, so f'(x) = nax"~! becomes f'(x) = 54)x>~! =
20x*.
° flx)=-2x7" flx) = (=3)(=2)x " =6x7*
o y=1xb y =6 (%) x0T = 3x3
o y=—dx y=1(=dx'"T= —4x0= 4
o y=3yxr=3x2 ¥ = (3) @12 = 3x 2 or 2
¢ fw=L =10 i = (=4) a0
= —%x‘5/4 or — 2&3
PRACTICE
Find the derivative.
1. f(x)=—3x? 2. f(x) = 15x3
3. y=1 4. f@)=-8/x
5. f(x) =22 6. h(t) = 42?
7. f(x) =17x 8. g(t) = ;—:2
SOLUTIONS
1. f'(x) =2(=3)x>"! = —6x

2. f'(x) =3(15)x>"1 =45x2

3.y=4xt Y =(2)@x T =8 For — 5
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00 ==8x1% () = (§) (~8)x12! = —4x 12 or £

Flx) = 2623 f1(x) = (%) @231 = 4515 o 3}

h(t) =3t73% W(@t) = (_43‘1) B)r 341 = —%t_7/4 or — 4;7
t

flx) = ADxT = 1720 = 17

— (—1V2/3 o) — (2 (_1Vs—2/3-1 _ 2,-5/3 2
g0 = (=172 g = (=3) (=D 2P = HS P or 2

Because the derivative of the sum (or difference) is the sum (or difference) of
the derivatives, and the fact that if y = af(x), then y/ = af’(x), we easily can
differentiate functions such as y = —2x3 4 5x. All we need to do is differentiate
term by term.

EXAMPLES

Find the derivative.
y = —2x3 4 5x
The derivative of —2x3 is —6x2, and the derivative of 5x is 5, so the
derivative of thlS functlon is y/ = —6x% +5.

f(x)_3x —Qx +1

(Remember that the derivative of a constant is 0.) Differentiating term by
term, we get f'(x) = ) @)x*! — (H@)x27 +0 = 12x3 —x.

y = —4/x + x% -8

We need to rewrite the function using exponents: y = —d4x!/2 4
3x~2 — 8. Differentiating term by term, we have y’ = (%)(—4)x1/2*1 +

(-2)@x 2T 0= 212 —6xdor— 2 — §.

PRACTICE

Find the derivative.

1.
3.

fx)=x3+4x2—x+2 2. f(x)=—-x>—x-10

fO)=x+12 4. y=S%+143x+7
fx) =3Jx +2x+4 6. y=5Vx2—Jx+2

h(t)=%+ﬁ—6 8. f)=x*—4

——@
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SOLUTIONS

1. f/(x)=3x>2+8x—1

2. fl(x)=—2x—1

3. flx) =1

4, y=4x2+x"+3x+7, y=-8x3—x2+3o0r _F_ +3

5. f)=3x"2+2x+4; flx)=3x"12+20r 2[+2

6. y=5x23—xV242; y/=§x_1/3—%x_'/zor%—ﬁ;
_2:—1/3 12 _ ¢ 1y — —4—4/3 1 1,—1/2 N S

7. h(t) =3t +t 6;, h'(t)=—t + 5t or 3/74+2«/E

8. f()=x—x%  fix)=4xd +4x S orded + 4

The Tangent Line

A common problem in calculus is finding an equation for the tangent line. We are
given a function and a point and told to find an equation for the tangent line to the
graph of the function at the given point. First, we need to find the derivative. The
derivative is a formula for the slope of the tangent line. Once we have the slope,
we will be ready to find the equation. Suppose we are given a function f(x) and
told to find the tangent line at a point (a, b).

Step 1 Find f/(x).

Step 2 Evaluate f’(x) at x = a. This number is the slope (m = f'(a)).

Step 3 Substitute our numbers x = @, y = b, and m in the formula y =
mx + b.

Step 4 Solve the above equation for b and write the equation for the line.

EXAMPLES

Find an equation of the tangent line.

o f(x)=-2x>+x2—4x+3at(l,-2)
We need to find f’(x) so that we can compute m.

fl(x) = —6x>+2x — 4 Step 1

m=f'(1)=—6(1)> +2(1) —4 = —8 Step 2
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Now wecanput x =1, y = —2,and m = —8 into y = mx + b to find b.
—2==8(1)+»b Step 3
6=>~ Step 4

An equation of the tangent line at (1, —2) is y = —8x + 6.
e f(x)=x%>—4at(3,5)
fl@)y=2x, m=f'(3)=23)=6
The slope of the tangent line at (3,5) is 6, and y = mx + b becomes
5 = 6(3) 4+ b, making b = —13. The tangent line at (3,5) is y = 6x — 13.

o« flx)= j—z—%ﬂ at (2, %)

fx)=4x2—x"141

8 1
fl)==-8x"4x?=—-= 4=
X X

8 1 3

m=/Q="5+tm="3

3
= —1(2) +b

W N W

=b
The tangent line at (2, %) isy= —%x + 3.

o y=3x—4/x—1lat(l,-2)
y=3x"3 —ax1? 1

1
y o= x 23 o2 = :

D
Gl

2

m:’;___:
Ji2o 1

—2=—1(1)+b

-1

—1=b

The tangent line at (1, —2) is y = —x — 1.
2x° —x3 4 4x? 4 2x 4+ 4

x2

e fx)=

at (—1,5)
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This function is in the form of a fraction. We will rewrite it in the form of
a sum, then we will find the derivative.

f(x)zx—z—P'i‘—

3

X 4

T

2x
+_

x2

2x° 42

x2

_ 3 % i_ 3 —1 -2
=2x x+4+ -+ 2_2x X +4+2x " +4x
X X

2 8
f/()c)=6)62—1—2x_2—8x_3:6)52_1__2__3
X x
2 8
= f(—-1 :6—]2—]_ -
m = f'(=1) =6(=1) T aTE
S5=1(-=D+b
16 =0>

The tangent line at (—1,5) is y = 11x + 16.
When rewriting the following function as a sum, we will use the exponent
fact that % = a™™".

2
x“+4x +6
° y:S—ﬁat (—8,—19)
_ x? 4x 6 x2 4x 6
SR NN U TE
— X213 4113 13 = 153 4 4323 g1 /3
3/
y' = 2 L 8y1s g L0 x T A
3 3 3 3Yx  Jxh
_ 5Y(=8)? L8 2
3 3-8  J(—8)4
54 8 2 125
3 3(=2) 16 24
Now we will let x = —8, y = —19, and m = 22 in y = mx + b.

19 = 125( 8) +b
24
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68
=

b

The tangent line at (—8, —19) is y = %x + %.

PRACTICE
Find an equation of the tangent line.
1. fx)=—x>+2x+4at(0,4) 2. f(x)=2x*—6x>+x+10at (=2, 16)
3. y:;+2x—lat (-1,-7) 4. f(x) = —64/x +x at (4, —8)
S M) = =+ a1 6 ()—2x3_x2_3t(35>
. (r)_$+%— at (1, 1) S f = (3,
4x2 —3x +2
7. fx) = — & at (4,27)
SOLUTIONS

1.
fl(x) = —=3x*+2
m= f'(0)=-30%+2=2
4=20)+b
4=1b
y=2x+4

flx) =8x3—12x +1
m=f'(=2) =8(=2)> —12(=2) + 1 = =39
16 = —39(=2) + b
—62=b
y = —39x — 62
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3.
y=4x'4+2x—1
/ -2 4
y=—4x"+2=—-—5+2
X
- _42="2
02 "
—7=(=2(=1)+b
-9=>
y=-2x—-9
4,
f(x)=—6x1/2—|—x
/ —1/2 3
f(x)=-3x +l=—-——+1
X
3 1
m=f@#=-——F7+1=—
f 7 :
8 = 1(4)—i—b
2
—6=">
y = 2x
5.
h(ty =112+ 1713 1
1 1 1 1
W)= — =32 _ =43 __ 1
W=" 3 W3 3V
() 1 1 5
m = = — — = ——
W13 3V14 6

5
l=—2()+b
§)+
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—

——p
6
B 5t+11
YT 6
6.
23 X2 3 { _3
f(X)=—3——3—;=2—X 3x
1 9
f’(x)—x2+9x_4=—2+—4
X X
1 9 2
_/ — —
m=rO=nta=s
14_2(3)+b
9 9
8
_:b
9
2,8
= —X —_
Y= Ty
7.

47 3x 2 4x? 0 3x 2
= - Gt A ant e

— 4x271/2 _ 3x171/2 + 2x71/2 — 4x3/2 _ 3x1/2 + 2x71/2

3 3 1
/ _ 12 7 —1/2 —3/2= o
f(x) =6x 2x X 64/x NN
3 1 89
m=f4=6/4— — - —=="
A 2V4 438
89
35
2=t
89 35
y=x——
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The tangent line for a linear function is the linear function itself. For example,
suppose we are asked to find the tangent line for f(x) = 2x + 1 at (5, 11).

flx)=2 Step 1
m= f'(5 =2 Step 2
11=205)+b Step 3
1=0> Step 4
y=2x+1

The tangent line is the same as the function f(x) = 2x + 1.

In the next set of problems, we will only be given the x-value of the point. We
will use the original function to compute the y-value. All of the other steps will
be the same. First we will find the derivative, second we will use the x-value in
the derivative to find m, third we will use the x-value in the original function to
find the y-value, and fourth we will use x, y, and m in y = mx + b to find b.

EXAMPLE
e Find an equation of the tangent line for f(x) = 2x> — 4x? +x + 5 at
x =—1.
fl(x) =6x2—=8x+1,m = f'(—1) = 6(—1)>—8(—1)+1 = 15. We need
to find y. We will put x = —1 into the original equation: y = f(—1) =

2(=1)3 —4(=1)2 4+ (—=1) + 5 = —2. Now we can find b.

—2=15(-1) +b
13=b
y=15x + 13

PRACTICE

Find an equation of the tangent line.
l. f(x)=x*43x—4atx=-3
2. f)=C%+7atx=-2
3. h() = +2atr =1
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SOLUTIONS

1.
fl(x) =2x+3
m=f'(=3)=2(-3)+3=-3

y=f(=3)=(=3)2+3(-3)—4=—4

—4=-3(=3)+b
~13=b
y=-3x-13

fx)=6x"147

fla)=—6x"%= —%
R S
22~ 2

6
y=f(_2)=_—2+7=4
3
4:——_2 b
2( )+
1=b

) +1
=—=x
Y 2

h(t) =472 42

B(t) = —2t73?% = —

SE
(98]

m=h'(l)=-——==-2

2
V13
+2=6

—h(l)—i
YERUEA
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6=-2(1)+b
8=1>
y=-2t+8

The Product Rule

Unfortunately, finding the derivative of a product of two functions is not simply
a matter of finding the product of their derivatives. That is, if y = f(x)g(x), it
is not the case that y/ = f’(x)g’(x). To see why not, let y = (x + 1)(x — 2).
The derivative of x + 1 is 1, and the derivative of x — 2 is 1. If it were true that
y = f/(x)g’(x), then we would have y' = 1-1 = 1. But if we use the FOIL
method on the function we would have y = x> — x — 2, and the derivative of this
function is 2x — 1, not 1.

We will begin to find the derivative of a product of two functions by identifying
the individual functions and each of their derivatives. The derivative of the product
is the derivative of the first function times the second function plus the first
function times the derivative of the second function.

If y= f(x)g(x) where f(x) and g(x) are differentiable, then
y = f)gx) + fx)g' (x).

Once we have put the individual functions and their derivatives together using
the formula above, the calculus is done. The rest of the work involves using
algebra to simplify the derivative.

EXAMPLES

Use the product rule to find the derivative.

e y=02x+1DH(x*—4)
The two functions are f(x) = 2x + 1 and g(x) = x* — 4. Their derivatives
are f'(x) =2and g’'(x) = 2x. Then y’ = f'(x)g(x) + f(x)g'(x) becomes

/ g ’
S S g

, —~ 2 ——
Y= 2 x"—4H+Q2x+1)(2x)

=2x% — 8 +4x% +2x = 6x% +2x — 8.
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o y=(x+4)Q2x—3)
f)=x+4 g(x) =2x —3
fl@) =1 g'x) =2
y = fl0gx) + fx)g'(x)
Y =12x =3)+ (x +4)(2)
=2x—-3+2x+8=4x+5
o y=E+12—4)Q2r+5)
fO) =0 +1*—4 g(t) =2t +5

@) =32+ 2t g t) =2

Y =f(0g) + f()g' (1)
v = @2 4202t +5) 4+ (2 + 12 —4)(2)

=613+ 152 + 412+ 10t + 263 + 212 — 8 =83 + 212+ 10r — 8

o y= (% + %) (3x%—64/x)
X X

Rewrite as y = 8x73 +2x H(3x%2 — 6x1/2),
fx) = 8x 3 4+ 2x7! glx) = 3x% —6x!/?
fl(x) = —24x~4 —2x72 g (x) =6x —3x71/?

When simplifying y’, we will use the exponent facts a™a" = a™*" and
0
a’ =1.

y = f(x)gx) + f(x)g'(x)
y = (=24x"* = 2x"H(B3x% — 6x/?%) + 8x 3 + 2x 1) (6x — 3x71/?)
= —72x %% 4+ 144x 12 — 62k 120 2k /2 1485 3x
—24x3x7 12 L 12 x —6x 1712
= —72x 2+ 144x 772 —6x + 125732 4 48x72 — 24x 77/ 4 1240 — 6x73/2

120

= —24x 2+ 120x 2+ 6+ 6x3 % or — 2—j + =+ L +6
X ,/x7 ‘/x3
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PRACTICE

For Problems 1-4, use the product rule to find the derivative.

1. y=@x+2x34+6)(x%2+1)
2. y=@3 =2 +5(x%+x+2)

3. y= x3—xHhe2-2x"hH
1 1
4. y= <ﬁ+;)(2x—ﬁ)

5. Find an equation of the tangent line for y = (x2 —4x — D(x +2) at
x =-—1.

SOLUTIONS
1.
f(x)=4x5+2x3—|—6 g(x)=x2+1

£/ (x) = 20x* + 6x2 g (x) =2x
¥ = (20x* 4+ 6x2)(x% + 1) + (4x° + 2x° 4+ 6)(2x)
= 20x% + 20x* + 6x* + 6x2 + 8x° + 4x* + 12x

= 28x% + 30x* + 6x2 + 12x

2.
fx)=x3—2x+5 g(x) =x2+x+2
fl(x) =3x* -2 gd(x)=2x+1
V=B =2 +x+2)+ (x> —2x+50C2x+ 1)
=3t 3t et — 2t —2x — A4+ 2t —Ax? —2x +10x + 5
=5x* 4P+ ex+1
3.

fx) = x 73— x! gx) = x72—2x7!

fl(x) = =3x"* 4 x72 g(x)=—=2x"3+2x7?
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V=(Bxt4x e h+ P = 2 2407
=3xSt ex 4t — T T =2
= Sx 04 8x P 4 3x 7t —4x3

4, y= @12 +xHox —x/?
fx) =x 12 4 x! g(x) =2x — x!/?

1 _ _ 1
fley = —gx¥ = x7 g =2- 371

1 1
y/ — <_5x—3/2 _ x—Z) (Zx _x1/2) + (x—l/Z _|_x—1) (2 _ Ex—l/Z)

— _x—3/2x + %x—3/2x1/2 _ 2x—2x +x—2x1/2 + 2)6_1/2

_ lx—1/2x—1/z Lol lx—1x—1/2
2 2

-

1
= x4 Ex_ —2ax TV xTI pox2 Ex_l +2x7!
1
_ 5x73/2
1 1 1
_ 12 -1 -32
=X +0x7 4+ =x or — +
2 NERVES
5.
fx)=x>—4x—1 gx)=x+2
flx)y=2x—4 dx) =1

YV =Q2x—4Hx+2)+ &% —4x — 1)(1) =3x> —4x — 9
m=3(-1)" —4(-1) -9 =2

y=[(=1>—4(=1) = D](—1+2) = 4
4=-2(-1)+b

2=0>

y=-2x+2
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The Quotient Rt

The process for finding the derivative of a quotient of two functions is similar
to finding the derivative of a product of two functions. We need to identify the
numerator function and denominator function and their derivatives. Next, we will
put them into the quotient rule, which is the derivative of the numerator times
the denominator minus the numerator times the derivative of the denominator, all
divided by the denominator squared. Finally, we will use algebra to simplify the
derivative.

@’_

S

If f(x) and g(x) are differentiable and y = o’
gx

L 08 — F0g' @)
fhen = g

EXAMPLES

Use the quotient rule to find the derivative.

4x — 1
[ ] =
Y= 213
The numerator function is f(x) = 4x — 1. The denominator function is
g(x) =x%+3.
fx)=4x —1 g(x) =x2+3
fl(x) =4 g'(x) =2x

Y = f'(x0)gkx) — f(x)g'(x)
[g(x)]?
;AT +3) — (4x — 1)(2x)
y = (x2 4 3)2
_ 4x? 12— 8x% +2x
I
_ —Ax? 4 2x 4 12
T (x243)2

The denominator is usually not expanded.
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b= 5x3 + x

X
fx) = 503 4+ x1/? gx)=x

1
f(x) = 15x% + Ex—l/z g =1

Y = J'(0)g(x) — f(0)g'(x)

[g(x)]?
(15x2 n %x—l/z) (x) — (5x3 + x1/2)(1)
/ —
y = 2
_ 153 + %x’l/zx —5x3 — x1/2 _ 1503 + %xl/z —5x3 — x1/2
N x2 N x2
_ 10x3 — %xl/z 10x3 — %ﬁ 2 20x3 — /x
N x2 o x2 2 2x2
3
° =
YT 6
f) =3 gx) =x*+6
') =0 g'(x) = 4x°
y = f10)gx) — fx)g'(x)
[g(x)]?
, 0t 4+6) —3(4x7)  —12x7
B (x* +6)2 (x4 46)?
PRACTICE
For Problems 1-5, use the quotient rule to find the derivative.
7x3 —6x* +2x3 49
. y=—5—— 2. y=
4x2 +x -5 x2—x -2
8/x 2
3. == 4_ =
YT 3 YT
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x—x

5. y=
Y X+ /x

x2—x+3

6. Find an equation for the tangent line for y =
x+2

atx = —3

SOLUTIONS
1.

fx) =7x3 gx) =4x>+x -5
f(x) = 21x? g(x)=8x+1
, 21x%(@Ax? 4+ x —5) = Tx38x + 1)
Y= (4x2 + x —5)2

 84x* 4+ 21x% — 105x2 — 56x* —7x?  28x* + 14x7 — 105x2
N (4x2 +x —5)2  (x24x-5)2

f(x)=—6x4+2x3+9 g(x)=x2—x—2

f(x) = —24x> + 6x> g (x)=2x—1

;o (=240 +oxD)(x2 —x —2) — (—6x* +2x7 + 9)(2x — 1)
o (x2 —x —2)2

Yy

—24x5 4 24x* + 48x3 + 6x* — 6x3 — 12x2
(x2 —x —2)2

(—12x° + 6x* + 4x* —2x3 + 18x — 9)
(x2 —x —2)2

—12x3 4+ 20x* + 44x3 — 12x2 — 18x + 9
(x2 —x —2)2

f(x) = 8y/x = 8x'/? gx) =x+3

fl(x) =4x~1/2 gx) =1
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A2 +3) = 8x12(1)  4x!2x 4 120712 — 8y 12

/

Y (x +3)2 (x +3)2
4x1/2 4 12x71/2 — gx1/2 _ —4x1/2 4 12x71/2
B (x +3)2 - (x +3)2
12 —4/x  Jx 12
WA T Gt
x+3)? = (x+3)?
—4/xJx 4+ 12 —4x412
Jx X
x+32 = (x+3)?
_ —Ax 412 (0437 —4x 412 1
N ' 1 N (x +3)2
_ —4x + 12
C Jx(x +3)?
4.
fx)=2 gx)=x>+1
f'x)=0 g (x) = 3x2
, 0+ 1) —203x%)  —6x2
R T | R P A §e
5.
fy=x—Vx=x—x? gy =x+/x=x+x'/?
1 1
fla)y=1--x1? gy =1+_-x""?
2 2
S (=T ) = a1 (14 5112
y =

(x +x1/2)2
xxl2 %xq/zx _ %xfl/le/z

B (x +x1/2)2

<x i %xx—l/z 2 %xl/Zx—l/2>

(x +x1/2)2




@’_

CHAPTER 4 Three Important Formulas

x +x1/2 — %xl/z — %xo —(x+ %xl/z —x1/2 — %xo)
- (x+xl/2)2
_ x+%x1/2—%—x+%xl/2+%
N (x +x1/2)2
12 Jx

T a2 Tt a2

fx)=x*—x+3 gx) =x+2
flx)y=2x—1 g =1

V= 2x —D(x+2) — (x> —x+3)(1)  x*4+4x—5

(x +2)2 T (x+2)2
(=32 +4(-3) -5
= = —8
(=3 +2)2
2
_ (3T =ED+3 _15
—342
—15=—8(=3)+b
—39=5b
y=—8x—39

CHAPTER 4 REVIEW

1.

fx)=5x>—x+3
(@) f'(x)=10x — 1

(b) f'(x)=10x +2
© f'(x) = 10x
d fl(x)—4x+2
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y=+/x3

(@) y' =+3x2

(b) ¥ =37
©) v =3vVx2

() y'=3x"2

fx)=8x 49

(@ f'(x)=8x

b) f'(x)=17

() ffx)=8

(d) f’(x) does not exist.

fx) =12x3 +4x2 -9

(@) f'(x)=36x>2+8x—9

(b) f'(x) =36x% + 8x

(©) f'(x) =36x>+4x —9x~!
(d) f'(x) =36x>+8x —9x~!

f)=@x —DEBx2+x+1)

(@) f'(x) =4@x>+x+1)+ @dx — D(6x + 1)
(b) f'(x) =46x + 1)

(©) f/(x)=4@x>+x+1)— (4x —1)(6x + 1)
(d f'(x) =40Cx*+x+1) — (4x — 1)(6x +2)

8x2 + 2x
y =
x—1
. (16x +2)(x — 1) + (8x2 + 2x)(1)
(@ y = p—
b) ¥ — (16x +2)(x — 1) — (8x2 + 2x)(1)

x—1
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,(16x +2)(x — 1) + 8x? 4 2x)(1)

© y G 1)
@ ¥ = (16x +2)(x — 1) — (8x% + 2x)(1)
(x —1)2
8. Find the tangent line for f(x) = —3x* 4 4x% + x at (1, 2).
(@ y=2x-3
(b) y=2x

() y=-3x+7
d y=-3x+5

9. Find the tangent line for y = fﬁ at x = 0.
(@ y=3x-2
(b) y=3x+6
() y=—x-2
d y=—x+6
SOLUTIONS
l.a 2.d 3.c 4.c 5.b
6. a 7.d 8.d 9.a
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BInstantaneous Rates

_ of Change

A common problem involving the rate of change and the derivative concerns
velocity. We can find the average velocity by dividing the distance traveled by the
time it took to travel this distance. For example, if a car covered 90 miles in two
hours, then its average velocity was 90 miles/2 hour, which reduces to 45 miles/
1 hour or 45 mph. If it covers a total of 120 miles in three hours, then its average
velocity is 120 miles/3 hours = 40 miles/1 hour or 40 mph.

In the following examples, we will be given a formula that gives us the distance
an object has traveled in terms of time. We will be asked to find the average
velocity over a period of time. We will first compute the distance covered. And
then we will divide this distance by the time traveled to get the average velocity.

——&

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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EXAMPLES

e If an object is dropped, the distance it has fallen can be approximated by
d = 16¢% (ignoring air resistance), where d is in feet and 7 is in seconds.
Suppose an object is dropped from a height of 300 feet.

1.
2.
3.

What was the object’s average velocity between 3 and 4 seconds?
What was the object’s average velocity between 3 and 3.5 seconds?
What was the object’s average velocity between 3 and 3.1 seconds?

After 3 seconds, the object had fallen d = 16(32) = 144 feet. After
4 seconds, it had fallen d = 16(42) = 256 feet. Between the third
and fourth second, the object had fallen 256 — 144 = 112 feet.
It took 4 —3 = 1 second to fall this distance, so its average velocity
was 112 feet/1 second = 112 feet per second.

After 3.5 seconds, the object had fallen d = 16(3.5%) = 196 feet.
Between 3 and 3% seconds, the object had fallen 196 — 144 =
52 feet. Its average velocity was 52 feet/% second = 52(2) feet/
1 second = 104 feet per second.

After 3.1 seconds, the object had fallen d = 16(3.1%) = 153.76
feet. Between 3 and 3.1 seconds, the object had fallen 153.76 —
144 = 9.76 feet. Its average velocity was 9.76 feet/0.1 second =
9.76(10) feet/1 second = 97.6 feet per second.

e A particle travels in a straight line. Its distance (in meters) after ¢ seconds
isd(t) =% —1.

1.

2.
3.
4

What was the object’s average velocity between 4 and 5 seconds?
What was the object’s average velocity between 4 and 4.5 seconds?
What was the object’s average velocity between 4 and 4.1 seconds?

What was the object’s average velocity between 4 and 4.01
seconds?

We will answer these questions by filling in Table 5.1; ¢ is 4 and 4 is the length
of the time interval. The first time interval is 7 = 5 — 4 = 1 second; the second
ish =45 —4 = 0.5 seconds; the third, » = 4.1 — 4 = 0.1; and the fourth,
h = 4.01 —4 = 0.01. The distance traveled over this interval is computed as
d(t + h) — d(t). This is the distance traveled in ¢ + & seconds minus the distance
traveled in ¢ seconds. In the last column, d(¢t + h) — d(¢) is divided by #, the
length of the time interval.

The instantaneous velocity is the velocity at an exact moment in time. It is the
limit of the average velocity as & (the length of the time interval) goes to 0. In other
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Table 5.1
tt+h h dt+h) d(t) d(it+h)—d(t) w
=@+ —@+h
Distance traveled Distance traveled  Distance traveled Average
in t 4+ h seconds in ¢ seconds during the interval velocity
45 1 52-5=20 2 _4=12 20-12=8 B=3
4 45 05 452-45=1575 42-4=12 1575-12=375 3B =75
4 41 01 412-41=1271 4-4=12 1271-12=071  %l=71
4 401 001 4012 —-401=12.0701 4%2—4=12 12.0701 —12=0.0701 200L _ 70

words, the instantaneous velocity is the derivative of the distance function. In the
above example, the particle appears to be moving at the rate of 7 meters per
second at the instant the particle has traveled 4 seconds.

dit+h) —d@) o G+RE—+h) - -0
_— = hm
h h—0 h

d’(t) = lim
h—0

24 2ht+h:—t—h—12+1

= lim
h—0 h
 2ht+h* —h . hQt+h-—1)
=lim—=1lim ————=
h—0 h h—0 h

—limQt+h—1)=2t—1
h—0

When we evaluate the derivative at + = 4 seconds, we have the velocity of
2(4) — 1 = 7 meters per second.

EXAMPLE

e Find the velocity of a falling object at 5 seconds.
The derivative of the function d(r) = 16¢2 is d’(r) = 32¢. The velocity of
the falling object at 5 seconds is d'(5) = 32(5) = 160 feet per second.
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PRACTICE

1. A particle is moving in a straight line. The distance it has traveled from
its initial point is given by d(r) = 2t> — 10t + 13, where d is in feet, and
t is in seconds.
(a) Find the particle’s average velocity between 4 and 5 seconds.
(b) Find the particle’s average velocity between 4 and 4.5 seconds.
(c) Find the particle’s instantaneous velocity at 4 seconds.

SOLUTIONS

1. (a) The average VClOCity is distance traveled __ d(5) —d(4) feet

length of time 5—4sec

d(5) =2(5%) —10(5) + 13 =13
d4) =24* -104)+13=5

d(5)—d4) 13-5

= 8
5-4 1

The average velocity between 4 and 5 seconds is 8 feet per second.

s, d@dS5)—d@)
(b) The average velocity is =557

d(4.5) =2(4.5%) —10(4.5) + 13 =8.5

d(4.5)—d@4) 85-5
45—4 05

The average velocity between 4 and 4.5 seconds is 7 feet per second.

(c) The velocity at 4 seconds can be found by evaluating the derivative
of d(t) =2t> — 10t + 13 at t = 4.

d'(t) =4 — 10
d'(4)=4(4) —10=6

The instantaneous velocity at 4 seconds is 6 feet per second.

In business, the derivative is used to find the marginal revenue, the marginal
cost, and the marginal profit. The marginal revenue is the amount of revenue
gained by selling the “next” unit. For example, suppose the price for a movie
ticket is $8. The marginal revenue for the first ticket is $8, the marginal revenue
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for the 50th ticket is $8, and so on. Suppose the marginal cost function for a
product is given by MC = 3x — 10. The cost to produce the 101st unit can be
found by evaluating the marginal cost function at x = 100: 3(100) — 10 = 290.
After having produced the first 100 units, the cost to produce the 101st unit is
$290. Later, we will use the marginal cost, marginal revenue, and marginal profit
functions to find the level of production that makes the most of the revenue while
minimizing the cost.

In the following problems, we will be given the cost and revenue functions.
These functions tell us the cost to produce x units of a product and the revenue
from selling x units. We can find the profit function by subtracting the cost function
from the revenue function. The marginal cost function is the derivative of the cost
function; the marginal revenue function is the derivative of the revenue function;
and so on. Evaluating these marginal functions at x = a units tells us the cost,
revenue, and profit from selling/producing the (a + 1)th unit.

EXAMPLES

e The revenue for selling x units of a product is given by R(x) =
—0.01x2 4 2x + 2000, and the cost is given by C(x) = 0.08x + 1000.
Find the marginal revenue, marginal cost, and marginal profit functions.
Find marginal revenue, marginal cost, and marginal profit for a production
level of 55 units.

The marginal revenue function is the derivative of R(x) = —0.01x2 +
2x +2000: R'(x) = —0.02x + 2. When we evaluate R’(x) at x = 55 units,
we will have the revenue for selling the 56th unit: R'(55) = —0.02(55) +
2 = 0.90. The revenue for selling the 56th unit is $0.90. The marginal
cost function is the derivative of C(x) = 0.08x + 1000: C’'(x) = 0.08.
This is a constant function, which means that each unit costs $0.08 to
produce, regardless of the production level. The profit function is found by
subtracting cost from revenue: P(x) = R(x) — C(x) = —0.01x2 + 2x +
2000 — (0.08x + 1000) = —0.01x% 4 1.92x + 1000. The marginal profit
function is the derivative of this function: P’(x) = —0.02x + 1.92. The
marginal profit for the production level of 55 units is P’(55) = —0.02(55)+
1.92 = 0.82. The profit for producing/selling the 56th unit is $0.82. Notice
that we can find the marginal profit by subtracting the marginal cost from
the marginal revenue.

When the revenue and cost are given in terms of price, the marginal
revenue and marginal cost functions describe what happens to the rev-
enue and cost when there is a small increase in the price at different price
levels.
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e The revenue function for an office complex is R(r) = —0.005r2 + 55.5r,
where r is the monthly rent. The monthly cost function is C(r) = 42,400 —
12r. The cost depends on the rent because when the rent increases, the
number of vacancies also increases. Find the marginal revenue and marginal
cost for a monthly rent of $5000 and $7000.

The marginal revenue is R'(r) = —0.01r + 55.5, and the marginal
cost is C'(r) = —12. When the monthly rent is $5000, the marginal rev-
enue is R’(5000) = —0.01(5000) + 55.5 = 5.5, and the marginal cost is
C’(5000) = —12. These numbers mean that, theoretically, when the rent is
increased by $1, the revenue is increasing at the rate of $5.50 per month and
the cost is decreasing at the rate of $12 per month. When the monthly rent is
$7000, the marginal revenue is R’(7000) = —0.01(7000) + 55.5 = —14.5;
a $1 increase in the rent causes the revenue to decrease at the rate $14.50
per month and the cost to decrease at the rate of $12 per month.

Keep in mind that these numbers are rates of change and not an indication
of the change in reality. For example, increasing the rents from $7000 to
$7001 will not really cause a loss in revenue because it is unlikely that the
dollar increase will cause a tenant to leave. However, raising the rent by
$500 could very well affect both revenue and cost as a tenant might leave.
The size and sign of the marginal numbers tell us how an increase in the
price can affect revenue and cost. A large positive marginal revenue tells
us that a small increase in the price results in a large increase in revenue,
which means that we are probably under-priced. A large negative marginal
revenue tells us that a small increase in the price results in a large decrease
in revenue, which means that we are probably over-priced. There will be
more on this topic later when we cover price elasticity.

e The value of an investment over a 20-year period can be approximated by
the function V(#) = 0.8x* — 13x3 4 75x2 + 2150x + 6800, where ¢ is the
number of years after 1980.

1. How fast was the value of the investment increasing in the year
19847

2. How fast was the value of the investment increasing in the year
19957

We will answer these questions by finding the derivative of the value func-
tion and evaluating the derivative at t = 4, for the first question, and t = 15,
for the second.

V() = 3.2x3 — 39x2 + 150x + 2150

V/(4) = 3.2(4%) — 39(4%) + 150(4) + 2150 = 2330.8
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V/(15) = 3.2(15)° — 39(15%) + 150(15) + 2150 = 6425

In the year 1984, the investment was increasing at the rate of $2330.80 per
year. In the year 1995, the investment was increasing at the rate of $6425
per year.

PRACTICE

1. The cost for producing x units of a product is given by C(x) = 50x +
20,000, and its revenue is given by R(x) = —0.25x2 + 247.5x + 2500.

(a) Find the marginal cost for producing 300 units.

(b) Find the marginal revenue for producing 300 units.
(c) Find the marginal profit for producing 300 units.
(d) Interpret these numbers.

2. The number of units sold after spending x thousand dollars on advertising
a product can be approximated by the function s(x) = 0.11x* — 2.9x3 —
18.82x2 4 929x —590. Find the marginal sales function. Find the marginal
sales when $2000 (x = 2) and $10,000 (x = 10) are spent on advertising.
Interpret these numbers.

3. The demand function for a product is D(p) = 0.007 p*—0.16p> + 1.3p>—
4.9p + 10, where D is the number (in thousands) when the price per unit
is p (valid up to $10 per unit). How fast is the demand decreasing when
the price is $2 per unit? $6 per unit?

SOLUTIONS

1. (a) The marginal cost function is C’(x) = 50, and the marginal cost at
300 units is C’(300) = 50.

(b) The marginal revenue function is R'(x) = —0.5x + 247.5, and the
marginal revenue at 300 units is R'(300) = —0.5(300) + 247.5 =
97.50.

(c) The marginal profit can be found in one of two ways, by finding
the profit function and finding its derivative or by subtracting the
marginal cost from the marginal revenue: P'(x) = R'(x) — C'(x) =
—0.5x +247.5 — 50 = —0.5x 4+ 197.5. The marginal profit at 300
units is P’(300) = —0.5(300) + 197.5 = 47.50.

(d) As production/sales increase from 300 to 301 units, the cost increases
by $50. As production/sales increase from 300 to 301 units, the
revenue increases by $97.50 and the profit increases by $47.50.
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s'(x) = 0.44x> — 8.7x% — 37.64x + 929
s'(2) = 0.44(2)° — 8.7(2%) — 37.64(2) + 929 = 822.44
s'(10) = 0.44(10%) — 8.7(10%) — 37.64(10) + 929 = 122.6
s'(2) = 822.44 means that as spending on advertising increases from
$2000 to $3000, the number of units sold will increase by about 822.
s'(10) = 122.6 means that as spending on advertising increases from

$10,000 to $11,000, the number of units sold will increase by about 123.

The derivative of the demand function tells us how fast the demand is
decreasing at each price level.

D'(p) = 0.028p> — 0.48p> +2.6p — 4.9
D'(2) = 0.028(2%) — 0.48(2%) + 2.6(2) — 4.9 = —1.396
D'(6) = 0.028(6%) — 0.48(67) + 2.6(6) — 4.9 = —0.532

If the price per unit increases from $2 to $3, sales will decrease by 1396
units. If the price per unit increases from $6 to $7, sales will decrease by
532 units.

CHAPTER 5 REVIEW

1.

2.

3.

Recall that a falling object falls d feet after ¢ seconds, where d = 16¢.
What is a falling object’s average velocity between 5 and 6 seconds?
(a) 160 feet per second

(b) 400 feet per second
(c) 576 feet per second
(d) 176 feet per second

What is a falling object’s instantaneous velocity at 5 seconds?
(a) 160 feet per second

(b) 400 feet per second
(c) 576 feet per second
(d) 176 feet per second

The cost to produce x units of a product is given by C(x) = x> +5.7x +
104. Find the marginal cost for 20 units.
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(a) $618
(b) $45.70
(c) $96.10
(d) $214

4. The annual revenue for a product during its first ten years can be approx-
imated by the function R(r) = 0.93t% — 3913 4 5621> — 3332¢ 4 8233,
where the revenue R is in dollars and ¢ is the number of years after the
product is introduced. What happened to the revenue at two years?

(a) The revenue increased at the rate of about $3519 per year.
(b) The revenue decreased at the rate of about $3519 per year.
(c) The revenue increased at the rate of about $1522 per year.
(d) The revenue decreased at the rate of about $1522 per year.

5. The revenue for a product is R(x) = —0.005x2 + 11x — 5400 and the
cost is C(x) = 0.015x + 15, for x units produced and sold. Find the
marginal profit for 800 units.

(a) $0.015
(b) $18.985
(c) $3

(d) $2.985

6. Suppose the marginal revenue for 200 units is $10. What does this mean?
(a) 200 units cost $10 to produce.

(b) The cost to produce the 201st unit is $10.

(c) Tt costs $2000 to produce 200 units.

(d) It does not mean anything.
SOLUTIONS

1.d

2.a 3.b 4.d 5.d 6.b
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CHAPTER

Chain Rule

The derivative for some functions can be difficult to find using only the rules
we have so far. Imagine how much work it would be to find the derivative for
y = (x2 = 5)*. We could multiply (x> —5)(x? — 5)(x*> — 5) (x> — 5). This would
give us y = x8 — 20x° 4+ 150x* — 500x2 + 625, which we would differentiate
term by term. Or, we could use the product rule a few times. Instead, we will
use the generalized power rule, which comes from the chain rule, to find the
derivative in one quick step. We will discuss the chain rule later in the chapter.
For now, we will concentrate on the generalized power rule. Suppose f(x) is a
differentiable function, and »n is any real number. The derivative of a function to
a power is the power times the function raised to the old power minus one, times
the derivative of the function.

If y = [f(x)]", then Y/ = n[f ()"~ f/(x).

By—

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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This rule allows us to easily differentiate the following functions.

oy=(x2_5)4 .y=(x3_x2+3x+10)5
Oy:(x+4)6:(x+4)_6 ’y:m=(6x—2)1/2
EXAMPLES

Find y'.
o y=@x>-5)4
We will begin by identifying n and f(x): n = 4 and f(x) = x> — 5.

According to the formula, we need f’(x) and n — 1: f/(x) = 2x and
n — 1 = 3. Now we will put these into the generalized power rule.

Y =nl e f(x)
y =4(x* = 5)%(2x)

=8x(x>—5)°

o y=(3—x%+3x+10)°
According to the formula, we need f(x), f'(x), n, and n — 1.

f)=x3—x?+3x+10, f/(x)=3x>—2x+3, n=5,and n—1=4

Y =nlforf )

y =5 — x4 3x + 10)*(3x%? — 2x 4 3)
= 53x% — 2x +3)(x> — x% + 3x + 10)*
= (15x% — 10x + 15) (x> — x2 + 3x + 10)*

1
Y= Grae

In order to use the generalized power rule, we need to rewrite this function
using the fact that ain = a™". The function becomes y = (x+4) . Now we
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can see that f(x) =x+4, f/x)=1,n=—6,andn—1=—-6—1=—7.
Y = =6 + 47 (1)

—6
(x +4)7

=—6(x+4)" or
o y=46x—-2

Again, we need to rewrite this function. We will use the fact that J/a = a'/".
Itbecomes y = (6x—2)'/2. Now we can see that fx)=6x-2, f'(x) =6,
n:%,andn—l:%—l:—%.
1 _
Y =5 6x =2)7%(6)
1
= (6)(6x — 2)"12 =3(6x —2)"1/?
3 3

or =

(6x —2)1/2 Jox —2

o f)=V2+D*

We will begin by rewriting the function as f(x) = (x> 4+ 1)*/3,

4 4 1
Fx)=x>+1 Fx)=2x n=- n—-1l=-—-1=-=

3 3 3
/ 4 5 1/3 4 2 1/3
fx) = §(x +1)77(2x) = §(ZX)(X +1)

8xv/xZ+ 1
3

Forgetting to include “f’(x)” in “nf ()1 f/(x)” is very easy to do, so take extra
care to write it down, even if it is only 1.

8
= ?x(x2 + 1)1/3 or

PRACTICE

Find the derivative.

1. y=0G3x*>—-4)
2. y=(Gx3=x2+ 14
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3. f(x) =153

4. f(x)=+x2+x+1
1

> V=T

SOLUTIONS
. f(x)=3x2—4, f/(x)=6x,n=T,n—1=6
vy =73x%* — 4)%(6x) = 7(6x)(3x> — 4)® = 42x(3x% — 4)°
2. f)=5x3=x2+1, ff(x)=15x2-2x,n=4,n—-1=3
y =4(5x% — x2 + 1)>(15x% = 2x) = 4(15x% — 2x)(5x> — x> + 1)°
= (60x% — 8x)(5x> —x2 + 1)°

3. f(x)=(15x+3)71,

Fx)=15x4+3, F(x)=15,n=-1,n—1=—-1—-1=-2

f(x) = —1(15x 4+ 3)72(15) = —1(15)(15x 4 3) 2

—15

= 15155 +3) 2 or — >
(I5x+3) “or e 3y

4 fO) =2 +x+ DV F@) =x24+x+1, FF(x) =2x+ 1, n = 1,

1 _ 1

fl(x) = %(x2 +x+ D720 +1) = %(Zx + D2 +x+ 172

2x +1 o 2x +1
262+ x4+ D2 2 K21 11

— —-1/3 _ _ _ 1 _ 1 _ _ 4
5. y=+DV f) =x+7, f/x)=lLn=—n—1=—3-1=-3

or

1 _ 1 1 1
Y =—3a D) =

3G+ T 3Gt 0

We are ready to find the derivative of functions using a combination of the
power rule and the product or quotient rule. We begin by deciding which rule to
use first. We have to decide if we have a function to a power, where the function



CHAPTER 6 Chain Rule

is a product or quotient. Or if we have a product or quotient where one or more
parts is itself a power.

numerator function 1" . .
A y= - - Begin with the power rule.
denominator function
B (numerator function)”
" denomintor function
numerator function . . .
0 Begin with the quotient rule.

! (denominator function)”
C y = [(first function)(second function)]” Begin with the power rule.
Dy = [(first function)” (second function)]

or [(first function)(second function)”]  Begin with the product rule.

EXAMPLES

Determine which rule should be used first.

_ 2x+1
Y= G032

This function has the same form as B, so we would begin with the quotient
rule.

3
_ (5x—14
¢ V= <2)§c+1 )
This function has the same form as A, so we would begin with the power
rule.

o y=J2x+5x -6

Rewriting this function, we have y = ((2x +5)(x — 6))!/2. This function has the
same form as C, so we would begin with the power rule.

PRACTICE

Determine which rule should be used first.

_ (=13
Loy= x+1

2. y=(16x +5)(4x — 3)?
3. y=Jx+1D(x—-3)
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SOLUTIONS

Quotient rule
Product rule
Power rule

Power rule

A

Quotient rule

Now that we know where to begin, we are ready to find the derivatives. Because
the algebra can be tedious, we will leave our answers unsimplified.

EXAMPLES
Find y'.
« v=3

We will begin with the quotient rule.

fx)=2x+1
flx)=2

glx) =

(x —3)?

¢ (x)=2(x—3)'(1) Power rule

;S0 — fg'(x)

_ 20— 32— 2x+ DH2)(x —3)

[g(x)]?

3
_ (5x-14
* ry= <2x+1 )

[(x —3)2]?

Y =nlf )1 ()

(

5x — 14
2x +1

2
> ')
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Next, we will find f’(x) using the quotient rule on f (x)

_ F'(x)G(x) — F()G'(x)
B [G(x)]?

(where F(x) =5x — 14, F/(x) =5, G(x) =2x+1, G'(x) =2)

_5Qx+ 1D — (5x — 14)(2)
a (2x + 1)2

y =n[f()]" ! f/(x) becomes

_ 5x—14
— 2x+1 -

[

s (5x _ 14)2 52x + 1) — (5x — 14)(2)
A WU A 2x + 1)2

o y=06x(x+4)
We will begin with the product rule.
fx) = 6x g0 = (x +4)°

flx)=6 g(x)=5(x+ 4*(1) Power rule

y = fl(x)gx) + fx)g'(x)
y =6(x +4)° + 6x(5)(x + 4)*

o y=4(2x+5(x—6)

Rewriting the function, we have y = [(2x+5)(x—6)] 172 We will begin with
the power rule, where f(x) = 2x+5)(x —6) and n = % (son—1= —%).

y = %[<2x +5)x —6)7 V2 f(x)

Now we will find f’(x) using the product rule on (2x + 5)(x — 6).
F(x)=2x+5 Gx)=x—-6
F'(x)y=2 G'(x)=1

Fx)=2x—6)+Q2x+5(1)=2x — 124+ 2x +5=4x -7

1
Y =51x+5)(x - 6172 f'(x)

= %[(Zx +5)(x —6)]72@dx -7
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PRACTICE
Find y’.

_ @D
Loy= x+1

2. y=(16x+5)(4x —3)?
3. y=Jx+Dx—-3)

5
_ (7344
4. y= <3§—1>

5 X+2

Y= 38
SOLUTIONS
1. Fory= g((j)),
fx)=@x-17° g(x) =x+1
() =3 — D) gy =1
;3@ =D+ D - @ -1
N (x + 12 '
2. Fory= f(x)g(x),
fx)=16x+5 g(x) = (4x — 3)?
fl(x) =16 g(x) =2(4x - 3)' (@)

y = 16(4x — 3)% + (16x + 5)(2)(4x — 3)(4).
3. Rewrite the function as y = [(x + 1)(x — 3)]Y/4. We have y=[f)]",
where f(x) = (x + 1)(x —3) and n = A% (son—1= —%).

F' G F G’
ffey= 1 x=3)4+x+1) (1) =2x—-2

Y =nlf I ()

_ %[(x 1 =3 Hx —2)
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4. Wehave y = [ f(x)]", where f(x) = ;;4:411 and n =5,

Y =nlf 1" ()

4
_5 (7x + 4) f ().

3x —1

We need f/(x) for f(x) = ZF4,

F’ G F G’
A ——
PR EDECRINC
X) =
(3x — 1)?
——
G2

(T
y=5<3i_1) ()

5 <7x +4)4 7G8x — 1) — (Tx +4)(3)
3x—1) (Gx — 1)2

(x+2)!2
x+8

5. y=
Begin with the quotient rule where f(x) = (x + 2)1/2 and gx) =x+8.
f/ f ’
,1—/— g g
SE+DT @ +8) - (x+ 22 (D)
(x +8)*
——

2

y =

8

The Chain Rule

We use the chain rule to find the rate of change of one variable with respect to
a second variable, which is itself a function of a third variable. For example,
suppose the sales level of a product depends on the amount of money spent
on advertising, and the amount of money spent on advertising depends on the
previous year’s profit. Then the sales level of a product ultimately depends on
the previous year’s profit.

According to the chain rule, we can find the rate of change of the first variable
with respect to the third variable by multiplying the rate of change of the first and
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second variable with the rate of change of the second and third variable. Suppose
y is a function of u# and u is a function of x.

Rate of change of y Rate of change of y Rate of change of u
with respect to x with respect to u with respect to x
—~ = ~ = —~ =
dy dy du
—_— — —_— X R
dx du dx

These expressions are not exactly fractions, instead they involve limits, but they
do “cancel” in a way.

In the following problems, we will be given two separate functions, one where
y is a function of u, and the other where u is a function of x. We can find %
by finding the individual derivatives and multiplying them together. We will then
make a substitution for u.

EXAMPLES
. d
Find ﬁ.
o y=4u’>+6u+3andu=>5x—2.

The individual derivatives are % = 8u +6 (from 4u? + 6u + 3) and Z—Z =5

(from 5x — 2).
dy dy du
dx du dx
= (8u+6)5
= 40u + 30
u=5x—-2
—_——
=40 (5x —2)+30 Replace u with 5x — 2.

= 200x — 80 + 30 = 200x — 50

e y=+2u+9andu =6x3—5x+2
y = Qu+9)!/?

dy 1 _1
22 2(2
T 2(M+9) (2)
1 1 1
=22

27U+ " o



CHAPTER 6 Chain Rule

du
— =182 -5
dx x
dy dy du
dx  du dx
1 5 18x2 -5
= (I8 -5 = ———
V2u+9 V2u+9
18x2 -5 5
= Replace u with 6x” — 5x + 2.
V2(6x3 —5x+2)+9
B 18x% — 5
A12x3 — 10x + 13
PRACTICE
. d
Find 2.
1. y:u 6andu—5x +1
2. y=u? —Sandu =4x+6
3. y=12a du: 14x +9
SOLUTIONS
. % =24 and 9 = 10x
dy dy du
=== 2u) (10
dx ~du ax = 2000
= [2(5x 4+ 1)](10x) Replace u with 5x2 + 1.

= (10x? 4 2)(10x) = 100x> + 20x
2. %=3u2+2u andZ—Z=4

dy dy du
dx du d
= [3(4x + 6)> + 2(4x + 6)](4)

= [3(4x +6)(4x +6) + 2(4x + 6)](4)

= (3u® + 2u)(4)

= [3(16x% 4 48x 4 36) + 2(4x + 6)](4)
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= (48x% + 144x + 108 + 8x + 12)(4)
= 192x? + 608x + 480

3. y=dul 502 =4(-Du?=—4u?and & = 14

dy dy d 4 56
R VI VR
dx du dx u? u?
B 56
T (14x 4 9)2

Chain Rule Notation

In the previous problems, we could have avoided some of the steps by substituting
for u before finding any derivatives. In problem 1 above, we found le—)yc = 100x> +
20x for y = u®> — 6 and u = 5x% + 1. We will work this problem differently by
substituting 5x% + 1 for u in y = u®> — 6 as the first step. Then we will use the
generalized power rule to find the derivative.

y=0Gx2+1)2-6
y =26x>+ 1) (10x)
=2(10x)(5x% + 1) = 20x(5x2 + 1) = 100x> + 20x

Think of y = u?> —6 and u = 5x”+1 as one function composed from two separate
functions, y = f(u) = u®> —6 and u = g(x) = 5x>+ 1. Then y = f(u) =
f(g(x)) (with g(x) substituted for u). Then % becomes

dy dy du
dx  du dx
/ / dy . / du | ’
= f(u)- g x) Replace — with f'(u#) and — with g'(x).
dx dx

= f'(g(x)) - &' (x) Replace u with g(x).

The notation % = f’(g(x))g’(x) allows us to find the derivative for more com-
plicated functions. The generalized power rule is one example. If y = [g(x)]",
then (‘j—)yc = n[g(x)]”_lg/(x). Here, f(u) = u" and u = g(x), giving us
y=f)=fgkx)=(EMxN"
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The notation 3= = = - d “ allows us to find the rate of change between two
variables (y and x) that are each related to a third variable (u).

For example, suppose the profit for selling x thousand units of a product can be
found by using the formula P = —500x2 + 20,000x, and the demand function is
X = % (x thousand units can be sold when the selling price is p dollars). The profit
depends on the number of units sold, and the number of units sold depends on

the price, which makes the profit depend on the price. ‘CllP is the rate of change of

the profit with respect to the number of units sold, and ¢ —p is the rate of change

of the number of units sold with respect to the price. The quantlty is the rate
of change of the profit with respect to the price.

dP
— = —1000x + 20,000
dx
For example, when 10,000 units are sold (x = 10), ‘é—i = —1000(10) +

20,000 = 10,000. This means that the profit is increasing at the rate of $10,000
per 1000 units sold.

dx -1
dp  p?
For example, when the price is $2, Z—x = ;—21 = _Tl. This means that at a price

of $2, demand is dropping at the rate of 250 (one-fourth of 1000 units) per $1
increase in the price.

dP dP d 1
X (=1000x + 20,000)
dp T dx dp p?
1 —1 . 1
= (—1000 (—) + 20,000> (—2) Substitute — for x.
p p p

This derivative tells us how the proﬁt changes at different prices. When the price is
$2, dd]}: = (— 1000( ) + 20, 000)( ) = —4875. This means that when the price
is $2, the profit is decreasing at the rate of $4875 per dollar increase in the price.

EXAMPLES

e A company sells all it can produce of a product. The revenue function is
R = 16x, for x units sold. The weekly production function is x = 500n,
where n is the number of employees (up to 100). Find and interpret 2—5.

We have two functions, R = 16x and x = 500n, and three variables,
R, x, and n. Although R and n are not directly related, they are related



CHAPTER 6 Chain Rule _\®

through x. We can find ‘é—f with the chain rule: ‘fl—f = ‘é—f . g—;. This is the
amount of revenue generated by each employee.

dR .

i 16 Each unit generates $16 of revenue.
X

dx .

= 500 Each employee produces 500 units.
n

dR dR dx

— = — - — = 16(500) = 8000

dn dx dn (500)

Each employee produces $8000 per week in revenue.

e The profit function for selling x units of a product is P = —0.01x% +
100x 4+ 600. The company produces 900 units per day, making x = 900¢
the production function. Find ‘Z—f. Evaluate ‘fi—f att = 1 and at ¢ = 10 days.
Interpret these numbers.

The profit depends on the quantity produced. The quantity produced
depends on how long the product is in production. This makes the profit
depend on how long the product is in production.

dpP
T —0.02x 4 100 The marginal profit for x units.
x
dx .
i 900 Production increases 900 per day.
dP dP dx ,
—_— = — The marginal profit after ¢ days.
dt dx dt
= (—0.02x 4 100)(900) = —18x 4 90,000
= —18(900¢) 4 90,000 Replace x with 900¢.

= —16,200¢ + 90,000

First, we will let t = 1: —16,200(1) 4+ 90,000 = 73,800. On the first day,
the profit is increasing at the rate of $73,800 per day. Now we will let
t = 10: —16,200(10) + 90,000 = —72,000. On the tenth day, the profit is
decreasing at the rate of $72,000 per day.

PRACTICE

1. An author receives 10% royalty on the price of a book. The price of the
book is $15 but will increase $0.75 per year for the next ten years. The
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royalty function is r = 0.10p, where p is the price of the book, and the
price function is p = 154 0.75¢, where ¢ is the number of years after the
book is released. Find and interpret %.

A landscaping company charges $0.25 per square foot to maintain land-
scaping for a summer. The cost is C = 0.25A. A city manager is
considering hiring the landscaping company to maintain part of a park.
The width of the area under consideration is 200 feet, and the length
can vary. The area is A = 200/, where [ is the length, in feet, of the
maintained area. Find and interpret %.

When a company spends a dollars on advertising per month, x units of a
product are sold, where x = —(a — 40)? 4 50. The monthly advertising
budget is 1% of the previous year’s profit, P, on the product, making
a = 0.01P. Find 4 Tnterpret 4% for P = 2000 and P = 3000.

SOLUTIONS

1.

d d
# =0.10 and d—’; = 0.75.

dr dr dp
— = — - — = (0.10)(0.75) = 0.075
dt dp dt
The author’s royalty will increase $0.075 per year (per book).
4 = 0.25 and 44 = 200

dC dC dA
— = — . — = (0.25)(200) = 50
dl  dA di
Each foot in the length of the area to be maintained costs $50.
4x — —2(a — 40) = —2a + 80 and 4% = 0.01
dx dx da
dP  da dP
= (—2a + 80)(0.01) = [-2(0.01P) + 80](0.01)

= —0.0002P 4+ 0.8

Let P = 2000: —0.0002(2000) + 0.8 = 0.4. When the previous year’s
profit was $2000, sales will increase at the rate of 0.4 units per dollar of
profit. Let P = 3000: —0.0002(3000) + 0.8 = 0.2. When the previous
year’s profit was $3000, sales will increase at the rate of 0.2 units per
dollar of profit.
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CHAPTER 6 REVIEW

1.

Find f'(x) for f(x) = (4x? 4+ 2x + 5)3.
(@) f'(x) =3(4x>+2x+5)%8x +2)

(b) f'(x) = 3(4x? + 2x + 5)?

(¢) f'(x)=308x+2)

(d) f'(x) = 3@x%+2x 4+ 5)%(8x)
Find fl—)yc for y = 8u® — 2u and u = 2x3.
(a) L = (24x% —2)(6x2)

() % =[24(2x%) - 2](6x?)

() L =24x2-2

(d) @ =2402x%)% —2(2x%)

10
(2-1)?

(@) L = _30(x2— 1)

Find % for y = using the power rule.

dx
b 2= —60x(x>—1~*
(©) & =-30(2-172

@ % =—60x(x>—1)7?

The revenue function for a product is R = 8x, where R is in dollars and

x 1s the number of units sold. The demand function is x = —% p—+10,000,

where x units can be sold when the selling price is p. What is %?

(a) 8

(b) 3
() -2
(d) 4
Find y’ for y = szfjfg
;x4 V2 (x—4)—(2x+9)1/2
(a) y - (x_4)2
1 =1/2(_4y— 1/2
;2 @x+9) 7 (x—4)—(2x+9)
(b) y - (x_4)2
1 —1/2¢\_ 1/2
; _ 72(2x49) (x—4H+2x+9)
(C) y - (x_4)2

;x99 2(x—4) -1 2x+9) 2 (x—4)
(d) y - (x—4)2




CHAPTER 6 Chain Rule

@’_

6. Findj—ifory:u—lz andu = 12x +9
(@) &= Gie
(b) % = (12;:er9)2
© F =
& F =

7. Find y’ for y = (x? + 1)3(4x — 8).
(@) ¥ =6x(x>+ 1)%(4x — 8)% + 8(x%2 + 1)3(4x — 8)
(d) y =32+ 1D2@x —8)2 +2(x2+ 1)3(4x — 8)
(©) y =3x>+1)2(4x —8)% - 2(4x — 8)
(d) ¥y =32+ 1% +24x —8)

8. Find f/(x) for f(x) =/ (x +2)(x3 +1).
(@) f'(x) =+/3x2
b) f'(x) =3+ 1+ (x +2)(3x2)
1

/ — 2
© £ = V3 D)+ +2)(3x2)
1
/ _ 2 3 2
d fi(x)= —(x+22)(x3+1)[(x + 1)+ 3x"(x +2)]

9. The revenue function for a product is R = 25x, where R is in dollars
and x is the number of units sold. During the first year, the number of
units sold after # months is x = 1?%. How fast is the revenue decreasing
after two months?

(a) At the rate of $20 per month

(b) At the rate of $6250 per month
(c) At the rate of $250 per month
(d) At the rate of $3125 per month

SOLUTIONS
1. a 2.b 3.b 4. c 5.a 6.c 7. a 8d 9.b



CHAPTER

Implicit
Differentiation and
Related Rates

In most of this book, we use formulas to find the derivative of y with respect to
x, when y is a function of x. For many of the equations in this chapter, y will
not be a function of x. For example, y is not a function of x in the equation of
x2 4 y% = 4. The graph of this equation is a circle, which you might remember
from algebra fails the vertical line test. We can still find equations of tangent

lines and even % for such equations. The slope of a tangent line to x> + y> = 8
can be found by computing le—)y( = —’y—f, where (x, y) is a point on the circle. For
example, the slope of the tangent line for the point (+/2, +/2) is —% = —1 (see
Figure 7.1).

Finding % for these kinds of equations is called implicit differentiation.

——&

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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In order to make some of the work a little easier to follow, we will use the
notation %( ), which means the derivative, with respect to x, of the quantity

in the parentheses. For example, %(2x3 + 6x —4) is simply 6x2 + 6. Using this
notation, we can rewrite the derivative formulas without using y.

i(f(x) +g(x)) = i(f(x)) + i(g(x)) Sum/difference rule
dx dx dx

d
E(f(x) cg(x) = fl(x)gx) + f(x)g' (x) Product rule

d (f(X)> _ [T®)gx) = f@)g' )

Quotient rule

dx \ g(x) (8(x))?

d

Ir (Lf1") = nlf O f(x) Power rule
d

E(f(g(x))) = f'(g(x))g'(x) Chain rule

We will begin with the simplest derivatives, y to a power. For %(yn)’
y replaces f(x) in the power rule and Z—)yc replaces f’(x). Then %([ FOM =
nlf ()1~ f/(x) becomes AL (y") = ny"—lj_i‘
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EXAMPLES
Evaluate the expression.
d d
. —(y4) =4y’ d—y
X
5 dy
5/3 y23E2
. (y ) = o
d (1 5 _ dy 1dy —2dy
—(=)=— = —2y3 N St
* dx( ) dx(y ) Yo y3idx  y3dx

d d 1 _,,dy 1 1 dy 1 dy
o = — /2 = — 1/2 =
o WM =0")=5y

PRACTICE

Evaluate the expression.
Lo EG%

2. 07

3. £GP

4. G

5. Ly

SOLUTIONS
6 sdy
L. —(y ) =6y’ —

dx
1dy —3dy

d dy
2. — -3 =-3 -4 -3 = -
dx ) Yo yrdx  y*dx

3. (y2/3) 2 _1/3dy or % 1 d_y: 2 d_y
3 w3 y3dx  33¥ydx
d (1 d dy —5dy
4. L ()= L% =5yt o 2L
dx (yS) dx ) dx y0 dx

1 _2/3dy 1 1 dy 1

ax " 2yPdx " 2 vdx

d 1/3
5. P (Jy) = (y ) =

dy

3 @ Org‘y2/3d_x:33/y2d_x



For some equations, we need to use the product rule, quotient rule, power rule,
or some combination of these rules. We will use the product rule when we have
the product of two quantities, one with an x and the other with a y. We will let

the x-expression be f(x) in the formula, and the y-expression be g(x). f(x) will
be computed in the usual way, and g’(x) will computed as above.

EXAMPLES

Evaluate the expression.

4 (2xy)

CHAPTER 7 Implicit Differentiation

The expression 2xy is the product of two functions, one of them is 2x
and the other is y. In the product rule, we will let f(x) be 2x and g(x),
be y. This makes f/(x) =2 and g/(x) = &

4 (3x2y)

L (x4y3)

d
E(x4y3) =4x3y? +x*. 3y

4 (x2+y?)

— dx-

, fe'
f'e N
—_ dy

—(f(X) gx)) = —(2x y)=2-y+2x- o
X

f(x) =3x2 g(x) =y
dy

f'(x) = 6x g'(x) = Tr

d dy
—(3x%y) = 6xy + 3x% ==
dx(xy) xy—i—xdx

flx) =x* gx) =y

,dy
) =4 g x) =3y d—

d
d——4x3y + 3x* zdy

The derivative of x2 is 2x and the derivative of y? is 2y%.

d o, 2 dy
dx(x + y9) X+ ydx
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° —(4x3y +x y)

We will differentiate each term individually, and then we will add the
derivatives in the last step.

d d d
L @392 = 12022 443 2y 12422 183y
dx dx dx

d 55 5 ady
- =2 -5 =2 5
dx(xy) xy+x yd xy+x d

d d
d—x(4x3y2+x2y5) (4x3y2)+ —(x 2y%)

2 4dy

dy
= 12x2y* + 8 +2xy° +5
X xyd xy> + 5x dx

PRACTICE

Evaluate the expression.
L f@y?)

2. a0y

3. L3y

4. L@axTy=2)

5. £ +xy?)

SOLUTIONS
L. %(xyz) =1-y*+x- 2;{% — 2y 2

dx

,dy
2. —(2x6y3) = 12x°y3 +2x6 . 3y2 2 y = 12x3y3 + 6x0y
X

d
d d 1 d
3 _(x3 ) = _(x3y1/2) = 3x2yl/2 4 3. _y—l/Z_y
2 dx
x3 dy

1 dy
_32 _3__ 2
TN S TV S Sax
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d
4, —(@xTy72) =28x0y 72 4 4x7(=2)y 3=
dx dx

dy 28x%  8x7dy
—28x0y—2 _8x7y3ZL _ - 7
X"y X'y Ux or y2 y3 dx

d d d
5. —(@3 4+ xy?) =3x2+1 -y2+x-2y—y = 3x2—|—y2—|—2xy—y
dx dx dx

We will use one or more of the other two formulas, the quotient rule and the
power rule, on the next set of problems.

EXAMPLES

Evaluate the expression.

d (x?
e — [
dx \ y3
We will use the quotient rule where f(x) is x> and g(x) is y>, making
f'(x) = 2x and g'(x) = 3y* L.
d (xz) 20y =23y 20 = AP

dx \y3 (»3)? - (33)?

d (x*+x
° —
dx \ y?2 -1
We will use the quotient rule where f(x) = x2 4+ x and glx) = y2 -1,
making f'(x) =2x + 1 and g'(x) = 23’%'

d (F+x)  Qx+DO2—1) - (2 +0)CNE
d_X<y2—1>_ (2 =172

o Lx+yh

We will begin with the power rule where f(x) = x + y, making f'(x) =
1+ % Then nf (x)"~! f'(x) becomes 4(x + y)>(1 + ).

o L(xy)?

We will begin with the power rule, where f(x) = xy. By the product



CHAPTER 7 Implicit Differentiation _\@

rule, f/(x) =1-y+x- % =y+ xd—i. Then nf(x)"~! f'(x) becomes
3002 (v + x50,

PRACTICE

Evaluate the expression.

| d(x+1>
©odx
y+1

4 X-x
\4y3 +2y

3. L(2x+3y)h

4. L=y

5. L(3x*y)d)

SOLUTIONS
d (x+1 -+ D)%
L (y—i— 1) == (y+1J;2

d ( x2—x ) @e=D @y 2y (70 (12 F 23 )
dx

2w \oiry @327
d ) dy
3. —(2x+3y))=22x+3y)(2+3—
dx dx
d d 2 1 ~1/2 dy
4. a(ﬁ)=ﬁ((x—y)l/ )=5(x—y) Y I_E
= l 1 1 — d_y — 1 1 —_ d_y
2 (x—y)1/?2 dx 2J/x—y dx

d
5. E((3x4y)5) = 53x*y)* L 3x%y) Power rule

d .4 3 4d
E(Tvx y) =12x"y +3x* % Product rule
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d 4.\5 4 N4 3 4dy d (2.4
d—((3x ¥)?) =50@x"y)* | 12x°y + 3x Tr Replace7-(3x7y)
X X
with 12x3y + 3x442.
We are ready to use implicit differentiation to find ;% for an equation. We will

differentiate both sides of the equation with respect to x. After differentiating, we

will use algebra to solve the equation for %. This will be pretty straightforward

for the next set of problems. However, we will polish our algebra skills to be able
to find Z—)yc for the equations that come up later. To solve an equation for a variable
means to isolate the variable on one side of the equation, and it can only appear
on that side. For example, x = 6y — 1 is solved for x, but x = 6y — x is not
because x appears on both sides of the equation.

EXAMPLES
.ood
Find 2.
o 3x2 46y =2x
We will differentiate both sides of the equation with respect to x.

d d
—(Bx2+6y°) = —(2
dx(x+y) dx(X)

d
6x +30y* 2 =2
dx
Now we need to use algebra to isolate Z_)yc on one side of the equation.

d
6x + 3Oy4d—y —2
X

d
30y* 2 — 2 _6x

dx
4d
30y % _ 2 — 6x
30y 30y4
dy . 2 —6x _ 2(1 —3x) . 1 —3x
dx — 30y*  30y* 15y4

d d
—(x2 — yz) =—09) Differentiate both sides.
dx dx



CHAPTER 7 Implicit Differentiation

2x —2y— =0

d
—2yE = —2x Solve for ﬁ

PRACTICE

Find I

1. 7x =2y’ =x%?-3
2. X3 4xy?=5

3. Jx— Yy=6x
SOLUTIONS
) L -2y = L2 -3
dx Y dx
d
7-6*2 —2x—0
dx
d
—6y2—y =2x—17
dx
dy 2x-7 2x — 17
— = or —
dx  —6y? 6y2
2.
d 3 2 d
- =
L&) =-0)
2 2 dy 2
3x“4+1-y"4+x-2y— =0 Use the product rule on xy~.

dx

d
2xy—y = —3x? — y2
dx
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d_y B —3x2—y2

dx 2xy
3. d d
O VBV N
dx(x y') dx(x)
1
Lo 1 opdy _
3 3 dx
L1 1 1dy
3x23 3y234x
1 1 dy_6
Va2 3yy2dx
1 dy 1

C3dy2dx 32
dy ; 1 ; Jy?
—— =-37y2(6— — 18y + X
dx \/;( 37 x2> o \/;Jr Jx2

Before finding Z_)yc for more complicated problems, let us review how to
solve equations having more than one variable. We will solve for ¢ in the following
problems. First, we will move each term with a ¢ in it to one side of the equation
and the terms without a ¢ in them to the other. Second, we will factor ¢. Finally, we
will divide both sides of the equation by the coefficient of . This is the quantity
in the parentheses next to ¢.

EXAMPLES
o x? 4y’ =18y + 18xt

We will put the #-terms, y>t and 18x¢, on the left side of the equation and
the terms without ¢, x2 and 18 y, on the right side.

y2t — 18xt = 18y — x2
Now we will factor # from y?¢ and —18xz, leaving y> and —18x.
t(y2 — 18x) = 18y — x?
We will divide both sides of the equation by the coefficient of 7, y> — 18x.
18y — x?

=
y2 — 18x
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o 2x+2y+2xt =06yt

If we move 2xt to the right side of the equation, we will have 7-terms on
one side of the equation and terms without ¢ on the other.

2x + 2y = 6yt — 2xt Factor .

2x +2y =t(6y — 2x) Divide by 6y — 2x.
2x +2y ;

6y —2x

_ 2x+y)  x+y
2@y —x) 3y—x

ort

PRACTICE

Solve for ¢.
1. 2yt —2—4r=0
2. 4y3t — 8yt =4x3 — 18x
3. 2x — %ﬁy — J/xt =4yt
4. 2xy +x*t 4+ y> 4+ 2xyt =0

SOLUTIONS
L 2yt —2—4t =0
2yt — 4t =2
tQy—4) =2
2 2 1
T 4T 20-2 y-2
2.

4y3r — 8yt = 4x3 — 18x
1(4y° — 8y) = 4x> — 18x

4x3 —18x  2(2x3 —9x) 2x3 —9x
= or =
4y3 =8y  2(2y3 —4y)  2y3 -4y
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1
2x — Eﬁy—ﬁt =4yt
1
2x — Eﬁy =4yt + /xt

2x — %ﬁy = t(4y + V)

2xy +x% + y2 +2xyt =0
X2t + 2xyt = —2xy — y2
r(x%+ 2xy) = —2xy — y2

_ —2xy— y?
 x242xy

We will put together our ability to differentiate implicitly and our ability to
solve an equation to find g,—)y( for more complicated equations. As before, we will
differentiate both sides of the equation implicitly with respect to x. Then we will

solve for fl—y.
X

EXAMPLES

. dy
Find T

o 3x%y+y*t=6x

d d
—@Bx%y+yH =—(6
2 OX YY) = (6x)

dy_
dx

d
6xy + 3x2£ + 4y3 6
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We will solve for % by moving 6xy to the right side of the equation, and
then by factoring fl_)); on the left side.

dy dy
3x2°L 449322 = 6-6
xdx+ ydx *y
d
d_y(3x2 +4y%) =6 — 6xy Divide by 3x2 + 4y°.
x
dy  6—6xy
dx  3x2+44y3
o x2_y2=x34y3
d o, o d 3 3
dx(x Y)—dx(x +y7)
dy 2 2 dy
2x —2y— =3 3y
T ¥y dx

dy dy
2x —3x2 =2y—= +3y>—=
* o ydx+ ydx

d
2x —3x% = ﬁ@y +3y3)

2x — 3x? _dy
2y +3y2  dx
PRACTICE
. d
Find .
1. x2y2—y=7
2. 4x3y? —x2 42y =9x
3. (x+y)?=Tx
4, xﬁ—i—y3=5x—1
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SOLUTIONS
1.
dy dy
2xy? 2y— — = =0
v at dx dx
d d
2,4y 4y _ —2xy2
dx dx
d
L 2x2y — 1) = —2xy?
dx
dy —2xy?
dx  2x%y—1
2.
dy d
12032 4432y o 42 g
dx dx
d d
8x3y Y 428 912422 0k
dx dx
d
L83y +2) =9 — 1262y + 2x
dx
dy 9—12x?y? 4 2x
dx 8x3y +2
3.
d
20+ (1 _y The derivative of x + y is 1 + _y.
d dx
2x 4+ 2y) ( > Distribute 2x + 2y in the parentheses.
_y

2x+2y+(2x+2y) =

Q2™ =7 _0x 2y
dx

dy T—2x—2y
dx  2x+2y
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d d
— ey 4y = —Gx =1
X

dx
1-y1/2+x-%y_1/zj—i+3y2fl—i:5—0
ﬁ+%x%%+3y2%=5
x dy 32d_y:5_ﬁ

asvdx Y dx

dy X 2
=43 —5_
dx(2ﬁ+ y) v

dy _ 3=V

dx X 2
— +3y
2y

Once we know how to find %, we can find an equation of the tangent line to

the graph of an equation at a given point. Remember that once we find %, we
will use the coordinates of the point in the derivative to find the slope. Once we

have the slope, we will use the point and m in y = mx + b to find b.

EXAMPLE

e Find an equation of the tangent line to the graph of 2y? — xy? = x> at the
point (1, 1).
We will begin by differentiating both sides of the equation with respect to x.

d d
4yd—y — (1 Y4 ~2yd—y) = 3x>
X X
dy dy 2
4y— — y* —2xy— =3
ydx 4 xydx o
dy dy 5 >
4y— —2xy— =3
ydx xydx Xty

d
D 4y —2xy) = 3x2 42
dx
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dy 3x2 432
dx 4y —2xy
3(H2+12 d

m=()—+ Letx =1, y=1in—y.

4(1) —2(1)(1) dx

4

:—:2
2

Now we willput x =1, y=1, m=2iny = mx + b to find b.

1=2(1)+b
—-1=b
The tangent line is y = 2x — 1. The curve and tangent line are shown in
Figure 7.2.
5r /
/
A
/
YR
2+ )’
1 —
\ I I 7| x J
-3 2 -1 , 1 2 3
P
/
) /o
// 3
/
/ -4~
/
/ 5L
Fig. 7.2
PRACTICE

Find an equation of the tangent line.

1. x3+2y2+y=23at(2,-3)
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2. X34y 4+9xy=27at(1,2)
3. 16x3 + 16y =3at (3, 1)

SOLUTIONS
1.

dy ~dy
3x24+4y—+-—==0
X ydx+dx
dy dy 2
4y— + — = -3
ydx+dx x

d
D4y +1) = —3x2
dx

dy —3x?
dx 4y +1
-32?% 1212

m= = = —
4(=3)+1 —11 11
12
_3:H(2)+b Letx =2, y= -3, and

12

m:Hinyzmx—i-b.
3—24—|—b
R
24 57
11
The tangent line isyz{—%x—?—z.
2.
d d
324322 oy — o
dx dx
d
3322 4 ox 2l = 332 gy
dx X

d
Y (3% 4 9x) = —3x2 — 9y
dx

dy —3x%2 -9y
dx  3y249x
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_ 3(—x?-3y)  —x?-3y
32 43x)  yr43x
_—12-32) -7
2243 T
2=—1()+b Putx=1, y=2,

-1

m=—1liny =mx +b.

3=»

The tangent line is y = —x + 3.

d
48x7 +32y 22 = 0
dx

d
32y—y — —48x?

dx

dy —48x*  3x?

dx 32y 2y
a0

m= 1~ 1

2(3) 5

3.1 32 3
472 41 2

1 3/1

—_—_—_Z b

4 2(2>+

3
The tangent line is y = —Ex + 1.

Using implicit differentiation, we can differentiate an expression with respect
to a variable that does not appear in the formula. Usually that variable is ¢,
representing time. In the problems below, we will differentiate both sides of the
equation with respect to . We will be given some values to use in the equation

to find the rate of change (with respect to ¢). Later, we will use this technique to
solve applied problems.
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EXAMPLES

e Find ‘0% for y = 6x% + 5x — 1 when x = —4 and ‘Zl—f =2
We will begin by implicitly differentiating both sides of the equation with
respect to 7.

d()—d(62+5 1)
ar ) T ar .

dy dx dx
— =12x—+5—
dt dt dt
Now we will substitute x = —4 and ‘é—f = 2 in this equation.
d
d_f — 12(=H)(2) +5(2) = —86

e Find ‘% for x2 + y* = 169 when x = 12 and ‘fi—f = 10.

dx dy
2x— 4+2y— =0
xdt+ydt
dy dx
2(12)(10) +2y— =0 Let x =12 and — = 10.
(12)( )+ydt et x and —

dy
240 + 2y =0
T

We cannot find % until we know what value y has. We can use the equation
x2 4+ y2 =169 to find y.
122 +y% = 169
y?2 =169 — 144 =25
y=4=5

In the applications covered later in this chapter, we will only be concerned
with positive values for x and y because they will represent real-world
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numbers—quantities, dollars, distances, etc. If we use y = 5 only, 240 +
Zy% = 0 becomes 240 + 2(5)‘% = 0. Now we can solve for %.

dy
2404+ 2(5)— =0
+ ()dt

d
1022 = —240
dt
d
D o4
dt
. Find%forz:xy3—7x2,whenx=2,y=1,‘;—f=—3,and‘é—f=2.
dz 3dx o dy dx
T R/ Praasad
a Y a T T Y
dz

= 13(=3) + 233 - 1%)(2) — 14(2)(=3) = 93

PRACTICE
1. Findfl—ffory=9—x2 whenx=4and‘jl—’t‘ =3.
2. Find 2 for x> — y? = 109 when x = 5, y = 4, and & = -2,

3. Find & for x2 — y2 = 16 when x = 5, dx — 10 and y is positive.
dt dt

SOLUTIONS

L. dy dx
dr — T dr
D _ 3 =24
= 20) = -

2.
32d—x—2yd—y=o

di di

d
3(5%)(—2) — 2(4)51% —0

d
—150-82 — o
dr
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dy
—8— =150
dt
dy 150 75
dt ~ -8 4
3 dx dy
2x— —2y— =0
dt dt
dy
2(5)(10) — 2yz =0
dy
—2y— = —100
Vi
dy —100 50
dt =2y y

We can find y using the fact that x> — y> = 16 and x = 5.
52-y2=16
—y2=16—-25=-9
¥ =9
y=43 Use positive 3 since y must be positive.

dy _ 50
Now wehavem_ 3 -

Related Rates

The demand for most products decreases when the price increases. How fast will
demand decrease if there is a monthly price increase? A container is being filled,
how fast is the level rising? A person is walking away from a lamp post, how fast
is his shadow lengthening? All of these quantities are based on time. We can use
implicit differentiation with respect to time to find how fast a quantity is changing.
We will begin with business problems.

In the following applications, we will be given an equation, usually with two
variables, and told how fast one of the variables is changing. We will be asked
how fast the other variable is changing. To answer the question, we will implicitly
differentiate both sides of the equation with respect to . And as we did above, we
will substitute known values into the differentiated equation to find the unknown
rate of change. Information on the rate of change will be given in phrases such
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as, “the price will increase each month by $0.25” and, “the container is being
drained at the rate of 5 cubic feet per minute.” As with any applied problem,
units of measure must be consistent. If the information on the rate of change is
given in months, ¢ should represent months. If it is given in terms of minutes,
then ¢ should represent minutes.

EXAMPLES

A buyer for a department store determines that demand for a certain fabric

is given by g = %, where ¢ yards are demanded when the price per yard

is p. How fast will demand decrease if, at the current price of $4 per yard,
the price increases by $0.05 per month?

d d (1000 d

—(q)=—(—=) = —000p~"?

dt dt \ /p dt
d —1 d 500 d 500 d
4q9 - . 1000p—3/2_p — _XYvap — _vdap
dt 2 dt p3/2 dt /p3 dt

The quantity ‘;—‘f is the rate of change in demand, the number we are looking
for, and the quantity Z—’; is the rate of change in price, which is $0.05 per
month. We will use p = 4 and ‘é—’t’ = 0.05 in the derivative to find ‘;—?.

dq 500 25 25
dt ./43( ) V64 8

Demand will decrease at the rate of 3.125 yards per month.

The profit (in $ thousand) for selling x units of a product is given by
P = —0.003x> + 4.8x + 18,080. How much will the profit increase if cur-
rently 400 units have been produced and sold and 25 units will be produced
per week?

dpP dx dx
— = —0.006x — +4.8—
dt dt dt

Production is 400 units, so x is 400. The production is increasing at the rate
of 25 units per week, so ‘;’i—’; is 25.
dpP
T —0.006(400)(25) 4 4.8(25) = 60

Profit will increase at the rate of $60,000 thousand per week.
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e The number of sales for a medical device that a manufacturer sells depends
on the number of sales representatives. When the number of sales repre-
sentatives is between 2 and 20, the number of units sold when there are
x representatives can be approximated by y = —1.7x* + 67x3 — 895x2 +
5527x —4651. The company has five representatives selling this device and

plans to increase the number of representatives by two per month. How will
this affect the number sold?

dy 3dx Hdx dx dx
— = —6.8x"— +201x"— — 1790x — + 5527 —
dt * dt el dt xdt + dt

d
Letx:Sandd—f=2.

% = —6.8(5%)(2) + 201(5%)(2) — 1790(5)(2) + 5527(2) = 1504

The number of devices sold will increase at the rate of 1504 per month.

PRACTICE

1. The revenue for selling x units of a product is given by R = 100,000 —

%. When 15 units are sold, daily production is 5 units. How fast is

revenue increasing?

2. When the price is p dollars for a product, g units are demanded, where
q = %. When the price is $5, a distributor decides to increase the price

by $0.10 per month. How does this price increase affect the demand?

3. The profit for selling x units of a product is given by P = —(x — 150) +
5000 (when at least 80 units are sold). When 100 units are sold, 15 per
day are produced. How much is the profit increasing per day?

4. A distributor for a cleaning product believes that when $a thousand is
spent on advertising, y = 100 — % thousand units are sold (when at least

$2000 is spent). The company has spent $4000 on advertising and plans to
increase its advertising budget by $500 per month. How will the increase
in advertising affect sales?
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SOLUTIONS

d
1. Daily production is 5 units, so 7 = 5.

= 100,000 — 40,000x /2

L —l(—4o OOO)x_3/2d—x _ 20.000dx
dt 2 ’ dt x3/2 dt
20,000 dx
/3 dt
20,000 dx

= W(S) Let x = 15, andzzi

~ 1721

Revenue is increasing at the rate of $1721 per day.

2. The price increase is $0.10/month, so ili_l; = 0.10.

g =500p~"!
dg _zdp 500dp
— = (—=1)(500 = ———
dt = (=DE00)p dt p? dt
500 dp
= —?(0.10) Let p =5 and I 0.10.
=-2

Demand will decrease at the rate of two units per month.

3. 15 per day are produced, so X = 15.

P = —(x — 150)% + 5000

dpP d
I =—2(x — 150)d—); Power rule
dx
= —2(100 — 150)(15) Let x = 100 and N = 15.
= 1500

Profit is increasing at the rate of $1500 per day.
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4. Advertising is increasing at $500/month, so 44 = 0.5

t
500 1
y =100 — —— = 100 — 500(a + 1)
a—+1

dy _rda
— = (—1)(-500 H—
7 (=D( Ya+1) T
500 da
or = —— 5 —
(a+ 12 dt
500 d
= >~ _(0.5) Leta=4and — =05,
4+ 1)2 dt
(500 is half of one thousand).
=10

Sales will increase at the rate of 10 thousand units per month.

We will differentiate formulas from geometry for the rest of the problems in
this chapter. The first step in solving these problems is to identify the shape
involved and to determine which formula to use. Usually, we will differentiate
this formula, but there will be times when we will need to make a substitution,
based on information given in the problems, before differentiating.

It is important to know when to use the numbers given in the problem, before or
after differentiating. Rates of change cannot be used until after differentiating. In
fact, all numbers could wait until after differentiating, but waiting to use numbers
sometimes can cause the differentiation to be more complicated than it needs to be.
If the value of a variable changes with time, we must wait until after differentiating
before making the substitution. If the value remains constant through time, then
we might be able to substitute the number for the variable before differentiating
to make the calculations easier. For example, if we are pouring water into a cup
with straight sides (the top and bottom have the same radius), then the radius of
the water’s shape does not change. We would be safe in using the cup’s radius in
the formula before differentiating. If we are pouring water into a cup shaped like
a cone, the radius of the shape of the water does change. We would not be able
to substitute for the radius until after differentiating.

EXAMPLES

e A pebble is dropped into a still pond. The radius of the ripple is expanding
at the rate of 4 inches per second. How fast is the area increasing 3 seconds
after the pebble is dropped, when the radius is 12 inches?
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Because the rate of change is given in seconds, ¢ represents seconds. The
question asks how fast a circular area is increasing, telling us that we should
begin with the formula A = 7r2. It would not be safe to substitute 12 for
the radius in this formula until after we have differentiated.

d(A)—d< %)
a VT

= 27(12)(4) = 967

Three seconds after the pebble is dropped, the radius is increasing at the
rate of 96;r square inches per second.

e Two men leave a park at the same time. One man rode his bicycle southward
at 15 mph. The other ran eastward at 6}1 mph. How fast were they moving
from each other 48 minutes after leaving the park?

Let us call the distance traveled by the man on the bicycle y and the
distance traveled by the runner x. Let s represent the distance traveled
between them (see Figure 7.3). Because the shape is a right triangle, we
can use the Pythagorean theorem as our equation: x> 4+ y? = s2. The rates
of change are given in miles per hour, so ¢ represents hours.

d. 2, 2 _ 9 2
dt(x +y)_dt(s)

dx dy ds

2x— +2y— =25 — Divide by 2.
xdt+ ydt Sdt 1vide by
X
/
/
/
/
/
/
y /8

Fig. 7.3.
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dx dy ds

Y Va T
The runner’s speed is 61 mph, so & dx = 61 The cyclist’s speed is 15 mph,

dy _
SO 77 =15.

6L x4 15y — 6.25¢ 4 15y = 525
—X = 0. X =5—
4 Y Y=

We can find x and y by multiplying the men’s speed by 50 = 0.8 hours.

x = 6.25¢t = (6.25)(0.8) = 5 miles
y = 15t = 15(0.8) = 12 miles

Using the original equation, x> + y> = 52, and the fact that x = 5 and
y = 12, we can find s: 52 4122 =52, making s = 13 miles.

6.25x + 15 ds
. X = 5—
4 dt

ds
6.25(5) + 15(12) = 135

ds
211.25 = 13—
dt
ds
16.25 = —
dt

48 minutes after leaving the park, the distance between the runner and the
cyclist is increasing at the rate of 16.25 miles per hour.

When a ladder is leaning against a wall, the ladder, the wall, and ground
form a right triangle. When the ladder slides down the wall, we can find the
rate at which the top of the ladder is sliding downward if we know how fast
the bottom is sliding away (or vice versa). As before, we will begin with
the Pythogorean theorem. We will let x represent the distance between the
base of the ladder and the wall, and y the distance between the top of the
ladder and the ground. Usually, we are told how fast the base is moving
away from the wall. This tells us %-. Then we are asked how fast the top

of the ladder is moving. This is flz , Wthh is negative because the ladder is
moving downward.
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EXAMPLES

A 20-foot ladder is leaning against a wall. The base of the ladder slips and
the top of the ladder starts to slide against the wall. When the base of the
ladder is 12 feet from the wall, it is moving at the rate of 5 feet per second.
At this instant, how fast is the top of the ladder moving? See Figure 7.4.

y 20/

X —
Fig. 74.

From the Pythagorean theorem, we have x? + y? = 207,

d , > d 2
— + = —(20
dt(x ) dt( )

d d
2xd—);+2yd—);=0 Divide by 2.
dx dy
- _=O
TR
126)+y2 — 0 We k is 12.and X is 5
—_— = € KNOw Xx 1S ana — 1S J.
Y d1

We can find y using the fact that x = 12 and x> +y? = 20%: 122 +y? = 207
gives us y = 16.

dy
12(5) + 16—= =0
) + o

dy

16— = —60
dt
dy —60

=—=-3.75
dt 16
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When the base of the ladder is 12 feet from the wall, the top of the ladder
is sliding down the wall at the rate of 3.75 feet per second.

e A large cannister in the shape of a right circular cylinder is being drained.
The radius of the cannister is 3 feet. At the instant that it is draining at the rate
of 5 cubic feet per minute, how fast is the level dropping? (See Figure 7.5.)

Fig. 7.5.

The volume in the cannister is changing, which tells us to use the formula
for the volume of a right circular cylinder, V = mr?h. When the cannister
is not empty, the radius of the cannister’s contents is always 3 feet, so we
can use r = 3 in the formula: V = 7 (3%)h = 97 h. This substitution saves
us from having to use the product rule on r2h. (Following this example is
an explanation why it is safe to use this substitution before differentiating.)

Ly = Lorn
ar T ot

dv dh
29—
dt dt
The cannister is begin drained, so the volume is decreasing. This makes
‘2—‘; negative. It is decreasing at the rate of 5 cubic feet per minute, so ‘2—‘;
is —5.
dh
—5=97—
dt
—5 dh
97 dt

The level of the cannister is decreasing at the rate of % feet per minute.
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Let us see what happens in the above example if we do not substitute » = 3
in V = r?h before differentiating.

d V) = d 2
E = E(T[r )

dv
dt

d dh
=7 (Zrhd—: + r25> Using the product rule on r2h.

Because the radius is not changing, fi—; is 0. This gives us

dv dh dh
— =n(2rh(0) +r*— ) = nr*—
T n(r()—l—r dt) wr T

Now we can use the fact that ‘2—‘; = —Sandr?=32=9: -5 = ”(9%)’
which is what we have above.

PRACTICE

1. A small circular fire is spreading, its radius increasing at the rate of 2 feet
per minute. When the radius of the fire is 6 feet, how fast is the burned
area growing?

2. Two cars pass through an intersection at about the same time. The north-
bound car is traveling at 45 mph, and the eastbound car is traveling at
60 mph. After 40 minutes, how fast were the cars moving away from each
other?

3. A drum, in the shape of a right circular cylinder, is being filled with liquid
cleanser at the rate of 2 cubic feet per second. The radius of the drum is
1 foot. How fast is the level of the cleanser rising?

4. A 25-foot ladder is leaning against a wall when someone starts to pull the
base away from the wall, at the rate of 2 feet per second. How fast is the
top of the ladder moving down when it is 24 feet above the ground?

SOLUTIONS
2

1. We begin with the area of a circle: A = wr-.
L) =L
— = —(nr
dt dt

dA dr
— =2nr—
dt dt
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A _ yr6)2) =24
= = 2m(0)Q) =24

The area is increasing at the rate of 24w square feet per minute at the
instant the radius of the fire is 6 feet.

2. Let x represent the distance traveled by the eastbound car; y, the distance
traveled by the northbound car; and s, the distance between the cars. We
begin with x? 4+ y? = s2. After differentiating both sides of the equation
with respect to t, We have 2x -+ 2y = 2548 ;- Dividing through by 2
gives us xm + y— = sds 9 We know that the eastbound car’s speed is
60 mph and the northbound car’s speed is 45 mph This gives us == dx =60
and ¢ dt = 45. Now we have x(60) + y(45) = Sdr Att = 28 = 2 5 hours,
the eastbound car has traveled 60( %) = 40 miles, and the northbound car
has traveled 45(%) = 30 miles. This gives us x = 40 and y = 30. Using
these numbers in x% + y2 = 52, we have 402 + 30% = s2. From this, we

have s = 50.
x(60) + y45) = sﬁ
dt
40(60) 4+ 30(45) = 502—;
3750 = SOd—S
dt
75= %
dt
At 40 minutes, the cars are moving away from each other at the rate of
75 mph.

3. The volume of a right circular cylinder is V = r2h. Because the radius

is always 1, the formula becomes V = 7 12h = mh. Differentiating both

sides of this equation with respect to ¢t gives us ‘2‘; = ndh The volume

a’V

is increasing at the rate of 2 cubic feet per second, so % is postive 2.

dv dh
—_— = —
dt dt
dh
2 — _
& dt
2 dh
T dt
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The level of cleanser is rising at the rate of % feet per second.

4. We begin with x> + y?> = 252, where x is the distance between the base
of the ladder and the wall, and y is the distance from the top of the ladder
to the ground. Then dx is 2, and y is 24. After differentiating both sides

of the equation with respect to t we have 2x -+ 2y 4Y — 0. When we
divide through by 2, we have xdx ar T ydy =0.

dx+ dy_o
ar " Var T

@) +24Y _¢ We k 24and & =2
x = = e know y =24 and — = 2.
dr Y dr

d
72) + 24d—y —0 x2 4242 = 252 gives us x = 7.

d
242 — 14
d1

dy -4 7

dt — 24 12
The top of the ladder is moving downward at the rate % feet per second
at the instant it is 24 feet above the ground.

Two triangles are similar if they have the same angles (see Figure 7.6).The
ratio of any two sides of one triangle is equal to the ratio of the corresponding
sides of a similar triangle. For the triangles in Figure 7.6, we have a/b = A/B,
b/c=B/C,and a/c = A/C. We will use this fact in the last two problem types.

The cone problem involves a cup or other vessel in the shape of a cone either
being filled or drained. Not only do the volume and height of the cone-shaped
contents change, but the radius changes, too. We are told how fast the volume is
changing and are asked how fast the level is changing. In the volume formula,

C

T

Fig. 7.6.
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V = %nrzh, we have three variables that are changing with time. We will use
similar triangles to replace r with an expression involving 4. This reduces the
variables from three to two, V and 4.

EXAMPLE

e Atank in the shape of a cone is full of water. The top of the tank has a radius
of 4 feet, and the tank is 6 feet tall (see Figure 7.7). A pump is draining
the tank at the rate of 5 cubic feet per minute. How fast is the water level
falling when the water is 3 feet deep?

.. . Height when full __
By similar triangles, for any water level h, we have = r-em =

Any height . - 6 __ h . . 6 _ h .
Any radius’ which is i= 7 Solving the equation 1= for r gives us

r = %h. With this substitution, the volume formula V = %nrzh becomes

1 (2\* 1 (4, 4
V=-m|zh) h=-n|=h"|h=—=nh".
37 \3 37 \9 27

d d (4 5
—(V)=— |57
dt dr \ 27
AV _ 4 pdh 4 dh
d 27 dt 9 dt

6/
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The volume is decreasing at the rate of 5 feet cubic feet per minute, so

4V = —5. We want 4 when  is 3, so we will let & = 3.
4 odh dh
—5=-n(3)*— =4dn—
9 dt dt
—5 _dh
4r  di

The water level is falling at the rate of % feet per minute.

When a person walks toward or away from a light, the person’s shadow
becomes shorter or longer. Two similar triangles are formed. The base of one
triangle is formed by the length of the person’s shadow, and the height of this
triangle is formed by the person’s height. The base of the other triangle is formed
by the distance from the base of the lamp post to the tip of the shadow, and the
height of this triangle is formed by the height of the lamp post. As the person
is walking, the heights of the triangles do not change, but their bases do. Let x
represent the distance between the person and the lamp post, and let s represent
the length of the shadow (see Figure 7.8). By similar triangles, we have

Lamp post’s height  Person’s height

X+s s

This gives us a formula to differentiate with respect to ¢.

Lamp &

Fig. 7.8.
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EXAMPLE

e A woman 5 feet tall walks away from a 30-foot lamp post. How fast is her
shadow lengthening if she is walking at the rate of 100 feet per minute?
In the above equation, the lamp’s height can be replaced by 30 and the
person’s height can be replaced by 5.

30 5
X+s s

We will simplify this equation before differentiating.

30s =5(x +s) Cross-multiply
30s = 5x + 5s
25s = 5x Subtract 5s from each side.

d 25 —d 5
E( S)—E(X)

ds dx
25— =5—
dt dt

Because she is walking away from the lamp post, her distance is increasing,

SO ‘;’i—’f is positive. We know her speed is 100 feet per minute, so ‘fl—’; = 100.

ds
25— = 5(100) = 500
dt

ds 500
=20

dr 25

Her shadow is lengthening at the rate of 20 feet per minute.

PRACTICE

1. Someone is pouring coffee into a cone-shaped cup. The radius of the cup
is 1.5 inches, and the cup is 4 inches high. The cup is filling up at the rate
of 2 cubic inches per second. How fast is the level of coffee rising when
it is 3 inches high?

2. A 6-foot man is walking toward a 26-foot-tall lamp post at the rate of 150
feet per minute. How fast is the length of his shadow decreasing?
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SOLUTIONS

1.

We begin with V = %nrzh. By similar triangles, ; = %. We want %
so we want to keep h and replace r with an expression involving A, so
solve this equation for . When we cross-multiply, we have 4r = 1.5k,
and dividing by 4 gives us r = lé't—sh = (0.375h. Because the volume is

increasing at the rate of 2 cubic inches per second, 4¥ is 2.

> dt
1 2 1 2
V = 27(03750)h = 7 (0.140625h%)h
V = 0.0468757h’
d d
—(V) = —(0.0468757h%)
dr dr
d dh dv
2V _ 0.1406252n2 " — =2andh =3
dt dt dt

L dh
2= 0.1406257(3)* -

2 _dh
1.2656257  dt
dh

05~ —

dt

The coffee is rising at the rate of about 0.5 inches per second at the instant
the coffee is 3 inches high.

Because the man is walking toward the light, his distance is decreasing, so
dx

Jr 1s negative. Because he is walking at the rate of 150 feet per minute,
dx — 150
dt — :

26 6
x+s s
265 = 6(x + 5)
26s = 6x + 65
20s = 6s

d d
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ds

20— =6—

dt

ds
20 = 6—(—150
dt( )

ds
dr

Implicit Differentiation

dx
dt

= —45

_\®

dx
— = —150
dt

His shadow is getting shorter at the rate of 45 feet per minute.

CHAPTER 7 REVIEW

For Problems 1-3, find %.

1. 2x —y=x%+3y

(a)

(b)

(©)

(d)

2. x3y

(a)
(b)

(©)
(d)

dy_2x—1—x2

dx 3
dy 1—2x
dx 3
dy 1—x
dx 2

d

Y does not exist.
dx
Z4y=28

d

@ =8-3x%?
dy_8—x3
dx 2y
%28—3)62)13

dy 8 — 3x2y?
dx  2x3y +1
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3.

5.

CHAPTER 7 Implicit Differentiation

(x+ =y
(a)
dy 4 +y)°
dx  3y2
(b)
dy 4 +y)
dx 3y —4(x+y)3
()
dy 1
dx  3y2—1
(d)
dy 4 +y)

dx ~ 332 — (x + )3

The profit for selling x units of a product is given by P = —0.005x2 +
27x —28450. How fast is the profit changing when 2000 units have been
sold and weekly production is 90 units?

(a) Increasing at the rate of $545 per week

(b) Increasing at the rate of $615 per week

(c) Increasing at the rate of $630 per week

(d) Increasing at the rate of $710 per week

A circular puddle is evaporating. When the puddle’s radius is 9 inches, it
is shrinking at the rate of half an inch per hour. At that instant, how fast
is the area decreasing?

(a) 18m square inches per hour

(b) 97 square inches per hour

(c) 6m square inches per hour

(d) 4m square inches per hour

Find an equation of the tangent line to xy — x> =2y — 8 at (3, 1).
(a y=5x—14
®) y=—x+4
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(c) y:—%x—l—%
(d y=-6x+19

7. A woman 5 % feet tall walks away from a lamp post that is 35 feet high.
If she is walking at the rate of 120 feet per minute, how fast is the length
of her shadow growing?

(a) About 15.6 feet per minute
(b) About 17.1 feet per minute
(c) About 18.2 feet per minute
(d) About 22.4 feet per minute

12,000
NG
are demanded when the price is p dollars. The price is currently $4 and is

expected to increase $0.06 per month. How will the price increase affect
demand?

8. The demand function for a product is given by g = , where ¢ units

(a) Demand will drop at the rate of 40 per month
(b) Demand will drop at the rate of 55 per month
(c) Demand will drop at the rate of 50 per month
(d) Demand will drop at the rate of 45 per month

9. Find an equation of the tangent line to xy — y* = —2 at (1, —1).

(@ y=3r—¢
®) y=3r—3
© y=-1

d y=—3x—13

10. A drum in the shape of a right circular cylinder is being drained of its
contents. The radius of the drum is 1.5 feet. At the moment that the drum
is being drained at the rate of 2 cubic feet per minute, how fast is the
level of the contents dropping?

(a) About 0.21 feet per minute
(b) About 0.28 feet per minute
(c) About 0.64 feet per minute
(d) About 0.42 feet per minute

SOLUTIONS

5.b
10. b

[ e}
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[
Graphing and the ‘
First Derivative Testh

A function is increasing when an increase in the x-value causes the y-value to
increase, too. A function is decreasing when an increase in the x-value causes
the y-value to decrease. Many functions are increasing for some values of x and
decreasing for others. For example, the function f(x) = x> —4x +4 is increasing
to the right of x = 2 but decreasing to the left of x = 2. If we begin with x = 3
and increase to x = 4, the y-values increase from y = f(3) =3 —4(3)+4 =1
toy = f@4) = 42 —44) 4+ 4 = 4. If we begin with x = 0 and increase
to x = 1, the y-values decrease from y = f(0) = 02 —40)+4 =4 to
y = f() = 12 — 4(1) + 4 = 1. Calculus can help us find where a function
is increasing or decreasing. For now, we will use the graph of a function. The
function is increasing where the graph goes up and decreasing where it goes down
(as we move from left to right).

@’_

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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EXAMPLES

Determine where the functions are increasing and where they are decreasing.

The graph goes
up here.

The graph goes
down here.

Fig. 8.1.

e The function in Figure 8.1 is increasing to the left of x = 0 and decreasing
to the right of x = 0.

Fig. 8.2.

e The function in Figure 8.2 is increasing to the left of x = —3, decreasing
between x = —3 and x = 2, and increasing again to the right of x = 2.
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Fig. 8.3.
e The function in Figure 8.3 is increasing for all x-values.

PRACTICE

Determine where the function is increasing and where it is decreasing.

1.

1
)

1
N
oY)

1
&)

1
N
[\_).7
W’*
_';W
Ul*

Fig. 8.4.
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Fig. 8.5.

Fig. 8.6.

SOLUTIONS

1. The function is increasing to the left of x = —1 and decreasing to the
right of x = —1.
2. The function is decreasing for all x.
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3. The function is decreasing to the left of x = —2, increasing between
x = —2 and x = 0, decreasing between x = 0 and x = 3, and increasing
to the right of x = 3.

When the slope of a line is positive, the linear function is increasing for
all x-values. When the slope is negative, the linear function is decreasing
(see Figure 8.7).

The slope is
positive.

The slope is
negative.

Fig. 8.7.

We can use the slope of the tangent line to describe where a function is
increasing and where it is decreasing. A function is increasing where the slope
of the tangent line is positive, and it is decreasing where the slope is negative
(see Figure 8.8). If f'(a) is positive, the function is increasing at x = a. If f/(a)
is negative, the function is decreasing at x = a.

EXAMPLES

e Determine if f(x) = x* — 2x2? — 6 is increasing or decreasing at x = —2,
x:—%, and x = 3.

First we will find the derivative: f’(x) = 4x> — 4x. Now we will evaluate
f'(x)atx = =2, —%, and 3.

fl(=2)=4(=2)3—-4(-2)=—-24
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D) () o(bans

F'(3)=4(3)>—4(3)=+96

f'(=2) = —24 is negative, so f(x) is decreasing at x = —2. f/(—%) = %
is positive, so f(x) is increasing at x = —%. f'(3) = 96 is positive, so
f(x) is increasing at x = 3.

o f(x)=—-10x+3
Because f’(x) = —10 is negative for all x-values, f(x) is decreasing
for all x.

If we know where a derivative is positive and where it is negative, we can
decide where the function is increasing and where it is decreasing. In the following
problems, we will be given some graphs and information on where the derivatives
are positive and where they are negative. We will match the graphs with the
information about the derivatives.

EXAMPLES

Match the derivative information with the graphs in Figures 8.9-8.11.

e f/(x) is positive to the right of x = —4.
The graph is increasing to the right of x = —4. This describes Figure 8.11.
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Fig. 8.9.

Fig. 8.10.

f'(x) is positive to the left of x = 1 and negative to the right of x = 1.
The graph is increasing to the left of x = 1 and decreasing to the right of
x = 1. This describes Figure 8.9.

f'(x) is positive to the left of x = —2, negative between x = —2 and
x = 4, and positive to the right of x = 4.
The graph is increasing to the left of x = —2, decreasing between x = —2

and x = 4, and is increasing to the right of x = 4. This describes the graph
in Figure 8.10.
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Fig. 8.11.

PRACTICE

)

-
wn

For Problems 1-3, determine if the function is increasing or decreasing at the
given x-values. For Problems 4-6, match the graphs in Figures 8.12-8.14 with

the derivative information.

Fig. 8.12.

l. f(x)=x*—3x2—4atx=1andx =3.

2. f(x)=+x+latx=0and x =2.

3. f(x)=x++1atx=0andx=2.

0
-
W
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Fig. 8.13.
L\ L
504 -3\ -2 -1 1 2 3 4 5
Fig. 8.14.
f’(x) is negative to the left of x = —1 and positive to the right of x = —1.
f(x) is positive for all x.
f'(x) is positive to the left of x = —1, negative between x = —1 and

x = 0, positive between x = 0 and x = 1, and negative to the right of

x =1.
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SOLUTIONS
1. f'(x) =4x> —6x
() =401 —6(1) = -2 Decreasing
f'3) =43)> —6(3) = +90 Increasing

2. fx)=@x+ D2

Fo=ternptrp =t L 1
S 2 T2+ D27 o1

1 1

"0) = ——— =+- Increasin
FO=shm71- "2 g
@ = ! =+ ! Increasin

S 2/2+1 23 &
3.
1(x2+1) — x(2x)
/ —
fx)= 117
_xz-i-l—Zx2 . —x?+1
@x2+D2  (x241)2
—02+1
f(0) = ﬁ = +1 Increasing
-224+1 -3
/ — _ .
@)= ZrE- Decreasing

4. Figure 8.14
5. Figure 8.13
6. Figure 8.12

Rather than say, “f’(x) is positive to the right of x = 4,” we use mathemat-
ical notation. The expression “f’(x) > 0 means the derivative is positive. The
expression “f’(x) < 0” means the derivative is negative. “To the right of x = a”
is the interval (a, 00). “To the left of x = a” is the interval (—o0, a). “Between
x = a and x = b” is the interval (a, b).

Later, we will construct a sign graph for the derivative to help us sketch the
graph of a function. For the moment, we will see that the sign graph shows
us where a function is increasing and where it is decreasing. A sign graph is a
number line with plus and/or minus signs on it. The plus signs show the intervals



(@’_ CHAPTER 8 First Derivative Test
where the derivative is positive. The minus signs show the intervals where the
derivative is negative. The sign graph for f(x) = 4x3 + 15x% — 18x 4 6 is shown
in Figure 8.15. This sign graph tells us that the function is increasing to the left of
x = —3 (the interval (—o0, —3)) because the derivative is positive. The function
is decreasing between x = —3 and x = % (the interval (—3, 1/2)) because the

derivative is negative. The function is increasing to the right of x = % (the interval
(1/2, 00)) because the derivative is positive.

1
W
= =

Fig. 8.15.

When a continuous function changes from increasing to decreasing, its graph
reaches what we call a relative maximum. This is a point that is the highest of
the points around it. When a continuous function changes from decreasing to
increasing, its graph reaches a relative miminum. The graph in Figure 8.16 is the
graph of f(x) = 4x> + 15x2 — 18x + 6, whose sign graph is given in Figure 8.15.

There is a relative maximum at x = —3 and a relative minimum at x = %

Fig. 8.16.

Another name for the relative minimum is local minimum. Similarly, a relative
maximum is also called local maximum. Together, they are called relative extrema,
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or local extrema. A graph can have more than one relative maximum or minimum
or it might have neither.

EXAMPLES

Determine where the relative extrema are for the graphs in Figures 8.9-8.11.

e The graph in Figure 8.9 has a relative maximum at x = 1.

e The graph in Figure 8.10 has a relative maximum at x = —2 and a relative
minimum at x = 4.

e The graph in Figure 8.11 has no relative extrema because it is always
increasing.

PRACTICE

Determine where the relative extrema are for the graphs in Figures 8.12-8.14.

1. Refer to Figure 8.12.
2. Refer to Figure 8.13.
3. Refer to Figure 8.14.

SOLUTIONS

1. The graph has a relative maximum at x = —1 and another at x = 1. It
has a relative minimum at x = 0.

2. The graph has no relative extrema.

3. The graph has a relative minimum at x = —1.

Below are some formal definitions for the ideas in this chapter. Suppose f(x)
is a function that is defined on an interval. This interval could be any one of (a, b),
la, D], (a, D], [a, b), (—00, a), (—00, a], (b, 00), or [b, 00).

Definition f(x) is increasing on an interval if for every a and b in the
interval, with a < b, f(a) < f(b).

This is a formal way of saying that as x gets larger, y gets larger, too.

Definition f(x) is decreasing on an interval if for every a and b in the
interval, with a < b, f(a) > f(b).

This means that as x gets larger, y gets smaller.

Definition Let ¢ be in the interval. Then f(c) is a relative minimum if
f(c) < f(x) for every x in the interval.
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This means that f(c) is the smallest y-value for all x-values in the interval.

Definition Let ¢ be in the interval. Then f(c) is a relative maximum if
f(c) = f(x) for every x in the interval.

This means that f(c) is the largest y-value for all x-values in the interval.

If f(x) is also differentiable (the derivative exists on the entire interval) on an
open interval (the open intervals are (—o0, a), (a, 00), and (a, b)), then we can
revise the definitions for increasing and decreasing.

Definition f(x) is increasing on an open interval if f’(x) > O for every
x in the interval. f(x) is decreasing on an open interval if f'(x) < 0 for
every x in the interval.

What happens when f/(a) = 0? It usually means that the function has a relative
maximum or a relative minimum at x = a. If the tangent line is horizontal, it is
likely that the point is a relative extremum. If f/(a) = 0, then we call x = a a
critical value (see Figures 8.17 and 8.18).

The slope is 0.

4 3 2 -1

Fig. 8.17.

We can easily find the relative extrema of a function by finding where its
derivative is zero. Unfortunately, this will not be enough because the derivative
can be zero at points that are not relative extrema. For example, the function
fx) = x3 — 3x2 + 3x has no relative extrema but (1) =0.

f'(x)=3x2—6x+3and f/(1)=3(1)>=6(1)+3=0
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'@=0

(I R Lo
-7-6-5-4-3-2-1 1 23 45 6/7

f'4 =0

Fig. 8.18.

Figure 8.19 shows the graph of this function. The function is increasing both to
the left and right of x = 1. Its sign graph is shown in Figure 8.20.

ff)=0

Fig. 8.19.

If the sign graph changes from plus to minus at a critical value, then the graph of
the function has a relative maximum there. If the sign graph changes from minus
to plus, then the graph of the function has a relative minimum there. Using the
sign graph for the derivative to determine where the relative extrema are located
is called the first derivative test.
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Step 1
Step 2

Step 3

Step 4

Step 5§

Step 6

Step 7
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Fig. 8.20.

Find the derivative.

Find the critical values by setting the derivative equal to zero and
solving for x.

Begin the sign graph for the derivative by making a number line
with the critical value(s) marked on it.

Pick any number to the left of the smallest critical value, a number
between consecutive critical values (if there are more than one), and
number to the right of the largest critical value.

Put these numbers in the derivative. If the derivative is positive, put
a plus sign over the interval of the test point. If it is negative, put a
minus sign over the interval.

Identify which value or values, if any, is or are relative extrema.
When the sign changes from plus to minus, we have a relative max-
imum. When the sign changes from minus to plus, we have a relative
minimum.

Compute the y-value(s) by putting the critical value(s) in the original
function. The y-values are the extrema.

Later we will see that there are some functions that have no critical values, so
there will be no relative extrema.

EXAMPLES

Use the first derivative test to find the local extrema.
o f(x)=x>—-3x—-1
Step1  f'(x) =3x>—3
Step2 0=3x>-3

0=3x>-1)=3x+Dx-1
x+1=0 x—1=0

x=—1 x=1

The critical values are —1 and 1.
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Step 3 We mark the critical values on the number line (see Figure 8.21).

Fig. 8.21.

Step4 We will use —2 for our number to the left of —1; 0, for our number
between —1 and 1; and 2, for our number to the right of 1.

Step 5 Put x = —2, 0, and 2 in f/(x) = 3x2 — 3 to see where the
derivative is positive or negative: f'(—2) = 3(=2)2 =3 =+49. Puta plus
sign to the left of —1 on the sign graph (Figure 8.22). f/(0) = 3(0)> —3 =
—3. Put a minus sign between —1 and 1 on the sign graph. f'(2) = 3(2)? —
3 = 49. Put a plus sign to the right of 1 on the sign graph.

+ - +
[ O Y SO R B
-1 1
Fig. 8.22.
Step 6 The sign changes from plus to minus at x = —1, so there is a
relative maximum at x = —1. The sign changes from minus to plus at

x = 1, so there is a relative minimum at x = 1.
Step 7 Evaluate f(x) =x> —3x —latx=—landx = 1.

f(=1 = (—1)3 —3(—1)—1=1 Relative maximum
f(1)=(1)>=3(1)—1=—3 Relative minimum
o f(x)=3x*48x>—4

Step1  f/(x) = 12x° + 24x2
Step 2 0 = 12x3 4 24x2

0=12x%(x +2)
12x2=0 x+2=0

x=0 x=-2
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Step 3 Mark the critical values on the number line (Figure 8.23).

Fig. 8.23.

Step 4 We will use —3 (left of —2), —1 (between —2 and 0), and 1
(right of 0).
Step 5 Evaluate f'(x) = 12x> 4+ 24x? at =3, —1, and 1.

1 (=3) = 12(—3)3 + 24(—3)2 = —108 Put a minus sign to the left of —2.

f'(—=1) = 12(=1)> + 24(—1)> = +12  Put a plus sign between —2 and 0.

/(1) = 12(1)% +24(1)* = +36 Put a plus sign to the right of 0.
- + +
| | | | | |
2 0
Fig. 8.24.

Step 6 There is only one sign change, so there is only one relative
extremum. The sign changes from minus to plus at —2, so there is a relative
minimum at x = —2.

Step 7 Evaluate the original function at x = —2: f(-2) = 3(=2)* +
8(—2)3 — 4 = —20. The relative minimum is —20.

PRACTICE

Use the first derivative test to find the local extrema.

1. f(x)=x*—2x>+3
2. f(x)=x4+3x2+3x—4

3. f@) =V +D
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SOLUTIONS

1.

fl(x) = 4x> — 4x
0=4x> —4x =4x(x> = 1) =4x(x + D(x — 1)
4x =0 x+1=0 x—1=0
x=0 x=-1 x=1
The critical values are —1, 0, and 1. We use —2, —0.5, 0.5, and 2 as
test points for f/(x).
(=2 = 4(=2) —4(-2) = —24 Put “—” to the left of —1.

f(—0.5) = 4(—0.5)> — 4(—0.5) = +1.5 Put “+” between —1 and 0.

£(0.5) = 4(0.5)3 —4(0.5) =-1.5 Put “—” between 0 and 1.
') =42)% —4@2) = 424 Put “+” to the right of 1.
— + — +
x x x x x x x
-1 0 1
Fig. 8.25.
There is a relative minimum at x = —1, a relative maximum at x = 0, and

a relative minimum at x = 1. We will find the relative extrema for this
function by putting —1, 0, and 1 in the original function.

f(=1) =(=1)*=2(=1)>+3 =2 The relative minimum is 2.
fO)=0*=20)2%+3=3 The relative maximum is 3.

f(H=D*=2(1)*+3=2 The relative minimum is 2.
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fl(x) =3x>+6x+3
0=3x246x+3=3x>+2x+1) =3+ Dx+1)
x+1=0
x=-1

The only critical value is —1. We will use —2 and O as test points in the
derivative (Figure 8.26).

f(=2) =3(=2)%4+6(-2)+3=+43

F/(0) = 3(0)* + 6(0) + 3 = 43

Fig. 8.26.

The signs do not change, so there are no relative extrema.
3. f) =@+ DY

4 4 A
R N

0= —/x+1

4
3
0=x+1
0=x+1

—1l=x

The critical value is —1. We will test —2 and O in the derivative
(Figure 8.27).

/ Ry Sy S
) =3V =2+ 1=3v-T=—3
4,
£ =30+ «f——
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Fig. 8.27.

There is a relative minimum at x = —1.

The relative minimum is f(—1) = V(=14 D4 = J0o=0.

While most critical values will come from solving f’(x) = 0, a critical value
can occur where f’(x) does not exist (but where f(x) does exist). Often this
happens when the derivative has a variable in the denominator. To find these
critical values, we will set the denominator equal to zero and solve for x.

EXAMPLE
o f)=V@&+1)?

fx) = (x + D3 f/(x)=g(x+1)_1/3=g 1 __ 2
3 3(x+ DB T 3 +1

Set the denominator of f’(x) equal to zero to find where f’(x) does not

exist.
0=3vx+1
0=+vx+1
O0=x+1
—1=x
The derivative does not exist at x = —1 but the original function is defined
for x = —1. We will test —2 and 0 in the derivative to see where f’(x) is
positive and negative.
F(=2) = 2 2 2 2
T 3Y=2+1 3Y—1 3= 3
, 2 2 2
f0) =

30+1 371 3
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Because the derivative changes from negative to positive at x = —1, we

have a relative minimum at —1. The relative minimum of this function is

f(=)=(=14+1)¥3 =302 =0.

Graphing Functions

Critical values are important points on the graph of a function. Because of this,
we want to plot a point for each critical value when sketching the graph of a
function. For now, we will sketch the graphs of polynomial functions. We can
accurately sketch the graph of a polynomial function by plotting a point for each
critical value, a point to the left of the smallest critical value, a point between
consecutive critical values (if there are more than one), and a point to the right of
the largest critical value.

EXAMPLES

Sketch the graph of the polynomial function.

e f(x)=x>—-3x-5
We will begin by finding the critical values.

fl(x)=3x>=3
0=3x>-3=3>-1)=3x+Dx—-1
x+1=0 x—1=0
x =—1 x =1

We will plot a point for x = —2 (for our point to the left of x = —1), x =0
(for our point between x = —1 and x = 1), and x = 2 (for our point to
the right of x = 1) (Table 8.1). The graph can then be sketched as shown
in Figure 8.28.

PRACTICE

Sketch the graph of the polynomial functions.

L f(x) = jx* — Ix3 =352
2. f(x)=3x>—5x3
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Table 8.1
x y= x3-3x-5 Plot this point
2 y=(=2)3=-3(-2)—5=-7 (=2,-7)
-1 y=(1)3=-31)-5=-3 (=1,-3)
0 y= (0)3 -30)—-5=-5 0, -5)
1 y= (1)3 -3 —-5=-7 1, =7
2 y= (2)3 -32)—5=-3 2,-3)
10~
8 [
6 [
AL 1
2 [
[ I R B [
S5 4 -3 -2 -1 3 4 5
-2
-6
8k
-10-
Fig. 8.28

SOLUTIONS

1.

fl(x) = %(4)x3 - %(3)x2 —6x =x> —x? —6x

O0=x’—x>—6bx=x(x>—x—6)=x(x +2)(x —3)
x=0 x+2=0 x—3=0
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We will plot points for x = -3, -2, -1, 0, 1, 3, and 4
(Figure 8.29).
16 -
12+
8 -
4W
[ | | | | | | | | |
5 4 3 2 -1 1 2 3 5
4+
-8+
12+
‘16L&
Fig. 8.29.
2.
f(x) = 15x* — 15x2
0= 15x* — 15x2
=15x2(x> = 1) = 15x>(x + D(x = 1)
15x2=0 x+1=0 x—1=0
x=0 x=-1 x=1
We will plot points for x = —1.5, —1, —0.5, 0, 0.5, 1, and 1.5

(Figure 8.30).

Absolute Extrema

Most functions we study in calculus do not have a highest point or a lowest
point on their graphs, but some do. In this section we will look at the absolute
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1
\S)
I

[

-6
Fig. 8.30.

extrema of a function. A number is an absolute maximum for a function if it is
the highest y-value. A number is the absolute minimum if it is the lowest y-value.
The function whose graph is shown in Figure 8.31 has an absolute maximum but
no absolute minimum. The function whose graph is shown in Figure 8.32 has
both an absolute maximum and an absolute minimum.

5r The absolute maximum
value is 4.
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1.00

I

75

I

The absolute maximum

.50 & is 0.50.

I

25

S 4 -3 -2 -1 1 2 3 4 5
-2% -

The absolute minimum — 50 —
is -0.50.

-75

I

-1.00 =
Fig. 8.32.

When a function is continuous on a closed interval, it will have an absolute
minimum value and an absolute maximum value. In other words, its graph will
have a highest point and a lowest point. The graph for a continuous function on
a closed interval has a solid dot at each end indicating the left-most and right-
most points. The absolute extrema occur at one or both endpoints or somewhere
in between. The extrema that occur between the endpoints will be critical val-
ues for the derivative. The absolute maximum and absolute minimum occur at
the endpoints for the graph in Figure 8.33. The absolute minimum occurs at the
endpoints for the graph in Figure 8.34 and the absolute maximum occurs at a
relative maximum (where f’(x) = 0). The absolute maximum and absolute min-
imum occur at the relative maximum and relative minimum for the graph in
Figure 8.35.

PRACTICE

Identify the absolute extrema from the graph (see Figures 8.36, 8.37, and 8.38).
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The absolute
maximum is 5.

-

-1
2| The absolute
minimum is —1.
3
4+
5L
Fig. 8.33.
4 The absolute
maximum is 3.
—_ 3. —_— -
2
1k
D+
3+
4+
S5 \
6+ °
-7 The absolute
_g L minimum is —6.

Fig. 8.34.
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The absolute
maximum is 1.

The absolute
minimum is —1.
oL
Fig. 8.35.
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A

SOLUTIONS

1. The absolute maximum is 2, and the absolute minimum is —7.
2. The absolute maximum is 2, and the absolute minimum is —2.5.
3. The absolute maximum is 2, and the absolute minimum is —2.
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We can find the absolute extrema of a function on a closed interval by finding
the y-values for the endpoints of the interval as well as the y-values at any of
the critical values between the endpoints. In the following problems, we will be
given a function and a closed interval, [a, b]. We will be asked to find the absolute
extrema. We will begin by putting x =a and x = b in f(x) to find the y-values
at the endpoints. After this, we will find f’(x) and set it equal to zero. We only
want the solution(s) that are between a and b (if there are any). We will put this
number or these numbers in f(x). Finally, we will observe which y-value is the
largest and which is the smallest.

EXAMPLES

Find the absolute extrema for the function on the given interval.

e f(x)=x>—4x>—-3x+7o0n][0,6]
We will begin by finding the y-values for x = 0 and x = 6.

F(0)=0>—40)>%-30)+7=7

£(6) =6 —4(6)> —3(6)+7 =61

Now we want to find any critical values for f’(x) that are between x = 0
and x = 6.

fl(x)=3x>—8x—3
0=3x>—8x—3=Bx+ 1)(x —3)
3x+1=0 x—3=0

Because —% is not between 0 and 6, we do not need it. We do need 3.
f3)=3-4372-33)+7=-11

Of the y-values —11, 7, and 61, —11 is the smallest, and 61 is the largest.
The absolute minimum value of the function on [0, 6] is —11 (which occurs
at x = 3), and the absolute maximum value is 61 (which occurs at x = 6).
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e f(x) =x>—6x+3on[—1,2]
f(=)=(=1)>=6(-1)+3=10
f(2)=@2)?-62)+3=-5

ffx)y=2x—-6
0=2x—-6
3=ux

Because 3 is outside the interval [—1, 2], we cannot use it. The absolute
minimum value of the function on the interval [—1, 2] is —5 (which occurs
at x = 2), and the absolute maximum value is 10 (which occurs at x = —1).

e f(x)=+~x2on[-8,1]
8 =V82=Ved=4  f)=VI2=V1=1
2
39x
f'(x) is never 0, but f’(x) does not exist at x = 0, making O a critical
value: f(0) = 702 = 0. The absolute minimum value of the function on

[—8, 1] 1s O (which occurs at x = 0) and the absolute maximum value is 4
(which occurs at x = —8).

fx)=x*3, so, f'(x) = %x—m _

PRACTICE

Find the absolute extrema for the function on the given interval.

1. f(x) =4x3—21x?>—24x +100n [—1,2]

2. f(x)=x*>+8x+ 17 on[-5,3]

3. f(x)=9x —6o0n[3,5]

4. fO0) = aiog at[-2,2]
SOLUTIONS

1.

f(=D) =4(=1)° =21(=1)> = 24(-1) + 10 =9

f(2) =4(2)° —21(2)* = 24(2) + 10 = —90
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fl(x) = 12x% — 42x — 24
0=12x>—42x — 24
=6(2x> —Tx —4) = 6(2x + 1)(x — 4)
2x+1=0 x—4=0

X = ——= x=4

2
We only need —% because 4 is not between —1 and 2.

f=) =49 —21(-H?-24(-5)) +10= &

The absolute minimum value of the function on the interval is —90 (which
occurs at x = 2), and the absolute maximum value is %5 (which occurs

at x = —%).
2.
f(=5) = (=52 +8(=5)+17=2 f(3) =32+8(3)+17 =150
flx)=2x+38
0=2x+38
—4=x
f(=4) = (4> +8(-4 +17=1
The absolute minimum value of the function on the interval is 1 (which
occurs at x = —4), and the absolute maximum value is 50 (which occurs
at x = 3).
3.
fB)=93)—-6=21 f(B)=905)—6=39
flx)=9
Because f/(x) = 9 for all x, there are no critical values, so the extrema
occur at the endpoints. The absolute minimum value of the function on
the interval is 21 (which occurs at x = 3), and the absolute maximum
value is 39 (which occurs at x = 5).
4,
-2 2
f(=2)= -5

(—2)2+(—2)+1 3
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_\@)

fQ = =2
224241 7
, 124+ x4+1) —xQx+1)
i) = - .
x*+x+1)
_ 24 x4+1—-2x2—x
2 x )2
_ —x24+1 . 1 —x2
24+ x4+ D2 (24 x+1)2
1-x*>=0 xX+x+D*=0
1 = x> X+x+1=0
+1=x No real solution
The critical values are —1 and 1.
] P
DD
[0 JE—
124+ 1+1 3
The absolute minimum value of the function on the interval is —1 (which
occurs at x = —1), and the absolute maximum value is % (which occurs

at x = 1).

Why is it important that the interval be closed? The y-values can get larger
and larger without ever reaching the largest y-value. For example, the function
f(x) = x on the open interval (0, 1) has no largest y-value. The y-values include
the numbers 0.9, 0.99, 0.999, 0.9999, ..., and there is no largest number in the
list. (The same is true for the smallest y-value.)

CHAPTER 8 REVIEW

1. What are the critical values for the function f(x) = 2x34+5x2 —4x 43?2
(a) —2and 1

(b) 2 and 3
(©) % and %
(d) % and —%
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Is the function f(x) = 2x3 + 5x2 — 4x + 3 increasing, decreasing, or
neither at x = 07
(a) Increasing

(b) Decreasing
(c) Neither
(d) Cannot be determined without a graph

3*

2%

3L
Fig. 8.39.

Refer to Figure 8.39. Where is this function increasing?
(a) (=25,2)

(b) (-2,2)
(c¢) (—o0, —2.5) and (2.5, 00)
(d) (—2.5,2.5)
_ + _ _
Lo g
4 0 3 S )

Fig. 8.40.

Refer to Figure 8.40, the sign graph for f’(x). Which one of the

following is true?

(a) There is a relative maximum at x = —4 and a relative minimum at
x =0.
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(b) There is a relative maximum at x = —4, a relative minimum at
x = 0, and a relative maximum at x = 3.

(c) There is a relative minimum at x = —4 and a relative maximum at
x =0.
(d) There is a relative minimum at x = —4, a relative maximum at

x = 0, and a relative minimum at x = 3.

5. Where is the function f(x) = v/(x2 — 1)2 decreasing?
(@) (—00,0)

(b) (0, 00)
(¢) (=00, —1) and (0, 1)
(d) (—1,0) and (1, co0)
6. Which of the following is not true about the function f(x) = 2x3 —

3x2 — 12x + 5 on the interval [0, 3].
(a) The absolute maximum is 12

(b) The absolute minimum is —15

(c¢) The absolute maximum is 5

(d) The absolute minimum occurs at x = 2
5 —

4
3
2
1

L1 1

S5 -4 -3 -2 1
1%
2¥‘

4+

-S54
Fig. 8.41.

N —
W
-
W

7. Refer to Figure 8.41. Where is this function decreasing?
(a) Everywhere

(b) Nowhere
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(©) (—1,00)
(d) (=00, 1)

Is there a relative minimum, relative maximum, or neither at x = 3 for
the function f(x) = 4x> — 17x% — 6x + 10?

(a) Relative minimum

(b) Relative maximum

(c) Neither

(d) Cannot be determined without the graph

In order to sketch the graph of f(x) = 4x> — 3x + 5, we should plot
points for which x-values?

(a -2, -1, 0, 1, 2

(b) -1, 0, 1

© =3 3

@ -1, =4, 0, 3,1

What are the relative extrema for the function f(x) = v/(x2 — 1)2?
(a) There is a relative minimum at x = 0.

(b) There is a relative maximum at x = 0.

(c) There is a relative maximum at x = —1, a relative minimum at
x = 0, and a relative maximum at x = 1.

(d) There is a relative minimum at x = —1, a relative maximum at
x = 0, and a relative minimum at x = 1.

SOLUTIONS

1.a
6.a

2.b 3.d 4,
7. a 8.a 9
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The Second
Derivative and
Concavity

In the same way the derivative measures how fast a function is changing, the
second derivative measures how fast the derivative is changing. Suppose we have
a product that sells quickly after its release but the sales taper off. While more
are sold as time goes by, the sales per week are dropping off. The sales function
would be increasing but the increase is diminishing. The second derivative of the
sales function measures how fast sales are diminishing.

Suppose S units are sold x weeks after the product is released, where S(x) =

%, for x = 0 to x = 52 weeks. In this interval, §’(x) is positive because the

——&

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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longer the product is available, the higher the sales. But the sales rate is slowing
down, which is reflected in the fact that S”(x) is negative for this interval.

) 400(x + 10) — 400x (1) 4000 .
SWETTGE0r wrigp  erIY

This is positive for x = 0 to x = 52.

oo L 3 _ __ 8000
§"(x) = ~2(4000)(x +10)7(1) = ~8000(x + 10)™ = — =0

This is negative for x = 0 to x = 52 (see Figure 9.1).

350 -

300 - 1

Sales increase
2501 more slowly.

200 -
Number Sold
150 -

100 - <— Sales increase
quickly.

50

I I I I J
10 20 30 40 50

Weeks After
Product’s Release
Fig. 9.1.

The relationship between increasing and decreasing intervals and the second
derivative is summarized in Figures 9.2-9.5.

The second derivative of a function gives us some information on the shape of
the graph of the function. Where the second derivative is positive, the graph
cups upward, —. Where the second derivative is negative, the graph cups
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f(x) is increasing
f"(x) is positive

e
Increases slowly

+

Fig. 9.2.

f(x) is increasing
f”(x) is negative

Increases rapidly
&

Fig. 9.3.

Increases rapidly

Increases slowly

downward, —~. We say the graph is concave up where it cups upward and concave

down, where it cups downward (see Figure 9.6).

The sign graph for f”(x) tells us where a graph is concave up or down in
the same way the sign graph for f’(x) told us where a graph was increasing or
decreasing. The graph of f(x) = %x“ —x3 —6x24x 415 is shown in Figure 9.7,

and the sign graph for f”(x) is shown in Figure 9.8.
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f(x) is decreasing
" (x) is positive

Decreases rapidly
<«

Decreases slowly

Fig. 9.4.

f(x) is decreasing
f"(x) is negative

Decreasgs slowly

Decreases rapidly
-

Fig. 9.5.

The sign graph for f”(x) is constructed in the same way as the sign graph for
f(x) is constructed. We begin by finding the first derivative, f’(x), followed by
the second derivative, which is the derivative of the derivative. As before, we
will set this equal to zero and solve for x. These solutions, if any, are also called
critical values. We will choose an x-value to the left of the smallest critical value,
one between each pair of consecutive critical values (if there are more than one),
and an x-value to the right of the largest critical value. We will test these numbers
in the second derivative to see where the second derivative is positive (where
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J(x) s

negative.

f(x) is

positive.

f"(x) is

negative.

Fig. 9.6.

25

[\
(=)
I

LoLoL
S e O
L

Fig. 9.7.
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the graph for f(x) is concave up) and where it is negative (where the graph is
concave down).

EXAMPLES

Determine where the graph of each function is concave up and where it is
concave down.

fx)=x*—8x3+12x -5
We will compute f/(x), and then its derivative, f”(x).

Fl(x) =4x> —24x2 + 12
£ (x) = 12x> — 48x

Now we will find the critical values by setting the second derivative equal
to zero and solving for x.

0 = 12x? — 48x
0=12x(x — 4)

12x =0 x—4=0
x=0 x=4

The critical values are 0 and 4. We will test —1, 1 and 5 in f”(x) to see
where it is positive and where it is negative (Figure 9.9).

f"(=1) = 12(—1)*> — 48(—1) = +60 Put a plus sign to the left of 0.
F(1) = 12(1)% — 48(1) = —36 Put a minus sign between 0 and 4.

F"(5) = 12(5)> — 48(5) = +60 Put a plus sign to the right of 4.

Fig. 9.9.

The graph is concave up on (—oo, 0) (to the left of 0), concave down on
(0, 4) (between 0 and 4), and concave up on (4, 0o) (to the right of 4).
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o f(x)=6—x?

f(x) =—2x
£ = —2

Because f”(x) is always —2, there are no critical values. This means that
the graph never changes concavity. Because f”(x) is negative, the graph is
concave down everywhere.

If a function is continuous at x = a and concavity changes at x = a,
then the point (a, f(a)) (the point on the graph where x = a) is called an
inflection point. In the first example above, there are inflection points at
x = 0 and x = 4. The graph for the function in the second example has no
inflection point.

PRACTICE

Determine where the graph of each function is concave up and where it is concave
down. Find the inflection points, if any exist.

. f)=—x*+6x2+7x+5
2. f(x):x4—9x3—|—12x2—|—x—2
3. f(x)=5x*—4

SOLUTIONS
1.

flx) = —4x +12x 4+ 7

F(x) = —12x2 4+ 12
0=—12x>+12=12(=x%>+ 1) = 12(1 — x?)
0=12(1—-x)1+x)

1—-x=0 1+4x=0
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The critical values are —1 and 1. We will test —2, 0 and 2 in f”(x)
(Figure 9.10).
f(=2) = —12(=2)> + 12 = =36
£70) = —12(0)> + 12 = +12

f"2) = —-12(2)* + 12 = —36

Fig. 9.10.

The graph is concave down on (—o0, —1), up on (—1, 1) and down on
(1, c0). Because concavity changes at x = —1 and x = 1, there are
inflection points at x = —1 and x = 1. We will find the y-values for these
points by putting —1 and 1 in the original function.

f(=D)=—=(=D*+6(-1D)*+7(-1)+5=3
(=1, 3) is an inflection point.
f(H=—-aH+60>+71) +5=17

(1, 17) is an inflection point.

F(x) = 4x> — 27x% + 24x + 1
" (x) = 12x> — 54x + 24
0= 12x> — 54x + 24 = 6(2x> — 9x + 4)
0=6Q2x —1)(x —4)
2x —1=0 x—4=0
2x =1 x=4

1
X ==
2
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The critical values are % and 4. We will test x = 0, 2, and 5 in f”(x)
(Figure 9.11).

£7(0) = 12(0%) — 54(0) + 24 = +24

f7(2) = 12(2%) — 54(2) + 24 = 36

1" (5) = 12(5%) — 54(5) + 24 = +54

ol —
N

Fig. 9.11.

The graph is concave up on (—o0, %), down on (%, 4), and up on (4, 00).

Because concavity changes at x = % and 4 there inflection points at x = JT
and 4.

f1—14913+1212+12_7
2} \2 2 2) T2 T 16
S W
2, 16 1S an nfiection point.
f@) =4*—94)> +124)2+4—-2=—-126

(4, —126) is an inflection point.

f(x) = 10x f(x) =10

f"(x) is positive for all x-values, so the graph for f(x) is concave up
everywhere. There are no inflection points.

Concavity changes at inflection points, but it can also change at a break in the
graph. For example, concavity changes at the breaks in the graph, x = —2 and
x = 2, for the graph in Figure 9.12. Because of this, we need to find where the
second derivative does not exist. In the above example, the second derivative (as
well as the original function) does not exist at x = —2 and x = 2. For most
functions in a calculus course, we can find these critical values by setting the
denominator of f”(x) equal to zero and solving for x.
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1
W

1
N

1
w

1
[\
[\).7
L)J’*
_h%
LJ]*

Fig. 9.12.
EXAMPLE
(x) = 2x3
A x2 -9

oo 6T (xT —9) —2x3(2x)  2xt — 54x7
J= (=92 T GZo9p

o) — (8x3 — 108x)[(x? — 9)*] — (2x* — 54x%)(2) (x% — 9)(2x)
S= (a2 =97

36x(x? +27)
S (2-9)?

We will find the critical values for f”(x) by setting the numerator and denominator
equal to zero.

36x(x? +27) =0
36x =0 x> +27=0
x=0 No solution
One critical value is x = 0.
x?-9%=0

x2—-9=0
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(x+3)(x—3)=0
x+3=0 x—3=0
x=-3 x=3

The other critical values are —3 and 3. We will test —4, —1, 1 and 4 in f”(x)
(Figure 9.13).

36(—4)[(—4)? + 27] _ —144(43) _6192

4
—4) = —
=4 [(=4)2 —9)3 343 343
frepy 2 BEDICI? +27)  ~3628) 63
T (=D*=9PF 512 32
36(1)(12 4 27) 63
1= =g =y
(1= -9) 32
36(4) (4% +27) 6192
=" T =
4 —-9) 343
— + — +
Lo
-3 0 3
Fig. 9.13.
The graph is concave down on (—oo, —3) and (0, 3). The graph is concave up on
(=3, 0) and (3, o0). The original function is not continuous at x = —3 and x = 3

but is continuous at x = (. The inflection point is (0, 0) (see Figure 9.14).

The Second Derivative Test

We can use concavity to decide if a critical value for the derivative of a function
gives us a relative maximum, relative minimum, or neither. Suppose we have a
function f(x) where x = 1 is a critical value for f/(x) (that is, when we solve
f'(x) =0, x =1 is a solution). Rather than making a sign graph for f’(x) and
testing x-values to see where the function is increasing and where it is decreasing,
we can put x = 1 in f”(x) to see if the graph is concave up or concave down or
neither. If the graph is concave down at x = 1, then we have a relative maximum
at x = 1. If the graph is concave up at x = 1, then we have a relative minimum
at x = 1. This method is called the second derivative test. For a function that is
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130

20

I

10

I

AN .
N\ —
o0 —

[ | | | |
10 8 6 -4 -2 10

I

-10

/\\ -20

Fig. 9.14.

I

twice differentiable (both the derivative and the second derivative exist), we have
the following fact.

If f'(a) =0and f”(a) < 0, then f(x) has a relative maximum

atx =a.
If f/(a) =0and f”(a) > 0, then f(x) has a relative minimum
atx =a.

Here is how we will use the second derivative test to find relative extrema.

Step 1
Step 2

Step 3
Step 4

Compute the first derivative, f’(x).

Set the derivative equal to 0 and solve for x. The solutions to this
equation are the critical values.

Compute the second derivative, f”(x).

Put the critical values in the second derivative. If x = a is a critical
value and f”(a) is positive, then f(x) has a relative minimum at
x = a. If f"(a) is negative, then f(x) has a relative maximum at
X =a.

EXAMPLES

o f(x)=8x3—3x*
Step1 f/(x) = 24x? — 1243
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Step 2

Step 3
Step 4

The Second Derivative

0=24x% — 12x3 = 12x2(2 — x)
12x2 =0 2—-x=0

x=0 2=x

f"(x) = 48x — 36x?
Evaluate f”(x) at x =0 and x = 2.

_\@

£7(0) = 48(0) — 36(0%) =0
F7(2) = 48(2) — 36(2%) = —48

f”(0) is neither positive nor negative, so the function does not have a
relative maximum nor a relative minimum at x = 0. f”(2) is negative, so
the function has a relative maximum at x = 2.

1

L4 f(x) = X2+1
2 _
Step 1 f/()C) = O(X (j2lj_])12(ZX) = - (x22_|)_61)2
Step2 2x =0 x2+1%=0
x=0 x24+1=0

No solution

The only critical value is x = 0.

Step3  f'(x) = —2x(x>+1)"2 Use the product rule.
fIx) = =20 + D72 4 (=20 (=2)(x* + D7 2x)
-2 8x?
= -
(xz + 1)2 (xz + 1)3
Step4 We will put x = 0 in f”(x) to see if f”(0) is positive or
negative.
-2 8(0%) -2 0
1
O - = — - = —
FO (02+1)2+(02+1)3 1 +1

Because f”(0) is negative, the function has a relative maxi-
mum at x = 0.
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PRACTICE

CHAPTER 9 The Second Derivative

Use the second derivative test to find all relative extrema.

1. f(x)=3x*+14x3 — 12x2 + 10
2. f)=x

3. f) =3

SOLUTIONS

1.

f(x) = 12x3 4 42x% — 24x
0= 12x3 +42x% — 24x = 6x(2x% + Tx — 4)
= 6x(2x — 1)(x +4)

6x =0 2x—1=0 x+4=0
x:O 2x=1 x:—4
1
X ==
2

f7(x) = 36x% 4 84x — 24
£7(0) = 36(0%) + 84(0) — 24 = —24
f(x) has a relative maximum at x = 0.
£(0) = 3(0)* + 14(0)* — 12(0)> + 10

= 10 is a relative maximum.
i ! =36 ! 2+84 ! 24 = 427
2) 2 2 -
1
f(x) has a relative minimum at x = >

() (2) o) () oo

143 . ) ..
= T3 18 a relative minimum.
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[/ (—4) = 36(—4)* + 84(—4) — 24 = 4216
f(x) has a relative minimum at x = —4.
f(=4) =3(=H* +14(=4)° — 12(=4)? + 10

= —310 is a relative minimum.

2. fx)=x'73
1 1
’ — 23 _
fx)=3x T
L i tion h luti
= 1S equation has no solution.
33/x2

£ (x) does not exist at x = 0,

so the only critical value is x = 0.

1 -2 -2 —2
" — . _ 2,753 _ —
Jrx) 3 3% FTE R o

f”(0) does not exist, so f(x) does not have a relative maximum nor
minimum. There is an inflection point at x = 0, though.

3.
) 2x(x% + 1) — x?(2x) 2x
[ = 2 2 =2 2
x“+1) (x+1)
2x =0 x2+1)%=0
x=0 x2+1=0

No solution
f'(x) = 2x(x*> 4+ 1)"2 Use the product rule
') =22+ D72+ 20 (=2) (x> + D73 2x)

8(0)2

= — = 2
02+ 12 (02+1)3 *

f"(0)

f(x) has a relative minimum at x = 0.

2 ) i .
fO) = 020T = 0 is a relative minimum.
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CHAPTER 9 The Second Derivative

CHAPTER 9 REVIEW

1.

Where is the graph of f(x) = x* — 54x? concave up?
() (—00, —v/27) and (0, v/27)

(b) (—+/27,0) and (27, 0)

(¢) (=3,3)

(d) (—o0, —3) and (3, c0)

Which of the following are inflection points for f(x) = x* — 54x2?
@) (0,0), (—+/27, —=729), and (v/27 — 729)

(b) (3, —405) and (-3, —405)

(c) (0,0) only

(d) (0,0), (3,—405), and (—3, —405)

Is the graph of the function f(x) = x3 —4x%4x —3 concave up, concave
down, or neither at x = —27?
(a) Concave up

(b) Concave down
(c) Neither
(d) Cannot be determined without the graph

Refer to Figure 9.15 which, is the sign graph for f”(x). For what inter-
val(s) is the graph of f(x) concave down?

— + +
-2 1
Fig. 9.15.
(@ (=2,1)
(b) (=2, 00)
(¢) (=2,1) and (1, 00)
(d) (—o00,-2)

For some function, f(x), we have f/(10) = 0 and f”(10) = 3. What
does this mean?
(a) There is a relative maximum at x = 10

(b) There is a relative minimum at x = 10
(c¢) The relative maximum is 10
(d) The relative minimum is 10
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6. For the function f(x) = 3x — 5x* — 200x3, find the critical values for

1" (x).
(a) x =0 only

(b) x = —4, O only
(¢) x =5,0 only
(d) x=-4, 0, 5only

SOLUTIONS

1.d 2.b 3.a 4.d 5.b 6.d



CHAPTER

Business
Applications of
the Derivative

We can use calculus for business applications to find the price that maximizes
profit, the dimensions that minimize the cost to construct a box, and the production
level that minimizes costs. Once we have a function to be optimized (maximized
or minimized), we will use the same techniques we used in Chapters 8 and 9 to
find the solution to our problem. We can use the first derivative test or the second
derivative test on a critical value to verify that the critical value we find is the
extremum we are looking for. We will skip the derivative test for most of the
problems in this chapter because the problems are written so that the minimum
or maximum occurs at the critical value.

@’_

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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EXAMPLES

e When the price for a product is p, the revenue (in $ thousands) can be
approximated by R = —0.05p> 4+ 0.98p + 18. What price maximizes the
revenue?

We begin by finding the derivative: R" = —0.1p + 0.98. Now we will
set R” equal to zero and solve for p.

—0.1p+0.98 =0
—0.1p = —0.98
—0.98
= 7% _ 9380
P="01

Is revenue maximized for p = 9.80?7 We will use the second derivative test
to verify that it is. R” = —0.1. The second derivative is negative for all p,
in particular for p = 9.80, so p = 9.80 gives us a maximum. Revenue is
maximized when the price is $9.80.

e The revenue for selling x thousand units of a product can be approximated
by R = x3 — 21x% 4 120x + 500 (for x between 1 and 10). How many
units must be sold in order to maximize revenue?

R =3x%>—42x 4+ 120
0 = 3x2 — 42x 4+ 120 = 3(x? — 14x + 40)
=3(x—4)(x —10)
x—4=0 x—10=0
x=4 x =10

We will use the second derivative to determine which of 4 or 10 maximizes
the revenue. R” = 6x — 42. R"(4) = 6(4) — 42 = —18 and R"(10) =
6(10) —42 = +18. Because R” at x = 4 is negative, revenue is maximized
at x = 4. The company should sell 4000 units to maximize revenue.

e The interest rate on an investment varied between 1990 and 2002, given by
y = —0.0866x2 + 0.866x + 5.8, where x = 0 is the year 1990 and y is
the annual return, as a percent, for the year x. During what year did the
investment have the highest rate of return?
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The derivative is y' = 0.1732x — 0.866.
—0.1732x 4+ 0.866 = 0
—0.1732x = —0.866
—0.866

YT o T
The investment had its maximum return during 1995 (the year 5).

The maximum profit often can be found by setting the marginal revenue equal

to the marginal cost. This is true because the marginal profit is the difference
between the marginal revenue and the marginal cost.

P(x) =R(x) — C(x)

d P _d R C
T (P() = T (R(x) = C(x))

= i(R(JC)) - i(C()C))
dx dx
P'(x) = R'(x) — C'(x)
0=R'(x)—C'(x)
C'(x) = R'(x)

Set the marginal profit equal to O.

Add the marginal cost to both sides.

If costs are higher than revenue, this method could find the maximum [oss.

EXAMPLE

e The revenue for selling x thousand units of a product is approximated by

R(x) = —0.05x% 4+ 2x + 60, and the cost for producing x units is approxi-
mated by C(x) = 1.5x 4+ 20. What level of sales maximizes profit?
We will set the marginal revenue equal to the marginal cost.

R'(x) = —0.1x +2 C'(x)=15
—0.1x+2=15
—0.1x = —0.5
—0.5
X = =
—0.1

Maximize profit by selling 5000 units.
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Calculus can also tell us the production level that minimizes the average cost
per unit. Suppose one week 500 units were produced at a cost of $8000. Then
each unit costs, on average, $8000/500 = $16. This is different from the marginal
cost for 500 units produced, which is the cost to produce one extra unit. The
average cost function is the cost function divided by the number produced:
Ax) = €9,

EXAMPLES

e The weekly cost to produce x units of a product is approximated by C(x) =
—0.05x2460x —8000 (valid for 200 to 900 units). What level of production
minimizes the average cost?

The average cost function is the total cost function divided by the
production level.

C(x) _ —0.05x* 4 60x — 8000
X

Ax) =

_ —0.05x*  60x 8000

X X X

= —0.05x + 60 — 8000x !

8000
A'(x) = —0.5 — (=1)8000x % = —0.5 + ——
X
8000
0=—0.5+—
X
800
0.05 = 20
X
0.05x2 = 8000
8000
x? = —— = 160,000
0.05
x = 400

Minimize the average cost by producing 400 units.

e The cost to produce x feet of pipe can be approximated by C(x) = 0.02x> —
3x + 450. How much pipe should be produced to minimize the average
cost?
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The average cost to produce x feet of pipe is

C(x) _ 0.02x> —3x +450  0.02x* 3x L 450

A(x) =
X X X X
450
=0.02x — 3+ —.
X
, _2 450
A'(x) = 0.02 + (—1)450x % = 0.02 — —
X
450
0.02— — =0
X
450
X
0.02x2 = 450
, 450
x2 = —— =22,500
0.02
x = 150

The manufacturer should produce 150 feet of pipe to minimize the
average cost.

These average cost functions had solutions. What happens if the derivative of
the average cost function has no critical value? In the simplest function, where
each unit costs the same to produce and there are no fixed costs, the minimum aver-
age cost occurs for any production level because the average cost is constant. For
example, say C(x) = 5x, where each unit costs $5 to produce. The average cost
function is C(x) = 57’6 = 5. If two units are produced, the average cost per unit is
$10/2 = $5; if 1000 units are produced, the average cost per unit is $5000/1000 =
$5. At the other extreme, suppose we have an average cost function that is always
decreasing. In this case, every time we increase the production, the average cost

decreases. For example, say C(x) = 5x + 1000. Then A(x) = 5 + loxﬂ and

A(x) = —%. This derivative is always negative, which means that the average
cost is always decreasing. We would need to determine the maximum number of
units that can be produced because the maximum production level minimizes the
average cost.
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PRACTICE

1. The profit for selling x hundred units of a product can be approximated
by P(x) = —x3 4+ 45x% 4 1200x + 80,000 (up to x = 50). What level of
sales maximizes the profit?

2. The revenue for a product depends on the product’s price. The revenue,
in thousands of dollars, for the product when the price is p, is approxi-
mated by R(p) = —0.04p? +0.06p +9.9775. What price maximizes the
revenue?

3. Over a 25-year period, the annual interest paid for on a loan can be
approximated by y = —0.00038x3 4+ 0.0237x? — 0.296x + 5.424, where
y is the interest as a percent, and x is the number of years since 1980.
During what year was the interest rate a minimum? (The critical value
is a decimal number. Check the whole numbers, both smaller and larger
than the critical value, in the original function to see which is the true
minimum.)

4. The revenue (in $ thousand) for selling x thousand units of a product can
be approximated by R(x) = %XH and the cost by C(x) = 0.5x. How
many units should be sold to maximize profit?

5. The cost to produce x units of a product can be approximated by C(x) =
0.004x2 — 9.6x + 7840. How many should be produced to minimize the
average cost?

SOLUTIONS
1. P'(x) = —3x%490x + 1200

0 = —3x% +90x + 1200 = —3(x% — 30x — 400)
0=-3(x+10)(x —40)

x+10=0 x—40=0
x=-10 x =40
Because x = —10 cannot be a solution, the only possibility is x = 40.

Because there are two critical values, we will use the second derivative
test to see which is the maximum. The second derivative is P”(x) =
—6x + 90, so P”(40) = —6(40) + 90 = —150. This is negative, so
x = 40 leads to a maximum. Sell 4000 units (40 hundreds is 4000) to
maximize the profit.
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2. R'(p) = —0.08p + 0.06.

—0.08p +0.06 =0

—0.08p = —0.06
_ 006 _
P=""008 "

Revenue is maximized when the price is $0.75.
3.y = —0.00114x% + 0.0474x — 0.296

0= —0.00114x2 + 0.0474x — 0.296

_ —0.0474 £ V(0.0474)2 — 4(—0.00114)(—0.296)

= 2(—0.00114)
| —0.0474 + /0.00224676 — 0.00134976
a —0.00228
~7.65. 33.9

x = 33.9 is outside the 0 to 25 range for the function, so we can-
not consider it. Because there are two solutions, we should verify
that x = 7.65 does give us a minimum. We will evaluate the second
derivative at x = 7.65: y” = —0.00228x + 0.0474 and y”(7.65) =
—0.00228(7.65) + 0.0474 = 0.029958. x = 7.65 gives us a minimum
for y. Does this mean that the minimum occurs during 1987 or 19887 We
will evaluate the original function at both x = 7 and x = 8.

y(7) = —0.00038(73)+0.0237(7%) —0.296(7) +5.424 = 4.38296

y(8) = —0.00038(8%)+0.0237(8%) —0.296(8) +5.424 = 4.37824

The minimum occurs during the year 1988.
4. We will compute R’(x) and C’(x) and set them equal to each other.

_8(02x+1)—8x(02) 8

(0.2x + 1)2 = 0ag1e =05

R'(x)
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8

05=—7——
(0.2x + 1)2

0.50.2x +1)> =8
0.5[(0.2x + 1)(0.2x + 1)] = 8
0.5(0.04x +0.4x + 1) =8
0.02x> +0.2x +0.5 =8

0.02x2+02x —7.5=0

 —024/(022 —4(0.02)(—75) _ 0.2+ +/0.64
= 2(0.02) T 004

_ —02+038
T 0.04

Maximize the profit by selling 15,000 units. (You could verify that this
solution gives a maximum with the second derivative test.)

=15, =25 Use x = 15 only.

5. The average cost function is

C(x) 0.004x2 —9.6x + 7840
Alx) = =
X X
_ 0.004x%  9.6x L 7840
o X X X
7840
= 0.004x — 9.6 +
X
7840
X
7840
X
7840
X

0.004x2 = 7840
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, 7840
~ 0.004

x = 1400

= 1,960,000

Minimize the average cost by producing 1400 units.

When one variable is a function of two or more variables, sometimes increasing
one variable means sacrificing another variable. For example, suppose we have
40 feet of fencing available to enclose a rectangular area. Increasing the width of
the enclosed area means decreasing the length. When does increasing the width
of the area mean increasing the area, and when does increasing the width mean
decreasing the enclosed area? What dimensions maximize the enclosed area? Each
of the rectangles in Figure 10.1 has a perimeter of 40 feet, but their areas are very
different. If we increase the width from 4 feet to 18 feet, the length is decreased
from 16 feet to 2 feet, and the enclosed area decreases from 64 square feet to
36 square feet. On the other hand, if we increase the width from 4 feet to 12 feet,
the length decreases from 16 feet to 8 feet, and the enclosed area increases from
64 square feet to 96 square feet.

2/
Area is
16/ 36 sq. ft.
Area is 64 sq. ft. 4/ 18’
/
8 10/
Area is , Area is ,
96 sq. fr. |12 100 sq. fr. | 19

Fig. 10.1.
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If we want to maximize the enclosed area with a fixed 40 feet of fencing, we
can use calculus on the area formula, A = [w. We will solve this problem later.

Calculus can find the levels of two variables that maximizes or minimizes a
third variable. One common problem involves maximizing the revenue when the
price is changing. An increase in the price means more money per unit is collected
but fewer units are sold. Calculus finds the price that makes the most of a price
increase while minimizing the loss in sales.

In the problems that follow, the price increase (or decrease) will be given as the
number of $a increases (or decreases). We will let x represent the number of times
the price is increased (or decreased) by $a. This makes the new price “old price +
ax” (or “old price — ax”). For example, if we want to increase the price by some
multiple of $5, the new price is “old price + 5x.” The quantity sold will depend
on the size of the loss (or gain) in sales from each price increase (or decrease) by
$a. If we lose two customers for each $5 increase in the price, then the quantity
sold is “old quantity — 2x.” The revenue is the price times the quantity sold. In
this example, the revenue function is “(old price + 5x)(old quantity — 2x)”.

EXAMPLES

e A movie multiplex sells tickets for $8. On Friday evenings, it averages 720
tickets sold. Each patron spends an average of $2 on concessions. A survey
shows that for each $0.25 drop in the ticket price, 20 more people will
buy tickets on Friday evenings. Assuming that they also average $2 in
concessions, what ticket price will maximize revenue?

Let x represent the number of $0.25 decreases in the ticket price. This
makes the ticket price $8 minus the decrease in the ticket price, which is
0.25x: 8 — 0.25x. The number of people buying tickets is 720 plus 20 for
each x, which is represented by 20x: 720 + 20x. The ticket revenue is
the ticket price times the number of tickets sold: (8 — 0.25x)(720 + 20x).
The concession revenue is $2 times the number of tickets sold, 720 + 20x:
2(720 4+ 20x). The total revenue is R = (8 — 0.25x)(720 +20x) 4+ 2(720 +
20x) = —5x% + 20x + 7200.

R = —10x + 20

—10x +20=0
—10x = =20
—-20
xX=——=2
—10

Maximize the revenue by charging 8 — 0.25(2) = $7.50 for tickets.
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A small farm has an apple orchard in which 250 trees are planted per acre.
Each tree averages 25.8 bushels of apples. The farmer learns that for each
additional tree per acre, the yield of each tree will be reduced by one-tenth
of a bushel. How many trees per acre should be planted to maximize the
farmer’s apple harvest?

This is another example of the increase of one variable (trees per acre)
resulting in a decrease in another variable (apples per tree). We want to
maximize the yield per acre, which is the number of trees per acre times
the number of bushels per tree. The yield per acre is now y = (250)(25.8) =
6450 bushels. We will let x represent the number of trees that will be added
to each acre. Then each acre will have 250 + x trees. For each x, we lose
0.10 bushels per tree, so 25.8 is reduced by 0.10x. After adding x trees
to each acre, each tree produces 25.8 — 0.10x bushels. The yield per acre
becomes

Number of trees Bushels per tree

y= (2504 x) (25.8 —0.10x) = —0.1x> + 0.8x + 6450.

y =—0.2x + 0.8

—02x+08=0
—0.2x = —0.8
~0.8
x=—— =4
—0.2

The farmer should add 4 trees per acre for a total of 250 + 4 = 254 trees
per acre in order to maximize the apple harvest.

PRACTICE

1.

The manager of an office building can rent all 40 offices when the monthly
rent is $6000. The manager believes that each increase of $1000 in the
rent will result in a loss of 5 tenants with little chance of being replaced.
What should be charged in rent in order to maximize revenue?

An athletic director of a university wants to increase the ticket price for its
football games. The average attendance for home games is 3200 when the
ticket price is $10. A survey shows that for each increase of $0.50 in the
ticket price, 100 fewer fans will attend. If each fan spends an average of
$3 on concessions, what ticket price maximizes revenue?
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3. A farm has a small peach orchard with 120 trees. Each tree averages
186 pounds of peaches per year. An expert has determined that each
additional tree will reduce the orchard’s yield by 1.5 pounds per tree.
How many trees will maximize the yield?

SOLUTIONS

1. Let x represent the number of $1000 increases in the rent. The rent is
6000 + 1000x and the number of tenants is 40 — 5x. The revenue is
R = (6000 + 1000x)(40 — 5x) = —5000x2 + 10,000x + 240,000.

R' = —10,000x + 10,000
—10,000x + 10,000 =0
—10,000x = —10,000

_ —10,000
T 210,000 ©

The manager should charge $6000 + 1000(1) = $7000 rent in order to
maximize revenue.

2. Let x represent the number of $0.50 increases in the ticket price. The new
ticket price is 10 4+ 0.50x and the average number attending home games
is 3200 — 100x. Ticket revenue is (10+0.50x)(3200 — 100x) and conces-
sion revenue is $3 for each fan: 3(3200— 100x). The total revenue is R =
(10 + 0.50x)(3200— 100x) +3(3200— 100x) = —50x2+300x +41,600.

R’ = —100x + 300

—100x +300 =0
—100x = —300
—300
X = —=
—100

In order to maximize revenue, the ticket price should be $10+3(0.50) =
$11.50.

3. Let x represent the number of extra trees planted. The total number of
trees is 120+ x. Each tree’s yield is reduced by 1.5 pounds for each extra
tree, so the yield is decreased by 1.5x. The yield per tree is 186 — 1.5x.
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The total yield is y = (120 + x)(186 — 1.5x) = —1.5x% 4 6x + 22320.

Yy =-3x+6
—-3x+6=0
—3x =—6
x=2

The farmer will maximize the peach harvest by adding two peach trees,
for a total of 122 trees.

Recall from the previous section the problem of using 40 feet of fencing to
enclose a rectangular area. If we want to maximize the enclosed area, we can use
calculus to maximize the area formula, A = [w. This function has no maximum
unless we restrict the variables / and w. This is where we use the fact that 40 feet of
fencing are available. This forces the perimeter of the enclosed area to be 40. We
will use the perimeter formula, P = 2/4-2w, substituting 40 for P: 40 = 2/ +2w.
Using this equation, we can replace one of / or w in A = [w, forming an equation
to fit our conditions. We will solve for /.

2 + 2w = 40
2 = 40 — 2w
40 — 2

1= —— Y e20—w

Now we will replace [ with 20— w in A = [w: A = 20— w)w = 20w —w?>. This
equation gives us the area of any rectangular region whose perimeter is 40 feet.

A =20w — w?
A =20-2w
0=20—-2w
2w =20
20
w=7=10 [l=20—w=20-10=10
The enclosed area is maximized when the width is 10 feet and the length is also

10 feet.
If we want to optimize a geometric formula or one that is based on a geometric
formula, we will use information given in the problem to eliminate one of the
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variables. Sometimes we can simply replace a variable directly with a number.
Usually we will have to use a relationship between the variables to write one of
the variables in terms of the other (like we did above with 2/ + 2w = 40). After
making a substitution, we will have an equation with two variables that we will
differentiate.

EXAMPLES

e A thin piece of metal, 20" x 16", will be used to construct an open-topped
box. A square will be cut from each corner (see Figure 10.2). After the
corners are removed, the sides will be folded up (see Figure 10.3). What
size corner should be cut so that the box’s volume is maximized?

We want to maximize the volume of a rectangular box, so we will begin
with the formula V = [wh. When x inches are removed from each corner,
the length is reduced to 20 — x — x = 20 — 2x, and the width is reduced to
16 —x —x = 16 — 2x. We can replace [ with 20 — 2x and w with 16 — 2x.
The formula V = [wh becomes V = (20 — 2x)(16 — 2x)h. The height of
the box is the size of the corner, so we can replace 4 with x. We now have
V =020—-2x)(16 — 2x)x.

20”

T T
X X |
I I

16"

I
| X X |
l

Fig. 10.2.

V = [(20 — 2x)(16 — 2x)]x = (320 — 72x + 4x2)x
— 4x3 — 72x% +320x

V' = 12x% — 144x + 320
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20 —2x

16 — 2x

Fig. 10.3.

0= 12x2 — 144x + 320

| —(—144) £ /(—144)7 —4(12)(320) _ 144 + /3376
= 2(12) - 24

~2.94, 9.06

We cannot consider x = 9.06 because we would need a piece of metal
that is more than 18 inches on each side so that 9" could be cut from each
corner. We will use the second derivative test to verify that 2.94 leads to a
maximum.

V' =24x — 144 V"(2.94) = 24(2.94) — 144 = —73.44

The second derivative is negative at x = 2.94, so we have a maximum at
x = 2.94. The volume of the box is maximized when about 2.94" is cut
from each corner.

The next two problems are other common fencing problems in which a fixed
amount of fencing is available and we want to find the dimensions that maximize
the enclosed area. In the first problem, only three sides of the rectangular area are
to be fenced because the fourth side is some other boundary. In the second, a rect-
angular area is subdivided into two or more areas. The equation to be maximized
in each case is A = [w. As before, we will use information about the available
fencing to eliminate either / or w in A = [w. Once we have A written in terms
of [ only or w only, we can maximize the area.
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EXAMPLES

e The manager of a large retail store wants to enclose an area behind the store.
There are 80 feet of fencing material available. The side against the building
does not need to be fenced. What dimensions will maximize the enclosed
area? (see Figure 10.4)

Building

l
Fig. 10.4.

From the figure, we see that w + w + [ must equal 80: 2w + [ = 80. We
will solve this equation for /: [ = 80 — 2w. We could solve the equation

for w but this would involve using a fraction. Now we will replace [ with
80 — 2w in A = [w.

A = (80 — 2w)w = 80w — 2w?

A'=80—4w
0=280—4w
4w = 80
80
w=Z=2O [ =80 —2w =80 —2(20) =40

Maximize the enclosed area with a width of 20 feet and a length of 40 feet.

e A rancher wants to enclose a rectangular area divided into two pens (see

Figure 10.5). If there is 900 feet of fencing available, what dimensions will
maximize the enclosed area?

Because 900 feet of fencing is available, we must have [ +w +w +w +/

be 900: 2/ + 3w = 900. We will solve this equation for / (solving for w

works, t0o).
21 4+ 3w = 900
2] =900 — 3w
[ — 900 — 3w 3

=450 — Zw
2
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We will replace [ with 450 — %w in A =lw.

3 3
A= (450 - Zw ) w = 450w — —w?
2 2

A" =450 — 3w
0 =450 —3w
3w =450
450 3 3
w=T=150 l:450—§w:450—5(150)=225

Maximize the enclosed area with a width of 150 feet and a length of 225 feet.

PRACTICE

1.

An open-topped box is to be constructed from a 12" x 16" piece of
cardboard by cutting a square from each corner and folding up the
sides. What size corner should be cut out so that the box’s volume is
maximum?

A school administrator wants to enclose a practice field. One side of the
property is already fenced. There are 400 meters of fencing material avail-
able. If only three sides of the area needs to be fenced, what dimensions
will maximize the area? (see Figure 10.6).

The owner of a kennel has 90 feet of fencing available to enclose three
pens (see Figure 10.7). What dimensions maximize the enclosed area?
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Established Fence

T \
! !
! !

w w ! w ! w
! !
! !
! !

SOLUTIONS

1. Let x represent the length, in inches, to be cut from each side. Then
after the cut, the lengths of the sides are 12 — 2x and 16 — 2x inches.
The height of the box is x inches. The volume V = [wh becomes V =
(12 = 2x)(16 — 2x)x.

V =[(12 = 2x)(16 — 2x)] x = (192 — 56x + 4x2)x
= 4x3 — 56x° + 192x
V' = 12x% — 112x + 192 = 4(3x% — 28x + 48)
0 = 4(3x% — 28x + 48)

0= 3x% —28x +48

P —(—28) £/(—28)2 —4(3)(48) _ 28+ /208
- - 6

~ 2.26, 7.07
2(3)

Two sides of the cardboard are only 12 inches, so we cannot cut 7.07
inches from each corner. The only possibility is 2.26. Because there are
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two solutions, we will make sure that 2.26 leads to a maximum.
V" =24x — 112 V"(2.26) = 24(2.26) — 112 = —57.76

Because the second derivative is negative, x = 2.26 leads to a maximum.
The volume is maximized when about 2.26 inches is cut from each corner.

2. Because 400 meters of fencing material is available, we have 2w + [ =
400. We will solve for [, giving us [ = 400 — 2w. We will substitute
400 — 2w for/ in A = lw.

A = (400 — 2w)w = 400w — 2w?

A" =400 — 4w
0 =400 —4w
4w =400
400
w:T:100 [ =400 — 2w =400 — 2(100) = 200

Maximize the area with a width of 100 meters and a length of 200 meters.
3. Using the fact that 90 feet of fencing is available, we have 4w + 2/ = 90.
We will solve for [.

4w + 21 =90
2l =90 — 4w
0—4
1= 207 s
2
Substituting 45 — 2w for [ in A = [w gives us A = (45 — 2w)w =
45w — 2w?.
A =45 —4w
0=45—-4w
4w =45
45
w:I=11.25 [ =45 —-2w =45-2(11.25) =22.5

Maximize the area with a width of 11.25 feet and a length of 22.5 feet.

Calculus can help optimize geometric problems in which some parts are weighted
more heavily than other parts. In this book, parts will be weighted more if they
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cost more money to construct. We will begin with fencing problems where one
side of the fence costs more or less than the other sides. There will be two versions
of each problem—one in which the budget is fixed and we want to maximize the
area, and the other in which the area is fixed and we want to minimize the cost.

EXAMPLES

e Refer to Figure 10.8.

Building

$4|w w | $4
[

$5
Fig. 10.8.

1. Minimize the cost if the area must be 800 square feet.
2. Maximize the area if there is $100 available to spend on fencing.

Each side that makes up the width costs $4 per foot and the side that makes
up the length costs $5 per foot. Two sides cost $4w each and one side costs
$51, where the total cost is C = 4w + 4w + 5] = 8w + 5l.

1. The area is a fixed 800 square feet, so A = [w becomes 800 = [w.
Solving for [ gives us [ = %. Now we can substitute % for [ in
the cost function, C = 8w + 5I.

800 4000
C=8w—+5(—)=8w+ ——

w w
o _ g 4000
=820
4000
0=8-—7
w
4000
8§=—5
w
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4000
w? = —— =500
8
w A 22.4 [ = 800 800 35.7
w224

Minimize the cost by letting the width be about 22.4 feet and the
length be about 35.7 feet.

2. This time we want to maximize A = [w and will use the cost
function to eliminate /. Because $100 is available to spend on the
fence, the cost function C = 8w + 5/ becomes 8w + 5/ = 100.
Solving for [ gives us

51 =100 — 8w

. 100 — 8w
- 5
We will substitute 20 — 1.6w for/ in A = [w.

A= (20 — 1.6w)w = 20w — 1.6w?

l =20—1.6w

A'=20-32w
0=20-32w
32w =20
20
w=§=6.25 [ =20—1.6w =20—1.6(6.25) = 10
Maximize the area by letting the width be 6.25 feet and the length
be 10 feet.

e Refer to Figure 10.9.

$2.50 | w w | $2.50

$2.50
Fig. 10.9.

1. Minimize the cost if the area is to be 4000 square feet.
2. Maximize the area if the fence budget is $650.
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The width costs 2.50w + 2.50w = Sw and the length costs 4/ 4+ 2.50] = 6.50!.
This makes the total cost C = Sw + 6.501.

1. The area is 4000 square feet, so A = [w becomes 4000 = [w. We will

solve for [: [ = % and substitute this for / in the cost function.

4000 26,000
C=5w+6.50<—) =5w+
w w
) 26,000
C'=5-"1
w
26,000
0=5-"2
w
26,000
==
5w? = 26,000
26,000
w? = = 5200
4000 4000
w~ 72.1 |=—~—~555
w 72.1

Minimize the cost by letting the width be about 72.1 feet and the length
be about 55.5 feet.

2. Because the fence budget is $650, the cost function becomes Sw +
6.50/ = 650. We will solve for w.

Sw = 650 — 6.50/

650 — 6.50/
w = — 5 = 130 — 1.30!

We are ready to substitute 130 — 1.30/ for w in the area function.
A =1(130 — 1.300) = 130! — 1.30/>
A’ =130 — 2.601

0 = 130 — 2.60/
2.600 = 130
130

l —

=—=50 w = 130 — 1.30/ = 130 — 1.30(50) = 65
2.60
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Maximize the area by letting the length be 50 feet and the width be 65
feet.

e Refer to Figure 10.10.

|
|
$4 | w $2:w w | $4
I
I

$4 [
Fig. 10.10.

1. The enclosed area is to be 5000 square feet. What dimensions
minimize the cost?

2. $300 is available for fencing materials. What dimensions maximize
the enclosed area?

The width costs 4w + 2w + 4w = 10w, and the length costs 4/ + 4/ = 8&|.
The total cost function is C = 10w + 8.

1. The area is 5000 square feet, so 5000 = [w. Solving for [ gives us
| = %. With this substitution, the cost function becomes

5000 40,000
C = 10w+8(—> = 10w +
w w
40,000
C'=10- —=
w
40,000
0=10—- —=
w
40,000
10 = ——
w
10w? = 40,000
4
w? = 0,000 _ 4000
10
5000 5000
w A 63.2 |=——~ ——~79.1

w 63.2
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Minimize the cost by letting the width be about 63.2 feet and the
width be about 79.1 feet.

2. The cost is $300, so the cost function becomes 10w + 8/ = 300.
We will solve this for w.

10w = 300 — 8/
300 — 8!
w=——=30-0.8]
10
Substituting 30— 0.8/ for w in A = [w givesus A =[(30—0.8]) =
30/ — 0.8/,
A =30-1.6
0=30—-1.6/
1.6l =30
_ 30

= 6= 18.75 w = 30—0.8/ =30 —0.8(18.75) = 15

Maximize the area by letting the length be 18.75 feet and the width
be 15 feet.

PRACTICE

1. Refer to Figure 10.11.

)

$5.75
Fig. 10.11.

(a) What dimensions minimize the cost if the area is to be 1600
square feet?

(b) The fence budget is $690. What dimensions maximize the
area?
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2. Refer to Figure 10.12.
$7.5

)
$3 | w w i $3
)

$3
Fig. 10.12.

(a) What dimensions minimize the cost if the area is to be 1225
square feet?

(b) The fence budget is $150. What dimensions maximize the
area?

3. Refer to Figure 10.13.

$4.25 l
T
!
!

T
|
|
$4.25 |w w}$3.25 w}$3.25 w | $4.25
|
|

$4.25 l
Fig. 10.13.

(a) What dimensions minimize the cost if the area is to be 1500
square feet?

(b) The fence budget is $1020. What dimensions maximize the
area?

SOLUTIONS

1. The cost function is C = 4w + 4w + 5.75] = 8w + 5.751.

(@) A = lw becomes 1600 = [w. Solving for [ gives us [ = %.
The cost function becomes

1600 9200
C =8w+5.75 <—) =8w+ ——
w w
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o — 9200
— =
9200
0=8— "+
w2
o 9200
=
Sw? = 9200
2 9200

w —— = 1150
8

1600 160
~339 ="~ " 472
v w339

(=}

Minimize the cost by letting the width be about 33.9 feet and the
length be about 47.2 feet.

(b) The cost function is 8w + 5.75] = 690. We will solve for w.

Sw = 690 — 5.751
w= 03T el 05 0718751

Substituting 86.25 — 0.71875/ for w in the area function gives us
A =1(86.25 — 0.71875]) = 86.25] — 0.718751°.

A’ = 86.25 — 1.43751
0 = 86.25 — 1.4375I1
1.43751 = 86.25

= 80.25 =60 w =86.25—-0.71875!/
1.4375

= 86.25 — 0.71875(60) = 43.125

Maximize the area by letting the length be 60 feet and the width
be 43.125 feet.
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2. The costis 3w + 7.5 4+ 3w + 3] = 6w + 10.5]
1225

(a) The area formula is 1225 = [w. We will solve for w: w = =5=.
1225 7350
C=6w+105/=6 - + 10.5] = - + 10.51
7350
/
C'= T +10.5
7350
0= T +10.5
7350
105 = ——
12
10.51% = 7350
7350
I?="""—="1700
10.5
1225 1225
[ ~26.5 w=——~—=~x46.2
[ 26.5

Minimize the cost by letting the length be about 26.5 feet and the
width be about 46.2 feet.
(b) The cost function is 6w + 10.5/ = 150. We will solve for w.

6w = 150 — 10.5/

150 — 10.
w:M:25—1.751

6

We will substitute for w in the area function.

A =125 — 1.751) = 251 — 1.751>

A =25-3.5]
0=25-3.5I
3.51 =25

25
= 35 ~7.14 w=25-1.75l~25—-1.75(7.14) = 12.5

Maximize the area by letting the length be about 7.14 feet and
the width be about 12.5 feet.
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3. The cost functionis C = 4.25w + 4.25] + 4.25w + 4.25] + 3.25w +
325w = 15w + 8.501.

(a) The area function is 1500 = /w. We will solve for [: [ =
This gives us the cost function

1500
w

1500 12,750
C = 15w + 8.50 <—) = 15w+
w w
) 12,750
C'=15- "2
w
12,750
0=15-—=
w
12,750
15=—=
w
15w? = 12,750
12,750
2 )
= =850
W 15
1500 1500
wA22 ="~ —_——"=~514
w 29.2

Minimize the cost by letting the width be about 29.2 feet and the
length be about 51.4 feet.

(b) The cost function becomes 15w + 8.50/ = 1020. We will solve
for w.

15w = 1020 — 8.50/

1020 — 8.50/ 17
w=—""F"—"—"=68——I
15 30

With this substitution, the area function becomes

17 17
A=1(68——1) =68 — —/>
30 30

17 17
Al=68—-2-—1=68——I
30 15

17
—I

0=168—
15



CHAPTER 10 Applications of Derivative

@,—
Hl = 68
15

15 17
[=68- — =60 w=68— —I
17 30

17
= 68 — — (60) = 34
30

Maximize the area by letting the length be 60 feet and the width
be 34 feet.

We can optimize similar problems with many other shapes. Next, we will
work with three-dimensional shapes—the rectangular box and the right-circular
cylinder, which is the shape of a can. In the first problems, we will be given a
fixed volume and will be asked to find the dimensions that minimize the surface
area. Later, we will minimize the cost when different surfaces (top, bottom, sides)
have different costs to construct. In the same way we used the area information in
the problems above, we will use the volume information to eliminate one of the
variables. Then we will make the substitution in the cost function to minimize
the cost.

EXAMPLES

e A box with a square bottom is to have a volume of 64 cubic inches. What
dimensions will minimize the surface area? (see Figure 10.14.)

Fig. 10.14.

The volume of a rectangular box is V = [wh. Because the bottom of the
box is square, we can replace w with [ (replacing / with w works, also).
V = lwh becomes V = [ - [h = [*h. Because the volume is 64, we have
64 = [%h. The surface of the box consists of six parts: the top, bottom,
and four sides. The area of the top (and bottom) is [2. The area of each of
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the four sides is /4. The total area is

Top  Bottom 4 gjdes
—~ = — =
SA= P + > + 4h =20 +4ih.

We will eliminate & by solving for & in 64 = [>h. Solving for [ would
require taking square roots, making the formula a little more complicated.
From 64 = [?h, we have h = ?—f. The surface area becomes

64 256
SA=2P+4l(—= ) =22+ =
2 l
This is what we want to minimize.
256
/
SA" =4l — N
256
256
413 = 256
256
P=""=64
4
64 64

The surface area is minimized when the length, width, and height are each
4 inches.

A can, in the shape of a right-circular cylinder, is to be constructed with
a volume of 45 cubic inches. What dimensions will minimize the surface
area? (see Figure 10.15).

The volume formula for a right circular cylinder is V = r2h. Because
the volume is 45, the formula becomes 45 = 7r2h. The surface of the
can comes in three parts: the top, bottom, and sides. The area of the top
(and the bottom) is the area of a circle with radius r, 7r2. The area of the
sides is 27rh. The total surface area is

Top Bottom Sides

2 2 2
SA=nr°+ nr° +2nrh =2nr°+2narh.
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S

Fig. 10.15.

We will use the volume information to eliminate 4 in the surface area
formula: 7 = %. After we make the substutition, we can minimize the
surface area equation.

45 90
SA =2mr 4+ 2nr (—) =2nrt +

r2 o
, 90
SA :47Tr— —2
r
90
0=dnr — )
r
Aoy = —
Tr o
4713 =90
P
4
45 45
r~1.93 h = ~ 3.85

7r2 " 7(1.93)2

The surface area is minimized when the radius of the can is about 1.93
inches and the height about 3.85 inches.

e The volume of a box is to be 12 cubic feet. The width will be two-thirds
the length. What dimensions minimize the surface area of the box?

From the information given in the problem, we can eliminate two vari-

ables in the volume formula, V = [wh. The volume is 12 cubic feet,
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allowing us to replace V with 12. From the fact that the width is two-
thirds the length, we can replace w with %l . The volume formula becomes

12=1- %lh = %lzh. We will solve this equation for 4.

2
“PPh=12
3
3
Ph=>-.12=18
2
18
h=l_2

The area of the top (and the bottom) is [w or [ - %l = %l 2. The area of each
of four sides is /h. The surface area is SA = %12 + %lz +4lh = %‘12 +4lh.
Once we substitute }—? for h, we have

4 18 4 72
SA=-DP+4l|—)==-1*+—=
() =30+
We are ready to minimize this function.
4 728, 72
SA =2(=l)|——5==l——
3 7z 3 12
L)
O0==-l—-—
3 2
8 72
_l=l_2
“P=72
P=>.72=27
2 2 18 18
[=3 =-l=-.3=2 h=—=—==2
YT3T3 2o

The surface area is minimized when the length is 3 feet and each of the
width and height is 2 feet.
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PRACTICE

1.

The volume of a box is to be 40.5 cubic inches. The width must be
three-fourths the length. What dimensions minimize the surface area?

2. Abarrel is to be constructed in the shape of a right-circular cylinder having
a volume of 20 cubic feet. What dimensions minimize the surface area?
SOLUTIONS
1.

We can eliminate two variables in the volume formula. We can replace
w with %l because the width is three-fourths the length. We can replace V
with 40.5 because the volume is 40.5 cubic inches. The volume formula,

V = lwh, becomes 40.5 = l(%l)h = %lzh. We will solve this equation
for h.

3
“12h =405
4

2, _ 4 _
Ph= 3405 =54

54
h:l_2

The area of the top of the box (and the bottom) is wl = %l -l = %lz.
The area of each of the four sides is [h. The surface area of the box is
SA=312+ 312 +4lh =2 31> +4lh = 31> + 4lh.

3
SA = _1>14lh
2
3 54 54
SA — 512 + 4] (l_2> Replace i with el
3 216
SA==1>+"=
2 l
GA 2 31 216 . 216
—"\2 2 - 2
216
216
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33 =216

216
-5 =

& 72

3 3
[~ 4.16 w=-l~—-(4.16) ~ 3.12
4 4

54 54
==~ ~ 3.12
2 4.162

Minimize the surface area by letting the length be about 4.16 inches, and
each of the height and width be about 3.12 inches.

2. Because the volume is 20, we can replace V in the volume formula,
V = 7r?h: 20 = mr?h. Solving this for & gives us h = %. The surface

area is
Top  Bottom  gjdes
2 2 | 7 N\ 2 2 20
SA=mnr“+ nr° +2nrh =2nr°+2nrh =2nr° + 2nr —
Tr
, 40
=2nr°+ —.
r
40
SA =2nr>+ —
r
40
SA" = 4mr — =3
r
40
0=4nr — =3
r
40
Aoy = —
Tr 2
A3 = 40
40
P=
4
20 20
r~1.47 h=—= ~ 2.94

w2 m(1.472)

Minimize the surface area by letting the radius be about 1.47 feet and the
height be about 2.94 feet.
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Instead of minimizing the surface area in the next set of problems, we will
minimize the cost of constructing the box or cylinder (we will ignore material
that is scrapped). Our containers will use different materials for the top, bottom,
and sides, giving us different costs. We will compute how much each part costs
and will minimize their sum. As we did in the previous problems, we will use the
fixed volume to eliminate one of the variables in the cost function.

EXAMPLES

An open-topped tank in the shape of a right-circular cylinder is to be con-
structed having a volume of 15 cubic feet. The material for the bottom costs
$1.25 per square foot, and the material for the sides cost $0.90 per square
foot. What dimensions will minimize the cost of the tank?

The volume is 15, allowing us to replace V with 15 in the volume formula
V = nwr?h: 15 = nr’h. Now we have h = 1—52 The bottom costs $1.25

nr
per square foot, and there are 77> square feet in the bottom. This makes

the bottom cost 1.257r2. The sides cost $0.90 per square foot, and there
are 2mrh square feet in the sides. This makes the sides cost 0.902nrh) =
1.807rh. The total cost is

C = 1.257r%* + 1.80nrh

15 15
= 1.257r% + 1.807r (—2> Substitute — for h.
Tr Tr

27
= 125712 + =,
r

, 27
’
27
0=2.5x7r — —
’
27
2.57'[7' = —2
r
2578 =27
3 27
2.57
15 15
r~1.51 h=—~— 21
ar2  mw(1.51%)
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Minimize the cost with a radius of about 1.51 feet and a height of about
2.1 feet.

e A box is being constructed. It will have a square bottom and needs to have
a volume of 5 cubic feet. Material for the top costs $0.20 per square foot;
the bottom, $0.40 per square foot; and the sides, $0.35 per square foot.
What dimensions minimize the material cost?

The box has a square bottom, so the length and width are the same. This
lets us replace w with / in the volume formula and the area formula. The
volume is 5 cubic feet, so we can replace V with 5 in the volume formula,
V = lwh: 5 = lwh =1 -lh = [*h. Solving for h gives us h = l% The
top costs $0.20 per square foot, and there are [w = [ - [ = [? square feet.
The top costs a total of 0.20/2. The bottom costs $0.40 per square foot,
and there are /> square feet. The bottom costs a total of 0.40/%. Each of
the four sides costs $0.35 per square foot. Each side has /A square feet.
Each side costs 0.35/4 and all four sides cost 4(0.35/h) = 1.4/h. Replacing
h with l% gives us 1.4/ (l%) = % The total cost for the box material is

C=02"%+041>+7 =06+ 7.

7
C:0.612+7
7 7
/
C' =2(0.6)] — 7= 1.20 — 7
7
0= 1.21—1—2
7
1.2 = B
1.2 =7
p-l
1.2
5 5
[~ 1.8 h=—=~—~1.54
2 1.82

Minimize the cost with a length and width of about 1.8 feet and a height of
about 1.54 feet.
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PRACTICE

1.

Minimize the cost of a box that is to have a volume of 10 cubic feet and
square bottom. Material for the bottom costs $0.30 per square foot; the
top, $0.25 per square foot; and the sides, $0.20 per square foot.

A container in the shape of a right-circular cylinder will be made so that
it has a volume of 120 cubic inches. Material for the top costs $0.25 per
square inch; the bottom, $0.60 per square inch; and the sides, $0.40 per
square inch. What dimensions minimize the cost?

SOLUTIONS

1.

The top and bottom are square, so / = w. The volume is 10 cubic feet.
Now we can write the volume formula, V = [wh as 10 = [ - [h =
I?h. Now we have h = }—9. The top costs 0.2512; the bottom, 0.301%;
and each of the sides, 0.20/h. The total cost function is C = 0.25/% +
0.301% + 4(0.20lh) = 0.55I> + 0.80lh. Replacing h with }—20 gives us

C =0.551* +0.801(39) = 0.55* + }.

8 8
/
C’ =2(0.55]) — 5= 1.100 — B
8
0= 1.101—1—2
8
1.10l = B
1.100° = 8
Pt
1.10
10 10
[ ~1.94 h=—~ ~ 2.66
12 1.942

Minimize the cost of the box with a length and width of about 1.94 feet
and a height of about 2.66 feet.
The volume is 120 cubic inches, so the volume formula V = 7r2h

becomes 120 = 7r2h. This gives us h = %. The area of the top is

7r2, so it costs 0.257r2. The area of the bottom is 772, so it costs
is 0.607rr2. The area of the sides is 27rh, so it costs 0.4027wrh) =

0.80rrh. Replacing h with % gives us O.80nr(£g) = 9r—6. The total

nr
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cost is C = 0.257r2 + 0.607r2 + 976 —0.857r2 & %‘

96 96
C/ = 2(0857’[1") ) =17nr — )
r r
96
,
6
1.770r = —
Tr o
1.77r% = 96
3 96
177
120 120
r~2.62 h=—7~——5-~556
r 7(2.622)

Minimize the cost with a radius of about 2.62 inches and a height of about
5.56 inches.

Economic Lot Size

Some products that are kept in inventory have two costs associated with them—
storage costs and order costs. If storing a product is expensive, it might be cheaper
to order it in small quantities. If ordering the product is expensive, it might be
cheaper to order the product in large quantities. Calculus can determine how many
to order at a time to minimize both costs. This quantity is called the economic lot
size. We will only consider products whose use is spread evenly throughout the
year instead of products that are used at some times more than others.

In our next set of problems, we will be given information on how much one
unit costs to store for a year and how much each order costs to place. We will
compute the annual storage and annual order costs. The sum of these costs is
called the annual inventory cost. The storage cost is computed by multiplying
the cost to store one unit for one year by the average number in storage. The
order cost is computed by multiplying the number of orders per year by the cost
for each order.

We will let x represent the number of units per order. To find the number of
orders per year, we will divide the total needed per year by the number of units
per order. For example, if we need 200 units per year and order 10 units per order,
there will be 200/10 = 20 orders per year. Because we assume that these products
are used uniformly through the year, 5 is the average number of units in storage.
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Why is this so? Suppose we operate five days per week and use 6 units each day,
for a total of 30 per week. At the beginning of the day on Monday, there are 30
units in stock. At the end of the day on Monday, there are 30 — 6 = 24 ; at the end

of the day on Tuesday, 24 — 6 = 18; Wednesday, 12; Thursday, 6; and Friday, O.
The average of 30, 24, 18, 12, 6, 0 is 15 (= 30/2).

304244+ 184124640
- -

Strictly speaking, when storage costs are very expensive and order costs are
very inexpensive, the minimum inventory cost could occur when one unit is
ordered at a time. On the other hand, if storage costs are very inexpensive and order
costs are very expensive, the minimum inventory cost could occur when one order
is placed per year. In either of these cases, the minimum cost might not occur
at the critical value for the derivative of the cost function. We would have to
compute these costs separately. This is done in the first example only.

15

EXAMPLES

e An office supply distributor sells 4500 cases of paper each year. It costs
$1.50 to store one case of paper for one year. Each order costs $0.60.
How many cases should be ordered? How many orders should be placed in
a year?

Let x represent the number of cases of paper per order. The average
number in storage is 7. One case costs $1.50 to store for one year, so
annual storage costs are 1.50(3) = 0.75x. The number of orders per year
is @. This makes the annual order cost 0.60(45xﬁ) = 27)5&. The annual

inventory cost is

2700
C=075%+—
X
We will minimize this function.
2700
C' =0.75- 5
X
2700
X
2700
0.75 = 5
X

0.75x2 = 2700
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2

x2:7—OO:36OO
0.75

x =60

Minimize annual inventory costs by ordering 60 cases at a time,
4500/60 = 75 times per year.

Let us take a moment to compare the cost of ordering 45 times per year
(60 cases) with ordering once per year (4500 cases). We will let x = 60
and x = 4500 in the inventory cost function.

2700
Cx)=0.75%x+—
X

2700
C(60) = 0.75(60) + o0 90

C(4500) = 0.75(4500) + 2700 = 3375.60
o 4500 '

At 75 orders per year, the cost is $90. At one order per year, the
cost is $3375.60. Compare these costs to ordering one case at a time:
C(1) =0.75(1) + £ = $2700.75.

e A convenience store sells 980 cases of milk per year. Each case of milk
costs $4 to store one year, and each order costs $2.50. How many cases of
milk should the store manager order at a time?

The average number of cases of milk in storage is 5, and there are 9%0
orders per year. The storage costs are 4(5) = 2x, and the annual order costs

are 2.50(9)6@) = Ztﬂ. The annual inventory costs are C = 2x + —2‘;50,

) 2450
C'=2-=
X
2450
0=2-"
X
2450
2 =
x2
2x2 = 2450
, 2450
x2="""2—-1225
x =35

The manager should order 35 cases of milk at a time.
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PRACTICE

1.

A car repair shop expects to use 1620 boxes of spark plugs per year. Each
box costs $3 to store for one year, and each order costs $7.50. How many
boxes should be ordered each year? How many orders per year will there
be?

A furniture store sells 90 designer lamps per year. It costs $10 to store
one lamp for one year. Each order costs $8. How many lamps should be
ordered at a time?

A home improvement store sells 5000 batteries per year. Each battery
costs $0.80 to store for one year, and each order costs $5. How many
orders should be placed each year?

SOLUTIONS

1.

The average number of boxes in storage is 7, so the annual storage costs

are 3(3) = 1.50x. There will be @ orders per year, so the annual
order costs are 7.50(]?%) = lz’xﬂ. Annual inventory costs are C =
12,150
1.50x + —=~=.
, 12, 150
C' =1.50- 5
X
12, 150
0=1.50— 5
X
12, 150
1.50 = 5
X

1.50x% = 12, 150

12,1

=2 0 _ 8100
1.50

x =90

Minimize the annual inventory costs by ordering 90 boxes of spark plugs
at a time, 1620/90 = 18 times per year.

The average number of lamps in inventory is 3

E’
costs are 10(%) = 5x. There are 9;_0 orders each year, so the annual order

so the annual storage
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costs are 8(9)70) = 7%. Annual inventory costs are C = 5x + 7720.

. 720
— >
0 720
_ >

720
5=
x2
5x2 =720
720

2
= — 144
YT s
x =12

The store manager should order 12 lamps at a time.
3. The average number of batteries in inventory is 5, so the annual storage

costs are 0.80(%‘) = 0.40x. There are 5(1& orders each year, so the annual

order costs are 5(5(3(&) = ZS,Xﬂ‘ Annual inventory costs are C = 0.40x +
25,000
=

25,000
C' =040 - ==
X
25,000
0=040— =2
X
25,000
0.40 = =
X
0.40x2 = 25,000
25,000
2 )
= =62, 500
0.40
x =250

The store manager should make 5000/250 = 20 orders per year.
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CHAPTER 10 REVIEW

1.

2.

When a builders’ supplier sells x tons of a material, the revenue can be
approximated by R = 1000x3 — 28, 125x% + 174,500x + 14,000 and the
cost by C = 6000x + 10,000, valid up to seven tons. How many tons
should be sold to maximize the profit?

(a) 2.25

(b) 2.85

(c) 3.35

(d) 3.75

A storage area is to be enclosed with an area of 4200 square feet. Material
and labor cost $6 per foot for three sides and the side next to a road costs
$8 per foot (Figure 10.16). What is the least the fence can cost?

$8/ft
/
$6/ft | w w | $6/ft
l
$6/ft
Fig. 10.16.
(a) $1420
(b) $1680
(c) $1710
(d) $1860

A farm and ranch store sells 100 pallets of a mineral mix per year. Each
pallet of mix costs $3 to store for one year. Each order costs $6. How
many orders per year will minimize the annual inventory cost?

(@) 5

(b) 10

(c) 15

(d) 20

When the price for a product is p, the revenue can be approximated by

R = —12p* + 432p + 2112 (valid for prices up to $40). What price
maximizes revenue?
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(a) $18
(b) $6
(c) $40
(d) $24

5. Apiece of cardboard, 21" x 18", will be used to construct an open-topped
box. A square will be cut from each corner and the sides folded up. How
much should be cut from each corner in order to maximize the volume?
(a) About 3.2"

(b) About 3.8"
(c) About 4.3"
(d) About 4.6"

6. The number of customers served by a company from 1990 to 1996 can
be approximated by y = —85x> +918x? —2624x + 11219, where x = 0
corresponds to the year 1990. During what year were there the fewest
customers? (Round x up. For example, x = 2.85 would be during the
year 1993.)

(a) 1991
(b) 1992
(c) 1994
(d) 1995

7. A box with a square bottom and a volume of eight cubic feet is to be
constructed with cardboard. The cardboard that is used for the bottom
costs $0.24 per square foot. Cardboard used for the top costs $0.16 per
square foot; and for the sides, $0.20 per square foot. What is the height
of the box that minimizes the cost?

(a) 4 feet
(b) V2 feet
(c) 1 foot
(d) 2 feet

8. The revenue for selling x units of a product can be approximated by
R = —0.003x2 + 30x — 63,000. How many units must be sold in order
to maximize revenue?

(a) 2000
(b) 3500
(c) 4800
(d) 5000
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9.

10.

11.

A video store owner rents videos for $2 per night. Each week, an average
of 1400 videos are rented. A consultant informed the owner that for
every increase of $0.20 in the price, there would be a loss of 100 rentals
each week. What should she charge for the videos in order to maximize
revenue?

(a) $2.10

(b) $2.30

(c) $2.40

(d) $2.50

A rancher wants to enclose a rectangular pasture next to a creek. The
side along the creek does not need to be fenced. The rancher has 600
feet of fencing materials available. What is the maximum area that can
be enclosed?

(a) 40,000 square feet

(b) 45,000 square feet
(c) 50,000 square feet
(d) 55,000 square feet

The cost to produce x thousand feet of wire can be approximated by
C = 0.035x2 — 0.297x + 4.586. How much wire should be produced to
minimize the average cost?

(a) About 4.2 thousand feet

(b) About 4.6 thousand feet
(c) About 11.4 thousand feet
(d) About 41.3 thousand feet

SOLUTIONS

1.d
8.d

2.b 3.a 4. a 5.a 6.b 7.d
9.¢ 10. b 11. ¢



CHAPTER

Exponential and
Logarithmic
Functions

When a quantity’s rate of change is a fixed percentage over time, then it is changing
exponentially. An exponential function has a variable in the exponent: y = 5%, y =
gl f(x) =4—7%, and R(x) = 3000(0.9)*. For example, the value of a $1000
investment that grows 10% per year can be found using the exponential function
y = 1000(1.10)*, where the investment is worth y dollars after x years. If the
investment is five years old, then it is worth y = 1000(1.10)° = 1000(1.61051) =
$1610.51.

Many quantities in the natural and social sciences change exponentially. A
city that grows at the rate of 3% per year is growing exponentially, the number

——&@
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of bacteria growing on food increases exponentially, the value of equipment that
is depreciated 10% per year decreases exponentially, and the radioactivity of
plutonium decreases exponentially.

For an exponential function that is increasing, the rate of change increases,
too. Suppose $1000 is invested at 10% interest for ten years. If the interest is not
compounded, that is, the interest does not earn interest, then $100 is earned each
of the ten years. If the interest is compounded, then 10% of the previous year’s
balance earns interest, too. The $100 earned in the first year earns interest for

nine years, the $100 earned in the second year earns interest for eight years, and
so on (see Table 11.1).

Table 11.1

Year Compounded Noncompounded Difference

interest (simple) interest
1 $100.00 $100 $0
2 $110.00 $100 $10.00
3 $121.00 $100 $21.00
4 $133.10 $100 $33.10
5 $146.41 $100 $46.41
6 $161.05 $100 $61.05
7 $177.16 $100 $77.16
8 $194.87 $100 $94.87
9 $214.36 $100 $114.36
10 $235.80 $100 $135.80
Total Interest $1593.75 $1000

The difference between interest that is compounded and not compounded gets
larger and larger each year. This effect gets more dramatic over time. The graphs
in Figure 11.1 show the value of these investments over twenty years. The line
shows the value of the account with simple (noncompounded) interest, and the
curve shows the value of the account with compounded interest. Notice how
the distance between the curve and the line gets larger each year.

The graph for an increasing exponential function (of the form y = a*) looks
like the graph in Figure 11.2, and the graph for a decreasing exponential function
(of the form y = a*) looks like the graph in Figure 11.3.

Because the derivative of a function tells us where the function is increasing
and where it is decreasing, the derivative of an increasing exponential function,
of the form y = a*, is always positive. The derivative of a decreasing exponential
function, of the form y = a*, is always negative. Both graphs cup upward, so
the second derivative is always positive. Remember that the second derivative
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4000
3000
2000

1000
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Years

Fig. 11.1.

y = 2% is increasing.

Fig. 11.2.

describes how fast the rate of change is changing. On an increasing exponential
function, this means that the function is increasing faster and faster. This fact is
illustrated in Table 11.1, which shows the compound interest (the change in the
value of the investment) growing more each year.

Before we work with the derivative of exponential functions, we will review
some algebraic properties of exponents. The number being raised to a power is
the base.

e The base for the function y = 1000(1.10)* is 1.10.
e The base for the function y = 5% is 5.
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y = (%)’C is decreasing.

Fig. 11.3.

The base of an increasing function is larger than one. The base of a decreasing
function is positive but less than one.
Let a be a positive number and m and n be any real numbers.

1. a™-a" = g™ 4.4°=1
m 1

2. L g 5 4=
a” a

3. (@' =a"" 6. Vam = a"/"

EXAMPLES

Use Properties 1-3 to simplify the expression.

o 34.32=3%2=736 Property 1

o 7.7 =7".P=7"3=7 Property 1

o 2F.23 =% Property 1
6’ 5-2 _ 3

° 2= 6> " =6 Property 2
6 6 1-3 -2

° 5=5=6 =6 Property 2

2
o Z% =q> Property 2

o (523 =5"3=5° Property 3
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o () =¢"2=e¥ Property 3

o (2735 =2 — 15 Property 3

PRACTICE

Use Properties 1-3 to simplify the expression.
1. 4.-47

93

9r

3. (@)

4. 7*.7°

al

5. —

at

6. (23)*

SOLUTIONS

1. 44" =41 . 4% =4+

9P 5
2. o = 9>
3‘ (a3)x =a3x

4. 7P =7 =7

6. (23)4 — 23~4 — 212

An important base for exponential functions is the number ¢, named in honor of
Leonard Euler. It is the limit, as n — oo, of (1+ %)”. Its decimal approximation is
2.718281828. ... Because e is larger than 1, y = ¢* is an increasing exponential
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function. It is used when an exponential quantity is continuously changing. Large
populations of people continuously change, a radioactive substance continuously
decays, a hot cup of coffee continuously cools. The number e is used in all of
these applications. This function has the remarkable property that it is its own

derivative. It is the only function (other than y = 0) that is its own rate of change.
That is, the derivative of e* is e*.

The derivative of y = ¢* is y/ = e*.

By the chain rule, the derivative of y = ¢/ ™) is y/ = f’(x)e/ ™). The derivative
is the original function multiplied by the power’s derivative. (We will see why
this works later.)

If f(x) is a differentiable function and y = /™) then y’ = f’(x)e/ ™).

EXAMPLES

Find y'.
o y=e3tl
The derivative of the power, 3x + 1, is 3, s0 y/ = 335+
o y=etS
The derivative of x +5is 1,50 y = 1.t = ¢,
o« y= o¥ 2% 43

The derivative of x2 — 2x +3 is 2x — 2. This makes y’ = (2x — 2)e* ~2%+3,

e Find the tangent line to y = e at (2, 1).

The slope of the tangent line is y" evaluated at x = 2.

y/ — 262x—4

m=2">P"4=2=2.1=2 By Property 4, & =1.

Withx =2, y=1,and m =2, y = mx + b becomes 1 =2 -2 + b, which gives
us b = —3. The tangent line is y = 2x — 3.
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PRACTICE
Find y’ for problems 1-6.
1. y=¢e%
2. y= el
3. y = ex2+4x+2
4, y =10
5. y= eVx
6. y = e«/3x+l
7. Find the tangent line to y = e’ at (-1, 1.
SOLUTIONS
1. y = 6eb*
2. y = 3x2e% 1
3. ) = Qx + 4er TArt2
4. y/ =1. ex—lO — ex—lO
5. y= eVF = '’
¥
y/ = lx_l/ze‘/; or ! e“/’? = e
2 2x1/2 2/x
6. y= V3T e(3x+l)1/2
Werasi
Y o= LGt )@ o 2L A 3O
2 2 Bx4+ D2 2/3x +1
7. The slope of the tangent line is the derivative evaluated at x = —1.

y = 2xe* !
m=2(—)e 1= 20— (1) = —2

Withx = -1,y =1,andm = —2, y = mx+b becomes 1 = —2(—1)+b.
This gives us b = —1. The tangent line is y = —2x — 1.
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The derivative of y = e/@ is y = f/(x)e/™ because of the chain rule,

d

dx
y:

Z—Z . %' When u = f(x), Z—)’ﬁ = f’(x). This allows us to write y = e/®) as
“, which means that y’ = e".
dy dy du
dx du dx
d d
— e Replace ¢ with e/* and T With ' (x).
dx dx
=/ 1)

Now that we can differentiate e/ ), we can differentiate products and quotients
containing exponential functions. The power rule is not necessary as we will see
in the next example.

EXAMPLES
Find y’.
°« y= (e3x—2)4

Because of the exponent rule (a)" = a™", we can rewrite (¢>*2)* as

e*Gx=2) — 1268 which is a little easier to differentiate: y’ = 12¢!2¥~8,

Compare this method to using the power rule on (e3*~2)%,

y/ — 4(63)6—2)3(363)6—2) — 12(e3x—2)3(e3x—2)1 — 12(e3x—2)3+1

— 12(63)6—2)4 or 12e4(3x—2) — 12812)6—8

y = xeb*

xe® is the product of F(x) = x and G(x) = ¢°. We will use the product
rule.

F’ G F G/
—~
—~
y="1 % +7x 665 = 4 6xe™
2 2 ,—x
y=x"—3x+x"e
FF G F G’

e = A ——
Y =2x =34+ 2x e ¥ 4 x? (=D)e ¥ =2x —3+2xe ¥ —x%e*

S5x
_e
y_eﬂ

Rather than use the quotient rule, we can use the exponent property
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a™ S5x

_ . . 2 .. . .
o= a™ ™" to rewrite this as y = ¢>*7* . This is much easier to dif-

ferentiate: y' = (5 — 2x)e5x—x2.

4x+3
[ = ‘)”Czﬁ
We have the quotient of F(x) = e 3 and G(x) = x>+ 1. By the quotient
rule,
,APGIH ) — e P x) 26422+ 1) —x)
y = or
(x2 + 1)2 (xz + 1)2
_ 2eM(2x2 42— x)
- (x2 + 1)2
PRACTICE
Find y'.
1. y=4xe¥

y= 2535

2

3y =(e)°

4, y=9x* — >
5

ex2+3
y= eXx—4
6.
ex2+x
T
SOLUTIONS

1. vy =43 +4x(3)e> = 4e>* 4 12xe*

2. y = 6x2e5*” + 2)c3(10x)65)‘2 — 6x25% 4 20x4e5

. . . . 3
3. Instead of using the power rule, we will rewrite the function as y = ¢* ¢ =

3 . . 3
%" This gives us y’ = 18x2e5*".

4. y' =36x3 — 5%
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5. We will use the exponent rule ‘(‘l—': = a™ ™" to simplify the function before
differentiating.

2
er +3

ex—4

2 2
y = — e(x +3)—(x—4) _ er —x+7

y =Q2x — I)eXLX+7

L Qx A Der T @x? — 1) — e (8x)
B (4x2 — 1)2

/

e (x + (42 — 1) —8x) e (8x3 4+ 4x2 — 10x — 1)
(4x2 —1)? B (4x2 — 1)2

or

The logistic function is related to the exponential function. The logistic function
describes some quantities that increase (or decrease) for a time and then level off.
The basic logistic function has the form

B a
YT TS be e
where a, b, and c are fixed numbers. The graph of y = HSS% is in Figure 11.4.
10~
8 —
6 —
4 —
/2
\ ! ! ! J
-10 10 20 30 40
2L

Fig. 11.4.

We will use the quotient rule to differentiate logistic functions.
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EXAMPLE

100

® V= 50qe00x
;0050 + ¢ O1%) — 100(—0.1e~ 1)
y = (50—{—6_0'1’“)2
106—0.1x

= (50 + e—O.lx)Z

Logarithms

Quantities that begin rising (or falling) quickly at first and then more slowly can
sometimes be approximated by logarithmic functions. The logarithmic equation
y = log, x is simply a different way of writing the exponential equation a” = x.
The number a is the base for both the logarithm and the exponent. The graphs of
logarithmic functions are very similar to the graphs of exponential functions. The
dashed graph in Figure 11.5 is the graph of y = 2*. The solid graph is the graph
of y =log, x.

Fig. 11.5.

Logarithms are used to solve exponential equations. For example, suppose
$1000 is an investment that earns 10% annual interest, compounded annually.
Recall that the investment is worth y dollars after x years, where y = 1000(1.10)*.
Suppose we want to know how long it would take for this investment to grow to
$2000. In other words, we want to solve the equation 2000 = 1000(1.10)*. We
will be able to solve this equation later.
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Before getting to the derivative of logarithmic functions, we will practice

rewriting exponential and logarithmic equations as well as cover some logarithm
properties.

EXAMPLES

Using the fact that y = log, x means a¥ = x, rewrite the logarithmic equations
as exponential equations and the exponential equations as logarithmic equations.

e 6" = 10 becomes logg 10 = x
e 3% = 9 becomes log;9 =2

e 1072 = 0.01 becomes log;;0.01 = —2
3
o 4°/2 = 8 becomes log, 8 = 3

e log, x = 6 becomes 26 =x

1

36

e log;; 1000 = 3 becomes 10% = 1000

1
e logg 6= —2 becomes 6> =

e log, m = n becomes a" =m

The logarithm with base e has its own notation, In x means log, x. “In” is called
the natural logarithm.

e Inx = 10 means ¢'© = x o ¢2 =7.389 means In7.389 =2

PRACTICE

Rewrite the logarithmic equations as exponential equations and the exponential
equations as logarithmic equations.

1. 52=25

2. 3* =29

3. log49=x

4. In4 =1.3863
5. logp0.1 =—1
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6. ¥ =16
7. 1.10 =2
8. 10g497 =%

SOLUTIONS
. logs25 =2
. log329 =x

S 4 =9
 p13863 _ 4

. In16 =3x

1
2
3
4
5. 107" =0.1
6
7. log; 102 =1x
8

. 4912 =7

There are two cancelation properties—one in which logarithms cancel expo-
nents, and the other in which exponents cancel logarithms. Both come from
rewriting exponential and logarithmic equations.

a'%%«* = x and log,a* =x

When the base is e,

" =x and Ine* =x
If we rewrite the exponential equation a'°%* = x as a logarithmic equation,
where log, x is the exponent, we have log, x = log, x. When we rewrite the
logarithmic equation, log, a* = x as an exponential equation, we have a* = a*.
We will use these properties later when we find the derivatives of y = a* and

y =log, x.

EXAMPLES
o 5087 =7 e log;n 10" =x
° 1nel6 — 16 .eln24 — 24

o Qo2 — ¢4 e logy, 20" =1¢
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We will use other logarithm properities to make differentiation a little easier.

1. log,mn =log, m + log, n
2. log, 7t =log, m —log,n

3. log, m" =nlog, m

EXAMPLES
e log;(, 6x =log;, 6 +log;ox Property 1
e log, 9 —log, 5 =logy g Property 2
e 2log; x = log; x? Property 3
e In liO =Inx —In10 Property 2
e logs =3 logs 7 Property 3
elnlSy=Inl15+Iny Property 1

We can find the derivative of y = In x from the fact that the derivative of ¢/
is f'(x)e/ ™. We will begin by rewriting y = Inx as an exponential equation:
e = x. Now we will differentiate each side of this equation implicitly, with
respect to x.

Len=Lw
—()=—(
dx dx
dy o : . o
e’ Iy 1 The derivative of ¢” is e’ times the derivative of y.
X
dy 1 .. . .
— =— Divide both sides of the equation by e”.
dx e
d
&2 We know that e” is x.
dx x

. . _ . ;1
The derivative of y =Inx is y' = |.

Using implicit differentiation and the fact that the derivative of In x is %, we can
find the derivative of y = In f(x). Again, we will rewrite the logarithmic equation
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as an exponential equation: ¢” = f(x) and use implicit differentiation.

d d
E(ey) = - (f(x)

dy /
y&
e = f(x)
dy _ f'(0)
dx e
dy _ f') v
= o We know that e’ is f(x).

The derivative of the natural logarithm of f(x) is a fraction whose numerator
is f/(x) and whose denominator is f(x).

If f(x) is a differentiable function and y = In f(x), then y’' = ]},((;‘))

EXAMPLES
Find y'.
e y=In(x2-9)

The derivative of x2 — 9 is 2x.

o y=In(@x>+3x—1)
The derivative of 4x% + 3x — 1 is 8x + 3.

, 8x +3
YT a1
e y=In(x2—-x73)
The derivative of x 72 — x 3 is —2x 3 — (=3)x ™% = —2x 3 4+ 3x~*.

, —2x 343y
Y =T 2 3

At times, the logarithm properties can save us from having to use the product
rule, quotient rule, and/or power rule. For example, the property log, m" =
nlog, m allows us to rewrite y = In(x2 + 10)* as y = 41n(x2 + 10) and avoid
using the power rule. Let us take a moment to compare differentiating this function
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with and without using this property. If we do not use the property and differentiate
using the power rule, we have

, A% +100°Q2x)  8x

@2+ 104 X2+ 10

If we use the property and differentiate y = 4 In(x2 + 10), we have

— 2x &
YEU\2¥10) T 2 x10

EXAMPLES

a2
x+5
We will use the property log, = = log, m — log, n to rewrite the function

as y = Inx? — In(x + 5).

e y=1In

2x 1 2 1

x_z_x+5:x x+5

/

y:

(We could also rewrite Inx? as 2Inx.) Compare this to differentiating
without using the logarithm property.
2x(x45)—x2(1)
y = G5

x2
x+5

e y=In[(x?—4)(2x +5)]
We will use the logarithm property log, mn = log, m + log, n to rewrite
the function as y = In(x? — 4) + In(2x + 5).
2x 2
x2—4 + 2x +5

/

y:

e y=Invx+1

Because /x + 1 = (x + 1)!/3, we have y = In(x + D3, By the third
logarithm property, this is equal to y = %ln(x +1).

, 1 1 _ 1 1
Y T3\ +1) T30+ 3x 43
We have to be careful not to evaluate the derivative at an x-value that is not
allowed in the original function. The graph in Figure 11.6 is the graph of y =
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In(x — 3). The derivative of this function is y’ = x—i3 Although we can evaluate

ﬁ at x = 1, we cannot let x = 1 in the original function. As you can see in the
graph, the function does not exist to the left of x = 3.

—_— N W B~ W
T

| | /

-1F
2
3+
4
5L
Fig. 11.6.
PRACTICE
Find y'.
1. y=1In(12x —7)
2. y=In(x>+3)
3. y=1In(5x)
4. y =In[(6x% —x)(x +4)]
5. y=In VxZ —6x + 10
6. y=1In j‘%}
7. y =1In(14x2% + x — 3)°
8. y=In[(x +3)(x — 6)(x* +2)]
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SOLUTIONS
1.
, 12
Y T =7
2.
, 2x
= x24+3
3.
L5 1
Y=y

4. y =In[(6x% — x)(x +4)] = In(6x% — x) + In(x + 4)

_12x—1+ 1
T 6x2—x x+4

/

y

5. y=Invx2—6x + 10 = In(x?> — 6x + 10)1/2 = 1 In(x — 6x + 10)

, 1 2x — 6 _l' 2(x —3) . x—3
T2 x

Y=o\ Z6x+ 10 2_6x+10 x2—6x+10

6. y=In*H =In(x+1) —In(x—1)
1 1
Cx+l ox—1

/

Y

7. y =In(14x> + x —3)° =5In(14x> + x — 3)

, 8x+1 \  5028x+1) _ 140x +5
YT 42 5x—-3) T 142 +x -3 14x21x_3

8. y=In[(x +3)(x —6)(x*> +2)] = In(x + 3) + In(x — 6) + In(x* +2)

_ 1 n 1 n 2x
T x43 x—6 x2+42

/

y

Now that we can differentiate In f(x), we will differentiate products, quo-
tients, and powers of functions involving logarithms.
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EXAMPLES

e y=Vx+5In(4x —3)
We have the product of F(x) = /x+5 = (x + 5172 and G(x) =

In(4x — 3).
F' G F G’
— ——
] 120\ Trde — 30 2 4
y=z&+5"/"(M)In@x -=3)+x+5"7"" ——
2 4x — 3
4 In(4x —3) 4/x+5
or In(4x —3)+Vx+5 = +
2/x +5 ( ) 4x —3 2x +5 4x —3

e y=[nGx*2+7NP
We will use the power rule, y' = n(f(x))"~! f/(x), where f(x) = In(5x%+

7). and f'(x) = 5945

10x
" = 3[In(5x% + N)]?
¥ =3nGx* + D 55

The logarithm property log, m" = nlog, m does not apply to y =
[In(5x% + 7)1, which is y = [In(5x> 4+ 7)] - [In(5x2 4+ 7)] - [In(5x> + 7)].

_ In(x2-6)
* V= "4

By the quotient rule,

P+ 4 — G - 6)]2)
B (2x + 4)? ‘

PRACTICE

Find y'.

1. y=(16x2+1)-In(x —3)

2. y=+/In(3x5 —2x3 +x)
In 10.

3. y= Iylc+4x

4. y=e'"In12x% -9)
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SOLUTIONS
1.
/ 2 1
vy =32xIn(x —3) 4+ (16x —1—1)-—3
Y
2.y =[In(3x> —2x3 +x)]'/2
1 15x% — 6x2 + 1
" — I n(3x5 — 253 -1/2
Y 2[n( * SRR 3x5 —2x3 +x
3.
, or(x +4) — (In 10x)(1)
B (x +4)?
4.
24x
/ 10, 2 10
y = 10e xln(12x —9)+€ X'm

Logarithms can greatly simplify the differentiation of complicated functions.
For example, if we want to find the derivative of

(x +3)% +10)\*
y= < 2x — 1 )
we could use the power, quotient, and product rules. Using all of these formu-
las would be very messy, and the derivative would need tedious simplification.
Instead, we will take the natural logarithm of both sides of the equation and use
logarithm properties to simplify the right side of the equation, finally implicitly
differentiating both sides of the equation.

((x+3)(x2+10)>4
Iny =1In
2x — 1

32+ 10

Iny =41In 4+ )"+ 10) Property 3
2x — 1

Iny = 4[In[(x + 3)(x% 4+ 10)] — In(2x — 1)] Property 2

Iny = 4[In(x + 3) + In(x?> + 10) — In(2x — 1)] Property 1
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We are ready to implicitly differentiate both sides of the equation.

< s

1 2x 2 . .
=4 + — The derivative of In y is
x+3 x24+1 2x-1

_. 1 4 2x A 2
o \x+3 x2+1 2x — 1

_ 4 n 8x 8
T ox+4+3 x241 2x—1

ol R P =

We will clear the fraction on the left side of the equation by multiplying both
sides of the equation by y.

dy 4 n 8x 8
dx x+3 x24+1 2x—-1

Finally, we will replace y with (%)4 from the original equation.
dy _ (G+3)G2 410\ (4 8 8
dx 2x — 1 x+3  x2+1 2x—1

One of the cancelation properties of logarithms and exponents allows us to
differentiate a function of the form y = a*, when a is any positive number that
is not 1. From the cancelation property r = b°%’ we have a = ¢"¢(= el°2 %),
We will raise both sides of this equation to the x power.

o = (elna)x

By the exponent property (a™)" = a™", the above can be rewritten as a* =
e*"e¢ Now we know that y = ¢* and y = ¢*'"“ are the same function. Recall
that the derivative of e/® is f/(x)e/™. Here, f(x) = xIna, x times the
fixed number Ina. This means that f’(x) = Ina. The derivative of y = e*"@
is y/ = (Ina)e*™?. We can replace e*!"¢ with a*, so the derivative becomes

y' = (Ina)(a®).

The derivative of y = a* is y' = (Ina)(a®).
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EXAMPLES

Find y’.
o y=3" y' = (In3)(3%)
o y=10" y = (In 10)(10%)
o y=28" y' = (In28)(28%)

R IO

Using the chain rule, we can find the derivative of y = a/®. To fit the

i dy _ dy  du i i — at —
chain rule formula 7: = Z - &, we will write y = a", where u = f(x) and

= r.
dy dy du
dx  du dx
du
= w, 2=
(Ina)a e
= (na)a’™ - f'(x)
If f(x) is a differentiable function and y = af®,
then y' = f/'(x)(Ina)a/ ™.
EXAMPLES
Find y’'.
o y= 2+’

The derivative of the exponent is 3x°.
y' =3x*(In 2)(2x3)

o y= 82x+5

The derivative of the exponent is 2.

y/ — 2(1n 8) (82X+5)
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o 5V

1

The derivative of the exponent is §x_1/ 2,

y = %x—l/z(lnS)(sﬁ)

PRACTICE
Find y'.
1. y=6*
2. y=15*
3. y=u)
4. y = 104x3+6x+2
5.y = 9gvats
6. y = 211n6x
SOLUTIONS

1. y = (In6)(6%)

2.y = (In15)(15%)

3. ¥ =[n(H1IH)"

4.y = (12x2 + 6)(In 10) (10%°+6x+2)
5

r_ l -1/2 Vx+5x (L ) Vx+5x
y_<2x —|—5>(ln9)(9 Yor (3= +5) o) 0¥

. .6 1
6. The derivative of In 6x is =

1
y = =(In21)(21"6¥)
X

With the change of base formula, we can rewrite any logarithm as a natural
logarithm. This allows us to differentiate functions of the form y = log, f(x).
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When we want to rewrite a logarithm in old base b to new base a (usually base
10 or base ¢), we can use the formula

For now, we will practice using the formula. Later we will see where it comes
from and how to use it to differentiate y = log, f(x).

EXAMPLES

Rewrite the logarithm using the indicated base.
e log; 20, base 8
The new base is a = 8, the old base is b = 3 and m = 20.

logg 20
logg 3

log; 20 =

o log;5(x? + 10), base 4
a=4, b=15and m = x>+ 10

1 2410
10g15(x2 +10) = log,(x~ + 10)

log, 15
e log; g2, base 10
a=10,b=1.8,and m =2
1 2
log; g2 = 1 Oglol
0gjo 1.8

o log, 6, as a natural logarithm
The base of the natural logarithm is e, so a = e, b = 0.9, and m = 6.

log, 6 In6
log,0.9 1n0.9

logy 6 =

PRACTICE

Rewrite the logarithm using the indicated base.

1. logyy x, base 4
2. log;53(x —9), base 5



CHAPTER 11 Exponential & Log Functions_\@)

3. log;y2, base e
4. logg 15, base 10
5. In5t, base 1.4

SOLUTIONS
1.
log, x
1 =
0820 % log, 20
2.
logs(x — 9)
10g1.3(x —9) = 1§g5—13
3.
log, 2 In2
logjp2 = - o =
og,10 Inl10
4.
logo 15
logg 15 = 1 10 I8
0810
5.
log, 451

In 5t =log, 5t =
logy 4e

To see where the change of base formula comes from, let us try to find a decimal
approximation for logs 28 using only what we have learned about logarithms and
exponents. We begin with the equation x = logs 28. Rewriting this equation as an
exponential equation gives us 5* = 28. We will take the natural logarithm of both
sides of this equation and solve for x. The reason we want the natural logarithm



c@’_CHAPTER 11 Exponential & Log Functions

is that most calculators have a natural logarithm key, marked “LN.”

57 =28
In5" =1n28
xIn5 =1n28 Logarithm Property 3
In 28 .. . .
=1 Divide both sides of the equation by In 5.
3.33220451

X~ ———— ~2.0704
1.609437912

. log, m
These same steps allow us to write log;, m as 35 b

y = log,m
b’ =m Rewrite as an exponential equation.

log, b’ =log, m Take logarithms of both sides.

vlog, b =log, m Logarithm Property 3

log, m
Y= Jog b
og, b
1 log, m Repl ith 1
(0] m = eplace W1 (0] m.
29 log, b p y gp

Recall the problem in which $1000 is invested for x years earning 10% interest,
compounded annually: y = 1000(1.10)*. We want to know how long it would
take for this investment to grow to $2000. To do this, we need to solve the equation
2000 = 1000(1.10)*.

2000 = 1000(1.10)*

2 =1.10" Divide both sides by 1000.

x =log; 1092 Rewrite the equation as a logarithmic equation.

In2
x = - Use the change of base formula.
In1.10
x ~7.27

It would take 7.27 years (or 8 years if interest is not paid until the year is over)
for the investment to grow to $2000.
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By the change of base formula, we can write y = log, f(x) as

Infx) 1
= =—1In .
Ina Ina Fe0)
The derivative of this function is y’ = ﬁ ]}/((;C)) ory = (m]:)%

. . . . _ _ f/( )
If f(x) is a differentiable function and y = log, f(x), then y' = 7 75%.

EXAMPLES
Find y'.
e y=logs(10x 4 3)

B 10
~ (n35)(10x +3)

/

y

o y=log)l6x

B 6 1
"~ (In10)16x  (In10)x

/

y

o y=log,(x*—6)

, 2x

Y T a2 —6)

PRACTICE
Find y'.
1. y = logo(l4x + 15)

2. y = loglo x2
3.y =logy 4(5x 4 2x? — 3)
4

.y =logy Vx
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SOLUTIONS
1.
- 14
Y T n9)(14x + 15)
2.
, . 2x 2
Y T n10)x2 ~ (n10)x
3.
, 15x2 4 4x
y

= (In2.4)(5x3 + 2x2 —3)

4.y =logyy v/x =logy x'/? = Jlogsy x

A T T
Y T n34)x | 2(In34)x

Applications

We will finish the chapter with some applications of exponential and logarithmic
functions. Because these business and science applications use one of the forms
y=a*,y=log,x,and y = W, there are no relative extrema. Any maximum
or minimum occurs at an endpoint (the smallest and largest x-values allowed).
The derivative gives us the rate of change of these functions, however.

EXAMPLES

e $1000 is invested at 10% interest, compounded annually. The value of the
account after x years can be found with y = 1000(1.10)*. How fast is the
account growing at 9 years?

The derivative of y" = 1000(1.10)* approximates the interest earned in
the year x.

y' =1000(In 1.10)1.10*

At 9 years, y = 1000(In 1.10)1.10° ~ 224.74, which means the account is
growing at the rate of $224.74 per year at 9 years.
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e The temperature of a cup of coffee x minutes after sitting on a table can be
approximated by y = 80+ 120e %93, How fast is the temperature cooling
at 4 minutes? At 8 minutes?

We will evaluate the derivative at x = 4 and x = 8.

¥ = 120(—0.03)e 003 = _3 6003
y/ — _3.6670.03(4) — _3.6670'12 A~ _32

At 4 minutes, the coffee is cooling at the rate of 3.2 degrees per minute. At
8 minutes, the coffee is cooling at the rate of 2.8 degrees per minute.

e A human resources manager has determined that when x thousand dollars
is spent on a training program, productivity can be approximated by y =
19.97+7.051n x (between x = 0.5 and x = 7). Productivity is measured in
y thousand units per day. How fast is productivity increasing when $1000
is spent on the program? When $4000 is spent?

, 1
y =7.05{—-
X

Atx =1,y = # = 7.05. Productivity is increasing at the rate of about

7.1 thousand units per day. At =4, y' = % = 1.7625. Productivity is
increasing at the rate of about 1.8 thousand per day.

e After x weeks of a product’s release, y thousand units are sold, where y
can be approximated by

10.3

Y T ¥ 1770

How fast are sales increasing at 2 weeks? 10 weeks?

| (2103)(1L77)(=0.29)e 0% 5.8699¢~0:2%x
a (14 1.77¢0-29%)2 = (1+ 1.77¢02x)2

, 5.28699¢ 022
Y T U+ 177 0Py

5.28699¢0-29(10)
/ ~
x=10 y = (15 17705002 ~ 0.24156

~ (0.7467

The product is selling at the rate of about 750 per week after two weeks
and 240 per week after 10 weeks.
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PRACTICE

1.

For the years 1970 to 2000, a city’s population was y thousand, x years
after 1970, where y = 150¢%-04. How fast was the population increasing
in the year 1975? 1995?

The value of a piece of equipment x years after it is purchased is y =
150,000(0.9)*. How fast is it losing its value 5 years after purchase?

A sample of 100 mg of a radioactive substance has y mg of the substance
remaining after x days, where y = 100e~%-0%% How fast is the substance
decaying after 10 days? 20 days?

The purchasing power of the dollar between 1975 and 2000 can be approx-
imated by y = 1.841 —0.3937In x, x years after the year 1975. How fast
is the value of the dollar dropping in the year 1980? 1990?

(The equation is based on data obtained from the Statistical Abstract of
the United States, 2004-05, Table 697.)

The sales level y of a product, after x thousand dollars is spent on
advertising, can be approximated by

22

Y= + 30e—07x"

How fast are sales increasing when $5000 is spent on advertising?
$15,000?

A mathematics teacher collected data on how many minutes of class time
was spent covering a topic and the average class score on a test. When x
minutes are spent on the concept, the class average is y, where

69.13

Y T 11 63¢ 0139

How fast is the class average increasing when 15 minutes is spent covering
the concept? 45 minutes?

SOLUTIONS

1.

y' = 150(0.04)e00% = 6904 At x = 5, y/ = 6%040) ~ 7.3, In the
year 1975, the population is increasing at the rate of about 7.3 thousand per
year. At x = 25, y/ = 690425 x 16.3. In the year 1995, the population
is increasing at the rate of about 16.3 thousand per year.
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2.y’ = 150,000 (In0.9)(0.9)*. At x = 5, y/ = 150,000(In 0.9)(0.9)° ~
—9332.15. The equipment is losing value at the rate of about
$9330 per year at 5 years.

3.y = 100(—=0.005)e 0005 — _05070005x Ar x = 10, y =
—0.5¢70-005010) ~ _0 48. At 10 days, the radioactive substance is decay-
ing at the rate of about 0.48 mg per day. At x = 20, y' = —0.5¢70-00520) ~
—0.45. At 20 days, the radioactive substance is decaying at the rate of about
0.45 mg per day.

4,
, —0.3937
y =—— 7
X
Atx =5,y = =037 = _0.07874. In the year 1980, the dollar was
losing value at the rate of about 7.9 cents per year. At x = 15, y/ =
=0.3937 — _0.026. In the year 1990, the dollar was losing value at the rate
of about 2.6 cents per year.
5.
;| —22(=21e707N)  462¢707F
y = 1+ 306_0'7")2 - (1+ 306—0.7x)2
, 462¢7074)
x=5 y = (1 1 3000702 3.841
4626_0'7(15)
x=15 y = (1 + 30007152 0.013
When $5000 is spent on advertising, sales are increasing at the rate of
3.8 per thousand spent on advertising. When $15,000 is spent, sales are
increasing at the rate of 0.013 units per thousand spent on advertising.
6.
, —69.13(—=0.139)(6.3)e™ 139 60.537141¢0-13%
Y= (1 + 6.3¢-0-139%)2 = (1 + 6.3¢-0-139%)2
60.537141¢0-139015)
x=15 = ¢ ~ 23667

(1 + 6.3¢—0-139(15))2

60.537141¢ 7013945
x=45 = ¢ ~0.1135
(1 + 6.36_0‘139(45))2
When 15 minutes is spent on the concept, the class average is increasing

at the rate of about 2.4 points per minute spent on the concept. When
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45 minutes is spent on the concept, the class average is increasing at the
rate of about 0.1 points per minute spent on the concept.

CHAPTER 11 REVIEW

1. y= 55t =3
(@) y = (20x3 — 2x)e20x3_2x
(b) ¥ = (20x3 — 2x)e>* ¥
©) y = (5x4 _ x4)ezox3—2x
d) y = (5x4 _ xz)eSx‘LxLl
2. 4%.4% =
(a) 16x%*
(b) 16x+9
(C) 49x
(d) 4x+9
3. y=mh@x*+7)
(@) y' =24x%In(8x> +7)

r_ 8x347
(b) y =87
;_ 24x2
(© y = 8x3)f|—7
;_ 24x2
(d) y = In 8x3+7
4, y=7*
(@) y' =x7"""
(b) y' = An7)(7%)
1
(© Yy =1
d y=eé 7

5. loggl(x + 10)(x — 4)] =
(@) [log(x + 10)][logg(x — 4)]

(b) logg(x 4+ 10) — loge(x — 4)
(c) logg(x + 10) + logg(x — 4)
(d) (x 4+ 10)logg(x —4)

6. y=In(4x2+ x)?
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(a)

,  lex +2

Y C 4x24x
(b) y' =2In(4x? + x)
(c)

;o 8x+1)?

v 4x% +x
(d)

,  8x+1

Y C 4x24x

7. y:4x+6

(@) ¥y = (x +6)(In4)(4*T6)
(b) ¥ = (x +5)(In4)(4*+°)
©) ¥y = (x +6)4* %)

(d) y' = (In4)(4*+°)

8. The number of bacteria in a culture x hours after 1:00 can be approxi-
mated by y = 600e%-40%. How fast is the number of bacteria increasing
at 4:00?
(a) About 600 per hour
(b) About 800 per hour
(c) About 1000 per hour
(d) About 1200 per hour

9. y = (e3x+4)2
(a) y/ — 666x+8
(b) y' = 2(e>*)
(C) yl — (3e3x+4)2
(d) y/ — 1263x+4

10. log;(1 —2x) =

@ S
O) iy
(C) In 11517112x
d) s
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11 X3 —4x24x
. - edx
r_ (Bx2=8x+1) (™) — (x3—4x24x)(5¢7%)
(a) y = (eSx)Z
(b) ¥y =3x%—8x +1—5¢*
(©) ¥ = (Bx? —8x + 1)e>* + (x3 — 4x2 4 x)(5¢>)
r_ 3x2-8x+1
(d) y =2l
12.  $750 is invested for x years, earning 8% interest, compounded annually.
¥ g p y
It is worth y = 750(1.08)* after x years. How fast is the account
growing at the end of ten years?
(a) About $115 per year
(b) About $125 per year
(c) About $135 per year
(d) About $145 per year
_ 14
13. y=1In 3x2—7)|C—l
(@ y =5
1 7
(b) ¥y =1In5;
r_ 1 6
(C) Yy =x 3x2)f|-1
(d) ¥y =1In(14x) —In(3x2 + 1)
14, y=+e¥*1
(@ ¥ = (e )72 2xe
(b) y =V 2xe’~!
(c) y =2xve¥*~1
@) y = 2xe !
15. y=10"*
(a) y = —x210!—*°
(b) y' = —x2(In 10)(10' )
©) y = —2x(In 10)(10!—*%)
() y = (In10)(10' ")
SOLUTIONS
1.b 2.d 3.¢ 4. c 6. a 7.d 8.b

9.a

b 5. .
10. a 11. a 12. b 13. ¢ 14. a 15. ¢
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|
BElasticity of Demand

When the price of many products increases, demand decreases. The combination
of the increase in price and decrease in demand can affect revenue—the revenue
increases, decreases, or even remains the same. If the decrease in demand is
small enough, the revenue will increase because the price increase makes up for
the loss in sales. If the decrease in demand is large enough, the revenue will
decrease because the increase in price will not make up for the loss in sales.
Economists measure the sensitivity of demand to price increases with a number
called the elasticity of demand. Elasticity of demand is a ratio of the percent
change in demand and the percent change in the price. The Greek letter n (eta) is
used to represent this number.

__ Percent change in demand

Percent change in price

——&

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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CHAPTER 12 Elasticity of Demand

EXAMPLE

The demand for a product sold by the pound is D(p) = 100 —5p, where D
represents the number of pounds demanded when the price per pound is p.
Find 7 for a 10% price increase when the prices are $6, $8, and $12.

For each of p = 6, p = 8, and p = 12, we will compute the demand
before and after the price increase so that we can find the percent decrease
in demand. And for comparison, we will compute the change in revenue.
When the price is $6 per pound, there are D(6) = 100—5(6) = 70 pounds
demanded. The revenue is ($6)(70) = $420. When the price increases 10%,
or $0.60, demand has decreased to D(6.60) = 100 — 5(6.60) = 67, and
the revenue has increased to ($6.60)(67) = $442.20. The percent decrease
in demand is 7% = 2 ~ 0.043 = 4.3%. At $6, a 10% increase in the
price results in a 4.3% decrease in demand and an increase in revenue.

43%

- — 043
7= 70%

When the price is $8 per pound, demand is D(8) = 100 — 5(8) = 60, and
the revenue is ($8)(60) = $480. When the price increases 10%, or $0.80,
demand has decreased to D(8.80) = 100 — 5(8.80) = 56, and revenue
has increased to ($8.80)(56) = $492.80. The percent decrease in demand is
% = % 2 0.067 = 6.7%. At $8, a 10% increase in the price results in

a 6.7% decrease in the demand and an increase in revenue.

6.7%
10%

= 0.67

n:

When the price is $12 per pound, demand is D(12) = 100 — 5(12) = 40,
and the revenue is ($12)(40) = $480. When the price increases 10%, or
$1.20, demand has decreased to D(13.20) = 100 — 5(13.20) = 34, and
revenue has decreased to ($13.20)(34) = $448.80. As a percent, demand
has dropped by 4()&)34 = % = 0.15 = 15%. At $12, a 10% increase in the
price results in a 15% decrease in the demand and a decrease in revenue.

15%
n= =1.5
10%

A 10% increase in the price at each of $6 and $8 per pound resulted in an
increase in revenue while revenue decreased at $12 per pound. When a price
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increase causes revenue to increase, demand is inelastic. When a price increase
causes revenue to decrease, demand is elastic. When 7 is smaller than 1, demand
is inelastic, and when it is larger than 1, demand is elastic.

When n < 1, demand is inelastic.
When n > 1, demand is elastic.

When the demand function is differentiable, there is a simple formula for 7.
We will call this function E(p).

_ —pD'(p)

To see where it comes from, let & represent the price increase. In the previous
example, 4~ = 0.60, h = 0.80, and & = 1.20. The percent increase in the price
0.60

is % x 100%. For example, % x 100% = == = 10%. The percent decrease in

demand is

D(p +h) — D(p)
D(p)

For example, 566_060 ~ —6.7%. This number is negative because the demand

function is decreasing. With this notation, we can represent elasticity at price p as

. D(p+h)—D
Percent change in demand 2 D() ) )
7’) = - - = A
Percent change in price i

We will use algebra to rewrite this expression in a way that allows us to use
calculus.
D(p+h)—D(p)

D(p)
h

p
_Dp+h-D(p)  h _Dp+h—-Dp) p

D(p) “p D(p) h
_ plD(p+h) — D(p)]
D(p)-h

__p Dp+h—-Dp
D(p) h
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If D(p) is a differentiable function, we can take the limit of w as
h — 0, which we know is D'(p).

D(p +h) — D(p)
h

This allows us to use D’(p) in place of w for n and E(p). E(p) =
%}’)()p) gives us the elasticity of demand for a small increase in the price. Because
demand is usually decreasing, D’(p) is usually negative. For the sake of con-
venience, we want n to be positive, so we use —p in the formula instead of

simply p.

EXAMPLES

e Use E(p) to find the elasticity of demand for the demand function and
prices in the previous example.

D'(p) = li
(p) Nim

The demand function is D(p) = 100 — 5p, so D'(p) = —5.

-p(=5)  5p )4

E(p) = _ _
(P) = 100=5p = 320—p) 20— »

6
At $6, E(6) = —— = 0.43

20— 6
At $8, E(8) = 8 = 0.67
’ S 20-8
At $12, E(12) = =15
$ (12) 20— 12

e Find the elasticity of demand for D(p) = 1000—6p at p = 70 and p = 90.
Determine if demand is elastic or inelastic.

D'(p) = —6
_—pD'(p) _ —p(=6)  6p
E(p) = = =
D(p) 1000 —6p 1000 — 6p
. 6p _ 3p
"~ 2(500—3p) 500 —3p
3(70 210
n=Eq0) = 0 2195
500 — 3(70) ~ 290
3(90 270
n = E90) = 60 _ ~1.17

500 — 3(90) 230
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Because 0.72 is smaller than 1, demand is inelastic at $70. Because 1.17 is
larger than 1, demand is elastic at $90.

e Find the elasticity of demand for D(p) = % at p = 20 and p = 25.

Determine if demand is elastic or inelastic.

. 0(p — 10) — 100(1) -100
D (p) = 3 = 3
(p —10) (p —10)
—100
_p . To2
E(p) = — 210"
p—10
100p
_ Goi0? _ 100p 100
- 100 _ 2
510 (p—10) p—10
_100p p—10 p
T (p—102 100 ~ p—10
= E20) = 20 _ 2 = EQ25) = 2 1.67
= T20-10 = ~2%B-10

Because 2 and 1.67 are larger than 1, demand is elastic for both $20
and $25.

e Find the elasticity of demand for D(p) = 100(0.9”) at p = 5 and p = 8.
Determine if demand is elastic or inelastic.

D/(p) = 100(In 0.9)(0.97) ~ —10.5(0.97)
_ —p(—10.5)(0.97) _ 10.5p

E(p) = _
(P) 100(0.97) 100
10.5(5) 10.5(8)
— EG) = —0.525 — E@®) = —0.84
n=EG) == n=E® ==

Both 0.525 and 0.84 are less than 1, so demand is inelastic at $5 and $8.
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PRACTICE

Find the elasticity of demand for the given function and price. Determine if
demand is elastic or inelastic.

1. D(p)=125—-4p; p=15

2. D(p)=8—-03p; p=18

3. D(p)=75(0.85%); p=9

4. D(p) =% p=20

5. D(p)=72ms p=3

SOLUTIONS
1. D'(p)=—4
_—p(=4  4p
E ) = 135 =4, T 125 - ap
_Easy = 1) oo
n=EdS5) = 125 —4(15)

Demand is inelastic at $15.

2. D'(p)=—023

_ —p(=03) _ 03p

E(p) = _
(P) =503, ~8-03p
0.3(18
n=E18) = U8 508
8 —0.3(18)
Demand is elastic at $18.
3. D'(p) = 75(In 0.85)(0.857)

— p[75(1n 0.85)(0.857)]
E(p) — — —p(n0.85
(P) 75(0.857) p(In0.85)

n=FEO) =-91n0.85) ~ 1.46

Demand is elastic at $9.
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—&

_0(p—8) —60(1)  —60
B (p—28)? ~ (p—18)?
p- (p_—6§)>2 (p6—0§)2

E(p) = 60 = " &0

=8 P8

D'(p)

60p 60  60p p—38
(p—82 " p—8 (p—8% 60
p

E(p) = m

E(p) =

—EQ) = 2~ 167
= T20-8

Demand is elastic at $20.

5. D(p) =50(p +1)~1/?
-25 25

(p+ 132~ Vp+1)3

D'(p) =50 (—%) (p+1)73?*=

—25

_p.
A (p+1)3
E(p):+
NrE
25p
E(p)—‘/(”“)3— 25p  NJp+l
7 Joe+Dd S50
Vp+1
2/ (p + 1)3
V3F1 2
n=E@ = 2L 3@ 6 s

NG S NZE )

Demand is inelastic at $3.

We can use 1 as a measure of how fast revenue is increasing or decreasing. If
n is larger than 1, a small increase in the price results in a decrease in revenue.
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The larger 5 is, the faster the revenue is decreasing. If n = 2.9, revenue is falling

more sharply than if n = 1.3. If 5 is between 0 and 1, revenue is increasing. The
closer to 0 7 is, the faster the increase (see Figure 12.1).

Revenue is Revenue is Revenue is Revenue is
increasing faster. increasing. decreasing. decreasing faster.
n=20 n=1

Fig. 12.1.

When n = 1, demand is unit elastic or has unit elasticity. We will see later
the importance of unit elasticity. For now, we will find the price, if it exists, for
which demand is unit elastic.

EXAMPLES
Find the price for which demand is unit elastic.
e D(p)=240—15p
We will find E(p) and solve the equation E(p) = 1.

—p(—=15) 15p

E(p) = =
240 —15p 240 —15p

15p _1
240 — 15p
15p =240 —-15p Multiply by sides by 240 — 15p.
30p =240
240 g
P=730 =

Demand is unit elastic when the price is $8.
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o D(p) =504

D'(p) = 5(—0.4)e7 047 = —2,04p

—p(—26_0'4p) B 2pe—0.4p 2p

E(p)=—F 4, = 5,04y = 5 =04
E(p)=1
0.4p =1
1
p=57=25

Demand is unit elastic when the price is $2.50.

When any continuous function changes from increasing to decreasing, it passes
through a maximum. This is what happens to the revenue function when elasticity
changes from increasing (when 7 is less than 1) to decreasing (when 7 is greater
than 1). Revenue is maximized for the price at which demand is unit elastic. Let
us see what happens when we find the critical values for the derivative of the
revenue function. Revenue is found by taking the product of the price and the
number of units sold. The price is p, and the number of units sold is the demand,
D(p), so the revenue function is R = p - D(p). Using the product rule gives us
R'=1-D(p)+ p - D'(p).

R’ = D(p) + pD'(p) Set R' =0
0= D(p)+ pD'(p)
—pD'(p) = D(p)

—pD'(p) _ D(p)

D(p)  D(p)
—pD'(p) _
D(p)

— D/
E(p) =1 substitate 22 P for E(p).
D(p)



G@’— CHAPTER 12 Elasticity of Demand
PRACTICE

Find the price that maximizes revenue by finding the price at which demand is
unit elastic.

1. D(p)=975—-39p

2. D(p) = 60e01p

3. D(p) = —0.01p> — 0.03p + 600 (Please give your answer to the nearest

dollar.)
SOLUTIONS
1.
—p(=39) 39p
D'(p) = -39 E(p) = =
(P) (P)= 575 39, = 975 — 39,
39p _
975 —39p
39p =975 -39p
78p =975
975
=—=125
P=3
Revenue is maximized when the price is $12.50.
2.

D/(p) = 60(—0.1)(3_0'117 — _66—0.1p

—p(—=6e7017)  6pe 0P p
60e=01r 60e~01r 10

E(p) =

Po_
10
p=10

1

Revenue is maximized when the price is $10.
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3. D'(p) = —0.02p — 0.03
—p(=0.02p — 0.03)
—0.01p2 — 0.03p + 600

E(p) =

0.02p 4+ 0.03p
—0.01p2 — 0.03p + 600

0.02p% +0.03p
—0.01p2 — 0.03p + 600

1=

—0.01p% — 0.03p + 600 = 0.02p* + 0.03p
0 = 0.03p? + 0.06p — 600

_—0.06 + /(0.06)% — 4(0.03)(—600)
p= 2(0.03)

—0.06 + /0. 2
_ 0.06 0.0036 + 7 ~ 140

0.06

Revenue is maximized when the price is about $140.

CHAPTER 12 REVIEW
1. For D(p) = 140 — 6p, find the elasticity of demand function.
(a)
_140—6p
E(p) = 6
(b)

6p
E(p)=—2
P)=120—6p

(c)

140 — 6
E(p) = 6—p
P

(d)
6

E(p)=——
P)=120"6p
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2. For D(p) = 4(0.87), find the elasticity of demand function.

(a) E(p) =—4(n0.8)p

(b) E(p) =4p

(©) E(p) =—(n0.8)p
(d) E(p) =0.87p

3. For D(p) = 140 — 6p, find the elasticity of demand for p = 9 and
determine if demand is elastic or inelastic.
(a) n ~ 0.63, inelastic
(b) n ~ 0.63, elastic
(c) n ~ 1.60, inelastic
(d) n ~ 1.60, elastic

4. For D(p) = 500(0.87), find the elasticity of demand for p = 7 and
determine if demand is elastic or inelastic.
(a) n ~ 1.56, inelastic
(b) n ~ 1.56, elastic
(¢c) n =~ 6.25, inelastic
(d) n =~ 6.25, elastic

5. Find the price for which demand is unit elastic for D(p) = 1500 — 12p.
(a) $72.00

(b) $87.25
(c) $125.00
(d) $62.50

6. Find the price for which demand is unit elastic for D(p) = 200e0-04p
(a) $0.12

(b) $145

(c) $25

(d) Demand is never unit elastic.

SOLUTIONS
I.Lb  2c¢ 3a 4b 5d 6.c



CHAPTER

The Indefinite
Integral

Until now, we found the rate of change of a given function by finding its derivative.
For the rest of the book, we will work in the opposite direction. We will be given
the rate of change and will construct the original function. For example, suppose
we know y’ = 2x and want to find y. What function has a derivative of 2x? One
such function is y = x2. Others are y = x>+ 1, y = x>— 16, and y = x> +5. The
process of constructing a function from its rate of change is called integration.

When we see the expression f f(x)d(x), we want to find the function whose
derivative is f(x). The function is not unique. We saw earlier that if y’ = 2x,
then y could be any one of many functions—y = x2, y = x> 4+ 1, y = x> — 16,
y = x2+5, or y = x? plus any constant. For this reason, we say that y = x>+ C
is the indefinite integral of 2x. (We say that 2x is an antiderivative of x°.)

/ 2xdx =x*+C
We will begin by using the differentiation formulas in reverse.

——&

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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The Power Rule

The first integration formula comes from the fact that the derivative of x" is
nx"~1. Rather than use the formula fnx”_ldx = x" + C, we will use a more
convenient formula.

1
/x” dx = ?x”“ + C except forn = —1.
n

The power is increased by 1 and the expression is divided by the new power.

EXAMPLES

o [x*dx
The new power is 4 4+ 1 = 5.

1
/x"dxz—x"“—l—C
n—+1

1
/x4dx=§x5+C

o [xdx
The new power is 10 + 1 = 11.

1
10 11
d [ —
/x x_llx +C

o [x73dx
The new power is =3 + 1 = —2.

1
/x3 dx = —Ex*Z +C

° fx%dx

2

1
Because — = x -, we will find fx_z dx. The new poweris —2+1 = —1.

x2

1 1
fx_zdx=—x_1+C=——+C
-1 X

When 7 is a fraction, n + 1 is a fraction, and usually ﬁ, the reciprocal of

n + 1, is also a fraction. For example, if n is %, n+1= % + % = % and
1 _3
nFl — 5
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° fﬁdx

A1S usuazl, we will rewrite /x as x1/2. This gives us n = %, n+1= %, and

1 T 3

2
/xl/zdx = §x3/2 +C
1
—dx

° f NS

We will find fx*I/Z dx. The new power is _Tl +1= %, and nil is 2.

fx_l/zdx =2x'2 4 Cor 2Jx 4+ C

. f\/3 x*dx

Because Vx4 = x¥3, n = g—‘, n+1= %, and ﬁ = %

3
/x4/3dx = §x7/3+C

This formula can be used to integrate the simple [dx = [1-dx if we think
of 1as x. Thenn =0andn + 1 = 1.

1
/dx:le—i-C:x—FC

We can integrate sums such as x> + x by integrating each term separately.

1 1
/(x3+x)dx=/x3dx+/xldx=Zx4+§x2-|—C

PRACTICE
1. [x8dx
2. [x7%dx
3. [xPdx
4. [Vx3dx
5. [ Jdx
6

.f%dx
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7. [(x+1dx

8. [(x*+x3+x)dx

9. [(x°—x?)dx

10. [(Vx — %) dx

SOLUTIONS
1. fxgdx:%xg—i—c
2. fx_6dx:—%x_5+C
3. [xPdx = x4+ C
4. f@dx=fx5/2dx:%x7/2+c
5. fxlgdx:fx—9dx:_%x—8+c
6. [ = dx—fx_1/3dx=%x2/3+c
7. [(x+Ddx=ix>+x+C
8. [G*+x3+x)dx =14+ xt+Ix2+C
9. [°—xVdx =014
10. f(f—é)dx—f(xl/z— _z)dx:%x3/2—<}1x—1)+c

The fact that the derivative of a - f(x) is a - f'(x) allows us to move a number
either inside or outside the integral sign.

/af(x)dx =a/f(x)dx

We can use this fact to modify the previous formula.

/ax" dx = Lx"“ +C
n—+1
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EXAMPLES

° /4x5dx=%x6+C=§x6+C

. / %dx = / 3x V2dx =3P+ Cc=6x'? 4+ C
/;—fdx :/—Sx_3dx = _—ix_2+C:4x_2+C

° /4dx=4x+C

2 _ 17 ;5
(17x*+9)dx = 3x +9%x +C

It is a good habit to check your answers by differentiating the right-hand side.
For example, when we differentiate %x3 +9x + C, we get 17x2 4 9.
Sometimes we can use algebra to simplify an expression before integrating.

/(x — D&+ 1dx
We will multiply (x — 1)(x + 1) before integrating.

2 13
/(x—l)(x—}—l)dx:/(x —1)dx=§x —-x+C

PRACTICE
1. [6yxdx
2. [(15x% +2)dx
3. [(6—%)dx
4. [(10x + % + 1) dx

5. [ )‘27_)‘ dx (Hint: Simplify before integrating.)

SOLUTIONS
I [6/xdx= [6x'2dx =6(3)x3?+C=4x32+C
2. [(A5x2+2)dx=Rx3+2x+C=53+20+C
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3. J(6- %) dv=[(6—4xFdx=6x - Hx1 4+ C
=6x+4x"'+C

+1) dx = [(10x + 24712 4 1) dx

=02+ 20x2+1-x+C
=5x2+4x'2 4 x+C

4. [ (105 +

e

2 % .o
5. ** simplifies to

=

X
———=x-1
X
This is simpler to integrate.

2
- 1
/x xdxz/(x—l)dxz—xz—x-i-C

by 2

The power rule does not automatically extend to powers of functions such as
(x341)2. Of course, we could expand BHD2 = B+ DE3+1) = x042x3+1
and integrate term by term. However, integrating something like +/x3 + 1 is harder
to do. We can always integrate functions of the form f'(x)[f(x)]" (for n # —1)
because of the fact that %[f(x)”] =n(f)" f(x).

1
/f/(x)(f(x))” dx = ——(f)"T' +C
n+1

EXAMPLES
o [(4x? —6x)(x* —3x2+4)3dx

4x3 — 6x is the derivative of x* — 3x2 + 4, so we can use the formula.

£ L))" Bl

1
/ @ —60) (36 14 dr = L - 3 )4 C

o [5Gx—173dx
f)=5x—1, f/(x)=5n=-3,andn+1= -2

-3 1 -2
55x—1)""dx = —2(5x - 4+C



CHAPTER 13 The Indefinite Integral _\cm
[ ~/x —6dx

f)y=x—-6, f'(x)=1, n_2 n+1_2 andnH:%
2
/Vx—6dx=/(x—6)”2dx=5(x—6)3/2+c

o [BEidx= Qx40+ 20 +3) dx
— L2+ +3) 3 4C

PRACTICE
1. [4x(2x? —1)>dx
2. [12x/6x% +8dx
3. [Jx—5dx

_ 2x+10
- 2+10x43)% dx

W

f 9x2—2x

A/3x3—x242
SOLUTIONS
L [4x@x?—1)Pdx =122 -1+ C
2. [12xv/6x2 +8dx = [ 12x(6x* + 8)1/2dx = 3(6x2 +8)32 + C
3. [Jx=5dx=[(x—5"3dx = %(x -5 4C

4 [ B i = [Qx 4+ 10)(e + 10x +3)Hdx
L2 H10x+3) P4 C

W

f % X = f(9x2 — 2)()(3)63 —x2+ 2)_1/2 dx
=203x3—x*+2)!2+C

Integration with Logarithms
and Exponents

The derivative of e/® is f’(x)e/ ™, making the integral of f'(x)e/™ equal

e/ 4 C. The derivative of In(f (x)) is ];(())Cc)) making the integral of % equal
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@’_

In f(x) + C. Technically, we should say that the integral of L@ s 1n |f(x)]|+C

S x)
because we can only take the logarithm of positive numbers.
/
/f/(x)ef(x)dx=€f(x)+c and ‘};((x)) dx =In|f(x)|+C
X

When we are integrating a fraction, we will determine whether or not the
numerator is the derivative of the denominator. If it is, then the integral is a
logarithm.

EXAMPLES

. f6xe3x2_8 dx
The derivative of the power is 6x, so we are integrating a function of the
form f'(x)e/ ™, which is e/ ™.

/6xe3x2_8 dx = e3x2_8dx +C

o | —2xe! 0% gx
The derivative of the power is —2x.

/ —2xel0 gy = 10— +C

20
* Jmodr . | N
The numerator is the derivative of the denominator, so the integral is the
natural logarithm of the denominator (actually, the absolute value of the

denominator).
20
dx =In|20x — 7|+ C
20x — 7
16x342x+3
* Jntna

The numerator is the derivative of the denominator.

/‘ 16x3 +2x +3

4x4+x2+3x+2dx:1n|4x4+x2+3x+2|+C

4e4x75
e4x—5 +2 d'x
The numerator is the derivative of the denominator.

4e4x—5
/mdx :1H|€4x_5+2| +C
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PRACTICE

1.

2. f%x‘l/zeﬁdx
3. fex_4 dx
18x—4
4 [Grnsdx
6
5 [ G dx
6 f 20x*—18x24+4x dx
: 4x5—6x34+2x248
(6x+1)e3x2+x+2
7. 8+e3x2+x+2 X
SOLUTIONS
1. [(14x + D™ 48 g — 48 4 ©
2. f%x‘l/zeﬁdx =eV' 4 C
3. [ tdx ="+ C
4. [ At dx =In|9x? —4x — 5|+ C
5. [&igdx=In6x — 11|+ C
4_19.2
6. [ PR dx = 1Injdx® — 6x7 + 26> + 8|+ C
7. [EHDETIR G 1 4 3R 4 O

[(14x + 1)eT¥*+x+8 gy

8+e3x2+x+2

_\@)

When we differentiate a function of the form y = af(x), we multiply the
derivative of f(x) by a: y' = af’(x). This is true with integration, which allows
us to move a constant inside or outside the integral sign.

/af(x)dx:a/f(x)dx
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EXAMPLES

8 1
o/Sxdx:S/xdx o/—zdx=8/—2dx

X X
o/lOexdx=10/exdx ofS(x2—2x—6)dx:3/(x2—2x—6)dx

We will make use of this fact when we “almost” have f FOLf ()] dx,

[ f(x)e® dx, and [ ?(()f)) dx. For example, the integral [ xﬁil dx almost fits

the form [ ]}/((;)) dx. If the numerator were 2x, then the integral does fit. By

writing 4x as 2 - 2x and moving the 2 outside of the integral sign, we can force

/ x;‘il dx to fit the formula.

4x 2-2x 2x
dx = dx =2 dx =2In|x>+1|+C
/x2+1 o /x2+1 * /x2+1 o oA

Only a constant can move inside or outside the integral sign; [ x(x + 1) dx is not
the same as x [(x + 1) dx.

EXAMPLES
e [ %xz(x3 +10)%dx

The derivative of x> 4 10 is 3x2, but we have %xz. We will rewrite %xz as

% -3x? and put % outside the integral sign.

3 1 1
/ExZ(x3 +10)%dx = / 5 3x% (x> +10)°dx = E/3x2(x3 +10)% dx
Now this fits the form [ f/(x)[ f(x)]" dx.

1 1
: 7(x3 +10)7 +C = ﬁ(x3 +10)’ +C

N —

° fxex2_4 dx

The derivative of the power is 2x, so we want to multiply x by % -2, which
is simply 1.

1 1 1
/xex2_4 dx = / > 2xe* " dx = > / 2xe® ~Hdx = 56"2_4 +C
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o [(5x% —2x +2)(5x% — 3x? + 6x)8 dx

The derivative of 5x3 — 3x2 + 6x is 15x% — 6x + 6, which is 3 times
5x2 —2x 4+ 2.

502 —2x 2= %(5)(2 —2x+2) = %[3(5x2 —2x+2)] = %(15x2 — 6x +6)
/(5x2 — 2x +2)(5x3 — 3x% + 6x)8 dx
= / %[3(5x2 —2x 4+ 2)](5x> = 3x% + 6x)%dx
= %/(15;2 — 6x +6)(5x> —3x2 + 6x)8 dx

1
. §(5x3 —3x>+6x)° +C

W | —

1
= E(s)ﬂ —3x>+6x)° +C

2
* f_sx—3 dx
flx)

In order for us to use [ 6 dx we need to adjust —5x2_3. We want —SXS_ 3

Because we want 5 in the numerator, we will multiply 2 by %

5 2.5 2
2==-.2=—=-.5
5 5 5
This gives us

/2 d—Z/ S ar=lmisc—3|4C
5x—39 T 5 5y _34rT s

o [ %x2(4x3 +15)%dx
We need to change %xz to 12x2. We will multiply % by %

1 12-1 1-12 1 "
2 212 24 24

i

1
2
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1 1
/ §x2(4x3 +15)%dx = o / 12x%(4x3 +15) % dx

- L L ac
2 5

= —L(4x3 +157°+C
120

o [2x(1—x%3dx
The derivative of 1 — x
2x = —(—2x).

2 is —2x, so we are off only by a factor of —1:

1
/2x(1 —xH3dx = —/—2x(1 —x33ax = il —xH*+cC

PRACTICE

1. [ 200519 dx

2. [(x+3)(x*+6x —4) dx

6 2
3. 7x§+4 dx
4. 74_62§X dx
5. [(x%4+ DVx3 +3x — 8dx

SOLUTIONS
1 /266x+9dx=/%'666x+9dx=l/6e6x+9dx=leﬁx+9+C
) 6 3 3

2 3 1 2 3
2. /(x+3)(x +6x —4) dx=/§-2(x+3)(x 4+ 6x —4)’ dx
1 2 3
=§/(2x+6)(x +6x —4)’ dx

11
=5 0o —4ttc
1

:§(x2+6x—4)4+C
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21 6 2
6x2 2 21x2 2
dx = = dx =ZIn|7x> 4+ 4|+ C
/7x3+4x 7/7x3+4x 7 72 44+

4. We need —2 in the numerator: 4 = (—2)(—2).

4% J (—2)(—2)e* —2e%*
x= [ ———dx=-2 | -—dx
7 — e« 7 — e2x 7 — e

=-2In|7—e*|+C

5. Weneed 3x? +3: x2+1 =32+ 1) = 13(x2 + D] = 13x% +3).
1
/(x2 + 1)Vx3 +3x —8dx = 3 f(3x2 +3)(x* +3x — 8)1/2dx

1 2

2
= §(x3 +3x—8)>%*+C

Integration by Parts

Unlike differentiation, there is no product rule that helps us to integrate a product
of two or more functions. There are techniques we can use for most of the integrals
found in a calculus course. Integration by parts is one of the most common
integration techniques. At the end of the chapter there will be a brief discussion
of a few other techniques.

The formula for integration by parts comes from integrating the derivative
formula for a product of two functions.

Ify=f gtheny = f'g+ fg'.
We will begin with the fact that y = [ y'dx.

y=fy’dx

feg= fy' dx Replace y with fg.

re= [(fg+ s Replace y' with f'g + /g
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fg=ff’gdx+ffg’dx
fg—/fg/dx =/f/gdx Subtract/fg/dx.

The formula looks like it is making a bad problem worse, but for some integrals,
fg' is easier to integrate than f’g. When using the formula, we have to decide
what f, g, f/, and g’ are, so it is important that you are comfortable with the
integration we have done so far. We will begin by deciding what to let f, g, f/,
and g’ represent.

EXAMPLES
Identify f, f’, g, and g’ so that fg’ can be integrated.
o [2xe“dx
Either /' =2x and g = ¢* or f' = ¢* and g = 2x.

Option 1 Option 11
f'=2xand g = ¢* f'=e" and g = 2x
f:xzandg/zex f=exandg/=2

fglzxzex fg/=2€x

fg' in Option 1II is easier to integrate.

o [x+x+2dx
Either f’ =xand g = (x +2)/? or f' = (x +2)"/? and g = x.

Option I Option II
f'=xand g = (x +2)1/2 fl(x+2)/? and g = x
f=3x>and g = S(x +2)71/2 f=30x+23%?and g =1
f8' =2 +2)712 f8' =3 +2)>3?

fg' in Option II is easier to integrate.

° fﬁdx:fx-ﬁdx

Either]”:xandg:ﬁorf’=ﬁandg=x.
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Option I Option II
]”:xandg:ﬁ:(x—l)_1 f:ﬁandg:x
f=4xrand g = —1(x — )72 f=Inx—-1)andg =1

f§' = —3x*(x = D72 f¢' =Inx -1

f¢' in Option II looks like it might be easier to integrate.

PRACTICE
Identify f, f’, g, and g’ so that fg’ can be integrated.
1. fxexfz dx
2. [4x(1—x)°dx
3. [@x+ Dx —3)1%dx
4. fx3ezx2_1 dx
SOLUTIONS
Option 1 Option 11
1. f/zxandgzex_2 f/:ex_zandgzx
f= %xz and g’ = e 2 f=e¢"2and g =1
fg/ — %XZex—Z fg/ — ex—2

fg' in Option 1II is easier to integrate.

Option I Option II
2. f'=4xand g = (1 —x)° f'=(1—x) and g = 4x
f=2x%and g’ = -5 — x)* f=—t0-x)Cand g’ =4
fg' =—10x*(1 — x)* f¢=-5301-x°

f¢' in Option II is easier to integrate.

Option I Option II
3 f'=2x+1and g = (x —3)!0 ff=(x—-3"Yand g =2x +1
f=x>+xand g =10(x —3)° f=3G@—=3"andg =2
fg =10(x* + x)(x — 3)° fg = fx =3

fg’ in Option II is easier to integrate.
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. . . . 2
4. The derivative of 2x2 — 1 is 4x, so we want x in the product with e2* 1,
. .. 2 2
We can view x> as x - x2, giving us x3e? 71 = x? . x> 71,
Option | Option II
2 2
f'=xe*land g = x? f'=x3and g = !
2 2
f=41e¥"land g =2x f=1x*and g’ = 4xe® !
2 2
fg/:%erx -1 fg/_XSer -1
Option III
2x2-1

f/=x2andg—xe

f= ;x and g = o1y 420201

fg — % 3(82x -1 +4X2€2x —1)
/g’ in Option I is easier to integrate.

We are ready to integrate by parts.

EXAMPLES

[ xe*dx We will let f/ = ¢* and g = x, which gives us f = ¢* and
/
g =1

/ F0g) dx = f()g(x) — / FO0g () dx

J f'gdx [ fg'dx
—— fe ——

—_
/xexdx: xe* —/l-exdx
[ €*dx is easy to integrate: [e*dx =e* + C.

/xexdx:xex—/l-exdx=xex—ex—|—C

We will differentiate y = xe* — e* + C to make sure that y' = xe*.

y=1-e"+xef —e"+0=xe'v
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o [xQx+7)8dx

We will let f/ = 2x + 7)8 and g = x. This gives us f = 11—8(2)6 +7)°
and ¢’ = 1.

1 1
fx(2x+7)8dx=ﬁ(2X+7)9-x—/E(2x+7)9-ldx
LN NI CR 1[2(2 +7%d
BRI 18 2 . X
. Cx+7)° ! l(2 +70 4 ¢

BRI 36 10

= ix(zx +7)° — L(zx +7%+cC
18 360

o fxlnxdx
We will let f/ = x and g = Inx. This gives us f = %xz and g’ =

1, 1, 1
xInxdx = —x“-Inx — | =x°-—dx
2 2 X

Lo, 1/d
= —X"InNx — —
X xzxx

1

X

2

1 1,

1 1
= —x’Inx — = x>+ C=-x’Inx — -x°2
2 2 2 2 4

+C

e [Inxdx
Integration by parts works on products, so we have to think of In x as the
product of two functions 1 and Inx. We will let /" =1 and g = Inx. This
givesus f =x and g’ = )lc

1
/lnxdx:xlnx—/x-—dx:xlnx—/ldx:xlnx—x—l-c
x

PRACTICE
1. [ 3xe 9 dx
2. [6x(2x +5)*dx
3. f)c3e"2 dx
4, f (xf—l)“ dx

. [Bx+TVx +2dx

W
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6. [xIn3xdx
7. [In/x dx (Hint: use a logarithm property before integrating.)

SOLUTIONS

1. We will let f = ¢**° and g = 3x, giving us f = ;e and g’ = 3.

/3xe4x+9 dx = <%e4x+9) (3X) _ / <%e4x+9) (3) dx

3 3
— _xe4x+9 - e4x+9 dx

4 4

N T R B TR
4 42

_ 3o _ 3 e o
4 16

2. We will let f' = (2x 4+ 5)* and g = 6x, giving us f = 11—0(2x +5)° and
g =6.

1 1
/6x(2x—|—5)4dx = 1—0(2x+5)5(6x)—/E(2x+5)5(6) dx
3 3
= x(2x +5)° - = /(Zx +5)% dx
5 5
3 31
:gx(2x+5)5—§-§/2(2x+5)5dx
x5 - Lx st 4c
= —-x(2x - — - =(2x
5 10 6

3 2x +5)° 1(2 +5°%+C
= —x(2x - —(2x
5 20

3. We will let f' = xe*” and g = x2, giving us f = Le* and g’ = 2x.

1 1
/x3ex2 dx = Eexz(xz) ~5 / 2xe* dx

1 2 X2 1 X2
= — - = C
2x e 2e +
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4. We will let f' = (x — )" and g = x, givingus f = —3(x — 1)~* and
g =1
/ dx =~ — 1) )—f—l( -7 ()d
a1 3 3 *
-5 /( -D7d
) (x—1)3 * *
1 _
=73 (x_1)3+§ ——(x—l) +C
1 R Lc
T3 G 6(x—1)2
X 1

T T3x—1)7 6(kx—1)? +c

5. Wewill let ' = (x +2)!/2 and g = 3x + 7, giving us f = 3(x +2)%?
and g’ = 3.

/(Sx + DVx +2dx = %(x +232@6x +7) — / %(x +2)2(3) dx

2
— 5(x +2)323x +7) — 2/(x +2)%2 dx

2 3/2 2 5/2
=§(x+2) (3x+7)—2-§(x+2) +C

2 4
=30 +22Bx+7) - S+ 22 4 C

6. We will let f' = x and g = In3x, givingus f = 1x2and g’ = & = 1.

3x
xIn3xdx = —x“In3x — | =x“|—) dx
2 2 X
_ ! ’In3 ! d
_2x n3x > xdx

1213 L 12+c
= — n —_ . -
2)( X — 2 2)(,'

12 12
=—x“In3x — - C
2x n3x 4x+
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7. We can rewrite In \/x as Inx!/? = %ln x. From an earlier example, we
found [Inxdx =xInx —x + C.

1
/lnﬁdx:iflnxdx

1
=§(xlnx—x)+C

Sometimes an integral can be found after using integration by parts
more than once.

EXAMPLE

o [x?e%dx
We will let f' = ¢* and g = x2, giving us f = ¢* and g’ = 2x.

/xzex dx = x%2e* — 2/xex dx

For [ xe* dx, we will let f' = ¢* and g = x, givingus f = ¢* and g’ = 1.
/xexdx = xe* —fex(l)dx =xe* —e"+C
Now we can finish.
fxzex dx = x%e — 2/xex dx = x%¢* = 2(xe* — )+ C

= x%e* —2xe* + 25+ C

Miscellaneous Techniques

There are several other integration techniques. We will briefly discuss three
of them.

A simple substitution can change a difficult integral into an easy one. For exam-
ple, [x+/1+ x dx is not easy to integrate. An expression such as /1 + variable
is harder to integrate than +/variable. We can get around this making the substi-
tution u = x + 1, which gives us u — 1 = x and du = dx. Instead of integrating
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x+/1 4+ x, we will integrate
u—DVu=uSu—Vu=u -u?—-u?=y" y'? 42
3/2

— 12 02 1/2

=Uu —Uu

32 1/2

u’’* —u'’~ is much easier to integrate.

2 2
/x«/1+xdx =/(u3/2—u1/2)du = §M5/2_ §u3/2+C

Because u = 1 4 x, we will replace u with 1 + x.

2 2 2 2
§u5/2 - 5143/2 +C =30 +x)% = 20 +x)¥2 ¢ cC

EXAMPLE
o [InQx+1)dx

We will let u = 2x + 1, which gives us dx = Ldu (which comes from the
fact that du = 2dx).

1
/ln(2x+ Ddx = /lnu <§du)
1
:—/lnudu
2

1
= E(M Inu —u) 4+ C (From earlier, we know
flnxdx =xlnx—-—x+4+C))

_ %[(Zx +D)In@x+ 1) — Qx+ D]+ C

(Replace u with 2x + 1.)

A Shortcut for Integration by Parts

When integrating a product of two functions where one is a polynomial and
the other can be integrated several times (without too much trouble), integra-
tion by parts can be used multiple times. There is a shortcut that eliminates
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some of the tedious steps. Create a table that has two columns. The poly-
nomial and its derivatives go in the first column. The other function and
its integrals go in the other column. For example, say we want to integrate
i x*e* dx. The polynomial function is x*, and the other function is e*, which
integrates as many times as we want without any trouble. The derivatives of
x* are 4x3, 12x2, 24x, 24, and 0. All of the integrals of ¢* are ¢*. A table
is constructed (Table 13.1). The signs in the solution alternate from plus to
minus, so we will record these symbols in the table (Table 13.2). In order
to make it clear which expressions are multiplied and which are added, we
will label each entry (Table 13.3). The integral is found by computing the
following.

H-B+2)-C+3)-D+@A-E+(5-F
/xd'ex dx = x*e* — 4x3e* + 12x%e* — 24xe® +24e* + C

Table 13.1
Polynomial Other function
and its and its
derivatives integrals
x4 er
4x3 e’
12x2 e
24x e’
24 e’
0 e*
Table 13.2
Polynomial Other function
and its and its
derivatives integrals
4t e’
—4x3 er
+12x2 e
—24x e’
+24 e*
-0 e*
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Table 13.3
Polynomial Other function
and its and its
derivatives integrals
+x* (1) e* (A)
—4x3 (2) e (B)
+12x2 (3) al(®)
—24x (4) e* (D)
+24 (5) e* (BE)
—-0(6) e’ (F)

EXAMPLE
. fx3(x + D*dx

The derivatives of x> are 3x2, 6x, 6, and 0. The first three integrals of
(x+D*are $(x+1)3, 35(x+1)°, 515(x+1)7 and g5 (x +1)8 (Table 13.4).
The integral can be found by computing

1H-B+2)-C+@3)-D+@)-E

1 1 1
/x3(x + D*dx = gx3(x +1)° —3x2. %(x +1)° +6x - m(x + 1)’

. N +c
Tego > T T

Table 13.4

Polynomial  Other function

and its and its
derivatives integrals
+x3 (1) (x+D* (A)
-3 @) 3+ DB
+6x (3) g+ DO (©)
—6 (4) 35 + D7 (D)

40 (5) Togs ( + D8 (B)
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Tables of Integrals

There are books with hundreds of integral formulas. Using a table can make
finding an integral very easy. However, we might have to use algebra on our
expression to make it look like one of the formulas. Below is a small table of
three integrals.

Integral Formulas

x+a
X—a

+C

A / ! d 11
=—1In
a? — x2 o 2a

1 1
B /.xz\/a2 +x2dx = gx(a2 +2xH)Va2 +x2 — §a4ln ‘x +Va? +x2) +C

C /%dx = —%azln ‘x +Va? —i—xz) + %x\/a2 +x24+C
EXAMPLES

2
X
o [ A=
VxZ+9
The integral fits Formula C, where a? = 9. All we need to do is to replace

a? with 9 in —%azln ‘x + va? —|—x2‘ + %x\/a2 +x2+C.

1 1
:—5-91n’x+\/9+x2)—|—§x\/9—|—x2+C
9 1
= —Sin|x+Vo+ 2|+ 2o+ +C

2
f—dx
V/x249

° /xzx/ 1 + x2 dx The integral fits Formula B with a® = 1.

1
/x2v1+x2dx=éx(1+2x2)\/1+x2—§-14-ln)x+\/1+x2‘+C

3
d
* /25—x2 o
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When we move the 3 outside the integral sign, the integral fits Formula A,
with a? = 25.

3 1 1
dx =3 dx =3(—1
/25—x2 * /52—x2 * (10n
° / ! d
|42

The integral almost fits Formula A. We will use algebra to rewrite 1 — 4x>

in the form a? — x2.

x—95

)

24 2 4
1—4x"=-—4x Replace 1 with —.
4 4
=4.— —4x?
1 2
=4 Z—x Factor 4.

N, 1
= -] —x — needs to be a square.
2 4

Now we have a = % and

1 1
I—4x  4((5)? - #7]

We will move the 4 out of the denominator and then outside the integral
sign.
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1 1 1/2
= — - lnx+/‘—|—C
4 2.1 |x—12
1 |x+1/2
= —1In
4 |x—1)2

CHAPTER 13 REVIEW
1. f4x7 dx =
(@) gx®+C
(b) 28x°+C
(c) 4x3+C
) 3x%+C
2. f(x —3)dx =
(@) 3x2—3x+C

(b) x> —3x+C
© 3x>=3+4+C
d) tx*+C
3. [Vxddx =
(@) x4 4C
(b) 3x~V44C
(© 3"+ C
d Ix"*+cC
4. [4e3F2dx =
(a) 12e3*+2 4 C
(b) 3e¥+2+C
(c) 332+ C

@) 232+ C
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f xe* dx = (Hint: use integration by parts.)

(@) 3x%e™ — 1> +C
(b)
(©
(d)

[Bx* —x2+3x+5)dx =
(@ 12x> —2x+3+C
(b) %xs— I3 +3x24+5x4C

xZe* + %xe 1 e+ C

262)6 + C

Nl—= Nl—= = NI—
=

=
Q

2x_£lte2x+c

@© 2 —tx¥+3x2+5x4+C
) §x5—§x +3x+5+C

/
d.x

(@) In|5+2x%|+C
1
(b) In|s751+C
(c) In|544x +2x%|+C

(d) Cannot be integrated
fxzex3 dx =

(a) %)c3e"3 +C

(b) 2xe® +C

© e’ +cC

(d) x2eV/+* 4 c

3
——dx =
/ (2x + 1)?

@ 3mn[2x+1|+C
®) gz +C
© 2x+1 +C

—12
() (2x+1)3 +C
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10. [ In6x dx = (Hint: use integration by parts.)
(@ xInbx —x+C
(b) xInbx —6x +C
(c) In6bx —6x +C
@ 1+cC
1. [xvVx2=3dx =
@ 3(x2=3)%2+C
(b) 3(x2=3)32+C
© 3(x*=3)32+cC
d) 3x2=3)¥*+C

12. [(4x +3)@x2+6x + 1)3dx =
@ g@x2+6x+1D*+C
(b) 3(dx +3)@x>+6x+ D*+C
(©) 24x*+6x+D*+C
d) 3@x+3)@x*+6x+ D*+C

SOLUTIONS

1.d 2.a 3.¢c . .
7. a 8. ¢ 9.b 10. a 11.d 12. a
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|
BThe DefiniteIntegral
8 and the Area Under

the Curve

The indefinite integral is an algebraic expression. The definite integral is a number.

The notation “ fab f(x) dx” means the difference of the integral when it is evaluated
at x = a and x = b. The numbers a and b are called the limits of integration.
Suppose F(x) is an antiderivative of f(x) (in other words, F'(x) = f(x)). Then

fab f(x)dx = F(b)— F(a). This is called the Fundamental Theorem of Calculus.

—&
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In the example below, we will be integrating F (x) = 2x. An antiderivative of 2x
e 22
is x°.
2
/ 2xdx = F(2)— F(1)
1
—22_ 12
=3

We could change F'(x) by adding or subtracting a constant, but this constant would
not change the definite integral. For example, if we say that F(x) = x> + 10,
then

2
/ 2xdx = F(2) — F(1)
1
=224+10— (12 + 10)
=14-11
=3.

For this reason, we do not need to worry about “+C” when finding the definite
integral.

Instead of writing F'(b) — F (a), we will use notation that allows us not to refer
to F(x) by name. The notation

b
F(x) .
means F(b) — F(a).
EXAMPLES

° f25 3x2dx
3

An antiderivative of 3x2 is x°.

5 5
/ 3x2dx = x°
2 2

=5 23117



CHAPTER 14 The Definite Integral _\@

. f_zlxdx

o [i@x+3)dx

4 4
/ (2x +3)dx = <x2+3x>‘0
0

= 4% +3(4) — (0* +3(0))
=28-0=28

° ffz 2e2F 1 dx

3 3
262x+1 dx = er—H
) -2

— 2O+ _ 22+l

e’ — e 3 ~ 1096.5834

S 4
/—xdx
s (2x241)2

5 5
/ Ax2x2 4+ 1) 2dx = —12x%2 + 1)~ ‘2
2

—1 |5

T 224112

-1 —1
T2 +1 <2<22>+1)
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PRACTICE

1. ffl 6x dx

CHAPTER 14 The Definite Integral

-1 1 -1 3 1 17

RGN
_=34+17 14
153 153

2. [7(10x +7)dx

3. fol ﬁ (Give your answer accurate to three decimal places.)

fﬁﬁdx

4
5. [24x3 —6)dx
6. [¥Vx+ ldx

7. [72(5x —2)dx

8. f03 2¢* dx (Give your answer accurate to three decimal places.)

9. fy(x?+8x — )dx

SOLUTIONS

1.

2 2
/ 6x dx = 3x2
—1 -1

327 - [3(-1)?*1=12-3=9

3 3
/ (10x + 7) dx = (5x° + 7x) 1
1

=53)2+73) — [5(1)* + 7(1)]
=66 — (12) =54
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1 1 1
/ :1n|x—|—1|‘
o x+1 0

=In(1+1)—In(14+0)=In2—-1In1~0.693

4 4
/ ﬁdx:/ 172 dx
1 1

2 4 2 4
s )

3 13
2 2

= V43 - Z{/13
3 3

16 2 14

3 3 3

2 2
/ (4x> — 6)dx = (x* — 6x) 1
1

=2*—62) —[1* —6(1)]

—4-(-5=9

8 8
/«/x—i—ldx:/ (x + D2 dx
3 3

2 8 2 8
= Se+ D =SV

2 2 2 2
_ - 3 - 3 __ 2 I
_3\/(8-}-1) 3\/(3+1) —3(27) 3(8)

54

3 3 3

16 38
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7.
-2
5 -2
/ 5x —2)dx = (—x2 — 2x) ‘
-6 2 —6
5( 2)* —2(-2) 5( 6)? — 2(—6)
2 2
=14 —-102 = —88
8.
3 1 3
/ 2eM dx = —e™
0 2 0
_ 164(3) _ 1e4(0) _ 1612 _ leo
2 2 2
~ 81, 376.896
9.

3 1 3
/(x2+8x—1)dx:(—x3+4x2—x>‘
2 3 2

=%6P+46V—3—[§Qﬁ+4af—2}

50 126 50 76

=42 - — = — — — = —

3 3 3 3

Area Under the Curve

Finding the area of a figure is a common problem in mathematics. When a figure is
made from standard shapes, we can use geometry formulas to compute its area. But
if we want to find the area of shapes with curved edges, we probably need to use
calculus. The area of a shape with one or more curved edges can always be approx-
imated by the area of rectangles. The area of the six rectangles in Figure 14.1
closely approximates the shaded area under the curve. The approximation is better
when the rectangles are more narrow (see Figure 14.2).

In the same way that the slopes of secant lines approximate the slope of a tangent
line, the area under a curve can be approximated by the area of rectangles. The
area under the curve is the limit of the total area of the rectangles, as the width
of the rectangles shrinks to zero.

The curve in Figures 14.1 and 14.2 is the graph of f(x) = L. The areas of

the rectangles in Figures 14.1 and 14.2 approximate the area licnder the curve
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1 2 3
Fig. 14.2.

between x = 1 and x = 2. As we shall see later, the area is exactly In 2, which is
approximately 0.6931. From the rectangles in Figure 14.1, the approximation is
0.6532. From the rectangles in Figure 14.2, the approximation is 0.6688.
Suppose we want to find the area under the curve of f(x) between x = a and
x = b. We can subdivide the interval [a, b] into n equal subintervals to create the
base of each rectangle. The width of each rectangle is L The graph in Figure 14.3

n
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shows how the interval [1, 2] is divided into ten equal subintervals. The width of
each rectangle in this example is %.

2*

N
I I

[\8)
w

Fig. 14.3.

From the subdivisions, we can construct the rectangles shown in Figure 14.2.
The height of each rectangle is the y-value of a point on the curve (Figure 14.4).

2*

[\®]
w
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When the interval [a, b] is subdivided into n equal subintervals, the subintervals

are [a, x1], [x1, x2], ... [xi, xi+1), ... [xn—1, b]. The width of the ith interval is

Xi+1 — Xi, which is equal to % The height of each rectangle is either f(x;) or

f(xit1), it really does not matter which. One choice usually overestimates the
area, and the other usually underestimates it (Figure 14.5).

3 —
2 [
N
1 —
J
1 2
Fig. 14.5.
The area of a typical rectangle is
Width Height

. . —_——
“width x height” = (xj41 — x;) - f(x;)

The sum of these n areas is
n
> @i —xi) - ()
i=1

The exact area between the curve and the x-axis (from x = a to x = b) is the
limit of this sum as n gets large without bound.

n
Area = nlggo Z(xi—H —xi) - f(x)
i=1
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It can be shown with some advanced calculus techniques that this limit is the
definite integral [ f(x)dx.

n b
Area = Jlim 3 i1 3 f = [ o
i=1 “

The quantity “x;4+1 — x;” becomes “dx” in the limit, and the summation symbol

“¥” becomes the integral symbol “[.”

EXAMPLES

Find the indicated area.

e The graph of y = /x is shown in Figure 14.6.

— N W A W
I

Fig. 14.6.

We want to find the area between the curve of y = ,/x and the x-axis, from
x = 0tox = 4. We will find the definite integral of /x, with a = 0 and
b=4.

4
/ xl/de — %x3/2 4
0 3 0
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SN

3 0

2 2
=243 — Z/03
3\/— 3
“le-to="
3 3773

e The graph of y = —x* + 3x? + 4 is shown in Figure 14.7.

The area is the definite integral of —x* +3x2 +4 froma = —2to b = —1.

-1
1 -1
f (—x* +3x> + 4 dx = <—§x5 + x3 +4x) ‘ )
-2 -

= —%(—1)5 + (=1 +4(=1)

1 5 3
—(—5(—2> +(-2) +4(—2>>

4 48\ 24
5 5) 5
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e The graph of y = ¢* is shown in Figure 14.8.

I

1 1
e“dx =e*
—1 -1

=el —e 1~ 23504

When the area is below the x-axis, the definite integral is a negative number.

e The graph of y = x> — 5x + 4 is shown in Figure 14.9.

—_— N W R~ W
T

Fig. 14.9.
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The shaded area lies between a = 1 and b = 4.

"2 =5k 44y Lo -2 a) |
/l(x —Sx+4) x—(gx — 5+ x)‘l

_ s San
=3 4) > @) +44)

(Lap-2ay
<3(1) 2(1) +4(1)>
8 11\ 9
__5_(6)__5

PRACTICE

Find the indicated area.

1. The graph of y = x? + 2 is given in Figure 14.10.

—_
\S)
1

24
Fig. 14.10.

______“|§F3
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2. The graph of y = )% is given in Figure 14.11.

Fig. 14.11.

3. The graph of y = 2x3 +3x2 — 12x — 10 is given in Figure 14.12.

—
9}
1

I

Jr—
I —
N
LJ]*

20+
Fig. 14.12.
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4. The graph of y = In x is given in Figure 14.13. Give your answer accurate
to three decimal places. (Hint: use integration by parts.)

— N W R~ W
I

Fig. 14.13.

5. The graph of y = x22i1 is given in Figure 14.14. Give your answer

accurate to three decimal places.

2*

-
Fig. 14.14.
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SOLUTIONS
1.
3 1 3
/1 (x> +2)dx = (§x3+2x) ‘1

_ (1(3)3 +2(3)) - (1(1>3 + 2(1>)
~\3 3

_s- 1.8
3 3
2.
3 1 3 3
—zdx—/ x_zdxz—x_l‘
2 X 2 2
B 1‘3_ 1 1
T oxl2T 3 2
. 1
6
3.
s 2 1 4, 3 2 -1
/ (2x3 4 3x —12x—10)dx=(§x +x3 —6x —IOx)‘ 3
_3 -
1
= S =D+ (=17 = 6(=1* = 10(=1)
1
— <5<—3>4 +(=3)° —6(-3)* — 10(—3))
7 21
=-——(-=)=14
2 2
4.

5 5
/ lnxdx:(xlnx—x)‘
2 2

=5In5—-5—-(2In2 —2) =~ 3.661
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—\6@

-2
2x -2
dx = In(x> 1‘
/_4 211 X n(x-i-)_4

=In((=2)> + 1) = In((—4)> + 1)
=In5—Inl17~ —1.224

The negative sign indicates that the area is below the x-axis.

When some of the area between the curve and the x-axis is above the x-axis
and some is below, the definite integral subtracts the area below the axis from
the area above the axis. If more area is above the x-axis than below it, the definite
integral is positive. If more area is below the x-axis than above it, the definite
integral is negative.

EXAMPLE

e The graph of y = —x3 + 2x? + 8x is given in Figure 14.15.

20

10 ‘
Fig. 14.15.
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The shaded area above the x-axis is more than the shaded area below, so
the definite integral will be positive.

43228d—1423424
/_2(—x+x+x)x—(—zx +§x+x>‘_2
a2 2
=@+ @7 +4@4)
(4( 2)+3( 2)” 4+ 4( 2))

128 (20
== _(=)=36
- (5)

If we compute each area separately and then add them, we have the same
answer.

0 4
/ (—x3 4+ 2x% + 8x) dx + / (—x3 +2x% 4 8x) dx
-2 0

1, 2 0 1, 2 4
= (—Zx4 +357 + 4x2> ’_2 + (_Zx4 +300+ 4x2> ‘0

__l 4 % 3 2
= —2 0+ 50’ +40)

(Y a2 50 2
<4( 2)+3( 2)” +4( 2))

_1 4 % 3 2
-+<4)m>+3@>+a®

(=L + 200 + 202
<4m>+3m>+«m)

20 128
=0—-\|—= — —(0) =36
(3)+5 -
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PRACTICE
1. The graph of y = x* — 5x% 44 is given in Figure 14.16. Find the shaded
area.
L1 1 L1
5 -4 -3 3 45
3k
4
5L
Fig. 14.16.
SOLUTION

1.
2 1 5 2
4 2 5 3
—5x 4 dyde = (2x° — 23+ 4 )
/z(x x“+4)dx (Sx 3x + x) 5

= 1(2>5 — §(2>3 +4(2)
5 3

L s 3 o a
—<5( 2) 3( 2)° + 4( 2))

_ 16 16\ 32
15 15) 15

If we split the area into three separate integrals, we have

—1 1 2
f (x4—5x2+4)dx+/ (x4—5x2+4)dx+f (x* —5x% +4)dx
-2 -1 1
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“(3 5wl
(33w
(35

B 22+76+ 22\ 32
15 15 15) 15

We can find the area between two curves by subtracting the area of one curve
from the area of the other curve. Suppose the area lies above the x-axis. The
area between the two curves is the area under the top curve with the area under
the bottom curve deleted (see Figures 14.17-14.19). The area between a line,
y=—x+7,and curve, y = xZ — 6x + 11, is shaded in Figure 14.17. The total
area under to line is shaded in Figure 14.18. The area under the curve is deleted
in Figure 14.19, leaving the area between the line and curve.

20 -1

Fig. 14.17.



CHAPTER 14 The Definite Integral

_\@)

Fig. 14.18.

Fig. 14.19.

The area between these curves is computed by subtracting the definite integral
of the bottom curve from the definite integral of the top curve.

4 4
Area:/ (—x+7)dx—f (x% — 6x + 11) dx
1 1
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We can combine and simplify these integrals.
4 4
Area = / (—x +7)dx — / (x> — 6x + 11) dx
1 1

4 4
=/ [(—x+7>—[<x2—6x+11)]dx=/ (—x? + 5x — 4)dx
1 1

1 5 4
= (—§x3 =+ 5)(2 — 4x) ‘1

= 2w —awy - (“Lay s 202 -
= =@+ @7 —4@) <3<1>+2(1> 4<1>)

8 1y 9
3 6) 2

No matter where the area between two curves lies, above the x-axis, below the
x-axis, or both above and below, the area between the curves is always computed

by subtracting the definite integral of the bottom curve from the definite integral
of the top curve.

b
Area = / (Top curve — Bottom curve) dx
a

EXAMPLES
Find the shaded area.

e The curves in Figure 14.20 are y = —x>+4x —3 (top) and y = x> —4x +3
(bottom).

Fig. 14.20.
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b
Area = / (Top curve — Bottom curve) dx
a
3
= / [(—x? +4x — 3) — (x? —4x 4 3)]dx
1
3
= / (—2x% + 8x — 6) dx
1
2 3
= (——x3 + 4x% — 6x> ‘
3 1

= —%(3)3 +4(3)° - 603) — (—%(1)3 +4(1)? — 6(1))

- (4)-

The area above the x-axis in Figure 14.20 appears to be equal to the area
below it. This would mean that the total shaded area is also twice the area

above the x-axis. Let us see if this is true.
. 2 1 5 2 3
f [(—x? + 4x — 3)dx = (—gx +2x —3x> ‘1
1
1 3 2
= —§(3) +23)" —30)

— <—§<1>3 +2(1)* - 3(1)>

(-

% is half of %. The area under the x-axis is —%. The integral f13[(—x2 +

4x —3) — (x2 — 4x + 3)]dx is computing ‘31 — (—‘31) = %,

e The top curve in Figure 14.21 is y = /x, and the bottom curve is y = x>.

We want to find the area between these curves between a = 0 and b = 1.

1
2 1 1
2 3y ax = (2532 — 204 ‘
/O(x x)dx (3x 4x>0

2 1 1
— (253 = 24 ‘
(3 * 4x)

0
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2 —
1 y
s (LD
\ ..... / J
-1 1 2
1t
Fig. 14.21.
2 1 2 1
=V - = (V03— —(0*
VP -2 ( Vo - 20
5 5
- _0==
12 12
PRACTICE
Find the shaded areas.
1. The top curve in Figure 14.22 is y = —x? — 3x, and the bottom curve is
y=X.
5 —
4+
3 —
2

S5 4

(—4, —4) /"' 4t

Fig. 14.22.
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2. The top curve in Figure 14.23 is y = 3x + 1, and the bottom curve is

y=x*—2x?—1.

2,7

— D W A N I

N -
W —
AN
W

Fig. 14.23.

SOLUTIONS

1. 0 0
/ (—x2 —3x —x)dx = / (—x2 —4x)dx
4 4

1 0
= (——x3 — 2x2) ‘
3 —4

2. 2 2
/ [Bx+ 1) — (x* —2x% — 1)]dx =/ (—x* +2x% 4+ 3x +2) dx
-1 -1

1 2 3 2
= (—g.xs + §x3 + Exz + ZX) ‘71

ol s 2 03,3 00
= 5(2) +3(2) +2(2) +2(2)
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B (LI PN TC I P I S Y
( SED DT DT+ 1))

134 ( 29) 297

15\ 30/ 30

When we cannot use the graph to find x = a and x = b, we can find them
algebraically. When we set two functions equal to each other and solve for x,
we get the x-value or values where the graphs intersect (cross each other). For
example, if we want the x-value where the lines y = 2x and y = x + 2 intersect,
we set 2x and x + 1 equal to each other and solve for x.

2x=x+1
x=1

The lines y = 2x and y = x + 1 intersect at x = 1.

EXAMPLE

e Find the shaded area in Figure 14.24.
10~

/ y=—x>+4x +4 \
J 1oL \
Fig. 14.24.

We will find x = a and x = b by solving x> — 2x + 4 = —x? + 4x + 4.
X2 —2x+4=—x>+4x+4

2x2 —6x =0
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2x(x —3)=0
2x =0 x—3=0
x=0 x=3

Now we know that a = 0 and b = 3.

3 3
/[oﬂ2+4x+4y—u2—zx+4nwn:f(—h@+6mdx
0 0

= <—§x3 + 3x2) )Z

:—%@P+3@f
—<—§mf+3mf)

=9-0=9

PRACTICE

1. Find the shaded area for the graph in Figure 14.25. The curves are the
graphs of y = x> +x — 10 and y = —x% + 5x + 6.

15

[

-15
Fig. 14.25.
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SOLUTION
1. We will find x = a and x = b by solving x?> + x — 10 = —x? 4 5x + 6.
4 x—10=—x>+5x +6
2x2 —4x — 16 =0 We will divide both sides of the equation by 2.
x?—2x—8=0
x+2)x—4) =0
x+2=0 x—4=0
x=-=2 x=4

The graphs intersect at a = —2 and b = 4. From the graph, we see that
y = —x? 4 5x + 6 is the top curve.

4
/ [(=x% 4+ 5x +6) — (x2 +x — 10)] dx
-2

4
:/ (—2x% 4 4x + 16) dx
2

= <—§x3 + 2x2 + 16x) ’4
2 3 2
= S +24) + 161

2 3 2
—<—§<—2) +2(=2) +16<—2))

160 ( 56)
=— (= )=72
3 3

Sometimes the area between two curves occurs in more than one region.Usually,
one curve is on the top in one region and the other curve is on top in the other.
When this happens, we need to evaluate more than one definite integral.

EXAMPLES
Find the shaded area.

e The line in Figure 14.26 is y = x — 3, and the curve is y = —x3 + 5x — 3.
Froma = —2to b =0, the line y = x —3 is on top. Froma =0to b = 2,
the curve y = —x3 + 5x — 3 is on top.
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Fig. 14.26.

0 2
/[(x—3)—(—x3+5x—3)]dx+/ [(—x> +5x —3) — (x — 3)]dx
) 0

0 2
= / (x> —4x)dx +f (—x> + 4x) dx
-2 0

(a) P (o)

1

_ 4 2 l_ 4 ~r_n\2 _l 4 2
=707 -20) <4( 2" =2 2)>+< 4)(2) +2(2)

(=]

1 4 2
- <_Z(O) +2(0) )
=0—(—4)+4-0=38

e The graphs in Figure 14.27 intersect at three points. We will find these
points by solving x3 4 2x% — 24x = 2x? + x.
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\ 75+ Iy
y:2x2+x
\ J
-10 10
y = x> 4+ 2x? — 24x sl
Fig. 14.27.
0+ 2x% —24x =2x% +x
x> —25x =0
x(x2—=25)=0
x(x+5x—=-5=0
x=0 x+5=0 x—5=
x=-5 x=5

The curve y = x> + 2x? — 24x is on top between a = —5 and b = 0. The

curve y = 2x2 + x is on top between ¢ = 0 and b = 5.

0
/ [(x3 4 2x% — 24x) — (2x% + x)]dx
-5
5
+ f [(2x% + x) — (x® 4+ 2x% — 24x)] dx
0

0 5
= / (x3 — 25x) dx + / (—x3 +25x) dx
-5 0
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_14 252‘0 14252‘5
_<4x 2x> _S—i-(( 4>x+2x o

Lo o B (st Bsy
=10 = 20 (4(5> 2(5))

1N 4 25 1\, 25
+(_4_1) ®) +?(5) _<<_4_1) 0) +7(0))

625 625 625
4 4 2

PRACTICE
Find the shaded area.
1. The line in Figure 14.28 is y = 3x, and the curve is y = —x>48x>—12x.

15

I

Fig. 14.28.
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2. Refer to Figure 14.29.

10
y=2x?

5 [

\ | | | | J

4 3 -2 /-1 3 4

y=x3—x%—3x
5L
Fig. 14.29.
SOLUTIONS

1. We will find where the graphs intersect by solving 3x = —x3+8x?—12x.
3x = —x> + 8x% — 12x
X —8x2+15x =0
x(x* —8x +15) =0
x(x—=3)(x—-5=0
x=0 x—3=0 x—5=0
x=3 x=35

The curves intersect at x = 0, x = 3, and x = 5. The line y = 3x is on
top between a = 0 and b = 3. The curve y = —x> + 8x% — 12x is on top
between ¢ = 3 and b = 5.

3 5
/ [Bx — (—x> 4 8x% — 12x)] dx + / (—x3 + 8x% — 12x — 3x) dx
0 3

3 5
= / (x3 —8x% + 15x)dx + / (—x3 + 8x% — 15x) dx
0 3

(14 8.5 15\ 3 1\ 4 85 15,\p
—(zx —3" +7’C>(o+(<‘z>x =57 |,
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Lo m 8 B o (Lo = B0 1 Loy
=20 -307+ 50 (4«)) 3<0>+2(0>)

Nyt 853 = Bisy
+< 4)<5)+3<5) > )

I R WAV PR R SN
<( 4>(3) +3(3) 2(3)>

63 < 125) ( 63)_ 189 125 189_253
4

2 12 12"12

2. We will find where the graphs intersect by solving x> — x2 — 3x = x2.

W —xr—3x=x

2
X —2x2—3x =0
x(x2=2x=3)=0
xx+1DHx—-3)=0

x=0 x+1=0 x—3=0

x=-—1 x=3

3

From a = —1 to b = 0, the curve y = x> — x? — 3x is on top. From

a =0to b =3, the curve y = x is on top.

0 3
/(x3—x2—3x—x2)dx+/ X2 — (x> = x2 = 3x)]dx
-1 0

0 3
=/ (x3—2x2—3x)dx+/ (—x3 +2x% 4+ 3x) dx
-1 0

_142332‘0 142332‘3
—<4x 3x 2x>_1+ 1 x+3x —|-2x 0

Lot 2o 32— (Lot = Zcrp m 2y
=20 = 307 -0 <4( D= 2D = (¢ 1))

N 4 2.3 3
+(—1) 3+ +30)

N 4, 2 5 3
- ((_Z> 0) +§(0) +§(0) )
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1.

3.

f31(4x3 —6x2+ 1)dx =

(a) 64
(b) 46
) 32
(d) 28

4 3x241
2x34x-2
(a) In4/33 ~ —2.1102
(b) —=7/36
(¢) In33/4~2.1102
(d) Does not exist

dx =

What is the shaded area in Figure 14.30?

4*
y=—x>+4x -3

CHAPTER 14 The Definite Integral

Fig. 14.30.
(a) 63

(b) —63

© -8

d 8
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4. What is the shaded area in Figure 14.31?

2*
y=Inx

[I\)
1
_
=
)
w
N
)

Fig. 14.31.

(a) 4In4 —3In3 — 1 ~ 1.2493
(b) n4—-In3 -1~ —-0.7123
(¢) In4 —1n3 ~ 0.2877

(d) Does not exist

5. What is the shaded area in Figure 14.32? (The line is y = —x and the
curve is y = —3./x.)

2*

SES;;;::}_ 9, —9)

Fig. 14.32.
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(a) 13.5

(b) —13.5

(c) —18

() 0

6. What is the shaded area in Figure 14.33? (The line is y = —x + % and
the curve is y = )l(.)

3T

I I J
1 2 3

Fig. 14.33.

(a) About 0.4887
(b) About 2.9887
(¢c) About 0.3069
(d) Does not exist

7. Whatis the shaded area in Figure 14.34? (The curves are y = %x2—3x —%
and y = x3+x%—12x, and they intersect at x = —3, x = %, and x = 3.

(a) About 18

(b) About 42.7396
(c) About 39.4115
(d) About —10.1398
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_\®

[\
(91
1

u]*
=

I

10 Ny

-15+-
Fig. 14.34.

SOLUTIONS

1.d 2.¢ 3.b 4. a 5.a 6.a 7.b



CHAPTER

Applications of
the Integral

There are many applications of the integral in science, engineering, business, and
economics. This chapter introduces four of them. Many applications use the power
of the definite integral to instantly sum many numbers. In the first application, we
will construct a function based on information we have on the rate of change of
the function. As we know from Chapter 13, finding f(x) from f’(x) gives us a
family of functions, all of which differ by a constant. If we have one functional
value, we can find the function. In the problems that follow, we will be given the
derivative and one functional value. We will integrate the derivative and use the
functional value in the indefinite integral to find C.

EXAMPLES

e The marginal cost function for a product is C’(x) = 0.08x + 1, where x is
the number produced in a month. It costs $6800 to produce 200 units.

@’_
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We will begin with the indefinite integral of 0.08x + 1.
C(x) = /(0.0Sx +1)dx =0.04x> +x + C

The cost function is C(x) = 0.04x2 +x + C. We will use the fact that when
x =200, C(x) = 6800 to find the constant.

6800 = 0.04(200)? + 200 + C

5000 =C

The cost function is C(x) = 0.04x% + x + 5000.

e The velocity of an object is v(z) = 14t + 3 feet per second after ¢ seconds.
Assume that at the beginning, + = 0, the object has traveled O feet. Find
the position function.

Velocity is the derivative of the position function, sometimes denoted s ().

s(t) :f(14t+3)dt =72 4+3t+C

At t = 0, the distance traveled is 0, so we will substitute O for ¢ as well as
for s(¢) to find C.

0 =7(0)%>+3(0) + C
0=C

The distance function is s(¢) = 7t + 3¢.
e The slope of the tangent line for a function is found by computing y' =
12x3 — 6x + 5, and the point (1, —3) is on the curve. What is the function?

y=/(12x3—6x+5)dx=3x4—3x2+5x+C

The point (1, —3) is on the curve, which means that when x = 1, y = —3.

—3=3*=31)*+5()+C
8=C

The function is y = 3x* — 3x2 + 5x — 8.
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PRACTICE

1.

The velocity of an object after ¢ seconds is v(¢) = 4+ 10 feet per second.
Assume that the object traveled O feet at O seconds. What is the position
function?

The value of an investment ¢ months after purchase is changing during
the first year at the rate of V'(¢) = —0.978¢% + 12.786r — 26.876. The
initial investment is $750. What is the investment value function?

The marginal revenue for selling x units of a product is R'(x) =
2x — 4. The revenue for selling 10 units is $70. What is the revenue
function?

The marginal revenue ¢t weeks after a product is introduced is

—1000

R'(t) = 112

After 9 weeks, the revenue is $300. What is the revenue function?

The rate at which a culture of bacteria is growing is N'(¢) = 300e%2%
bacteria per hour after r hours. There were 1500 bacteria in the culture
initially. What is the function that gives the number of bacteria present
after ¢ hours?

The slope of the tangent line for a function is found by computing
y = 5¢3%H10  and the point (—2,4) is on the curve. What is the
function?

SOLUTIONS

1.

s(t) = f(4z +10)dt =22+ 10t + C

s(t) =2t + 10t + C Now let t = 0 and 5(z) = 0.
0=2(0)>+1000) + C
0=C

s(t) = 21> + 10t

“The initial investment is $750” means that at r = 0, V (¢) is 750.

V/(t) = —0.978¢% 4 12.7861 — 26.871
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= —0.326¢> + 6.393t> — 26.871t + C

V() = —0.3261> + 6.393t> — 26.871t + C
Now let r = 0 and V (¢) = 750.

750 = —0.326(0)> + 6.393(0)2 — 26.871(0) + C
750 = C
V(1) = —0.3261> + 6.393¢% — 26.871¢ + 750

3.
R(x) =/(2x—4)dx =x>—4x+C
R(x) = x> —4x + C Now let x = 10 and R(x) = 70.
70 = (10)% — 4(10) + C
10=C
R(x) = x> —4x + 10
4.
1000
R(t) = = | —1000(t + 1) 2 dt
(1) = / ( 1)2 / t+1)
= (r +D7 '+ 1%
T B
1000
R(t) = ? + C Now lett =9 and R(¢) = 300.
1000
300=—— +C
9+1+
200 =C
1000
R(t) = —— + 200
(1) o +
5.
300
N() = / 300e%2 dr = 02 4 C
0.20

N(t) = 1500¢%2% + C Now let t = 0 and N(¢) = 1500.
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1500 = 1500¢°2°® 4 € = 1500(1) 4 C
0=C

N(t) = 1500¢%-2%

y= /565x+10dx _ S0 4 o

y=e**04 C Nowletx =—2and y = 4.
4= o=y c=14C
=C

y =5+ 3

Continuous Money Flow

When money is regularly deposited into an investment over a period of time, we
can find an investment’s accumulated value with formulas from algebra. However,
the formulas can be a little awkward. It is easier to approximate the accumulated
value by finding the area under a curve.

For example, if we want to deposit $600 per year into an account paying 5%
annual interest, compounded annually, for five years, the accumulated value is
about $3315. The graph in Figure 15.1 shows what each deposit is worth after
five years, when $600 is deposited at the end of the year. The first $600 grows to
$729.30 in four years; the second $600 grows to $694.58 in three years; the third
grows to $661.50 in two years; and the fourth grows to $630. The $600 deposit
in the fifth year does not earn interest until the sixth year.

The value of the investments after five years is the total area of the rectangles,
which is about 3315. If $600 is deposited continuously throughout the year and
earns interest continuously, the accumulated value is the area under the curve of
the function V (1) = 600e%%" from x = 0 to x = 5 (see Figure 15.2).

5
Area = f 60020 4t
0

600 3
_ 60.051

~0.05

0
= 12,000(e"056) — £0-050))

= 12,000(¢*? — 1) ~ 3408.31
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800 -

700 -

600

500 -
400 -
300 -
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Fig. 15.1.
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This approximation overestimates the accumulated value somewhat. If $600
is deposited a little each day through the year (about $1.64 per day), then the
accumulated value is about $3400, which is much closer to the approximation
above. In fact, the accumulated value of daily deposits (whose interest is com-
pounded daily) is closely approximated by continuous deposits (whose interest is
compounded continuously).

For the problems in this section, we will assume that money is continuously
flowing into an account that earns interest continuously. The accumulated value
of the account is the definite integral fOT Pe'' dt, where T is the length of
time, in years, P is the amount that is regularly deposited, and r is the annual
interest rate.

T T
P P P
Area = / Pe'ldt = —e"'| = [T —e D)= —[T — 1]

0 r 0 r r

EXAMPLES

e Find the accumulated value of $912.50 that flows continuously into an
account that pays 8% annual interest, compounded continuously, for

20 years. ($912.50 per year is $2.50 per day.)
We will use the integral above with P = 912.50, r = 0.08, and T = 20.

20

/20 912 5060408[ dt — Me0.0St
0 ' 0.08

0
= 11,406.25 (00520 — (0050

= 11,406.25 (e‘~6 _ 1) ~ 45,089.28

The accumulated value is $45,089.28.

e What is the future value of $3000 deposited continuously throughout
each year into an account that pays 6% annual interest, compounded
continuously, for 10 years? For 30 years?

The future value is another term for accumulated value. The future value

after 10 years is the definite integral fol 93000006 gy
10

10
3000
/O ¢ 0.06°

0
— 50,000 (60-0600) _ 80.06«)))
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— 50,000 (e°~6 — 1) ~ 41,105.94

The future value is $41,105.94.
The future value after 30 years is the definite integral f03 93000006 g

30

/ " 30006005 g = 3900 oo
0 0.06

0
= 50,000 (20660 — L0060

— 50,000 <e‘~8 _ 1) ~ 252.482.37

The future value is $252,482.37.

e A homeowner expects to receive $8000 per year in gas royalties for a gas
well on the property. If the money flows continuously into an account pay-
ing 6.25% annual interest, compounded continuously, for 15 years, what is
the accumulated value?

15

/ N 800020025 gy — ﬂeo.oazsz
0 0.0625

0

— 128.000 <60~0625(15) _ 60.0625(0))

— 128,000 (e°~9375 _ 1) ~ 198,859.45

The accumulated value is $198,859.45.

PRACTICE

1. Find the accumulated value of $5000 per year that flows continuously
into an account paying 8% annual interest, compounded continuously,
for 10 years.

2. Find the accumulated value of $30,000 per year that flows continuously
into an account that pays 12% annual interest, compounded continuously,
for 8 years.

3. An inventor expects to receive $40,000 annual royalties for a product
sold to a manufacturer. The money will continuously flow into an account
paying 12% annual interest, compounded continuously for 10 years. What
is the accumulated value of the royalty payments?
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SOLUTIONS
1.

10

10
5000
5000 0.08¢ dt = 0.08¢
/0 ¢ 0.08°

0
= 62,500 (80-08(10) _ 60.08(0)>

— 62,500 (e0~8 — 1) ~ 76,596.31

The accumulated value is $76,596.31.

2.
8 8
30,000
/ 30,00060'12[ d[ — —eO.IZZ
0 0.12 o
— 250,000 (60.12(8) _ 60.12(0))
— 250,000 (60'96 — 1) ~ 402,924.12
The accumulated value is $402,924.12.
3.
10 40,000 10
/ 40,000e* % di = ——=¢%1*

=333,333.33 (01200 0120)

— 333,333.33 (e1-2 - 1) ~ 773,372.31
The accumulated value is $773,372.31.

If we know how much money we need for a future date, we can use the integral

fOT Pe"" dt to find how much money we must invest over time to reach our goal.
We will set the integral equal to the amount of money we need. And then will
solve the equation for P.

EXAMPLE

e A grandmother wants to give her newborn grandson a gift of $50,000 on his
20th birthday. She will let the money continuously flow into an account that



CHAPTER 15 Applications of the Integral _\®

pays 7%% annual interest, compounded continuously. How much should be
deposited each year?

We know that » = 0.075, and T = 20, but we do not know P. We will
solve the equation 50,000 = f020 P75 gt for P.

20
50,000 = / PO gy
0

P 20
50,000 = — 0075
0.075 o
50,000 = ——— (eo.075<20) _ 60.075(0))
0.075
P 1.5
= S
20.000= 5575 (e )

3750 = P (e” - 1) Multiply both sides by 0.075.

3750 =~ P(3.48168907)

3750
3.48168907

1077.06 ~ P

The grandmother should continuously invest $1077.06 each year for
20 years so that it grows to $50,000 in 20 years.

PRACTICE

1. The parents of a five-year-old child want to start a college fund so that their
child will have $150,000 at age 18. The money will continuously flow into
an account which earns 8% annual interest, compounded continuously.
How much should be deposited each year?

SOLUTION
1.

13
150,000 = / PeV08 gy
0



CHAPTER 15 Applications of the Integral

@’_

P
150,000 = — 008
0.08

13

0

150,000 = —— (00819 _ 000)
’ 0.08

P
150,000 = —— (e1~04 _ 1)
0.08

12,000 = P (e‘-O“ — 1) Multiply both sides by 0.08.

12,000 ~ P(1.829217014)

12,000
1.829217014

6560.18 ~ P

The parents should continuously save $6560.18 per year for 13 years so
that it grows to $150,000.

Many lottery winners choose to take the cash value of their winnings rather than
annual payments that can last 20, even 25, years. The cash value is the amount of
money that the state needs to have on hand in order to make the payments over
20 or 25 years. During the years, the amount of money is declining because of the
payments but is growing from interest earned. With the right amount of money,
the account will last long enough to make all the payments.

Suppose one such jackpot is worth $1.2 million, and the state makes 20 annual
payments of $60,000. How much should be invested now, if it can earn 5%
annual interest? For 20 annual payments, the state would need $747,733. If the
payments were made monthly (and interest compounded monthly), the state would
need $757,627. And if the payments were made daily (and interest compounded
daily), the state would need $758,514. If the payments were made continuously
(and interest compounded continuously), the amount the state would need can
be found with the definite integral f020 60,0000 d¢. This formula computes
the area under the curve y = 60,000e=%% from t+ = 0 to + = 20. This is
the accumulated present value of $60,000 continuously flowing from an account
earning 5% annual interest, compounded continuously. As we will see, this amount
is very close to the amount needed for daily payments.

20

f " 60,000e7005% gy — 90000 —o0s:
o —0.05 o
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_ 60,000 <6—0.05(20) _ 6_0'05(0))
~0.05
60,000 / _,

== <e _ 1) ~ 758,545

Another application for the integral fOT Pe~ " dt is to compute how much future
payments made into an account are worth now.

EXAMPLES

e What is the accumulated present value of $6000 that will continuously flow
into an account each year for a total of 15 years if the account pays 7%%
annual interest, compounded continuously?

15

15
6000
6000 —0.075¢ dt = —0.075¢
/0 ¢ 20.075°

0

— _80.000 (6—0.075(15) _ 6—0.075(0))

— 80,000 (e—1~125 _ 1) ~ 54.027.80

The accumulated present value is $54,027.80.

e A homeowner expects to receive $8000 each year for 15 years from gas
royalties. It will continuously flow into an account that pays 6.25% annual
interest, compounded continuously. An investor approaches the homeowner
and wants to purchase the payments. How much are the payments worth
today?

We want the present value of the payments.

/ ? 8000¢—0.0625¢ g — 8000 00625
0 —0.0625

15

0

— —128.000 <e—0.0625(15) _ 8—0.0625(0))

— 128,000 <e—°~9375 _ 1) ~ 77.874.48

Today, the payments are worth $77,874.48. ($77,874.48 would need to be
on account, earning 6.25% annual interest, compounded continuously, in
order to make $8000 annual payments for 15 years.)
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PRACTICE

1.

What is the accumulated present value of $3000 annual payments that con-
tinuously flow into an account paying 6% annual interest, compounded
continuously, for 25 years?

What is the accumulated present value of an investment with a continuous
money flow of $12,000 per year into an account that pays 10% annual
interest, compounded continuously, for ten years?

A woman won a $10 million lottery. She can either take the cash value or
25 annual payments of $400,000. Assuming 4% annual interest, use the
accumulated present value to estimate the cash value of her jackpot. (The
actual cash value is $6,248,831.98.)

The manager of a small company has promised to pay one of its retirees
an income of $1800 per month. It is assumed that the retirce will live
20 years after retiring. How much should be deposited into an account
earning 7%% annual interest, compounded continuously? (Assume that
the money is paid continuously throughout each month.)

SOLUTIONS

1.

25

/25 30006—0.061‘ dt — 3000 6—0.061‘
0 ~0.06

0
= 50,000 (¢~00629) _ (~0060))

— ~50,000 (e—” - 1) ~ 38,843.49

The accumulated present value is $38,843.49.

10

10
/ 12,000e=010" g7 — Me—o.lot
A ~0.10

0
— —120,000 (8—0.10(10> _ e—0.10(0>>

— —120,000 (e—1 — 1) ~ 75,854.47

The accumulated present value is $75,854.47.
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3.

400,000 e
—0.04¢ g, _ o —0-041

25
f 400,000¢
0 —0.04

0
= 10,000,000 (e 004G _ 0040

— 10,000,000 <e—1 _ 1) ~ 6,321,205.59

The cash value is estimated at $6,321,205.59.
4. When $1800 is paid each month, then the annual payments amount to
$21,600.

20

/ . 21,600e 0975 gt = 21,600 00751
0 —0.075

0
= —288,000 (007520 _ ,~0.0750)

— 288,000 (e—l-S _ 1) ~ 223.738.51

$223,738.51 should be deposited into the account.

The amount of money that continuously flows into (or out from) an account
does not need to be the same throughout the year. The amount could vary. If
the annual flow is given by the function f(¢), then the accumulated amount is
fOT f(®)e™ dr. If the flow is out of the account, then the accumulated present

value is [} f()e™"" dt.

EXAMPLE

e A business is earning a continuous profit of $100,000 per year and is

growing at the rate of $8000 per year. This makes the profit function

f (@) = 100,000 + 8000z, after ¢ years. The profit continuously flows into

an account that earns 5% annual interest, compounded continuously. The

owner is considering selling the business. The owner wants $1 million plus

the accumulated present value of the profit for six years. What is the selling
price?

The accumulated present value for six years is the integral f06 (100,000 +

80001)e =09 dr. We will use integration by parts with f/(r) = 00
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(so f(1) = —ggse 0" = —20e709%), and g(r) = 100,000 + 8000t
(so g'(t) = 8000).

6 6
f (100,000 + 80007)e %05 gr = —20%9% (100,000 + 8000¢)
0 0
6
- / —20e79951(8000) dt
0
6
= —20e%97 (100,000 + 8000¢)
0
6
+ f 160,000e =29 gt
0
6
= —20e7297(100,000 + 8000¢)
0
6
— 3,200,000¢0-05
0

~ 636,560

The selling price is $1 million + $0.637 million = $1.637 million.

Consumers’ Surplus and Suppliers’ Surplus

Suppose that there are eight people in a store wanting to buy a can of chili and
that the price of the chili is not marked. Each person pays as much as he or she
is willing to pay. One person pays $6. Another pays $5.50. The third pays $5; the
fourth, $4.50; the fifth, $4.00; the sixth, $3; the seventh, $2; and the eighth, $1.
The store collects $6 + 5.50 + 5 + 4.50 + 4.00 + 3.00 + 2.00 + 1.00 = $31. If the
store had marked a price of $1, then all eight would have paid $1, and the store
would have only collected $8, a reduction of $23. In other words, sales worth
$31 to the consumers would have been purchased for $8. The difference is called
the consumers’ surplus. It is the difference between what consumers are willing
to pay for a product or service and what they actually do pay. Let us look at this
situation graphically. The graph in Figure 15.3 shows how much each person is
willing to pay for the chili. Each rectangle represents one customer and what he
or she is willing to pay for the chili. The total area of the rectangles is 31. In
Figure 15.4, the shaded area represents what each customer does pay if the price
of $1 is marked on the can. The unshaded area represents the consumers’ surplus.
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Fig. 15.3.

1 2 3 4 5 6 7 8 9 10
Fig. 15.4.

The function y = —0.0596x2 — 0.16667x 4 6.14285 approximates the heights
of the rectangles, and the area under the curve (about 33.6) approximates the
area of the rectangles (Figure 15.5). When we subtract the amount consumers
would have spent on chili, 1 x 8 = 8 from the integral fog(—O.OS%)c2 —
0.16667x + 6.14285) dx, we get an approximation for the consumers’ surplus.
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1 2 3 4 5 6 7 8 9 10
Fig. 15.5.

The function y = —0.0596x2 — 0.16667x + 6.14285 is the demand function for
this particular group of consumers. Economists use the demand curve for large
groups of consumers to compute the consumers’ surplus for a product. It is com-
puted the same way—the area under the curve minus the revenue. The revenue is
computed as p - g, the price times the quantity sold.

q
Consumers’ surplus = / (Demand) dx — pgq
0

In the problems below, we will be given a demand function, D(x), and a quantity.
We will use the demand function and the given quantity to compute the price that
consumers are willing to pay for ¢ units. Once we have the demand function,
quantity, and price, we can find the consumers’ surplus.

EXAMPLES

Find the consumers’ surplus.

o D(x)=—ox+25; g = 150.
The price at ¢ = 150 is D(150) = —%(150) + 25 = 17.50. The revenue
collected when 150 units are demanded at $17.50 is ($17.50)(150) = $2625.
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We will have the consumers’ surplus when we subtract 2625 from
(= x +25) dx.

150 1 1
/ ——x+25) dx —2625 = [ ——x2% +25x
0 20 40

1
= ——(150)% +25(150
40( )* 4+ 25(150)

150
— 2625

0

1
— [ =—(0)* +25(0) ) — 2625
( 250+ <)>
= 3187.5 — 0 — 2625 = 562.50

Consumers paid $2625 for a product or service that was worth $3187.50,
which produced a consumers’ surplus of $562.50.

o D(x) =9.54¢7022%, 4y =9
The price when 9 units are demanded is D(9) = 9.54¢70-2290) ~ 1.21. The
revenue is ($9)(1.21) = 10.89.

9

—10.89

9
9.54
/ 9.546—0.229)6 dx — 10.89 = 8_0‘229x
0 0

—0.229

_ 9.54 (e_0.229(9)_e—0.229(0))
—0.229

—10.89 =~ 25.47

The consumers’ surplus is $25.47.

PRACTICE

Find the consumers’ surplus for the given demand function and quantity.

1. D(x)=—-0.01x>—x+20;qg =15
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SOLUTIONS

1.

When 15 units are demanded, the price is D(15) = —0.01(15)% — 15 +
20 = 2.75, and the revenue is ($2.75)(15) = $41.25.

15
(—0.01x> — x +20)dx — 41.25

(00 s 1, o
= 3 X 2X X

0

15
—41.25

0

- %(15)3 - %(15)2 +20(15)

— <$(0)3 _ %(0)2 n 20(0)) _ 4125

=176.25—-0—41.25 =135

The consumers’ surplus is $135.

The price for ¢ = 12 is D(12) = % ~ 1.42. The revenue for

selling 12 units is ($1.42)(12) = $17.04.

12 20x + 40 12 91002x + 4
/ de—n.m:/ 10Cx+D 1704
0o x24+4x4+5 0o Xx24+4x+5
2 (x+4
:10/ @ FD 1704
0 Xx2+4x+5

12

—17.04
0

= 10[In((12)% + 4(12) + 5) — In((0)?
+4(0) +5)] — 17.04

= 10[In(x* + 4x + 5)]

~ 10(5.283 — 1.609) — 17.04 ~ 19.7

The consumers’ surplus is $19.70.

The suppliers’ surplus measures the difference between the amount of money
a supplier is willing to accept at a given price for a product and the amount the
supplier actually does receive. Suppose a supplier is willing to sell 100 units at $5
each but is able to sell 100 units at $8 each. This gives the supplier a surplus of
($8)(100)—($5)(100) = $300. If the price is p for selling ¢ units, then the revenue
is pq and the suppliers’ surplus is found by computing pg — foq (Supply) dx.
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In the problems below, we will be asked to find the suppliers’ surplus for a
given supply function and quantity. The supply function, S(x), gives the price a
supplier is willing to sell x units. We will use the given quantity to find the price
using the supply function.

EXAMPLE

e Find the suppliers’ surplus for S(x) = 0.05x + x + 10 and ¢ = 20.
The price for ¢ = 20 units is S(20) = 0.05(20)% + 20 + 10 = 50, and the
revenue is ($50)(20) = $1000.

20
Suppliers’ surplus = 1000 — (0.05x% + x + 10) dx
0
005 , 1, 20
=1000 — [ —x 4+ —x“ 4+ 10x
3 2 0

= 1000 — T(ZO) + 5(20) + 10(20)

B 0.05 (0)3 1(0)2 1000 i|
(T + 5 + ))

= 1000 — <$ — 0) ~ 466.67

The suppliers’ surplus is $466.67.

The graph in Figure 15.6 shows what the formula pg — foq (Supply) dx is
computing. The area of the rectangle is the revenue, 20 x 50 = 1000. The shaded
area is the suppliers’ surplus, the difference between the area under the line y = 50
and the curve y = 0.05x% + x + 10.

The market for a product or service is in equilibrium when supply equals
demand: both suppliers and consumers agree on a price and quantity. We can
find the equilibrium by setting the supply function equal to the demand function
and solving for x, the equilibrium quantity. We can find the equilibrium price
by putting x into either the supply or demand function (we would get the same
price from both functions). After we have the equilibrium point, we can find the
consumers’ surplus and the suppliers’ surplus.
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75~

Price

I I J
5 10 15 20 25

Number Sold
Fig. 15.6.

EXAMPLE

e Find the equilibrium point, consumers’ surplus, and suppliers’ surplus for
D(x) = —x + 107.5 and S(x) = 0.02x2 + 2x + 20.
We will find the equilibrium point by solving the equation S(x) = D(x)
for x.

0.02x2 + 2x + 20 = —x + 107.5

0.02x% +3x — 87.50 =0

—3+,/32 —4(0.02)(—87.50) —3+4/16 -
X = = —
2(0.02) 0.04
(x = —175 is not a solution.) The equilibrium quantity is g = 25. We can

find the equilibrium price with ¢ = 25 in either D(x) or S(x).

D(25) = —25 + 107.50 = 82.50
S(25) = 0.02(25)% 4 2(25) + 20 = 82.50

The equilibrium price is $82.50, and the revenue is ($82.50)(25) = $2062.50.

25
Consumers’ surplus = (—x + 107.5) dx — 2062.50
0
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25
—2062.50
0

1 2
= —Ex + 107.50x

= —%(25)2 + 107.50(25) — (—%(0)2 + 107.50(0))

—2062.50
= 2375 — 0 —2062.50 = 312.50

The consumers’ surplus is $312.50.
25

Suppliers’ surplus = 2062.50 — | (0.02x2 + 2x + 20) dx
0

25

0

0.02
— 2062.50 — <Tx3 +x%+ ZOx)
0.02
—2062.50 — (T(25)3 +(25)% +20(25)
0.02
— <T(O)3 + (0) + 20(0)))
A 2062.50 — (1229.17 — 0) ~ 833.33

The suppliers’ surplus is $833.33.

PRACTICE

Find the equilibrium point, consumers’ surplus, and suppliers’ surplus for the
given supply and demand functions.

l. D(x) = —%x +100 and S(x) = 2x + 50
2. D(x)=—0.2x+219 and S(x) = 0.01x% + x + 30

SOLUTIONS

1. We will first find the equilibrium quantity and price.

1
2x + 50 = —Ex—i- 100

—x =50
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2 I o
x = 3 50 =20 The equilibrium quantity is 20.
$(20) = 2(20) + 50 =90 The equilibrium price is $90.

1
D(20) = —(20) + 100 = 90

The revenue is ($90)(20) = $1800.

20
1
Consumers’ surplus = / (—Ex + IOO) dx — 1800

0

= 12+100
= 4)6 X

1 2
= —7(20)% +100(20)

20
— 1800

0

1
— (—Z(O)Z + 100(0)) — 1800
= 1900 — 0 — 1800 = 100

20

Suppliers’ surplus = 1800 — / 2x +50)dx
0

20

= 1800 — <x2 + 50x>

0
= 1800 — [(20)2 +50(20) — ((0)2 + 50(0))]
— 1800 — 1400 = 400

The consumers’ surplus is $100, and the suppliers’ surplus is $400.

0.01x2 4+ x +30 = —0.2x + 219

0.01x2 4+ 1.2x — 189 =0

_-12£ /TP —300D(-189) _ —12%3 _
= 2(0.01) =002
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(x = —210 is not a solution). The equilibrium quantity is 90. The equi-
librium price is D(90) = —0.2(90) 4+ 219 = 201, and the revenue is
($201)(90) = $18,090.

90
Consumers’ surplus = (—0.2x +219)dx — 18,090
0
90

— 18,090
0

= —0.1(90)% + 219(90)

= (—=0.1x% + 219x)

— (=0.102 +219(0) ) — 18,090

= 18,900 — 0 — 18,090 = 810

90
Suppliers’ surplus = 18,090 — (0.01x% + x + 30) dx
0

0.01 1
— 18,090 — <Tx3 + Exz + 30x>

90

0

0.01 3 1 2
= 18,090 — T(90) + 5(90) + 30(90)
001 5 1
— | ——0)" + z(0)" + 30(0)
3 2
= 18,090 — (9180 — 0) = 8910
The consumers’ surplus is $810, and the suppliers’ surplus is $8910.

The Average Value of a Function

We can find the average value of a function on an interval from x = a tox = b
using the definite integral. We might want to find the average temperature during
a 24-hour period, the average revenue over the course of a year, or the average
balance of a checking account.

The average value of a function f(x) over the interval [a, b] is

1 b
m/l; f(X) dx.



(@’_ CHAPTER 15 Applications of the Integral
For example, the average value of the linear function f(x) = x — 1 on the interval

[2, 4] is the y-value of the midpoint, which is 2 (see Figure 15.7). This agrees
with the formula.

2+ <— Midpoint
1 —
Lo L
2 4
Fi;. 15.7.
Average = —/ (x —1Ddx
4

e (5@)2—(2))}
2[2<> ~@- (5

1
=-4-0)=2
2( )
EXAMPLES
e Find the average functional value of f(x) = x2 — x — 2 on the interval
[1, 3].

3

12
3_1/ (x —x—2)dx_—(— —Ex —2x)

Lo Lo oo (L _ Loy
2[3(3) 2(3) 2(3) (3(1) 2(1) 2(1))}

1
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1 3 13 1
"2 [_5 - (_?ﬂ e

The average of all y-values between x = 1 and x = 3is %

e The temperature during a 24-hour period in a certain city can be approxi-
mated by the function T'(¢) = 0.0005:% — 0.0346¢> +0.7014¢> —5.01017 +
38.844, t hours after midnight. What is the average temperature for the
entire day? What is the average temperature between noon and 6:00 pm?

1 24
70 (0.0005¢* — 0.03461> + 0.70141> — 5.01017 + 38.844) dt
- 0
1 24

= 02 (0.0001z5 —0.00865¢* + 0.2338> — 2.50505¢% + 38.844t>

0
1
= —(647.7984 — 0) =~ 27
24
The average temperature during the entire 24-hour period is 27 degrees.
Noon is 12 hours after midnight, and 6:00 pm is 18 hours after midnight.
1 18

T (0.0005¢* — 0.0346¢> + 0.701412 — 5.01017 + 38.844) dt
- 12

1 5 4 3 2 8
= (0.0001: — 0.00865:* + 0.233813 — 2.50505¢2 + 38.844t>

12

1 1
= 6(531.9918 —354.924) = 6(177.0678) ~ 29.5

The average temperature between noon and 6:00 pm is 29.5 degrees.

e The velocity of a particle after ¢ seconds is v(¢) = 4t + 10 feet per second.
Find the average velocity for the first 15 seconds and between 10 and
20 seconds.

15 15

1 1
. 4t + 10) dt = — (2¢% + 10¢
5.0, (41 4+ 10) 15( + 10¢)

0
1

= — (600 — 0) =40
15

The average velocity between 0 and 15 seconds is 40 feet per second.
20 20

20— 10 J,o

1
(4t + 10) dt = E(2z2+ 10¢)

10
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1
= — (1000 — 300) =70
10

The average velocity between 10 and 20 seconds is 70 feet per second.
e The revenue for a product during its first year is approximated by R(t) =
1000

711 T 200, r weeks after its introduction. What is the average weekly

revenue during its first year?

1 52 71000
— ——— 4200 dr
52 -0 0 t+1

1 52 1 52
= — 1000/ —dt —|—/ 200dt
52 o t+1 0

1 52
=5 (1000 In(z + 1) + 200¢)

0

1
= 5(1000 In53 — 10001n 1 4-200(52) — 200(0))

1
~ —(14,370.29191) =~ 276
52

The average weekly revenue is $276.

PRACTICE
1. Find the average value of the function f(x) = 6x2+8x —7 on the interval
[—1,3].

2. Find the average value of the function f(x) = 4x3 + 18x% + x on the
interval [—2, 3].

3. The temperature during one day can be approximated by the function
T(t) = 0.00124t* — 0.07512¢3 + 1.4115¢*> — 7.8916¢ + 75.1013, ¢ hours
after midnight. What is the average temperature over the 24-hour period?
Between 9 am and noon?

4. For the first year, the value of an investment # months after purchase can
be approximated by the function V (f) = —0.3261 4-6.3931> —26.871¢ +
750. What is the average value during the first year?

5. The value of a piece of office equipment over the first eight years of its
life can be approximated by the function V(1) = 10, 000e=%-19% ‘What
is the average value of the equipment over the eight years?
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SOLUTIONS

1.

3
/ (6x +8x—7)dx_—(2x + 4x? — 7x)

3—( 1) 1

1
=—-(69—-9) =
4( )
The average functional value on the interval [—1, 3] is 15.
2.
f(4 +18x2 +x)d ! +6 +1 3
—_— X 224+ x)dx = = [ x* X X
3— ( 2) 5 2 s
1 /495 111
=———=(=30)) = —
(5 -w)=5
The average functional value on the interval [—2, 3] is - 111
3.
1 24
_— (0. 00124¢* — 0.07512¢ + 1.4115¢>
24 —0
— 7.8916¢ + 75.1013) dt
1 5 4
= —(0.000248:> — 0.01878¢
24
24
+0.470513 — 3.9458¢% + 75.10131)
0
_ 1 (1777.8199 — 0) =~ 74.1
Y ‘ oo
1 12
12—9 (0.001241* — 0.0751213 + 1.4115¢2

—7.8916t +75.1013) dt

1 5 4
= g(0.000248t —0.01878¢

12

+0.47051% — 3.9458¢2 + 75.1013¢)
9



@)’_ CHAPTER 15 Applications of the Integral

1
= (227.60768) ~ 75.9

The average temperature during the entire day is 74.1 degrees, and the
average temperature between 9 am and noon is 75.9 degrees.

4.
1 12
(—0.3261° + 6.393t* — 26.871¢ + 750) dt
12—-0 Jy
1 4 3
= —(—0.0815¢" + 2.131¢
12
12
— 13.4355¢ 4 7501)
0
1
= 5(9057.672 —0) ~ 754.81
The average value of the investment for the first 12 months is $754.81.
5.

(I 1 /10,000 8
8—-0Jo 8 \ —0.105 o

~

(—95,238e—°~‘°5<8)

0| =

— (~95.238e70105) )

1
~ g(—41,115 —(—95,238)) ~ 6765

The average value of the equipment for the first eight years is $6765.

CHAPTER 15 REVIEW

1. The slope of the tangent line for a function is found by computing
y' = 8x3 — 9x2 4 6x — 4, and (2,7) is a point on the graph. What is
the function?

(@ y=2x*-3x3+3x>—4x -5
(b) y =24x% —18x — 53

(c) y=28x>—9x%+6x —33

d y= §x3 —%x2+6x— %5
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2. The cost for producing x units of a product is C (x) = 0.04x%+x+5000.
Find the average cost for producing the first 150 units.
(a) $875

(b) $6350
(c) $6050
(d) $5375

3. Aninsurance agent collects $7200 per year for selling a particular policy.
If the money is flowing continuously into an account that pays 5% annual
interest, compounded continuously, what is the accumulated value after
eight years?

(a) $11,934.60
(b) $5901.90
(c) $70,822.76

(d) $10,741.14

4. The demand for a service sold by the hour is D(x) = —0.8x + 150 for
x hours. Find the consumers’ surplus if x = 100 hours are sold.
(a) $11,000
(b) $70
(c) $4000

(d) There is no consumers’ surplus

5. A grandfather wants to give his newborn granddaughter a $25,000
gift on her 21st birthday. How much money per year should contin-
uously flow into an account that pays 6% annual interest, compounded
continuously?

(a) $1500

(b) $594
(c) $338
(d) $14,208

6. Find the equilibrium point for a product whose demand function is
D(x) = —0.005x> + 2x + 30,000 and whose supply function is
S(x) = 0.02x% — x + 5090.

(a) The equilibrium quantity is ¢ = 1060, and the equilibrium price is
$26,502.

(b) The equilibrium quantity is ¢ = 1000, and the equilibrium price is
$27,000.



@’_

CHAPTER 15 Applications of the Integral

(c) The equilibrium quantity is ¢ = 840, and the equilibrium price is
$18,362.
(d) The equilibrium point does not exist.

7. The monthly balance for a bank account during one year can be
approximated by B(x) = 7.1615x* — 260.1273x3 + 3129.3402x2 —
14,214.9741x 4 25,916.6667 (where x = 1 is January). From January
to December, what is the average monthly balance?

(a) $8902
(b) $8160
(c) $6511
(d) $7103

8. A woman won a $15 million lottery jackpot. She is considering taking
the cash value instead of 20 annual payments of $750,000. Assuming
that the money is flowing continuously from an account paying 4%
annual interest, compounded continuously, approximate the cash value.
(a) $12,413,205
(b) $9,978,096
(c) $10,325,082
(d) $13,011,250

9. Find the suppliers’ surplus for S(x) = 100e*9%* and ¢ = 150.

(a) $301,290
(b) $95.,428
(c) $205,855
(d) There is no suppliers’ surplus
10. The marginal revenue for selling x units of a productis R'(x) = 1001n x.

The revenue for selling 50 units is $14,760. What is the revenue
function?
(a) R(x) =100xInx —x — 4750
(b) R(x) =100xInx — 100x + 200
(¢) R(x) =100Inx — x 4 14,419
(d) R(x) =100x Inx — 4800

SOLUTIONS

l.a 2.d 3.c 4.c 5.b

6.a 7.d 8.¢c 9.¢ 10. b
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1. Find lim,_,3(4x2 + 1).

@@ 13
(b) 169
() 0
d 37
2. Findy/ify=ﬁ+%.
(a)
o 1
RN AN
(b)
S 1
NN
(©)
;1 1
SNV

—&

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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(d)
, 1 1
Yy ===
2Jx  24x3
3. Is f(x) = 2x> — 3x? — 120x + 15 increasing, decreasing, or neither
atx =07

(a) Increasing

(b) Decreasing

(c) Neither

(d) It cannot be determined without the graph

4. For the line y = —%x +4

(a) as x increases by 2, y decreases by 3
(b) as x increases by 2, y increases by 3
(c) as x increases by 3, y decreases by 2
(d) as x increases by 3, y increases by 2

5. If f(x) = x> — 3x, then find f'(x).

(a)
o x2=3x+4+h—(x*-3x)
lim
h—0 h
(b)
o x242xh+h?r—=3x+h— (x2 —3x)
lim
h—0 h
(©)
o x242xh+h*—3x —h — (x2 = 3x)
lim
h—0 h
(d)
. x242xh+h*—3x —3h — (x* — 3x)
lim
h—0 h

6. Does the graph of f(x) = 2x3—3x2—120x+15 have a relative extremum
at x = —47

(a) There is a relative minimum at x = —4.
(b) There is a relative maximum at x = —4.
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(c) The graph of f(x) does not have a relative extremum at x = —4.
(d) It cannot be determined without the graph.

7. Find y' if y = 10317,

(a) y =10
(b) y/ — 30e3x+7
(c) y =30

3 3x+7
(d) y/: 610

8. An object travels d(¢t) = t2 + 5t feet after ¢ seconds. What is its
instantaneous velocity at 3 seconds?
(a) 24 feet per second
(b) 11 feet per second
(c) 8 feet per second
(d) 17 feet per second
9. Is the graph of f(x) = x> — 3x% 4+ 4x — 10 concave up, concave down,
or neither at x = 2?
(a) Concave up
(b) Concave down
(c¢) Neither
(d) Concavity cannot be determined without the graph

10. For the line y = x

(a) as x increases by 1, y increases by 1
(b) as x increases by 1, y decreases by 1
(c) as x decreases by 1, y increases by 1
(d) the slope is 0

11. Evaluate

5
2

/ 3 al dx

3 X°—= 4
(@) In21 —In5 =~ 1.4351
(b) In5—1In21 ~ —1.4351

16

(©) — 7105
(d) The integral does not exist
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12. Ify=u2+3u+1andu=4x+3,whatis %?

@) L =@x+32+3@x+3)+1

b 2= (2u+3)¢x+3)

© L =32x+436

d 2 =8x+11
13. Find y' if y = 13.

X

@ Y=z
® y=3
© =1
@ y =5
14. What are the critical values for f(x) = x21+1 ?
(@) x =0 only

b)) x=0, —1, 1 only
(c) x=-1, 1only
(d) There are no critical values

15. Find the function containing the point (2,5) and whose derivative is

2
f =
=77
(a)
6x 9x4

IO=G oty
(b)

fx)=— +6

x3 -7
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16.

17.

18.

19.

(©)

fx) = —ﬁ +8
(d Inlx3=7]+5
Evaluate [ J/x dx.
@ x+cC
(b) x4+ C
© x*S+cC
@ x*+cC

The manager of an apartment complex is considering reducing the
monthly rent. There are 100 apartments in the complex, and 80 of them
occupied. The rent is now $800 per month. The manager believes that
for each $16 decrease in the rent, two more apartments can be rented.
What rent will maximize the revenue?

(a) $720 per month

(b) $700 per month

(c) $680 per month

(d) $660 per month

Evaluate approximately f_2 LeX i dx.

(a) 1093.91
(b) 546.96
(c) 273.48
d 4721

What is % for x3y? — xy — 8x = 10?
(a)

dy 8 —3x2y2 —2x3y +y

dx —X
(b)

dy 8-=3x*y* -2y +y

dx X
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()
dy 8 —3x2y2 4y
dx  2x3y+x
(d)
dy 8 —3x2y2 4y
dx  2x3y—x

4L
Fig. A.1.

20. Find the shaded area in Figure A.1. The line is y = —2x + 1, and the

21.

curve is y = x2 — 2x — 3.
20
(a) 3
44
b -4
32
() 3
@ o

The population of a certain city can be approximated by P(t) =
100,000¢%0%" ¢ years after 1995. How fast is the population growing in
the year 2005?

(a) The population is growing at the rate of 12,840 people per year.
(b) The population is growing at the rate of 2500 people per year.
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(c) The population is growing at the rate of 3210 people per year.
(d) The population is growing at the rate of 2840 people per year.

22. Suppose f'(5) =0 and f”(5) = —6. What does this mean?

(a) There is a relative maximum at x = 5.
(b) There is a relative minimum at x = 5.
(¢) The relative maximum is —6.
(d) The relative minimum is —6.

23. Evaluate

@ 1x*+C
(b) x’+C
© —ix73+cC

d —-ix3+4C
24. Find the tangent line to f(x) = x> —5x?> —x —3atx = —1.
(a y=12x+10
b)) y=12x+4
) y=-2x—-4
d y=-2x-5
25. For the function f(x) = —x2 +8x — 15, which of the following is true?
(a) The maximum functional value is 1.
(b) The minimum functional value is 1.

(c) The maximum functional value is 4.
(d) The minimum functional value is 4.

26. Find y’ if y = In(6x3 + 5x% + x).

(a)
, o 6x 4+ 5x +x
YT ISl 10x+ 1
(b)
. (18x2 + 10x + 1)

"~ In(6x3 + 5x2 4+ x)



() y =In(18x% + 10x + 1)
(d)

,_18x*+10x +1
63+ 5x2 4 x

-3
Fig. A.2.
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27. The sign graph for a function f(x) is given in Figure A.2. What can we

conclude from this graph?

(a) There is a relative minimum at x = —3 and a relative maximum at
x =0.

(b) There is a relative maximum at x = —3 and a relative minimum at
x =0.

(c) There is a relative minimum at x = O only.
(d) There is a relative maximum at x = O only.

28. Bvaluate [(6x? — 5x + 4)(4x> — 5x% + 8x + 3)" dx.

@) 5@x>—5x2+8x+3)0+C
(b) 3(4x3 —5x24+8x+3)°+C
© 1e@x*—5x2+8x+3)¥+C
d) §@x*—5x24+8x+3)%+C

29. Find the average rate of change for the function f(x) = x> — 6 between

x=2and x = 5.
@ —7

() 0

© I

@ 1

30. The value of an investment for the first ten years can be approximated by
V(1) = 3.25t* —83.913 +658.61% — 12101 +4989, ¢ years after purchase.
What is happening to the investment’s value at 5 years?

(a) The value is increasing at the rate of $708 per year.
(b) The value is decreasing at the rate of $708 per year.
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(c) The value is increasing at the rate of $6948 per year.
(d) The value is decreasing at the rate of $6948 per year.

31. Evaluate

/4xe3x2+5 dx

(a)

§e3x2+5 +C

(b)

g e3x2+5 e

(©)

24e3x2+5 + C

(d)
12345 4

32. A square box is to be constructed so that it has a volume of six cubic
feet. Material for the top costs $0.40 per square foot; material for the
bottom costs $0.60 per square foot; and material for the sides costs
$0.45 per square foot. What is the height of the box that costs the least
in material?

(a) About 1.75 feet
(b) About 1.81 feet
(c) About 1.95 feet
(d) About 3.43 feet

33. Find y' if y = [(6x + 1)(x — 3)]".
(@ ¥ =7[6x+ Dx —3)1°
(b) ¥y = (84x — 119)[(6x + D)(x — 3)1°
(©) y =1[6(x—3)+ (6x+ (D
(d) ¥y =7[6(x —3)+ (6x + 1)(1)]°
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34. Find y' if y = logs(10x? — 7x).
(a)

, 100x — 35
Y T 0x2 — 7x
(b)
, In5(20x —7)
YT ok — 7x
(©)
,  20x—7
Y T Tox2 — 7x
(d)
, 20x =7
y

= In5(10x2 — 7x)

35. Find the accumulated value of $9000 that continuously flows into an
account each year for 10 years. The account earns 6% annual interest,
compounded continuously.

(a) $95,400
(b) $7399
(c) $123,318
(d) $161,176
36. Find the elasticity of demand function for a product whose demand
function is D(p) = 50 — 2p.
(a)
1

25—p
(d) E(p)=25-p
(c)

E(p) =

E(p) =

P
25 —

(d)

25 —
E(p) ==L
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37.

38.

39.

40.

Find

. x> —5x—6
lim —————
x—6 x2 — 36

The sign graph in Figure A.3 is the sign graph for which function?
(@ f(x)=3x>—8x*+4

b) fx)=3x*—-8x3+4

© f(x)=2x>—6x>+4

d f(x)=2x*—6x+4

y = (5x% 4 2x? +3)°.

(@) y = (5x3 +2x2 +3)°(15x2 + 4x)

®) ¥ = 6(15x% + 4x)°

() y =6(5x3+2x>+3)

(d) ¥ = (90x% + 24x)(5x> + 2x2 +3)°

Find

2 2
hm X+h*1 X*l
h—0 h
(a)

-2
lim
h—0(x +h—1(x—1)
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(b)
. 2h
lim
h—0(x+h—1Dx-—1)
(©)
. —2h
lim
—0(x+h—1x-—1)
(d

. 2h
Iim ——
h—0 (x — 1)2

Fig. A.4.

41. Find the shaded area in Figure A.4. The curves are y = —x2 + 10x — 10
and y = x> — 6x + 4.
(a 72
(b) 60
(c) 54
d) 78

42. Find the consumers’ surplus for a product whose demand function is

D(x) = xlg% when g = 90 units are demanded.

(a) $2303
(b) $3203
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43.

44.

45.

46.

(c) $1403
(d) $90

A grocery store sells 6000 ten-pound bags of pet food. Each bag costs
$1.20 to store for one year. Each order costs $25. How many times
per year should the store order the pet food?

@@ 10
b)) 12
) 14
@ 16

Evaluate

/ 4dx +5
—dx
6x2 4+ 15x +2

(@ $In|6x?+15x+2/+C

(b) 3In|6x2+15x +2|+C

(© —3In|6x2+15x +2|+C

(d) The integral does not exist

What are the points of inflection for f(x) = x> + 3x2 — 24x + 47
(a) (—4,84) and (2, —24) only

(b) (-1, 30) only

() (—4,84), (-1, 30), and (2, —24)
(d) There are no points of inflection
Find y' if y = 10%*,

(@ y =In10(4 — 2x) - 10%—*

(b) v = (@4 —2x)In10%—*

(©
' 4 —2x
v n(4x—x2)
(d)

_ 4 —2x
" In10(4x — x2)

/

y
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47.

48.

49.

50.

51.

A hardware store sells 90 ladders per year. Each ladder costs $4 to store
for one year. Each order costs $7.20 to place. How many times should
orders be placed each year to minimize the cost?

(a) 2 times per year
(b) 3 times per year
(c) 4 times per year
(d) 5 times per year
Sales of a certain service depends on the sales budget. The number of
orders in a month can be approximated by s(a) = —0.001a? + 16a —
24,000, where $a is the monthly sales budget. Currently, $5000 is bud-
geted for sales each month. The company owner is planning on increasing

the sales budget by $500 per month. How will this affect the number of
orders?

(a) The sales level will increase at the rate of 3000 orders per month.
(b) The sales level will increase at the rate of 2500 orders per month.
(c) The sales level will increase at the rate of 2000 orders per month.
(d) The sales level will increase at the rate of 1500 orders per month.

What is the absolute maximum of f(x) = 2x3 —9x2 — 24x + 5 on the
interval [—2, 3]?

(a) The absolute maximum is 1 and the absolute minimum is —94.

(b) The absolute maximum is 1 and the absolute minimum is —107.
(c) The absolute maximum is 18 and the absolute minimum is —107.
(d) The absolute maximum is 18 and the absolute minimum is —94.

The value of a piece of equipment can be approximated by y =
20,000(0.90%), x years after its purchase. How fast is its value decreasing
four years after purchase?

(a) Its value is decreasing at the rate of $2000 per year.
(b) TIts value is decreasing at the rate of $1380 per year.
(c) Its value is decreasing at the rate of $1460 per year.
(d) Tts value is decreasing at the rate of $5830 per year.

Find f'(x) if f(x) = (4x% 4+ 3x +5)(x2 4+ 2).

(@ f'(x) = Bx+3)(x%+2) + 4x%+3x +5)(2x)

) f'(x)=Bx+3)(2x)

(© f'(x)=8x+3)(x2+2) — @x% +3x + 5 (2x)

@ fl(x)=@x+3)x2+2) — @x>+3x+5Q2x +2)
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52. Simplify In(x — 1) — In(2x + 3).

(@) In[(x — DQ2x + 3)]
() In[(x — 1) — 2x +3)]

(©) ‘1

In

2x +3

) In(x — 1)

In(2x + 3)

53. Find £ if y = VX2 — 4.

(a) dy 1

dx  Jx2—4
(b) dy _ 1

dx  2J/x2—4
© 4y x

dx  Jx2_4
(d) dy .

dx  2/x2—4

54. The revenue for a product ¢ weeks after release during its first year can
be approximated by R(t) = —5¢2 + 333t + 50. Find the average weekly

revenue during the first year of the product’s release.

(a) $210,469

(b) $17,539

(c) $4201

(d) Losing $187 per week

55. Find the price that has unit elasticity for a product whose demand function

is D(p) = 400e=0-027,

(a) $20
(b) $30
(c) $40
@ $50
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56.

57.

58.

Final Exam

Evaluate f x2In(3x) dx. (Hint: use integration by parts.)

@ $x3InGx)—ix3+C

(b) 1x3InBx) — §x3 +C

(© 3x*In@Bx)— fx*+C

@ x*In@x)—fx*+C

The revenue for selling x units of a product is R(x) = —0.01x% + 5x.
Find the marginal revenue for 20 units.

(a) $4.60

(b) $96

(c) —83

(@ $1

A car traveling south on a highway averaged 64 mph. A small train
passed underneath the highway at the same time the car was there. The

train was traveling west, averaging 48 mph. An hour later, how fast was
the distance between the car and train increasing?

(a) About 100 mph
(b) About 156 mph
(c) About 62.5 mph
(d) About 80 mph
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59.

60.

61.

62.

— NN W Rk~ W
I

The graph in Figure A.5 is the graph of f(x). Find lim,_,1 f(x).
(@ 1

(b) 2

() 3

(d) The limit does not exist

The graph in Figure A.6 is the graph of g(x). Find lim,_, ;- g(x).
(a) -3

() 2

(¢ 1

(d) The limit does not exist

Why is g(x) (shown in Figure A.6) not continuous at x = 1?

(a) g(1) does not exist.

(b) lim,_,1 g(x) does not exist.

(¢) limy_ g(x) does exist but lim,_,1 g(x) # g(1).
(d) lim,_, ;- g(x) does not exist.

An open-topped box is to be constructed from a thin piece of metal that
measures 15" x 18". After a square piece is cut from each corner, the
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63.

64.

sides will be folded up to form the box. How much should be cut from
each corner in order to maximize the volume of the box?

(a) About 2.08 inches
(b) About 2.72 inches
(c) About 3.16 inches
(d) About 8.28 inches

The number of newspaper subscribers in a small city can be approximated
by S(p) = 0.6p, where p is the population. The population between the
years 1980 and 2005 can be approximated by p(r) = 2.1513 — 65.61> +
897t + 39730, ¢ years after 1980. What is happening to the number of
subscribers in the year 19907

(a) The number of subscribers is increasing at the rate of 138 per year.
(b) The number of subscribers is increasing at the rate of 231 per year.
(c) The number of subscribers is increasing at the rate of 456 per year.
(d) The number of subscribers is increasing at the rate of 984 per year.

Find f/(x) if

16x +3
T ="
(a)
) 16x (x2 4+ 1) — (16x + 3)(2x)
(b)
) = 16(x% + 1) + (16x + 3)(2x)
(©
o 16(x* + 1) — (16x +3)(2x)
(d)
2
Py = 1667 D + (16x +3)20)

x2+1
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65. A cylindrical tank is being filled with a liquid solvent at the rate of 3 cubic
feet per minute. The radius of the tank is 2 feet. How fast is the level of
solvent rising?

66.

(a) About 28.27 feet per minute
(b) About 9.42 feet per minute
(c) About 0.48 feet per minute
(d) About 0.24 feet per minute

Find fl—)yc for (x + y)? = y>.
(a)

dy 2x + 2y

dx  3y2—2x —2y
(b)

dy 2x+12y

dx 3y
()

dy  3y?

dx  2x 42y

(d) % does not exist

SOLUTIONS

1.d 2.d 3.b
11.a 12.¢ 13.
2l.c 22.a 23.
3l.a 32.¢ 33.
41.a 42.c 43.
51.a 52.¢ 53.
61.b 62.b. 63.

® 0 oo 06 QA

4.¢ 5d 6.b 7.b 8b 9.a 10.a
14.a 15.b 16.a 17.a 18.b 19.d 20.c
24.b 25.a 26.d 27.c¢ 28.c¢ 29.c¢ 30.a
34.d 35.¢ 36.c¢c 37.a 38.b 39.d 40.a
44.a 45.b 46.a 47.d 48.a 49.d 50.b
54.¢ 55.d 56.b 57.a 58.d 59.c¢ 60.a
64.c 65.d 66.a



This page intentionally left blank



INDEX

Absolute extrema, 204213
Accumulated value, 394-400, 403404
Antiderivative, 325
Applications
chain rule, 134, 138-140
elasticity of demand, 313-323
exponential and logarithmic, 306-310
of the integral, 390418
optimizing, 234-275
related rates, 163-179
Area, maximizing, 242-243, 246-247, 249-262
Area under the curve, 362-372, 406, 410
approximated by rectangles, 358-362
between two curves, 372-385
and the definite integral, 362-385
Average cost, 237-238, 241
Average rate of change, 31-36
Average value of a function, 413-418

Base
change of, 299, 301-304
of an exponent, 281
of a logarithm, 289
Box problems, 247-248, 262-266, 269-270

Cash flow (see Continuous money flow)
Chain rule, 134-140, 284, 286, 300
applications of, 134, 138-140
Change of base formula, 302
Compound interest, 279-281, 289, 304, 306,
394-404
Concavity, 218-227

eo"

Consumers’ and suppliers’ surplus, 404—413
Container problems, 171-172, 174-176, 247-248,
262-263, 264
Continuity at a point, 6671
Continuous compounding, 394-404
Continuous money flow, 394-404
Cost
average, 237-238, 241
marginal, 120-124, 140, 390-391
minimizing, 253-262, 268-271, 271-275
Critical value
of the first derivative, 194-202
of the second derivative, 220-227
Curve
area
between two curves, 272-385
under the curve, 358-371, 406, 410
concavity of, 218-227
critical points, 194-202
exponential, 281-282
extrema of, 192-202, 204-213
increasing/decreasing intervals of, 182-191,
193-194
inflection points on, 223-225
logarithmic, 289
logistic, 288
secant lines to, 77-79
sketching, 202-204
tangent lines to, 79, 89, 156-160

Decreasing

functions, 218, 220, 280, 281, 282
intervals, 182—191, 193-194

—&
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Definite integral (see also Area under the curve),  Fencing problems, 242-243, 246-247, 249-262
353-358 First derivative test, 195-202
applications of, 394418 Function (see also Graphs)
Demand, elasticity of, 313-323 cost, 120-124, 140, 237-238, 241, 253-262,

Demand function, 140, 164, 165, 406—408, 268-275, 390-391
410413 demand, 140, 164, 165, 313-323, 406408,

Derivative (see also Applications) 410-413
definition of, 80-88 exponential, 279-289, 299-301, 306-309,
and increasing/decreasing intervals, 186—191, 333, 334

193-194 extreme values of, 192-202, 204-213, 227-231,

as the rate of change, 117-124

second, 217-231

and velocity, 117-120
Derivative formulas

chain rule, 134-140

exponential rule, 284, 299, 300

logarithmic rule, 292, 293

quotient rule, 110-114

power rule, 91-98, 126-134

product rule, 106-109
Difference quotient, 80-88

320-323

increasing/decreasing, 182-191, 193-194,
217-220

limit of, 39-71

logarithmic, 289-290, 292-301, 305-310

logistic, 288-289, 308, 309

optimizing of, 192-193, 194, 195-202,
227-231, 234-275, 320-323

profit, 120-124, 139, 164, 165, 236, 239

rate of change, 31-36, 75, 117-124,
217-219, 390

revenue, 120-124, 138-139, 235, 236, 239, 240,
243-245, 321-323, 392, 393, 404-413, 416
Fundamental Theorem of Calculus, 353
Future value, 396-397

Differentiation (see also Derivative formulas)
implicit, 143-179

Discontinuity, points of, 6671

Distance, 168—169

e (Euler’s number) Graphs

as the base of a logarithm, 283-284
as a limit, 41, 283
Economic lot size, 271-275
Elasticity of demand, 313-323
Equation
of a line, 20-21
solving, 16-20
of a tangent line, 89, 98-106, 157-160, 391,
392, 393
Equilibrium, 409413
Exponent properties, 10-12, 93, 282-283
Exponential function,
applications of, 306-309
derivative of, 284-289, 299-301
integral of, 333, 334
Exponents and roots, 279-289, 299-301
Extrema
absolute, 204-213
relative, 192-202, 227-231, 320-323

concavity of, 218-227

and continuity, 66—71

exponential, 281, 282

extrema of, 192-193, 194

increasing/decreasing intervals of, 182-191,
193-194, 217-220

and limits, 43-47, 48-50, 60, 61

logarithmic, 289

logistic, 288

sketching of, 202-204

Implicit differentiation, 143-179
Increasing

functions, 280, 281, 282
intervals, 182-191, 193-194, 217-219
and sign graphs, 191-192

Indefinite integral, 325-349
Inflection point, 223-225



Instantaneous

rate of change, 117-124

velocity, 118-120
Integral

applications of, 390-418

definite, 353-358

indefinite, 325-349
Integration by parts, 337-344, 345-347
Integration, techniques of, 337-349
Interest, 279-281, 289, 304, 306
Interval

increasing/decreasing, 182-191, 193-194,

217-220
notation, 12-15

Ladder problems, 169-171
Limit
and continuity, 69-71
and the derivative, 79-88
evalutating, 41-42, 43-47, 48-50, 56-66
infinite, 61-63
one-sided, 47-49
properties, 54-56
Limits of integration, 353
Line
equation of, 20-21
secant, 77-80
slope of, 29, 32
tangent, 79-80, 89, 98-106, 143, 157-160,
186-187, 391-393
Logarithm
applications of, 308, 309
base of, 290
change of base, 301-305
derivative of, 292-299, 300-301, 305-306
integral of, 331-333, 335
natural, 290
properties of, 290-292
Logarithmic differentiation, 298-299
Logistic function, 288-289, 308, 309
graph of, 288

Marginal function
cost, 120-124, 140, 390-391
profit, 120-124, 139, 164, 165
revenue, 120-124, 138-139, 392, 393

_\@)

Maximizing/minimizing functions (see Optimizing

functions)
Maximum, minimum (see Extrema)
Money flow
continuous, 394—404
future value, 396-397
present value, 400404

Natural logarithm (see Logarithm)

One-sided limit, 41-53, 55-66
Optimizing functions, 192-193, 194, 195-202,
227-231
applications, 234-275
revenue, 320-323

Polynomial, graphing, 202-204
Population, 308
Power rule
derivative formula, 91-98, 126-134
integral formula, 326-331
Present value, 400-404
Price
and elasticity of demand, 313-323
and maximizing revenue, 243-246
Product rule, 91-98
Profit
and continuous money flow, 403—404
marginal, 120-124, 139, 164, 165
maximizing, 236, 239

Quadratic equations and formula, 17-18
Quotient rule, 110-114

Rate of change
average, 31-36
and the derivative, 75
instantaneous, 117-124
and the integral, 390
and the second derivative, 217-219
slope as, 29-31

Relative extrema, 192-202, 227-231
and business applications, 234-275



Related rates, 163—179
Revenue
average, 416
and consumers’ and suppliers’ surplus,
404-413
and elasticity of demand, 321-323
marginal, 120-124, 138-139, 392, 393
maximizing, 235, 236, 239, 240, 243-245
Roots (see Exponents and roots)

Secant line, 77-80
Second derivative test, 227-231
Sign graph, 191-192

and concavity, 219-227

and the first derivative test, 195-202
Slope

as a rate of change, 29-31

of a secant line, 77-80

of a tangent line, 75, 79-80, 89, 98, 143,

157-160, 186-187, 391, 392, 393

Suppliers’ surplus, 408413

Supply function and equilibrium, 409-413
Surface area, minimizing, 262-267

Table, finding a limit from, 41-42, 47, 51, 55, 56,
57
Tables of integrals, 345-349
Tangent line
and the derivative, 75, 79-80, 89, 98-106, 143,
157-160
and increasing/decreasing intervals, 186—187
and the integral, 391, 392, 393

Unit elasticity of demand, 321-323

Velocity
average, 117-120, 415-516
and the derivative, 118-119
instantaneous. 118-120
integral of, 391, 392, 393
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