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Preface

The virtues of the beauty and the power of calculus were not lost upon the
creators of the subject. In particular, the physicist, Sir Isaac Newton was
eminently cognizant of the great utility of calculus,1 although it would be a
historical mistake to suppose that he invented calculus so that he could do
physics.2 However, despite some efforts, neither Newton nor any of his contem-
poraries or immediate successors were able to provide satisfactory foundations
for the new mathematics.3 This would come much later.

In the rush to master the mechanics and to learn some of the applications of
calculus, it is easy to gloss over the bases of the subject and the limitations
of the results. A book on advanced calculus should attempt to correct these
deficiencies. The title “Advanced Calculus” connotes a more penetrating study
of sequences (Chapter 2), infinite series (Chapter 3), derivatives (Chapter 5),
and integrals (Chapter 6). These are the principal topics of the present book.

In fact, the title of our book carries other layers of meaning besides that just
stated and those that would be familiar to instructors but perhaps not expected
by students. First, although we assume that readers are familiar with many
manipulations of the standard functions, there is a decided deemphasis on
numerical computations and a strong stress on conceptual relationships, for
theorems are the real jewels of mathematics. For many (perhaps most) stu-
dents using this book as a course text, such a course might well be the first
in which they are asked to prove a great many statements. For this purpose,
at the beginning of Section 1.4, we have presented some (but not too much)

1Florian Cajori remarks that “It is generally supposed that he [Newton] deduced many of his theorems
in the Principia with the aid of his theory of fluxions and fluents [calculus], and afterwards translated
his results into the synthetic form [geometry].” See Cajori, F., Newton’s Principia, University of California
Press, Berkeley, 1947, p. 654.
2See remarks in Katz, V. J., “Review of De Gandt, F., Force and Geometry in Newton’s Principia, Princeton
University Press, Princeton, 1995,” Amer. Math. Monthly, 105, 386–392 (1998).
3Newton provided four axioms to serve as foundations of his differential calculus, but these were not
statements about the real number system. See Westfall, R. S., Never at Rest: A Biography of Isaac Newton,
Cambridge University Press, Cambridge, 1980, pp. 226–231. ix
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introductory material on methods of proof. We view this option as prefer-
able to either including nothing at all on proof (because students “should
already know it”) or squirreling the material away in an appendix in the back of
the book.

Second, this book really does focus on the relatively familiar topics of sequences,
series, differentiation, and integration, and does not extend into the higher
levels of abstraction that are proper for authentic courses in real analysis. To us,
advanced calculus is a bridge between the standard three-semester introduction
to calculus and real analysis. Thus, whereas we do bits and pieces of topology
in this book, especially in Chapter 4 on continuity, the extent of this is kept
small. Also, we do only the Riemann theory of the integral in any detail. There
is plenty of time in later courses for measure theory and the Lebesgue integral,
or for still other kinds of integrals.

Third, although due attention is paid to securing the foundations of calculus,
it is apparent that any such exposition must always be a compromise between
rigor and pedagogy in order to avoid producing an unusable tome. It would
be nice, for example, to construct the system of real numbers. Or, in principle,
complete rigor ought to take us all the way back to doing logic from scratch. We
do not have the luxury of space and time to carry out these interesting projects.
In this regard, the bibliographies may be useful.

The objectives of our book are threefold:

1. Reexamine many of the topics from standard calculus but at a level with
sufficient rigor to make them intellectually stimulating.

2. Present an introduction to modern patterns of thought in mathematics
that will be beneficial to those students who may pursue more advanced
work.

3. Instill in the student the notion that the subject is not “contained”
between the covers of any one textbook, and that outside reading (the
more, the better) is essential for maturation in mathematical thinking.

One way to assist students in connection with the first objective is to assign
many problems. We subscribe to the Ben Hogan philosophy that learning math-
ematics is a lot like learning to play golf—it requires tons of practice. We have
written a generous (but not overabundant) supply of problems, most of them
conceptually oriented. Additionally, Appendix C contains about five dozen
supplementary problems on sequences, series, and integrals for challenge and
stimulation.

We have tried to meet the second objective in the following two ways:
(1) occasionally proving a theorem by a less traditional route in order to
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illustrate the flexibility of thinking that is essential in creative mathematics and
(2) occasionally connecting advanced calculus to some other area of mathe-
matics in order to illustrate the interpenetration of all of mathematical knowl-
edge.4 For example, we have proved the countability of the rationals by
appeal to a standard multiplicative function from number theory, and we have
proved the Mean-Value Theorem by a method that makes contact with linear
algebra.

The third objective is very important. Each chapter concludes with numerous
book and journal references pertinent to topics in the chapter. Many more such
references could have been included. We strongly urge instructors to use ways to
get their students to read more mathematics outside of class; this is a way to get
them more “involved” in mathematics. If necessary, dangle some carrots. Even
the historical aspects of developments in calculus are worth reading about, for
although the masters were only human, there is no limit to what we can learn
from them. The book is sprinkled with historical asides.

There is intentionally more material in the book than can be covered in one
semester. This is because (1) the book reflects, in part, the predilections of the
authors, and (2) there is no consensus as to what constitutes core material for a
one-semester course. The following syllabus is a suggested one; for some classes
less material may be advisable.

Chapter 1 Lecture on Sections 1.2–1.3, 1.7–1.8, 1.9; assign
all other sections as reading.

3 lectures

Chapter 2 Cover all seven sections. 6 lectures

Chapter 3 Cover all six sections. 6 lectures

Chapter 4 Cover Sections 4.1, 4.3–4.9; assign Section 4.2 as
reading and Section 4.10 only if you wish.

8 lectures

Chapter 5 Cover most of this chapter, but omit any sections
that you wish.

7 lectures

Chapter 6 Cover most of this chapter also, picking just those
threads that you want to emphasize.

8 lectures

Chapter 7 Some sections from this chapter should be done,
but time will be your determining factor.

2 lectures

Total: 40 lectures

4In regard to the whole philosophy of the nature of mathematical knowledge, creativity, and proof, a
terrific set of essays is contained in Ayoub, R. J. (ed.), Musings of the Masters, Mathematical Association
of America, Washington, D.C. 2004. The review of this book in Kennedy, S., Amer. Math. Monthly, 113,
575–580 (2006) is a gem.
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If the class meets three times a week in a 15-week semester, then four to six class
periods remain for examinations and review.

All authors have been influenced by certain prior writings in their field; we have
felt most keenly the inspiration received from G. H. Hardy, A Course of Pure
Mathematics, 10th ed., Cambridge University Press, Cambridge, 1967. We also
acknowledge gratefully the numerous comments about the manuscript from
several readers. They helped make this a better book. Deficiencies that remain
(and there surely are some) are our responsibility alone. We welcome any and
all comments from readers and users of the book.

Finally, we are indebted to Lauren Schultz Yuhasz, Senior Acquisitions Editor
at Elsevier Science, and to the expert editorial staff there for their skill and
assistance in bringing this project to fruition. We are honored to have been
allowed to publish under the Elsevier umbrella.

One final note to instructors: A copy of the Instructor’s Solutions Manual can be
found at http://textbooks.elsevier.com/.

Joseph B. Dence
Thomas P. Dence



To The Student

Introductory calculus traditionally has been oriented toward mechanics, from
which you learned how to compute limits, differentiate and integrate standard
functions, and apply these techniques to various interesting problems. Now you
are about to begin a deeper look into calculus that may entail some modification
in your thinking about mathematics.

A holistic point of view that might be useful is to regard mathematics as a lan-
guage (the nineteenth-century Yale chemist J. W. Gibbs said so). The following
analogies seem to emerge.

A Spoken/Written Language Mathematics

Letters of the alphabet, correctly written Fundamental terms, carefully defined;
depending upon scope, some terms
may be left undefined

Words, correctly spelled and with diacri-
tical or other marks such as accents,
umlauts, apostrophes, as required

More complicated terms, concepts
compounded of simpler ones and with
symbols such as +, { }, f , as required

Sentences, including capitalizations and
punctuation, as required, and constructed
in conformity to standard rules of grammar

Lemmas, theorems, corollaries, stated
unambiguously

Paragraphs, written coherently Proofs of the above, written with cor-
rect reasoning and in conformity to
standard rules of logic

Sets of paragraphs that develop a princi-
pal theme

Sets of theorems, plus supporting
numerical work, if any, that develop a
subject area of mathematics

Although in this book we assume that you are familiar with various manipu-
lations of many standard functions, a more penetrating study of calculus will
require mastering definitions and the careful wording of theorems. Especially xiii



xiv To The Student

important in the latter are the hypotheses, because these indicate the condi-

tions under which the conclusions are valid. Assertions such as ∂2f
∂x∂y = ∂2f

∂y∂x or
d
dy

∫ b
a f (x, y)dx = ∫ b

a

( ∂f
∂y

)
xdx should be regarded not as identities, but rather as

conditional statements that are true only under certain conditions.

The purpose of formal proof is to establish the logical connection between the
hypotheses and the conclusions of theorems. Accordingly, this book is largely
proof-oriented, and most of the exercises will ask you to show or prove certain
statements. Commonly, proofs will take the form of direct proof, indirect proof,
or proof by mathematical induction. We review these briefly in the first chapter.

One final, practical point is this: An intensive subject can never be mastered as
fully as when you become maximally involved in it. You therefore should do
more problems than are assigned by your wise instructor. You should also do
more reading than is assigned. In this regard, you will discover that the chapters
of the book have been generously referenced. References are collected at the
ends of the chapters. You will find most of these references to be approachable;
make a point of consulting some of them and working through them. Perhaps
you can convince your instructor to give you extra credit for some of this work.
Here’s what the great Newton had to say:

“A Vulgar Mechanick can practice what he has been taught or seen done,
but if he is in error he knows not how to find it out and correct it, and if
you put him out of his road, he is at a stand; Whereas he that is able to
reason nimbly and judiciously about figure, force and motion, is never at
rest till he gets over every rub.” 1

Newton, 1694

Good luck in Advanced Calculus!

1Westfall, R.S., Never at Rest: A Biography of Isaac Newton, Cambridge University Press, Cambridge, 1980,
p. 499.
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CHAPTER 1

Sets, Numbers, and Functions

“The calculus was the first achievement of modern mathematics....”
John von Neumann
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4 CHAPTER 1: Sets, Numbers, and Functions

1.1 LOGIC AND SETS
Much of mathematics is done in accordance with accepted tenets of the logic
whose study was initiated by the Greek universal genius Aristotle (384–322
BCE). Fundamental in logic is the concept of a proposition, any statement
about which it is meaningful to ask if it is true or false, such as

p : “The integer 641 is prime.”

The negation of a proposition p is ∼p, and is such that if p is true (false), then
∼p is false (true):

∼p : “The integer 641 is not prime.”

Two propositions can be combined so as to form compound propositions
(Table 1.1).

Table 1.1 Some Compound Propositions

Name Symbol Meaning

1. Conjunction p ∧ q “p and q”
2. Disjunction p ∨ q “p or q”
3. Implication p → q “If p, then q”
4. Double Implication p ↔ q “If p, then q, and vice versa”a

aMore concisely read as “p, if and only if, q,” or even more tersely as “p iff q.”

In logic, compound propositions have definite truth values (T or F) that depend
only upon the truth values of the component simple propositions. This infor-
mation is conveniently summarized in truth tables (Exercises 1.1–1.3), which
are deducible from certain basic axioms of logic, including those given in
Table 1.2.

Table 1.2 Some Axioms for Aristotelian Logic

Name Statement

L1. Law of Negation A proposition and the negation of its
negation have the same truth value.

L2. Law of the Excluded Middle Either a proposition is true or its negation is
true.

L3. Law of Contradiction A proposition and its negation cannot
both be true.

L4. Law of the Syllogism If proposition p implies proposition q, and if
q implies proposition r, then p implies r.
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■ Example 1.1
If p is the proposition given previously and q is the proposition “

√
641 is

rational,” then p ∨ q is read “641 is prime or
√

641 is rational.” This
compound proposition is true. ■

■ Example 1.2
p : “The function f (x) = x2 is differentiable on the interval [0, 1]”;

q : “The function f (x) = x2 is continuous on the interval [0, 1]”;

r : “The function f (x) = x2 is integrable on the interval [0, 1].”

It is known that p → q is true and q → r is true. By Axiom L4, p → q is also
true. ■

An interesting aside is that other systems of logic than that studied by Aristotle
exist (Eves, 1990).1 In them the Law of the Excluded Middle, for example, might
not hold.

Besides logic, extensive use of concepts from the theory of sets is made in
all branches of mathematics (Lipschutz, 1998). A set S is any well-defined
collection of objects.2 Membership in S (or the negation thereof) is written
as x ∈ S (or as x /∈ S). Two sets S and T are equal, S = T, if they contain the
same elements. Some common sets needed in advanced calculus are indicated
in Table 1.3.

Table 1.3 Symbols for Some Important Sets

Set Symbol Illustrative Elements

Natural numbers N 1, 2, 3, 4, 5, . . .
Integers Za . . . ,−2,−1, 0, 1, 2, . . .
Rational numbers Qb −7/3,−1, 0, 2/31
Real numbers R − 3

√
4, 0, 1, 2/31, π

Irrational numbers R\Qc −√
π, 1 +√

2, 2 + 2π

Complex numbers C −1 + i, 0, 2/31, eiπ/3

aFrom (die) Zahl (number (Germ.)).
bFrom the word “quotient.”
cSee entry 3 in Table 1.4.

1Citations (annotated) and other references appear at the end of each chapter. These are intended for
your enrichment.
2The German Georg Cantor (1845–1918) was the founder of the modern theory of sets. However, “set”
(die Menge (Germ.)) first appeared in a technical context in an 1851 book (posthumous) by the Bohemian
Bernhard Bolzano (1781–1848), a free thinker who was years ahead of his time.
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Table 1.4 Four Standard Set Operations

1. Union of S and T S ∪ T = {x : x ∈ S or x ∈ T}
2. Intersection of S and T S ∩ T = {x : x ∈ S and x ∈ T}
3. Complement of T Relative to S S\T = {x : x ∈ S and x /∈ T}
4. S as a Subset of T S ⊆ T = {x : (x ∈ S) → (x ∈ T)}a
aThe notation indicates that S = T is permitted; the more restricted notation S ⊂ T means that there is
at least one element x ∈ T that is not a member of S.

S

S < T S > T S \ T S # T

T

S

T

S

T S T

FIGURE 1.1
Construction of new sets from given sets.

New sets can be constructed from given sets in a number of ways. Four standard
ways are indicated symbolically in Table 1.4 and pictorially in Figure 1.1.

It is convenient to introduce a set that has 0 elements, the empty set, which
is denoted universally by the Scandinavian letter Ø. For any set S 
= Ø, the
inclusion Ø ⊂ S holds in a negative sense. Finally, two sets S, T are disjoint if
S ∩ T = Ø.

1.2 REAL NUMBERS
An area of frontline research during the period from 1880 to 1920 was the secur-
ing of the foundations of the system of real numbers (Kline, 1972). Amazingly,
it proved possible to construct the entire real number system from just a few
simple axioms for the very basic system of natural numbers.

All of this is very exciting, but we have not the luxury here to work through the
large number of details needed to accomplish the program (Landau, 1966).
Instead, following the German mathematician David Hilbert (1862–1943),
we shall regard R itself as an axiomatic system. The first six axioms for R will
certainly sound familiar to you (Table 1.5).

Axioms R1 through R6 are called the field axioms because statements analo-
gous to them characterize any mathematical structure known as a field. The six
axioms justify all of the arithmetic operations done in R.
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Table 1.5 The Field Axioms for R

R1. (Closure) Addition and multiplication of any two members of R always produce
members of R.

R2. (Commutativity) If x, y ∈ R, then (a) x + y = y + x, (b) xy = yx.
R3. (Associativity) If x, y, z ∈ R, then (a) (x + y) + z = x + (y + z), (b) (xy)z = x(yz).
R4. (Left Distributive Law) If x, y, z ∈ R, then x(y + z) = xy + xz.
R5. (Identities) There are elements 0, 1 ∈ R, the additive identity and the

multiplicative identity, respectively, such that (a) 0 
= 1, and (b) for each
x ∈ R, x + 0 = x and x · 1 = x.

R6. (Inverses) For each nonzero x ∈ R there are elements −x, x−1 ∈ R, the additive
inverse and the multiplicative inverse of x, respectively, such that (a) x+ (−x)=0,
and (b) x

(
x−1

) = 1.

There is a seventh axiom for R, which is not a field axiom:

R7. (Simple Ordering) There is a subset P ⊂ R, called the positive num-
bers, such that (a) 0 /∈ P, (b) for each nonzero x ∈ R, exactly one of
x,−x is in P, and (c) for each x, y ∈ P, x + y ∈ P and xy ∈ P.

The field Q contains positive numbers, but the complex numbers C do not
(why?). There are infinitely many fields that do not contain any positive
numbers (Exercise 1.6). Focusing now on R, however, we need the following
definition in order to appreciate axiom R7 (Wilder, 1983):

Definition. A set S is said to be simply, or linearly, ordered iff there is a binary
relation > defined on S and with these properties:

1. (Comparability) If x, y ∈ S and x 
= y, then either x > y or y > x holds, but
not both.

2. (Nonreflexivity) For no x ∈ S is x > x true.

3. (Transitivity) If x, y, z ∈ S, and x > y and y > z hold, then x > z also holds.

We now use axiom R7 as the basis for defining a binary relation > on R. All
three parts of R7 are needed for this.

Definition. In R the symbol > is defined by the correspondence

x > y ↔ {[x + (−y)] ∈ P}.
The notation x < y means the same thing as y > x.

Suppose that x, y ∈ R and x 
= y; then we can establish that

x + (−y) 
= 0, y + (−x) 
= 0,
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since (otherwise) postaddition of y or x, respectively, would lead to the con-
tradiction that x = y (Exercise 1.8). Next, using the elementary theorem that if
a, b, c ∈ R and a + b = a + c, then b = c (Exercise 1.9(a)), we can establish that
for any x, y ∈ R we have (Exercise 1.11)

−[x + (−y)] = (−x) + y. (*)

By axiom R7(b), exactly one of x + (−y) and (−x) + y in (*) then lies in P. If
it is the former, then x > y by definition, and if it is the latter, then y > x. This
establishes the Comparability aspect for > in the definition of simple ordering.

The other two aspects are left to you to verify (Exercise 1.12). It follows that R
is a simply-ordered field. This permits us to establish numerous theorems on
inequalities (Exercises 1.13,1.19).

■ Example 1.3
Let x, y ∈ R; if x + z > y + z, then x > y. To show this, note that the
hypothesis (the given information) is equivalent to (x + z) + [−(y + z)] =
(x + z) + [−(z + y)] ∈ P. However, −(z + y) = (−z) + (−y) by the same rea-
soning used to obtain (*). Hence, we have

(x + z) + [−(z) + (−y)] = [(x + z) + (−z)] + (−y)

= [x + {z + (−z)}] + (−y)

= (x + 0) + (−y) = x + (−y) ∈ P,

and this says that x > y. ■

1.3 THE AXIOM OF COMPLETENESS
Building further on axiom R7, we observe that the notion of boundedness of
sets of real numbers can be introduced.

Definition. Suppose that S ⊂ R is nonempty.

(a) Then S is bounded from above iff there is a number u ∈ R, called an upper
bound for S, such that x ≤ u for all x ∈ S; the u may, but need not, belong
to S.

(b) The set S is bounded from below iff there is a number l ∈ R, called a lower
bound for S, such that x ≥ l for all x ∈ S; the l may, but need not, belong
to S.

(c) The set S is bounded iff l, u both exist.
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FIGURE 1.2
The line as a model for R.

It is now convenient to use the imagery of geometry. Following the Greeks of
antiquity, we use a line L as a model for R (Figure 1.2); an arbitrary point O is
chosen to represent the number 0. Elements of P lie to the right of O, and all
other nonzero elements of R lie to the left of O. Most crucially, as the Greeks
once believed, every point of L represents a rational number.

Let us next define two sets on L:

S1 = {x ∈ Q : x ≥ 0, 0 ≤ x2 < 5}
S2 = {x ∈ Q : x ≥ 0, 5 ≤ x2}.

The set S1 ∪ S2 should cover the entire right half of L. We observe that S1 is
certainly bounded from above, for example, by u = 3, 3 ∈ S2; also S2 is bounded
from below, for example, by l = 2, 2 ∈ S1. Of course, if a set in R has one upper
(lower) bound, then it has several. Our attention then is directed to the largest
and/or smallest of the bounds.

Definition. Suppose that S ⊂ R is nonempty. Then a number U is called a
supremum (or least upper bound) of S iff:

(a) S is bounded from above;

(b) U is an upper bound of S;

(c) If u is any upper bound of S, then U ≤ u.

Similarly, a number L is called an infimum (or greatest lower bound) of S iff:

(a′) S is bounded from below;

(b ′) L is a lower bound of S;

(c ′) If l is any lower bound of S, then l ≤ L.

We denote the supremum and the infimum of S by sup S, inf S, respectively, if they
exist.

If our set S1 has a supremum U, it must certainly be less than u = 3. Let us
assume that U ∈ S1; as U is nonnegative, we compute the positive number

x = 3U + 5
3 + U

= 3 − 4
3 + U

. (*)
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Clearly, x is rational if U is rational; squaring both sides of (*) gives

x2 = 9 − 24
3 + U

+ 16
(3 + U)2

= 5 + 4
(3 + U)2 (U2 − 5).

But U2 < 5, so 0 < x2 < 5 and x ∈ S1. Further, a rearrangement of (*) produces

x = U + 5 − U2

3 + U
, (**)

and U2 < 5 now implies that x > U. Hence, U cannot be the supremum of
S1; the supremum must be x or greater. But, this argument can be repeated
indefinitely, beginning now with x and inserting this into the right-hand side
of (*). Perhaps the supremum U of S1 is an element of S2. Substitution of
U into (*) again carries us down to (**); but now because U2 > 5, we have
x < U, x ∈ S2, so U cannot be the least upper bound of S1 because x is smaller
than U.

A candidate for U could be the left endpoint of S2, where x2 = 5. But a simple
divisibility argument (Exercise 1.25) shows that there is no element of Q whose
square is 5. We appear to be left with the conclusion that S1 does not have a
supremum U. Further, all the earlier reasoning can be adapted to yield the allied
conclusion that S2 does not have an infimum L. So there is a “gap” between
S1 and S2, and S1 ∪ S2 apparently does not cover all of the right half of L
(Figure 1.3).

There is nothing special about the way that sets S1, S2 were defined. Many
choices other than 5 could have been made and would have led to similar
difficulties. The line literally would be peppered with a great many “gaps.”
Such a line would be too perverse to be trustworthy in geometry, and in turn,
R itself would be too perverse to be acceptable. The way out is provided by
the recognition that in accepting the existence of all of R, we automatically
admit also, as points on L, numbers (like

√
5) that are not rational (irrational

0 1

S1 S2

2 3
�

sup S1
missing?

inf S2
missing?

FIGURE 1.3
A “gap” on the real line?
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numbers). These numbers completely fill all alleged “gaps.” Set S1, because it
is bounded from above, must then have a least upper bound, which in this case
is sup S1 = √

5. The final axiom for R is, therefore:

R8 (Axiom of Completeness) Any nonempty set S of real numbers that
is bounded from above has a supremum.

It is appropriate to say that R8 completes the description of the system of real
numbers and that R is a complete, simply-ordered field. The axiom justifies
the existence of all real irrational numbers, and most of the theorems in this book
would fail without it. And, incidentally, there is a dual statement about infima that
is derivable from axiom R8 and, as expected, inf S2 = √

5. Example 2.16 (and
Exercise 2.30) show an explicit construction of an irrational number, ultimately
from the Axiom of Completeness.

There have been many axiomatic treatments of R. A recent, interesting one is
described in Oman (2009).

1.4 PROOF
The jewels of mathematics are its theorems (θεωρημα (Gk.), a product of
contemplation), and it is the main business of mathematicians to establish
them in a convincing way. We use standard techniques of proof in this book
(Cupillari, 2005; Solow, 2004). A theorem usually is stated in the form of a
single or double implication (Table 1.1):

If S, S′ are bounded, nonempty subsets of R and S′ ⊆ S, then sup S′ ≤ sup S;

If x, y are real, then xy = 0 iff either x = 0 or y = 0.

The if-clause contains the hypotheses (or premises) of the theorem, and the
then-clause is the conclusion. In direct proof we proceed logically from the
hypotheses to the conclusion; definitions, axioms, previously proved theorems
may all be used as justifications for individual steps. Proofs are written out in
paragraph format with sufficient prose to make them readable.

Theorem 1.1.3 If S, T, W are sets, then S\(T ∩ W) ⊂ [(S\T) ∪ (S\W)].
Proof. We need to show that any element of the set on the left-hand side is
automatically an element of the set on the right-hand side (Table 1.4). Let
x ∈ S\(T ∩ W); then x ∈ S and x /∈ T ∩ W. The latter implies (by definition of
intersection) that either x /∈ T or x /∈ W. If x /∈ T then x ∈ S\T, and if x /∈ W,
then x ∈ S\W. In either case, by definition of union, x ∈ [(S\T) ∪ (S\W)] and
the desired set inclusion follows. �

3Theorems in the book are enumerated as follows: THEOREM (chapter no.).(theorem no. within the
chapter).
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FIGURE 1.4
Truth table for a contrapositive.

You will find a sketch to be a helpful guide in the construction of the previous
proof. In general, this is a useful habit but not a rigorous maneuver.

Theorem 1.2. If S, S′ are bounded, nonempty subsets of R and S′ ⊆ S, then
sup S′ ≤ sup S.

Proof. By axiom R8, both sup S′ and sup S exist. For each y ∈ S, we have
y ≤ sup S. But S′ ⊆ S, so each x ∈ S′ is a y ∈ S; hence, S′ is bounded from above
by U = sup S. By the definition of supremum (Section 1.3), sup S′ ≤ U then
follows. �

We revisit Exercise 1.3. The proposition ∼q → ∼p is called the contrapositive
of the proposition p → q. The truth table shown in Figure 1.4 emerges.

The identity of the last two columns means that p → q and∼q → ∼p are equiv-
alent propositions; this is what the Law of Contraposition in Exercise 1.3
really means. Often it is easier to prove the contrapositive of a proposition
than to prove the proposition directly. Thus, we have the technique of proof by
contrapositive.

Theorem 1.3. If a set S ⊂ R contains one of its upper bounds, then this upper bound
is the supremum of S.

Proof. Let U = sup S and let u be an upper bound of S; assume, contraposi-
tively, that u 
= U. Then by the definition of a supremum, U < u. As U is itself
an upper bound of S, s ≤ U for all s ∈ S, and therefore each s is strictly less
than u. This says that u is not a member of S. �

Somewhat similar in flavor to proof by contrapositive is proof by contra-
diction. In it we assume (a) the hypothesis p, (b) some proposition r (this
could just be p, or an axiom, or a previously proved theorem), and (c) the nega-
tion ∼q of the conclusion. Then we show that these assumptions imply ∼r.
Since r and ∼r cannot both be true (axiom L3), it follows that ∼q is false, so q
is true (axiom L1).
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Theorem 1.4 (Euclid’s Theorem).4 If the sequence of primes is written in
ascending order, then the sequence has no end.

Proof. Suppose that the primes have been written in ascending order (propo-
sition p), and assume that the sequence terminates (proposition ∼q). Then the
sequence has a largest member, Nmax (proposition r):

2, 3, 5, 7, 11, 13, . . . , Nmax.

Now consider the integer N = 2 · 3 · 5 · 7 · 11 · 13 · · ·Nmax + 1. From the
Fundamental Theorem of Arithmetic N is uniquely factorable (except for the
order of listing) into powers of primes (see footnote 11):

N = pa1
1 pa2

2 · · · pan
n .

No prime pi in this factorization can be found in the set of primes from 2 to
Nmax, for if it could, then pi would divide each term of the difference

N − (2 · 3 · 5 · 7 · 11 · 13 · · ·Nmax),

that is, pi would divide 1. This is impossible, so either (a) N is itself a prime
larger than Nmax, or (b) N is not prime and its prime factors are larger
than Nmax. Either case implies ∼ r, so ∼q is false and the sequence has
no end. �

Proof by contrapositive and proof by contradiction are two forms of indi-
rect proof. In them, as we see, we do not proceed directly from premises to
conclusion.

The next example is a consequence of the Axiom of Completeness and is an
important characterization of R. In order to proceed, we need a definition of the
natural numbers.

Definition. The natural numbers are the elements of the smallest subset N ⊂ R
with the property that c + 1 is an element of N iff c = 0 or c ∈ N.

Theorem 1.5 (Archimedean Property).5 If x, y ∈ R and y > x > 0, then
there is a natural number n such that nx > y.

Proof. Assume that nx ≤ y for all n ∈ N. For fixed x, let S be

S = {nx : n ∈ N}.

4Proposition 20 in Book IX of Euclid’s Elements.
5After the Greek genius Archimedes of Syracuse (287–212 BCE), who attributed a related statement to
Eudoxus (ca. 408–355 BCE).
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The assumption implies that S is bounded from above, so by axiom R8 it
has a supremum U: nx ≤ U for all n ∈ N. Any other upper bound for S
is necessarily larger than U (proposition r). By the nature of N, n + 1 ∈ N
whenever n ∈ N. It follows that (n + 1)x = nx + x ≤ U, or nx ≤ U − x for all
n ∈ N. Since x > 0, then U − x < U and we now have an upper bound for S
that is smaller than U (proposition ∼ r). It follows that the original assump-
tion that nx ≤ y for all n ∈ N is false, and there must be some n for which
nx > y. �

Combination of the definition of N with a few of the field axioms for R in
Table 1.5 leads to the following statement:

Finite Induction

If S is a set of natural numbers such that (1) S contains the natural number
1, and (2) S contains the natural number n + 1 whenever it contains the
natural number n, then S is all of N.

If we begin the construction of R with an axiomatic treatment of N, then Finite
Induction appears as one of the axioms of N. But, if we accept R at the outset
(as we are doing) and then proceed to axiomatize it, then Finite Induction is a
theorem. The Principle of Mathematical Induction (PMI) is a consequence of
Finite Induction.

Theorem 1.6 (Principle of Mathematical Induction). Suppose that P(n) is
a proposition that is defined for each n ∈ N. If P(1) is true and if, for each k ∈ N,
P(k + 1) is true whenever P(k) is true, then P(n) is true for all n ∈ N.

Proof. Let S be the set of natural numbers for which P(n) is true. By hypothesis,
1 ∈ S and whenever k ∈ S, then k + 1 ∈ S. By Finite Induction, S is then all of
N, so P(n) is true for all n ∈ N. �

A common use of the PMI is the verification of formulas that contain an inte-
ger variable. But arithmetical formulas are not the only objects of application
of Theorem 1.6. The following two examples (theorems) are an interesting
contrast.

Theorem 1.7 (Bernoulli’s Inequality).6 If x > −1, x 
= 0, and n ∈ N, then
(1 + x)n+1 > 1 + (n + 1)x.

Proof. The inequality is true for n = 1, since (1 + x)2 = 1 + 2x + x2 > 1 + 2x,
as x2 > 0. Suppose that the inequality holds for n = k, that is, suppose that

6After the Swiss mathematician Jakob Bernoulli (1654–1705), who presented the result in a 1689 paper
on infinite series. Extensions of Theorem 1.7 to nonintegral rational and irrational exponents will appear
in Chapter 5.
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(1 + x)k+1 > 1 + (k + 1)x. Then (1 + x)(k+1)+1 = (1 + x)(1 + x)k+1,
so (1 + x)(k+1)+1 > (1 + x)[1 + (k + 1)x] because 1 + x > 0

= 1 + (k + 2)x + (k + 1)x2

> 1 + [(k + 1) + 1]x because x2 > 0.

Hence, the inequality holds for n = k + 1 whenever it holds for n = k, so by the
PMI it is true for all n ∈ N. �
Theorem 1.8 (Well-Ordering Principle). Any nonempty S ⊂ N has a least
element.

Proof. Suppose, to the contrary, that some nonempty set S ⊂ N has no least
element. Let T be the set of all elements of N that are less than every element in S;
clearly, S ∩ T = Ø. Then 1 ∈ T, for otherwise, it would be the least element of S.

Now assume that k ∈ T. Then every element of S is greater than k, that is (by
the definition of N), equal to or greater than k + 1. But, again, if k + 1 were in
S, then this would be the smallest element of S, a contradiction to the initial
assumption. Hence, k + 1 ∈ T whenever k ∈ T.

It follows by the PMI that every n ∈ N is in T and S ∩ T = Ø implies S = Ø; that
is, there is no nonempty set S ⊂ N that has no least element. �
The following comments on the two preceding theorems can be made: (a)
When n is small, it is easy to prove Theorem 1.7 by the use of Newton’s Binomial
Theorem, but the PMI permits the proof of an entire family of theorems with
a minimum of work. Could you, for example, handle the case when x = −0.9
and n = 611 without use of the PMI? (b) Theorem 1.8 is actually logically equiv-
alent to Finite Induction; that is, the latter can be proved from the former. This
shows that the natural numbers have a latent structure that is both interesting
and powerful. Despite the equivalence of Theorem 1.8 and Finite Induction,
however, either one of these might be a more natural tool for some kinds of
problems than the other (MacHale, 2008).

1.5 EUCLIDEAN VECTOR SPACES
The focus of calculus is on the behavior of functions in various settings; the
usual settings are the real Euclidean vector spaces, notably R1, R2, and R3

(some authors write E1, E2, and E3). What this means is summarized in the
following paragraphs:

1. The elements of Rn, n ∈ N, are the set of all n-tuples of real numbers,
x = (x1, x2, . . . , xn), on which the operations of addition (⊕) and scalar
multiplication (·) are defined as follows:

x ⊕ y = (x1, x2, . . . , xn) ⊕ (y1, y2, . . . , yn)

= (x1 + y1, x2 + y2, . . . , xn + yn)
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a · x = a · (x1, x2, . . . , xn), where a ∈ R

= (ax1, ax2, . . . , axn) .

The constant a is referred to as a scalar; it is usually drawn from some
field, such as R or C. An n-tuple is called a vector, or sometimes a point
with coordinates x1, x2, . . . , xn. We shall indicate vectors in Rn, n ≥ 2, by
boldface type and scalars and coordinates by italics. The vectors obey
“desirable” rules of arithmetic. For example, addition is closed (the sum
of two elements in Rn is an element in Rn), commutative, and associative,
there is an additive identity 0 = (0, 0, . . . , 0) such that for any x ∈ Rn we
have 0 ⊕ x = x, and each vector x has an additive inverse (−x) such
that x ⊕ (−x) = 0. Multiplication by any scalar a ∈ R is distributive over
vector addition, and for any x ∈ Rn we have 1 · x = x, where 1 ∈ R.

2. An inner product (∗) of two vectors in Rn yields a real number. The usual
inner product for any x, y ∈ Rn is

x ∗ y =
n∑

k=1

xkyk.

The following properties7 of ∗ are consequences of this definition:
(a) (Symmetry) For any x, y ∈ Rn, x ∗ y = y ∗ x;
(b) (Positivity) For any nonzero x ∈ Rn one has x ∗ x > 0; otherwise,

we have 0 ∗ 0 = 0;
(c) (Linearity)

(i) For any x, y ∈ Rn and any k ∈ R we have (k · x) ∗ y = k(x ∗ y);
(ii) For any x, y, z ∈ Rn, we have (x ⊕ y) ∗ z = x ∗ z + y ∗ z.

This completes the standard definition of a real Euclidean vector space
(Birkhoff and MacLane, 1953). However, more is desired for practical
aspects of calculus, and we shall always assume this of the symbol Rn.

3. The Euclidean norm of a vector x ∈ Rn, which is a measure of the
“length” of the vector, is an application of the Pythagorean Theorem
to Rn: 8

||x|| =
[

n∑
k=1

|xk|p
]1/p

= (x ∗ x)1/2 (p = 2).

7In a more abstract setting, it is preferable to define a real inner product by the conditions of symmetry,
positivity, and linearity, and then to show that the indicated formula actually meets these requirements.
8A generalization of the n-dimensional Pythagorean formula, in which 1 ≤ p < ∞ is arbitrary, is a valid
norm for any Rn (or Cn). The corresponding Triangle Inequality (see later) holds and is known as
Minkowski’s Inequality, a new proof of which was given recently (Kantrowitz and Neumann, 2008).
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The norm has the following properties, the last two of which are
considered later (Exercises 1.35, 1.36):
(a) For all x ∈ Rn and all k ∈ R, ||k · x|| = |k| ||x||, where the absolute

value function for any k ∈ R is defined as

|k| =
⎧⎨
⎩

k k > 0
0 k = 0

−k k < 0
;

(b) For all nonzero x ∈ Rn, ||x|| > 0;
(c) (Cauchy-Schwarz Inequality) For all x, y ∈ Rn, |x ∗ y| ≤ ||x|| ||y||;
(d) (Triangle Inequality) For all x, y ∈ Rn, ||x ⊕ y|| ≤ ||x|| + ||y||.
Property (d), particularly for n = 1, is very useful in calculus.

4. In order to discuss the distance between two points in Rn, we desire Rn

to possess a metric, or distance function d, so that Rn together with the
metric becomes a metric space. This metric space is carefully denoted
<Rn, d>. The Euclidean norm for Rn automatically induces a particular
metric, written dn(x, y), for the distance between x and y:

dn(x, y) = ||x ⊕ (−y)||
= ||x − y||

=
[

n∑
k=1

(xk − yk)
2

]1/2

.

Other metrics on Rn are conceivable. We shall always assume that Rn

has the Euclidean metric, and in an abuse of language sometimes refer
to Rn (instead of <Rn, dn>) as a metric space. Any metric dn always has
these characteristics:
(a) For any x 
= y, dn(x, y) > 0; if x = y, then dn(x, y) = 0;
(b) For any x, y ∈ Rn, dn(x, y) = dn(y, x);
(c) For any x, y, z ∈ Rn, dn(x, z) ≤ dn(x, y) + dn(y, z).

Observe that for R1, the usual metric is just d1(x, y) = |x − y|.

■ Example 1.4
In R2 let x = (2, 3), y = (−3,−1). Then x ∗ y = 2(−3) + 3(−1) = −9,
x ∗ x = 22 + 32 = 13, y ∗ y = (−3)2 + (−1)2 = 10, and |x ∗ x| = 9 ≤ ||x||
||y|| = √

13
√

10 ≈ 11.40. ■

■ Example 1.5
In R3 let x = (2, 3, 3), y = (3, 1, 4), z = (−2,−1, 4). Then

x ⊕ (−z) = (4, 4,−1) → d3(x, z) = (
42 + 42 + (−1)2)1/2 = √

33
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x ⊕ (−y) = (−1, 2,−1) → d3(x, y) = (
(−1)2 + 22 + (−1)2)1/2 = √

6

y ⊕ (−z) = (5, 2, 0) → d3(y, z) = (
52 + 22 + 02)1/2 = √

29,

and

d3(x, z) ≈ 5.74 ≤ d3(x, y) + d3(y, z)

≈ 2.45 + 5.39 = 7.84.
■

A metric in Rn is useful when we wish to refer to sets of points p that are nearby
some other fixed point p0. The language here is purposely geometric.

Definition. If p0 ∈ Rn and r > 0, then the open ball (n = 1), or the open n-ball
(n > 1), of radius r and center at p0 is the set Bn(p0; r) = {p ∈ Rn : dn(p, p0) < r}.
In R1 an open ball has the same meaning as an open interval (Figure 1.5). We
recall the four types of intervals in R1:

1. CLOSED 3. RIGHT HALF-OPEN
[a, b] = {x : a ≤ x ≤ b} [a, b) = {x : a ≤ x < b}

2. LEFT HALF-OPEN 4. OPEN
(a, b] = {x : a < x ≤ b} (a, b) = {x : a < x < b}.

n-balls have various shapes in different dimensional spaces; for n ≥ 4 the
n-balls cannot even be visualized. Even in a given space, different metrics will
lead to different shapes for the balls (Exercise 4.24), and this invariably leads
to interesting geometric consequences in the space (Exercise 4.25).

p02 r p0 1 rp0

B(p0; r)
R1

FIGURE 1.5
In R1 an open ball is an open interval.

1.6 GENERAL ASPECTS OF FUNCTIONS
The Cartesian product of two sets, D × S, is the set of all ordered pairs (x, y)
such that x ∈ D, y ∈ S. We use the notion of an ordered pair to give a modern
definition of function.

Definition 1. A function f from a set D into a set S is a set of ordered pairs (x, y)
in D × S such that if (x, y), (x, y′) ∈ f , then y = y′. If (x, y) ∈ f , then we say that f
is defined (or has value) at x, and we write commonly y = f (x).
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This definition of function has the merit that it is phrased entirely in terms of
sets. The definition presumes that equality has been defined on S.

Definition 2. If D, S are sets, then by a function f we shall mean the operation by
which to each element x ∈ D there is assigned a unique element f (x) in S.

This older definition employs the undefined “operation … assigned,” but it
has the merit that vitality is breathed into the concept. Other synonyms
for “function” that also connote something that is done are mapping and
transformation. We shall feel free to use either Definition 1 or Definition 2.

The set of all first elements x (Definition 1) of a function f is the domain D
of f (or, more completely, D( f )). The set of all second elements y of f is the
range of f (or, more completely, R( f )). A very general notation for a function
from D into S is f : D → S. The set S is called the codomain of f ; in general,
R( f ) ⊆ S.

Definition 1 and 2 are so general that the sets D, S could be sets of any sort
of mathematical object. Consequently, the modern conception of function is
unlike any that Newton or Leibniz possessed (Kleiner, 1989). The following is
typical of the flexibility of the modern idea.

■ Example 1.6
Let f be the set of all ordered pairs (x, y), in which y is given by the formula
y = 1 + ln x, and let I = {x : x ∈ [1, e]}. We define the direct image of any set
I under f (Figure 1.6) to be the set

f (I) = {y : (x, y) ∈ f , x ∈ I}.

If I were the empty set, then we define f (Ø) = Ø. Since the domain of f had
not been specified, the conventional assumption is that it is the largest or
natural domain of the function. In the present case, I ⊂ D( f ) = (0,∞), so

S

xI

D(f)

R(f)

f (I)

y

FIGURE 1.6
A direct image under f .
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the set f (I) makes sense. The set {(x, y) : x ∈ I, y ∈ f (I)} is itself a function; it
is called a restriction of f , one notation for which is f | I. ■

From among the numerous mappings of a set D( f ) into a set S, we pick out a
few important types. The following terminology is standard.

Definition. Let f : D → S be a mapping.

(a) The mapping is an injection (or is a one-one mapping) iff whenever
(x1, y1), (x2, y2) ∈ f and x1 
= x2, then y1 
= y2.

(b) The mapping is a surjection (or is a mapping of D( f ) onto S) iff R( f ) = S.

(c) The mapping is a bijection from D( f ) to S iff it is an injection and a
surjection.

Proof by contrapositive often is used to show that a mapping is an injection.
To prove that a mapping is a surjection, we try to show that for any y ∈ S there
is at least one x ∈ D( f ) such that (x, y) ∈ f .

■ Example 1.7
Let f : R1\{2} → R1 be defined by y = x2/(x − 2). Choose y1 = y2 = −2;
then x2 + 2x − 4 = 0 and x1 = −1 +√

5, x2 = −1 −√
5, for example.

Hence, f is not an injection. ■

■ Example 1.8
For the function of the previous example, choose y = 1. Then x2 − x + 2 = 0,
and neither root of this lies in D( f ). Hence, f is not a surjection. ■

■ Example 1.9
The function of Example 1.7 becomes a surjection if the codomain is
restricted to R1\(0, 8). [Hint: Differentiate the function or, alternatively,
prepare a graph.] ■

Other important general aspects of functions include the composition of func-
tions and the inverses of functions. These are reviewed briefly in Exercises 1.42
and 1.43.

1.7 INFINITE SETS
An important application of bijections, in particular, is to the cardinality of sets,
a vast subject. The empty set, which has no members, is said to have cardinality
0. A set S is finite either if it is empty or if there exists a bijection between S
and the set Nn = {1, 2, 3, . . . , n} of consecutive natural numbers; S then is said
to have cardinality n. Thus, the Greek alphabet has cardinality 24, and the set
of Platonic solids has cardinality 5.
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FIGURE 1.7
A small portion of the table for the enumeration of the positive rationals.

A set is infinite iff it is not finite. Such sets do exist.9 We distinguish two classes.
A countably infinite (or denumerable) set S is one for which there exists a
bijection between S and N. Such an infinite set has cardinality ℵ0 (Cantor’s
choice of symbol!). An infinite set S is uncountably infinite (or nondenumer-
able) iff there is no bijection possible between S and N. Obviously, N itself is
a countably infinite set. Less obvious, and more interesting, is the fact that the
set of positive rational numbers is countably infinite. The proof to be presented
avoids redundancy in the counting process. The following idea from arithmetic
is needed:

Definition. Two unequal natural numbers m, n are relatively prime iff the largest
natural number d that divides both of them is 1. The integer d is called the greatest
common divisor of m, n.

We take it for granted that any two natural numbers have a greatest common
divisor, and that this can always be calculated (in principle) by the Euclidean
algorithm (Andrews, 1994; Dence and Dence, 1999).

Theorem 1.9. The positive members of Q are a denumerable set.

Proof. The positive rationals, Q+, are arranged in rows as shown in Figure 1.7.
Each ROW n contains rationals in descending order whose numerator +
denominator = n + 1. Additionally, the denominators are those natural

9How glibly we take the existence of infinite sets for granted. Both Gauss and Cauchy denied their exis-
tence, although Bolzano (a lone voice in the wilderness, here also) defended their existence. But it was
Georg Cantor who single-handedly created the mathematics of infinite sets. His work met with stiff
opposition from older mathematicians (Kline, 1972), but is regarded today as pioneering, brilliant, and
fundamental.
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numbers less than and relatively prime to n + 1. The number of rationals in
ROW n is given in number theory by the Euler φ-function; that is, φ(n + 1) is
the number of natural numbers less than n + 1 that are relatively prime to n + 1
(by convention, φ(1) = 1). For example, φ(4) = 2 (see ROW 3) and φ(7) = 6
(see ROW 6). For any n ∈ N, we have 1 ≤ φ(n + 1) ≤ n.

Numbered rows of the table can be continued indefinitely; every positive ratio-
nal will appear somewhere in the table, and only once, because the reduction
to lowest terms always gives only one representation of a rational number. If
counting of the rationals is begun at the top of the zigzag path, then we have an
injection from Q+ into N. If K ∈ N is specified, then to find the K th rational,
first find the smallest integer M such that

M+1∑
n=2

φ(n) ≥ K .

Then read across row M, from left to right, until the
[
K −∑M

n=2 φ(n)
]
-th entry

is encountered. Thus, we have a surjection of Q+ onto N; hence, there is a
bijection from Q+ onto N, and Q+ is a denumerable set. �

■ Example 1.10
In the scheme of Theorem 1.9, what is the K = 25th rational?

We first determine φ(8) = 4 and φ(9) = 6. Then we find that
∑7+1

n=2 φ(n) =
21 < 25, but

∑8+1
n=2 φ(n) = 27 > 25, so the 25th positive rational is in row

M = 8; there, the third element from the left is 5/4. ■

■ Example 1.11
What natural number corresponds to the rational 22/9?

Since 22 + 9 + 1 is relatively prime to 9, then the rational lies in ROW 30.
From the data in Table 1.6 we compute

30∑
n=2

φ(n) =
9∑

n=2

φ(n) +
30∑

n=10

φ(n) = 27 + 250 = 277.

ROW 30 begins 30
1 , 29

2 , 28
3 , 27

4 , 26
5 , 25

6 , 24
7 , 23

8 , 22
9 . Hence, the natural number

K = 277 + 9 = 286 corresponds to 22/9. ■

We have not yet exhibited an uncountably infinite set, yet there exists an
abundance of them. This will be dealt with in Exercise 1.47.
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Table 1.6 Some Values of the Euler φ-function

n φ(n + 1) n φ(n + 1) n φ(n + 1)

8 6 16 16 24 20
9 4 17 6 25 12

10 10 18 18 26 18
11 4 19 8 27 12
12 12 20 12 28 28
13 6 21 10 29 8
14 8 22 22 30 30
15 8 23 8 31 16

1.8 CLUSTER AND OTHER POINTS
In the next section we will review and expand the concept of the limit of a
function. For this purpose we shall need the important idea of a cluster point.

Definition. A cluster point of a set S ⊂ Rn is any point a such that every n-ball
about a contains an infinite subset of S.

A careful reading of the definition furnishes these four conclusions: (a) the set
S has to be an infinite set, (b) the point a could belong to S but it may not,
(c) all the points in the n-ball about a may belong to S, but some points in the
n-ball could lie outside of S, (d) every n-ball about a, regardless of radius, must
be considered.

Some sets in a metric space, even some infinite sets, do not have any cluster
points. For example, the set S ⊂ R3, where S = {xk : xk = (k,−k, k), k ∈ N}, has
none (why?), and neither does the set of integers, S = Z or the set S ⊂ R2 of
prime lattice points in the plane, where S = {(x, y) : x, y are primes}.
A cluster point a of a set S is especially important if it is not a member of
S, but is merely a boundary point of S just outside of S. To appreciate this,
we define p to be an interior point of a set S iff there is a δ > 0 such that
B(p; δ) ⊂ S. The set of all interior points of a set S is denoted by Int(S); a set S
is said to be open iff Int(S) = S. Next, a point p is an exterior point of a set S
iff there is a δ > 0 such that B(p; δ) ∩ S = Ø. The set of all exterior points of a
set S is denoted Ext(S); clearly, Int(S) ∩ Ext(S) = Ø. We note that if S were the
interval [1, 2], then Int(S) = (1, 2), and p = 3 would be an exterior point. In
fact, Ext(S) = (−∞, 1) ∪ (2,∞).

Finally, a point p is a boundary point of S if every ball about p contains at least
one point from S and at least one point external to S. The set of all boundary
points of S is denoted by Bd(S); S ∪ Bd(S) is called the closure of S and is
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FIGURE 1.8
Three types of points in R2.

denoted by S. Interior point, exterior point, and boundary point are illustrated
in Figure 1.8.

■ Example 1.12
Given a set S, is Int(S) necessarily the same as Int(S)? Sketch some sets in R1

and see what you can discover. Can you produce a set S ⊂ R1 such that zero
to three combinations of the operations interior and closure, Int( ), ( ) lead
to five distinct sets? ■

The definition of boundary point (when this is not an isolated point) implies
that any ball about such a point actually contains infinitely many points from S.
Thus, a cluster point can be either a boundary point or an interior point of a
set S but never an exterior point of S. If, for instance, S is the set of rational
numbers contained in the unit interval, S = Q ∩ [0, 1], then no point in S is an
interior point of S and S = [0, 1].

■ Example 1.13
Let S ⊂ R2 be the set of all points xk = (xk1, xk2), where xk1 = k−1, xk2 =
(k2 + 2)/(2k2 − k + 1), k ∈ N. A rough sketch shows that the xk’s are discrete
points that lie along a path from (1, 3/2) (which belongs to S) and approach
(0, 1/2) (which does not belong to S). Near this latter terminus, and nowhere
else along the path, the points crowd closely together. Hence, (0, 1/2) is the
only cluster point of S. It is a boundary point that does not belong to S.
All the xk ’s are also boundary points; they belong to S. There are no interior
points in S; all other points in R2 are exterior points. ■
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1.9 LIMITS OF FUNCTIONS
Limits play a central role in the structure of calculus (Figure 1.9). We recall that
the limit of a function f of a single variable x, as x approaches some value a, is
(loosely speaking) a description of the behavior of f when x is “close to a.” We
carry this idea over to broader functions f: D(f ) → Rm, D(f ) ⊆ Rn.

We build upon the ideas in Section 1.8. We wish to consider limits at cluster
points, both those that are interior points and those that are boundary points.

Definition. Let f: D(f ) → Rm, D(f ) ⊆ Rn be a mapping and let a be a cluster point
of D(f ). Then L ∈ Rm is a limit of f at a, and we write lim

x→a
f = L iff, given any ε > 0,

there exists a δ > 0 such that whenever (x, y) ∈ f and x ∈ [Bn(a; δ)\{a}] ∩ D(f ), then
y ∈ Bm(L; ε).

The definition of limit is pictorialized in Figure 1.10 for an interior point a
of D(f ) and a boundary point b of D(f ). Several pertinent comments now
follow.

1. The n-ball Bn(a; δ)\{a} is a deleted n-ball; the point x = a is not included
in it so that we can consider the limit of f at a, where f may not be
defined.

2. The symbolism [Bn(a; δ)\{a}] ∩ D(f ) reinforces the idea that we can con-
sider “sided” limits at cluster points a that are boundary points, as well
as limits at interior points of D(f ). In R1 this leads to consideration of
the familiar right-hand and left-hand limits of f at the left and right
endpoints, respectively (Exercises 1.57, 1.58).

Se-
quences Series

Inte-
grals

Deriva-
tives

LIMITS

FIGURE 1.9
Limits are the entry point into derivatives, sequences, series, and integrals.
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FIGURE 1.10
Limits of a function f: D(f ) → R2, D(f ) ⊂ R2, at two cluster points a, b.

3. The positive number ε is stipulated first; a δ > 0 is then sought. In
general, δ will depend upon ε, and we could write, more precisely, δ(ε).

4. By requiring a to be a cluster point of D(f ), we guarantee that Bn(a; δ)\{a}
will contain points of D(f ), no matter how small is δ.

5. The definition refers to L as “a” limit of f at a. In fact, a proof by
contradiction will show that the limit is unique (Exercise 1.51).

6. The definition gives no guidance on how to determine L. Thus, whereas
the definition of limit is useful for theoretical purposes, the practicalities
of limits are more easily handled by the use of various limit theorems.

Theorem 1.10. Let f , g be mappings from a common domain D ⊆ Rn into R1, and
let a be a cluster point of D. Suppose that lim

x→a
f = F, lim

x→a
g = G, and that k ∈ R1.

Then

(i) lim
x→a

k · f = kF

(ii) lim
x→a

( f + g) = F + G

(iii) lim
x→a

fg = FG.

Additionally, if F 
= 0 and if f is nonzero everywhere in the modified n-ball
[Bn(a; δ)\{a}] ∩ D( f ), then

(iv) lim
x→a

1/f = F−1.
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Proof.

(ii) Let ε > 0 be given. Then there exist numbers δ1, δ2 > 0 such
that x ∈ [Bn(a; δ1)\{a}] ∩ D implies y1 ∈ B( F; ε/2), (x, y1) ∈ f , and
x ∈ [Bn(a; δ2)\{a}] ∩ D implies y2 ∈ B(G; ε/2), (x, y2) ∈ g. Let δ =
min{δ1, δ2}; use the Triangle Inequality in Section 1.5 to conclude
what x ∈ [Bn(a; δ)\{a}] ∩ D implies.

(iii) Let ε > 0 be given, and note that |f (x) − F| < 1 if δ > 0 is small
enough. Then write fg − FG as

| f (x)g(x) − FG| = | f (x){g(x) − G} + G{ f (x) − F}|,

and make use of the Triangle Inequality.

(iv) Let ε > 0 be given. Then by hypothesis there is a δ > 0 such that x ∈
[Bn(a; δ)\{a}] ∩ D implies f (x) 
= 0 and | f (x) − F| < min

{ |F|
2 , |F|2

2 ε
}

.

Now consider ∣∣∣∣ 1
f (x)

− 1
F

∣∣∣∣,
and make use of the Triangle Inequality and Exercise 1.33.
The proof of part (i) and the completions of the proofs of the other
three parts are left to you. �

Theorem 1.11. Let f : D(f ) → Rm, D(f ) ⊆ Rn be a mapping, and denote the value
of f at any point x ∈ D(f ) by ( f1(x), f2(x), . . . , fm(x)). Let a be a cluster point of
D(f ). Then L = (L1, L2, . . . , Lm) is the limit of f at a iff

lim
x→a

fi(x) = Li, 1 ≤ i ≤ m.

Proof. (←) We prove this half and leave the other half as an exercise. Suppose
that lim

x→a
fi(x) = Li for each natural number i ∈ [1, m]. Let ε > 0 be given; then

for each i there is a δi > 0 such that x ∈ [Bn(a; δi)\{a}] ∩ D(f ) implies that |Li −
fi(x)| = [(Li − fi(x))2]1/2 < ε/m. Let δ = min{δ1, δ2, . . . , δm}; then whenever x ∈
[Bn(a; δ)\{a}] ∩ D(f ), the previous inequality holds for all i.

For any set {c1, c2, . . . , cm} of real numbers, we have

c2
1 + c2

2 + · · · + c2
m ≤

m∑
k=1

|ck|2 + 2
∑

1≤i≤j≤m

|ci||cj| =

[|c1| + |c2| + · · · |cm|]2

or [c2
1 + c2

2 + · · · + c2
m]1/2 ≤ |c1| + |c2| + · · · + |cm|.
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Applying this to the present problem, we then obtain

{
m∑

i=1

(Li − fi(x))2

}1/2

≤
m∑

i=1

{
(Li − fi(x))2}1/2 =

m∑
i=1

∣∣Li − fi(x)
∣∣

< m
( ε

m

)
= ε,

so L = (L1, L2, . . . , Lm) is lim
x→a

f . �

■ Example 1.14
Let f : D( f ) → R2, D( f ) ⊆ R3, be defined by x = (x1, x2, x3), f (x) = (

x2
1 − 3,

(2x2 + x3)/x1
)
. Find lim

x→a
f at a = (2, 1, 0).

Using all parts of Theorem 1.10, we determine

lim
x→a

(x2
1 − 3) = 1, lim

x→a

2x2 + x3

x1
= 1.

Hence, by Theorem 1.11, lim
x→a

f = (1, 1). ■

The two preceding theorems presume that all quantities are real or are tuples of
real numbers. Some extension is required for common cases where the domain
or the range of a function is unbounded. The extended real number system, Re,
is the system obtained by adjoining to R the two fictitious points +∞ (or, more
commonly, just ∞) and −∞, and then defining on Re the order relationships
−∞ < x < ∞ for any x ∈ R. For a set S ⊆ R that is unbounded from above
(below) we then write sup S = ∞ (inf S = −∞).

Definition. Let f : D( f ) → R1 and suppose that D( f ) ⊆ R1 is unbounded from
above. Then L ∈ R1 is the limit of f as x → ∞ and we write lim

x→∞ f = L iff, given

any ε > 0, there exists an M > 0 such that for all x ∈ [M,∞) ∩ D( f ) we have f (x) ∈
B(L; ε).

We shall also say that f has limit ∞ (in Re) as x → ∞ and we will write lim
x→∞ f = ∞

iff, given any r ∈ R1, there exists an M > 0 such that for all x ∈ [M,∞) ∩ D( f ) we
have f (x) > r.

■ Example 1.15
Let f : D( f ) → R1 be the mapping defined by f (x) = x−1, D( f ) = R+ =
(0,∞). Show that lim

x→∞ f = L = 0.

For no x ∈ D( f ) does x−1 = 0 or x−1 < 0 hold, since multiplications by x lead
to contradictions; hence, R( f ) ⊆ R+. Then if ε > 0 be given, f (x) ∈ B(L; ε) iff
0 < x−1 < ε iff x ∈ [M,∞), where M = ε−1. The result follows. ■
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Some other limiting situations are dealt with shortly (Exercises 1.56–1.59), and
some additional examples to work are given in Exercises 1.60 and 1.61.

EXERCISES10

Section 1.1

1.1. The truth table for conjunction is shown in Figure 1.11(a). Would the proposition
in Example 1.1 still be true if “or” was replaced by “and”?

1.2. The truth table for disjunction is shown in Figure 1.11(b). Would the proposition in
Example 1.1 still be true if “641” were replaced by “441”? What connection exists,
in general, between the truth values for ∼ (p ∧ q) and those of (∼p ∨ ∼q)?

1.3. In logic p → q is defined to mean ∼ p ∨ q; this is somewhat controversial among
logicians.
(a) Nevertheless, show that we obtain the truth table in Figure 1.12.

p ` qp q

T F

T T

F T

F F

F

T

F

F

(a) (b)

p ~ qp q

T F

T T

F T

F F

T

T

T

F

FIGURE 1.11
Truth tables (a) for conjunction, and (b) for disjunction.

p qp q

T F

T T

F T

F F

F

T

T

T

FIGURE 1.12
Truth table for implication.

10Throughout your use of this book, don’t forget about Appendix A at the back of the book.
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(b) Define p ↔ q to mean (p → q) ∧ (q → p). Work out the truth table for this double
implication.

(c) Finally, work out the truth table for the proposition (p → q) ↔ (∼ q →∼ p). This is the
Law of Contraposition.

1.4. Pictures do not constitute proofs in mathematics; they may point the way to
correct ideas. Let S, T, W be sets; conjecture from pictures which of these may
hold:
(a) S ⊆ T → (S ∩ T = S)

(b) (S ∩ T = S) → S ⊆ T
(c) W\(S ∪ T) = [(W\S) ∪ (W\T)]
(d) (S ∩ T) ⊆ [(S ∩ T) ∩ W]
(e) [(S\T) ∪ (T\S)] = S ∪ T
(f) (S\T)\W = S\(T ∪ W)

Section 1.2

1.5. Why is no Right Distributive Law, (y + z)x = yx + zx, given in Table 1.5? Which
of the axioms in Table 1.5 would be false if they were reworded so as to apply to
3 × 3 real matrices instead of to elements of R?

1.6. On the set Z5 = {0, 1, 2, 3, 4} the operations ⊕ and ⊗ are defined as follows:

⊕ 0 1 2 3 4 ⊗ 0 1 2 3 4
0 0 1 2 3 4 0 0 0 0 0 0
1 1 2 3 4 0 1 0 1 2 3 4
2 2 3 4 0 1 2 0 2 4 1 3
3 3 4 0 1 2 3 0 3 1 4 2
4 4 0 1 2 3 4 0 4 3 2 1

(a) Confirm that the algebraic structure < Z5,⊕,⊗ > is a field.
(b) After referring to axiom R7, explain how you know that < Z5,⊕,⊗ > has no positive

elements.
(c) Try to construct some other finite fields. See if you can frame any conjectures.

1.7. It might be supposed that there could be two distinct additive identities (0 and
0′, 0 
= 0′) in R, and also two distinct multiplicative identities (1 and 1′, 1 
= 1′).
(a) Present an informal argument (i.e., not a formal proof) against distinct 0, 0′.
(b) Do the same for distinct 1, 1′.

1.8. Suppose that x, y ∈ R and x 
= y. Explain, from the axioms, how it follows that
x + (−y) 
= 0 and y + (−x) 
= 0.

1.9. (a) Suppose that a, b, c ∈ R and a + b = a + c. Explain, from the axioms, how it follows that
b = c.

(b) Begin with y + 0 = y, y ∈ R, and premultiply both sides by any x ∈ R. Explain, from the
axioms, what you can conclude about x·0.

1.10. Begin with 1 + (−1) = 0, and premultiply both sides by any nonzero x ∈ R.
Explain, from the axioms and Exercise 1.9(b), how you can conclude that (−1)x =
−x. As a corollary, deduce (−1)(−1) = 1.
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1.11. Begin with x + [(−x) + y] = x + [(−x) + y], for any x, y ∈ R. Use the axioms and
Exercises 1.9(a) and 1.10, and explain how you conclude that −[x + (−y)] =
(−x) + y.

1.12. Explain how you know that Nonreflexivity and Transitivity hold for > in R.

1.13. Suppose that a, b, c ∈ R and that b > a, c > 0. Explain, from the axioms, how it
follows that cb > ca.

Section 1.3
1.14. Two sets, S1 and S2, are defined similarly to those in the text, but with “3” in place

of “5.” Let xk+1 = 4 − [13/(4 + xk)], and x1 = 1.
(a) Write a short program and tabulate x2, x3, . . . , x18, and their squares.
(b) Verify algebraically that xk < xk+1 and x2

k < 3 for all k ∈ N.
(c) Prepare a second table of results for S2; start with x1 = 2.
(d) What seems to be sup S1, inf S2, and how do you know these numbers exist?

1.15. A set S ⊂ R has a supremum. Explain how you know that there is only one
supremum.

1.16. A set S ⊂ R is bounded from below by l. Use axiom R8 to explain how you know
that infS exists.

1.17. A set S ⊂ R, S = {x0, x1, x2, . . .}, is defined by xk =

⎧⎪⎨
⎪⎩

0 k = 0
1 k = 1
(4xk−1 − xk−2)/3 k ≥ 2.

(a) Write a short program and tabulate x0 to x12.
(b) Conjecture a value for sup S.
(c) Extra credit if you can give a plausibility argument for the existence of sup S. This is not

a rigorous proof.

Section 1.4

1.18. Prove that if x, y ∈ R, then x · (−y) = −(x · y). You may assume all the results in
Exercises 1.9 through 1.13.

1.19. Suppose that x, y, z ∈ R. Establish:
(a) If x > y and z < 0, then zy > zx;
(b) If xy < 0, then either x > 0 AND y < 0, or x < 0 AND y > 0;
(c) If x 
= 0, then x4 > 0.

1.20. Prove that if a set S ⊂ R contains one of its lower bounds, then this lower bound
is infS.

1.21. Prove that in R there is no smallest positive number.

1.22. If x, y ∈ R and are both positive, then their geometric mean is
√

xy and their
arithmetic mean is (x + y)/2. Prove that if the two means are unequal, then
x 
= y.

1.23. Let U = sup S. Prove that if x < U, then there is an s ∈ S such that x < s ≤ U.
Draw a picture of this result.

1.24. Let U = sup S. Prove that if ε > 0, then there is an s ∈ S such that U − ε < s ≤ U.
Draw a picture of this result.
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1.25. Prove,as asserted in the discussion surrounding Figure 1.3, that there is no x ∈ Q+
such that x2 = 5.11

1.26. Suppose that S, T are nonempty, bounded subsets of R, and that S ⊆ T. Prove that
inf T ≤ inf S.

1.27. Suppose that x, y ∈ R and y > x. Use Theorem 1.5 to prove that there is a rational
number strictly between x, y.

1.28. Prove that for all k ∈ N, the number of diagonals in a convex polygon of k + 2 sides
is equal to 1

2 (k − 1)(k + 2).

1.29. The union of n sets is defined as

n⋃
k=1

Sk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S1 n = 1
S1 ∪ S2 n = 2

{x : x ∈
n−1⋃
k=1

Sk or x ∈ Sn} n > 2.

Now suppose that for each k ∈ N, the set Sk is a bounded subset of R. Prove that
for each n ∈ N, sup

⋃n
k=1 Sk = max{sup S1, sup S2, . . . , sup Sn}.

Section 1.5
1.30. (a) If the underlying set V is the set of all real-valued solutions of f ′′(x) + f (x) = 0, ⊕ is

pointwise addition of functions, and • is pointwise multiplication of a function by a real
number, is <V,⊕, •> a vector space?

(b) If the underlying set V is the set of all invertible 3 × 3 matrices with real entries, ⊕
is matrix addition, and • is ordinary multiplication of a matrix by a real number, is
<V,⊕, •> a vector space?

1.31. If x, y ∈ R3 and (*) is defined by x ∗ y =
3∑

k=1
xkyk , prove that (*) has the properties

of an inner product.

1.32. Two nonzero vectors x, y ∈ Rn are orthogonal if x ∗ y = 0. In R3 let x = (1, 2,−1)

and y = (−2, 0, 3). Find a vector z that has norm 1 and is orthogonal to both x
and y.

1.33. If x, y ∈ R1, prove that
(a) ‖x| − |y‖ ≤ |x − y|;
(b) |xy| = |x||y|.

1.34. Let S ⊂ R consist of x1, x2, . . . , xn. Prove that

∣∣∣∣∣
n∑

k=1
xk

∣∣∣∣∣ ≤
n∑

k=1

∣∣xk
∣∣.

1.35. Here we consider the Cauchy-Schwarz Inequality, one of the properties of the
Euclidean norm on Rn.
(a) Show that the Inequality holds if either x = 0 or y = 0.
(b) If neither x nor y is 0, define the point P = x ⊕ cy, where c ∈ R is arbitrary. Why is

P ∗ P > 0? Expand this inner product, and write it as a quadratic equation in c.

11This requires the Fundamental Theorem of Arithmetic; see Andrews (1994) or Dence and Dence
(1999), or ask your instructor.
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(c) Since P ∗ P is greater than 0, what must be true about the discriminant of the quadratic?
Deduce, from this, the Inequality.

1.36. Expand ||x ⊕ y||2, x, y ∈ Rn, make use of Exercise 1.35, and deduce the Triangle
Inequality.

1.37. Suppose that for a fixed p and a fixed a, p ∈ Bn(a; ε) for every ε > 0. Prove that
p = a. Draw a picture for the one-dimensional case.

Section 1.6

1.38. Let S = {1, 2, 3}, T = {4, 5, 6, 7}, and W = {8, 9, 10, 11, 12}. How many elements
are in S × T × W? How many subsets of S × T × W are there?

1.39. Definition. Let f : D( f ) → S be a mapping. If H ⊆ S, then the inverse image of H
under f is the subset of D( f )

f−1(H) = {x : (x, y) ∈ f , y ∈ H}.
(a) Construct an example of a function f and a proper subset I ⊂ D( f ) such that

f−1( f (I)) = I.
(b) Prove that if f : D( f ) → S is an injection and I ⊆ D( f ), then f−1( f (I)) = I.
(c) Construct another function f and a proper subset I ⊂ D( f ) such that f−1( f (I)) 
= I. In

view of (b), what can you conclude?
(d) When f−1( f (I)) 
= I, is f−1( f (I)) ⊃ I true or is f−1( f (I)) ⊂ I true?

1.40. (a) Prove that if f : D( f ) → S is a surjection and H ⊆ S, then f ( f−1(H)) = H.
(b) Construct a function f and a proper subset H ⊂ S such that f ( f−1(H)) 
= H. In view of

(a), what can you conclude?
(c) When f ( f −1(H)) 
= H, is f ( f−1(H)) ⊃ H true or is f ( f−1(H)) ⊂ H true?

1.41. Suppose that f : D( f ) → S is a function and that I, J ⊆ D( f ). Prove that f (I ∪ J) =
f (I) ∪ f (J), but that for intersections we can write only f (I ∩ J) ⊆ f (I) ∩ f (J). Give
a specific example of this latter relation.

1.42. Recall the definition of the composition of two functions:

Definition. Suppose that f : D( f ) → S and g: D(g) → T are functions and that
R( f ) ⊆ D(g). The composition of g on f is the new function g[f ]: D( f ) → T, g[f ] =
{(x, y): x ∈ D( f ), y ∈ T, y = g[f (x)]}.
In each case determine if neither, only one, or both of g[f ], f [g] make sense:
(a) f = {(x, y) : x ≥ 0, y = x2 − 2x + 1}, g = {(x, y) : x ≥ 0, y = √

x}.
(b) f = {(x, y) : −4 ≤ x ≤ 4, y = (2x2 − 1, e−x/3)}, g ={(x, y) : x = (x1, x2),−1≤ x1, x2 ≤ 1,

y = x1 + x2}.
(c) f = {(x, y) : x = (x1, x2), x1, x2 ≥ 0, y = (x1 − 1, sin x2)}, g = {(x, y) : x = (x1, x2), x1,

x2 ≥ 1
2 , y = (sin x1, sin x2)}.

1.43. Recall the definition of the inverse function of a given function:

Definition. If f : D( f ) → S is a function, then f−1 = {(y, x): (x, y) ∈ f } is the inverse
function of f iff (y, x1) ∈ f−1 and (y, x2) ∈ f−1 imply x1 = x2.
(a) Show that if f : D( f ) → S is an injection, then the inverse function f−1 exists.
(b) Prove that for all x ∈ D( f ) for the function of part (a), f−1[f (x)] = x, and that for all

y ∈ R( f ) ⊆ S, f [f−1(y)] = y.
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(c) Show that if f : D( f ) → S is a bijection of D( f ) onto S, then f−1 is a bijection of S onto
D( f ). Thus, we have a bijection between D( f ) and S.

Section 1.7
1.44. Which of the following are infinite sets?

(a) The set of all q ∈ Q+ such that |q −√
5| < 10−6;

(b) The set of all n ∈ N such that n/ ln(n) > 100;
(c) The set of all irrational numbers in (2, 4) whose base-10 expansions are repeating

decimals;
(d) The set of all f such that at any x ∈ [0, 1], f ′(x) = 3x2;
(e) The set of all n ∈ N of the form n = p1p2p3, where p1, p2, p3 are distinct, positive, odd

primes and p1 + p2 + p3 = 100, 000, 001.

1.45. Prove that all of Q is a countably infinite set.

1.46. Write a short computer program to compile values of the Euler φ-function. Then
use it to compute, in the algorithmic scheme of Theorem 1.9,
(a) the 1685th rational
(b) the natural number that corresponds to the rational 171/250.

1.47. During 1873 to 1874, and again during 1890 to 1891, Cantor addressed the issue of
whether a bijection between N and all the real numbers in [0, 1] could be defined.
Let us agree to write each such real number as a decimal. We also stipulate that
any nonzero number that has an infinite tail of 0’s, such as 123/1000, be written in
its equivalent form, like 0.1229999. . ..

Suppose that to each real number in [0, 1], a natural number k could be assigned.
All the real numbers ak in [0, 1] can then be tabulated:

k ak
1 0.a1,1a1,2a1,3a1,4 . . .

2 0.a2,1a2,2a2,3a2,4 . . .

3 0.a3,1a3,2a3,3a3,4 . . .

...
...

Now define the following real number in [0, 1]:

N = 0.c1c2c3c4 . . . , where ck =
{

9 ak,k = 1
1 ak,k 
= 1.

What can you conclude about N, and what broader conclusion do we draw from
this?

1.48. Members of the uncountably infinite set of irrational numbers fall into two geo-
metrically significant subsets. On the one hand, if we are given a line segment
1 unit in length, it is impossible to classically construct a segment π or 3√2 units
in length. On the other hand, tell how we could construct, using only Euclidean
tools (compass and unmarked straightedge), a line segment 4√2 units long from
one that is 1 unit in length.
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Section 1.8
1.49. Identify all the cluster points of each set S, if there are any:

(a) S = (0, 1);
(b) S = {n : n ∈ N, n > 1000};
(c) S = {(x, y): 0 < x < 1, 0 < y < 1};
(d) S = {x : x = 1/n, n ∈ N};
(e) S = {(n2 − 1)/(n2 + 2): n ∈ N};
(f) S = Q ∩ (0, 1).

Classify each cluster point as an interior point or a boundary point.

1.50. Prove that p is a cluster point of S ⊆ Rn iff any n-ball about p contains at least one
point of S different from p.

Section 1.9

1.51. Let f : Rn → Rm be a mapping, and suppose that lim
x→a

f exists. Prove that the limit

is unique.

1.52. (a) Give an example of a function f : D( f ) → R1, D( f ) ⊂ R1, and of a cluster point a not in
D( f ), such that lim

x→a
f exists (in R1).

(b) Give examples of functions f: D(f ) → R2, g : D(g) → R2, D(f ), D(g) ⊂ R2, and of a
common cluster point a, such that neither lim

x→a
f nor lim

x→a
g exists (in R2), but lim

x→a
(f ⊕ g)

does exist (in R2).

1.53. (a) Prove part (i), and complete the proof of part (ii) in Theorem 1.10.
(b) Complete the proof of part (iii). The indicated hint in the outline of the proof will allow

you to put a bound on |f (x)|.
(c) Complete the proof of part (iv).

1.54. Prove the other half of Theorem 1.11.

1.55. (a) Supply all the details in Example 1.14.
(b) Let f: R2 → R2, where x = (x1, x2) and f (x) = (x1(x1 + x2), x2(x2 − x1)). Determine

lim
x→(2, 1)

f , justifying each step.

1.56. (a) Write a plausible definition for what it means for a function f : D( f ) → R1, D( f ) ⊆ R1

to have limit −∞ (in Re) as x → a.
(b) Prove that the function f : D( f ) → R1, defined by

f (x) = 1
1 − e |x| , x 
= 0,

has limit −∞ (in Re) as x → 0.

1.57. Definition. Let f : D( f ) → R1, D( f ) ⊆ R1 be a function and let a be a cluster point
of the set {x : x ∈ D( f ), x > a}. Then L ∈ R1 is a right-hand limit of f at a and we
write lim

x→a+
f = L iff, given any ε > 0, there exists a δ > 0 such that whenever x ∈ D( f )

and 0 < x − a < δ, then |f (x) − L| < ε.
(a) Prove that if f has a right-hand limit at a, then it is unique.
(b) Prove that f has a right-hand limit at a if lim

x→a
f exists (in R1).

1.58. A left-hand limit, notated lim
x→a−

f = L, is analogous to a right-hand limit. Write

out the formal definition. Give an example:
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(a) of a function that has a left-hand limit but no right-hand limit (in R1).
(b) of a function that has both a right-hand limit and a left-hand limit, but lim

x→a
f does not

exist (in R1).

1.59. Extensions of Theorem 1.10 to Re are possible.
(a) Let f : D( f ) → R1 and g: D(g) → R1, D( f ), D(g) ⊆ Rn, and suppose that a is a cluster

point of both D( f ) and D(g). Further, suppose that lim
x→a

f = L ∈ R1 and lim
x→a

g = ∞ (in

Re). Prove that lim
x→a

( f + g) = lim
x→a

f + lim
x→a

g, if we make the definition that y +∞ = ∞
(in Re) for any y > −∞.

(b) Let g be as in part (a), and suppose k is real and negative. Prove that lim
x→a

kg = k lim
x→a

g,

if we make the definition that k · ∞ = −∞ (in Re) for any real k < 0.

1.60. Determine the limits, if they exist, of the indicated functions, and justify your
answers rigorously. Use any definitions and results that have been given.
(a) lim

x→1−
√

1 − x3;

(b) lim
x→−3

|x2−9|
x+3 ;

(c) lim
x→0

x3
x ;

(d) lim
x→2

{(x − 2) cos[(2 − x)−1]};
(e) lim

x→∞
[

3x
x+2 − x2

x+2

]
;

(f) lim
x→3+

f (x), f (x) =
(

21/(3−x), 1

1+
(

1
3−x

)2

)
.

1.61. A function f : R2 → R1 is defined by x = (x1, x2),

f (x) =
{ x1x2

x2
1+x2

2
x 
= 0

0 x = 0.

Explain how you know that lim
x→0

f does not exist.

1.62. Consult Landau (1966) and read a selection of pages in that classic work. Prepare
a summary of what you have learned. Ask if your professor will give you extra
credit for this.

1.63. Consult Halmos (1974), which like Landau (1966) is a very famous work. It reads
something like a sequence of short, mathematical essays. Select two or three of
them and prepare a summary of what you have learned.
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2.1 GENERAL PROPERTIES OF SEQUENCES
Sequences of real numbers occur everywhere in mathematics, and you are
already intuitively familiar with them. They are especially fundamental in any
study of calculus.

Definition. A sequence is a function f in which D( f ) is N; it is conventionally
indicated by {xk}∞k=1. Any xk is called a term of the sequence, or when xk is a number,
a value of the sequence.

The symbolism {xk}∞k=1, which indicates that D( f ) and the set of terms are count-
ably infinite sets, is incomplete until the manner in which xk is determined
from k has been indicated. Simply listing the first few terms will not unam-
biguously specify the sequence. Finally, note that sequences can be sequences
of any sort of mathematical object.

■ Example 2.1
The set S in Example 1.13 is a set of terms of a sequence. ■

■ Example 2.2
We can’t say what is the next term in “the sequence” {2, 4, 8, 16, 32, . . .}. If xk
is given, however, by the formula

xk = (k4 − 6k3 + 23k2 − 18k + 24)/12,

then the next term is not 64 (Exercise 2.1). The integer sequence here
is representative of more than 80,000 such sequences accumulated in a
database by (Sloane, N.J.A., 2005). We urge you to consult this fascinating
material. ■

■ Example 2.3
The sequence of unnormalized Hermite polynomials,1 {Hk(x)}∞k=1, impor-
tant in physics, is defined by

Hk(x) = (−1)kex2
D(k)(e−x2

),

where D(k)( f ) denotes the kth derivative of f . We find H1(x) = 2x, H2(x) =
4x2 − 2, H3(x) = 8x3 − 12x, H4(x) = 16x4 − 48x2 + 12 (verify!). Some
properties of {Hk(x)}∞k=1 are dealt with in Exercise 2.2. ■

Two important concepts that are applicable to many kinds of sequences
are boundedness (in any metric space) and subsequence (of any sequence,
whatsoever). We let < M, d > denote an arbitrary metric space (Section 1.5).

1After the French mathematician Charles Hermite (1822–1901), famous for having proved in 1873 that
e is transcendental.



2.1 General Properties of Sequences 41

Definition. Let a ∈ M be a fixed point in some metric space < M, d >. A sequence
defined in M is said to be bounded iff there is a real number r > 0 such that all terms
of the sequence lie inside the ball B(a; r) = {p ∈ M : d(p, a) < r}.
This definition generalizes that given at the start of Section 1.3. A common case
involves sequences in Rn. Let xk = (xk1, xk2, . . . , xkn) denote a general term of a
sequence in Rn, and choose arbitrarily (but, commonly) the fixed point a = 0 =
(0, 0, . . . , 0). Then since we use the Euclidean metric on Rn, the sequence {xk}∞k=1

will be bounded in Rn iff there is some real r > 0 such that
[∑n

i=1 x2
ki

]1/2
< r

for all xk. It follows fairly directly (Exercise 2.4) that:

Theorem 2.1. A sequence {xk}∞k=1 in Rn is bounded iff the sequence {xki}∞k=1 ,
i = 1, 2, . . . , n, of values of each coordinate in Rn is bounded in R1.

Proof. The proof is left to you. Note that there are two separate theorems to
prove here, since the proposition is an iff-statement. �

■ Example 2.4
The sequence in Example 1.13 is bounded, in view of Theorem 2.1. ■

■ Example 2.5
The sequence {xk}∞k=1 where xk = k [1 + (−1)k], is bounded from below in
R1, but is not bounded from above.

The very important sequence {yk}∞k=1 where yk = (1 + k−1)k, is a bounded
sequence in R1, although this is not obvious. An upper bound is 3; more on
this in Exercise 2.6 and Example 2.7. ■

Turning now to subsequences, we see that the idea is a simple one.

Definition. Let k1 < k2 < k3 < . . . be an arbitrary increasing sequence of natural
numbers. Then

{
xkn

}∞
n=1 is called a subsequence of {xk}∞k=1.

A subsequence is a choice of an infinite subset of the terms of a given sequence.
Thus, if in the first sequence of Example 2.5 only the even-indexed terms are
chosen, then the following subsequence is obtained:

{
xkn

}∞
n=1 = {x2n}∞n=1 = {4n}∞n=1 = {4, 8, 12, 16, . . .}.

Whereas many sequences {xk}∞k=1 are presented initially by an indication of
how xk is determined from k, many other sequences are defined recursively,
that is, the kth term is obtained from one or more prior terms according to some
prescription. An example is the well-known Fibonacci sequence, {Fk}∞k=1, where

Fk =
{

1 k = 1, 2
Fk−1 + Fk−2 k > 2.
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This innocent-looking sequence has many intriguing properties (Hoggatt, Jr.,
1972; Vajda, 1989).

Sequences of real numbers, such as {Fk}∞k=1, may possess one feature that other
classes of sequences cannot possess. A sequence {xk}∞k=1 of real numbers is
increasing (decreasing) iff for each k ∈ N we have xk ≤ xk+1(xk ≥ xk+1). Many
sequences, in their entirety, are neither increasing nor decreasing, but become
so for all n beyond a certain value. Other sequences never become increasing
or decreasing. A sequence that is (or becomes) increasing or decreasing is said
to be (or to become) monotonic. The feature of being (becoming) monotonic
is clearly a consequence of Axiom R7 (Section 1.2).

■ Example 2.6
The sequence {Fn}∞n=1 of Fibonacci numbers is a monotonic sequence.

The sequence {xn}∞n=1, where xn = 4n/n!, becomes a decreasing sequence for
all n ≥ 3 because

xn+1

xn
= 4n+1/(n + 1)!

4n/n! = 4
n + 1

≤ 1 if n ≥ 3.

■

■ Example 2.7
The sequence {yk}∞k=1 in Example 2.5 is an increasing sequence. We have, for
k > 1,

yk+1

yk
= [1 + (k + 1)−1]k+1

(1 + k−1)k
=
[

1 + (k + 1)−1

1 + k−1

]k

[1 + (k + 1)−1]

=
[

1 − 1
(k + 1)2

]k (
1 + 1

k + 1

)

>

(
1 − k

(k + 1)2

)(
1 + 1

k + 1

)
,

from Bernoulli’s Inequality (Theorem 1.7). Multiplication of the binomials
then yields (verify!)

yk+1

yk
> 1 + 1

(k + 1)3 > 1.

■

■ Example 2.8
The sequence of ratios of consecutive Fibonacci numbers {Fn+1/Fn}∞n=1 never
becomes increasing or decreasing. It oscillates, forever (Exercise 2.8). ■
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2.2 CONVERGENCE OF SEQUENCES
In order to ascertain deeper properties of sequences, we should investigate their
limits (as hinted in Figure 1.9). We adapt the definition of lim

x→∞ f (x) that was

given in Section 1.9 immediately after Example 1.14. A convenient class of
sequences with which to begin are those defined in R1.

Definition. A sequence {xn}∞n=1 in R1 converges to L ∈ R1 iff, given any ε > 0,
there exists an N ∈ N such that for all integers n > N, xn ∈ B(L; ε).

A crucial part of the definition is the requirement of all integers n > N. If {xn}∞n=1
converges to L, then L is termed the limit of the sequence. However, if the limit
is a point at infinity (in Re), then use of the word “limit” is permitted, but the
sequence is not said to converge. A sequence that does not converge is said to
diverge (or be divergent). Also note that the definition carries the usual burden
of providing no assistance on how to ascertain L. The determination of L may
often be quite difficult.

Theorem 2.2. A bounded, monotonic sequence {xn}∞n=1 in R1 that does not become
constant converges.

Proof. Suppose that {xn}∞n=1 is increasing, and let S be the set of terms,
{x1, x2, x3, . . .}. Then by the Axiom of Completeness (Axiom R8; Section 1.3),
U = sup S exists. Let ε > 0 be given; then from Exercise 1.24 there is a term
xN such that U − ε < xN < U + ε. As the sequence is increasing, then U − ε <

xn < U + ε for all n ≥ N, that is, xn ∈ B(U; ε). This says that {xn}∞n=1 converges
to U. The proof is analogous if the sequence is decreasing. �

We actually have proved a bit more than was required, namely, that for a
bounded, increasing sequence, sup S has the properties of a limit. This is not
true, in general; that is, the limit of a sequence in R1 (if it has one) need not
equal the supremum of the set of terms.

■ Example 2.9
The sequence {yk}∞k=1, yk = (1 + k−1)k, converges, in view of Exercise 2.6,
Example 2.7, and Theorem 2.2. In fact, lim

k→∞
yk = e ≈ 2.71828. ■

■ Example 2.10
The monotonic sequence {xn}∞n=1, xn = an, a > 1, in R1 diverges to∞. For any
n ∈ N, xn+1/xn = an+1/an = a > 1, so the sequence is increasing. Let r > 1
be given; if a ≥ r, then for any n ∈ N, an > a ≥ r and by the definition in
Section 1.9 this says that lim

n→∞ an = ∞. If r > a, then ln r > ln a and by the

Archimedean Property (Theorem 1.5) there is an N ∈ N such that N ln a >

ln r or, equivalently, aN > r. Hence, an > r for all n ≥ N and this again says
lim

n→∞ an = ∞. ■
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2.3 GENERAL THEOREMS ON CONVERGENT
SEQUENCES

Convergent sequences possess several nice properties. We restrict our discussion
to sequences in Rm, although some of the properties apply (as stated) even more
generally. The definition of convergence in Section 2.2 carries over automatically
to sequences in Rm, if B(L; ε) is replaced by Bm(L; ε).

Theorem 2.3. If a sequence {xn}∞n=1 in Rm converges, then the limit is unique.

Proof. Suppose that x, x′ are two distinct limits; let ε = ‖x − x′‖ > 0 and
use the Triangle Inequality (Section 1.5). The completion of the proof is left
to you. �
Theorem 2.4. If a sequence {xn}∞n=1 in Rm is convergent, then it is bounded.

Proof. Let ε > 0 be given, denote lim
n→∞ xn = x = (x1, x2, . . . , xm), and let a =

(a1, a2, . . . , am) be an arbitrary point in Rm. Denote D = max{|x1 − a1|, |x2 −
a2|, . . . , |xm − am|}; then from the Triangle Inequality we have for any n ∈ N,

||xn − a|| = ||{xn − x} ⊕ {x − a}|| ≤ ||xn − x|| + ||x − a||.
There is an N ∈ N such that for all n > N, ||xn − x|| < 1 (since the sequence is
convergent). Hence, for all n > N,

||xn − a|| < 1 + ||x − a|| = 1 +
[

m∑
i=1

(xi − ai)
2

]1/2

≤ 1 +√
m D.

If M = max{||x1 − a||, ||x2 − a||, . . . , ||xN − a||}, then for all n ∈ N, ||xn − a|| ≤
max{1 +√

m D, M}. This says that {xn}∞n=1 is bounded. �
Theorem 2.5. Let the general term of a sequence {xn}∞n=1 in Rm be denoted xn =
(xn1, xn2, . . . , xnm). Then {xn}∞n=1 converges to L = (L1, L2, . . . , Lm) ∈ Rm iff each
component sequence {xnk}∞n=1, k = 1, 2, . . . , m, converges to Lk ∈ R1.

Proof. (→) Suppose that {xn}∞n=1 converges to L ∈ Rm. Then, given any ε > 0,
there is an N ∈ N such that for all n > N, xn ∈ Bm(L; ε), that is,

||xn ⊕ (−L)|| =
⎡
⎣ m∑

j=1

(xnj − Lj)
2

⎤
⎦

1/2

< ε.

Choose an arbitrary natural number k ∈ [1, m]; then

(xnk − Lk)
2 ≤

m∑
j=1

(xnj − Lj)
2 < ε2,
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so |xnk − Lk| < ε for all n > N. Thus, {xnk}∞n=1 converges to Lk ∈ R1. The other
direction of the proof is left to you. �
Theorem 2.6. If in Rm, lim

n→∞ xn = x and lim
n→∞ yn = y, and k ∈ R1, then

(i) lim
n→∞(k · xn) = k · x;

(ii) lim
n→∞(xn ⊕ yn) = x ⊕ y.

Further, if m = 1, then

(iii) lim
n→∞(xnyn) = xy;

(iv) if yn 
= 0 for all n and y 
= 0, then lim
n→∞(xn/yn) = x/y.

Proof. Pattern your work after the proof of Theorem 1.10. The completion of
the proof is left to you. �
Theorems 2.3 through 2.6 have the look of familiarity, based upon our prior
work with functions, in general. The next two theorems are not quite so obvious.
In order to prepare for them, we require two short lemmas, which are interesting
in their own right. The first lemma, in particular, is an analog of the result in
Exercise 1.33(a).

Lemma 2.3.1.2 If x, z ∈ Rm, then | ||x|| − ||z|| | ≤ ||x − z||.
Proof. Let x, y, z, w ∈ Rm; then from the Triangle Inequality,

||x − y|| = ||{x − z} ⊕ {z − w} ⊕ {w − y}||
≤ ||x − z|| + ||z − w|| + ||w − y||

or ||x − y|| − ||z − w|| ≤ ||x − z|| + ||w − y||.
(*)

Throughout (*) interchange y with w and x with z:

||z − w|| − ||x − y|| ≤ ||z − x|| + ||y − w||. (**)

The right-hand sides of (*) and (**) are identical, but the left-hand side of (*)
is the negative of that of (**). Hence, the two inequalities are equivalent to
| ||x − y|| − ||z − w|| | ≤ ||x − z|| + ||w − y||.3 The Lemma follows by setting
y = w = 0. �
Lemma 2.3.2. If a, b are fixed real numbers where for all ε > 0, b ≤ a + ε, then
b ≤ a.

2Lemmas in the book are enumerated as follows:
LEMMA (chapter no.).(section no.).(lemma no. within the section).
3When viewed as a statement about distances in a metric space, this has been dubbed the Quadrilateral
Inequality (Shilov, 1996).
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Proof. Suppose, to the contrary, that b > a. Then choose ε = b−a
2 . The

completion of the proof is left to you. �
Theorem 2.7. If {xn}∞n=1 is a sequence in Rm and lim

n→∞ xn = x ∈ Rm, then

lim
n→∞ ||xn|| = ||x||.
Proof. The result follows immediately from Lemma 2.3.1. The completion of
the proof is left to you. �
Theorem 2.8 (Comparison Theorem). If {xn}∞n=1, {yn}∞n=1 converge to x, y,
respectively, in Rm, and if for all natural numbers n larger than some natural number
N1 we have ||xn|| ≥ ||yn||, then ||x|| ≥ ||y||.
Proof. Let ε > 0 be given. Then from Theorem 2.7 there is an N2 ∈ N such that
for all n > N2

||xn|| ≤ ||x|| + ε

2
. (*)

Similarly, there is an N3 ∈ N such that for all n > N3

| ||yn|| − ||y|| | ≤ ε

2
,

or equivalently,

−||yn|| ≤ −||y|| + ε

2
. (**)

Let N = max{N1, N2, N3}; then combination of (*) and (**) with the hypoth-
esis yields, for all n > N,

0 ≤ ||xn|| − ||yn|| ≤ ||x|| − ||y|| + ε,

or

||y|| ≤ ||x|| + ε

for all ε > 0. The theorem then follows from Lemma 2.3.2. �

■ Example 2.11
In R2 the sequence {xn}∞n=1 is defined by xn = (xn1, xn2) = (1/n, 2 − 4−n/3).
We have lim

n→∞ xn1 = 0 and lim
n→∞ xn2 = 2; Theorem 2.5 then says that {xn}∞n=1

converges in R2 to x = (0, 2). ■

■ Example 2.12
In R1 the sequence {xn}∞n=1, xn = cos n, is certainly bounded. We cannot con-
clude from Theorem 2.4 that the sequence converges because the converse
of Theorem 2.4 is not true, in general. ■
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■ Example 2.13
(a) lim

n→∞
1
n = 0 (Exercise 2.24(a)).

(b) If {xn}∞n=1, {yn}∞n=1 agree at all natural numbers n and if lim
n→∞ xn = x,

then lim
n→∞ yn = x (Exercise 2.24(a)).

(c) In R1 the sequence {yn}∞n=1 is defined by yn = n2 + n−1
2n2 − n+3 . Then define

the sequence {xn}∞n=1, where xn = 1+ n−1 − n−2

2− n−1 +3n−2 = fn
gn

. From part (a)
and Theorem 2.6 (i, ii, iii), we have lim

n→∞ fn = 1 and lim
n→∞ gn = 2.

From Theorem 2.6 (iv), lim
n→∞ xn = 1/2, and finally, from part (b),

lim
n→∞ yn = 1/2. ■

■ Example 2.14
For the sequence in Example 2.11, we have

||xn|| = (xn ∗ xn)
1/2 =

[
1
n2 + 4 − 41−(n/3) + 4−2n/3

]1/2

.

By Theorem 2.7 we obtain

lim
n→∞ ||xn|| = ||x|| = ||(0, 2)|| = [02 + 22]1/2 = 2.

■

2.4 CLUSTER POINTS OF SEQUENCES
The definition of a cluster point4 of a set that was given in Section 1.8 is easily
adapted for use with sequences.

Definition. A cluster point of a sequence {xn}∞n=1 in Rm is a point p ∈ Rm iff, given
any ε > 0, there are infinitely many n ∈ N such that xn ∈ Bm(p; ε).

Pictorially, we can say that infinitely many terms of a sequence cluster (arbitrarily
closely) about a cluster point. Note, however, the difference between a limit and
a cluster point. If x is the limit of {xn}∞n=1, then all terms with n larger than some
N approach x arbitrarily closely; if p is merely a cluster point of {xn}∞n=1, then
“only” infinitely many terms approach p arbitrarily closely.

■ Example 2.15
The sequence {xn}∞n=1 defined in R1 by

xn =
{

1 − 1
n n = 2k

−1 + 1
n n = 2k − 1

has two cluster points, namely, 1 and −1, but no limit.

4Commonly employed synonyms are limit point and accumulation point.
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The sequence {xn}∞n=1 in R1 defined by xn = 4/n2 has one cluster point and
a limit, both at x = 0.

The sequence {xn}∞n=1 in R2 defined by xn = (1, n) has neither a cluster point
nor a limit in R2. ■

Cluster point and boundedness of a sequence intersect in a famous theorem.
We will state the higher-dimensional Euclidean version of it in Theorem 2.10;
the standard version, usually given for sequences in R1, is a special case. For
this latter, we shall use the imagery of geometry. We shall say that a sequence of
intervals {In}∞n=1 along R1 is called a nested sequence iff for each n ∈ N, In+1 ⊆
In. When each interval is a closed, bounded interval, In = [an, bn], an < bn, then
the nesting implies that for each n ∈ N, an ≤ an+1 < bn+1 ≤ bn.

Theorem 2.9 (Nested Intervals Theorem). Let {In}∞n=1 be a nested sequence
of closed, bounded intervals, In = [an, bn]. Then there exists at least one number M

common to each interval, that is,
∞⋂

n=1
In 
= �.

Proof. For each m, n ∈ N we have am < bn because (a) if m > n, then am < bm <

bn holds, and (b) if m ≤ n, then am ≤ an < bn holds. Let S = {a1, a2, . . .} be the
set of left-hand endpoints; S is bounded above by b1. Hence, by the Complete-
ness Axiom, M = sup S exists (in R1), so for each n ∈ N, an ≤ M. Further, for
each n ∈ N, M ≤ bn because M is the least upper bound of S. Hence, for each
n ∈ N, an ≤ M ≤ bn. �

Corollary 2.9.1.5 If in the sequence {In}∞n=1 we have lim
n→∞(bn − an) = 0, then

∞⋂
n=1

In reduces to a singleton set.

Proof. By Theorem 2.9,
∞⋂

n=1
In is nonempty. Suppose that M1, M2 ∈

∞⋂
n=1

In,

M2 − M1 = δ > 0. Let ε = δ/2; by hypothesis there is a natural number N such
that bN − aN < ε. Then

δ/2 > bN − aN = (bN − M2) + (M2 − M1) + (M1 − aN)

= (bN − M2) + δ + (M1 − aN) > δ,

a contradiction. Hence, only one of M1, M2 is in
∞⋂

n=1
In, and it is the M of

Theorem 2.9. �

5Corollaries in the book are enumerated as follows:
COROLLARY (theorem no.).(corollary no. of the theorem).
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■ Example 2.16
A sequence of intervals {In}∞n=1 is defined by

In =
{[xn+1, xn] n = 2k − 1
[xn, xn+1] n = 2k,

where

xn =
{

3 n = 1
xn−1+2
xn−1+1 n > 1.

The first five intervals are found to be (verify!)

I1 = [1.25, 3] I2 = [1.25, 1.4] I3 = [1.409, 1.4]
I4 = [1.409, 1.4150943] I5 = [1.4140625, 1.4150943],

and are shown (greatly exaggerated) in Figure 2.1.

1 1.5

I4

2 3
R1

I5

1.414
1.415

I2

I3

I1
1.409 1.4

FIGURE 2.1
A nested sequence of intervals?

The widths of the intervals In approach 0 (Exercise 2.30), so by Corollary 2.9.1
there is a unique number common to all the In’s. ■

We generalize Theorem 2.9 and Corollary 2.9.1 to Rm. Let a = (a1, a2, . . . , am) ∈
Rm and let r1, r2, . . . , rm > 0. The set of all points x = (x1, x2, . . . , xm) ∈ Rm that
satisfy |xk − ak| ≤ rk, k = 1, 2, . . . , m, is a closed box B about a of dimensions
2r1 × 2r2 × · · · × 2rm (Fig. 2.2). It has 2m faces, which are the hyperplanes
0 ≤ xk − ak ≤ rk,−rk ≤ xk − ak ≤ 0 parallel to the coordinate hyperplanes.

1. The box B is bounded, since if r = max{r1, r2, . . . , rm}, then the m-ball
Bm(a;

√
mr) contains the box (Figure 2.2).
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2r2

2r3

a
2r1

X1

X3

X2

B(a;       )3r

3r

FIGURE 2.2
A closed box in R3 and contained in a 3-ball B3(a;

√
3r).

2. The box B is divisible into 2m congruent, closed, bounded subboxes by
the m hyperplanes that pass through a and are parallel to the coordinate
hyperplanes.

3. An upper bound to the maximum distance between two points in the
box B is {

m∑
k=1

[(ak + rk) − (ak − rk)]
2

}1/2

≤ 2
√

m r = D.

We call D the diameter of the box B.

4. A sequence of closed, bounded boxes in Rm, {Bn}∞n=1, is a nested
sequence if for each n ∈ N, Bn+1 ⊆ Bn.

The analog of Theorem 2.9 for a box B in Rm follows by application of that
theorem to each of the dimensions of box B.6 The analog of Corollary 2.9.1,
which follows, is a consequence of that corollary.

6The analogs of Theorem 2.9 and Corollary 2.9.2, taken together, are sometimes referred to as Cantor’s
Intersection Theorem (Simmons, 1983).
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Corollary 2.9.2. If {Bn}∞n=1, is a nested sequence of closed, bounded boxes in Rm

and if lim
n→∞Dn = 0, then

∞⋂
n=1

Bn reduces to a singleton set.

Now look again at the first two examples in Example 2.15. Those two sequences
possessed a cluster point; they were also bounded sequences. This is no accident;
here is where we put the concept of nesting to work.

Theorem 2.10 (Bolzano-Weierstrass Theorem). Every bounded sequence in
Rm has at least one cluster point.

Proof. Suppose that the sequence {xn}∞n=1 contains only finitely many distinct
terms. Then there exists some subsequence {xnk }∞k=1, all of whose terms are
identical, say to x, so x is a cluster point of {xn}∞n=1, and we are done.

Suppose now that {xn}∞n=1 does not contain any term that occurs infinitely
often. As the sequence is bounded, there is a closed, bounded box B1 that con-
tains all the terms. Partition B1 into 2m congruent, closed, bounded subboxes;
one of these, possibly more than one, must contain infinitely many terms of
{xn}∞n=1. Denote this subbox by B2. If D1 is the diameter of B1, then D1/2 is
the diameter of B2.

The partitioning is continued; a nested sequence, B1 ⊃ B2 ⊃ B3 ⊃ . . . , in Rm

is obtained. The diameter of box Bn is Dn = D1/2n−1; since lim
n→∞Dn = 0, then

by Corollary 2.9.2 there is a unique point p ∈
∞⋂

n=1
Bn.

Let ε > 0 be given. The partitioning ensures that there is a Bn such that Dn < ε,
so Bn ⊂ Bm(p; ε). Thus, there are infinitely many terms in Bm(p; ε), and this
says that p is a cluster point of {xn}∞n=1. �
The theorem may fail if the terms of the sequence are not bounded, for it may
then happen that there are no convergent subsequences (see Theorem 2.11).

The Bolzano-Weierstrass Theorem for sequences or sets in R1 was known as
early as 1817 to Bolzano (footnote 2 in Section 1.1). The first formal proof
of it, however, is attributed to the German mathematician Karl Weierstrass
(1815–1897), one of the pioneers in the rigorization of calculus.

■ Example 2.17
Suppose a sequence {xn}∞n=1 in R2 is defined by xn =

(
sin n

n , 2(−1)n − n−1
)

.

This is bounded because each component is bounded for all n ∈ N (Theo-
rem 2.1). A cluster point of the sequence is p = (0, 2). We observe that if
ε = 0.01, then

d2(xn, p) =
[

2∑
k=1

(xk − pk)
2

]1/2
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=
[(

sin n
n

− 0
)2

+
(

2 − 1
n
− 2

)2
]1/2

(n = even)

=
√

1 + sin2 n
n

≤
√

2
n

,

and this is less than ε if n > 141. Thus, infinitely many terms of the sequence
lie inside the 2-ball B2(p; 0.01). ■

■ Example 2.18
In R1 a sequence {xn}∞n=1 is defined by

xn = cos n;

a partial graph is shown in Figure 2.3. The sequence is clearly bounded, so
it possesses a cluster point. Picking one out, however, is not obvious. We
consider this in Exercise 2.31. We can also investigate (in Exercise 2.32) the
question of how to find a monotonic subsequence of {xn}∞n=1. ■

1

y

n

0.8

0.6

0.4

0.2

0
2 4 6 108 12

20.2

20.4

20.6

20.8

21

14

FIGURE 2.3
The graph of y = cos n.
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2.5 THE CONNECTION WITH SUBSEQUENCES
Although a sequence can have, at most, one limit, it can have many cluster
points.

Theorem 2.11. A point p ∈ Rm is a cluster point of a sequence {xn}∞n=1 iff there is
a subsequence that converges to p.

Proof. (→) Suppose p ∈ Rm is a cluster point of {xn}∞n=1. For each k ∈ N, there is
a term xnk such that xnk ∈ Bm(p; k−1). Let ε > 0 be given and choose N = ⌈

ε−1
⌉
.7

Then k > N ≥ ε−1 implies k−1 < N−1 ≤ ε, so xnk ∈ Bm(p; ε). This says that p is
the limit of the subsequence {xnk }∞k=1.

(←) This direction of the proof is left to you. �
When a subsequence converges, we refer to its limit as a subsequential limit
of the original sequence {xn}∞n=1. Theorem 2.11 can be viewed either as an
“interpretation” of a cluster point of a sequence, or as an alternative definition
of a cluster point.

Corollary 2.11.1. Any bounded sequence in Rm has a convergent subsequence.

Proof. This follows immediately from Theorems 2.10 and 2.11. �

■ Example 2.19
The corollary holds for the somewhat obvious case of Example 2.17 and for
the far less obvious case of Example 2.18. ■

A sequence in Rm could have just one cluster point in Rm; for lack of a better
term, let us call such a sequence a single-cluster sequence. An example of a
single-cluster sequence is {xn}∞n=1, where

xn =
{

n−1 n = 2k − 1, k ∈ N
n n = 2k.

This sequence diverges, but x = 0 is its sole cluster point in R1. Convergent
sequences are a special class of single-cluster sequences. Here is a more complete
statement.

Theorem 2.12. A single-cluster sequence {xn}∞n=1 in Rm converges to x iff every
subsequence converges to x.

Proof. (←) This direction is trivial because {xn}∞n=1 is a particular subsequence
of itself.

(→) Suppose that lim
n→∞ xn = x; let ε > 0 be given. Then there is an N ∈ N such

that for all n > N, xn ∈ Bm(x; ε). Let n1, n2, . . . , nk, . . . be an arbitrary increasing

7�x�, known as the ceiling function of x ∈ R, is the smallest integer that equals or exceeds x. Thus,
�−3.4� = −3, �4.49� = 5, and �7� = 7.
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sequence of natural numbers; for each k we have nk ≥ k (use the PMI). For those
k that exceed N, we then have nk > N, so for all nk > N, xnk ∈ Bm(x; ε). Thus,
the arbitrary subsequence {xnk }∞k=1 converges to x. �

■ Example 2.20
The sequence in Example 2.17 certainly cannot converge because the two
subsequences

{xnk }∞k=1, nk = 2m

{xnk }∞k=1, nk = 2m − 1

converge to (0, 2) and (0,−2), respectively. This example illustrates one use
of Theorem 2.12. ■

It is interesting that if no requirements at all are imposed upon a sequence
in R1, it is still possible to find a monotonic subsequence (Bell, 1964). There
is no guarantee, though, that this subsequence will converge. It follows that if
boundedness is imposed upon {xn}∞n=1 in R1, then there must exist a convergent,
monotonic subsequence. Boundedness is a powerful condition.

2.6 LIMIT SUPERIOR AND LIMIT INFERIOR
In this section we develop a concept for sequences in R1 that is similar in
spirit to, but is weaker than, that of the limit of a sequence. If {xn}∞n=1 is a
sequence in R1, then it has a subsequential limit in Re (see Section 1.9 for
definition of symbol). This follows because either (a) {xn}∞n=1 is bounded in
R1 and Corollary 2.11.1 then applies, or (b) {xn}∞n=1 is unbounded from above
(from below) and there is a subsequence {xnk}∞k=1 such that lim

k→∞
xnk = ∞(−∞)

(Exercise 2.35). Hence, the set of subsequential limits in Re of a sequence in R1

is always nonempty. Accordingly, we can seek the supremum and the infimum
of the set.

Definition. If {xn}∞n=1 is a sequence in R1, then we denote the set of all subsequential
limits of {xn}∞n=1 by

E = {x ∈ Re : lim
k→∞

xnk = x}.

The limit superior (limit inferior)8 of {xn}∞n=1, written as lim
n→∞ sup xn

( lim
n→∞ inf xn), are defined as

lim
n→∞ sup xn = sup E, lim

n→∞ inf xn = inf E.

8Some authors (Shilov, 1996) use the terms upper limit and lower limit, respectively. These terms,
however, sound suspiciously close to ordinary bounds.
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For a sequence {xn}∞n=1 in R1, the set E consists of at least one element; it
could have an unlimited number of elements. But for any such sequence,
both lim

n→∞ sup xn and lim
n→∞ inf xn must exist and be unique, although in some

cases they may be identical. Also, note from above that one or both of
lim

n→∞ sup xn, lim
n→∞ inf xn might be infinite.

■ Example 2.21
Define {xn}∞n=1 by xn = −n. Then E = {−∞}, so lim

n→∞ sup xn = lim
n→∞ inf xn =

−∞. What is lim
n→∞ xn?

Define {xn}∞n=1 by xn = (−1)n − n−1. Then E = {−1, 1}, so lim
n→∞ sup xn =1

and lim
n→∞ inf xn = −1. This example shows that inf {x1, x2, . . .} does

not always equal lim
n→∞ inf xn; in fact, inf {x1, x2, . . .} ≤ lim

n→∞ inf xn. When

lim
n→∞ inf xn is real, it is the smallest number to which infinitely many xn’s

can approach to within any prescribed ε > 0. ■

■ Example 2.22
Define {xn}∞n=1 to be any sequence that has arranged all the rationals in the
open interval (0, 1) for enumeration (see Section 1.7). Then E is the closed
interval [0, 1], and lim

n→∞ sup xn = 1 and lim
n→∞ inf xn = 0. ■

If E is a finite set, then sup E and inf E belong to E, since these are identical to the
maximum element and the minimum element of E, respectively (see Exercise
1.20). The case where E is an infinite set is intrinsically more interesting. We
shall also restrict our consideration now to sets E that are bounded. If such is
not the case, see Exercise 2.35.

Theorem 2.13. Let the bounded, infinite set E ⊂ R1 be the set of subsequential
limits of the sequence {xn}∞n=1, and let {bn}∞n=1 be any convergent sequence with
range in E. Suppose that lim

n→∞ bn = b. Then there is a subsequence
{
xnk

}∞
k=1 such that

lim
k→∞

xnk = b.

Proof. Since b1 ∈ E, there is a subsequence of {xn}∞n=1 that converges to b1.
Hence, we can find a value of n, say n1, such that xn1 ∈ B(b1; 1). Similarly, there is
a subsequence of {xn}∞n=1 that converges to b2, so from the set of natural numbers
{n1 + 1, n1 + 2, n1 + 3, . . .} choose one (call it n2) such that xn2 ∈ B(b2; 1/2).
For b3 choose an integer from {n2 + 1, n2 + 2, n2 + 3, . . .} (call it n3) such that
xn3 ∈ B(b; 1/3). Continuing in this way, we arrive at an increasing sequence of
natural numbers, n1 < n2 < n3 < . . . , such that for each k ∈ N, we have xnk ∈
B(bk; 1/k). Now let ε > 0 be given. Choose natural numbers N1, N2 such that

1
N1

<
ε

2
, bk ∈ B(b; ε/2), for all k > N2.
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Denote N = max {N1, N2}, so that both of these conditions hold for all k > N.
We obtain, for all k > N,

|xnk − b| = |xnk − bk + bk − b| ≤ |xnk − bk| + |bk − b| < ε.

This says that lim
k→∞

xnk = b. �

Let e1 be an arbitrary element in the interior of E; we have e1 < sup E =
lim

n→∞ sup xn. By Exercise 1.23 there is an element e2 such that e1 < e2 <

lim
n→∞ sup xn. Continuing in this way, we obtain a sequence with range in E that

converges to lim
n→∞ sup xn. Hence, lim

n→∞ sup xn is a b as described in Theorem 2.13,

and we have the following corollary:

Corollary 2.13.1. lim
n→∞ sup xn and (by parallel reasoning) lim

n→∞ inf xn belong to E.

■

Two basic properties of lim sup’s now follow; the corresponding properties
for lim inf’s are somewhat parallel. One use for these properties occurs in
Theorem 2.16 (see Section 2.7).

Theorem 2.14. Let {xn}∞n=1 be a bounded sequence in R1, and suppose that
lim

n→∞ sup xn = ν ∈ R1; let l, L be two real numbers. Then

(a) if L > ν, then there is an N ∈ N such that for all n > N we have xn < L;

(b) if l < ν, then for infinitely many n ∈ N we have xn > l.

Proof.

(a) Suppose, to the contrary, that there is a number L > ν such that xn ≥ L
for infinitely many n ∈ N. This set of xn’s is bounded by hypothesis,
so by the Bolzano-Weierstrass Theorem (Theorem 2.10) it contains a
subsequence

{
xnk

}∞
k=1 that converges to some number x ≥ L, which

must be in E by definition. But ν, a supremum, is the largest element
in E, so the contradiction implies that the initial assumption is false. If
N is chosen, only finitely many xn ≥ L, and by choosing N sufficiently
large we then have xn < L for all n > N.

(b) By Theorem 2.13 and Corollary 2.13.1, the point ν is a cluster point of
{xn}∞n=1, that is, it is the limit of some subsequence

{
xnk

}∞
k=1. Let ε satisfy

0 < ε < ν − l; then there are infinitely many k such that xnk ∈ B(v; ε).
Each such xnk exceeds l because xnk > ν − ε > l. �

The theorem has a counterpart for lim inf’s (Exercise 2.37). Theorem 2.14 can
be reworded in the following useful manner:

(a′) If ε > 0 is given, there are only finitely n ∈ N such that xn ≥ ε +
lim

n→∞ sup xn.
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(b′) If ε > 0 is given, there are infinitely many n ∈ N such that xn >

lim
n→∞ sup xn − ε.

Statements (a’),(b’) are nicely illustrated by the sequence xn = 1 + (−1)n/n,
with ε = 0.01.

Theorem 2.15. If {xn}∞n=1 is a sequence in R1 and x ∈ Re, then lim
n→∞ xn = x iff

lim
n→∞ sup xn = lim

n→∞ inf xn = x.

Proof. (→) This direction is trivial, in view of Theorems 2.12, 2.13.

(←) Suppose, first, that lim
n→∞ sup xn = lim

n→∞ inf xn = x ∈ R1. Let ε > 0 be given.

From statement (a’), there is an N1 ∈ N such that for all n > N1 we have xn < ε +
lim

n→∞ sup xn. Similarly, the analogous statement for lim inf’s is that there is an

N2 ∈ N such that for all n > N2 we have xn > lim
n→∞ inf xn − ε. Combination of

the two inequalities then gives x − ε < xn < x + ε for all n > N = max{N1, N2},
or equivalently, |xn − x|< ε, for all n > N. This says that lim

n→∞ xn = x.

The completion of the proof for the case where lim
n→∞ sup xn = lim

n→∞ inf xn = ±∞
is left to you. �

■ Example 2.23
Any sequence constructed as in Example 2.22 cannot converge, since
lim

n→∞ sup xn 
= lim
n→∞ inf xn. ■

2.7 CAUCHY SEQUENCES
The Axiom of Completeness has given us in Theorem 2.2 a criterion for the
convergence of a sequence in R1 without our knowing the limit of the sequence.
This criterion applies, however, only to monotonic sequences.

The French mathematician Augustin-Louis Cauchy (1789–1857), who gave
early, solid definitions of limit of a function and convergence of a sequence
(in R1) (Grabiner, 1981), gave without proof a convergence criterion that could
be applied to nonmonotonic sequences. The criterion had been anticipated four
years earlier by Bolzano, but Cauchy may have been unaware of this work. We
will state the criterion in Theorem 2.16 after some crucial terms have been
introduced.

Definition. A sequence {xn}∞n=1 in R1 is termed a Cauchy sequence9 iff, given any
ε > 0, there is an N ∈ N such that for any n > m > N we have |xn − xm| < ε.

9Less commonly called a fundamental sequence (by Cantor, for example). There are a number of
equivalent formulations of the definition.
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XmB1(xm; ´)

N m n

Xn

FIGURE 2.4
The idea of a Cauchy sequence.

The definition says that if a ball of radius ε is constructed about any term xm

(m > N), then all the succeeding terms xn(n > m) will lie inside the ball
(Figure 2.4). Also, the definition can be extended, in an obvious way, to
sequences in more general metric spaces.

■ Example 2.24
A sequence {xn}∞n=1 in R1 is defined by xn = (n + 1)/(n + 2). Then

|xn − xm| =
∣∣∣∣n + 1
n + 2

− m + 1
m + 2

∣∣∣∣
=
∣∣∣∣
(

1 − 1
n + 2

)
−
(

1 − 1
m + 2

)∣∣∣∣
= 1

m + 2
− 1

n + 2
since n > m

<
1

m + 2
.

If ε > 0 is given, then choose N = ⌈1
ε

⌉
. Then m > N → m + 2 >

⌈1
ε

⌉+ 2 ≥
ε−1 + 2 > ε−1 → (m + 2)−1 < ε → |xn − xm| < ε, as required. ■

We recognize that the Cauchy sequence in Example 2.24 is also a convergent
sequence. The question of when this is true, in general, is fundamental.
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Definition. A space M equipped with a metric (such as the space R1, or anything
more general) is termed complete iff every Cauchy sequence in M converges to an
element of M. Otherwise, M is referred to as incomplete.

Note that this is a different use of the term “complete” from that in Section 1.3.

An example of an incomplete metric space is Q. The sequence {xn}∞n=1, where
xn = ∑n

k=1 (−1)k+1k−1, is a Cauchy sequence in Q, for given any ε > 0, the
choice of N = ⌈

ε−1 is such that n > m > N implies that

∣∣∣∣∣
n∑

k=1

(−1)k+1k−1 −
m∑

k=1

(−1)k+1k−1

∣∣∣∣∣ < ε.10

Further, the sequence converges (in R1), but to ln 2, however, which is not ratio-
nal. Thus, Q is not a complete metric space. A second example, and a simpler
one, would be to consider the sequence {xn}∞n=1 where xn is the rational number
formed by the first n digits in the decimal expansion of π (Exercise 2.44).

Cauchy believed, without proof, that R1 is a complete metric space. The modern
statement of his criterion for sequences in R1 is as follows:

Theorem 2.16 (Cauchy’s Convergence Criterion). Let {xn}∞n=1 be a sequence
in R1. This converges iff the sequence is a Cauchy sequence.

Proof. (→) This direction is straightforward. Its proof is left to you.

(←) A number of proofs are known for this direction. We have chosen one
that makes use of material from Section 2.6. Suppose that {xn}∞n=1 is a Cauchy
sequence. We first show that it is bounded. Choose, initially, ε = 1/2. Then there
is an N ∈ N such that for all n > N we have |xn − xN | < 0.5, or equivalently, for
n > N

xN − 0.5 < xn < xN + 0.5. (*)

Next, let m, M be defined by

m = min{x1, x2, . . . , xN−1}, M = max{x1, x2, . . . , xN−1},
and then set

A = min{m, xN − 0.5}, B = max{M, xN + 0.5}.
Combination of this last line with (*) then yields A ≤ xn ≤ B for all n ∈ N, so
{xn}∞n=1 is bounded. In view of this, lim

n→∞ sup xn and lim
n→∞ inf xn are both real.

10A theorem due to Young, cited in Section 3.4, is sufficient to prove this.
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Next, we assume that

ε = 1
2

(
lim

n→∞ sup xn − lim
n→∞ inf xn

)
> 0.

From Theorem 2.14 (b′) there are infinitely many n ∈ N such that

xn > lim
n→∞ sup xn − ε

2
.

These n’s define a sequence
{
xnk

}∞
k=1 such that for each k ∈ N

xnk > lim
n→∞ sup xn − ε

2
.

Similarly, from the analog of Theorem 2.14 (b′) for infima (Exercise 2.38), we
deduce the existence of a sequence

{
xmk

}∞
k=1 such that for each k ∈ N

xmk < lim
n→∞ inf xn + ε

2
.

Subtraction of the two inequalities gives

xnk − xmk > lim
n→∞ sup xn − lim

n→∞ inf xn − ε

= 2ε − ε

= ε.

This says that no matter how large N is chosen, we can select k large enough
so that nk > N and mk > N, and then |xnk − xmk | will not be less than ε. This
contradicts the fact that {xn}∞n=1 is Cauchy. It follows that ε > 0 is false; since
for any set E of real numbers we have inf E ≤ sup E, it follows that ε = 0 is the
only possibility. From Theorem 2.15 this implies that lim

n→∞ xn = lim
n→∞ sup xn =

lim
n→∞ inf xn = x. �

■ Example 2.25
Cauchy’s Convergence Criterion allows an almost instantaneous answer to
the question of the convergence of the sequence in Example 2.8. We have,
for n > m,

∣∣∣∣Fn+1

Fn
− Fm+1

Fm

∣∣∣∣ =
∣∣∣∣FmFn+1 − Fm+1Fn

FnFm

∣∣∣∣ =
∣∣∣∣Fm(Fn + Fn−1) − (Fm + Fm−1)Fn

FnFm

∣∣∣∣
=
∣∣∣∣Fm−1Fn − FmFn−1

FnFm

∣∣∣∣



Exercises 61

after one reduction; all indices in the numerator have decreased by

1. A total of m − 1 reductions then give

∣∣∣∣Fn+1

Fn
− Fm+1

Fm

∣∣∣∣ =
∣∣∣∣F1Fn−m+2 − F2Fn−m+1

FnFm

∣∣∣∣ = Fn−m

FnFm
,

since F1 = F2 = 1. It follows that

∣∣∣∣Fn+1

Fn
− Fm+1

Fm

∣∣∣∣ = Fn−m

FnFm
<

1
Fm

< ε

if m is large enough. Hence, {Fn+1/Fn}∞n=1 is a Cauchy sequence, and by
Theorem 2.16 it converges.

To illustrate numerically, let ε = 0.001. Then F−1
m < ε implies Fm > 1000;

choose m = 17, so that F17 = 1597. Choose arbitrarily Fn = F19 = 4181. We
compute

∣∣∣∣F20

F19
− F18

F17

∣∣∣∣ =
∣∣∣∣6765

4181
− 2584

1597

∣∣∣∣ = 1.49 × 10−7 <
1

F17

= 6.26 × 10−4 < ε.
■

From Theorem 2.16 we can extend the concept of completeness to Rm, in
general. When this is combined with Theorem 2.5, we obtain

Theorem 2.17. Any Euclidean vector space Rm is complete.

Proof. Let {xn}∞n=1, xn = (xn1, xn2, . . . , xnm), be a sequence in Rm. Now consider
the Cauchy nature of the separate sequences of the corresponding components
of the vectors. The proof is left to you. �

EXERCISES

Section 2.1

2.1. Refer to Example 2.2.
(a) Compute x6 to x10. Formulate some conjectures.
(b) Is x92305 a natural number?

2.2. Refer to Example 2.3.
(a) Prove that for each k, Hk+1(x) = 2xHk(x) − H′

k(x).
(b) Deduce H8(x), H9(x).
(c) Prove that Hk(0) = 0 if k is odd.
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2.3. A sequence of 2 × 2 matrices, {Mn}∞n=1, is defined as follows:

m11 = 1/(2n + 1)! m12 = 1/(2n + 2)!

m21 =
n∑

k=0

(2n + 2)!
(2k + 2)! m22 =

n∑
k=0

(2n + 1)!
(2k + 1)!

For each n ∈ N, let det Mn denote the determinant of Mn. Evaluate det Mn for
n = 1, 2, 3, 4, 5. These five numbers are increasingly accurate approximations of
a number N. Conjecture the value of N.

2.4. Write out the proof of Theorem 2.1.

2.5. Discuss the boundedness of each sequence {xn}∞n=1:
(a) xn = (sin n)/n;

(b) xn = n3e−n/2;

(c) xn = (n3 + 18)/(10n2 + n − 10);

(d) xn = (n + 1)/ ln(n + 1);

(e) xn = (1 − sin−1(1/n), cos n).

2.6. This Exercise looks at
{
yk
}∞

k=1 from Example 2.5. Recall Newton’s Binomial
Theorem for n ∈ N:

(a + b)n =
n∑

j=0

(
n
j

)
an−jbj,

(
n
j

)
= n!

(n − j)!j! .

(a) Write out the binomial expansion of (1 + k−1)k , k ∈ N.

(b) Prove that for j = 1, 2, . . . , k,
(k

j

) 1
kj ≤ 1

2j−1 .

(c) Recall the formula for the sum of a finite geometric series:

n−1∑
k=0

ark = a + ar + ar2 + · · · + arn−1 = a(1 − rn)

1 − r
, r 
= 1.

Show that for any k ∈ N the expansion in (a) does not exceed 3 − 2
( 1

2

)k
.

(d) By taking a simple limit, deduce that
{
yk
}∞

k=1 is bounded from above by 3.

2.7. Describe each sequence as increasing, decreasing, becomes increasing, becomes
decreasing, or is never monotonic: {xn}∞n=1, where

(a) xn = (n + 6)/[n − (1/2)];
(b) Exercise 2.5(b);

(c) xn = Tan−1n;

(d) xn = 1 − (Fn/Fn+1)2 (see Example 2.8);

(e) Exercise 2.5(d).

2.8. Refer to Example 2.8. Write a short program to compute Fn+1/Fn for n = 1 to 30.
There are two obvious subsequences; describe them.

2.9. Follow the spirit of Example 2.7 and analyze the closely related sequence {xn}∞n=1,
where xn = (1 + n−1)n+1. (Your result will be a particular case of the general
theorem proved in Kang and Yi, 2007.)
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2.10. If c ∈ R1 and n ∈ N, then the generalized binomial coefficient
(c
n
)

is(
c
n

)
= c(c − 1)(c − 2) · · · (c − n + 1)

n! .

Let bn = (−1)n(−1/2
n

)
; prove that {bn}∞n=1 is a decreasing sequence.

2.11. (For those with some knowledge of infinite series ) An important sequence in
analysis is {xn}∞n=1, where xn = ∑n

k=1
1
k − ln(n). Prove that this is a decreasing

sequence.11

Section 2.2

2.12. How do you know that the following sequences converge?

(a) {xn}∞n=1, xn = [(4n + 1)/(2n)]1/2;
(b) the sequence in Exercise 2.5(b);
(c) {xn}∞n=1, xn = √

n −√
n + 1;

(d) the sequence in Exercise 2.7(a);
(e) {xn}∞n=1, xn = (ln n)1/n.

2.13. A sequence {xn}∞n=1 is defined as follows (Priestley, 1999):

xn =
⎧⎨
⎩

4 n = 1
2xn−1

3 + 4
x2

n−1
n > 1.

(a) Compute x2, x4, x6, x8 to eight decimals.
(b) Show that the sequence is bounded and monotonic.
(c) Conjecture lim

n→∞ xn.

2.14. Define a sequence {xn}∞n=1 by xn = αn−βn

α−β , α = 1+√
5

2 , β = 1−√
5

2 .

(a) Compute x1 through x6; conjecture a result.
(b) Show that {xn}∞n=1 is monotonic and diverges to ∞.
(c) Show that the sequence is equivalent to the recursive definition x1 = x2 = 1,

xn = xn−1 + xn−2 for all n > 2.
(d) Write a short program to compute values of xn+1/xn. Conjecture lim

n→∞ xn+1/xn.

2.15. Consider the function f (x) = (2x − 1)/x, x > 0.

(a) Prove that this is an increasing function.
(b) Now define {xn}∞n=2 by xn = n(

n√2 − 1). Use the result from part (a) to explain how you
know that lim

n→∞ xn exists.

(c) Conjecture the value of lim
n→∞ xn.

Section 2.3

2.16. Complete the proof of Theorem 2.3.

2.17. Show, first, that the sequence in Exercise 2.7(a) converges and then, second, show
that it is bounded, in accordance with Theorem 2.4.
Discuss the sequence in Exercise 2.5(e) in connection with the converse of
Theorem 2.4.

11Consideration of this sequence leads to the number known as Euler’s constant ( γ ), about which there
is an extensive body of literature that grows continually (De Temple, 2006).
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2.18. Complete the proof of Theorem 2.5.

2.19. Write out all the details of Theorem 2.6; refer to Theorem 1.10, as suggested.

2.20. Draw a geometric figure that gives (in R2) an interpretation of the Quadrilateral
Inequality referred to in footnote 3.

2.21. Complete the proofs of Lemma 2.3.2 and Theorem 2.7.

2.22. Theorem 2.18 (Squeeze Theorem). If an ≤ bn ≤ cn for all natural numbers n
larger than some N ∈ N, and if lim

n→∞ an = lim
n→∞ cn = L, then lim

n→∞ bn = L.

Let ε > 0 be given. There is a natural number N such that for all n > N we have
−ε < an − L < ε,−ε < cn − L < ε, an ≤ bn ≤ cn simultaneously (why?). Go on to
deduce |bn − L| < ε. Complete the proof.

2.23. Refer to Exercise 2.10.

(a) Show that bn is given by bn =
[

1·3·5···(2n−1)
2·4·6···(2n)

1·3·5···(2n−1)
2·4·6···(2n)

]1/2
.

(b) Next, show that bn < (2n + 1)−1/2.
(c) Use Exercise 2.22 to give the value of lim

n→∞ bn.

2.24. Refer to parts (a) and (b) of Example 2.13.
(a) Prove those parts.
(b) Use all available limit theorems, including the two that you have just proved, to

determine the following limits. These are not ε-proofs, but justify all steps.
i. {xn}∞n=1, xn = (n3 + 5n2 − 4)/(2n3 − n + 1);

ii. {xn}∞n=1, xn =
[
2
√

n2 + 4/(n + 2)
]
− [(3 − n)/(n + 1)];

iii. {xn}∞n=1, xn = (n + sin n)(n + 1)n/nn+1;
iv. {xn}∞n=1, xn = (1 + n−2) cos(1/

√
n).

2.25. Write out separately definitions for what it means for a sequence {xn}∞n=1 in R1 to
diverge to ∞, and for a sequence {yn}∞n=1 in R1 to diverge to −∞.

2.26. Let {xn}∞n=1, {yn}∞n=1 be two sequences in R1, and suppose that for all n > N1 we
have xn ≤ yn. Prove that if lim

n→∞ xn = ∞, then lim
n→∞ yn = ∞. Apply this variation

of Theorem 2.7 to the sequence {yn}∞n=1, where yn = 2n/[50n3].
2.27. A sequence in R2 is defined geometrically by the diagram in Figure 2.5 (Vanden

Eynden, 1994). All lines shown are horizontal, vertical, or have slope ±1. The
sequence is {pn}∞n=1, where pn = (xn, yn). Determine lim

n→∞pn.

Sections 2.4 and 2.5
2.28. Conjecture the identity of any cluster points of these sequences {xn}∞n=1:

(a) xn = n2 [1 − cos(1/n)];

(b) xn = n(−1)n/
√

n2 + 1;

(c) xn =
{

(ln n)/n n = 2k
2n/(n + 6) n = 2k − 1.

2.29. (a) The following sequence of intervals is defined: {In}∞n=1, In = [2 − 21−n, 2). What is
∞⋂

n=1
In? Is this a violation of the Nested Intervals Theorem?

(b) The following sequence of intervals is defined: {In}∞n=1, In = (−∞,−n + 1]. What is
∞⋂

n=1
In ? Is this a violation of the Nested Intervals Theorem?
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FIGURE 2.5
Diagram for Exercise 2.27.

2.30. Refer to Example 2.16; proceed as follows.

(a) Suppose n is odd.Then for intervals In = [an, bn], In+1 = [an+1, bn+1],show that bn >
√

2
implies bn > bn+1 >

√
2, and that an = an+1. Hence, I2k−1 ⊃ I2k for any k ∈ N.

(b) Now let n be even. Then for intervals In, In+1 show that
√

2 > an implies
√

2 > an+1 >

an, and that bn = bn+1. Hence, I2k+1 ⊂ I2k , so we have a nested sequence of intervals.
(c) How do you know that lim

n→∞ an, lim
n→∞ bn both exist?

(d) Determine these limits, thereby showing that the widths of the intervals approach 0.

Hence, what is the unique point p ∈
∞⋂

n=1
In ?

2.31. Here, we return to Example 2.18. Finding a monotonic subsequence of
{xn}∞n=1, xn = cos(n) would be facilitated if we knew where the cluster points
are in [−1, 1] (Ogilvy, 1969). Let ε > 0 be given, and assume that on the unit circle
(Figure 2.6) there is an arc from θ0 to θ0 + ε such that no point (1, θ ) on it has a
natural number for its θ-coordinate.

(a) Why would the arcs from θ0 + 1 to θ0 + 1 + ε, θ0 + 2 to θ0 + 2 + ε, θ0 + 3 to θ0 + 3 + ε,
and so on, then also not have any points with θ-coordinates that are natural numbers?

(b) Let N > 2π/ε be a natural number. Why will N arcs like those in (a) cover the circle?
By the way, how do you know that such an N as this will exist?

(c) We arrive at an absurdity. What is it, and what may we conclude?
(d) Consider the projection of the points of the circle onto the interval [−1, 1] of the x-axis.

Let 0 < ε0 < 1 be given and let x0 ∈ (−1, 1) be arbitrary. Also, let I0 ⊂ (−1, 1) be an
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FIGURE 2.6
Arcs on the unit circle.

open interval of width ε0 that contains x0. Go on to show how we can construct a
sequence {xn}∞n=1 such that for infinitely many n we have cos n ∈ B(x0; ε0). What does
this say?

2.32. For the sequence in Exercise 2.31, indicate in principle how we could construct
an increasing convergent subsequence of {xn}∞n=1. Use part (d).

2.33. (a) Explain how the existence of the ceiling function in footnote 7 is a consequence
of the Archimedean Property of R (Theorem 1.5) and the Well-Ordering Property
(Theorem 1.8).

(b) Prove the other half of Theorem 2.11.

2.34. Consult the paper from Bell (1964) and digest the proof there that in any sequence
in R1 we can find a monotonic subsequence. Write the proof in your own words.

Section 2.6

2.35. Suppose that {xn}∞n=1 in R1 is unbounded from above (below). Prove that there is
a subsequence {xnk }∞k=1 such that lim

k→∞
xnk = ∞(−∞).

2.36. Show, as implied (more generally) in Example 2.21, that if {xn}∞n=1 is a sequence
in R1 with infinitely many values in its range and S is the set of these values,
then

inf S ≤ lim
n→∞ inf xn ≤ lim

n→∞ sup xn ≤ sup S.

2.37. The analog of Theorem 2.14 for lim inf ’s says: If {xn}∞n=1 is a bounded sequence
in R1 and if lim inf xn

n→∞ = w ∈ R1, then (a) L > w implies that for infinitely many

n ∈ N we have xn < L; (b) l < w implies that there is an N ∈ N such that for all
n > N we have xn > l. Prove this analog.
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2.38. Reword the theorem given in Exercise 2.37 so as to produce statements (a′), (b′)
analogous to the statements (a′), (b′) of Theorem 2.14.

2.39. Complete the little that remains in the proof of Theorem 2.15.

Section 2.7

2.40. Let {xn}∞n=1 in R1 be defined as follows: xn = ∑n
k=1

1
k .A student argues as follows:

“This is a Cauchy sequence because if ε > 0 is given, then choose N = �1/ε�, so
that now for any n > N,

|xn+1 − xn| =
∣∣∣∣∣∣
n+1∑
k=1

1
k
−

n∑
k=1

1
k

∣∣∣∣∣∣ =
1

n + 1
<

1
n

<
1
N

≤ ε,

as required.” Comment on this argument.

2.41. Demonstrate from the definition that the following {xn}∞n=1 are Cauchy
sequences:
(a) xn = ln n/n;

(b) xn = (−1)n/n3;

(c) xn = (n2 + 1)/n2;

(d) xn = √
n −√

n + 1;

(e) xn = e−1/n;

(f) xn = n−1 csc(n−1).

(Parts (e) and (f) require some knowledge of alternating series.)

2.42. Is the sequence {xn}∞n=1, xn = 1 + (−1)n(1 + n−1), a Cauchy sequence? Does it
converge in R1? Does it have any cluster points in R1?

2.43. Let {xn}∞n=1, {yn}∞n=1 be Cauchy sequences in Q. Is the sequence {xn}∞n=1 ⊕
{yn}∞n=1 also Cauchy in Q? How about {xn}∞n=1 ⊗ {yn}∞n=1 = {xnyn}∞n=1?

2.44. Prove that the sequence {xn}∞n=1 given in the text, where xn = the first n digits
in the base-10 expansion of π, is a Cauchy sequence in Q.

2.45. Complete the proof of Theorem 2.16.

2.46. Complete the proof of Theorem 2.17.

2.47. The convergence of a Cauchy sequence {xn}∞n=1 in R1 can be considered a
consequence of the Bolzano-Weierstrass Theorem. Proceed as follows:
(a) Prove in a manner differently from that in Theorem 2.16 that a Cauchy sequence in R1

is bounded.
(b) In view of part (a), apply the Bolzano-Weierstrass Theorem (Theorem 2.10, or a corollary

thereof ).
(c) Go on to show that lim

n→∞ xn exists in R1. Fill in the missing details and complete the

proof.

Since the Bolzano-Weierstrass Theorem was proved from the Nested Intervals
Theorem and this, in turn, was proved from the Axiom of Completeness, then the
convergence of Cauchy sequences in Rm ultimately depends on this powerful
axiom. Recall the italicized clause at the very end of Section 1.3.



68 CHAPTER 2: Sequences

SUPPLEMENTARY PROBLEMS

Additional problems on sequences for your enrichment and for challenge can
be found in Appendix C. Good luck!
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Infinite Series
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3.1 CONVERGENCE OF INFINITE SERIES
In this chapter we outline the theory of infinite series, primarily as an extension
of the theory of sequences. Our focus will be on Rk, principally on R1. If {an}∞n=1
is a sequence of elements in Rk, there is automatically associated with it an allied
sequence {sn}∞n=1 of partial sums, where sn = a1 ⊕ a2 ⊕ · · · ⊕ an = ∑n

i=1 ai. An
infinite series, denoted

∑∞
n=1 an, is a multilayered mathematical object that

incorporates the notions of both sequences. Front and center is the notion of
convergence of an infinite series.

Definition. An infinite series in Rk is said to converge to S ∈ Rk, called the sum
of the series, iff, given any ε > 0, there is an N ∈ N such that for all n > N we have
sn ∈ Bk(S; ε). A series that does not converge is said to diverge (or to be divergent).

The sum S in the definition is also commonly denoted by
∑∞

n=1 an. Thus, this
symbol does double duty by standing for both the series itself and its sum, if it
has one. The context will imply the intended meaning.

In order to make series useful for mathematical operations, we endow them with
certain elementary properties. The following definitions are made (∼= means
“left-hand side is defined by the right-hand side”):

Property 1. (Scalar Multiplication) If c ∈ R and a series is defined in Rk, then

c ·
∞∑

n=1

an ∼=
∞∑

n=1

(c · an).

Property 2. (Series Addition) If two series are defined in Rk, then

∞∑
n=1

an ⊕
∞∑

n=1

bn ∼=
∞∑

n=1

(an ⊕ bn).

Note that the properties have nothing to do with convergence. Fortunately, they
lead to desirable practical consequences.

Theorem 3.1. Suppose that two series in Rk have the following sums:
∑∞

n=1 an = A,∑∞
n=1 bn = B, and that c ∈ R. Then we have

(i) c·∑∞
n=1 an = c · A;

(ii)
∑∞

n=1 an ⊕∑∞
n=1 bn = A ⊕ B.

Proof.

(i) For each n ∈ N, let sn = ∑n
i=1 ai. Then by Property 1, c · ∑∞

n=1 an ∼=∑∞
n=1 c · an ∼= lim

n→∞
∑n

i=1 c · ai = c · lim
n→∞

∑n
i=1 ai = c · lim

n→∞ sn=c · A.

(ii) This part is left to you. �
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■ Example 3.1
The series

∑∞
n=1 an is defined for all n ∈ N by an = cn, 0 < |c| < 1.

Then (1 − c)sn = c + c2 + c3 + · · · + cn − [c2 + c3 + c4 + · · · + cn+1]
sn = (c − cn+1)/(1 − c),

and since lim
n→∞ cn+1 = 0 because |c| < 1, then

S = lim
n→∞ sn = c/(1 − c).

The series is called a geometric series because for each n ∈ N, the ratio
an+1/an is a fixed constant c. Geometric series are useful throughout
mathematics. ■

■ Example 3.2
Let the two series

∑∞
n=1an,

∑∞
n=1bn be defined for all n∈N by an =

[sin(π/4)]n, bn = [−cos(π/4)]n. Then by Theorem 3.1

∞∑
n=1

an ⊕
∞∑

n=1

bn = sin(π/4)

1 − sin(π/4)
− cos(π/4)

1 + cos(π/4)

= (
√

2 + 1) − (
√

2 − 1) = 2. ■

■ Example 3.3
Let r1, c be given, 0 < c < 1. Circles tangent to each other, centered at O, O′,
and of radii r1, r2 = cr1, are constructed (Figure 3.1). Isosceles triangle ABC
is circumscribed about the two circles; this triangle is uniquely determined
by r1, c. Line segment AM passes through O, O′, and is perpendicular to
BC; let h = AM and b = BC. Triangles AMB, ADO, AD′O′ are similar, so
we have

AB

MB
= AO

DO
= AO′

D′O′ , or

√
h2 + (b2/4)

b/2
= h − r1

r1
= h − 2r1 − cr1

cr1
.

The two equalities yield h = 2r1/(1 − c) and b = 2r1/
√

c. The figure corre-
sponds roughly to c = 0.5.

We notice now that if the ascending tower of inscribed circles were continued,
then each rn = crn−1 = cn−1r1, and the height H of the tower would be

H =
∞∑

n=1

2rn =
∞∑

n=1

2cn−1r1 = 2r1

∞∑
k=1

ck = 2r1

(
1

1 − c

)
= h.

So the diameters of the circles are the terms of an (infinite) geometric series
whose sum is exactly the height of the circumscribing triangle ABC. ■
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A geometric series in plane geometry.

Theorem 3.2. For each n ∈ N, let xn = (xn1, xn2, . . . , xnk) be a vector in Rk. Then∑∞
n=1 xn converges to S = (S1, S2, . . . , Sk) ∈ Rk iff each component series

∑∞
j=1 xji

converges to Si, i = 1, 2, . . . , k.

Proof. (→) Suppose that
∑∞

n=1 xn converges to S = (S1, S2, . . . , Sk) ∈ Rk.
If ε > 0 is given, there is an N ∈ N such that for all m > N

‖sm − S‖ =
⎡
⎣ k∑

i=1

(smi − Si)
2

⎤
⎦

1/2

< ε,

where sm = ∑m
i=1 xi = (sm1, sm2, . . . , smk) and each smi = ∑m

j=1 xji. But,

max
1≤i≤k

{|smi − Si|} ≤
[∑k

i=1 (smi − Si)
2
]1/2

holds, so each |smi − Si| < ε. This says

that each
∑∞

j=1 xji converges to Si ∈ R1, i = 1, 2, . . . , k.

(←) Completion of this part of the proof is left to you. �
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■ Example 3.4
Let

∑∞
n=1 xn be defined in R2 by xn = ([sin(π/4)]n, [−cos(π/4)]n).

From Example 3.2 we have

∞∑
n=1

[sin(π/4)]n = √
2 + 1,

∞∑
n=1

[−cos(π/4)]n = −√
2 + 1.

Hence, by Theorem 3.2,
∑∞

n=1 xn = (
√

2 + 1,−√
2 + 1). ■

3.2 ELEMENTARY THEOREMS ON SUMS
Any method of attaching a sum to an infinite series may be called a method of
summability. In this book we shall always understand sum to mean the limit
of the sequence of partial sums, when this limit is in R1 (or, more generally,
in Rk). Otherwise, the symbol

∑∞
n=1 an, which always represents a series, will

not represent a sum. There is, however, an extensive literature on methods
of summability (Hardy, 1949), in which other definitions of sum are used
(Exercises 3.11, 3.12). It is historically interesting that a fairly clear definition of
(the usual) sum of an infinite series of real constants was given as early as 1742
by the Scottish mathematician Colin MacLaurin (1698–1746) in his book,
Treatise of Fluxions (Grabiner, 1997).

It is easy in some cases to determine that a series does not have a (standard)
sum. For this, the following theorem is useful.

Theorem 3.3. If
∑∞

n=1 xn converges in Rk, then lim
n→∞ xn = 0.

Proof. By hypothesis, the sequence {sn}∞n=1 of partial sums converges, so it must
be a Cauchy sequence in Rk (Theorem 2.17). Hence, if ε > 0 is given, then there
is an N ∈ N such that for all n > N one has ||sn+1 − sn|| = ||xn+1 − 0|| < ε. This
says that lim

n→∞ xn = 0. �

Notice how closely Theorem 3.3 depends upon the nature of real numbers,
namely, upon the completeness of the metric spaces Rk. This latter, in turn, is
a consequence of the Completeness Axiom.

■ Example 3.5
Let the series

∑∞
n=1 an be defined for all n ∈ N by an = (n2 + 2)/n2. Then

lim
n→∞ an = lim

n→∞(1 + 2n−2) = 1, from Example 2.13(b); hence, the series

diverges according to the contrapositive of Theorem 3.3. ■
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■ Example 3.6
The series in Example 3.4 converges, so lim

n→∞ xn = 0; indeed,

lim
n→∞[sin(π/4)]n = lim

n→∞[−cos(π/4)]n = 0.
■

Since Theorem 3.3 is a necessary condition for convergence, it cannot be used to
show that a series converges. In Example 3.8, shortly, you will see a series that
diverges, even though lim

n→∞ an = 0. In this regard, special interest attaches to

positive series (each term is positive). The following important result is quite
general.

Theorem 3.4 (Comparison Test). Suppose two positive series,
∑∞

n=1 ‖an‖ and∑∞
n=1 ‖bn‖, defined in Rk, are such that for all n larger than some N ∈ N we have

0 < ‖an‖ ≤ ‖bn‖. Then if the b-series has a sum in R1, so does the a-series.

Proof. For each n ∈ N, let sn = ∑N+n
k=N+1 ‖ak‖, tn = ∑N+n

k=N+1 ‖bk‖. By hypothe-
sis, the sequence {tn}∞n=1 converges, so by Theorem 2.4 each tn is bounded from
above by some M > 0. Since, for k ≥ N + 1, ‖ak‖ ≤ ‖bk‖ holds, then each sn
is also bounded from above by M. But the sequence {sn}∞n=1 is increasing, so
by Theorem 2.2 it converges to some L > 0. Hence, the a-series has the sum∑∞

n=1‖an‖ = L +∑N
n=1‖an‖. �

The theorem is useful in the manner stated and also in the form of its con-
trapositive. The Comparison Test has been generalized somewhat very recently
(Longo and Valori, 2006).

■ Example 3.7
Define

∑∞
n=1‖an‖ and

∑∞
n=1‖bn‖ in R2 by an = (

√
2e−n2/5,

√
2e−n2/5), and

bn = (3
5 (2−n), 1

5 (22−n)
)
. Then for all n > N = 4 we have 0 < ‖an‖ < ‖bn‖

(verify!). Since the b-series is geometric and converges, then by Theorem 3.4
the a-series also converges. ■

■ Example 3.8
The harmonic series

∑∞
n=1bn is defined for each n ∈ N by bn = 1/n.

An a-series is constructed as follows:

a1 = a2 = 1/2, a3 = a4 = 1/4, a5 = a6 = a7 = a8 = 1/8,

a9 = a10 = · · · = a16 = 1/16, a2k−1+1 = a2k−1+2 = · · · = a2k = 1/2k.

By induction we have s2k = ∑2k

j=1aj = (k + 1)/2 (verify!). Thus, the sub-
sequence of partial sums, {s2k }∞k=1, diverges to lim

k→∞
(k + 1)/2 = ∞. By

Theorem 2.12, {sn}∞n=1 cannot converge and
∑∞

n=1an must diverge to ∞.
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Each term in the a-series satisfies an ≤ bn, equality holding only when n = 2k,
k ∈ N. Hence, from Theorem 3.4,

∑∞
n=1 bn = ∑∞

n=1 (1/n) diverges to ∞.1 ■

Even though it is divergent, the harmonic series is actually a very interesting
series. For example, it is a very slowly diverging series. We begin to get an
inkling of this when we compute some of the partial sums: s5 = 2.283333,
s15 = 3.318229, s30 = 3.994987. These sums are increasing fairly slowly. The
divergence of the harmonic series has been studied in some detail (Boas, Jr.
and Wrench, Jr., 1971). Let n(A) denote the smallest integer n such that sn just
exceeds A. Table 3.1 gives some numerical data. The results are certainly impres-
sive. Amazingly, there are series that diverge to ∞ even more slowly than the
harmonic series (Agnew, 1947)!

Table 3.1 Selected Partial Sums of the Harmonic
Series

A n(A) sn(A)

3 11 3.01987734
6 227 6.00436670

10 12,367 10.00004301
13 248,397 13.00000123
18 36,865,412 18.000000004

What do you think would happen if the harmonic series were to be thinned
out by the removal randomly of a billion terms? Or even by the selective
removal of an infinite subset of terms? A block of some set of digits is a string
b1b2b3 . . . bk of consecutively written digits. Thus, the integer 140561 con-
tains the block 056 but not the block 450. Let {Xn(b1b2b3 . . . bk)}∞n=1 denote
the increasing sequence of natural numbers that do not contain the block
b1b2b3 . . . bk. The associated series

∞∑
n=1

1
Xn(b1b2b3 . . . bk)

may be called a thinned-out harmonic series.

It was proved in 1914 that when the block is the one-digit block 9, the thinned-
out harmonic series converges. It is now known that convergence holds for any
block (Hegyvári, 1993). Isn’t that interesting! Of the nature of the sum in each

1The essence of this proof, albeit with much less rigor, was apparently first given by the French scholar
Nicole Oresme (ca. 1323–1382) in a tract Quaestiones super Geometriam Euclidis (ca. 1360) (Kline, 1972).
Oresme eventually became a Bishop of Lisieux, a town in the northwestern French department of Calvados.
An excellent historical discussion of the harmonic series is given in Dunham (1987); this is a must read.
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case, very little is known. It may be that in many (most? all?) cases the sum is
irrational, but nobody knows.

However, it is known that these thinned-out harmonic series converge very
slowly, too slowly to make direct estimation of their sums feasible. A very recent
paper presents some algorithmic procedures for estimating the sums to high
precision (Schmelzer and Baillie, 2008). For example, the thinned-out series of
terms in which no 9 appears in the denominator has a sum (rounded to eight
decimals) of 22.92067662.

We can, however, carry out the following highly simplified calculation. Par-
tition all the terms of the harmonic series into (a) those with denominators
in the interval [1, 10), (b) those with denominators in [10, 100), (c) those
with denominators in [100, 1000), and so on. The number of integers of
the form Xn(9) in [10n−1, 10n) that have no 9 in their base-10 expansions
is 8(9n−1) (why?). You can then establish that the thinned-out harmonic
series

∞∑
n=1

1
Xn(9)

converges to a sum that does not exceed 74 ¾ (Exercise 3.14). This upper bound
is, as seen, rather crude.

3.3 ADDITIONAL CONVERGENCE TESTS
Although the Comparison Test is powerful, it requires us to have on hand a
sufficient arsenal of convergent and divergent positive series. So far, we have
only geometric series and the harmonic series; further, use of the Comparison
Test sometimes necessitates a certain amount of ingenuity. The present section
introduces some alternative techniques that can be easier to apply. We refer
to these as convergence tests; several are known, and without belaboring the
point, we shall present only a few here and a few more (as optional items) in
the Exercises.

Theorem 3.5 (Limit Comparison Test). Suppose that
∑∞

n=1‖an‖,
∑∞

n=1‖bn‖
are such that lim

n→∞
(‖an‖/‖bn‖

)= L ∈ R1, L > 0. Then the two series converge or

diverge together. But if lim
n→∞

(‖an‖/‖bn‖
) = 0, then the only allowed conclusion is

that convergence of the b-series implies convergence of the a-series.

Proof. Suppose that 0 < L < ∞; then there is an N ∈ N such that for all n > N,
we have (9/10)L < ‖an‖/‖bn‖ < (10/9)L, or equivalently,

9
10

L ‖bn‖ < ‖an‖ <
10
9

L ‖bn‖.
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If
∑∞

n=1‖bn‖ converges, then so does
∑∞

n=1
10
9 L‖bn‖ (Theorem 3.1) and,

hence, also
∑∞

n=1‖an‖ (Theorem 3.4). If
∑∞

n=1‖an‖ converges, then so does∑∞
n=1

9
10 L‖bn‖ and, hence, also

∑∞
n=1‖bn‖. Similarly, by reasoning contra-

positively, it is seen that
∑∞

n=1‖an‖ diverges to ∞ iff
∑∞

n=1‖bn‖ diverges to ∞.

Suppose that L = 0; as {‖an‖/‖bn‖}∞n=1 converges, then by Theorem 2.4 there
is a number M > 0 such that for each n ∈ N, we have ‖an‖ / ‖bn‖ < M, or
equivalently,

0 < ‖an‖< M‖bn‖.

From this we can only conclude that if
∑∞

n=1‖bn‖ converges, then so does∑∞
n=1 M‖bn‖ and, hence, also

∑∞
n=1‖an‖. �

The Limit Comparison Test has one advantage over the Comparison Test: It
does not require us to be quite so clever in how to choose a series

∑∞
n=1‖bn‖

in order to establish the convergence (or not) of
∑∞

n=1‖an‖.

■ Example 3.9
We establish for future reference the useful fact that

∑∞
n=1

1
n2 converges. First

observe that for all n ∈ N,

1
n2 ≤ 2

n(n + 1)
= 2

n
− 2

n + 1
.

Then sn =
n∑

k=1

(
2
k
− 2

k + 1

)

=
(

2
1
− 2

2

)
+
(

2
2
− 2

3

)
+
(

2
3
− 2

4

)
+ · · · +

(
2
n
− 2

n + 1

)

= 2 − 2
n + 1

after extensive cancellation.

Thus, lim
n→∞ sn = 2 = ∑∞

n=1
2

n(n+1)
, so by Theorem 3.4

∑∞
n=1

1
n2 has a sum; it is

known that this sum is π2/6. The series
∑∞

n=1
2

n(n+1)
is termed a telescoping

series because each partial sum is a shortening or condensation of several
terms of the series. ■

■ Example 3.10
Let

∑∞
n=1an be

∑∞
n=1

n
2n3−3n+4 and let

∑∞
n=1 bn be

∑∞
n=1

1
n2 . Then

lim
n→∞(an/bn) = lim

n→∞
n3

2n3−3n+4 = lim
n→∞

1
2−3n−2+4n−3 = 1/2, after making use

of Example 2.13(b). Hence, by Theorem 3.5 the series
∑∞

n=1
n

2n3−3n+4
converges. ■
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Note that since Theorem 3.5 depends upon Theorem 3.4, both theorems
ultimately are consequences of the Axiom of Completeness, since this was
needed in the proof of Theorem 3.4 (where?).

Before reading the next two theorems, please review Section 2.6, especially
Theorem 2.14(a) and Exercise 2.37. Note that the two theorems to follow are
not restricted to positive series.

Theorem 3.6 (Ratio Test). Let
∑∞

n=1 an be a series of nonzero real numbers, and
denote

v = lim
n→∞ sup |an+1/an|, w = lim

n→∞ inf |an+1/an|.
Consequently,

(a) if v < 1, then
∑∞

n=1 |an| converges;

(b) if w > 1, then
∑∞

n=1 an diverges;

(c) if w ≤ 1 ≤ v, no conclusion can be reached.

Proof.

(a) Suppose v < 1; choose L such that v < L < 1. From Theorem 2.14(a),
there is an N ∈ N such that for all n > N we have |an+1/an| <

L < 1; hence, by induction, k ∈ N implies that
∣∣aN+1+k

∣∣ < Lk |aN+1|.
But

∑∞
k=1 Lk |aN+1| is a convergent geometric series (Example 3.1),

so
∑∞

n=1 |an| = ∑N+1
n=1 |an| +∑∞

n=N+2 |an| converges by the Compari-
son Test.

(b) Suppose w > 1; now select, arbitrarily, l such that 1 < l < w. Then from
Exercise 2.37(b) there is an N ∈ N such that for all n > N we have
|an+1/an| > l > 1. Thus, |an| < |an+1| < |an+2| < · · · , so lim

n→∞ |an| = 0

is impossible. Consequently, lim
n→∞ an = 0 is also impossible, so by

Theorem 3.3 the series
∑∞

n=1 an cannot converge.

(c) Suppose w ≤ 1 ≤ v and let ε > 0 be given. Then there is an N ∈ N such
that for all m > N we have w − ε < |an+1/an| < v + ε. But we cannot
judge whether these ratios |an+1/an| are larger or smaller than 1, so the
Ratio Test is inconclusive in this case. �

Theorem 3.7 (Root Test). Let
∑∞

n=1 an be a series of real numbers and denote
v = lim

n→∞ sup n
√|an|. Consequently,

(a) if v < 1, then
∑∞

n=1 |an| converges;

(b) if v > 1, then
∑∞

n=1 an diverges;

(c) if v = 1, the test is inconclusive.
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Proof. Reasoning proceeds along lines similar to those used in the proof of the
Ratio Test. The completion of the proof is left to you. �

You will see shortly from Theorem 3.8 that the conclusions in Theorems 3.6(a)
and 3.7(a) can be strengthened to read “then

∑∞
n=1 an converges.”

■ Example 3.11
Consider

∑∞
n=1 (−1)n+1/Fn, where Fn is the nth Fibonacci number

(Section 2.1). Let an+1 = (−1)n+2/Fn+1 and |an+1/an| = Fn/Fn+1. It is known
that (see Exercises 2.8 and 2.14)

lim
n→∞

Fn

Fn+1
= lim

n→∞

(
Fn+1

Fn

)−1

=
(

1 +√
5

2

)−1

=
√

5 − 1
2

< 1.

For this special case, w = v = (
√

5 − 1)/2, so from Theorem 3.6(a) we see that∑∞
n=1 |(−1)n+1/Fn| converges. This sum has been proved to be irrational. ■

■ Example 3.12
Consider

∑∞
n=1an, where an = (3/2)�n/2� · 21−n, and �x� is the floor function

of x: �x� is the largest integer that does not exceed x. The partial sum s7, for
example, is

s7 = 1 + 3
4
+ 3

8
+ 9

32
+ 9

64
+ 27

256
+ 27

512
.

We observe that for even n(n = 2k), we have a2k = (3/2)k21−2k = (3/8)k · 2,
and for odd n(n = 2k − 1), we have a2k−1 = (3/2)k−121−(2k−1) = (3/8)k−1.
Hence, for each k ∈ N, we have |a2k/a2k−1| = 3/4 and |a2k+1/a2k| = 1/2,
and so v = lim

n→∞ sup |an+1/an| = 3/4 < 1 and w = lim
n→∞ inf |an+1/an| = 1/2.

By Theorem 3.6(a) we conclude that
∑∞

n=1 an converges. The sum, in fact, is
14/5 (Exercise 3.18(a)). ■

■ Example 3.13
Consider

∑∞
n=2an, where an = [(ln n)/n]n. Since the general term involves

an nth power, use of the Root Test is suggested. The sequence
{

n
√|an|

}∞
n=2 =

{(ln n)/n}∞n=2 becomes decreasing for n ≥ 3, and is bounded below by
0; hence, it converges. We observe that ln n <

√
n is true for n = 4, and

that the function f (x) = √
x − ln x is an increasing function for x > 4

(Exercise 3.18(b)). Thus, 0 < ln n <
√

n is true for all integers n ≥ 4,
so we have

0 ≤ ln n
n

≤
√

n
n

.
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By the Squeeze Theorem (Exercise 2.22), we deduce that lim
n→∞[(ln n)/n] = 0,

and so for {(ln n)/n}∞n=2 we have w = v = 0. Thus, by Theorem 3.7(a) it
follows that

∑∞
n=2 [(ln n)/n]n converges. ■

We make two comments about the two previous theorems. First, versions of
the Ratio Test have been known for more than 225 years (Kline, 1972). In spite
of this, the last word on this marvelous result has not yet been uttered. A very
recent, exciting paper presents a so-called Second Ratio Test, along with several
interesting, worked examples (Ali, 2008).

Second, an especially interesting and instructive application of Cauchy’s Root
Test is to an efficient proof of this important limit (Wiener, 1987):

lim
n→∞

n
√

n!
n

= 1
e

.

Suppose that for a positive series
∑∞

n=1 an we have lim
n→∞(an+1/an) = A ∈ R1.

Hence, if ε > 0 is given, then there is an N ∈ N such that for all k > N we
have A − ε < ak+1/ak < A + ε. Write this pair of inequalities for k = N + 1,
N + 2, . . . , n − 1 and multiply corresponding sides throughout. Extensive
cancellation leads to

(A − ε)n−N <
an

aN
< (A + ε)n−N.

Multiply through by aN and take the nth root throughout:

a1/n
N (A − ε)(n−N)/n <a1/n

n <a1/n
N (A + ε)(n−N)/n.

The Comparison Theorem for sequences in R1 (Theorem 2.8) then gives

A − ε < lim
n→∞ a1/n

n < A + ε,

which says that lim
n→∞ a1/n

n = A.

Hence, if a positive series is predicted by the Ratio Test to converge because
lim

n→∞(an+1/an) = A < 1, then the Root Test will make the same prediction, and

lim
n→∞

n
√

an = lim
n→∞(an+1/an) = A. For the series whose general term is an = n!/nn,

we then obtain

lim
n→∞

n
√

n!
n

= lim
n→∞

(n + 1)!/(n + 1)n+1

n!/nn = lim
n→∞

[
1 + 1

n

]−n

= 1
e

,

from Example 2.9. This limit leads to one form of the useful Stirling’s
Approximation for factorials (Exercise 3.19).
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3.4 ABSOLUTE AND CONDITIONAL
CONVERGENCE; ALTERNATING SERIES

Series in R1 may contain some negative terms. Convergence can be considered,
therefore, in two contexts. Although “positive” and “negative” are meaningless
in Rk, k > 1, the duality of convergence contexts can still be extended to the
series in Rk.

Definition. Let
∑∞

n=1 an be defined in Rk, k ≥ 1. The series is absolutely con-
vergent iff the related series

∑∞
n=1 ‖an‖ converges in R1. The original series is

conditionally convergent iff it converges but not absolutely.

Intuition suggests that absolute convergence should be a stronger condition
than convergence. The meaning of this is as follows:

Theorem 3.8. An absolutely convergent series of terms defined in Rk is automatically
a convergent series.

Proof. This follows readily from Cauchy’s Convergence Criterion for Series
(Exercises 3.6, 3.24). The proof is left to you. �

■ Example 3.14
The series

∑∞
n=1 an, where an = (−1)n+1/(2n − 1)!, converges absolutely

(use Comparison Test with the series
∑∞

n=1 bn, bn = 22−n). In fact,

∞∑
n=1

1
(2n − 1)! = sinh(1).

The series
∑∞

n=1 (−1)n+1/(2n − 1)! then also converges (to sin(1)). On the
other hand, the series

∑∞
n=1 (−1)n+1/n is only conditionally convergent (to

ln 2). ■

■ Example 3.15
The series

∑∞
n=1 an, where an =

(
sin n
n2 , cos n

n2

)
∈ R2, converges absolutely,

since
∑∞

n=1 ‖an‖ = ∑∞
n=1

1
n2 , and Example 3.9 now applies. ■

Of special interest are those series in Rk, such as
∑∞

n=1 an in Example 3.14,
in which there is strict alternation of algebraic signs. These alternating series
were studied by the German father of calculus, Gottfried Wilhelm von Leibniz
(1646–1716), and later by Cauchy.
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Theorem 3.9 (Alternating Series Test). Let {bn}∞n=1 be a decreasing sequence
of positive numbers that converges to 0. Then the series

∑∞
n=1 an ∼= ∑∞

n=1(−1)n+1bn

converges.

Proof. We have for the partial sums and for any n ∈ N,

s2n+1 = s2n−1 − (b2n − b2n+1) ≤ s2n−1

s2n+2 = s2n − (b2n+1 − b2n+2) ≥ s2n,

and, therefore, {s2n}∞n=1 is an increasing sequence and {s2n−1}∞n=1 is a decreasing
sequence. Further, we observe from

s2 ≤ s4 ≤ · · · ≤ s2n−2 ≤ s2n ≤ (s2n + b2n+1) = s2n+1 ≤ s2n−1 ≤ · · · ≤ s3 ≤ s1,

valid for any n ∈ N, that the s2n’s are bounded from above by each s2n−1 and
the s2n−1’s are bounded from below by each s2n. It follows that

{
v = lim

n→∞ sup sn = lim
n→∞ s2n−1

w = lim
n→∞ inf sn = lim

n→∞ s2n,

and, finally,

0 ≤ v − w ≤ s2n+1 − s2n = b2n+1.

Since lim
n→∞ b2n+1 = 0, then w = v and we conclude

∑∞
n=1 an = lim

n→∞ sn = v. �

Note that in order to use Theorem 3.9 as a test for convergence, three conditions
must hold for all terms of the series beyond a certain point (n > N):

1. The terms must alternate in sign.

2. The terms must be decreasing in magnitude.

3. The nth term must approach 0 as n → ∞.

■ Example 3.16
Consider the series

∑∞
n=2(−1)n ln n/

√
n. We observe that the function f (x) =

(ln x)/
√

x becomes a decreasing function, since

f ′(x) =
[

1 − 1
2

ln x
]

/x3/2

< 0 if x > e2 ≈ 7.38.

Hence, the terms of the series decrease in magnitude for n ≥ 8. Next, we define
h(x) = 3

√
x − ln x and then obtain h′(x) = 1

3 x−2/3 − x−1; this is positive for all
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x > 27. Further, ln x < 3
√

x for x = 94, and as h(x) is an increasing function
for x > 27, the inequality ln x < 3

√
x holds for all x ≥ 94. Borrowing the

strategy shown in Example 3.13, we now write

0 ≤ ln n√
n

≤
3
√

n√
n
= 1

6
√

n
(n ≥ 94).

Since lim
n→∞ 1/ 6

√
n = 0, then by the Squeeze Theorem (Exercise 2.22) we must

have lim
n→∞[(ln n)/

√
n] = 0. The three conditions for use of Theorem 3.9 now

hold for n ≥ 8, so
∑∞

n=2 (−1)n ln n/
√

n converges. ■

■ Example 3.17
Consider the series

∑∞
n=1 (−1)n+1| sin n|/n2. Requirement 2 for the use of

Theorem 3.9 is not met. This does not mean that the series diverges, but only
that we cannot apply Theorem 3.9. In fact, the series converges absolutely
because |an| ≤ 1/n2, and Theorem 3.4 and Example 3.9 are now pertinent.
Finally, Theorem 3.8 furnishes the conclusion that

∑∞
n=1 (−1)n+1| sin n|/n2

converges. ■

An important use of convergent infinite series is to the representation and
estimation of various irrational numbers. Table 3.2 gives some examples of
representations of irrational numbers by alternating series. Theorem 3.10
shows that some alternating series, including all of those in Table 3.2, have
a useful approximation feature.

Table 3.2 Representations of Certain Irrational Numbers x by
Alternating Series

x Series xa
app sb

6

sin 1
∑∞

n=1 (−1)n+1/(2n − 1)! 0.84147098 0.84147098

tan−1(1/2)
∑∞

n=1 (−1)n+1/[(2n − 1)(2)2n−1] 0.46364761 0.46363989

π3/4 8
∑∞

n=1 (−1)n+1/(2n − 1)3 7.75156917 7.74934351

ln(3/2)
∑∞

n=1 (−1)n+1/[n(2)n] 0.40546511 0.40468750

aThe “exact value,” rounded to eight decimals.
bThe sixth partial sum of each indicated series.

Theorem 3.10. Let {bn}∞n=1 be a sequence in R+ such that bn+1 ≤ bn for all n > N
and lim

n→∞ bn = 0. Then the series
∑∞

n=1 (−1)n+1bn has partial sums sn, n > N, that

satisfy 0 < |S − sn| < bn+1, where S = lim
n→∞ sn.

Proof. The proof of Theorem 3.9 has shown that for all integers 2k, 2k + 1 > N
we have

s2k+1 − b2k+2 = s2k+2 < S < s2k+1,
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or equivalently,

0 < s2k+1 − S < b2k+2, (*)

and also

s2k − S < s2k+1 = s2k + b2k+1,

or equivalently,

0 < S − s2k < b2k+1. (**)

Equations (*) and (**) are equivalent to the single expression

0 < |S − sn| < bn+1,

for all n > N. �

In words, the theorem says that the magnitude of the error in approximating
the sum of a convergent alternating series by its nth partial sum (subject to the
condition in the hypothesis) is less than the magnitude of the first term not
retained (Exercise 3.27).

■ Example 3.18
How many terms in the series expansion of π3/4 in Table 3.2 shall be taken
in order to give an error of magnitude less than 10−3?

We desire |π3/4 − 8
∑n

k=1 (−1)k+1/(2k − 1)3| < 8
(2n+1)3 < 10−3, or equiv-

alently, (2n + 1)3 > 8 × 103; hence, n > 19/2, so 10 terms will suffice.
Indeed, we find s10 ≈ 7.75107643 and |π3/4 − 7.75107643| ≈ 0.00049274
< 10−3. ■

It sometimes happens, as is true in the case of the series for π3/4, that the dif-
ferences �bn = bn − bn+1 themselves monotonically decrease beyond a certain
point (n > N). Then it is known that the bounds given in the conclusion of
Theorem 3.10 can be rewritten as follows (Young, 1985):

bn+1

2
< |S − sn| <

bn

2
,

for all n > N. The change may or may not lead to modest improvement
(Exercise 3.30(b)).

■ Example 3.19
From Table 3.2 we have | ln(3/2) − s6| = 0.000778. We compute b7/2 =
1/[7(28)] = 0.000558 and b6/2 = 1/[6(27)] = 0.001302; Young’s result is
upheld for | ln(3/2) − sn| in the case of n = 6. More work is needed to show
that Young’s theorem applies to all n larger than some N ∈ N. ■
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3.5 SOME CONSEQUENCES OF ABSOLUTE
CONVERGENCE

Absolute convergence is a strong condition, and series that possess it inherit
special properties. For example, the following hold:

1. Absolute convergence of series is preserved in linear combinations
(Exercise 3.33). That is, if

∑∞
n=1 xn and

∑∞
n=1 yn in Rk are absolutely

convergent, then so are
∑∞

n=1 c · xn and
∑∞

n=1 (xn ⊕ yn), where c ∈ R is
nonzero.

2. Sums of absolutely convergent series in R1 are invariant upon arbitrary
rearrangements of the terms. Thus, the series

∑∞
n=1 (−1)n+1/n2, which

contains infinitely many terms of each sign, has the same sum (namely,
π2/12) if the series is written in any way whatsoever by a resequencing
of terms.

Absolute convergence is a necessary condition for invariance of the sum
of a convergent series, for Georg F. B. Riemann (1826–1866) proved
this gem:

Theorem 3.11 (Riemann’s Rearrangement Theorem). A given conditionally
convergent series of real numbers can always be rearranged so as to converge to any
real number, or even to diverge to ±∞.

Proofs of this can be found in (Galanor, 1987) and (Rudin, 1976). Not sur-
prisingly, the alternating harmonic series has been much studied; one result
appears in (Dence, 2008).

In the remainder of this section we consider some questions regarding multi-
plication of infinite series, in which absolute convergence assumes importance.
In Section 3.1 we defined the sum of two infinite series of real numbers, but
we gave no definition for their product. One way is motivated by the way we
multiply polynomials:

(
a0 + a1x + a2x2 + · · · + anxn) (b0 + b1x + b2x2 + · · · + bmxm) =
a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + · · · + anbmxn+m.

Setting x = 1, we see that we have expressed the product of two sums of numbers
as a sum of partial products:

(
n∑

k=0

ak

)(
m∑

k=0

bk

)
=

n+m∑
k=0

ck

where c0 = a0b0, c1 = a0b1 + a1b0 = ∑1
k=0 akb1−k, c2 = a0b2 + a1b1 + a2b0 =∑2

k=0 akb2−k, and so on. For convenience with the coefficients in the
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polynomials, we have started the indexing in the series at k = 0. Continuing
the list of properties in Section 3.1, we have

Property 3. (Cauchy Multiplication) Multiplication of two series defined in
R1 is defined by

∞∑
n=0

an ⊗
∞∑

n=0

bn ∼=
∞∑

n=0

cn, cn =
n∑

k=0

akbn−k, n ∈ N ∪ {0}.

The right-hand side is called the Cauchy product of the two series on the
left-hand side. For Property 3 to be useful to us, we would surely like to know:

1. If two series converge, does their Cauchy product converge?

2. If the sums of two convergent series are S1, S2 and if the Cauchy product
converges, is its sum S1S2?

3. What conditions on two component series will guarantee that their
Cauchy product will converge?

4. When a Cauchy product does converge, is this convergence necessarily
absolute convergence?

The answer to Question 1 is “not necessarily.” Suppose we multiply the series
whose general term is (−1)n/

√
n + 1, n ≥ 0, by itself.

an
′s 1 −1√

2
1√
3

−1√
4

· · ·
bn

′s 1 −1√
2

1√
3

−1√
4

· · ·

cn
′s 1 −

(
1√
2
+ 1√

2

) (
1√
3
+ 1√

4
+ 1√

3

)
−
(

1√
4
+ 1√

6
+ 1√

6
+ 1√

4

)
· · ·

(c0) (c1) (c2) (c3)

We see (by induction) that when n = 2k, the term cn contains n + 1 addends,
and the smallest addend is 1/

(n+2
2

)
. Hence, c2k > (2k + 1)/(k + 1) for all k,

so lim
k→∞

c2k ≥ lim
k→∞

(2k + 1)/(k + 1) = 2. Thus, we have found a subsequence of

the sequence
{
cn
}∞

n=0 that does not converge to 0. By Theorem 3.3, the series∑∞
n=0 cn then cannot converge, even though the two component alternating

series do converge (Theorem 3.9).

The answer to Question 2, in brief, is “yes.” For Question 3, a sufficient condition
on the two component series is that both series converge and at least one of
them converges absolutely.2 The following algebraic lemma is needed:

2The answer to Question 2 is Abel’s Convergence Theorem (after Niels Henrik Abel (1802–1829)).
A proof different from Abel’s is sketched in footnote 4. The answer to Question 3 was given by the
Austrian Franz Mertens (1840–1927) (see Theorem 3.12).
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Lemma 3.5.1. For each n ∈ N ∪ {0} define An = ∑n
k=0 ak, Bn = ∑n

k=0 bk,
and Cn = ∑n

k=0 ck, where ck =
∑k

j=0 ajbk−j. Then AnBn − Cn is given by∑n
k=1 bk

[∑k−1
j=0 an−j

]
.

Proof.

AnBn − Cn =
n∑

k=0

ak

n∑
k=0

bk −
n∑

k=0

ck

=
n∑

k=0

ak [b0 + b1 + b2 + · · · + bn] − [a0b0 + (a0b1 + a1b0)+ (a0b2 +

a1b1 + a2b0) + · · · + (a0bn + a1bn−1 + a2bn−2 + · · · + anb0)]

=
n∑

k=0

ak [b0 + b1 + b2 + · · · + bn] −
[

a0

n∑
k=0

bk + a1

n−1∑
k=0

bk +

a2

n−2∑
k=0

bk + · · · + an

0∑
k=0

bk

]

= a1bn + a2(bn−1 + bn) + a3(bn−2 + bn−1 + bn) + · · ·+
an(b1 + b2 + b3 + · · · + bn)

= bn(a1 + a2 + a3 + · · · + an) + bn−1(a2 + a3 + · · · + an)

+ bn−2(a3 + a4 + · · · + an) + · · · + b1an

=
n∑

k=1

bk

⎡
⎣k−1∑

j=0

an−j

⎤
⎦.

�
Theorem 3.12 (Mertens’ Theorem). If

∑∞
n=0 an,

∑∞
n=0 bn are convergent, with

sums A and B, respectively, and if the b-series converges absolutely, then the series
obtained by Cauchy multiplication is convergent, with sum AB.

Proof. Let
{
An
}∞

n=0,
{
Bn
}∞

n=0 be the sequences of partial sums of the a-series and
b-series, and let

∑∞
n=0 |bn| = L, 0 < L < ∞. Also let

{
Cn

}∞
n=0 be the sequence of

partial sums of the Cauchy product,

Cn =
n∑

k=0

ck, ck =
k∑

j=0

ajbk−j.

The idea is to look at AnBn − Cn; if this can be shown to be arbitrarily small in
magnitude for all sufficiently large n, then we are done.

The following are immediate:

1.
{
An

}∞
n=0 is bounded, so M = sup

n≥0
|An| is real, M > 0.

2. For any a, b ∈ N, |Aa − Ab| ≤ |Aa| + |Ab| ≤ 2M.
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3. Given ε > 0, there is an N1 ∈ N such that n > m − 1 > N1 implies

|An − Am−1| =
∣∣∣∣∣

n∑
k=m

ak

∣∣∣∣∣ < ε/(2L).

4. Given ε > 0, there is an N2 ∈ N such that n > N2 implies

∞∑
k=n

|bk| < ε/(4M).

Now let N = max {N1, N2}; from Lemma 3.5.1 and for all n that satisfy
n − N + 1 > N + 1, we have

|AnBn − Cn| =
∣∣∣∣∣∣

N∑
k=1

bk

⎡
⎣k−1∑

j=0

an−j

⎤
⎦+

n∑
k=N+1

bk

⎡
⎣k−1∑

j=0

an−j

⎤
⎦
∣∣∣∣∣∣

≤
∣∣∣∣∣∣

N∑
k=1

bk

⎡
⎣ n∑

i=n−k+1

ai

⎤
⎦
∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑

k=N+1

bk(An − An−k)

∣∣∣∣∣∣ (i = n − j)

≤
N∑

k=1

|bk|
( ε

2L

)
+

n∑
k=N+1

( ε

4M

)
|An − An−k|

≤ L
( ε

2L

)
+
( ε

4M

)
(2M)

= ε.

Hence, lim
n→∞ Cn = lim

n→∞ AnBn = ( lim
n→∞ An)( lim

n→∞Bn) = AB. �

■ Example 3.20
Let

∑∞
n=0 an have general term an = (−1)n/

√
n + 1 and

∑∞
n=0 bn have general

term bn = (−1)n/2n. The first series converges and the second series converges
absolutely. By Mertens’ Theorem the Cauchy product, which is

∞∑
n=0

an ⊗
∞∑

n=0

bn =
[

1√
1
− 1√

2
+ 1√

3
− 1√

4
+

∞∑
n=4

(−1)n/
√

n + 1

]

⊗
[

1 − 1
2
+ 1

3
− 1

4
+

∞∑
n=4

(−1)n/2n

]
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= 1 +
(−1

2
− 1√

2

)
+
(

1
4
+ 1

2
√

2
+ 1√

3

)

+
(−1

8
− 1

4
√

2
− 1

2
√

3
− 1

2

)
+ · · ·

≈ 1 − (1.207) + (1.181) − (1.091) + · · ·,

has the value AB, where A = lim
n→∞

∑n
k=0 (−1)k/

√
k + 1 ≈ 0.6049 (Bromwich,

1926) and B = lim
n→∞

∑n
k=0 (−1)k/2k = 2/3. Observe that the pattern of the

first few terms is not encouraging. ■

The answer to Question 4, posed earlier, is “not necessarily.” We see (by induc-
tion) that for each n ≥ 1 the term |cn| in the Cauchy product in Example 3.20
exceeds 1/

√
n + 1. Use of the p-Series Test (Exercise 3.23(b)) shows that the

series
∑∞

n=0 1/
√

n + 1 diverges to∞. However, absolute convergence is a strong
enough property to be preserved upon multiplication, if both of the component
series are absolutely convergent.

Theorem 3.13. The Cauchy product obtained from two absolutely convergent series
is itself absolutely convergent.

Proof. Let
∑∞

n=0 an,
∑∞

n=0 bn be absolutely convergent, and let
{
cn
}∞

n=0 be the
sequence of terms in their Cauchy product. By Theorem 3.12, the Cauchy
product converges to AB, where A = ∑∞

n=0 an and B = ∑∞
n=0 bn.

∞∑
n=0

cn =
∞∑

n=0

[
n∑

k=0

akbn−k

]

But as these two series are absolutely convergent, then the series
∑∞

n=0 |an| and∑∞
n=0 |bn| also converge (absolutely) to, say, A′ and B′, respectively, so their

Cauchy product converges to A′B′, by Theorem 3.12:

∞∑
n=0

|an| ⊗
∞∑

n=0

|bn| =
∞∑

n=0

c′n =
∞∑

n=0

[
n∑

k=0

|akbn−k|
]

= A′B′.

But from the Triangle Inequality we have

|cn| =
∣∣∣∣∣

n∑
k=0

akbn−k

∣∣∣∣∣ ≤
n∑

k=0

|akbn−k| = c′n,

so by the Comparison Test the series
∑∞

n=0 |cn| must also converge. �
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■ Example 3.21
The following two geometric series have the indicated sums:

∞∑
n=0

an =
∞∑

n=0

(−1)n
(

1
2

)n

= 2
3

∞∑
n=0

bn =
∞∑

n=0

(−1)n
(

2
3

)n

= 3
5

,

and both series are absolutely convergent. By Theorem 3.12 the Cauchy
product of

∑∞
n=0 an,

∑∞
n=0 bn has the sum

∞∑
n=0

cn = 1 − 7
6
+ 37

36
− 175

216
+ 781

1296
− · · · = 2

3

(
3
5

)
= 2

5
.

Additionally, Theorem 3.13 guarantees that the following sum exists:

∞∑
n=0

|cn| = 1 + 7
6
+ 37

36
+ 175

216
+ 781

1296
+ · · ·.

What do you think is the value of this sum? ■

3.6 A FIRST LOOK AT SERIES OF FUNCTIONS
The theory of infinite series is a continuation of the theory of sequences. Let{
fn
}∞

n=0 be a sequence of functions defined on a common domain D ⊆ R1 (or,
possibly, Rk) and with values in R1. Then the series

∑∞
n=0 fn(x) is termed a series

of functions. A common such type of series is one where each fn(x) = cn(x − a)n,
cn, a ∈ R1, called a power series about the point a.

Any series of functions
∑∞

n=0 fn(x) is said to converge pointwise at x = x0 ∈ D
iff

∑∞
n=0 fn(x0) converges to some s0 ∈ R1. That is, if ε > 0 is given, then an

N ∈ N exists such that n > N implies that

n∑
i=0

fi(x0) ∈ B(s0; ε).

There are two interesting issues that lurk beneath the surface here.

1. The series may converge at each point in D; if so, prove this. If not, deter-
mine that maximal subset D′ ⊂ D on which

∑∞
n=0 fn(x) does converge

for each x ∈ D′. In either case, the series converges to some function f
with domain D′. What are some of the properties of f ? For example,
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if each fn(x) is continuous (differentiable) on D′, is f itself continuous
(differentiable) on D′?

■ Example 3.22
The series

∑∞
n=0

x2n

(2n)! converges for all real x, according to the Ratio Test, to
the function f (x) = cosh x, which is everywhere differentiable.

The series
∑∞

n=0
(−1)n

n+1 (x − 1)n+1 converges only if 0 < x ≤ 2 (again, use the
Ratio Test); it converges to ln x, which is differentiable on (0, 2].
The series

∑∞
n=0

enx√
x

converges (in R1) for no real x. ■

2. Suppose that a series
∑∞

n=0 fn(x0) converges to s0. When ε > 0 is given,
the N needed to ensure that

∑n
i=0 fi(x0) ∈ B(s0; ε) for all n > N depends,

in general, upon ε and upon the x0. Change x0 to x′0 ∈ D′, then a differ-
ent N may be needed. For some series of functions, however, the same
N may work for a given ε and for all x ∈ D′. When this happens, the
series is said to converge uniformly on D′. How can we determine if a
series is a uniformly convergent series? We anticipate that this question
will be important because a uniformly convergent series will probably
possess some nice properties. Does point (1) suggest any possibilities
to you?

The ideas touched upon already, plus other related notions, will be treated
substantially in Chapter 7. However, there is a common situation in which the
convergence of a series of functions, especially a power series, is not of overriding
importance. Suppose that

{
Kn

}∞
n=0 is a given sequence of real numbers and that

a function f (x) can be written in closed form but also has associated with it the
expansion

∑∞
n=0 Knxn.3 The function f (x) is then called a generating function

for the sequence
{
Kn

}∞
n=0.

It would be nice to be able to state more, namely, that

f (x) =
∞∑

n=0

cnKnxn, cn ∈ R1. (*)

We may not know precisely in what interval of x-values the series in (*)
converges to f (x). But for some purposes we do not need this information.
Commonly, though, the equality in (*) will hold for some interval of nonzero

3There are two issues here. First, a theorem (which we do not prove in this book) says that every power
series is a Taylor series. That is, to any series

∑∞
n=0 cnxn there is a function f such that f (0) = c0 and for

all n ∈ N we have f (n)(0)/n! = cn. Second, it may be very hard to actually represent f in terms of standard
elementary functions. We are interested presently only in cases where f can be found in closed form in
order that we can proceed with certain practical objectives.



94 CHAPTER 3: Infinite Series

length. Consequently, generating functions are more common than you might
expect (Watkins, 1987) (Exercises 3.42, 3.44).

■ Example 3.23
If r ∈ N, then (1 + x)r is the generating function for the finite sequence{(r

n

)}r
n=0.

The function 1
1+x is the generating function for the simple sequence{

(−1)n
}∞

n=0.

The function x
1−x−x2 is the generating function for the sequence of Fibonacci

numbers,
{
Fn
}∞

n=1 (see later). ■

In accordance with Properties 1, 2, and 3 for series, we can multiply generat-
ing functions and the associated series by scalars, add and subtract generating
functions, and multiply any two generating functions. These operations may be
denoted as formal operations, since no attention is paid to issues of conver-
gence of the series (Niven, 1969). The objective in formal operations is usually
to obtain relations among the members of the sequence of numbers of interest
or to derive certain other properties of them.

■ Example 3.24
For the last example in Example 3.23, let us write

x
1 − x − x2 = x(

1 − x + x2

4

)
− 5x2

4

= x[(
1 − x

2

)− √
5x
2

] [(
1 − x

2

)+ √
5x
2

]

= 1√
5

[
1

1 − 1+√
5

2 x
− 1

1 − 1−√
5

2 x

]
.

But the function 1
1−ax , a 
= 0, is the generating function for {an}∞n=0, so

subtraction of the two generating functions above gives, from Property 2,

x
1 − x − x2 =

∞∑
n=1

Fnxn = 1√
5

[ ∞∑
n=0

(
1 +√

5
2

)n

xn −
∞∑

n=0

(
1 −√

5
2

)n

xn

]

= 1√
5

∞∑
n=1

[(
1 +√

5
2

)n

−
(

1 −√
5

2

)n]
xn.
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Hence, for each n ∈ N we have

Fn = 1√
5

[(
1 +√

5
2

)n

−
(

1 −√
5

2

)n]
,

which agrees with Exercise 2.14. ■

An especially interesting example of a formal operation occurs in connection
with the famous Bernoulli numbers,

{
Bn
}∞

n=0. These fascinating numbers,
which arose in connection with Jakob Bernoulli’s work on the summation
of the pth powers of m consecutive natural numbers (Exercise 3.48(c)), are
now known to occur in many places in mathematics. Euler, a generation after
Bernoulli, discovered a generating function for

{
Bn
}∞

n=0:

x
ex − 1

=
∞∑

n=0

Bn

n! xn. (**)

Note that the equality sign is not to be interpreted too rigorously, since no
mention of convergence has been made.

It is tedious to work out the values of even the first few Bn’s from the gener-
ating function because l’Hôpital’s Rule must be used repeatedly. The formal
operations shown next circumvent this difficulty.

■ Example 3.25
Recalling from elementary calculus (or looking ahead in Section 5.7) that

the MacLaurin series for ex is
∑∞

k=0
xk

k! , we rewrite equation (**) as

x = (ex − 1)

∞∑
n=0

Bn

n! xn

=
( ∞∑

k=1

xk

k!

)
⊗
( ∞∑

n=0

Bn

n! xn

)

= B0

0!1!x +
∞∑

m=2

cmxm, (***)

where B0 = 1 and each cm = ∑m
k=1

1
k!

Bm−k
(m−k)! , from Property 3 (Section 3.5).

As there are no powers of x higher than the first on the left-hand side of
equation (***), it follows that for all m ≥ 2 we have

0 =
m∑

k=1

1
k!

Bm−k

(m − k)! =
m∑

k=1

(
m
k

)
Bm−k =

n∑
r=0

(
n + 1

r

)
Br ,
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Table 3.3 Some Bernoulli Numbersa

n Bn n Bn

0 1 5 0
1 −1/2 6 1/42
2 1/6 7 0
3 0 8 −1/30
4 −1/30 9 0

aA larger compilation of Bn’s, as well as a listing of Bernoulli
polynomials, can be found in Abramowitz, M. and Stegun,
I. A. (eds.), Handbook of Mathematical Functions, Dover
Publications, NY, 1965, pp. 809, 810.

where n = m − 1 ≥ 1 and m − k = r. The result is a useful recursion relation-
ship for obtaining early Bernoulli numbers. ■

Infinite series, especially those in R1, offer a fertile ground for the implemen-
tation or testing of many numerical procedures. Bernoulli numbers (and the
associated Bernoulli polynomials) are a meeting ground of the practical and
the theoretical sides of infinite series. If you would like to dip into some of this
literature, you will find (Apostol, 2008; Dence and Dence, 1999; Dilcher, Skula
and Slavutskii, 1991; Lehmer, 1998) useful and interesting.

EXERCISES

Section 3.1

3.1. Translate into the symbolism of inequalities the definition of an infinite series in
Rk that converges to S ∈ Rk.

3.2. Series (of nonvariable terms) can be considered in spaces other than R1.
(a) How would Property 1 be implemented if the terms an were 2 × 2 matrices of real

numbers?
(b) How would Property 2 then be implemented?

3.3. Prove the second part of Theorem 3.1.

3.4. An equilateral triangleABC has sides that are 6 units in length.The midpoints of the
sides are connected to form the inner equilateral triangle A′B′C′. The midpoints
of the sides of A′B′C′ are connected to form A′′B′′C′′ (Figure 3.2). We imagine
that this bisection process is continued indefinitely. If an is the general term of
an infinite series in which an is the area of the nth constructed triangle (a1 =
area of �ABC), obtain a formula for the nth partial sum sn, and then determine
lim

n→∞ sn.

3.5. Write out the proof of the sufficiency part of Theorem 3.2.
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B

C9 B9

A9

A0

B0 C0

A

C

FIGURE 3.2
Diagram for Exercise 3.4.

3.6. Let
∑∞

n=1 xn be a series in Rk and {sn}∞n=1 the sequence of partial sums in Rk .
(a) Express in the language of k-balls what it means for the sequence to be Cauchy.
(b) The following general theorem is very useful; prove this Criterion.

Cauchy’s Convergence Criterion for Series

The series
∑∞

n=1xn converges in Rk iff, given any ε > 0, there
is an N ∈ N such that for any n > m > N we have ||xm+1 ⊕
xm+2 ⊕ . . . ⊕ xn|| < ε.

(c) Let
∑∞

n=1 xn be a series in Rk. Prove that if the series
∑∞

n=1 ||xn|| converges in R1, then∑∞
n=1 xn converges in Rk .

Section 3.2

3.7. The Leibniz series is the series whose terms are an =
{

1 n = 2k − 1

−1 n = 2k.
Prove

that
∑∞

n=1 an diverges.

3.8. Determine, using only material in Sections 3.1 and 3.2, whether each series
converges or diverges:
(a)

∑∞
n=1

(
1 − 1

2n
)
;

(b)
∑∞

n=1 n−n/10;

(c)
∑∞

n=1 (n!)−1/2;

(d)
∑∞

n=1 cos(1/n);

(e)
∑∞

n=1 an, where an =
{

2−k n = 2k − 1

3−k n = 2k.

3.9. Verify, in Example 3.7, that for all n > 4 we have 0 < ||an|| < ||bn||. What upper
bound do you then have for

∑∞
n=1 ||an||?
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3.10. In R1 the two series
∑∞

n=1 an and
∑∞

n=1 bn are such that for all n ∈ N we have
an = bn+1 − bn.
(a) Prove that convergence of the b-series implies convergence of the a-series.

(b) Prove that convergence of the a-series implies convergence of {bn}∞n=1, but does not
imply convergence of the b-series.

3.11. A series
∑∞

n=1 an, with partial sums {sn}∞n=1, is said to be summable Y iff
lim

n→∞ yn = y ∈ R1, where

yn =
⎧⎨
⎩

s1/2 (= a1/2) n = 1

(sn−1 + sn)/2 n ≥ 2.

We then write (Y)
∑∞

n=1 an = y.
(a) Prove that if a series is summable Y , then lim

n→∞(an−1 + an) = 0.

(b) Prove that the Leibniz series (Exercise 3.7) is summable Y , and determine the value of
(Y)

∑∞
n=1 an.

3.12. A series
∑∞

n=1 an, with partial sums {sn}∞n=1, is said to be summable by the
method of arithmetic means (summable M) iff lim

n→∞ σn = σ ∈ R1, where

σn =
⎧⎨
⎩

s1 (= a1) n = 1

s1+s2+···+sn
n n ≥ 2.

We then write (M)
∑∞

n=1 an = σ.

(a) Consider the series
∑∞

n=1 bn, where bn =

⎧⎪⎪⎨
⎪⎪⎩

1 n = 4k + 1

0 n = 2k

−1 n = 4k + 3.

Show that this does not

converge, that it is not summable Y , but that it is summable M.

(b) Suppose a series
∑∞

n=1 an converges to L ∈ R1; let ε > 0 be given. Show that there is
an N ∈ N such that for all n > N we have

(n − N)
(
L − ε

2

)
< sN+1 + sN+2 + · · · + sn < (n − N)

(
L + ε

2

)
.

(c) From this obtain

−N
n

(
L − σN − ε

2

)
+ L − ε

2
< σn < L + ε

2
+ N

n

(
σN − L − ε

2

)
.

(d) Choose N0 so large that N0 > N and 1
2 N0ε > N(|L| + ε

2 + |σN |). Show that this implies
L − ε < σN < L + ε for n > N0 and, hence, convergence of

∑∞
n=1 anto L implies that
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the series is summable M also to L. Such a method of summability is said to be regular
(Hardy, 1949).4

3.13. Write a short program and construct a table analogous to Table 3.1, but for the
series

∑∞
n=2 [n ln n]−1. Let the A-column consist of just five entries: 1 1

2 , 2, 2 1
2 ,

3, 3 1
2 . Make a conjecture.

3.14. Verify the convergence of the particular series described at the end of Section 3.2,
and confirm the upper bound of 74.75 for the sum.

Section 3.3

3.15. Determine whether each series converges or diverges:
(a)

∑∞
n=7

1
(n−6)4/3 ;

(b)
∑∞

n=2
3
4

9n−1−1
(2n−1)! ;

(c)
∑∞

n=1

(
1 + 1

n

)n2
;

(d)
∑∞

n=1

√
n

2n3+n+1
;

(e)
∑∞

n=1
n!

1·3·5···(2n−1)
;

(f)
∑∞

n=1 an, an =
{

(−2/3)n n = 2k

2(−2/3)n n = 2k − 1;

(g)
∑∞

n=1 an, an =
{

1/n2 n 
= k2

1/n2/3 n = k2. (Bromwich, 1926).

3.16. Complete the proof of the Root Test (Theorem 3.7).

3.17. Refer to the last line of Example 3.11. An approximate value for the sum
∑∞

n=1
1
Fn

is 3.35988566. Prove (on your own) that the indicated sum is less than 27/8.

3.18. Verify that (a) the sum of the series in Example 3.12 is 14/5, and (b) the function
f (x) in Example 3.13 is an increasing function for x > 4.

3.19. Show in the application of Theorem 3.7 to the limit result

lim
n→∞

n√n!
n

= 1
e

,

that this result implies ln(n!) ≈ n ln n − n. This is the simplest form of what is
known in applied mathematics as Stirling’s Approximation.5 More accurate
approximations abound.

4It was proved (as a special case of a wider theorem) in 1890 by the Italian mathematician Ernesto Cesàro
(1859–1906) that if

∑∞
n=1 an and

∑∞
n=1 bn converge to A and B, respectively, then the Cauchy product

is summable M to the value AB. Hence, in view of part (d) above, if it is known independently that the
Cauchy product is convergent, then it necessarily converges to AB (Hardy, ibid., 228–229).
5After the Scottish mathematician James Stirling (1692–1770), who presented the result in his 1730
book, Methodus Differentialis (Kline, 1972). MacLaurin derived Stirling’s formula from (what we now call)
the Euler-MacLaurin Summation Formula. This appeared as early as 1737 in circulating copies of the
Treatise of Fluxions (Grabiner, 1997). Stirling, in 1738, communicated this fact to Euler.
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(a) Compute the percent errors incurred by using the Approximation to estimate ln(n!) for
n = 10, 15, 20, 30, 60.

(b) The next level of approximation is given by

ln(n!) ≈ 1
2

ln(2πn) + n ln(n) − n.

What percent errors are incurred now for n = 10, 15, 20, 30, 60?

3.20. (Differentiation Test) Let
∑∞

n=1 an be a positive series, and let f be any real-
valued function on [0,1/N] such that f (x) = an when x = 1/n, n ≥ N, and f ′′ exists
at x = 0. Then the series converges if f (0) = f ′(0) = 0, and diverges otherwise
(Abu-Mostafa, 1984).
(a) Apply the test to the series

∑∞
n=1 sin(n−1).

(b) Apply the test to the series
∑∞

n=1 sinh
(
tanh 1

n

)
.

3.21. A student applies the Ratio Test as follows: “The series whose general term is
an = n/(n2 + 1) must converge because

an+1

an
= n + 1

(n + 1)2 + 1
· n2 + 1

n
= 1 − n2 + n − 1

n3 + 2n2 + 2n
,

and this is less than 1 for all n.” How would you respond?

3.22. If, upon attempted application of the Ratio Test to
∑∞

n=1 an, we find that
lim

n→∞(an+1/an) = 1, then a more delicate test is required. One such test is that

due to the Swiss mathematician Josef Ludwig Raabe (1801–1859):

Raabe’s Test
Let an be the general term of a positive series. Then

∑∞
n=1 an converges

if lim
n→∞ inf

[
n
(

an
an+1

− 1
)]

> 1, and diverges if there is an N ∈ N such

that for all n > N we have n
(

an
an+1

− 1
)
≤ 1.

After convincing yourself that the RatioTest is useless for the series whose general
term is an = 1·3·5···(2n−1)

4·6·8···(2n+2) , apply Raabe’s Test.

3.23. A good alternative to the well-known Cauchy Integral Test (Theorem 6.23) is the
much less well-known Cauchy Condensation Test (Porter, 1972):

Cauchy’s Condensation Test

If an is the general term of a positive series that is decreasing for all n ≥ N,
then this series converges or diverges accordingly as the sum

∞∑
n=1

2na2n

does or does not exist.
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(a) Develop a proof of the Condensation Test using the technique illustrated in Oresme’s
treatment of the harmonic series (see Example 3.8). To get started, establish that for any
k ∈ N we have

2k−1a2k ≤ a2k−1+1 + a2k−1+2 + · · · + a2k ≤ 2k−1a2k−1 .

(b) Use Cauchy’s Condensation Test to prove the useful p-Series Test: The series whose
general term is an = 1/np, p ∈ R, converges iff p > 1.

(c) If
∑∞

n=1 an,
∑∞

n=1 bn are two positive, divergent series, then the second series is said
to diverge more slowly than the first if lim

n→∞(bn/an) = 0 (Agnew, 1947). Use Cauchy’s

Condensation Test to prove that the series in Exercise 3.13 diverges, and does so more
slowly than the harmonic series.

Section 3.4

3.24. Prove Theorem 3.8. Then give an example of a series in R2 that is conditionally
convergent.

3.25. Give an example of a series in R1 that has infinitely many each of positive and
negative terms and lim

n→∞ xn = 0, but which nevertheless diverges.

3.26. Consider
∑∞

n=1 an, where an =
⎧⎨
⎩

1 n = 1

(−1)n−1 22n−3(π/4)2n−2

(2n−2)! n ≥ 2.
(a) Show that {|an|}∞n=1 is decreasing for all n ∈ N.
(b) Complete the analysis needed to show that

∑∞
n=1 an converges to some S ∈ R1.

(c) What is the upper bound on |S − s6| if Theorem 3.10 is used?

3.27. A series expansion of the number (π − 3)/4 is given by:

∞∑
n=1

(−1)n+1/[2n(2n + 1)(2n + 2)].

How many terms of this shall be taken in order to give an error of magnitude less
than 10−6? Determine by computer if fewer terms would suffice.

3.28. The series in Exercise 3.27 would be a poor one in order to estimate π to high
accuracy. A better series is this one (Chan, 2006):

π = √
3

∞∑
n=0

1
64n

(
1

6n + 1
+ 3

2(6n + 2)
+ 1

4(6n + 3)
− 1

8(6n + 5)

)
.

What is the magnitude of the error if π is approximated by:

√
3s5 = √

3
5∑

k=0

1

64k

( 1
6k + 1

+ 3
2(6k + 2)

+ 1
4(6k + 3)

− 1
8(6k + 5)

)
?

For a much more amazing procedure, see the paper by J. Guillera at the end of
Chapter 2.
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3.29. Look up the paper by Young (1985). Digest the author’s proof of his theorem, and
then write this up in your own words.

3.30. (a) Refer to the series for tan−1(1/2) inTable 3.2. If the sum S is approximated by the partial
sum s11, show that the error conforms to Young’s result.

(b) Refer to Exercise 3.26. Show that the sequence {�bn}∞n=1, �bn = |an| − |an−1|, is
a decreasing sequence for all n > 1. Then what is the estimated upper bound on
|S − s6| according to Young (1985)? How does this estimate compare with that in
Exercise 3.26(c), and how does it compare with the actual value of |S − s6|, given that
S = 1/2?

3.31. Determine whether each series
∑∞

n=1 an converges absolutely, converges condi-
tionally, or diverges.
(a) an = (−1)n−1 (n+1)

3n , n ≥ 1;

(b) an = (−1)n 1
2n−1 , n ≥ 1;

(c) an = (−1)n−1 n1/2

(ln(n))3
, n ≥ 2;

(d) an = (−1)n 1+2n
(7n2−1)2

, n ≥ 1;

(e) an = (−1)n
(

2n+5
3n+1

)n
, n ≥ 1;

(f) an = (−1)n−1(cos n)[1 − cos(n−1)], n ≥ 1;

(g) an = (−1)n 1
n[2+(−1)n] , n ≥ 1;

(h) an = (−1)n−1
√

n
2n+1 , n ≥ 1;

(i) an = (−1)n−1 (n+2)!
2[3·6·9···(3n)] , n ≥ 1;

(j) an = (−1)n n!
10n+1 , n ≥ 1;

(k) an = (−1)n−1 3n

n2·2n+1 , n ≥ 1;

(l) an = (−1)n 2
(−1)n+√

n
, n ≥ 2.

3.32. Series representations of irrational numbers are not necessarily alternating series,
despite the appearance ofTable 3.2.There is an enormous literature (Nunemacher,
1992) on Euler’s Constant,γ , first mentioned here in Exercise 2.11.The following
positive series for γ appeared in Gerst (1969):6

1 − γ = lim
N→∞

N∑
n=1

⎡
⎣ 2n∑

k=2n−1+1

n
(2k − 1)(2k)

⎤
⎦.

The value of γ is known to be 0.57721566, to eight decimals.Write a short program
and compute estimates of γ corresponding to N = 5, 10, 15, 25.

Section 3.5

3.33. Prove, as stated in the text, that absolute convergence of series is preserved in
linear combinations.

6Actually, it has never been proved if γ is irrational or not!
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3.34. The article (Galanor, 1987) is quite accessible. Read through it and then write up
in your own words the proof of Riemann’s Rearrangement Theorem (Part 2).

3.35. Perform Cauchy multiplications of the following pairs of series: simplify, where
possible.
(a)

(∑∞
n=0

n+1
n!

)⊗ (∑∞
n=0

2
n!
)
;

(b)
(∑∞

n=0
1
n!
( 1

2

)n
)
⊗
(∑∞

n=1 (−1)n+1 1
n!
( 1

2

)n
)

;

(c)
(∑∞

n=0
(2x)n

n!
)
⊗
(∑∞

n=0 (−1)n+1 xn
n!
)

;

(d)
(∑∞

n=1
x2n−1
(2n−1)!

)
⊗
(∑∞

n=1
x2n−2
(2n−2)!

)
.

3.36. The series
∑∞

n=1 (−1)n+1/n is known as the Alternating Harmonic Series;
it is clearly conditionally convergent. With respect to Question 4 on Cauchy prod-
ucts, show how a series could, in principle, be constructed such that its Cauchy
product with itself is the Alternating Harmonic Series.

3.37. Supply reasons for the “immediate” steps (1) through (4) in the proof of
Theorem 3.12.

3.38. (a) Two series,
∑∞

n=1 an and
∑∞

n=1 bn, are such that the a-series is absolutely convergent
and for all n ∈ N we have |bn| ≤ |an|. Prove that the b-series is convergent.

(b) Suppose that
∑∞

n=1 xn is absolutely convergent. Prove that the allied series∑∞
n=1 (−1)n+1 x2

n
x2
n+(1/2)

is convergent.

(c) Suppose that
∑∞

n=1 xn is absolutely convergent and
{
yn
}∞

n=1 is a bounded sequence.
Prove that

∑∞
n=1 xnyn is also absolutely convergent.

3.39. In Example 3.21 compute c5, c6, c7. If sn =
∑n

k=0 ck , how much error is made by
approximating

∑∞
n=0 an⊗∑∞

n=0 bn by s6?What is the value of the sum
∑∞

n=0 |cn|,
and how much error is made by approximating it by

∑7
n=0 |cn|?

Section 3.6
3.40. Consider the sequence of functions { fn}∞n=1, where for each n ∈ N, fn(x) =

1/(1 + xn), D = {x : x ≥ 0}.
(a) Determine the maximal subset D′ ⊆ D such that

∑∞
n=1 fn(x) converges for each x ∈ D′.

(b) Let f denote the function to which
∑∞

n=1 fn(x) converges on D′. Show that 3
4 < f(2) < 1.

3.41. In Example 3.22, how do you know that
∑∞

n=0
enx√

x
fails to converge (in R1) for any

real x? Also, show that
∑∞

n=0
(−1)n

n+1 (x − 1)n+1 converges iff 0 < x ≤ 2.

3.42. What function f (x) could be used as a generating function for the sequence{
1

2nn!
}∞

n=0
? What function g(x) could be used as a generating function for the

sequence {an}∞n=0, where

an =

⎧⎪⎪⎨
⎪⎪⎩

1 n = 0

1/22 n = 1
−(2n−3)

22 an−1 n > 1?

A convenient form for this is g(x) = ∑∞
n=0

an
n! xn.
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3.43. In the third example in Example 3.23, initiate a long division of 1 − x − x2 into
x. Look at the coefficients of the first six terms in the quotient. Are they as you
would expect?

3.44. Refer to Section 1.7, where the Euler φ-function was mentioned. A recent
survey (Gould and Shonhiwa, 2008) gives a generating function for the
sequence {φ(n)}∞n=1:

ζ(s − 1)

ζ(s)
=

∞∑
n=1

φ(n)

ns , (‡)

where ζ(s) = ∑∞
k=1

1
ks , s > 1, is the Riemann zeta function. Choose s = 3, arbi-

trarily. Rearrange equation (‡) and perform a partial Cauchy multiplication on the
right. Show that the first six terms on both sides agree with each other.7

3.45. Use the generating function for the Bernoulli numbers (equation (**) in the text)
to show that B2n+1 = 0, n ∈ N. To get started, transpose in equation (**) the term
containing B1 = −1/2 to the left-hand side and then show that the new left-hand
side is an even function of x.

3.46. Show that in some region of convergence we have

cot x = 1
x
+

∞∑
n=1

(−4)n

(2n)! B2nx2n−1.

To get started, begin with the definition of coth x, then reexpress this in terms
of Bernoulli numbers, make use of Exercise 3.45, and make use of coth(ix) =
−i cot x (verify!).

3.47. Further analysis is needed to determine the region of convergence of the series
in Exercise 3.46. Let us assume that x = π/4 falls in that region. Estimate cot(x).

3.48. The sequence of Bernoulli polynomials can be defined by

Bn(x) ∼=
n∑

k=0

(n
k

)
Bkxn−k, n ≥ 0.

(a) Work out polynomials B0(x) through B5(x).
(b) A way to remember the earlier definition is by the simpler,symbolic equation Bn(x) =

(B + x)n. Explain this.
(c) Bernoulli’s Identity involves both Bernoulli numbers and Bernoulli polynomials

(Williams, 1997):

m∑
k=1

kp = Bp+1(m + 1) − Bp+1

p + 1
, p ≥ 1, m ≥ 1.

Compute (from this formula) the sum of the fifth powers of the first 100 natural numbers.8

7The right-hand side of equation (‡) is termed a Dirichlet series, an important class of series distinct
from power series.
8At a time when there were no pocket calculators, no computers, nor even any batteries (!), Bernoulli
computed the sum of the tenth powers of the first 1000 natural numbers in about seven or eight minutes
(or so he said!).
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3.49. Euler discovered the following generating function for the sequence of Bernoulli
polynomials, {Bn(x)}∞n=0:

zexz

ez − 1
=

∞∑
n=0

Bn(x)
n! zn.

(a) Obtain, by partial expansion of the generating function, the polynomials B0(x) through
B4(x).

(b) Show that for each n ∈ N we have Bn(1) = Bn.
(c) If we assume that term-by-term differentiation of the previous series is permitted, show

that for each n ∈ N we have

1
n

dBn(x)
dx

= Bn−1(x).

(d) Hence, prove that for each n ∈ N

Bn(x) = Bn + n

x∫
1

Bn−1(t) dt.

Obtain, then, from part (a), polynomials B5(x), B6(x).9

3.50. Refer to Exercise 3.49. Use Cauchy multiplication to prove the following recursion
relationship:

xn−1 = 1
n

n∑
k=1

(n
k

)
Bn−k(x).

What happens if x is set equal to 0 in this equation?

SUPPLEMENTARY PROBLEMS

Additional problems on infinite series for your enrichment and for challenge
can be found in Appendix C. Good luck!
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Continuity

“... every continuous function of x which is positive for one
value of x, and negative for another, must be zero for some

intermediate value of x.”
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New in this chapter Continuity in terms of balls,
sequences; open and closed sets;
compactness and connectedness;
Heine-Borel, Intermediate-Value
Theorems; uniform continuity;
Contraction Mapping Theorem.

4.1 FIRST DEFINITION OF CONTINUITY
In elementary discussions a function f with a domain D( f ) that is an open
interval is said to be continuous at x0 ∈ D( f ) iff lim

x→x0
f (x) = f (x0). We proceed

to generalize this by framing a definition in the language of balls.

Definition. Let f : D( f ) → Rm, D( f ) ⊆ Rn, be a function, and let a ∈ D( f ). Then
f is continuous at a iff given any ε > 0, there is a δ > 0 such that if x ∈ Bn(a; δ) ∩
D(f ) and (x, y) ∈ f , then y ∈ Bm(f (a); ε). A function that is not continuous at a is
termed discontinuous at a.

The following comments provide additional elaboration:

1. In contrast to the definition of the limit of f at a (see Section 1.9), in the
preceding definition, the n-ball about a is not a deleted n-ball.

2. The point a, which must belong to D(f ), can be either a cluster point of
D(f ) or an isolated point.

3. If a is a cluster point that is an interior point of D(f ) (Section 1.8),
then the definition is equivalent to the statement that f is continuous

x1

x2

x

D(f)

a
�

y1

y2

f(a)

R(f)

y

´

FIGURE 4.1
Continuity at a of a function in R2 when a is an interior point.
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at a iff lim
x→a

f (X) = f (a) = f
(

lim
x→a

x
)

(Figure 4.1). The definition is also

equivalent to this: f is continuous at a iff, given any ε > 0, there is a
δ > 0 such that f [Bn(a; δ] ⊆ Bm(f (a); ε).

4. If a is a boundary point that belongs to D(f ), then the equalities in
comment 3 still hold, but the limits are “sided” limits (Figure 4.2).

5. If a is an isolated point, it is not possible even to discuss lim
x→a

f (x). The

definition, however, implies that f is continuous at all of its isolated
points (Figure 4.3). There is no alarm here since isolated points are
usually a minor issue.

x1

x2

x

D(f)

a
�

y1

y2

f(a)

R(f)

y

´

FIGURE 4.2
Continuity at a of a function in R2 when a is a boundary point.

x1

x2
D(f)

a
�

y1

y2

f(a)

R(f)
´

FIGURE 4.3
Continuity at a of a function in R2 when a is an isolated point.
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■ Example 4.1
Let f : D(f ) → R2, D(f ) ⊂ R2 be defined by y = f (x) = f [(x1, x2)] =
(y1, y2) = (3 − x2, 1

2 x2
1 − 1), and D(f ) = S ∪ {(1, 1)}, where S is the set of

points on and in the square {(x1, x2): 2 ≤ x1 ≤ 4, 1 ≤ x2 ≤ 3} (Figure 4.4).
Let a = (4, 1) and let ε > 0 be given; we have f (a) = (2, 7). For any δ satis-
fying 0 < δ ≤ 2, if x ∈ B2(a; δ) ∩ D(f ), then (4 − x1)2 + (x2 − 1)2 ≤ δ2. Then
for y = f (x), we desire (7 − y2)2 + (2 − y1)2 ≤ ε2, or equivalently,

(
8 − 1

2
x2

1

)2

+ (x2 − 1)2 ≤ ε2.

6

4
3

S

a

f(a9)

B2(a; �) D(f)

B2(f(a); ´)

a9

f

2

1

20 4

2

1 3

0

–1

´

x1

x2

(x1, x2)

y1

y2

�

FIGURE 4.4
A function D(f ) → R2, D(f ) ⊂ R2.
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From the geometry of set S, we have

8 − 1
2

x2
1 = 1

2

(
16 − x2

1
) = 1

2
(4 − x1) (4 + x1) ≤ 4(4 − x1) ,

and hence,

(
8 − 1

2
x2

1

)2

+ (x2 − 1)2 ≤ 16(4 − x1)2 + (x2 − 1)2

≤ 16
[
(4 − x1)2 + (x2 − 1)2] ≤ 16δ2 ≤ ε2.

It follows that if we take δ = ε/4, then corresponding to any x ∈ B2(a; ε/4) ∩
D(f ), the point y = f (x) will lie in B2(f (a); ε). Hence, f is continuous at a. ■

■ Example 4.2
In Figure 4.4, let a′ = (1, 1); we have f (a′) = y′ = (2,−1

2 ). If ε > 0 is given,
then choose δ = 0.5. The only point in B2(a′; 0.5) ∩ D(f ) is a′, and corre-
sponding to this, y′ = (2,−1

2 ) ∈ B2(f (a′); ε). Hence, f is continuous at a′. ■

In Section 4.3 we shall establish an equivalent, sequential definition of con-
tinuity at a point. The second half of the proof there involves the negation
of a δ, ε-statement. We pause at this point in order to supply some needed
background.

4.2 QUANTIFIERS AND NEGATIONS
A declarative sentence whose truth or falsity depends upon the “values” of one
or more variables is called a predicate or a propositional function (Copi, 1986;
Wolf, 2005). In contrast to a proposition such as

“sin x is continuous at x = 3,”

two examples of predicates are

“Every natural number can be expressed as the sum of no more than n
squares of nonnegative integers;”
“The function f , which is continuous at x = 1, is differentiable there.”

The variables are, respectively, n and f . Some predicates may be true for all
choices of the variable(s) in some specified universe of discourse, whereas other
predicates are true only for particular choices. The following terminology is
useful.1

1The logical calculus of propositional functions containing quantifiers was worked out by the German
mathematician Friedrich Ludwig Gottlob Frege (1848–1925) and the Italian mathematician Giuseppe
Peano (1858–1932).
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Definition. The symbol ∀ is called the universal quantifier, and for the one-variable
predicate P(x) the statement (∀x)P(x) is read “for all x, P(x).” This statement is true
only when P(x) is true for every x in its specified universe of discourse.

The symbol ∃ is called the existential quantifier, and the statement (∃x)P(x) is read
“there exists an x such that P(x).” This statement is true only when the set of x’s that
make P(x) true is nonempty.

■ Example 4.3
“(∀x)[{(x > 2) AND (x is prime)} → x is odd]” expresses (the fact) that all
primes larger than 2 are odd.

“(∃x) : (x ∈ R AND x = x−1)” expresses (the fact) that there is a real number
that is equal to its multiplicative inverse. ■

Note that the predicate following the universal quantifier is written as an
implication; this is because we have to specify clearly the universe of dis-
course for the objects x. The predicate following the existential quantifier
is written as a conjunction because it has to guarantee the existence of
some x’s.

It is frequently necessary to formulate the negation of a statement that contains
a quantifier. Figure 4.5(a) shows that all A(x) are B(x). The negation of this,
shown in Figure 4.5(b), is that some A(x) are not-B(x). Maybe all A(x) have this
property, and maybe not, but anyway some A(x) have this property. Figure 4.5(c)
shows the statement that some A(x) are B(x). “Some” could conceivably mean
“all” in a particular case. The negation of “some A(x) are B(x)” is that “not-some
A(x) are B(x),” that is, “no A(x) are B(x)” for any choice of x in the universe of
discourse (Figure 4.5(d)).

Thus, the connection between negation (∼) and the two quantifiers is as
follows.

Definition. If P(x) is a predicate with variable x, then

(a) ∼[(∀x)P(x)] is equivalent to (∃x) : [∼P(x)];
(b) ∼[(∃x) : P(x)] is equivalent to (∀x)[∼P(x)].

In order to implement this definition, we need to know how to form nega-
tions of different forms for P(x). These can be worked out from truth tables
(Exercises 1.1–1.3). We present the results in Table 4.1. It may be neces-
sary to apply the definition and Table 4.1 repeatedly in order to construct
the negation of some statements. As shown in the following example, the
basic maneuver is to move the negation symbol (∼) step-by-step from left
to right.
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A(x)

B(x) B(x)

A(x)

A(x)

B(x) B(x)

(a) (b)

(c) (d)

A(x)

FIGURE 4.5
Negations of statements with one quantifier.

Table 4.1 Elementary Negations

Form of P(x) Negation, ∼P(x)

1. A(x) AND B(x) A(x) → ∼B(x)a

2. A(x) OR B(x) ∼A(x) AND ∼B(x)
3. A(x) → B(x) A(x) AND ∼B(x)

aThis negation is logically equivalent to ∼A(x) OR ∼B(x).

■ Example 4.4
“(∀n)(n is prime → n is odd)”

The negation of this is:

“∼ (∀n)(n is prime → n is odd)”

iff “(∃n) : [∼ (n is prime → n is odd)]”
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iff “(∃n) : [n is prime AND ∼ (n is odd)]”
iff “(∃n) : [n is prime AND n is even].”

The negation is true, so the original sentence is false. At this point, please
work Exercises 4.6 through 4.9. ■

4.3 THE SEQUENCE DEFINITION;
DISCONTINUITIES

We return now to the main line of discussion that was interrupted at the end
of Section 4.1.

Theorem 4.1. Let f : D(f ) → Rm, D(f ) ⊆ Rn, be a function and suppose that
p0 ∈ D(f ) is not an isolated point. Then f is continuous at p0 iff for each
sequence {pk}∞k=1 in D(f ) that converges to p0, the sequence {f (pk)}∞k=1 converges
to f (p0)}.
Proof. (→) Suppose, first, that f is continuous at p0, and let {pk}∞k=1 be any
sequence in D(f ) for which lim

k→∞
pk = p0. Let ε > 0 be given. Then the continuity

of f at p0 implies that there is a δ > 0 such that if pk ∈ Bn(p0; δ) ∩ D(f ), then
f (pk) ∈ Bm(f (p0); ε). But the convergence of {pk}∞k=1 to p0 guarantees that for
some N ∈ N, ||p0 − pk|| < δ for all k > N. Hence, for all such k we have f (pk) ∈
Bm(f (p0); ε). This says that lim

k→∞
f (pk) = f (p0).

(←) We prove this direction (the converse of the above) in the form of its
contrapositive. Suppose, then, that f is not continuous at p0. This statement is,
from Exercise 4.9(e),

(∃ε) : [ε > 0 AND (∀δ){(δ > 0) → (∃p) : [(p ∈ Bn(p0; δ) ∩ D(f ))

AND f (p) /∈ Bm(f (p0); ε)]}]. (*)

Thus, there is some aberrant ε′ > 0 that satisfies (*). If we define the sequence
{δk}∞k=1 by δk = k−1, then (from (*)) for each k ∈ N there is a point pk ∈
Bn(p0; δk) ∩ D(f ) for which f (pk) /∈ Bm(f (p0); ε′). That is, we have a sequence
{δk}∞k=1 that converges to p0 (because lim

k→∞
δk = 0) but for which {f (pk)}∞k=1 does

not converge to f (p0) (because, always,

||f (p0) − f (pk)|| > ε′).

�
Theorem 4.1 is useful in a practical sense for the investigation of discontinuities
of functions.
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■ Example 4.5
Let f : R2 → R1 be defined by

f (x) =
{ x1x2

x2
1+x2

2
x 
= 0

0 x = 0,

where x = (x1, x2) ∈ R2. Choose the sequence {pn}∞n=1, where pn =
(n−1, n−1). Then lim

n→∞ pn = 0; further, for each n ∈ N, f (pn) = n−1n−1/[(
n−1

)2 + (
n−1

)2
]
= 1/2. Hence, lim

n→∞ f (pn) = 1/2 
= f
(

lim
n→∞ pn

)
, so by

Theorem 4.1 f is discontinuous at x = 0. ■

■ Example 4.6
Let f : [0, 1] → R1 be defined by2

f (x) =
{

1 x ∈ Q

0 x /∈ Q.

Fix x ∈ [0, 1] arbitrarily. Then if x is rational, choose {xn}∞n=1 to be any
sequence of irrationals in (0, 1) that converges to x. For example, the
following sequence {xn}∞n=1 converges to x:

xn = x + π

n
.

This follows because each xn is irrational, and lim
n→∞(π/n) = 0.

Then f is discontinuous at rational x because lim
n→∞ xn = x, but lim

n→∞ f (xn) =
lim

n→∞ 0 = 0 
= f
(

lim
n→∞ xn

)
= f (x) = 1. ■

Discontinuities are classified as either essential or removable. A function f :
D(f ) → Rm, D(f ) ⊆ Rn, has an essential discontinuity at a ∈ Rn if f is dis-
continuous at a, no matter what value in Rm has been assigned to f (a). The
discontinuity in Example 4.5 is of this type. Two types of essential disconti-
nuities are those commonly known as infinite discontinuities (Figure 4.6(a))
and jump discontinuities (Figure 4.6(b)).

On the other hand, a function f has a removable discontinuity at a if it is
possible to define (or change) the value of f at a so as to make f continuous
there. The function in Figure 4.7 has a removable discontinuity at x = 2, since
the function becomes continuous there if we define f (2) = 3.

2Sometimes called the Dirichlet function, because it was introduced into analysis by the German
mathematician Peter G. L. Dirichlet (1805–1859).
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y

FIGURE 4.6
An essential discontinuity exists at x = 2 for (a) the function f (x) =

{
(x − 2)−2 x 
= 2

1 x = 2
, and

(b) the function f (x) =
{

(x2 + 4)/8 x ≤ 2√
5x − 6 x > 2

.

3

2

1

1 2 3

REMOVABLE

x

y

–1
–1

FIGURE 4.7
A removable discontinuity exists at x = 2 for the function f (x) =

{
−x2 + 4x − 1 x 
= 2

1 x = 2
.

4.4 ELEMENTARY CONSEQUENCES OF
CONTINUITY

The most obvious consequence of a real-valued function f being continuous at
a point a is that if f (a) 
= 0, then there is a small region about a in which f (x)

is of one algebraic sign (Figure 4.8).

We make this precise in the following theorem, stated without loss of generality
for the case f (a) > 0.

Theorem 4.2. Let f : D( f ) → R1, D( f ) ⊆ Rn, be a function that is continuous
at a. If f (a) > 0, then there are numbers δ, ε > 0 such that x ∈ Bn(a; δ) ∩ D( f )
implies f (x) > ε.

Proof. The continuity of f at a means that there is a δ > 0 such that x ∈
Bn(a; δ) ∩ D( f ) implies |f (x) − f (a)| < 1

2 f (a). The completion of the proof is
left to you. �
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a

x2

z 5 f (x)

f (a)

f (x) . 0 here

x1

z

FIGURE 4.8
A localized region of values f (x) of one algebraic sign.

The elementary arithmetic of the continuity of functions holds no surprises.
All parts of the following theorem can be proved by use of Theorems 2.6, 4.1.
We leave parts (a) and (b) for the exercises, but for variety we prove part (c)
differently.

Theorem 4.3. Let f : D → Rm, g : D → Rm, D ⊆ Rn, be functions defined on a
common domain D; let a ∈ D and k ∈ R. Then

(a) if f , g are continuous at a, then so are f ⊕ g, k·f .

(b) Further, if m = 1, then fg is also continuous at a.

(c) Additionally (m = 1), if g(a) 
= 0, then f /g is continuous at a.

Proof. (c) Assume f , g are continuous at a and g(a) 
= 0; let ε > 0 be given.
Then there is a δ1 > 0 such that x ∈ Bn(a; δ1) ∩ D implies |g(x) − g(a)| <
ε
2 [g(a)]2. From Theorem 4.2, generalized slightly, there is a number δ2 > 0
such that x ∈ Bn(a; δ2) ∩ D implies |g(x)| > 1

2 |g(a)| > 0 (Exercise 4.16), or
equivalently

0 <
1

|g(x)| <
2

|g(a)| .

Hence, if δ = min{δ1, δ2}, one has for all x ∈ Bn(a; δ) ∩ D

∣∣∣∣ 1
g(a)

− 1
g(x)

∣∣∣∣ = |g(x) − g(a)|
|g(a)|

1
|g(x)| <

(ε/2) [g(a)] 2

|g(a)|
2

|g(a)|
= ε.

Thus, 1/g is continuous at a, and (c) follows from application of part (b). �

The property of continuity (at a point) is preserved upon function composi-
tion, provided a simple condition is met. The proof is straightforward, and you
should have no trouble with it; again, use Theorem 4.1.
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Theorem 4.4. Let f : D(f ) → Rm, g : D(g) → Rn, R(g) ⊆ D(f ) ⊆ Rn, D(g) ⊆
Rk, be functions. If g is continuous at a ∈ Rk and f is continuous at g(a), then
f [g] is continuous at a.

Proof. The proof is left to you. �

■ Example 4.7
Let f be defined by f (x) = x2+x+1

x3+1 , x ∈ R1\{−1}. Write this as

f (x) = x
(

x
g(x)

)
+ x

g(x)
+ 1

g(x)
,

where g(x) = x3 + 1. Then f (x) is continuous at x = 2 because g(x) is con-
tinuous there, and so are all three of the indicated terms, upon making use
of all parts of Theorem 4.3. A δ, ε-proof, as in Example 4.1, is completely
unnecessary. ■

■ Example 4.8
Let f : D( f ) → R1, g : D(g) → R1 be functions defined by f (x) = ln(x), x > 0
and g(x) = √

x, x ≥ 0. Then g is continuous at x = 1/4, and f is continuous
at g(1/4) = 1/2. By Theorem 4.4, ln(

√
x) is continuous at x = 1/4. ■

A comment about Example 4.8 is in order. It is easy enough to show that g is
continuous at any x ≥ 0, but less easy to show that f is continuous at 1/2. How
to do this depends upon how ln(x) has been defined; several approaches are
feasible.

APPROACH 1: The function ex may already have been introduced and found
to be increasing and continuous everywhere on its domain.
A theorem then says that the inverse function, notated ln x,
exists and is also increasing and continuous everywhere on
its domain.

APPROACH 2: The function ln x may have been defined by
∫ x

1 t−1dt, x > 0.
Since t−1 is continuous on the interval of integration, then a
theorem says that the integral is continuous at any point in
that interval.

APPROACH 3: The function ln x may have been defined by the series∑∞
k=1(−1)k+1(x − 1)k/k and the interval of convergence

found to be 0 < x ≤ 2. A theorem then says that a power
series can be differentiated term-by-term at any point in its
interval of convergence. A second theorem then says that ln x
is continuous wherever it is differentiable. Finally, if x > 2,
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then from the identity ln(x) = −ln(1/x), the continuity of
ln(1/x) implies the continuity of ln(x).

The theorems just alluded to will appear later in the book. For the present,
we take for granted the continuity of the standard transcendental functions
everywhere on their domains.

4.5 MORE ON SETS—OPEN SETS
Continuity, as discussed in Section 4.1, is a property that holds locally at some
point p0 ∈ D(f ); that is, it is a property that is true at p0 and at all points p
sufficiently close to p0. In contrast, a property that holds at all points p of a
given set S is said to hold globally on S.

Definition. If f : D(f ) → Rm, D(f ) ⊆ Rn, is a function that is continuous at each
point of a given set S ⊆ D(f ), then f is termed continuous on S.

Theorem 4.1 may be summarized as follows: the local property of continuity
of a function preserves sequence convergence. It is of interest to extend this
line of thought to the global version of continuity and examine some of the
types of sets S whose nature is preserved by continuity in their image sets f (S).
Our discussion here and in the next three sections will center, therefore, on sets
(open and closed). This will extend the material on sets scattered throughout
Chapter 1, and it will also give you a glance (only a glance, unfortunately!) at
an entire branch of mathematics—topology—that is indispensable in many
other areas of mathematics. For additional introductory coverage of topology,
you may consult Baker (1997), Gamelin and Greene (1999), Lipschutz (1965),
Messer and Straffin (2006), and Simmons (1983).

We will present a loosely-sequenced string of set-theoretic lemmas and theo-
rems, some of which will be proved and others of which will be left for the
Exercises. The general setting is that of a metric space < M, d > (Section 1.5),
where the set M may be Rn or it may be left general and unspecified. We begin
by generalizing the definition of open set that was given in Section 1.8.

Definition. A subset S ⊆ M in the metric space < M, d > is an open set (in M) iff
given any point p0 ∈ S there is a δ > 0 such that the ball B(p0; δ) is contained in S,
where B(p0; δ) = {p : p ∈ M, d(p, p0) < δ}.
Lemma 4.5.1. In any metric space < M, d >, the empty set Ø and the entire set M
are open sets. A singleton set (e.g., {2} ⊂ R1), however, is not an open set.

Lemma 4.5.2. A ball B(p0; δ) in any metric space < M, d > is itself an open set.

Proof. Use the Triangle Inequality; the proof is left to you. �
The next result, an important theorem, shows one way that new open sets can
be constructed from other open sets.
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Theorem 4.5. In < M, d > the union of an arbitrary collection C of open subsets of
M is itself an open set.

Proof. Let T denote generically a member of C; this latter could be finite, count-
ably infinite, or uncountably infinite. Choose, arbitrarily, p0 ∈ ⋃

T∈C T. Then
for some T′ ∈ C we have p0 ∈ T′. Since T′ is open, then by the earlier definition
there is a δ > 0 and a ball B(p0; δ) such that

B(p0; δ) ⊂ T′ ⊂
⋃
T∈C

T.

As p0 was arbitrary, the set inclusions say that
⋃

T∈C T is open. �

The theorem that follows is the first real fruit of our topological labors. It some-
times is used as an equivalent definition of continuity of a function on a set.

Theorem 4.6. Let f : M → M′ be a function from the metric space < M, d > into
the metric space < M′, d′ >. Then f is continuous on M iff for every open set Y ⊆ M′,
the inverse image f−1(Y) is an open subset in M.

Proof. (→) Assume f is continuous on M and let Y be an open set in M′. If
f−1(Y) = Ø, then by Lemma 4.5.1 f−1(Y) is open in M. If f−1(Y) 
= Ø, then
choose any p ∈ f−1(Y). Then f (p) ∈ Y, and since Y is open in M′, then there
is an ε > 0 and a ball B′(f (p); ε) ⊆ Y. However, f is continuous on M, so from
remark (3) in Section 4.1 there is a δ > 0 and a ball B(p; δ) such that

f (B(p; δ)) ⊆ B′(f (p); ε).

Combination of the two set inclusions yields

f (B(p; δ)) ⊆ Y,

or B(p; δ) ⊆ f−1[f (B(p; δ))] ⊆ f−1(Y) (Exercise 4.30(a)), so f−1(Y) is open in M.

(←) Conversely, assume f−1(Y) is open in M whenever Y is open in M′. Let
p ∈ M be chosen arbitrarily. By Lemma 4.5.2, for each ε > 0, B′(f (p); ε) is open
in M′. But by assumption, f−1(B′( f (p); ε)) is open in M. Hence, there is a δ > 0
and a ball B(p; δ) such that

B(p; δ) ⊆ f−1(B′( f (p); ε)),

or equivalently (Exercise 4.30(b)),

f (B(p; δ)) ⊆ f [f −1(B′( f (p); ε))] ⊆ B′( f (p); ε).

This shows that f is continuous at p; since p ∈ M was arbitrary, then f is
continuous on M. �
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FIGURE 4.9
Illustration of the inverse image definition of a continuous function.

We recall from Exercise 1.39 that the inverse image of a set Y ⊆ M′ under f is the
set f−1(Y) = {x : (x, y) ∈ f , y ∈ Y}. Theorem 4.6 says, and Figure 4.9 indicates,
that f is continuous on M iff when Y consists only of interior points (i.e., Y is
open in M′), then f−1(Y) is open in M.

■ Example 4.9
Let M = [−1, 1], M′ = [−1, 2], and define f : M → M′ by

f (x) =
{

x2 − x x 
= 0
1 x = 0.

Choose Y = (1
2 , 3

2

)
; this is open in M′. Solving 1

2 < f (x) < 3
2 (by examination

of two quadratic equations), we obtain (verify!)

f−1(Y) =
(

1 −√
7

2
,

1 −√
3

2

)
∪ {0}.

This is not open in M, according to Lemma 4.5.1. Hence, by Theorem 4.6,
f is not continuous on M. ■

■ Example 4.10
With M, M′, f as in Example 4.9, a student chooses Y = (1

2 , 1
)
.

It is then determined that

f −1(Y) =
(

1 −√
5

2
,

1 −√
3

2

)
,
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which is open in M. It is concluded that f is continuous on M after all.
What’s happening here? Were either of the two examples a violation of
Theorem 4.6? ■

4.6 CLOSED SETS
Definition. A subset F ⊆ M in the metric space < M, d > is a closed set (in M) iff
M\F is an open set.3

Lemma 4.6.1. In any metric space < M, d >, the empty set Ø and the entire set M
are closed sets.

Lemma 4.6.2. In any metric space < M, d >, the intersection of an arbitrary
collection C of closed subsets of M is itself a closed set.

Proof. For each Fα ∈ C, let Fc
α = M\Fα. The idea is then to show that (a)

⋃
α Fc

α

is open, and that (b)
⋃

α Fc
α = M\⋂α Fα. The completion of the proof is left

to you. �

The definition of a closed set has the important consequence that if a set F ⊂ M
is closed, then it contains all of its boundary points, for M\F is then open and
each point p ∈ M\F lies in some ball that is contained within M\F. Hence, M\F
contains none of its boundary points. Conversely, if S ⊂ M contains all of its
boundary points, then S is a closed set.

We recall from Section 1.8 that the closure of a set S ⊂ M is the set S = S ∪
Bd(S), where Bd(S) is the set of all boundary points of S. The previous discus-
sion then says that S ⊂ M is closed iff S = S (Exercise 4.35(a)).

■ Example 4.11
Let < S, d′ > be the metric subspace obtained from < R1, d > by defining
S = [0, 1] ∩ Q and restricting the usual metric d (on R1) to S × S. Let H be
the set of rationals in the open interval (1/5, 1/2). If H is viewed as a subset
of R1, then it is neither open nor closed because it consists only of boundary
points, but it does not contain all of them (verify!).

However, if H is viewed as a subset of S in < S, d′ >, then H is open because
it contains none of its boundary points. ■

Theorem 4.7. Let < M, d > be a metric space and let F be an infinite subset of M.
Then F is closed iff every sequence of points in F that converges in M converges to a
point in F.

3The choice of letter for a closed set derives from the French fermé (closed), and is rather conventional.
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Proof. (←) Suppose that all cluster points of F are contained in F. Let p0 be
any point in M\F; then p0 cannot be a cluster point. This implies that there is
a sufficiently small ball B(p0; δ) such that B(p0; δ) ∩ F = Ø. Hence, B(p0; δ) ⊆
M\F; since p0 was arbitrary, then M\F is open, so F is closed.

(→) Suppose that F is closed. Let p0 be a cluster point of F and assume, to
the contrary, that p0 /∈ F. Then p0 ∈ M\F; since F is closed, then M\F is open.
Hence, there is a sufficiently small ball B(p0; δ) such that B(p0; δ) ∩ F = Ø. This
implies that p0 cannot be a cluster point, a contradiction. Hence, p0 ∈ F and
since p0 was arbitrary, then all cluster points of F lie in F. �

■ Example 4.12
In < R1, d > let S ⊂ R1 be defined by S = [0, 1]\Q. By Theorem 4.7, S is not
closed because there are sequences in S that converge (in R1) to rational
numbers; see Example 4.6. ■

Corollary 4.7.1. Let F be an infinite subset in the complete metric space < M, d >.
Then if F is closed, the metric subspace < F, d′ > is itself a complete metric space,
where d′ is the restriction of d to F × F.

■ Example 4.13
The metric subspace < F, d′ >, where F = [0, 1] ⊂ R1 and d′ is the restriction
to F × F of the usual metric d on R1, is complete. ■

Lemma 4.6.3. The closure of a set S ⊆ M in a metric space < M, d > is the
intersection of all closed sets F in M that contain S.

Proof. Let p ∈ S. If p ∈ S, actually, then for all i, p ∈ Fi. If p ∈ S\S, then any
ball about p must contain some points of S, so p cannot be external to any Fi.
Hence, p ∈ ⋂

i Fi and, therefore, S ⊆ ⋂
i Fi.

Conversely, let p ∈ ⋂
i Fi. Then p ∈ each Fi, and so p ∈ S since S is an Fi

(Exercise 4.35(a)). Hence,
⋂

i Fi ⊆ S. The two set inclusions imply S = ⋂
i Fi. �

4.7 COMPACTNESS; THE MAXIMUM–MINIMUM
VALUE THEOREM

Theorem 2.9 and its two corollaries (Section 2.4) led up to a statement of the
Bolzano-Weierstrass Theorem for sequences of points in Rm (Theorem 2.10).
There, the space Rm was partitioned repeatedly into denumerably many con-
gruent m-dimensional boxes. Here are two thoughts: (1) Make a slight change
in viewpoint and replace the idea of partitioning space by one of covering space
(with sets). (2) Instead of using infinitely many sets in this covering, strive for
finitely many (if possible), as a simplification. We are led to make the following
definitions.
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Definition. A collection of open sets ϑ = {Oα} is said to be an open cover of a set S
in a metric space < M, d > if S ⊆ ⋃

α Oα. If a finite subcollection of Oα’s can cover S,
then this subcollection is called a finite cover.

Definition. A set S in < M, d > is termed compact if each open cover of S can be
reduced to a finite cover.

In this section we will show that compact sets are one of the types of sets S whose
nature is preserved by continuity in their image set f (S). We will also prove one
of the pillars of calculus, the Maximum–Minimum Value Theorem. It is possible
to prove this by more elementary considerations (Fort, 1951; Jungck, 1963), but
the use of compactness permits a more general proof.

■ Example 4.14
The set S = {0} ∪ {n−1; n ∈ N} is compact. If ϑ = {Oi}∞i=1 is an open cover of
S, there is some Oj that contains the zero. This Oj will automatically contain
all but finitely many of the n−1’s (because 0 is a cluster point for the sequence{
n−1

}∞
n=1). Then for each n−1 /∈ Oj choose an Oi that contains it. The union

of Oj and all of these Oi’s is then a finite cover of S. ■

■ Example 4.15
The space R1 is not compact, for it is covered by ϑ = {(n, n + 1): n ∈ Z}, but
by no finite subcollection from ϑ. ■

It is difficult to characterize compact sets in general metric or topological spaces.
But in Rn, they can be characterized quite simply (Theorem 4.8).

Lemma 4.7.1. If, for any n ∈ N, S ⊂ Rn is compact, then S is closed.

Proof. Assume, to the contrary, that S is not closed. Then by Theorem 4.7 there
is at least one cluster point of S that does not lie in S; call this cluster point p0.
Now define the family of sets ϑ = {Ok}∞k=1, where for each k ∈ N,

Ok =
{
p ∈ Rn: dn(p, p0) > k−1} .

Each set Ok is open; since ϑ covers all of Rn except p0, it is automatically an
open cover of S. But S is compact, so a finite subcollection of ϑ will cover S;
that is, for some K ∈ N we have (Figure 4.10)

S ⊆
K⋃

k=1

Ok.

But this excludes all points p for which dn(p, p0) ≤ K−1, so no sequence in S
can have p0 as a limit, a contradiction. It follows that S must be closed. �
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221

1 O3

O2

O1

X2

X1

S

p0

FIGURE 4.10
A set S in R2 for which K = 3; that is, S ⊆ O1 ∪ O2 ∪ O3.

The diameter of a set S in a space Rn, denoted diam(S), is defined by diam(S) =
supp,q∈S dn(p, q). If diam(S) is finite, then S is said to be bounded. We note that
in Rn, where the metric is Euclidean, the diameter of a circle agrees with the
usual notion of diameter, whereas the diameter of an ellipse is the length of the
major axis.

Lemma 4.7.2. If S ⊂ Rn is compact, then S is bounded.

Proof. Choose and fix a point p ∈ S and let ϑ = {Bn(p; k): k ∈ N} be an open
cover of S; use the definition of bounded. The proof is left to you. �
Theorem 4.8 (Heine-Borel Theorem).4 For any n ∈ N, a set in Rn is compact
iff it is closed and bounded.

Proof. (→) This direction was covered in Lemmas 4.7.1 and 4.7.2.

(←) We prove this direction by contradiction. Suppose that F is closed and
bounded but assume it is not contained in any finite number of sets of some
open covering ϑ = {Oi}∞i=1. There is a closed, bounded n-dimensional box B0

that contains F. Dissect B0 into 2n congruent subboxes, {βk}2n

k=1. At least one of
F ∩ βk must be nonempty and not contained in any finite subcollection from

4Heinrich Eduard Heine (1821–1881) first used the content of Theorem 4.8 for R1 in 1872, but the real
importance of the theorem was pushed by Emil Borel (1871–1956) in 1895. Both writers selected finite
sets from countably infinite covering sets. The extension of compactness to the case where a finite covering
set is obtained from an uncountably infinite covering set was made by others soon after (Kline, 1972).
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ϑ (denote it by F ∩ βj), for if each of the F ∩ βk’s were contained in a finite

subcollection from ϑ, then F = ⋃2n

k=1(F
⋂

βk) would also be contained in a
finite subcollection from ϑ, contrary to assumption.

Relabel subbox βj as B1; dissect it into 2n congruent subboxes. The reasoning
continues with further dissections and leads to a nested sequence of closed,
bounded, n-dimensional boxes, {Bk}∞k=0. By Corollary 2.9.2 there is precisely
one point p common to all the Bk ’s. Point p is a cluster point of F, and since
F is closed, then p ∈ F. Further, p lies in some member of ϑ, say, p ∈ Oj. As Oj

is open, then there is an ε > 0 such that Bn(p; ε) ⊆ Oj. But as the diameter of
the boxes approaches 0 as k → ∞, then for large enough k′ there is a box Bk′
such that Bk′ ⊆ Bn(p; ε). Hence, we see that F ∩ Bk′ is contained in Oj, contrary
to the method of construction of the subboxes Bk. So the initial assumption
that F is not contained in any finite subcollection from ϑ is false, and F is then
compact. �

Note that Theorem 4.8 has been stated explicitly for real Euclidean vector
spaces. There are some metric spaces in which closed, bounded sets may not be
compact.

Theorem 4.9. Let <M, d′n>, <Rm, dm> be metric spaces, where M ⊂ Rn is closed
and bounded, and let f : M → Rm be continuous on M. Then f (M) is also closed and
bounded.

Proof. Let ϑ = {Oα} be a collection of open subsets of Rm that is an open cover
of f(M). As f is continuous, then by Theorem 4.6 the sets f−1(Oα) are open in
<M, d′n>. Further, for any x ∈ M it follows that f(x) belongs to some Oβ and,
thus, x ∈ f−1

(
Oβ

)
. Hence, for the union of all x ∈ M, we have

M =
⋃
α

f−1(Oα).

Because M is closed and bounded, then from the Heine-Borel Theorem it is
compact and, thus, has a finite open cover: M = ⋃N

i=1 f−1(Oi). We obtain

f (M) = f

⌊
N⋃

i=1

f−1(Oi)

⌋
=

N⋃
i=1

f
[
f−1(Oi)

] ⊆ N⋃
i=1

Oi,

and this says that f(M) is compact and, from the Heine-Borel Theorem again,
is closed and bounded. �

Theorem 4.9 is valid even in the trivial case where f(M) is just a point in Rm.
Note also that the proof would carry through with minor changes in wording
for arbitrary metric spaces if “closed and bounded” were replaced throughout
by “compact.” Thus, we see (as promised) that continuity of a function on
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its domain preserves compactness in the image set. The Maximum–Minimum
Value Theorem is an important consequence of Theorem 4.9.

Theorem 4.10 (Maximum–Minimum Value Theorem). Let f : D( f ) →
R1, D( f ) ⊂ Rn be a continuous real-valued function and suppose that D( f ) is com-
pact. Then there are points p1, p2 ∈ D( f ) at which f assumes absolute maximum,
minimum values, respectively.

Proof. By Theorem 4.9, the range R( f ) is bounded, so the numbers
supp∈D( f ) f (p) and inf p∈D( f ) f (p) exist by the Completeness Axiom. If R( f )
is a finite set, then supp∈D( f ) f (p) and inf p∈D( f ) f (p) automatically belong to
R( f ) (Theorem 1.3 and Exercise 1.20), and we have S = supp∈D( f ) f (p) = f (p1)

for some p1 ∈ D( f ) and s = inf p∈D( f ) f (p) = f (p2) for some p2 ∈ D( f ).

If R( f ) is an infinite set, then supp∈D( f ) f (p) and inf p∈D( f ) f (p) are cluster points
of R( f ). Again, by Theorem 4.9, R( f ) is closed, and from Theorem 4.7 it follows
that S = supp∈D( f ) f (p) = f (p1) for some p1 ∈ D( f ) and s = inf p∈D( f ) f (p) =
f (p2) for some p2 ∈ D( f ). �

■ Example 4.16
Let f : D( f ) → R1, D( f ) = [0, 4], be defined by f (x) = (

x2 − 2x + 1
)

e−x − 1.
By Theorem 4.10 this function must have an absolute maximum and absolute
minimum at points p1, p2 ∈ [0, 4], respectively. Relative extrema occur at x1 =
1, x2 = 3, where f (x1) = −1 and f (x2) ≈ −.801. Additionally, f (0) = 0 and
f (4) ≈ −.835. Hence, an absolute maximum occurs at p1 = 0 and an absolute
minimum occurs at p2 = 1. ■

■ Example 4.17
Let f : D( f ) → R1 be the function defined by f (x) = f (x1, x2) = x2

1 + 2x2
2 −

4x1 + 4x2 − 3 and D( f ) is the set of points in and on the square 1 ≤ x1 ≤
3,−2 ≤ x2 ≤ 0. The function f is continuous on D( f ) and D( f ) is compact, so
Theorem 4.10 applies. The necessary conditions for the existence of a relative
extremum are5 {

D1 f = 2x1 − 4 = 0
D2 f = 4x1 + 4 = 0

and the critical point here has a value of f (2,−1) = −9. It can be established
that this is the value of a relative minimum. The boundary lines of D( f )
must next be checked. Upon examination of the four sides of the square,
we find for points x on the square that −8 ≤ f (x) ≤ −6. Hence, an absolute
maximum (of −6) occurs at various points p1 on the square and an absolute
minimum (of −9) occurs at p2 = (2,−1). ■

5The symbols D1f , D2f denote the partial derivatives of f with respect to x1, x2, respectively.
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4.8 CONNECTEDNESS; THE INTERMEDIATE-VALUE
THEOREM

Informally, the notion of a set S being connected might mean that given
any two points p1, p2 ∈ S, it is always possible to connect them by a curve
that lies entirely in S. This imagery is appealing, but let us continue in
the set-theoretic vein of the three previous sections (although, see later in
Exercises 4.53, 4.54). We adopt the following standard definitions (Haaser and
Sullivan, 1991; Sprecher, 1987).

Definition. A set S ⊆ M in a metric space <M, d> is disconnected iff there are two
nonempty, open sets S1, S2 ⊂ M such that

1. S ⊆ S1 ∪ S2;

2. S1 ∩ S2 = Ø;

3. S ∩ S1 
= Ø, S ∩ S2 
= Ø.

A set S ⊂ M such that for no two nonempty, open sets S1, S2 ⊂ M can all the above
criteria be satisfied is called connected.

■ Example 4.18
The singleton set S = {(1, 2)} ⊂ R2 is not disconnected because if nonempty,
open S1, S2 ⊂ R2 meet criteria (1) and (3), then explicitly S ∩ S1 = S ∩ S2 =
S, and criterion (2) fails. Hence, S is connected. Clearly, the argument carries
over to a singleton set in any metric space. ■

■ Example 4.19
However, the set S = {1, 2} ⊂ R1 is disconnected, since if S1 = (0.9, 1.1) and
S2 = (1.9, 2.1), then all three criteria are satisfied. ■

■ Example 4.20
The set S = {(x1, x2) : x2

1 − x2
2 < 0} ⊂ R2 is disconnected. Take S1 = {(x1, x2) :

x2 > |x1| > 0} and S2 = {(x1, x2) : x2 < −|x1| < 0}. We have S = S1 ∪ S2, S ∩
S1 = S1 
= Ø and S ∩ S2 = S2 
= Ø, and S1 ∩ S2 = Ø, so all three criteria are
satisfied. ■

We will show in this section that connected sets are yet another type of set S
whose nature is preserved by continuity in the image set f (S). We will also prove
another pillar of calculus, the Intermediate-Value Theorem.

A word about proofs of connectedness is useful. Because the definition of a con-
nected set is framed as a negation, many proofs of connectedness run efficiently
if indirect proof is used (Section 1.4).

Lemma 4.8.1. In any metric space <M, d>, the empty set Ø is connected.
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Lemma 4.8.2. In any metric space <M, d>, M is connected iff there is no nonempty,
proper subset of M that is both open and closed.

Proof. Use the earlier hint for the proof in both directions. The proof is left
to you. �

Lemma 4.8.3. Suppose that in the metric space <M, d> the set S ⊂ M is discon-
nected and is covered by nonempty, disjoint, open sets S1, S2 ⊂ M. Then if T is a
connected subset of S, either T ⊂ S1 or T ⊂ S2.

Proof. Proof by contrapositive; the proof is left to you. �

The next result shows one way that new connected sets can be constructed from
other connected sets.

Theorem 4.11. If A, B are connected subsets of M in <M, d> and A ∩ B 
= Ø,
then A ∪ B is connected.

Proof. Suppose, to the contrary, that A ∪ B is disconnected; there are then dis-
joint, open sets S1, S2 ⊂ M such that (A ∪ B) ⊆ (S1 ∪ S2) and (A ∪ B) ∩ S1, (A ∪
B) ∩ S2 are nonempty. Let p0 ∈ A ∩ B; assume that p0 ∈ S1. Since A is con-
nected in M, then by Lemma 4.8.3 A is contained in either S1 or S2. But A
cannot be in S2 because p0 ∈ (A ∩ B) ⊂ A and p0 ∈ S1; hence, A ⊂ S1. Like-
wise, since B is connected in M, we conclude that B ⊂ S1. Therefore, it follows
that (A ∪ B) ⊂ S1 and this contradicts (A ∪ B) ∩ S2 being empty. It follows that
A ∪ B must be connected. �

Notice that Theorem 4.11 is not an iff-proposition. After you have read the next
two results, you may be able to think of an example that illustrates the falsity
of the converse of Theorem 4.11. Note that Theorem 4.12 is the converse of
Lemma 4.8.4.

Lemma 4.8.4. If S is a nonempty, connected, infinite subset of R1 in the metric
space < R1, d >, then S is an interval.

Proof. Suppose, contrapositively, that there are points x, y, z such that x < y <

z, x and z lie in S, but y /∈ S. Now look at S ∩ (−∞, y) and S ∩ (y,∞). The
completion of the proof is left to you. �

Theorem 4.12. Any interval in R1 is connected.

Proof. Let S ⊂ R1 be an interval in < R1, d >, and assume it is disconnected.

Then there are disjoint, open sets S1, S2 ⊂ R1 such that S ⊆ S1 ∪ S2, S ∩ S1 
= Ø,
and S ∩ S2 
= Ø. Choose x ∈ S ∩ S1 and z ∈ S ∩ S2. Clearly, x 
= z; by relabeling,
if necessary, we may suppose that x < z.

Now define y = sup([x, z) ∩ S1); certainly, x < y ≤ z, so y ∈ S and, thus, y ∈ S1

or y ∈ S2, but not both. That is, for some ε > 0 either (y − ε, y + ε) ⊆ S1 or
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(y2´, y1´)

x z
y

S

FIGURE 4.11
The contradiction for the case y ∈ S1, assuming that S is disconnected.

(y − ε, y + ε) ⊆ S2 (why?). If the former holds, then y + ε/2 ∈ S1 and this
contradicts y being an upper bound of [x, z) ∩ S1 (Figure 4.11).

Similarly, if (y − ε, y + ε) ⊆ S2, then S1 ∩ (y − ε, y] = Ø, and this contradicts y
being the supremum of [x, z) ∩ S1 because y − ε is now a smaller upper bound
of [x, z) ∩ S1 than is y. In either case, the contradiction obtained forces S to be
connected. �

■ Example 4.21
If S ⊂ R1 is a compact set in < R1, d >, then it may or may not be connected.
If S is a closed, bounded interval, then S is compact from the Heine-Borel
Theorem and S is connected from Theorem 4.12. But if S is the union of two
disjoint, closed, bounded intervals, then it is still compact (verify!), but it is
not connected. ■

The identification of connected sets in < Rn, dn > when n > 1 is a bit trick-
ier than for < R1, d >. We pursue one way to do this in the Exercises.
Nevertheless, such sets in < Rn, dn > are abundant and we shall, for the
present, accept this. Qualitatively, sets in < Rn, dn > that “look” connected, are
connected.

Theorem 4.13. Let f : D( f ) → R( f ), D( f ) ⊆ M, R( f ) ⊆ M′, be a function
defined from D( f ) in the metric space < M, d > and onto R( f ) in the metric space
< M′, d′ >. Suppose that f is continuous on D( f ) and that D( f ) is connected in
< M, d >. Then R( f ) is connected in < M′, d′ >.

Proof. Suppose that f is continuous on D( f ) and assume, contrapositively, that
R( f ) is disconnected in < M′, d′ >. Then there are disjoint, open sets S1, S2 ⊂
M such that R(f ) ⊆ S1 ∪ S2 and R( f ) ∩ S1, R( f ) ∩ S2 are nonempty. Let T1 =
f−1(S1) and T2 = f−1(S2); by Theorem 4.6 these sets are open. They are also
disjoint because T1 ∩ T2 = f−1(S1 ∩ S2) = f−1(Ø) = Ø, as each point in D( f )
has an image point in R( f ). Further, we see that [f−1(R( f ))] ∩ T1 = f−1[R( f ) ∩
S1] 
= Ø, and similarly for T2, since every point in R( f ) has an inverse image
in D( f ).
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Finally, we have

f−1(R( f )) ⊆ f−1(S1 ∪ S2)

or equivalently, D( f ) ⊆ f−1(S1) ∪ f−1(S2)

= T1 ∪ T2,

so sets T1, T2 cover D( f ). All the above equations show, therefore, that by
definition D( f ) is disconnected in < M, d >. �

■ Example 4.22
Consider the function f : [0, 1) → R1, where f (x) = 1/

√
1 −√

x. The
function is continuous everywhere on [0, 1), which is a connected
set (Theorem 4.12). By Theorem 4.13 and Lemma 4.8.4, R( f ) is an
interval. ■

Theorem 4.13, as with Theorem 4.9, is automatically valid when R( f ) is just
a point in M′. Thus, we see, as also promised, that continuity of a function
on its domain preserves connectedness in the image set if the domain is
connected. The Intermediate-Value Theorem now follows as an almost triv-
ial consequence of this statement. The theorem is highly plausible, but it
defied rigorous proof by the mathematicians of the eighteenth century. The
first substantially correct proof was supplied in 1817 by Bolzano, while he
was on the faculty of the University of Prague (Russ, 1980). This and other
mathematical work done by Bolzano was largely ignored for fifty years. Early
proofs of the Intermediate-Value Theorem used a bisection technique simi-
lar to that in our proof of Corollary 2.9.2 of the Nested Intervals Theorem
(Theorem 2.9).

Theorem 4.14 (Intermediate-Value Theorem). Let f : D( f ) → R1 be a con-
tinuous function from D( f ) in a metric space < M, d > into R1. If p1, p2 lie in
a connected subset S ⊆ D( f ) and f (p1) < f (p2), then for any y in the interval
( f (p1), f (p2)) there is a point p ∈ S such that f (p) = y.

Proof. Since f is continuous on S and S is connected, then by Theorem 4.13
f (S) is connected in < R1, d >, and by Theorem 4.12 f (S) is an interval. Thus,
as f (p1) and f (p2) belong to f (S), then ( f (p1), f (p2)) ⊆ f (S). �

You have undoubtedly made implicit use of the Intermediate-Value Theorem
in earlier mathematics in connection with the estimation of roots of equations
(Figure 4.12). The idea is to bracket a real root x0 of an equation f (x) = 0
in successively smaller and smaller intervals [an, bn], where f (an), f (bn) are of
opposite signs. The following example is illustrative; the technique is called the
bisection method because successive intervals are halved.
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FIGURE 4.12
Illustration of the Intermediate-Value Theorem.

Table 4.2 Selected Data for Example 4.23

n f (an−1) f (cn−1) f (bn−1) an bn cn

1 −1 0.875 5 1 1.5 1.25
2 −1 −.296875 0.875 1.25 1.5 1.375
3 −.296875 0.224609 0.875 1.25 1.375 1.3125
4 −.296875 −.051514 0.224609 1.3125 1.375 1.34375
5 −.051514 0.082611 0.224609 1.3125 1.34375 1.328125
6 −.051514 0.014576 0.082611 1.3125 1.328125 1.320313
7 −.051514 −.018708 0.014576 1.320313 1.328125 1.324219
8 −.018708 −.002127 0.014576 1.324219 1.328125 1.326172

■ Example 4.23
Figure 4.12 shows that x0 ∈ [a0, b0] = [1, 2]; letting f (x) = x3 − x − 1, we
have f (a0) = −1 and f (b0) = 5. Denote the midpoint of any [an, bn] by cn.
Then c0 = 3/2 and f (c0) = 7/8. Hence, we choose a1 = a0 and b1 = c0 =
3/2. Next, we obtain f (a1) = −1, f (b1) = 7/8, f (c1) = f (5/4) = −19/64. So
now we choose a2 = c1 = 5/4 and b2 = b1 = 3/2. The continuation of the
work is arranged in a table (Table 4.2). ■

The estimated real root of x3 − x − 1 = 0 after eight cycles (done on a graphing
calculator) is 1.326. The work is best carried out, of course, by writing and
running a short computer program.

One consequence of the Intermediate-Value Theorem (IVT) is, like the IVT
itself, so highly plausible that earlier mathematicians (who did not use the
IVT) stumbled on its rigorous proof. Nevertheless, Theorem 4.15 is a useful
characterization of some functions. Please review in Section 1.6 the concept of
an injection.
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FIGURE 4.13
A disposition of some points in the proof of Theorem 4.15.

Theorem 4.15. Suppose that the function f : I → R1, is an injection and is
continuous on the interval I. Then f is strictly monotonic on I.

Proof. Let x0 < x′0 be in I and assume f (x0) < f (x′0). Let x1 < x′1 be arbitrary
and also in I. We now define for all s ∈ [0, 1] the following two functions of s
that are continuous on [0, 1]:{

xs = (1 − s)x0 + sx1

x′s = (1 − s)x′0 + sx′1.

All values of xs, x′s reside in I (Figure 4.13).

We have that

x′s − xs = (1 − s)x′0 + sx′1 − {(1 − s)x0 + sx1}
= (1 − s)(x′0 − x0) + s(x′1 − x1) > 0.

The function F, defined by

F(s) = f (x′s) − f (xs),

is continuous on [0, 1] by Theorem 4.3 because each term is continuous on
[0, 1]. Also, F is never 0 because x′s > xs and f is an injection. It is impossible
that F could be of two signs on [0, 1] because F is continuous there, and by
Theorem 4.14 there would be an s ∈ (0, 1) such that F(s) = 0. Hence, F is of
one sign throughout [0, 1]. As F(0) > 0 was assumed, then F(s) > 0 for all
s ∈ [0, 1]. Since x1, x′1 were arbitrary in I, then x < y implies f (x) < f (y) for all
pairs {x, y} in I, and thus f is strictly increasing on I. The argument is analogous
if f (x0) > f (x′0) is assumed initially. �

■ Example 4.24
Consider f : [3, 100] → R1, where f (x) = x3 − 3x2 − 6x + 2. If x1 < x2 exist
in [3, 100] and are such that f (x1) = f (x2), then we obtain

1 = 3
S
+ 6 + x1x2

S2 , S = x1 + x2
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(verify!). But S > 6, so 3/S < 1
2 , and (6 + x1x2)/S2 ≥ 1

2 iff x2
1 + x2

2 ≤ 12,
which is impossible. Hence, f is an injection, and since −16 = f (3) < f (4) =
−6, then by Theorem 4.15 f is increasing on [3, 100]. ■

Other proofs of Theorem 4.15 also usually rely upon the IVT (Bayne, Joseph,
Kwack and Lawson, 2002; Buck, 1978). You are invited to compare the
mechanics in these proofs with that in ours.

4.9 UNIFORM CONTINUITY
We recall now that if f is a function from the metric space <M, d> into the
metric space <M′, d′> and if f is continuous on some subset S ⊂ M, then at
a given point p0 ∈ S and for any ε > 0, there is a δ > 0 (dependent upon ε)
such that

p ∈ Bd(p0; δ) ∩ S → f (p) ∈ Bd′( f (p0); ε).

There is no reason to suppose from this definition that for a given ε > 0 the
same δ > 0 could suffice for all p0 ∈ S.

■ Example 4.25
Consider f : D( f ) → R( f ), where f (x) = cos(x−1), and take S ⊂ D( f ) to be
(0, 3/2]. Let ε = 1

2 be given and fix δ = 0.1, arbitrarily. Figure 4.14 shows that
this δ will clearly work at x0 = 1.

However, this δ clearly will not work at x0 = 1
4 . In fact, given ε = 1

2 ,
if 1 > δ > 0 is fixed arbitrarily and an odd natural number N is cho-
sen so that [8/(3πN)] < δ, then the points x0 = 4/(πN), x1 = 4/(3πN) are
such that |x0 − x1| = 8/(3πN); that is, x1 ∈ B(x0; δ), but |f (x0) − f (x1)| =
| cos(πN/4) − cos(3πN/4)| = √

2 > ε, so f (x1) /∈ B(f (x0); ε). Thus, for ε = 1
2 ,

no matter how small is δ, there will always be a point x0 ∈ (0, 3/2] at
which δ will not work. Of course, from Theorem 4.4, it is apparent that f
is continuous on S. ■

It could happen in some cases, however, that for some function f the same
value of δ > 0, for fixed ε > 0, would work for every p0 in the subset S ⊂ M of
interest. This would indicate the existence of a special type of continuity.

Definition. Let f : M → M′ be a function from the metric space < M, d > into the
metric space < M′, d′ >, and let S ⊂ M. Then f is uniformly continuous on S iff,
for every ε > 0, there is a δ > 0, depending only upon ε, such that for each p0 ∈ S,
we have

p ∈ Bd(p0; δ) ∩ S → f (p) ∈ Bd′( f (p0); ε).
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FIGURE 4.14
Illustration of the dependence of δ upon x0 at fixed ε.

■ Example 4.26
Consider f : D( f ) → R1, where f (x) = √

x, and this time take S ⊂ D( f ) to be
(1/2, 3/2]. Let ε > 0 be given and choose x0 ∈ S, arbitrarily. If x1 is any point
in S within δ units of x0, then

∣∣√x0 −√
x1
∣∣ = |x0 − x1|√

x0 +√
x1

<
δ√

1/2 +√
1/2

= δ√
2
≤ ε,

if δ = 7ε/5. Thus, for any x0 ∈ S we have

x ∈ B(x0; 7ε/5) ∩ S → f (x) ∈ B( f (x0); ε),

so f is uniformly continuous on S. ■

■ Example 4.27
Consider f : S → R2, where S = {(x1, x2) : 0 < x1 < 1, 0 < x2 < 2} and
f(x) = f [(x1, x2)] = (x2

1, 2 − x2). Let ε > 0 be given and fix x ∈ S arbitrarily.



138 CHAPTER 4: Continuity

If y is any point in S such that 0 < ||x − y|| = {|x1 − y1|2 + |x2 − y2|2
}1/2

< δ,
then

||f(x) − f(y)|| = {|x2
1 − y2

1 |2 + [(2 − x2) − (2 − y2)]2}1/2

< 3
{|x1 − y1|2 + |x2 − y2|2

}1/2
(verify!)

< 3δ

< ε.

Hence, if we take δ = ε/3, then for any x0 ∈ S we have

x ∈ B2(x0; ε/3) ∩ S → f(x) ∈ B2(f(x0); ε),

so f is uniformly continuous on S. ■

The basic theorem (see Theorem 4.16) on uniform continuity was worked out
in 1872 in simplified form by Heine. A modern version uses the concept of
compactness explicitly, and extends Heine’s version to general metric spaces. It
is interesting that the weaker condition of continuity implies here the stronger
condition of uniform continuity.

Theorem 4.16. Let f be a function from < M, d > into < M′, d′ > and suppose
that f is continuous on the compact set S ⊂ M. Then f is uniformly continuous on S.

Proof. The continuity of f at an x0 ∈ S implies that, given any ε > 0, there is a
δ > 0, dependent upon ε (and, possibly, x0), such that

x ∈ Bd(x0; δ) ∩ S → f (x) ∈ Bd′( f (x0); ε).

We now imagine that all points p ∈ S are contained in balls of half the radii
of those above. This collection of balls is an open cover of S, and since S is
compact, then there is a finite subcover:

S ⊆
r⋃

k=1

Bd(pk; δk/2).

Let δ = min{δ1/2, δ2/2, . . . , δr/2}.
Now let p0 ∈ S be arbitrary and let p be any point in S such that 0 < d(p0, p) < δ.
There is a ball Bd(pk; δk/2) that contains p0, so the continuity of f there implies
d′( f (p0), f (pk)) < ε/2. Then from the Triangle Inequality,

d(pk, p) ≤ d(p0, p) + d(pk, p0) < δ + δk

2

≤ δk

2
+ δk

2
= δk,
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so p ∈ Bd(pk; δk) ∩ S. It follows from the opening lines that f (p) ∈ Bd′( f (pk);
ε/2). Finally, use of the Triangle Inequality a second time gives

d′( f (p0), f (p)) ≤ d′( f (p0), f (pk)) + d′( f (pk), f (p))

< ε/2 + ε/2

= ε,

that is, given ε > 0, there is a δ > 0, dependent only upon ε, such that for each
p0 ∈ S, we have

p ∈ Bd(p0; δ) → f (p) ∈ Bd′( f (p0; ε)).

�
■ Example 4.28

In Example 4.26 let f be as indicated, but take S to be [1/2, 3/2]. Then f
is uniformly continuous on S. As that example shows, Theorem 4.16 is a
sufficient but not necessary condition for f to be uniformly continuous on a
given set. ■

As expected, uniformly continuous functions possess several nice features. Some
of these include (a) function addition preserves uniform continuity (Exercise
4.56), (b) function composition preserves uniform continuity, and (c) Cauchy
sequences are mapped into Cauchy sequences by uniformly continuous func-
tions (Exercise 4.60). We shall make use of uniform continuity in the important
Theorem 6.13 when we come to integration theory.

4.10* THE CONTRACTION MAPPING THEOREM6

A special class of uniformly continuous functions are the Lipschitz functions,
which are useful in various numerical settings.

Definition. Let f : M → M′ be a function from the metric space < M, d > into
the space < M′, d′ >. Then f is called a Lipschitz function7 iff there is a positive
number λ, the Lipschitz constant, such that d′( f (x), f (y)) ≤ λd(x, y) for all x, y ∈ M.
If λ < 1, then f is termed a contraction of M into M′.

Contractions from a metric space into itself were the subject of work (1911) by
the Dutch topologist Luitzen E. J. Brouwer (1882–1966) and work (1922) by
the Polish topologist Stefan Banach (1892–1945). Such contractions have the
very interesting property that is described next. We note that if M were an infinite

6The symbol * denotes that this section can be skipped without interruption of the continuity of the text.
7After the German mathematician Rudolf Otto Lipschitz (1832–1903), who worked in differential
equations and differential geometry.
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subset of Rm that is closed and bounded, then the metric space < M, d > would
be complete (why?), which is highly desirable. In order to include more general
metric spaces for consideration, it is necessary to stipulate the completeness
beforehand.

Theorem 4.17 (Contraction Mapping Theorem). If f is a contraction of M
into M in the complete metric space < M, d >, then there exists a point x ∈ M such
that f (x) = x.

Proof. To get started, define the following sequence inductively on M:

xn =
{

x0 n = 0
f (xn−1) n ≥ 1,

where x0 ∈ M is arbitrary. Recognize next that f is a Lipschitz function, and for
any integer K > k, use the Triangle Inequality to obtain

d(xk, xK ) ≤ λk
(

1 − λK−k
)

(1 − λ)−1d(x0, x1).

Finally, make use of the sequence definition of continuity.

The completion of the proof is left to you. �

The point x in the theorem, incidentally, is unique (Exercise 4.66). There
are many applications of Theorem 4.17; here is an elementary one. Consider
the equation ex − 2x − 2 = 0. It can be deduced easily from the IVT (Theo-
rem 4.14) that a real root lies in [1, 2]. We proceed to rearrange the equation
so that it assumes the form x = f (x), which is needed for the application of
Theorem 4.17. If we rearrange the equation as

x = ex − 2
2

= f (x),

then f (x) is clearly increasing, but f (1) ≈ 0.36 < 1 and f (2) ≈ 2.69 > 2, so this
rearrangement will not be useful. Figure 4.15(a) shows what can happen after
a few iterations.

In an alternative rearrangement,

x = ln(2 + 2x) = g(x),

the function g(x) is also increasing; further, g(1) ≈ 1.38 ∈ [1, 2] and g(2) ≈
1.79 ∈ [1, 2]. Thus, if we define xn+1 = ln(2 + 2xn), it follows that xn ∈ [1, 2]
for all n ∈ N (Figure 4.15(b)).

To show that we actually have a contraction, we borrow from calculus
(Section 5.7) the Taylor series representation for ln(1 + u),−1 < u ≤ 1. This
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FIGURE 4.15
An application of the Contraction Mapping Theorem that will (a) fail (b) succeed.

series is

ln(1 + u) = u − (u2/2) + (u3/3) − (u4/4) + · · · =
∞∑

k=1

(−1)k+1(uk/k).

From the proof of Theorem 3.10, we have (since u will be positive and the terms
in the series decrease in magnitude)

u − (u2/2) < ln(1 + u) < u. (*)

In Figure 4.15(b) we obtain for arbitrary n ∈ N,

|xn+2 − xn+1| = |g(xn+1) − g(xn)|
= | ln(2 + 2xn+1) − ln(2 + 2xn)|

= ln
[

1 + |xn+1 − xn|
1 + xn

]

<
|xn+1 − xn|

1 + xn
from (*)

≤ 1
2
|xn+1 − xn| since xn ≥ 1.
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Table 4.3 Selected Data for the
Solution of the Equation x =
ln(2 + 2x)

n xn n xn

0 1.5 12 1.678345607
4 1.674689025 16 1.678346963
8 1.678275830 20 1.678346989

Thus, we have a contraction with Lipschitz constant λ = 1
2 .

The midpoint of [1, 2] is a good place to begin. The work for the problem can
be done on calculator; the results are shown in Table 4.3.

The estimated root of the original equation ex − 2x − 2 = 0 is, after 20
iterations, 1.6783470.

EXERCISES

Section 4.1

4.1. Prove, using the balls-definition in Section 4.1, that (a)
√

x is continuous at x = 3
and (b) 2x+3

x−4 is continuous at x = 1.

4.2. Suppose that f : D(f ) → Rm, D( f ) ⊆ Rn, is a function. Prove that if f (x) is
continuous at x = x0, then so is ||f (x)||.

4.3. A function f : R2 → R1 is defined for x = (x1, x2) ∈ R2 by

f (x) =
⎧⎨
⎩

2(x1−1)(x2−1)

(x1−1)2+(x2−1)2 x 
= (1, 1)

1 x = (1, 1).

Suppose that in R2 the point (1, 1) is approached along the line x1 = x2. Then
along that line f (x) = 2(x2 − 1)2/[(x1 − 1)2 + (x2 − 1)2] = 1, so lim

x→(1,1)
f (x) =

lim
x2→1

f (x) = lim
x2→1

1 = 1 = f [(1, 1)]. A student then argues that f is continuous at

(1, 1). Comment on this.

4.4. Write out the proof of the equivalence of these two statements:
(a) f is continuous at the interior point a of D(f ).
(b) Given any ε > 0, there is a δ > 0 such that f [Bn(a; δ)] ⊆ Bm(f (a); ε), where f : D(f ) →

Rm, D(f ) ⊆ Rn.

4.5. Let f : D( f ) → R1, D( f ) ⊆ R2, be defined by y = f (x) = f [(x1, x2)] = 1 + x1 −
x2, and D( f ) is the set of points inside the circle (x1 − 2)2 + (x2 − 2)2 = 1. Use
the balls definition to prove that f is continuous at a = (2, 2).
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Section 4.2
4.6. Identify which of the following sentences are predicates, and in those cases

indicate the predicate variable(s).
(a) A fourth-degree polynomial P(x): R1 → R1 has n relative maxima and m relative minima,

0 ≤ n, m ≤ 3.
(b) The three perpendicular bisectors of an acute triangle meet inside the triangle.
(c) The function f , which is differentiable at x = 1, is continuous there.
(d) For real x, b,

∫ x
0

√
1 + bt dt = 2

√
(1 + bt)3/(3b)

∣∣x
0.

4.7. Translate the logical symbolism into prose; the universes of discourse for the
variables are given at the right.
(a) (∃x): [(x > 0) AND (∀y)(xy 
= 1)]; (x, y ∈ R)

(b) (∀x)(∃y): (x + 2y = 0); (x, y ∈ C\{0})
(c) (∃x): (∀y)(x + 2y = 0); (x, y ∈ C\{0})
(d) (∀ε)[ε > 0 → (∃δ): {(δ > 0 AND

(∀p)[(p ∈ Bn(p0; δ) ∩ D(f )) →
f (p) ∈ Bm(f (p0); ε)]}] (ε, δ > 0; p ∈ Rn; f (p) ∈ Rm,

f is continuous at p0).

Which, if any, of these statements are true?

4.8. Translate the prose in each case into logical symbolism.
(a) Some dogs are black and friendly.
(b) For every natural number there is a real number that is the logarithm of that natural

number.
(c) There is a prime p such that 2p − 1 is not prime.
(d) For each ε > 0 there is a δ > 0 such that if |x − a| is positive but less than δ, then

|f (x) − L| is less than ε, iff the limit of f as x approaches a is L.

Which, if any, of these statements are false?

4.9. Work out the negations of each indicated sentence.
(a) (∃u): [u > 0 AND (∀v)(uv 
= 1)]; (u, v ∈ R)

(b) (∀x)[x > 0 → (∃ε): (ε > 0 → x ≥ ε)]; (x, ε > 0)

(c) Exercise 4.7(c);
(d) (∃x): {(∃ε): [ε > 0 AND (∀y)(y ∈ R\Q → (x, y ∈ R; ε > 0)

y /∈ (x − ε, x + ε))]};
(e) Exercise 4.7(d). Now return to Theorem 4.1.

Section 4.3

4.10. Let f : [0, 1] → R1 be defined by f (x) =
{

x x ∈ Q
0 x /∈ Q.

Is this function continuous anywhere? Justify your answer by using the sequence
approach.

4.11. The signum function, sgn(x), is defined as

sgn(x) =
{

x/|x| x 
= 0
0 x = 0.

Use the sequence definition of continuity to show that sgn(x) is discontinuous at
x = 0.
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4.12. Identify the points of discontinuity, if there are any, for each function and tell
whether these points are removable or essential.

(a) f (x) =
{

(x − 1)3/(x − 1) x 
= 1
0 x = 1;

(b) f (x) =
{

x + 1 x < 2
4 − x x > 2;

(c) f (x) = f (x1, x2) =
{

x1x2/

√
x4

1 + x4
2 x 
= 0

1/
√

2 x = 0;

(d) f (x) =
{

x cos(1/x) x ∈ (0, 1]
1 x = 0;

(e) f (x) =
{

sin(πx/6) x < 1
x2 − x + (1/2) x ≥ 1;

( f) f : [0, 1] → [0, 1], where

f (x) =

⎧⎪⎨
⎪⎩

0 x /∈ Q
1/q x = p/q, p, q relatively prime
1 x = 0 or 1.

(the Ruler Function)

4.13. Suppose that functions f (x), g(x) are both discontinuous at x = x0. Must ( f ⊕ g)(x)
also be discontinuous at x = x0? Discuss.

Section 4.4

4.14. Prove the analog of Theorem 4.2 for the case f (a) < 0.

4.15. Prove parts (a) and (b) of Theorem 4.3.

4.16. In the proof of Theorem 4.3(c),prove that there is a δ2 > 0 such that x ∈ Bn(a; δ2) ∩
D implies 0 < 1|g(x)| < 2|g(a)| .

4.17. Prove Theorem 4.4 via the sequence approach (as suggested).

4.18. Let f (x) = √
ln(x) and g(x) = ln(

√
x); it is known that g(56) > f (56). Show that

there exists a δ > 0 such that 0 < |x − 56| < δ implies that g(x) > f (x).

4.19. A group < G, * > is a set G of elements, together with a binary operation (*) on G,
such that (a) there is an identity element I ∈ G such that for any g ∈ G we have
I∗g = g∗I = g, (b) to each g ∈ G there corresponds an inverse element h ∈ G
such that h∗g = g∗h = I, (c) for any g, h, k ∈ G we have g∗(h∗k) = (g∗h)∗k; that
is, the Associative Law holds.
Now fix a natural number n > 1; let G be the set of all real-valued functions f (x)

defined on and continuous on the n-dimensional unit cube centered about the
origin in Rn, and let (*) be function addition. Prove that < G,∗ > is a group.

Section 4.5
4.20. Discuss where the following functions are continuous on their natural (or

indicated) domains.
(a) f (x) = (�x� − x) (x − �x�);
(b) f (x) =

{
x sin(x−1) x 
= 0

0 x = 0;
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(c) f (x) = 4
√

(x − 1)(2 − x)[ln(x/2)];
(d) f (x) = tan(2 sin x);

(e) f (x) = f [(x1, x2)] = x2
1+1

x3
2+2x2−5

(x ∈ R2).

4.21. Let f be a real-valued function defined on some interval I, and let k > 0. Suppose
that for each x1, x2 ∈ I we have

|f (x1) − f (x2)| ≤ k|x1 − x2|.

Such a function f is called a Lipschitz function. Show that f is continuous on I.

4.22. Consider f : [0, 2π] → [−1, 1], where f (x) = sin(x). Prove that f is continuous on
[0, 2π].

4.23. Prove all statements in Lemma 4.5.1.

4.24. Prove Lemma 4.5.2. Then sketch what the ball B2(x0; 1), x0 = (2, 3), would look
like in R2 if the metric were d(x, x′) = max{|x1 − x′1|, |x2 − x′2|} instead of the
usual Euclidean metric. Here, in R2, x = (x1, x2) and x′ = (x′1, x′2).

4.25. Another common metric in R2 is the so-called taxicab metric (MacG. Dawson,
2007):

d(x, x′) = |x1 − x′1| + |x2 − x′2|,

with x, x′ given as in Exercise 4.24.
(a) Sketch the “unit circle” in R2 with center at 0.
(b) Show how to draw three “equilateral” triangles of side 2 that share a common side.

For each triangle label the coordinates of the vertices.

4.26. (a) Prove that the intersection of a finite number of open subsets of M in the metric space
< M, d > is itself an open set.

(b) Show by example that the result in (a) may not hold if “finite” is replaced by “infinite.”

4.27. Prove that in any metric space < M, d >, an open set T ⊆ M is the union of a
collection of (open) balls.8

4.28. Suppose that S is a nonempty, open subset of R2. If this S is now viewed as a
subset of R3, is S still open? Discuss.

4.29. Let S be a nonempty subset of M in the metric space < M, d >. Prove that Int(S)

is the union of all open subsets of S. To get started, denote by ϑ = {Oα} the set all
open subsets of S. You then need to show that if p ∈ ⋃

α Oα, then p ∈ Int(S), and
conversely.

4.30. In the proof of Theorem 4.6,
(a) show that f (B(p; δ)) ⊆ Y implies that B(p; δ) ⊆ f−1[f (B(p; δ))] ⊆ f−1(Y), where

f : M → M′ is continuous;
(b) show that B(p; δ) ⊆ f−1(B′(f (p); ε)) implies that f (B(p; δ)) ⊆ f [f−1(B′(f (p); ε))] ⊆

B′(f (p); ε).

8Lindelöf’s Covering Theorem (not discussed in this book) guarantees that for any subset of Rn the
collection can be taken to be (at worst) countably infinite.
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4.31. In the metric space R1 let S1, S2 be two nonempty, disjoint sets that contain all
of their boundary points. Further, let T = {x : x ∈ R1, d(x, S1) < d(x, S2)}, where
d(x, Si) means the distance from x to the set Si, and is given by

d(x, Si) = inf
z∈Si

|x − z|.

In the case when x ∈ Si, this formula gives d(x, Si) = 0, which is uninteresting;
henceforth, we ignore this possibility.
(a) Prove that the functions gi: R1 → R1, given by gi(x) = d(x, Si), i = 1, 2, are continuous

on R1\Si.
(b) In view of part (a), use Theorem 4.6 to show that T is an open set (Haaser and Sullivan,

1991).

Section 4.6

4.32. Prove Lemma 4.6.1.

4.33. Prove Lemma 4.6.2. Statement (b) in the sketch of the proof is a version of one of
de Morgan’s Laws; the standard approach to it is to show that each side is a
subset of the other.

4.34. Show that the union of a finite collection C of closed subsets of M in the metric
space < M, d > is itself a closed set. Can “finite” be replaced by “infinite” here?

4.35. (a) Write out the proof that S ⊂ M in the metric space < M, d > is closed iff S = S.
(b) The analogous theorem for open sets is that S ⊂ M in the metric space < M, d > is open

iff S = Int(S). Prove it.

4.36. Refer to Example 4.11.
(a) If H is viewed as a subset of R1, what is its complete set of boundary points?
(b) If H is viewed as a subset of S, then explain why H is open.

4.37. The following is a sequence defined in S = [0, 3] ∩ Q, a subspace of < R1, d >:

xk =
{

2 k = 1
xk−1 + 1

k! k ≥ 2.

(a) Confirm that each xk ∈ S. How do you know that lim
k→∞

xk exists in R1?

(b) Assume that this limit is rational, say, p/q. Now multiply p
q −∑q

k=0
1
k! by q! and deduce

a contradiction.
(c) What do you conclude about lim

k→∞
xk, and what does this imply about S, in view of

Theorem 4.7?

4.38. In the follow-up to Theorem 4.7:
(a) Why was the phrase“S is not closed” in Example 4.12 not written instead as“S is open”?
(b) Prove the Corollary 4.7.1.
(c) Explain why, in the statement of Corollary 4.7.1, it is necessary for F to be an infinite

subset of M.

Section 4.7

4.39. Prove Lemma 4.7.2 along the line suggested. Could Lemmas 4.7.1 and 4.7.2 have
been stated for arbitrary metric spaces?
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4.40. Let S be the compact set in R2 that consists of all points contained in the region
bounded by the line segment y = 4,−2 ≤ x ≤ 2, and by the graph of y = x2,−2 ≤
x ≤ 2. Conjecture the value of diam(S).

4.41. In the proof of Theorem 4.9, show that
⋃N

i=1 f
[
f−1 (Oi)

] ⊆ ⋃N
i=1 Oi.

4.42. In view of Theorem 4.9, is it possible for a continuous function defined on a non-
compact set in R1 to have a range in R1 that is a compact set? Prove that it is not,
or provide an example that it is possible.

4.43. Let f : D( f ) → R1 be the function f (x) = f (x1, x2) = (−x1 − 2x2 + 2)e−x1−2x2
2 ,

where D( f ) is the set of points in and on the square 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.
Present an analysis in the manner of Example 4.17, showing all details and
concluding with the values of the absolute maximum and minimum.

4.44. In the papers (Bernau, 1967; Pennington, 1960; Fort, Jr., 1951) three different proofs
are given for the existence of an extremum of a real-valued function defined on a
closed, bounded interval. Compare and contrast the three approaches and write
up a summary of the reading.

Section 4.8

4.45. Prove Lemmas 4.8.1 and 4.8.2.

4.46. Prove Lemma 4.8.3.

4.47. (a) If A, B are as in Theorem 4.11, then find an example in R2 where A ∩ B is disconnected.
(b) Complete the proof of Lemma 4.8.4.

4.48. Regarding Theorem 4.12:
(a) Why is it,as indicated,that for some ε > 0 either (y − ε, y + ε) ⊆ S1,or (y − ε, y + ε) ⊆ S2

must hold?
(b) In what way does theTheorem depend upon the all-importantAxiom of Completeness?

4.49. The sets S = (0, 1), S′ = [0, 1]\Q are both uncountably infinite subsets in R1.
Nevertheless, prove there is no continuous function f such that f (S) = S′.

4.50. Write a short program to use the bisection method to find all real roots of the
following equations:
(a) 5

√
x − 7 ln(x) = 0;

(b) x5 − x4 − x2 − 5 = 0;
(c) 3x = 2 cosh(x);
(d) x = 1 +∑3

k=1 sin(kx).

4.51. Let g, h be functions continuous on [0, 1],and suppose that g(0) < h(0) and g(1) >

h(1). Prove that g(x) = h(x) for some x ∈ (0, 1).

4.52. Theorem 4.18. Let f : I → R1 be a continuous injection on the bounded inter-
val I, and let R( f ) denote the range of f. Then the inverse function f−1: R( f ) → I
exists, is an injection, is strictly monotonic on R( f ), and is continuous on R( f ).
(a) Use definitions and prove first that f−1, as a function, exists.
(b) Again, using definitions, prove that f−1 is an injection.
(c) Next, establish that f−1 is strictly monotonic on R( f ).
(d) Finally, prove that f −1 is continuous on R( f ).

Theorem 4.18 was alluded to in Approach 1 in Section 4.4.
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4.53. Definition. A continuous mapping of the form γ: I → Rk , where I ⊆ R1 is an
interval, is called a path. The image set γ(I) is a curve in Rk. If γ is an injection,
then γ(I) is called an arc, and if I = [a, b] and γ(a) = γ(b), then γ(I) is said to be a
closed curve.
Sketch the curve corresponding to the pathγ: [0, π/4] → R2, γ(t) = (cos t

√
cos 2t,

sin t
√

cos 2t). Use calculus to determine at what value of t the curve has a
maximum.

4.54. The curve in R2 in Exercise 4.53 is clearly connected. More generally, a subset
S ⊂ M in the metric space < M, d > is path-connected iff for each p1, p2 ∈ S
there is a path γ: [a, b] → S such that γ(a) = p1, γ(b) = p2. The following useful
theorem emerges.

Theorem 4.19. If S ⊂ M in the metric space < M, d > is path-connected, then S
is a connected set.
Assume, to the contrary, that S is disconnected; choose arbitrary p1 ∈ S ∩ S1, p2 ∈
S ∩ S2, where S1, S2 are disjoint and S ⊆ S1 ∪ S2. Let γ: [a, b] → S be a path
such that γ(a) = p1 and γ(b) = p2. Now examine the set Y = γ([a, b]); use Theo-
rems 4.12 and 4.13 and reach a contradiction. Write out the proof in full detail.

Sections 4.9 and 4.10*

4.55. Prove that f : [1/2,∞) → R1, where f (x) = 3/x, is uniformly continuous on its
domain.

4.56. Suppose that functions f , g from< M, d > into< M′, d′ >are uniformly continuous
on a common domain D ⊆ M. Prove that f ⊕ g is uniformly continuous on D.

4.57. Show by an example that if f , g are as in Exercise 4.56 and M = M′ = R1, then fg
may not be uniformly continuous on D.

4.58. If the function f : S → Rm, S ⊂ Rn, is uniformly continuous on the bounded set S,
then show that f is bounded on S.

4.59. Refer to Example 4.27.
(a) Account for the inequality following ||f (x) − f (y)||.
(b) Determine whether or not the composite function f [f ] is uniformly continuous on S.

4.60. Suppose that f : S → M′, S ⊂ M, is uniformly continuous on S in the metric space
< M, d >, and that {pn}∞n=1 is a Cauchy sequence in S. Prove that {f (pn)}∞n=1 is a
Cauchy sequence in the metric space < M′, d′ >.

4.61. Extend Exercise 4.21 by showing that if f is a Lipschitz function from the metric
space < M, d > into the space < M′, d′ >, then f is uniformly continuous on M.

4.62. Complete the proof of Theorem 4.17 along the lines suggested in the text.

4.63. Do this experiment: Enter any number x0 ∈ [0, 2] into your calculator; com-
pute x1 = 3√1 + x0. Then compute in similar fashion x2, x3, . . . , x12 from xn+1 =
3√1 + xn. What do you get? Discuss, in the context of Theorem 4.17 and with

justifications of all details, what is going on here. Indicate the limiting result that
should be obtained in the experiment.
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4.64. Read Drager and Foote (1986) and Kolodner (1967), and compare their pre-
sentations of the Contraction Mapping Theorem to that in Theorem 4.17 (and
Exercise 4.62).

4.65. Obtain a value for the Lipschitz constant λ for each function on the indicated
interval; then solve x − f (x) = 0.
(a) f (x) = (x3 + 3)/5, [0, 1];
(b) f (x) = (x4/1296) − (11x2/60), [−12,−9.6].

4.66. Prove that the point x in the statement of Theorem 4.17 is uniquely determined.

4.67. Part of the work in Exercise 4.63 could have been facilitated if we had employed the
Bounded Derivative Condition. Read what this is in Wagner (1982); also read
the author’s application of the Bounded Derivative Condition to the well-known
Newton-Raphson Method. Write up a summary of your reading, and include some
sample applications of your own.
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CHAPTER 5

Differentiation

“As long as the function f (x) and its derivative f ′(x) remain
continuous between the limits x = x0 and x = x0 + h, we have

in general [ f (x + h) − f (x)]/h = f ′(x + θh).”
Augustin-Louis Cauchy
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New in Carathéodory’s definition; Mean-Value Theorem;
this chapter Taylor’s Theorem; radius of convergence;

exponential and logarithmic functions; l’Hôpital’s
Rule (proof); differentiation in Rn.

5.1 CAUCHY’S DEFINITION
The derivative is the most important concept in the differential calculus, and
its clear definition in Cauchy’s 1823 book Calcul infinitésimal (Grabiner, 1981,
1983) was a powerful stimulant for mathematics. Cauchy’s definition of deriva-
tive is now, after more than 185 years, so familiar to us that we scarcely give it
a second thought. But we should give it the reverence that it deserves.

Definition. Let a be an interior point of a set S ⊆ R1 and let f : S → R1 be a
function. Then the value of the derivative of y = f (x) at x = a is f ′(a) = lim

x→a

f (x)−f (a)
x−a ,

provided that this limit exists (in R1).

The notation f ′(a) is the most prevalent notation in use. Other notational forms
for the value of the derivative of f at a include Df (a) and the Leibniz notations
df
dx (a) or dy

dx

∣∣∣
x=a

. In any case, the definition shows clearly that the derivative of a

constant is 0.

Since “sided” limits can be defined at endpoints of intervals, derivatives can be
defined there also. In the language of balls, f ′(a) is the value of the derivative of
f at a iff, given any ε > 0, there is a δ > 0 such that x ∈ [B(a; δ)\{a}] ∩ S implies
that

f (x) − f (a)

x − a
∈ B( f ′(a); ε).

You are familiar with the derivatives of several standard functions (Table 5.1).
Their rigorous development by the pioneers involved quite a lot of good
mathematics.

Table 5.1 A Brief Selection of Derivatives

f (x) f ′(x) f (x) f ′(x)
1. xc cxc−1 6. tan x sec2 x
2. ex ex 7. Sin−1 xa 1/

√
1 − x2

3. ln x 1/x 8. Tan−1 xa 1/(1 + x2)

4. sin x cos x 9. sinh x cosh x
5. cos x −sin x 10. cosh x sinh x

aPrincipal values: −π/2 ≤ Sin−1x ≤ π/2,−π/2 < Tan−1x < π/2
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We shall put some of these functions on a secure footing later. Formula 1, for
example, requires some attention. A special case of it, when c = n ∈ N, is easy
to deal with.

■ Example 5.1
In formula 1, with c = n ∈ N, let h = x − a, where x is variable and a is any
constant. Then

f ′(a) = lim
x→a

xn − an

x − a
= lim

h→0

(a + h)n − an

h
.

Newton’s Binomial Theorem (Exercise 2.6) gives

(a + h)n =
n∑

k=0

(
n
k

)
an−k hk

= an +
n∑

k=1

(
n
k

)
an−k hk,

and so

f ′(a) = lim
h→0

⌊
1
h

n∑
k=1

(
n
k

)
an−k hk

⌋

= lim
h→0

⌊(
n
1

)
an−1 +

n∑
k=2

(
n
k

)
an−k hk−1

⌋

= nan−1 +
n∑

k=2

[
lim
h→0

(
n
k

)
an−k hk−1

]

= nan−1. ■

Formulas 4 through 6, especially, generally are not handled satisfactorily in
introductory texts because of the reliance upon certain intuitive geometric
notions (Hardy, 1967; Spiegel, 1956). We will deal with the trigonometric func-
tions in Exercises 6.38, 6.50, and 6.51. Nevertheless, a “half-rigorous” proof of
formula 6 would be useful.

■ Example 5.2
Let f (a) = tan a, a 
= (2k + 1)π/2, k ∈ Z. Then

tan(a + h) − tan a = sin(a + h)

cos(a + h)
− sin a

cos a
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= sin(a + h) cos a − cos(a + h) sin a
cos(a + h) cos a

= sin h
cos(a + h) cos a

,

after making use of two standard identities. Hence,

tan(a + h) − tan a
h

= 1
cos a

[
1

cos(a + h)

sin h
h

]

and

f ′(a) = 1
cos a

[
lim
h→0

1
cos(a + h)

] [
lim
h→0

sin h
h

]

= 1
cos2 a

lim
h→0

sin h
h

,

if the limit exists. To obtain expeditiously the indicated limit, we note that
the perimeter P(n) of a regular n-gon inscribed in a circle of radius r is P(n) =
2nr sin(π/n) (verify!). If we accept that lim

n→∞ P(n) = 2 πr, then upon setting

π/n = h and P(n) = H(h), we obtain

lim
n→∞ P(n) = lim

h→0
H(h) = lim

h→0
2πr

(
sin h

h

)
= 2πr,

and so, lim
h→0

(sin h)/h = 1. It follows that f ′(a) = sec2 a. ■

Several elementary theorems follow directly from Cauchy’s definition. The first
(see next) makes contact with Chapter 4; this fundamental theorem has a false
converse (Exercise 5.2).

Theorem 5.1. If f has a derivative at a, then f is continuous at a.

Proof. Suppose that the domain of f contains [a − c, a + c], c > 0, and let h
satisfy 0 < |h| ≤ c. Then

f (a + h) − f (a) = [ f (a + h) − f (a)]
(

h
h

)
.

The completion of the proof is left to you. �

■ Example 5.3
Refer to the signum function in Exercise 4.11. As sgn(x) is discontinuous at
x = 0, then it cannot have a derivative there. ■
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Theorem 5.1 has had a colorful history. Many mathematicians of the nineteenth
century, including luminaries of the day, such as S.-F. Lacroix, A.M. Ampère, and
J.L.F. Bertrand, claimed to have “proved” that a function has a derivative at all
points where it is continuous (Kline, 1980). All of these “proofs” were wrong!1

On the other hand, a wild example of a function that has a derivative nowhere,
but is continuous at each irrational x and discontinuous at each rational x (see
Exercise 4.13(f )), is provided by the Ruler Function on [0,1] (Dunham, 2003).
Still zanier examples are functions that are continuous everywhere but also have
a derivative nowhere (Hildebrandt, 1933; McCarthy, 1953; Wen, 2000). We
will look at an example in Section 7.6.

Theorem 5.2. If f , g have derivatives at a and if c ∈ R, then

(a) [cf + g]′(a) = cf ′(a) + g′(a);

(b) ( fg)′(a) = f (a)g′(a) + f ′(a)g(a);

(c) if g(x) 
= 0 in some ball B(a; δ), then

( f /g)′(a) = [
g(a)f ′(a) − f (a)g′(a)

]
/ [g(a)]2 .

Proof. We sketch the proof of (b) and leave the other parts as exercises.

Elementary function algebra gives

( fg)(a + h) − ( fg)(a) = f (a + h)g(a + h)

+ [ f (a + h)g(a) − f (a + h)g(a)] − f (a)g(a)

= f (a + h)[ g(a + h) − g(a)] + g(a)[ f (a + h) − f (a)].
Now divide by h 
= 0; the completion of the proof is left to you. �

■ Example 5.4
We proceed to work out formula 5 in Table 5.1, for which we call
upon the work in Example 5.2. Write 1 + tan2 θ = 1/[f (θ)]2, whenever
f (θ) = cos θ 
= 0. The derivatives of both sides of this identity lead to a
new identity. From Theorem 5.2 (b, c) and Example 5.2 we obtain

2 tan θ sec2 θ = −2f ′(θ)
cos3 θ

, (cos θ 
= 0)

or
f ′(θ) = −sin θ. (*)

1As in other matters mathematical, Bolzano was ahead of his time here also. He gave in 1834 an example of
a continuous function with a derivative nowhere, thus anticipating the more widely recognized examples
due to Riemann and Weierstrass 20 to 40 years later. Bolzano’s example went unnoticed. For details, see
Kowalewski (1923).
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On the other hand, Cauchy’s definition gives

f ′(θ) = lim
h→0

cos(θ + h) − cos θ

h

= lim
h→0

cos θ cos h − sin θ sin h − cos θ

h

= cos θ

[
lim
h→0

cos h − 1
h

]
− sin θ

[
lim
h→0

sin h
h

]

= cos θ

[
lim
h→0

cos h − 1
h

]
− sin θ (**)

from Example 5.2. The limit in the brackets is independent of the choice of
θ. Whenever cos θ 
= 0, then we obtain from (*)

−sin θ = cos θ

[
lim
h→0

cos h − 1
h

]
− sin θ,

and, thus, the limit is 0. It follows from (**) that f ′(θ) = − sin θ for all θ. ■

The ability to obtain derivatives is increased enormously by use of the famous
Chain Rule. This deep theorem can be proved from Cauchy’s definition. We
quote the Theorem now but delay its proof until the next section, where we shall
present an alternative proof and an enlightening perspective on derivatives.

Theorem 5.3 (Chain Rule). If f has a derivative at a and g has a derivative at
b = f (a), then the composite function g[ f ] has a derivative at a, given by g′(b)f ′(a).

5.2 CARATHÉODORY’S DEFINITION
The German-born, Greek mathematician Constantin Carathéodory (1873–
1950) gave a definition of the derivative that does not focus on limits of
quotients of vanishing differences and is not, therefore, linked to geometric
notions. Instead, the focus is on continuity of a particular function (Kuhn,
1991).

Definition. The function f : S → R1, has a derivative at a ∈ S iff there exists a
function φa that is continuous at a and satisfies the relation f (x) − f (a) = φa(x)
(x − a) for all x ∈ S.

The notation φa(x) emphasizes that φ depends upon the point a. We have
immediately the following.

Theorem 5.4. In Carathéodory’s formulation, if f ′(a) exists, then it is φa(a).

Proof. The proof is left to you. �
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■ Example 5.5
Consider f : R1 → R1, where f (x) = x3. Then Carathéodory’s definition gives
at a = 3

φ3(x) =
⎧⎨
⎩

x3 − 33

x − 3
= x2 + 3x + 9 x 
= 3

27 x = 3.

This function is continuous at a. By Theorem 5.4 we have f ′(a) = φ3(3) = 27.
■

Carathéodory’s definition handles the proofs of the three parts of Theorem 5.2
with ease. A better test of the definition is its use in the proof of the Chain Rule.

Theorem 5.3 (Chain Rule).

Proof. By Carathéodory’s definition there are functions βa, γb defined on open
intervals Ia, Ib about x = a, x = b, respectively, and continuous at these points,
such that {

f (x) − f (a) = βa(x)(x − a)

g(x) − g(b) = γb(x)(x − b).

(*)

(**)

Accordingly, we have

h(x) − h(a) = g[ f (x)] − g[f (a)]
= {γb[ f (x)]} (f (x) − f (a)) from

= (γb[ f ])(x) [βa(x)(x − a)] from

(**)

(*)

for all x ∈ Ia such that f (x) ∈ Ib. Since a ∈ Ia and b = f (a) ∈ Ib, then by Theo-
rem 4.4 γb[f ] is continuous at a. An application of Theorem 4.3(b) leads to the
conclusion that (γb[f ])(x)βa(x) is also continuous at a. From Carathéodory’s
definition we conclude that h = g[f ] has a derivative at a, which is

h′(a) = (g[f ])′(a) = (γb[f ])(a)βa(a)

= (γb[f ])(a) f ′(a)

= [γb(b)] f ′(a)

= g′(b) f ′(a). �

By induction, the Chain Rule is extendable to compositions of more than two
functions. Carathéodory’s definition of the derivative offers an elegant approach
to the rule.

■ Example 5.6
Here’s a simple example. Let f (x) = 3

√
x; Example 5.1 cannot be used to obtain

f ′(x) because 1/3 /∈ N. Nor can we use formula 1 in its generality because we
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have not yet established this. But if we let g(x) = x3, then x = g[f (x)] and if
we set the derivatives of the two sides equal, then Theorem 5.3 yields

1 = g′ [f (x)] f ′(x) = 3[f (x)]2 f ′(x).

Hence, for any x 
= 0 we obtain

f ′(x) = 1

3 [f (x)]2 = 1

3 3√x2
.

This example is a particular case of the Inverse Function Theorem, which is
itself provable from Carathéodory’s definition (Exercise 5.12). ■

■ Example 5.7
On the interval (0, π) cos x is continuous (how do you know this?). It is also
strictly decreasing (Corollary 5.7.1) and is, therefore, an injection. Hence,
by Exercise 4.52 it has an inverse function (denoted cos−1 x) that is also
continuous and strictly decreasing. Additionally, for any x ∈ (−1, 1) we have
from Exercise 1.43(b) the identity

cos[Cos−1x] = x.

The derivatives of the two sides must be equal, so application of the Chain
Rule gives (verify!)

(
Cos−1x

)′ = −1√
1 − x2

(−1 < x < 1).
■

5.3 ROLLE’S THEOREM
You recall that in introductory calculus maxima and minima of functions were
located by setting their derivatives equal to zero. Let us be more precise about
this.

Definition. A function f : I → R1 has a relative maximum (minimum) at a point
c in the interval I iff there is a ball B(c; δ) such that f (x) ≤ f (c)(f (x) ≥ f (c)) for all
x ∈ B(c; δ) ∩ I.

A relative maximum or minimum is called a relative extremum. In some cases
a relative extremum may correspond to an absolute maximum or minimum
on I (Figure 5.1(a)), whereas in other cases a relative extremum will be neither
an absolute maximum nor an absolute minimum (Figure 5.1(b)). A function
may not even have a relative or an absolute extremum on some interval I
(Figure 5.1(c)). Also note from the definition that a relative extremum can
occur at an endpoint of an interval.
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a

(a) (b) (c)

a ac cb b b
x x x

y y y

f(x) f(x) f(x)

FIGURE 5.1
Illustration of relative and absolute extrema on a bounded interval.

Theorem 5.5. If c is an interior point of an interval I (finite or infinite), if a function
f : I → R1 is known to have a relative minimum at c, and if f has a derivative at c,
then f ′(c) = 0.

Proof. By Carathéodory’s definition and by hypothesis, there is a ball B(c; δ) ⊂ I
and a function φc(x), continuous at c, such that x ∈ B(c; δ) implies

f (x) − f (c) = φc(x)(x − c).

If x < c, then f (x) − f (c) ≥ 0 by hypothesis; x − c < 0 then implies that φc(x) ≤
0. But if x > c, then f (x) − f (c) ≥ 0 again holds and x − c > 0 now implies that
φc(x) ≥ 0. The continuity of φc(x) at c forces φc(c) = 0. By Theorem 5.4, we then
have f ′(c) = 0. �
An analogous theorem holds for functions f with a relative maximum at c. Note
that so long as f has a derivative at c, the condition f ′(c) = 0 is only a necessary
condition and not a sufficient condition for f to have a relative extremum at c
(Exercise 5.17). However, see (later) Theorem 5.9.

■ Example 5.8
Let f : [−1, 2] → R1 be defined by f (x) = x3e−2x. This function has a deriva-
tive everywhere on its domain.2 We find f ′(x) = x2(3 − 2x)e−2x and, hence,
f ′(x) = 0 when x = c = 0, 3/2. The potential locations of relative extrema are,
thus, x = −1, 0, 3/2, 2, but further analysis is needed (Section 5.5). However,
what does your intuition tell you? ■

2We borrow from Section 5.7 (or Table 5.1) the fact that (eax )′ = aeax , as well as any other basic properties
of the exponential function.
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bcca

y

x

FIGURE 5.2
Illustration of Rolle’s Theorem.

We now come to the main result in this section, due to the French mathemati-
cian Michel Rolle (1652–1719), who presented his Theorem in 1691 but did
not prove it.

Theorem 5.6 (Rolle’s Theorem). If f is continuous on the closed, bounded inter-
val [a, b] and has a derivative on (a, b), and if f (a) = f (b) = 0, then there is at least
one interior point c at which f ′(c) = 0.

Proof. Let us assume that f is not the zero function on [a, b]. Then some values
of f are positive, or negative, or possibly both exist (Figure 5.2). By Theorems
4.8 and 4.10, f attains absolute extrema on [a, b]. As f is not constant, then at
least one of the absolute extrema must occur at an interior point c. By Theorem
5.5 (or its analog), we then have f ′(c) = 0. �

■ Example 5.9
Let f : R1 → R1 be defined by f (x) = x5 + 3x + 4; we show that f (x) = 0 has
only one real root.

We have f (−2) = −34 and f (0) = 4, so by the Intermediate-Value Theorem
(Theorem 4.14) there is a number b1 such that −2 < b1 < 0 and f (b1) = 0.
The function f has a derivative everywhere. If there were a second point,
x = b2, at which f (b2) = 0, then by Rolle’s Theorem there should be a point
c ∈ (b1, b2) at which f ′(c) = 5c4 + 3 = 0. But this latter is impossible, so no
such b2 exists. ■

5.4 THE MEAN-VALUE THEOREM
The Mean-Value Theorem is one of the most famous theorems in calculus.
Despite attempts to downplay its importance (Boas, Jr., 1981), its place in the
calculus curriculum is secure (Swann, 1997).
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Although the Mean-Value Theorem was known to J.-L. Lagrange and A.-M.
Ampère, the Theorem was proved by Cauchy from his definition of the deriva-
tive (see opening quotation) and was then used to make several deductions
(Grabiner, 1981). We shall present two proofs of it, one a rather traditionally
structured proof, and the other a proof with some linear algebra content that
is a warm-up for a later exposition of Taylor’s Theorem (Theorem 5.11).

Theorem 5.7 (Mean-Value Theorem). Suppose that f ′(x) exists at each point
in (a, b) and that L1 = lim

x→a+
f (x), L2 = lim

x→b−
f (x) are real. Then there is a point

c ∈ (a, b) such that L2 − L1 = f ′(c) (b − a).

The content of the Theorem is interpretable by the geometry displayed in
Figure 5.3. We shall prove a slightly more general theorem, and then deduce
the Mean-Value Theorem as a consequence of it.

In the proof of Theorem 5.8, we shall require a function D(t) to be con-
structed from two other functions, F(t) and G(t), and to satisfy the hypotheses
of Rolle’s Theorem on the interval [a, b]. The geometric picture is similar to
that in Figure 5.3, except that in the xy-plane the coordinate variables are now
functions of a parameter t (Figure 5.4):{

x = G(t)
y = F(t).

A simple construction for D(t) is a linear combination of F(t), G(t).

D(t) = k1F(t) + k2G(t) + k3

We desire D(a) = D(b) = 0 in order to use Rolle’s Theorem. Solving the resulting
pair of linear equations, {

k1F(a) + k2G(a) + k3 = 0
k1F(b) + k2G(b) + k3 = 0,

a c
L1

L2

b
x

y

y 5 f(x)

slope 5 f9(c)

FIGURE 5.3
Illustration of the Mean-Value Theorem.
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F(a)

G(a) G(c) G(b)

t 5 a

t 5 b
t -axis

D(t)

t 5 cF(c)

F(b)

y

x

5
dy
dx

F9(c)
G9(c)

FIGURE 5.4
A special function is used in the Generalized Mean-Value Theorem.

we can obtain k1 = G(b) − G(a) and k2 = F(a) − F(b). These solutions are
not unique, but that will not matter here. Finally, k3 can be found by back
substitution of k1, k2. The final result is

D(t) = F(t)[G(b) − G(a)] − G(t) [F(b) − F(a)] − [F(a)G(b) − G(a)F(b)] .

We note also that the derivative (slope of a tangent line) at any point t = c, a <

c < b, on the curve D(t) is given by

dy
dx

= lim
h→0

F(c + h) − F(c)
G(c + h) − G(c)

= lim
h→0

[F(c + h) − F(c)] /h
[G(c + h) − G(c)] /h

= F′(c)
G′(c)

,

provided that G′(c) 
= 0.

Theorem 5.8 (Generalized Mean-Value Theorem). Suppose that f , g
have real derivatives at each t ∈ (a, b); suppose also that L1 = lim

t→a+
f (t), L2 =

lim
t→b−

f (t), l1 = lim
t→a+

g(t), l2 = lim
t→b−

g(t) are real. Then there exists a point c ∈ (a, b)

such that g′(c) [L2 − L1] = f ′(c)
(
l2 − l1

)
.

Proof. Let functions F, G be defined on [a, b] as follows:

F(t) =
⎧⎨
⎩

L1 t = a
f (t) a < t < b
L2 t = b

G(t) =
⎧⎨
⎩

l1 t = a
g(t) a < t < b
l2 t = b .

We now define the special function

D(t) = F(t) [G(b) − G(a)] − G(t) [F(b) − F(a)] − [F(a)G(b) − G(a)F(b)] .
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This has a derivative at each t ∈ (a, b) and is continuous on [a, b], in particular,
at the endpoints, by virtue of the definitions made earlier.

We also observe that D(a) = L1
(
l2 − l1

)− l1(L2 − L1) − (
L1l2 − l1L2

) = 0, and
similarly, D(b) = 0. Thus, by Rolle’s Theorem, there is a c ∈ (a, b) such that
D′(c) = 0. Since c is not an endpoint, then the equation D′(c) = 0 reduces to

g′(c)[L2 − L1] = f ′(c)
(
l2 − l1

)
. �

Theorem 5.7 now follows immediately if g(t) = t for all t ∈ [a, b]. Under these
conditions, g′(c) = 1 and l2 − l1 = b − a. The Mean-Value Theorem is mainly
an existence theorem. In most applications of it, as in the corollaries given later
in this section, we are not interested in the particular value of c. Also, much
subsequent work has been inspired by the Mean-Value Theorem and a number
of generalizations of it are known (Goodner, 1962; Reich, 1969; Sanderson,
1972).

We now give an alternative route to the Mean-Value Theorem (Barrett and Jacob-
son, 1960). Figure 5.5(a) shows a parallelogram ABCD. An arbitrary subset of
three of its vertices has coordinates A: (x(a), y(a)), B: (x(s), y(s)), C: (x(b), y(b)),
where x, y are functions of the parameter t. When t = a, s, b, respectively, the
corresponding values of x, y are the coordinates of the vertices A, B, C.

In Figure 5.5(b) a triangular region of ABCD has been translated so as to give
a new parallelogram AOO’D of identical area but with an altitude of length h
that is parallel to the y-axis. This is a geometric simplification, and we leave it
to you to show that the areas K of the parallelograms are given by the absolute

A A O

O9D

C

h

B

O

C

D

(a) (b)

h

y y

x x

FIGURE 5.5
Computation of the area of a parallelogram.
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f(a)

g(b)

g(a)
g(s)

D
C

B

C

A

f(s) f(b)

y

x

FIGURE 5.6
Parameterization of the area of a parallelogram.

determinant (Exercise 5.26)

±K =

∣∣∣∣∣∣∣∣∣
x(a) y(a) 1

x(s) y(s) 1

x(b) y(b) 1

∣∣∣∣∣∣∣∣∣
.

Now suppose that in Figure 5.6 vertices A, C are fixed, but B, D are variable (the
figure always being a parallelogram, however). A parameterized curve C

C : x = f (t), y = g(t) (a ≤ t ≤ b)

passes through A, B, C. Since A, C have fixed values of t, the area of ABCD
depends only upon the value of t for vertex B:

±K(t) =

∣∣∣∣∣∣∣∣∣
f (a) g(a) 1

f (t) g(t) 1

f (b) g(b) 1

∣∣∣∣∣∣∣∣∣
.

We stipulate that f , g are continuous on [a, b] and have derivatives everywhere
on (a, b). We can then show from determinant theory and from Rolle’s Theorem



5.4 The Mean-Value Theorem 167

that there is a c ∈ (a, b) such that K ′(c) = 0; that is (Exercise 5.26),

∣∣∣∣∣∣∣
f (a) g(a) 1

f ′(c) g′(c) 0

f (b) g(b) 1

∣∣∣∣∣∣∣ = 0.

Expansion yields g′(c) [ f (b) − f (a)] = f ′(c) [g(b) − g(a)] and, thus, we have
recovered the Generalized Mean-Value Theorem; Theorem 5.7 again follows
immediately.

To show the usefulness of the Mean-Value Theorem, we give now three corollar-
ies of the theorem. Recall from Section 2.1 that a real-valued function f defined
on an interval I is an increasing (decreasing) function on I iff for every pair
x1, x2 ∈ I, x1 < x2, we have f (x1) ≤ f (x2) ( f (x1) ≥ f (x2)).

Corollary 5.7.1. If f ′(x) ≥ 0 ( f ′(x) ≤ 0) for all x ∈ (a, b), then f is increasing
(decreasing) on (a, b).

Proof. Use Theorem 5.7; the proof is left to you. �

An especially interesting application of the Mean-Value Theorem leads to the
well-known Arithmetic Mean–Geometric Mean Inequality (Schaumberger,
1985). The arithmetic mean (AM) and the geometric mean (GM) of a set
of positive numbers {a1, a2, . . . , an} are defined so as to generalize definitions
given in Exercise 1.22:

AM = a1 + a2 + · · · + an

n
GM = n

√
a1a2 . . . an.

Sample calculations in Table 5.2 suggest that GM ≤ AM. The definition of GM
indicates that it may be useful to work with logarithms; we assume familiarity
with them.

From the Mean-Value Theorem we can deduce (Exercise 5.28)

ln x ≤ x − 1

for any x > 0, with equality only when x = 1. Given a set {a1, a2, . . . , an} of
positive numbers, we define xi = ai/GM for each i = 1, 2, . . . , n. Inserting these

Table 5.2 Illustrative Data for the AM-GM Inequality

{0.5, 0.75, e} {10, 10, 17} {3, 3.2, 3.4, 3.6, 3.8} {0.1, 9, 10, 11, 12, 13} {5, 5, 5}

AM 1.323 12.333 3.400 9.183 5
GM 1.006 11.935 3.388 4.990 5
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into the logarithmic inequality and summing over i, we obtain

n∑
i=1

ln
( ai

GM

)
≤

n∑
i=1

[ ai

GM
− 1

]
,

or equivalently,

0 ≤ 1
GM

n∑
i=1

ai − n.

A slight rearrangement then gives the following.

Corollary 5.7.2 (Arithmetic Mean–Geometric Mean Inequality). If
{a1, a2, . . . , an} is a set of positive numbers, then GM ≤ AM, with equality holding
iff a1 = a2 = · · · = an.

The importance of Corollary 5.7.2 cannot be overestimated. It is the starting
point for several other inequalities that are used in analysis (Borden, 1998).

Theorem 1.7 in Section 1.4 gave a version of the useful Bernoulli’s Inequal-
ity restricted to positive, integral exponents. We now extend this to rational
exponents.

Corollary 5.7.3 (Bernoulli’s Inequality). If x > −1, x 
= 0, and α is a non-
integral rational number that exceeds 1, then (1 + x)α > 1 + αx.

Proof. From Exercise 5.14, it is immediately clear that if f (x)=(1+x)α and α>1
is a nonintegral rational, then f ′(x)=α(1+x)α

−1
. There are then two cases.

CASE 1. x > 0. The Mean-Value Theorem on the interval [0, x] yields

(1 + x)α − 1α = α(1 + c)α−1(x − 0)

for some c ∈ (0, x). Since 1 + c > 1 and α, x are positive, we have,
after a slight rearrangement,

(1 + x)α > 1 + αx.

CASE 2. −1 < x < 0. This time we have on the interval [x, 0]

1α − (1 + x)α = α(1 + c)α−1(0 − x)

for some c ∈ (x, 0). The right-hand side is positive and 1 + c < 1,
so 1 − (1 + x)α < −αx. The desired result follows by a slight
rearrangement. �

■ Example 5.10
If θ satisfies −π/2 < θ < 0, then from Corollary 5.7.3 we have
(1 + sin θ)3/2 > 1 + (3/2) sin θ. For example, at θ = −π/18, we have
0.7512 > 0.7395. ■
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5.5 MORE ON RELATIVE EXTREMA
In Theorem 5.5 we gave a necessary condition for a function f : I → R1 to have a
relative minimum at an interior point c ∈ I. We now give a sufficient condition
for such a minimum to occur. We make use of the Mean-Value Theorem.

Theorem 5.9 (First Derivative Test). Let f be continuous on [a, b] ⊆ I and
have a derivative everywhere on (a, c) ∪ (c, b), where c ∈ (a, b). If f ′(x) ≤ 0 for all
x ∈ (a, c) and f ′(x) ≥ 0 for all x ∈ (c, b), then f has a relative minimum at c.

Proof. If x ∈ (a, c), then by the Mean-Value Theorem

f (c) − f (x) = (c − x)f ′(α),

for some α ∈ (x, c). As c − x > 0 and f ′(α) ≤ 0, then f (x) ≥ f (c).

On the other hand, if x ∈ (c, b), then we have

f (c) − f (x) = (c − x)f ′(β),

for some β ∈ (c, x). As c − x < 0 and f ′(β) ≥ 0, then f (x) ≥ f (c) again holds.
Thus, by definition, c is the location of a relative minimum of f . �
Note from the hypotheses that f is not required to have a derivative at c. How-
ever, where in the proof did we use the fact that f is at least continuous at c?
You can frame and prove an analogous theorem for relative maxima.

The First Derivative Test requires us to examine the sign of f ′(x) at all points
in a sufficiently small deleted ball about c. In contrast, the standard Second
Derivative Test necessitates examination of the sign of f ′′(x) at only one point.3

We pause briefly to recall from introductory calculus that a derivative of a func-
tion may itself possess a derivative at some points. Thus, if f : S → R1 is given
and there is a δ > 0 such that f ′(x) exists at all x ∈ B(a; δ) ∩ S, then f has a second
derivative at a whose value is given by

lim
x→a

f ′(x) − f ′(a)

x − a
,

provided that this limit exists (in R1). We denote the value of this derivative
by f ′′(a). Clearly, f ′(a) must exist (in R1) if f ′′(a) has any hope of also existing.
Similarly, third-, fourth-, and nth-order derivatives at a, denoted commonly by
f ′′′(a), f (4)(a), f (n)(a), may also exist for some function f . Some practice with
higher-order derivatives appears later (Exercises 5.35, 5.36).

3An alternative Second Derivative Test can be formulated that requires examination of the sign of f ′′(x)
at all points in sufficiently small intervals to the left and right of c, but does not demand that f ′′(c) exist
(Creighton, 1975).
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Theorem 5.10 (Second Derivative Test). Suppose that f ′(x) is continuous
on [a, b] and that f ′(c) = 0, where c ∈ (a, b). If f ′′(c) > 0, then f has a relative
minimum at c.

Proof. We have f ′′(c) = lim
h→0

f ′(c+h)−f ′(c)
h = lim

h→0

f ′(c+h)

h > 0. Since f ′ is continu-

ous on [a, b], then the function F

F(h) =
{ f ′(c+h)

h h 
= 0

f ′′(c) h = 0
(*)

is continuous at all h ∈ [a − c, b − c]. Now call upon Theorem 4.2. The
completion of the proof is left to you. �
You can frame and prove a theorem analogous to Theorem 5.10 for relative
maxima. It may be noted that Theorem 5.10 provides no information on the
nature of c if f ′′(c) = 0. The point c could be the location of a relative maximum,
of a relative minimum, or of neither.

■ Example 5.11
Line L, normal to the parabola y = x2 at P = (a, a2), is extended so as to intersect
the parabola again at Q (Figure 5.7). Find a > 0 that minimizes the y-coordinate
of the midpoint M of line segment PQ (Hall, 2003).

The tangent at P has slope 2a, so slope L = −1/2a. Denote Q = (x, y); then

y − a2

x − a
= x2 − a2

x − a
= x + a = −1/2a.

Solving for x, we obtain x = (−2a2 − 1
)
/2a, y = x2 = a2 + 1 + (1/4a2), and

the y-coordinate of M is then

yM = 1
2

(
y + a2) = a2 + (1/2) + (

1/8a2) = f (a).

O a

a2

Q M
P

y
y 5 x 2

slope 5 2a

x

FIGURE 5.7
Diagram for Example 5.11.
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Applying Theorem 5.9 first, we find (remembering that a > 0)

f ′(a) = 2a − (
1/4a3),

and f ′(a) < 0 for all a ∈ (0, 1/
4√8) and f ′(a) > 0 for all a ∈ (1/

4√8, ∞). Hence,
yM has a relative minimum at 1/

4
√

8.

But Theorem 5.5 says that at any point aM that is not an endpoint and where
f has both a derivative and a relative minimum, f ′ (aM) = 0 must hold. Hence,
the only relative minimum of yM occurs at aM = 1/

4
√

8.

■ Example 5.12
In the previous Example we find

f ′′(aM) = [
2 + (

3/4a4)]
a=aM

= 8 > 0,

so by Theorem 5.10 we again conclude that yM has a relative minimum at
aM = 1/

4
√

8. ■

The second derivative has other uses besides the classification of relative
extrema. For example, it is useful in the discussion of the concavity of curves
(Taylor, 1942).

5.6 TAYLOR’S THEOREM
In Section 3.6 we discussed briefly the notion of a series of functions, commonly
a power series, that converges pointwise on some domain D ⊆ R1 to a function
f . The following related definition is important.

Definition. A pointwise convergent series of functions whose value at any x ∈ D
is given by

∑∞
n=0 fn(x) represents a given function f iff at each x ∈ D the series

converges to the value f (x).

Taylor’s Theorem is concerned with the use of power series to represent func-
tions that are more complex than simple polynomials. There are several
approaches to Taylor’s Theorem, depending upon which ideas we assume at
the outset (Kalman, 1985; Kountourogiannis and Loya, 2003). Our discussion
is abstracted from Blumenthal (1926).4

We draw on the core idea in our alternative route to the Mean-Value Theorem
(Section 5.4), but we throw away all of the geometry. Let I be an open interval
about the point a and let x 
= a be in I. Also, let F, G, H be functions, each
defined on and having a derivative on [a, x] ⊂ I. For any t ∈ [a, x] we write, as

4The authors are indebted to Professor Troy Hicks (University of Missouri-Rolla) for drawing their
attention to this paper.
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before (the ± is now irrelevant),

K(t) =

∣∣∣∣∣∣∣
F(a) G(a) H(a)

F(t) G(t) H(t)

F(x) G(x) H(x)

∣∣∣∣∣∣∣ .

Since F, G are automatically continuous on [a, x], then there is a c ∈ (a, x) such
that5

K ′(c) =

∣∣∣∣∣∣∣
F(a) G(a) H(a)

F′(c) G′(c) H′(c)
F(x) G(x) H(x)

∣∣∣∣∣∣∣ = 0. (*)

The usefulness of equation (*) hinges upon the substitutions that we might
make for the entries in the determinant.

Now let f : I → R1 have a derivative on [a, x]. Theorem 5.7 tells us that
f (x) − f (a) − (x − a)f ′(c) = 0 for some c ∈ (a, x). In general, we have f (x) −
f (a) − (x − a)f ′(a) 
= 0. We denote it as R1(x), the remainder at x, because
the highest-order derivative that has been included is the first. We next
define F(t) = f (x) − f (t) − (x − t)f ′(t) and assume that f ′′ exists on [a, x]. Then
F(x) = 0, F(a) = R1(x), and F′(t) = −(x − t)f ′′(t) for all t ∈ [a, x]. Making these
substitutions in (*), we obtain

K ′(c) =

∣∣∣∣∣∣∣
R1(x) G(a) H(a)

−(x − c)f ′′(c) G′(c) H′(c)
0 G(x) H(x)

∣∣∣∣∣∣∣ = 0

for some c ∈ (a, x). The determinant is expanded and solved for R1(x):

R1(x) = (x − c)f ′′(c) G(x)H(a) − G(a)H(x)
G′(c)H(x) − G(x)H′(c)

,

where G, H must be chosen so that the denominator is nonzero.

To this end, let G(t) = (x − t)2, H(t) = k 
= 0, t ∈ [a, x]. Substitutions into the
expression for R1(x) lead to

R1(x) = 1
2

f ′′(c)(x − a)2,

5In order to avoid any misunderstanding, we adopt the convention in this section and the next two that
intervals [a, b] or (a, b) can mean either b > a or b < a, and that c ∈ (a, b) (for example) can mean either
a < c < b or a > c > b.
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and so we have

f (x) = f (a) + (x − a)f ′(a) + 1
2

f ′′(c)(x − a)2.

We have thereby extended the Mean-Value Theorem out to second-order.

The way to continue is now clear. We proceed to define R2(x) = f (x)−
f (a)− (x − a)f ′(a) − 1

2 (x − a)2f ′′(a), F(t) = f (x) − f (t) − (x − t)f ′(t)− 1
2 (x − t)2

f ′′(t), G(t) = (x − t)3, H(t) = k 
= 0, and require f ′′′ to exist on [a, x]. These
stipulations lead to an expression for R2(x). The final result, upon n-fold
extension of the sequence of steps, is (Exercise 5.41) as follows.

Theorem 5.11 (Taylor’s Theorem). Let I be an open interval about the point a
and let x 
= a be in I. For f : I → R1, suppose that f (n+1) exists on [a, x]. Then there
is a c ∈ (a, x), dependent upon a, x, and n, such that

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + · · · + f (n)(a)

n! (x − a)n + Rn(x)

= Tn(x) + Rn(x),

where Tn(x) = f (a) +
n∑

k=1
f (k)(a)(x − a)k/k! is the nth-order Taylor polynomial for

f at a, and the remainder is

Rn(x) = f (n+1)(c)
(n + 1)! (x − a)n+1.

■

The form of the remainder term in Theorem 5.11 is due to the Italian-born
French mathematician Joseph-Louis Lagrange (1736–1813). Other forms for
Rn(x) are obtainable (for example, see Theorem 5.14). Theorem 5.11, but with-
out the remainder term, was published in 1715 by the English mathematician
Brook Taylor (1685–1731), although the theorem was known to others before
him. If a = 0 in Taylor’s Theorem, then the name MacLaurin often is attached
to the result, even though this special case of Taylor’s Theorem was presented
in MacLaurin’s own book some 27 years after Taylor.

■ Example 5.13
From Examples 5.2 and 5.4 we can establish that the derivative of sin θ is
cos θ (Exercise 5.25(a)). Then from this and Taylor’s Theorem, we obtain

sin θ = sin a + cos a
1! (θ − a) − sin a

2! (θ − a)2 − cos a
3! (θ − a)3

+ sin a
4! (θ − a)4 + cos a

5! (θ − a)5 +
⌊−sin c

6! (θ − a)6
⌋

,



174 CHAPTER 5: Differentiation

for some c ∈ (a, θ). Choose, arbitrarily, θ = 2π/5 and a = π/2.

Then

|R5 (2π/5) | =
∣∣∣∣∣ −sin c

6!
(

2π

5
− π

2

)6
∣∣∣∣∣ = π6 |sin c|

7.20 × 108 < 1.335263 × 10−6.

Indeed, the absolute error in estimating sin(2π/5) by T5(2π/5) is calcu-
lated to be

∣∣0.951056516 (calculator) − {
1 − 1

2 (−π/10)2 + 1
24 (−π/10)4

}∣∣ =
1.332995 × 10−6, which is just less than 1.335263 × 10−6. ■

We now make the important connection between Taylor’s Theorem and the
representation of a function f by a power series. Whereas Tn(x) is always a
polynomial, f (x) − Tn(x) = Rn(x) is not generally a polynomial, so any Tn(x)
is an inadequate representation of f , and an infinite series is needed. Thus, as
stressed by Cauchy, we have the following.

Corollary 5.11.1. Suppose that f is defined on the open interval I and that f
has derivatives of all orders at each x ∈ [a, b] ⊆ I. Then the Taylor series f (a) +∑∞

n=1
f (n)(a)

n! (x − a)n represents f on [a, b] iff lim
n→∞ Rn(x) = 0 at each x ∈ [a, b].

■ Example 5.14
In Example 5.13, let a be arbitrary; then Rn(θ) satisfies

|Rn(θ)| =
∣∣∣∣ f (n)(c)
(n + 1)! (θ − a)n+1

∣∣∣∣ =
∣∣∣∣
{

sin c
cos c

∣∣∣∣
(n + 1)! |θ − a|n+1 <

|θ − a|n+1

(n + 1)! ,

for some c ∈ (a, θ). After some experimentation and a short inductive proof
(Exercise 5.43), we can show that for any n ∈ N

(
n + 1

3

)n+1

< (n + 1)!.

Hence, if θ 
= a is also arbitrary and if we set K = |θ − a|, then

0 <
|θ − a|n+1

(n + 1)! = Kn+1

(n + 1)! <
Kn+1(n+1
3

)n+1 =
(

3K
n + 1

)n+1

.

Then for all n > 6K − 1 the quantity 3K/(n + 1) is less than 1/2, and
0 < |θ − a|n+1/(n + 1)! < (1/2)n+1. It follows (Squeeze Theorem) that
lim

n→∞ |θ − a|n+1/(n + 1)! = 0 and lim
n→∞ Rn(θ) = 0, so from Corollary 5.11.1

the Taylor series for f (θ) = sin θ at any a represents f for all θ. ■
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It may be hard sometimes to work with the limit in Corollary 5.11.1 because
of the uncertain location of the point c in the formula for Rn(x). However, the
representation of f by its Taylor series also follows from a slightly different set
of hypotheses.

Corollary 5.11.2. If f is as in Corollary 5.11.1 and if there is an M > 0 (dependent
upon a or b) such that

∣∣ f n(x)
∣∣ ≤ Mn for all n and all x ∈ [a, b], then f is represented

on [a, b] by the series

f (a) +
∞∑

n=1

f (n)(a)

n! (x − a)n.

Proof. The proof is left to you. �

5.7 THE EXPONENTIAL AND LOGARITHMIC
FUNCTIONS

At various places in the book we have assumed minimal familiarity with the
exponential and logarithmic functions. We are now in a position to put them on
a secure footing. In Example 2.9 it was stated that the sequence {(1 + k−1)k}∞k=1
converges to the irrational number universally designated as e. What happens if
k−1 is replaced by x/k, where x 
= 0 is fixed but arbitrary (x = 0 is uninteresting)?

For any x 
= 0, we can establish (Exercise 5.50) that

[
1 + x

k + 1

]k+1

>

[
1 + x

k

]k

for all k > |x|. Let k0 be the smallest natural number larger than |x|. Then for
any x 
= 0 the sequence S1 given by

{(
1 + x

k

)k
}∞

k=k0

is an increasing sequence of positive numbers. Upon replacing x by −x
and taking reciprocals, we have that the corresponding, positive sequence S2

given by

{(
1 − x

k

)−k
}∞

k=k0

is a decreasing sequence. As S2 is bounded below by 0, then by the Completeness
Axiom (Theorem 2.2, specifically) it follows that S2 converges.
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Additionally, we have

(
1 − x

k

)−k −
(

1 + x
k

)k =
(

1 − x
k

)−k
[

1 −
(

1 − x2

k2

)k
]

<
(

1 − x
k

)−k
(

x2

k

)
if |x| < k

from Bernoulli’s Inequality (Theorem 1.7). Since the first factor on the right-
hand side is positive and bounded and lim

k→∞
(x2/k) = 0, then we see that each

term of S2 lies above the corresponding term of S1, and the difference between
the two sequences approaches 0. Hence, S1 is bounded above by the terms of
S2, so S1 also converges.

The following properties of exp(x), the common limit of S1 and S2, now emerge
and will serve to give us a clearer picture of exp(x):

1. exp(x) is a function of x (because limits are unique).

2. Since no restrictions on x were necessary in the development, then the
domain of exp(x) is R1.

3. In particular, exp(0) = 1 and exp(1) = e.

4. exp(x) is an increasing, positive function; this follows from the definition
of exp(x) and Theorem 2.8.

5. For 0 < |h| < 1, the following inequalities hold for all k ∈ N:

1 + h <

(
1 + h

k

)k

< exp(h) <

(
1 − h

k

)−k

< (1 − h)−1.

By the Squeeze Theorem (Exercise 2.22), we conclude that exp(h) is
continuous at h = 0.

6. For any x, y ∈ R1, we have for all k > |x + y|
(

1 + h
k

)k(
1 + y

k

)k

(
1 + (x + y)/k

)k
=
[

1 + xy/(k + x + y)
k

]k

. (*)

Choose k so large that |h| = |xy/(k + x + y)| < 1. Then from property (5)
the bracketed expression in equation (*) is sandwiched between 1 + h
and exp(h). In view of the continuity of exp(h) at h = 0, we conclude
that the bracketed expression approaches 1 as h → 0; that is, as k → ∞.
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Hence, we obtain, finally, the functional equation for exp(x):

exp(x) × exp(y) = exp(x + y). (**)

7. In particular, if y = −x, then from property (3) and equation (**) we
obtain exp(−x) = 1/ exp(x).

It follows that in property (4) “an increasing” can be replaced by “a strictly
increasing.”

8. Properties (3), (6), and (7) are those to be expected of any exponential
function ax; from (3) we obtain exp(1) = a1 = a = e and exp(x) = ex.

9. Use of Cauchy’s definition of the derivative now yields

(ex)′ = lim
h→0

ex+h − ex

h
= ex lim

h→0

eh − 1
h

,

from property (6), provided the limit exists. But from property (5)

we deduce if 0 < h < 1, then (1+h)−1
h < eh−1

h <
(1−h)−1−1

h , or equiv-

alently, 1 < eh−1
h < 1

1−h . All inequalities are reversed if 0 > h > −1.
Since lim

h→0
[1/(1 − h)] = 1, then by the Squeeze Theorem it follows

that lim
h→0

(eh − 1)/h = 1 and (ex)′ = ex . Clearly, ex has derivatives of all

orders.

We can now investigate the representation of ex by a Taylor series. Let a = 0 in
Theorem 5.11; then properties (3) and (8) give

ex = 1 + x + x2

2! + · · · + xn

n! +
ec

(n + 1)!x
n+1,

for some c ∈ (0, x). Let this interval be contained in [b, d], d > b. From property
(4), the function ex assumes its maximum value on [b, d] at d. As in the proof

of Corollary 5.11.2, |x|n+1

(n+1)! is the (n + 1)st term of a convergent infinite series

(how do you know this?). Hence, we have

lim
n→∞ ec |x|n+1

(n + 1)! ≤ lim
n→∞ ed |x|n+1

(n + 1)! = ed lim
n→∞

|x|n+1

(n + 1)! = ed × 0 = 0,

and by Corollary 5.11.1, the Taylor series 1 +∑∞
n=1

xn

n! represents ex on [b, d].
Since b, d were arbitrary, then ex can be so represented everywhere on its
domain R1.
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■ Example 5.15
For the routine estimation of the value of e, the use of the Taylor series is
better than use of the limit definition of exp(1). We have

e1/3 −
⌊

1 +
6∑

k=1

1

3kk!

⌋
>

<

{
1/
(
377!)

e1/3/
(
377!)

or

e1/3 >

<

⎧⎪⎨
⎪⎩

1.395612330 + 9.1 × 10−8

1.395612330

1 − (
9.1 × 10−8

) .

Finally, we obtain 2.718281805 < e < 2.718282066, in which the first uncer-

tain decimal place is the sixth. In contrast,
(
1 + k−1

)k has a value of about
2.71881 if k = 20, which is correct only to three decimal places. ■

Since ex is an increasing function on R1, then the function is an injection and
by Exercise 1.43(a) the inverse function, the logarithmic function, ln x, exists.
Its domain is the range of ex (Figure 5.8).

Some of the properties of ln x are as follows:

1. ln x is a strictly increasing function on (0,∞).

2. ln 1 = 0; ln e = 1.

3. If x, y > 0, then the functional equation for the logarithmic function is
ln(xy) = ln x + ln y.

20

10

021 1 2 3
x

y

ln x

e x

210

FIGURE 5.8
Partial graphs of the exponential function and the logarithmic function.
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4. lim
x→∞ ln x = ∞; lim

x→0+
ln x = −∞.

5. Use of Cauchy’s definition of the derivative gives

(ln x′) = lim
h→0

ln(x + h) − ln(x)
h

= 1
x

lim
y→0

ln(1 + y)
y

(h/x = y)

from property (3), provided the limit exists. If y ∈ (−0.20, 0) ∪ (0, 0.20),
then from the Taylor series representation of ey it follows that 1 + y < ey ,
and by property (1) and Exercise 1.43(d), we obtain ln(1 + y) < y.

Additionally, we can establish (Exercise 5.52(d)) that if y ∈ (−0.20, 0) ∪
(0, 0.20), then ey−2y2

< 1 + y holds. Consequently, y − 2y2 < ln(1 + y),
and so we have (after a division by y 
= 0)

1 − 2y <
ln
(
1 + y

)
y

< 1

when y ∈ (0, 0.20), and the inequalities are reversed when y ∈
(−0.20, 0). The Squeeze Theorem then gives lim

y→0+
ln(1+y)

y = 1, and we

conclude that (ln x)′ = 1/x for any x ∈ (0,∞). All the higher derivatives
of ln x follow from Exercise 5.13.

We cannot represent ln x as a Taylor series about a = 0 because of property
(4). Instead, we let f (x) = ln(1 + x) and for this function we choose a = 0. By
induction, we have for k ∈ N

f (k)(x) = (−1)k−1(k − 1)!
(1 + x)k

,

and then from Taylor’s Theorem

ln(1 + x) = f (0) +
n∑

k=1

f (k)(0)

k! xk + f (n+1)(c)
(n + 1)! xn+1

= 0 +
n∑

k=1

(−1)k−1(k − 1)!
k! xk + (−1)nn!/(1 + c)n+1

(n + 1)! xn+1

=
n∑

k=1

(−1)k−1

k
xk + (−1)n

(n + 1)(1 + c)n+1 xn+1,

for some c ∈ (0, x).
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The expansion is trivial for x = 0 because ln 1 = 0. If 0 < x < 1 holds, then
lim

n→∞ xn+1 = lim
n→∞ [1/(n + 1)] = 0 and 1/(1 + c)n+1 is bounded from above by

1. Thus, lim
n→∞ Rn(x) = 0; the same conclusion also holds at x = 1 (why?). By

Corollary 5.11.1, we conclude that the Taylor series for ln(1 + x) represents this
function for all x ∈ [0, 1]. We are not quite finished, however, with our analysis
of ln(1 + x); we shall complete it in the next section.

■ Example 5.16
Direct use of the Taylor series as a way to estimate ln 2 is not very good
because that series for ln(1 + x) converges very slowly for x = 1. It is known
that ln 2 ≈ 0.693147; Taylor polynomials, Tn(1), of various degrees give the
results shown in Table 5.3.

Table 5.3 Estimations of ln 2

n Tn(1) | error |

3 0.833333 0.140186
6 0.616667 0.076480
9 0.745635 0.052488

12 0.653211 0.039936

On the other hand, arithmetic gives ln 2 = 2 ln(10/9) + 2 ln(6/5) + ln(9/8).
Approximating each individual logarithm on the right-hand side by corre-
sponding Taylor polynomials T6(x), we obtain

ln 2 ≈ 2T6(1/9) + 2T6(1/5) + T6(1/8)

= 2(0.1053605) + 2(0.1823199) + 0.1177830

= 0.693144.

The magnitude of our error is now 3 × 10−6, which is much better. ■

5.8 RADIUS OF CONVERGENCE
In the consideration of the Taylor series representation of a function f (x), there
are always two general issues:

1. Determine for which set S of values of x the Taylor series about some
point a converges.

2. Determine for which set S′ ⊆ S of values of x the remainder Rn(x)
approaches 0 as n → ∞.
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Both issues must be resolved because it is possible for a Taylor series for f (x) to
converge at some x = x0, but not to the value f (x0) (Exercise 5.68). We need to
examine convergence of power series a little more closely.

Theorem 5.12 (Cauchy-Hadamard6 Theorem). For the power series
∞∑

n=0
cn(x − a)n

(a) convergence of the series at x = x0 
= a implies absolute convergence of the
series at all x such that |x − a| < |x0 − a|;

(b) divergence of the series at x = x′ implies divergence of the series at all x such
that |x − a| > |x′ − a|.

Proof.

(a) By Theorem 3.3 the sequence
{
cn (xn − a)n}∞

n=0 converges to 0, and by
Theorem 2.4 this sequence is bounded: |cn(x0 − a)n|< L, for some L > 0
and for all n ∈ N ∪ {0}. Selecting any x such that |x − a| < |x0 − a| and
defining r = |x − a|/|x0 − a| < 1, we obtain

∣∣cn (x − a)n ∣∣ = ∣∣cn (x0 − a)n ∣∣ ∣∣∣∣ x − a
x0 − a

∣∣∣∣
n

< Lrn.

By the Comparison Test (Theorem 3.4), we then see that∑∞
n=0 |cn(x − a)n| converges because

∑∞
n=0 L rn = L/(1 − r).

(b) Suppose, to the contrary, that there is an x such that |x − a| >

|x′ − a|, and yet
∑∞

n=0 cn(x − a)n converges. But then, by part (a),∑∞
n=0 |cn

(
x′ − a

)n| would have to be convergent, and by Theorem 3.8,
so would

∑∞
n=0 cn

(
x′ − a

)n, a contradiction of hypothesis. Hence,∑∞
n=0 cn(x − a)n must diverge. �

Part (a) of the theorem indicates that the power series converges for those x
in the shaded region in Figure 5.9, which is an interval. The theorem says, in
short, that convergence is restricted only to intervals. Any such interval may be
just a point, or an interval of nonzero, finite length, or all of R1. We are led,
therefore, to the following key definition:

6After the versatile French mathematician Jacques S. Hadamard (1865–1963), one of two individuals
who first proved the Prime Number Theorem (in 1896). Theorem 5.12, and especially the formula in
Theorem 5.13, were given by Hadamard in his doctoral dissertation of 1892 (Maz’ya and Shaposhnikova,
1998).
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x

2a 2x0 x0

R1

a

x

FIGURE 5.9
An interval of convergence of a power series.

Definition. If R is the largest real number such that
∑∞

n=0 cn(x − a)n converges
for all x that satisfy −R < x − a < R, then R is called the radius of convergence of
the series and (−R, R) is the interval of convergence. If the series converges only
for x = a, we define R = 0, and if the series converges for all real x, we define
R = ∞.

The definition makes no statement about the possible convergence of∑∞
n=0 cn(x − a)n at the endpoints when R > 0. Anything can happen there, so

the endpoints must always be investigated separately (Exercise 5.57).

Theorem 5.13. For the power series
∑∞

n=0 cn(x − a)n, let ρ = lim
n→∞ sup |cn|1/n.

Then the radius of convergence is given by

R =
⎧⎨
⎩

1/ρ 0 < ρ < ∞
0 ρ = ∞
∞ ρ = 0.

Proof. Since the general term of the power series is cn(x − a)n, we have

lim
n→∞ sup |cn(x − a)n|1/n = |x − a| lim

n→∞ sup |cn|1/n = ρ|x − a|.

The completion of the proof is left to you. �

■ Example 5.17
For the power series 1 + (x − 1) + (x−1)2

4 + (x−1)3

9 + · · · , where cn = 1/n2,
n > 0, we have

ρ = lim
n→∞ sup |cn|1/n = lim

n→∞ |cn| 1/n = lim
n→∞ n−2/n.

Define the sequence
{
pn
}∞

n=1 by pn = [−2 ln n]/n. We can establish (Exer-
cise 5.58) that lim

n→∞ pn = 0. Since ex is continuous at x = 0, then it follows

from Theorem 4.1 that the sequence
{
n−2/n

}∞
n=1 = {

epn
}∞

n=1 converges to
e0 = 1. Finally, from Theorem 5.13, we obtain R = 1/ρ = 1. ■
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■ Example 5.18
In the Taylor series about a = 0 for ln(1 + x), we have cn = (−1)n−1/n, n > 0.
Then

ρ = lim
n→∞ sup |cn|1/n = lim

n→∞|cn|1/n = lim
n→∞ n−1/n = 1,

by reasoning practically identical to that in the previous example. Thus, R = 1
and the interval of convergence of the Taylor series for ln(1 + x) is (−1, 1). It
is, therefore, pointless to investigate the behavior of the remainder Rn(x) for
any x > 1. We already know that lim

n→∞ Rn(1) = 0. ■

We still need to deal with the remainder in the Taylor series expansion of ln(1 +
x) when −1 < x < 0 because the Lagrange form of the remainder is inadequate
for this purpose. Another form of the remainder will do what we need.

Theorem 5.14 (Cauchy’s Form of the Remainder).7 Under the same hypothe-
ses as in Theorem 5.11, the expansion of f is nearly identical except that the remainder
is given by

Rn(x) = (x − c)n

n! (x − a)f (n+1)(c)

for some c ∈ (a, x).

Proof. In (*) in Section 5.6, let F(t) = f (x) − f (t) −∑n
k=1

(x−t)k

k! f (k)(t),
G(t) = x − t, and H(t) = h 
= 0; the completion of the proof is left to you. �

For f (x) = ln(1 + x), we have f (n+1)(x) = (−1)nn!/(1 + x)n+1, so when −1 <

x < c < 0 holds, Cauchy’s form of the remainder becomes

|Rn(x)| = |x||x − c|
(1 + c)n+1 = |x||x|n(1 − cx−1)n

(1 + c)(1 + c)n

<
|x|n

1 + x

(
1 − cx−1

1 + c

)n

.

We can show, additionally, that

0 <
1 − cx−1

1 + c
< 1,

so |Rn(x)| < |x|n/(1 + x), and as |x| < 1, then lim
n→∞ |Rn(x)| = lim

n→∞ |x|n = 0. We

conclude, finally, that the Taylor series for ln(1 + x) represents the function
precisely for all x ∈ (−1, 1].

7So-called because Cauchy presented this form in his 1826 book Exercices de mathématiques.
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5.9 l’HÔPITAL’S RULE
Elucidation of the limit in property (9) for ex (Section 5.7), of the limit in
property (5) for ln x, and of the limit in Example 5.17 (Section 5.8) would
have been easier if we had employed the best-known theorem in all of calculus.
The theorem is associated with the name of the French marquis Guillaume
F.A. de l’Hôpital (1661–1704), but is now known to have originated with
Johann Bernoulli (Truesdell, 1958). We split the theorem, known universally
as l’Hôpital’s Rule, into two parts and prove each part differently in order to
provide additional applications of some topics already covered in the text.

Theorem 5.15 (l’Hôpital’s Rule). Suppose that f , g are continuous on [a, b] and
have derivatives everywhere on (a, b), that g′(x) 
= 0 on (a, b), that f (b) = g(b) = 0,
and that lim

x→b−
[ f ′(x)/g′(x)] = L ∈ R1. Then we have lim

x→b−
[ f (x)/g(x)] = L.

Proof. By hypothesis, if ε > 0 is given, then there is a δ > 0 such that b − δ <

x < b implies
∣∣∣ f ′(x)

g′(x) − L
∣∣∣ < ε. At the same time, for each such x the Generalized

Mean-Value Theorem (Theorem 5.8) applies:

[ f (b) − f (x)] g′ (cx) = [g(b) − g(x)] f ′ (cx) ,

for some cx that satisfies x < cx < b. Setting f (b) = g(b) = 0, we obtain f (x)
g(x) =

f ′(cx)

g′(cx)
. But b − δ < x < b implies b − δ < cx < b, so we also have

∣∣∣ f (x)
g(x) − L

∣∣∣ < ε.

As ε is arbitrary, this says that lim
x→b−

f (x)
g(x) = L. �

It is essential that f and g both approach 0 as x → b−; therefore, these must
be checked ahead of time. Also, note that f (x)/g(x) is defined throughout
(a, b) (how do you know this?), so we are entitled to seek its limit as x → b−
(Exercise 5.63).

■ Example 5.19
Find lim

x→0−
tan x−(x/2)

sin x .

The numerator and denominator each approach 0 as x → 0−. Designating
f (x) = tan x − (x/2) and g(x) = sin x, we have

f ′(x)
g′(x)

= sec2 x − (1/2)

cos x
.

The derivatives exist everywhere on (−1, 0) and cos x 
= 0 on this interval.
Then lim

x→0−
f ′(x) = 1/2 and lim

x→0−
cos x = 1, and Theorem 5.15 gives

lim
x→0−

f (x)
g(x)

= 1
2

. ■
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■ Example 5.20
From property (5) of ln x in Section 5.7, we obtain

lim
y→0+

ln(1 + y)
y

= lim
y→0+

1/(1 + y)
1

= 1.
■

Corollary 5.15.1. Suppose for some a > 0 that f and g are continuous on [a,∞)

and have derivatives on (a,∞). Suppose also that g(x) 
= 0 and g′(x) 
= 0 on (a,∞),
that lim

x→∞ f (x) = lim
x→∞ g(x) = 0, and that lim

x→∞ [f ′(x)/g′(x)] = L ∈ R1. Then we

have

lim
x→∞

f (x)
g(x)

= L.

Proof. Let z = x−1; then z → 0+ as x → ∞, and Theorem 5.15 (together with
Theorem 5.3) can be applied. The completion of the proof is left to you. �

In the second part of l’Hôpital’s Rule we do not make any use of a mean-value
theorem. However, we do call upon continuity explicitly, and some elementary
manipulations with inequalities are needed (Boas, Jr., 1969; Hartig, 1991).

Theorem 5.16 (l’Hôpital’s Rule). Suppose that f , g have continuous deriva-
tives on (a, b), that g′(x) 
= 0 on (a, b), that lim

x→b−
f (x) = lim

x→b−
g(x) = ∞, and that

lim
x→b−

[ f ′(x)/g′(x)] = L. Then we have

lim
x→b−

f (x)
g(x)

= L.

Proof. We do the case where b and L are both finite; only minor changes in the
proof are needed for other cases.

Given ε > 0, there exists a δ, 0 < δ < (b − a), such that x ∈ (b − δ, b) implies

−ε/2 <
[
f ′(x)/g′(x) − L

]
< ε/2.

Since g′ is continuous and is never 0 on (a, b), it follows from the Intermediate-
Value Theorem that g′ is of fixed sign. Without loss of generality, we suppose
that g′(x) > 0. These two inequalities are equivalent to

−1
2

εg′(x) < f ′(x) − Lg′(x) <
1
2

εg′(x). (*)

The right-hand inequality in equation (*) is equivalent to

f ′(x) − [(ε/2) + L] g′(x) < 0
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for all x ∈ (b − δ, b). But if a continuous function of negative value everywhere
on a finite interval [t1, t2], t1 < t2, is integrated, the result is a negative number.
Hence, we obtain for b − δ ≤ t1 < t2 < b

∫ t2

t1

{
f ′(x) − [(ε/2) + L] g′(x)

}
dx

= f (t2) − f (t1) − [(ε/2) + L] [g(t2) − g(t1)] < 0.

For t2 sufficiently close to b we have g(t2) > 0, since we assumed g′(x) > 0. The
previous inequality, upon rearrangement and division by the positive g(t2),
becomes

f (t2)

g(t2)
−
( ε

2
+ L

)
<

f (t1) − (
ε
2 + L

)
g(t1)

g(t2)
.

Fix t1; then for t2 sufficiently close to b, the denominator on the right-hand side
will be so large that the right-hand side is less than ε/2. Hence,

f (t2)

g(t2)
− L <

ε

2
+ ε

2
= ε. (**)

By a parallel line of development from the left-hand inequality in equation (*),
we can obtain (Exercise 5.66)

−ε <
f (t2)

g(t2)
− L

(verify!). This result, together with equation (**), implies that

lim
t2→b−

f (t2)

g(t2)
= L.

�

■ Example 5.21
Find lim

x→(π/2)−
sec x−3
tan x+2 .

The numerator and denominator approach ∞ as x → (π/2)−. Designat-
ing f (x) = sec x − 3 and g(x) = tan x + 2, we see that f ′(x) = sec x tan x and
g′(x) = sec2 x are both continuous on (0, π/2), that sec2 x 
= 0 on (0, π/2),
and that

lim
x→(π/2)−

f ′(x)
g′(x)

= lim
x→(π/2)−

sec x tan x
sec2 x

= lim
x→(π/2)−

tan x
sec x

= lim
x→(π/2)−

sin x
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is equal to L = 1. By Theorem 5.16, we conclude that lim
x→(π/2)−

[f (x)/g(x)] = 1

also. ■

It is possible to formulate an analog of l’Hôpital’s Rule that applies to pairs of
numerical sequences rather than pairs of continuous functions. The proof is
practically the same, except that arithmetic operations must be substituted for
any differentiations and integrations (Boas, Jr., 1969; Huang, 1988). We state
the result without proof.

Theorem 5.17 (Discrete l’Hôpital’s Rule). Suppose that
{
fn
}∞

n=1,
{
gn
}∞

n=1 are
sequences in R1, that lim

n→∞ fn = lim
n→∞ gn = 0 or ∞, that � gn = gn+1 − gn does not

change sign for all sufficiently large n, and that lim
n→∞�fn/�gn = L, L ∈ R1 or Re.

Then we have

lim
n→∞

fn
gn

= L.

■ Example 5.22
Find lim

n→∞
[

12+32+52+···+(2n−1)2

22+42+62+···+(2n)2

]
.

The numerator and denominator approach ∞ as n → ∞.

Designating fn = 12 + 32 + 52 + · · · + (2n − 1)2 and gn = 22 + 42 +
62 + · · · + (2n)2, we find that �gn = (2n + 2)2 > 0 for all n ≥ 1 and

�fn
�gn

= (2n + 1)2

(2n + 2)2 = 1 + (1/n) + (
1/4n2

)
1 + (2/n) + (

1/n2
) .

Then lim
n→∞

(
�fn/�gn

) = 1, so by Theorem 5.17 lim
n→∞

(
fn/gn

) = 1 also. ■

5.10 DIFFERENTIABILITY OF FUNCTIONS Rn → R1

Suppose that f : S → R1, S ⊆ R2, is a function. The Cauchy quotient is,
formally,

f (p ⊕ h) − f (p)

h
,

where p = (x1, x2) , h = (
h1, h2

)
, and p, p ⊕ h ∈ S. Division by a vector is not

defined in R2, however, so Cauchy is of no help in trying to frame a definition
of an acceptable definition of f ′(p). We could set up and possibly evaluate the
following limit of an acceptable Cauchy quotient:

(
D1f

)
(p) = lim

h1→0

f
(
x1 + h1, x2

)− f (p)

h1
.
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If the limit exists (in R1), then we call
(
D1f

)
(p) the first-order partial derivative

of f with respect to the first independent variable at the point p. Similarly, if
this limit exists:

(
D2f

)
(p) = lim

h2→0

f
(
x1, x2 + h2

)− f (p)

h2
,

then we call
(
D2f

)
(p) the first-order partial derivative of f with respect to the

second independent variable at the point p.

Neither of the two partial derivatives of f , however, can serve as “the” derivative
of f at p for at least two reasons:

1. Each partial derivative measures the rate of change of f in a definite
direction. There is no compelling reason for choosing any particular
direction as the basis of a definition of the derivative.

2. It is not hard to concoct a function f in R2 for which both partial
derivatives exist at some p, but for which the function is discontin-
uous at p (Exercise 5.69). In the effort to generalize from functions
in R1, it is desirable to preserve in higher dimensions the very basic
Theorem 5.1.

A different approach from Cauchy’s is needed; let us reexamine the one-
dimensional case. Suppose that f (x) has a derivative at x = a. The equation
of the line tangent at this point is y = f ′(a)(x − a) + f (a) and, as Figure 5.10
suggests, in the close vicinity of x = a the function f behaves nearly linearly
because f has a derivative at x = a. If we define e(h) = f (a+h)−f (a)

h − f ′(a) and

f(a 1 h)

f(x)

y 5f9(a)(x 2 a) 1f(a)

h e(h)

f(a)

a a 1 h
x

y

FIGURE 5.10
Linearization of the function f near x = a.
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then set e(h)h = E(h)|h|, we obtain

�f = f (a + h) − f (a)

= f ′(a)h + E(h)|h|
≈ f ′(a)h, (lim

h→0
E(h) = 0).

The key observation here is that f ′(a)h is the value of a linear function. That is,
we may think of the derivative of f at a, not as a mere number (which it is, of
course) but rather as a linear mapping L that transforms any h ∈ R1 into f ′(a) h:

L(h) = f ′(a)h.

Now let us move up to two dimensions. Let f : S → R1, S ⊆ R2, be a function
of two independent variables. Suppose that p = (x1, x2) is any interior point of
S at which the two first-order partial derivatives of f exist and are continuous
in a sufficiently small 2-ball about the point p. Suppose also that the norm
||h|| of h = (h1, h2) is so small that p ⊕ h ∈ S. We have

�f = f
(
p ⊕ h

)− f (p)

= [
f
(
x1 + h1, x2 + h2

)− f
(
x1, x2 + h2

)]+ [
f
(
x1, x2 + h2

)− f (x1, x2)
]

= [(
D1f

) (
x1 + θ1h1, x2 + h2

)]
h1 +

[(
D2f

) (
x1, x2 + θ2h2

)]
h2,

from the Mean-Value Theorem, and where θ1, θ2 ∈ (0, 1) depend upon h1, h2.

Since D1f , D2f are continuous at and near p, we have{(
D1f

)(
x1 + θ1h1, x2 + h2

) = (
D1f

)
(p) + e1(h)(

D2f
)(

x1, x2 + θ2h2
) = (

D2f
)
(p) + e2(h),

(*)

for h1, h2 near 0 and where e1(h), e2(h) are functions that tend to 0 as h → 0. In
equations (*), let e1(h)h1 = E1(h)||h||, e2(h)h2 = E2(h)||h||, E1(h) + E2(h) =
E(h); then upon using row and column symbolism for vectors in R2,8 we obtain
for �f

�f = f (p ⊕ h) − f (p)

=
(
(D1f )(p) (D2f )(p)

)( h1

h2

)
+ E(h)||h||.

We see, similar to the one-dimensional case, that the first term on the right-
hand side is the value of a linear mapping, this time at the argument h. This is

8Can you conjecture why we might do this? Resist peeking ahead to Exercise 5.75.
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O

slope 5 (D2f )(p)

b

x2

x1
a

z = f(x1, x2)

z

p5 (a, b)

FIGURE 5.11
Geometric interpretation of (D2f )(p) as the slope of a line in the x2z-plane.

true because partial derivatives are themselves linear mappings; thus, for any
h, k ∈ R2, we have (∗ denotes the inner product in R2)(

(D1f )(p) (D2f )(p)
)
∗ (h ⊕ k) =

(
(D1f )(p) (D2f )(p)

)
∗ h

+
(
(D1f )(p) (D2f )(p)

)
∗ k.

Still other aspects of the two-dimensional case are analogous to the one-
dimensional case. For example, the partial derivatives have a geometric inter-
pretation (Figure 5.11) similar to that of the one-dimensional derivative in
Figure 5.10. Additionally, in the one-dimensional case, the symbol dx can be
used in place of �x or h for any increment of the independent variable x. The
dx is called a differential of x. The differential of a function f at a point a + h
near a fixed point a is then defined to be

df = f ′(a) dx = f ′(a)h.

It is a function of the two independent, real variables a, h. The differential df is,
as seen earlier, an approximation to f (a + h) − f (a) when h is close to 0.

In the two-dimensional case the analogous definition of the differential of a
function f at a point p ⊕ h is

df =
(
(D1f )(p) (D2f )(p)

)
∗ h.

It is a function of the four independent, real variables x1, x2, h1, h2. The df here is
an approximation to f (p ⊕ h) − f (p) when ||h|| is close to zero (Figure 5.12).

The vector
(
(D1f )(p) (D2f )(p)

)
is known as the gradient of f at p, and is

commonly denoted by grad f ,∇f , or better yet, ∇f (p).
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Plane tangent
to surface at Q

O

z

x2

df 2 [ f( ) 2 f(p)]

z 5 f(x1, x2)

x1

p
p h+

p h+

Q

FIGURE 5.12
The difference df − [f (p ⊕ h) − f (p)] is small when p ⊕ h is close to p, and is given by the vertical
separation at p ⊕ h between the surface z = f (x1, x2) and its tangent plane at Q.

■ Example 5.23
Estimate f (x1, x2) = 3

√
1 + x1 sin(2x2) at (1, 1); assume values of π ≈

3.141593,
√

3 ≈ 1.732051.

Let p ⊕ h = (1, 1), h =
(

2 − (53
42

)3
, 1 − π

3

)
. Then p =

((53
42

)3 − 1, π
3

)
and

f (p ⊕ h) ≈ f (p) + ∇f (p) ∗ h

= 53
42

sin
2π

3
+ sin(2x2)

3 3
√

(1 + x1)2

∣∣∣∣∣
p

[
2 −

(
53
42

)3
]

+ 2 3
√

1 + x1 cos(2x2)

∣∣∣
p

[
1 − π

3

]

= 53
√

3
84

+
√

3/2
3(53/42)2

[
2 −

(
53
42

)3
]
+ 106

42

(−1
2

)[
1 − π

3

]

≈ 1.150685.

The calculator value of f (1, 1) is 1.145643; our error is 0.44%. ■

We are now ready to generalize and give meaning to differentiability and to the
derivative of real-valued functions defined on Rn, n > 1.

Definition. A function f : S → R1, S ⊆ Rn, is said to be differentiable at p ∈ S
iff there exists a linear mapping L and a function E(h) : Rn → R1, defined for h ∈ Rn
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of sufficiently small norm, such that

f
(
p ⊕ h

) = f (p) + L ∗ h + E(h)||h||

and lim
h→0

E(h) = 0. The linear mapping L is called the derivative of f at p. A function

f is differentiable on a set S iff it is differentiable at each p ∈ S.

Some elementary deductions can be made from the preceding definition if
we know that a certain function f : S → R1, S ⊆ Rn, is differentiable at a point
p ∈ S. The following theorem is important.

Theorem 5.18. If f : S → R1, S ⊆ Rn, is differentiable at p ∈ S, then

(a) the linear mapping L is unique for a given p ∈ S;

(b) the derivative of f at p is ∇f (p);

(c) f is continuous at p.

Proof. Work with the definitions of the partial derivatives and of differentia-
bility at a point. The proof is left to you. �

■ Example 5.24
Consider the function f : R2 → R1, where f : R2 → R1, where

f (p) =
{

x1x2/
(
x2

1 + x2
2

)
p = (x1, x2) 
= 0

0 p = 0.

When x1 
= 0, then f (x1, 0) = 0 and

(D1f )(0) = lim
h1→0

f
(
h1, 0

)− f (0)

h1

= lim
h1→0

0
h1

= 0.

Similarly, we have (D2f )(0) = 0, so both partial derivatives are defined at 0.
However, along the line x2 = 2x1 we have f (x1, x2) = 2x2

1/5x2
1 and

lim
(x1,x2)→(0,0)

f (x1, x2) = lim
x1→0

[
2x2

1/5x2
1
] = 2/5 
= f (0).

Thus, f is not continuous at p = 0, so it is not differentiable there either. ■

Although we have now the definition of differentiability for functions f : Rn →
R1, it is better suited for theoretical than practical purposes. A criterion for
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determining differentiability would be useful. The Mean-Value Theorem proves
helpful, once again. For simplicity, we prove the basic result for functions
defined on S ⊆ R2, but the result holds for Rn in general.

Theorem 5.19. Let f be defined on some open set S ⊆ R2 and assume that its two
first-order partial derivatives exist everywhere on S and are continuous there. Then f
is differentiable on S.

Proof. Let p = (x1, x2) be an arbitrary point in S, and let h = (h1, h2) 
= (0, 0)

be of small enough norm that p ⊕ h is also in S. Then, as outlined previously,
the Mean-Value Theorem leads to the existence of numbers θ1, θ2 ∈ (0, 1) such
that {[(

D1f
) (

x1 + θ1h1, x2 + h2
)− (

D1f
)
(p)

] = e1(h)[(
D2f

) (
x1, x2 + θ2h2

)− (
D2f

)
(p)

] = e2(h).

Because D1f , D2f are continuous on S, then lim
h→0

e1(h) = lim
h→0

e2(h) = 0.

After defining E(h) by

e1(h)h1 + e2(h)h2 = E(h)||h||,

we obtain for f (p ⊕ h)

f (p ⊕ h) = f (p) + [∇f (p)] ∗ h + E(h)||h||.

All that remains for the definition of differentiability of f at p is to show
that limh→0 E(h) = 0. But for any nonzero h we automatically have −1 ≤
h1/||h|| ≤ 1, and similarly for h2. Thus,

−|e1(h)| ≤ h1e1(h)/||h|| ≤ |e1(h)|,

and the Squeeze Theorem then gives

lim
h→0

h1e1(h)/||h|| = 0,

and similarly for h2e2(h)/||h||. It follows that

lim
h→0

E(h) = lim
h→0

h1e1(h) + h2e2(h)

||h|| = 0,

so f is differentiable at p. Since p was arbitrary, then f is differentiable on S. �

The theorem is a sufficiency condition for differentiability. There are functions
f : R2 → R1 that are differentiable at some point p, but D1f and/or D2f fail to
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be continuous at that point. Of course, D1f and D2f certainly have to exist at p.
In the great majority of cases, if you are able to find formulas for D1f and D2f
that are valid on some open set S ⊆ R2, then f will be differentiable there.

■ Example 5.25
In Example 5.24 the function f is differentiable on any bounded, open set
S ⊆ R2 that excludes the origin. To see this, we first compute for any point
p = (x1, x2) in S

(D1f )(p) = x3
2 − x2

1x2(
x2

1 + x2
2

)2 .

Each term in the numerator is continuous anywhere in S, as are the terms
in the denominator; these statements follow from Theorem 4.3. Further, the
denominator is never 0 on S, so by Theorem 4.3 again the quotient is contin-
uous anywhere in S. A similar conclusion holds for (D2f )(p). Theorem 5.19
now applies. ■

It can be surmised from the definition of differentiability in this section that
the whole theory of differentiation could be developed along the lines begun in
Section 5.2. A step toward this is the extension of Carathéodory’s vision of the
derivative to functions of several independent variables (Botsko and Gosser,
1985).

Theorem 5.20. If T ⊆ Rn is open, then the function f : T → R1 is differentiable
at p ∈ T iff there is a function g : T → Rn that is continuous at p and satisfies

f (y) = f (p) + g(y) ∗ (y − p)

for all y ∈ T.

Proof. (→) Suppose that f is differentiable at p, so that

f (y) = f (p) + L ∗ (y − p) + E(y − p)||y − p||
holds, where L is a linear operator and the function E : Rn → R1

satisfies lim
y→p

E(y − p) = 0. From Theorem 5.18(b) we know that L =(
(D1f )(p)

(
D2f

)
(p) · · · (Dnf

)
(p)

)
. Then

f (y) = f (p) +
n∑

i=1

[(
Dif

)
(p)

] (
yi − xi

)+ E(y − p)

||y − p||
n∑

i=1

(
yi − xi

)2, (*)

where xi, yi are the ith components of p, y, respectively. Now define for each
i = 1, 2, 3, . . . , n

gi(y) =
{(

Dif
)
(p) + E(y − p)

yi−xi
||y−p|| y 
= p(

Dif
)
(p) y = p.
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Equation (*) then simplifies when y 
= p to

f (y) = f (p) + g(y)∗(y − x) (**)

where g(y) =
(
g1(y) g2(y) · · · gn(y)

)
. The function g is continuous at p since

each component is continuous there. Equality in equation (**) then clearly
holds when y = p, so equation (**) is true for all y ∈ T.

(←) Suppose, conversely, that there is a function g : T → Rn that is continuous
at p and satisfies f (y) = f (p) + g(y) ∗ (y − p). For i = 1, 2, . . . , n, define ei(y −
p): T → R1 by

ei(y − p) = gi(y) − gi(p),

and then define e(y) : T → Rn by

e(y) =
(
e1(y − p) e2(y − p) · · · en(y − p)

)
.

It follows that

f (y) = f (p) + g(y) ∗ (y − p) = f (p) + [g(p) ⊕ e(y)] ∗ (y − p).

For any p ∈ T, g(p) is just a (1 × n)-dimensional array of constants and is, thus,
a linear mapping T → Rn. Set L = g(p) and define the function E by

E(y − p) =
⎧⎨
⎩

e(y) ∗ (y − p)

||y − p|| y 
= p

0 y = p.

For all y ∈ T we then have

f (y) = f (p) + L ∗ (y − p) + e(y) ∗ (y − p)

= f (p) + L ∗ (y − p) + E(y − p)||y − p||.
Finally, for each i = 1, 2, . . . , n, lim

y→p
ei(y − p) = lim

y→p
[gi(y) − gi(p)] = 0 because

g is continuous at p. Thus, lim
y→p

e(y) = 0 and lim
y→p

E(y − p) = 0 = E(0); hence,

from the definition, we have shown the differentiability of f at p. �
Incidentally, the first half of the theorem shows that if f is differentiable at p,
so that

f (y) = f (p) + g(y) ∗ (y − p)

holds, then g(p) is the derivative of f at p; that is, g(p) = (∇f )(p). The form
of this equation corresponds (in Rn) to the definition in Section 5.2 and to
Theorem 5.4. Continuing the development, we could use Theorem 5.20 to
obtain chain rules for differentiation that would be extensions of Theorem 5.3.
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EXERCISES

Section 5.1
5.1. (a) Use Cauchy’s definition expressed in limit language to show that f : R1 → R1, f (x) =

x1/3, has a derivative at any x 
= 0.
(b) Reexpress Cauchy’s definition in δ, ε-language and use it to show that f : [−1,∞) →

R1, f (x) = √
1 + x, has a derivative at x = a = 3.

5.2. Produce a function that illustrates the falsity of the converse of Theorem 5.1.
What are the “sided” derivatives of f at a, if they exist?

5.3. Determine for which values of x the following functions have a derivative: (a) f :
R1 → R1, f (x) = x|x|, (b) g : R1 → R1, g(x) = | cos(x)|, (c) h: [−1, 2] → R1, h(x) =
|x| − |x − 1|.

5.4. The Dirichlet function f : R1 → R1 is f (x) =
{

1 x ∈ Q
0 x /∈ Q.

Assume that you are

not in possession of Example 4.6. Prove that f does not have a derivative anywhere.

5.5. Prove parts (a) and (c) of Theorem 5.2.

5.6. Assume that you are not yet in possession of the Chain Rule, but that you do
have Theorem 5.2 and Example 5.4. How could you work out the derivative of
f : (−π/4, π/4) → R1, f (θ) = √

cos(2θ) ?

5.7. Let S be a set of elements on which are defined two binary operations, ⊕ and ⊗,
called (generically) addition and multiplication; that is, if a, b ∈ S, then a ⊕ b ∈
S and a ⊗ b ∈ S. Then the algebraic structure < S,⊕,⊗ > is called a ring if the
following hold: (1) < S,⊕ > is a group (refer to Exercise 4.19); (2) ⊗ obeys the
associative law: if a, b, c ∈ S, then a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c; (3) the two distributive
laws are obeyed: if a, b, c ∈ S, then a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c =
(a ⊗ c) ⊕ (b ⊗ c). Let S be the set of all real-valued functions defined on 0 ≤ x ≤
2 that have a derivative at x = 1, and let ⊕,⊗ be ordinary, pointwise addition,
multiplication. Prove that < S,⊕,⊗ > is a ring.

Section 5.2

5.8. Prove Theorem 5.4. Apply the theorem to the evaluation of the derivative of f :
[0,∞) → R1, f (x) = √

x + 1, at a = 2.

5.9. A student argues that “Carathéodory’s definition is not really so useful because it
does not give an explicit formula for the derivative of a function f (x).” How would
you respond?

5.10. Suppose that in Example 5.5 the function f : R1 → R1 had been f (x) = cos x.
What, then, would be the function φ1(x)?

5.11. Use Carathéodory’s definition to reprove Theorem 5.2(a).
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5.12. INVERSE FUNCTION THEOREM

Suppose that f is continuous and strictly monotonic on an open interval I that
contains a and that f ′(a) 
= 0. Then g = f−1 has a derivative at b = f (a) that
is given by g′(b) = 1/

[
f ′(a)

]
.

Begin with Carathéodory’s statement that f has a derivative at x = a; let U be the
open interval that is the domain of f−1. Now rewrite Carathéodory’s statement
in terms of the variable y = f (x), and make use of Theorems 4.3 and 4.4 and
Exercise 4.52(d).
(a) Complete the proof of the Inverse Function Theorem.
(b) Apply theTheorem to y = f (x) = x3 + 1 and compute the derivative of f−1 at y = b = 2.

5.13. (a) Suppose that n ∈ N is even and that f : [0,∞) → R1 is defined by f (x) = xn. Use
the Inverse Function Theorem (IFT) to show that the derivative of g = f−1 is g′(y) =
n−1yn−1−1, y > 0.

(b) In this case suppose that n ∈ N, n > 1 is odd and that f : R1 → R1 is again f (x) = xn.
Apply the IFT again to obtain g′(y).

5.14. Let α = m/n > 0,where m, n ∈ N,and let F : [0,∞) → R1 be defined as F(x) = xα.
Think of F as f [g], where f (x) = xm, g(x) = x1/n. Show that for x > 0 we have
F′(x) = α xα−1. What is F′(0) if α > 1? This Exercise thus extends Example 5.1 to
exponents c ∈ Q.

5.15. Consider the function Tan−1x, 0 ≤ Tan−1x < π/2, the inverse of the restriction
to quadrant 1 of the tangent function. Use the IFT to derive the formula for the
derivative of Tan−1x. Is there a constant b such that the ellipse x2 + (

y2/b2) = 1
and Tan−1x are perpendicular in quadrant 1? If so, estimate it.

5.16. Confirm the last line of Example 5.7.

Section 5.3

5.17. Write out the proof of the analog of Theorem 5.5 for functions with a relative
maximum at c. Produce a nonconstant function f and a point c ∈ I such that
f ′(c) = 0 but c is not the location of a relative extremum.

5.18. A function f is defined by f (x) =
{

−x2 x > 1
−2x3 + x x ≤ 1.

Students A and B proceed

as follows:A differentiates −x2, sets the derivative equal to 0, and concludes from
Theorem 5.5 that f has a relative extremum at x = 0. B differentiates −2x3 + x,
sets −6x2 + 1 = 0, and concludes from Theorem 5.5 that ±√

6/6 are locations
of relative extrema. How would you grade these two student papers? Has there
been a violation of Theorem 5.5? Discuss.

5.19. Show by examples that Rolle’s Theorem can fail if
(a) f is not continuous everywhere on [a, b].
(b) f is continuous on [a, b] but f ′ does not exist everywhere on (a, b).
(c) Will Theorem 5.6 hold if, instead of f being continuous on [a, b], we have that

lim
x→a+

f (x) = lim
x→b−

f (x) = k ∈ R1?
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5.20. The function f (x) =
{
−x2 + x + 2 x ≤ 1

1
2 x − 1 x > 1

satisfies f (−1) = f (2) = 0, but the

function clearly does not have a derivative everywhere on (−1, 2). May we
conclude from Rolle’s Theorem that there is no c ∈ (−1, 2) at which f ′(c) = 0?
Discuss.

5.21. How many real roots does x5 + x3 − 2x − 1 = 0 have? Do this analytically; do not
use the computer.

5.22. Refer to Figure 5.13. Let f be continuous on [a, b] and have a derivative everywhere
on (a, b). Also let g be the function whose values are the differences between the
y-coordinate of a point on the secant AB and the corresponding point below (or
above) on the curve.
(a) Write a formula for g(x).
(b) Apply Rolle’s Theorem to g.

y

x
x0 ba

A

B

g(x0)

f(x )

FIGURE 5.13
Diagram for Exercise 5.22.

Section 5.4
5.23. (a) The equation f (x) = f (a) + f ′(c)(x − a), x < c < a, is satisfied if f (x) = 3√x and we take

a > 0, x = −a, c = a/(3
√

3). But f certainly does not have a derivative everywhere in
(−a, a). Do we have a violation of Theorem 5.7? Discuss.

(b) The equation f (x) = f (a) + f ′(c)(x − a) for some c ∈ (x, a) is not true if f (x) = x−1 and
a > 0 > x. This follows because f (x) − f (a) < 0 but f ′(c) = −c2 < 0 and x − a < 0, so
f ′(c)(x − a) > 0, a contradiction. Is this a violation of Theorem 5.7? Discuss.

5.24. (a) Prove that if 0 < θ < π/4 holds, then tan θ < 4θ/π. (Missouri MAA Examination, 2003)
(b) If a < b < c, f ′(x) is strictly increasing on (a, c), and f (x) is continuous on [a, c], then

prove that

(b − a)f (c) + (c − b)f (a) > (c − a)f (b).

(Missouri MAA Examination, 2005)
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5.25. (a) Show how to deduce the derivative of sin θ for −π/2 < θ < π/2 from knowledge of
Examples 5.2 and 5.4.

(b) If 0 < θ < π/2 holds, show that sin θ < θ.
(c) Deduce an analogous inequality if −π/2 < θ < 0.
(d) Use parts (b) and (c) to establish lim

θ→0

sin θ
θ

= 1.

(e) Show that an argument with the Mean-Value Theorem yields cos θ > 1 − θ2, but that
integration plus a geometric argument sharpens this to cos θ > 1 − (

θ2/2
)
.

5.26. Show, as requested, in connection with Figure 5.5, that the areas K of the parallel-
ograms there are given by the indicated determinant. Also show that if f (t), g(t)
have derivatives at t = c, then K ′(c) = 0 implies

∣∣∣∣∣∣∣
f (a) g(a) 1

f ′(c) g′(c) 0

f (b) g(b) 1

∣∣∣∣∣∣∣ = 0.

5.27. Prove Corollary 5.7.1.

5.28. We borrow from Section 5.7 (or Table 5.1) the fact that the derivative of the
logarithmic function ln x, x > 0, is x−1; also, we need ln 1 = 0.
(a) Show that 0 < a < b implies b−a

b < ln
(

b
a

)
< b−a

a .

(b) Obtain, as needed for Corollary 5.7.2, that ln x ≤ x − 1 for any x > 0, with equality only
when x = 1.

5.29. Consider f : [−1/2,∞) → R1, f (x) = √
1 + 2x. In Theorem 5.7, let a = 3/2 and

let b be variable. Complete the following table by computing c that corresponds
to each b. Make a conjecture on the behavior of c.

b f ′(c) c

2

7/4

25/16

49/32

5.30. A slightly weakened form of the Mean-Value Theorem can be proved without
the use of any sophisticated theorems on the real number system (Halperin,
1954). Read this short article and write up the proof in your own words. For
complementary reading, look at Boas, Jr. (1981).

5.31. The Hölder Inequality, in a common formulation, states that if {a1, a2, . . . , an},
{b1, b2, . . . , bn} are two sets of nonnegative numbers, then

[ n∑
i=1

(ai)
p

]1/p [ n∑
i=1

(
bi
)q] 1/q

≥
n∑

i=1

aibi,

where p, q > 0 satisfy p−1 + q−1 = 1. Prove this from Corollary 5.7.2.

5.32. Let S ∼= [1, ∞) ∩ Q; prove that 3(6r − 1)r > 2(6r + 1)r then holds for any r ∈ S.
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Section 5.5
5.33. Formulate and prove the analog of Theorem 5.9 for relative maxima. Then use

a form of the First Derivative Test to identify relative extrema, if any, of these
functions on the indicated intervals:
(a) f (x) = x cos x − sin x, −4 ≤ x ≤ 4;
(b) g(x) = x3 + (3/x), (−2,−1/2) ∪ (1/2, 2);
(c) h(x) = x|x2 − 27|, −√

27 ≤ x <
√

27.

5.34. An alternative proof of the First Derivative Test to the one presented in Theorem
5.9 can be given. Use proof by contradiction. Assume in [a, b] that there is a point
x1 
= c such that f (x1) < f (c). Now apply the Intermediate-Value Theorem and
reach a contradiction. Write out the proof in your own words.

5.35. This exercise and the next give some practice with higher-order derivatives. In
order to more efficiently handle some kinds of differentiation problems, Leibniz’s
Rule is useful. This theorem, stated in a letter of 1695 to Johann Bernoulli, states
that the nth derivative of the product of two functions f , g that have nth-order
derivatives is given by the “binomial-like” expansion

(fg)(n) =
n∑

j=0

(
n
j

)
f (n−j)g(j),

where g( j) means the jth derivative of g if j > 0 and g(0) means g(x). Prove Leibniz’s
Rule.

5.36. An application of Leibniz’s Rule is to the sequence of functions {Ln(x)}∞n=0,defined
by

Ln(x) = exf (n)(x), f (x) = xn e−x ,

and known as the Laguerre polynomials.9

(a) Work out L6(x) (don’t use brute force!).

(b) For arbitrary n, determine rigorously Ln(0).

(c) The Laguerre polynomials satisfy Laguerre’s differential equation:

xy′′ + (1 − x)y′ + ny = 0.

Determine rigorously, for arbitrary n, the value of L′n(0).

5.37. (a) Complete the proof of Theorem 5.10.
(b) Formulate and prove the analog of Theorem 5.10 for relative maxima. Then use a form

of the Second Derivative Test to identify relative extrema, if any, of these functions on
the indicated intervals. If the Test is inconclusive anywhere, state this fact.

(i) f (x) = 3x4 − 4x3 − 12x2 + 5, −3 < x < 3;

9After the French mathematician Edmond Laguerre (1834–1886). The polynomials are important in the
quantum mechanics of the hydrogen atom. Schrödinger solved the hydrogen atom in the first of his four
marvelous papers of 1926.
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(ii) g(x) = x2/3(4 − 2x), 0 < x < 3;

(iii) h(x) = 2 sin x + cos2 x, −2 < x < 2;

(iv) k(x) = 5x5 − 20x4 + 66, −4 < x < 4.

5.38. Reprove the inequality in Exercise 5.32 by using a first and a second derivative;
assume that r ≥ 1. (Missouri MAA Examination, 2004)

5.39. Consult (Creighton, 1975) on an alternative Second Derivative Test. Write up a
summary of this short paper in your own words.

5.40. (a) Refer to Figure 5.7. Find the value of a > 0 that minimizes the area of the parabolic
segment POQ. Verify that you have, indeed, found a relative minimum.

(b) Refer to Figure 5.7. Find the value of a that minimizes the length of the parabolic arc
that connects P and Q. Verify that you have, indeed, found a relative minimum.

Section 5.6

5.41. Use mathematical induction to arrive at the statement of Taylor’s Theorem that is
given as Theorem 5.11.

5.42. Verify entry 1 in Table 3.2 as to magnitude and compute an upper bound to the
error in this value of sin 1 by the use of Lagrange’s form of the remainder.

5.43. Prove, as requested in Example 5.14, that if n ∈ N, then [(n + 1)/3]n+1 < (n + 1)!.
5.44. In Theorem 5.11 let a = 0. Work out T9(θ) for the function f (θ) = tan θ. As it

is difficult to work with the remainder Rn(θ) for this function as of yet, let us
assume at this point that T9(θ) could serve as an approximation to f (θ) when
θ = 1/2, for example. Estimate tan(1/2), and compare with the calculator value of
0.5463025.

5.45. It is known that when a = 0 in Theorem 5.11, all the nonzero coefficients in the
Taylor series for f (θ) = tan θ are positive. See if you can prove this.A good strategy
is to first look for patterns in the successive derivatives of f .

5.46. Prove Corollary 5.11.2. How does the hint supplied for the proof of this corollary
suggest a briefer, alternative proof of the result in Example 5.14?

5.47. A function f is stipulated to have the following properties: (1) y = f (x) satisfies the
differential equation xy′ = 1 on some set of nonzero real numbers (2) f (1) = 0.
(a) Work out the Taylor series for f at a = 1.
(b) Does the Taylor series certainly represent f if 1 ≤ x < 2?

5.48. Suppose that f ′ is continuous on [a, x] and that f ′′ exists everywhere on (a, x).
We attempt to approximate f on [a, x] by a second-degree polynomial P(x) that
agrees in value with f at a and x, and such that f ′(a) = P′(a):

P(t) = f (a) + f ′(a)(t − a) + k(t − a)2.

Now define the function g by g(t) = f (t) − P(t).
(a) Apply Rolle’s Theorem twice and deduce k.
(b) What is the connection between part (a) and Taylor’s Theorem?
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5.49. If x1 is close to x, a zero of f , then 0 = f (x) ≈ f (x1) + f ′(x1)(x − x1), and so
x ≈ x1 − [

f (x1)/f ′(x1)
]
, which is the start of the algorithm for the well-known

Newton-Raphson Method. Let us extend the method by beginning, instead,
with

f (x) ≈ f (x1) + f ′(x1)(x − x1) + f ′′(x1)(x − x1)2

2
.

(a) Obtain a revised algorithm from this (Parker, 1959).
(b) Use the new algorithm to find all real roots of x4 − x3 − 16x2 + 18x − 36 = 0.

Section 5.7

5.50. Show, as requested, that if x 
= 0 and the natural number k exceeds |x|, then we
have

[
1 + x

k + 1

] k+1
>

[
1 + x

k

] k
.

5.51. Refer to the nine properties of exp(x) given in the text.
(a) Explain briefly properties (3), (4), and the second part of (7).
(b) Do the inequalities in property (5) hold if |h| > 1? Explain how you know

that exp(h) is continuous at h = 0.
(c) Explain briefly the steps in property (9).
(d) Let a > 0 be arbitrary. We define ax , x ∈ R1, to mean ex ln(a). What, then, is the derivative

of ax?

5.52. Refer to the five properties of ln x given in the text.
(a) Account briefly for property (1).
(b) Obtain the functional equation given in property (3).
(c) Prove both parts of property (4).
(d) Let F(y) = 1 + y − ey−2y2

; work out F ′(y) and F′′(y) and show that 1 + y > ey−2y2
for

any y ∈ (−0.20, 0) ∪ (0, 0.20).
(e) (Bernoulli’s Inequality) Here,Corollary 5.7.3 is extended to irrational α > 1. Use Exer-

cise 5.51(d) to establish the derivative of (1 + x)α, and then go on to prove Bernoulli’s
Inequality.

5.53. Prove that for all x > 3/2, we have
(

2
3

)x
< 1

2x−3 .

5.54. Consider the series
∑∞

i=1
1
pi

of reciprocals of the primes. Intuition is no guide in
deciding if this series converges.An elegant solution can be obtained by appealing
to the Taylor series for ex . Read this proof, as well as two others that are cited in
Dence and Dence (1999), and write up a summary of your reading.

5.55. If |x| < 1, then the Taylor series 1 +
∞∑

k=1

(
α

k

)
xk converges to some function f (x).

Assume that term-by-term differentiation is permitted.10

(a) Do this, and show that αf (x) = (1 + x)f ′(x).
(b) Deduce the function f from the result in part (a).

10This topic is considered in Section 7.5.
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5.56. If you did not do Exercise 2.11, please do it now and then go on to show that
{xn}∞n=1 converges.11

Section 5.8

5.57. Consider the three power series: (A)
∑∞

n=0 (x − 1)n, (B)
∑∞

n=1
(x−1)n

n ,

(C)
∑∞

n=1
(x−1)n

n3 . Show that they have the same radius of convergence,
but that the behavior at the endpoints is different in each case.

5.58. Finish the proof of Theorem 5.13. Deduce R = 1/ρ in Example 5.17 by first
showing that for all sufficiently large n, 0 < ln n <

√
n holds.

5.59. Complete the proof of Theorem 5.14. Next, in this theorem let a = 0, f (x) =
(1 + x)1/2. Compute an upper bound to |R6(3/4)| according to the theorem. Com-
pare this to the actual value obtained by evaluating |f (x) − T6(x)| at x = 3

4 . What
lesson can you draw from this exercise?

5.60. Assume that f (x) = 7x−4
x2+x−6

is represented by its Taylor series
∞∑

k=0
ckxk on the

appropriate interval I. What is the value of the sum
∞∑

k=0
ck? As a complement,

compute the partial sum s8 =
8∑

k=0
ck .

5.61. (Binomial Theorem) A very important function to which Taylor’s Theorem
can be applied is the binomial function f , defined by f (x) = (1 + x)α,, α ∈ R1\
[N ∪ {0}].
(a) Show that the Taylor series for f about a = 0 is 1 +

∞∑
n=1

(
α

n

)
xn, where the generalized

binomial coefficient
(

α

n

)
was defined in Exercise 2.10.

(b) Show that the radius of convergence of the series is R = 1.
(c) Use Lagrange’s form of the remainder to show that if 0 ≤ x < 1, then lim

n→∞ Rn(x) = 0.

(d) Use Theorem 5.14 (Cauchy’s form of the remainder) to show that if −1 < x < 0, then
for some c that satisfies −1 < x < c < 0 we have

|Rn(x)| =
[(

1 − c
x

)
(1 + c)

] n

[1 + c] α−1

∣∣∣∣∣ (α − n)

(
α

n

)
xn+1

∣∣∣∣∣ .

(e) In part (d), show that the quantity inside the first brackets on the right is bounded from
above by 1, that the second bracketed factor is bounded, and that the quantity between
the absolute value bars (if regarded as the (n + 1)st term of an infinite series) tends to
0 as n → ∞.

(f) Conclude that for any α ∈ R1\[N ∪ {0}], the function f is represented by its Taylor series
if −1 < x < 1.

(g) Estimate 3√13.

11The limit, Euler’s Constant γ , is fundamental in analysis and has been estimated in a variety of ways
(Johnsonbaugh, 1981; Knuth, 1962).
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Section 5.9

5.62. Evaluate:

(a) lim
x→0

cos
(
x2
)
−1

x3 sin(x)
;

(b) lim
x→0+

x2
ln x−ln(sin x) ;

(c) lim
n→∞ P(n) in Example 5.2;

(d) lim
x→∞

ln
(

1+3e−
√

x
)

√
2/x

;

(e) lim
x→∞

[
x+ln 2
x−ln 2

]x
.

5.63. In connection with Theorem 5.15, prove that the quotient f (x)/g(x) is real for all
x ∈ (a, b).

5.64. The proof ofTheorem 5.15 for the extended case where the quotient of derivatives
is unbounded follows along lines similar to those of the theorem itself. Begin by
letting an arbitrary, large M > 0 be given.
(a) Complete the proof that if lim

x→b−
[f ′(x)/g′(x)] = ∞ ∈ Re, then lim

x→b−
[f (x)/g(x)] = ∞,

also.
(b) Determine lim

x→0−
(1−x)−1/2−(1−2x)−1/2

x2 .

5.65. Corollary 5.15.1, where x → ∞, represents another variant of Theorem 5.15.
Assume that f , g are differentiable on (a,∞), that f (x) and g(x) both approach
0 as x → ∞, and that g(x) 
= 0, g′(x) 
= 0 on (a,∞). Begin by defining the new
variable z = x−1 and the new function

F(z) =
⎧⎨
⎩

f
(
x−1) 0 < z < a−1

0 z = 0,
and similarly for g(x−1).

(a) Complete the proof that if lim
x→∞ [ f ′(x)/g′(x)] = L ∈ R1, then lim

x→∞ [f (x)/g(x)] = L.

(b) Determine lim
x→−∞

(
1 − 21/x

)sin(1/x).

5.66. In the proof of Theorem 5.16, give the details that lead up to −ε <
f (t2)
g(t2)

− L. Now

apply the theorem to this limit: lim
x→0−

1−ln(−2x)
1−ln(− sin 3x) .

5.67. Determine lim
n→∞

[
n∑

k=1
kk/

n∑
k=0

(k + 1)k

]
.

5.68. In his books in the 1820s, Cauchy introduced the following function, now known
as the Cauchy function:

f (x) =
{

e−x2 + e−1/x2
x 
= 0

e−x2
x = 0.

(a) Let g(x) = e−1/x2
. Show that for any n ∈ N, lim

x→0

g(x)
xn = 0.

(b) Build on the result of part (a) and determine, for any n ∈ N, the value of g(n)(0).

(c) Prove that the Taylor series for f is
∞∑

n=0
(−1)n

(
x2

)n

n! .
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(d) Determine the radius of convergence R of the Taylor series.
(e) For which x ∈ (−R, R) does the remainder Rn(x) not approach 0 as n → ∞, or

equivalently, for which x does the Taylor series represent f ?

Section 5.10

5.69. Let p = (x1, x2) ∈ R2 and define the function

f (p) =
⎧⎨
⎩
−2x1x2

x2
1 + x2

2
p 
= 0

0 p = 0.

Show that although f is discontinuous at p = 0,both first-order partial derivatives
of f exist there.

5.70. Let f (x) = sin x and a = π/2. What, explicitly, is the function E(h)? Show that
lim
h→0

E(h) = 0. Let f (x1, x2) = x1 + x2
2 + 2x1x2 and p = (1, 2). What, explicitly,

is the function E(h)? Prove that lim
h→0

E(h) = 0.

5.71. Estimate f (x1, x2) = xx2
1 at (e, π/2); assume, as in Example 5.23, values of e =

2.718282, π = 3.141593,
√

11 = 3.316625, ln(11/4) = 1.011601.

5.72. It is useful to think of∇f (p) as the result of a vector operator∇ ∼= (D1 D2) operat-
ing on a scalar function; that is, a function f : S → R1, S ⊆ R2, and similarly for
functions defined in Rn, n > 2. Suppose that f , g are two scalar functions defined
in R2 that have partial derivatives at p.
(a) Show that [∇( f + g)] (p) = (∇f )(p) ⊕ (∇g)(p).
(b) Show that [∇(fg)] (p) = f (∇g)(p) ⊕ g(∇f )(p).

5.73. (a) Let F : S → R1, S ⊆ R3, be defined by F(p) = ln
(

1
||p||

)
, p = (x1, x2, x3). Work out

(∇F)(p) for p 
= 0.
(b) The inner product of the vector operator∇ and a vector∇f could be notated as∇ ∗ (∇f ),

or more simply, as ∇2f . Work out ∇2F for the function in part (a).

5.74. Prove all parts of Theorem 5.18. How, then, do you know that the function f in
Exercise 5.69 is not differentiable at p = 0?

5.75. The definition of differentiability carries over to functions f : S → Rm, S ⊆
Rn, m > 1. In this case, what would the representation of L look like?
The linear mapping L, for all cases m ≥ 1, n > 1 is known as the Fréchet
derivative.12

5.76. Let f : S → R1, S ⊆ R2, be defined by f (p) = xx2
1 , p = (x1, x2), and S is the square

0 < x1 ≤ 1, 0 ≤ x2 ≤ 1. Prove that f is differentiable on S.

5.77. Theorem 5.21 (Equality of Mixed Second Partials). Let f : S → R1, S ⊆ R2,
be a function such that f , D1f , D2f , D2,1f = D2(D1f ) are continuous on the open
set S.Then D1,2f = D1(D2f ) exists on S and at each p ∈ S we have (D1,2f )(p) =
(D2,1f )(p).

12After the French analyst and topologist Maurice Fréchet (1878–1973). His definition of the derivative
appeared around 1914.
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(a) Let p = (a, b) ∈ S be arbitrary, and define the function F : S → R1, by F(x1) = f (x1, b +
h2) − f (x1, b). Show that F(a + h1) − F(a) = h1[(D1f )(a + θ1h1, b + h2) − (D1f )(a +
θ1h1, b)], where θ1 ∈ (0, 1) and h = (h1, h2) is so small that p ⊕ h ∈ S.

(b) Use the result in (a) to establish that

[ f (a + h1, b + h2) − f (a + h1, b)] − [f (a, b + h2) − f (a, b)]
= h1h2(D2,1f )(a + θ1h1, b + θ2h2),

where θ2 ∈ (0, 1).
(c) Finally, use the result in (b) to prove that (D1,2f )(p) = (D2,1f )(p).

5.78. Suppose that there is a δ > 0 such that the real-valued functions f , g are defined on
Bn(a; δ). Further,suppose that f is differentiable at a, f (a) = 0, and g is continuous
at a. Use Theorem 5.20 to prove that fg is differentiable at a.
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CHAPTER 6

Integration

“Therefore, first of all: What is one to understand by
∫ b

a f (x)dx?′′
Georg F.B. Riemann
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6.1 INTRODUCTION; INTEGRATION ACCORDING
TO RIEMANN

For Isaac Newton (1642–1727), the English father of calculus, differentiation
was the primary process in calculus. Integration (as it was called later) was to
be done by using a derivative1 in reverse (Boyer, 1959). Thus, if f is continuous
on [a, b], then integration consisted in finding a function F such that for each
x ∈ [a, b]

F′(x) = f (x).

Much later, after Newton, the function F was referred to as an antiderivative2

by some writers, and as a primitive by others. Newton’s use of derivatives in
reverse became known, suggestively, as antidifferentiation.

Newton, and others, used familiar techniques such as substitution, integration
by parts, and partial fractions, together with tables of selected antiderivatives,
just as we do today. Newton did not conceive of defining integration indepen-
dently of differentiation. And if he had, he might not have realized that there
are some derivatives that cannot be integrated (in the later, Riemann sense,
of course).

The German polymath Gottfried Wilhelm von Leibniz (1646–1716)
(Hofmann, 1973) did see the integral differently from Newton. For Leibniz,
integration meant a “summation of many quantities” (but, exactly of what, he
could not say) and the integral was to be interpreted as the area under a curve
(all of this is imprecise). The following modernized exposition captures the
flavor of his thinking.

In Figure 6.1 the point a is fixed and x is variable. The area A under the positive-
valued, continuous curve y = f (t) clearly depends upon both a and x. It is
plausible that there should be a function F such that F(x) − F(a) gives this
area. This is certainly the case if y = f (t) is the equation of a straight line,

1Newton called it a fluxion, from the Latin noun fluxus, meaning “a flow,” and derived from the Latin
verb fluere, “to flow.” By 1599, the word “fluxion” had taken on the technical meaning of a continuous,
progressive change.
2Newton called this a fluent, from the present participle fluens (of the verb fluere), which means “flowing.”
By 1705 the term “fluent” could refer to a stream or to more abstract objects. We are indebted to Prof.
Frank K. Flinn for assistance in these matters. Newton’s adopted words “fluxion” and “fluent” actually had
been used (in their Latin equivalents) in the writing of the medieval technical scholar Richard Suiseth
(14th century), who was known in his day as “Calculator.”
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FIGURE 6.1
The integral as an area under a curve.

y = mt + B, m, B > 0, for then we have

A =
[

f (a) + f (x)
2

]
(x − a)

=
[
(ma + B) + (mx + B)

2

]
(x − a)

=
[

mx2

2
+ Bx

]
−
[

ma2

2
+ Ba

]

for the area of the resulting trapezoid. Leibniz also considered the area to be
given by an integral, namely

A = F(x) − F(a) =
x∫

a

f (t)dt.

Now let x′ be near x; for the interval [x, x′], we denote the minimum and maxi-
mum values of f by l, L, respectively. These numbers exist (Theorem 4.10);
Leibniz, of course, did not have this theorem. The area from t = x to t = x′ is
F(x′) − F(x). Approximations by rectangles give

l(x′ − x) ≤ F(x′) − F(x) ≤ L(x′ − x),
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or equivalently,

l ≤ F(x′) − F(x)
x′ − x

≤ L.

Since f is continuous on [a, b], then x′ → x implies l → f (x) and L → f (x). At
the same time, the indicated quotient approaches f (x) (Squeeze Theorem). By
definition, f (x) must also be F ′(x). As F(a) is a constant, its derivative is 0 and
consequently,

d
dx

[F(x) − F(a)] = F′(x) = d
dx

x∫
a

f (t)dt.

The final result, therefore, is that

d
dx

x∫
a

f (t)dt = f (x), (*)

and we see that Leibniz’s conception of the integral is consistent with that of
Newton, who could have written equation (*) as D[D−1f ] = f , where D is a
symbol for differentiation and D−1 is a symbol for antidifferentiation.

Equation (*), suitably stated, is one half of the celebrated Fundamental The-
orem of the Calculus (see Section 6.5). Both Newton and Leibniz recognized
its extreme importance. It was developed a bit more rigorously in Colin
MacLaurin’s book Treatise of Fluxions (1742) (Grabiner, 1997). Although Leib-
niz did not call it so, the quantity

∫ x
a f (t)dt in equation (*) became known as

an indefinite integral of f (if x is not specified) or as a definite integral of f (if
x is specified).

Although Leibniz had the germ of the idea for how to define integration apart
from differentiation, he was not yet able to execute on it. Whenever he needed
to evaluate an integral, he resorted to antidifferentiation as the key step. An
integral as elementary as

∫ x
0 cos t dt would have been challenging to work out

by some sort of “summation of many quantities” (Exercise 6.4).

It is easy to see that both Newton’s and Leibniz’s approaches to integration
were rather restricted. We might wish to integrate functions whose domains are
unbounded, or functions that are discontinuous in some places or whose ranges
are unbounded. Newton, for example, could only integrate derivatives that are
defined and bounded everywhere on a finite interval, and Leibniz would have
had trouble with the many different kinds of “summations of many quantities”
that would arise. Two ingredients were missing in 1685: a better understanding
of area and a correct theory of limits.
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The function f defined by

f (x) =
{

2 0 ≤ x < 1/2, 1/2 < x ≤ 1

1 x = 1/2

could not have been integrated on [0, 1] by Newton. This, or functions like
it, led Cauchy and, later, Riemann, to improve upon Newtonian integration.3

Their starting points were the ideas of Leibniz. Cauchy correctly pointed out
that the integral should be formulated as a limit of a summation of terms rather
than as merely a “summation of many quantities.”

In the remainder of this section and in the next two we shall proceed along
lines outlined by and motivated by Riemann’s brief work on the integral. The
objective is to probe the theory of Riemann integration, the first serious theory of
integration that a student should encounter. Several theorems will be presented,
and you will be requested to supply some of the details. Chapters 1 through 5
contain all that you will need. Except for Section 6.6*, not much attention will
be paid to the mechanics of the evaluation of integrals.

Georg F. B. Riemann (1826–1866), born in the village of Breselenz in Lower
Saxony in northern Germany, was one of the most original and brilliant mathe-
maticians of all time (Freudenthal, 1975). His development of the integral,
which appeared in a manuscript of 1854,4 applies to functions f that are defined
and bounded on a closed, bounded interval [a, b]. On such an interval let P =
{ak}nk=0 be a sequence of n + 1 points that satisfy

a = a0 < a1 < a2 < · · · < an = b;

P is called a partition of the interval.5 The points may, but need not be,
evenly spaced. For a given partition P, the norm N is the length of the longest
subinterval:

N = max
k

{
�ak

}
, �ak = ak − ak−1 > 0.

A partition P is said to be tagged if a point xk, k = 1, 2, . . . , n, called the tag, is
chosen arbitrarily from each subinterval [ak−1, ak] (Figure 6.2): ak−1 ≤ xk ≤ ak.

3It has been said that Riemann’s definition represented an essential advance over the older Cauchy defi-
nition of the integral (Grabiner, 1981). In fact, it can be shown that the two definitions are not essentially
different (Kristensen, Poulsen, and Reich, 1962).
4Riemann’s exposition was a small section of a much larger manuscript (not published until shortly after
his death) on the representation of functions by Fourier series (Weber, 1953).
5Commonly used synonyms for “partition” are mesh, net, grid, and decomposition. The terms “net”
and “grid” are geometrically appealing, but “partition” is firmly entrenched.
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a a1

x1 x2 x3 x4 x5 x6 xn

a2 a3 a4 a5 a6 an21 b

FIGURE 6.2
A tagged partition of [a, b].

We denote a tagged partition by an ordered pair of two sequences:

P
({ak}nk=0 , {xk}nk=1

)
,

or as just P, for short. We now give Riemann’s definition of the integral:

Definition. A function f is Riemann-integrable on [a, b] iff there is a number
I ∈ R1 for which, given any ε > 0, there is a δ > 0 such that for every tagged partition
P of norm N < δ, the inequality∣∣∣∣∣

n∑
k=1

f (xk)�ak − I

∣∣∣∣∣ < ε

holds. The number I is called the Riemann integral of f over [a, b], and we write

I =
b∫

a

f (x)dx,

or sometimes as just
∫ b

a f . We shall also say that
∫ b

a f exists.

Any such sum of the form S = ∑n
k=1 f (xk)�ak is called a Riemann sum. Its

limit is the desired “sum of many quantities” that Leibniz was seeking, but
never found.

The following comments on Riemann’s definition of the integral provide
additional clarification:

1. A Riemann sum is a numerical approximation to the value of a Riemann
integral and thus can be used to estimate areas of simple, planar figures
(Exercises 6.6, 6.62).

■ Example 6.1

Let n = 16 and f (x) = x−1. In Figure 6.2 let us choose equally spaced subdi-
visions of [1, 2] and choose each xk = (ak−1 + ak)/2. Then the Riemann sum
S is (verify!)

S =
16∑

k=1

32
31 + 2k

1
16
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= 2
[

1
33

+ 1
35

+ · · · + 1
63

]

≈ 0.693025.

This compares favorably with
∫ 2

1 x−1dx = ln 2 ≈ 0.693147. ■

2. In limit language, the definition of the Riemann integral becomes

I = lim
N→0

n∑
k=1

f (xk)�ak,

provided that the limit exists. For given values of a, b, n, the minimum
value of N is (b − a)/n, corresponding to that partition P where all
the subintervals are of equal length. Hence, N → 0 implies n → ∞.
Nevertheless, the limit is formed with respect to N, not n, as the
sole independent variable. There do exist in the literature, however,
ordinary sequence definitions of the Riemann integral (Sklar, 1960)
(Exercise 6.7).

3. For each choice of N, there are infinitely many tagged partitions of [a, b].
These will, in general, yield different values for the corresponding Riemann
sums, unless f is a constant function. The limit, when it exists, is still unique,
however (Burk, Goel, and Rodríguez, 1986). Suppose that there were two limits,
I1 and I2. Assume that I2 > I1; let ε = (I2 − I1)/2. By hypothesis, there is then
a δ > 0 such that for all tagged partitions of [a, b] with N < δ we have

I2 − ε <

n∑
k=1

f (xk)�ak < I1 + ε.

The two ends of the inequalities lead to (I2 − I1)/2 < ε, a contradiction; hence,
I1 = I2.

6.2 NECESSARY CONDITIONS FOR
RIEMANN-INTEGRABILITY

There are several conditions that can be called necessary conditions for a func-
tion f to be Riemann-integrable. Of course, one such condition is contained in
the definition of Riemann-integrability; others now follow.

Theorem 6.1. If f is Riemann-integrable on [a, b], then f is bounded there.

Proof. Let P be an arbitrary partition of [a, b] and assume that f is unbounded
in the subinterval [aj−1, aj]. If M > 0 is given, then a point xj ∈ [aj−1, aj] can
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be chosen so that
∑n

k=1 f (xk)�ak > M. As M is arbitrary, this shows that the
Riemann sum has no limit in R1, so f is not Riemann-integrable on [a, b]. �
Theorem 6.2. If f (x) ≤ g(x) for all x ∈ [a, b], b > a, and both functions are
Riemann-integrable on [a, b], then

b∫
a

f ≤
b∫

a

g.

Proof. Assume the contrary and let ε = 1
2

[∫ b
a f − ∫ b

a g
]
; reach a contradiction.

The proof is left to you. �

■ Example 6.2
For any real t, we have cos t ≤ 1. Choose an arbitrary x ≥ 0; then by
Theorem 6.2, if we assume integrability, we will have

∫ x
0 cos t dt ≤ ∫ x

0 dt,
or sin x ≤ x. Replace x by t in this and integrate again from t = 0 to
t = x: −cos x + 1 ≤ x2/2, or more completely, −1 ≤ − cos x ≤ x2/2 − 1.
Again, replace x by t, integrate, and repeat this cycle three more times. We
obtain, for any x ≥ 0 (verify!),

x − x3

6
≤ sin x ≤ x − x3

6
+ x5

120
.

Thus, we have bracketed sin x by two successive Taylor polynomials with-
out direct appeal to Taylor’s Theorem (Leonard and Duemmel, 1985). In
particular, we find at

x = 1: 0.83333 ≤ 0.84147 = sin 1 ≤ 0.84167

x = 2: 0.6666 ≤ 0.9093 = sin 2 ≤ 0.9333. ■

■ Example 6.3
The Taylor polynomial T6(x) for e−x2

is 1 − x2 + (x4/2) − (x6/6). Let F(x) =
T6(x) − e−x2

; then F′(x) = 2x
(− 1 + x2 − 1

2 x4 + e−x2)
. We can establish that

F ′(x) ≤ 0 on [0, 1] (verify!), so F decreases there. Hence, F(0) = 0 implies

1 − x2 + x4

2
− x6

6
≤ e−x2

, 0 ≤ x ≤ 1.

Application of Theorem 6.2 by integration of both sides of the inequality
over [0, 1] yields

1∫
0

e−x2
dx ≥

∣∣∣∣
(

x − x3

3
+ x5

10
− x7

42

)∣∣∣∣
1

0
≈ 0.74286.
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In fact, the integral on the left-hand side has the approximate value of
0.74683, but this requires some additional work (Exercise 6.43). We have, of
course, assumed the Riemann-integrability of e−x2

; that this is so will become
apparent later. ■

It is reasonable that there should be connections between the antiderivative of
Newton and the Riemann integral. The most important of these connections is
given here; we have already made implicit use of it in Examples 6.2 and 6.3.

Theorem 6.3. If an antiderivative of f on [a, b] is D−1f = F and if f is Riemann-
integrable over [a, b] to I, then F(b) − F(a) = I.

Proof. By definition, F′(x) = f (x) at each x ∈ [a, b]. Let P denote any tagged
partition of [a, b], as in Figure 6.2. For any n, the finite series

∑n
k=1[F(ak) −

F(ak−1)] is a telescoping series whose sum is F(an) − F(a0) = F(b) − F(a). On
each subinterval [ak−1, ak] we apply the Mean-Value Theorem (Theorem 5.7)

F(ak) − F(ak−1) = f (xk)(ak − ak−1),

for some xk ∈ (ak−1, ak). Summing over k, we obtain

F(b) − F(a) =
n∑

k=1

f (xk)�ak.

The right-hand side is a specific Riemann sum. We now choose P to be any
partition in which the division points ak are equally spaced, so that N =
(b − a)/n. In this case, n → ∞ implies N → 0. But f is Riemann-integrable,
so the Riemann sum converges to I as n → ∞. �

In common with the Newtonian antidifferentiation operator D−1, the Riemann
integral enjoys the property of linearity (see later). Although Theorem 6.4
was not really necessary for Examples 6.2 and 6.3 because Theorem 6.3 was
sufficient for that purpose (assuming, of course, integrability), Theorem 6.4
is used all the time and it remains valid even when we are unable to obtain
antiderivatives of some of the integrands. This, in fact, is the case most of the
time!

Theorem 6.4. If f , g are Riemann-integrable on [a, b] and c ∈ R1, then

(i)
∫ b

a cf = c
∫ b

a f ;

(ii)
∫ b

a ( f + g) = ∫ b
a f + ∫ b

a g.

Proof.

(i) The equality is trivial if c = 0. Let c 
= 0 and let any ε > 0 be given.
Then there is a δ > 0 such that for every tagged partition P of norm
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N < δ, the inequality

∣∣∣∣∣
n∑

k=1

f (xk)�ak − I

∣∣∣∣∣ <
ε

|c|

holds. Multiplication by |c| then gives

|c|
∣∣∣∣∣

n∑
k=1

f (xk)�ak − I

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

[cf (xk)]�ak − cI

∣∣∣∣∣ < ε,

which is equivalent to
∫ b

a cf = c
∫ b

a f = cI.

(ii) Proof of this part is left to you. �

Theorem 6.5 (Finite Additivity). Let f be defined on [a, b] and Riemann-
integrable on the subintervals [a, c] and [c, b], a < c < b. Then f is integrable on
[a, b] and

b∫
a

f =
c∫

a

f +
b∫

c

f .

Proof. By Theorem 6.1, f is bounded separately on [a, c] and [c, b], so it is
bounded on [a, c] ∪ [c, b] = [a, b]; let |f (x)| < K for a ≤ x ≤ b. Let I1, I2 denote
the subintegrals I1 = ∫ c

a f (x)dx, I2 = ∫ b
c f (x)dx. Now let ε > 0 be given. There

exist numbers δ1, δ2 > 0 such that for any tagged partition P1 on [a, c] of norm
N1 < δ1 and for any tagged partition P2 on [c, b] of norm N2 < δ2 we have

∣∣∣∣∣
r∑

i=1

f (xi)�ai − I1

∣∣∣∣∣
[a, c]

<
ε

4
,

∣∣∣∣∣∣
s∑

j=1

f (xj)�aj − I2

∣∣∣∣∣∣
[c, b]

<
ε

4
.

If δ3 = min{δ1, δ2}, then both inequalities hold simultaneously for all tagged
partitions of norm N < δ3.

Suppose that the point c lies in the jth subinterval: aj−1 < c ≤ aj. Regardless of
whether c is a partition point or not, a Riemann sum for f on [a, b] and with a
P of norm N < δ3 can be written as

S1 =
j−1∑
k=1

f (xk)�ak + f (xj)�aj +
n∑

k=j+1

f (xk)�ak.



6.2 Necessary Conditions for Riemann-Integrability 221

If c is now regarded as a new partition point, then the following is also a
Riemann sum for f on [a, b]:

S2 =
⎡
⎣ j−1∑

k=1

f (xk)�ak + f (c)(c − aj−1)

⎤
⎦+

⎡
⎣f (c)(aj − c) +

n∑
k=j+1

f (xk)�ak

⎤
⎦ .

The sum in each pair of brackets is, in magnitude, less than ε
4 because they

approximate I1, I2, respectively. Hence, |S2 − (I1 + I2)| < ε/2.

Finally, we let δ = min{δ3, ε/(4K)}. All inequalities so far hold simultane-
ously. Additionally, upon subtraction we find |S1 − S2| = |f (xj) − f (c)|�aj <

(K + K)
(

ε
4K

) = ε/2. Hence, by the Triangle Inequality

∣∣S1 − (I1 + I2)
∣∣ = ∣∣S1 − S2 + [S2 − (I1 + I2)]∣∣
≤ ∣∣S1 − S2

∣∣+ ∣∣S2 − (I1 + I2)
∣∣ < ε.

This says that

lim
N→0

S1 =
c∫

a

f +
b∫

c

f =
∫ b

a
f .

�

Definition. If b > a and f is Riemann-integrable on [a, b], then we define
∫ a

b f to

be − ∫ b
a f .

Corollary 6.5.1. The conclusion of Theorem 6.5 remains valid if c is exterior to
[a, b], provided that

∫ c
a f and

∫ c
b f exist.

The Riemann integral has one elementary property that the Newtonian
antiderivative does not possess. From this property (see next) we get our first
glimpse at the somewhat wider applicability of the Riemann integral. The wider
applicability of the Riemann integral has many benefits; for example, it allows
us to develop a good theory of the area of sets in R2, a nice treatment of which
can be found in Knopp (1969).

Theorem 6.6. If f is Riemann-integrable on [a, b] to I and the value of f at one point
is changed, then f is still Riemann-integrable on [a, b] and the value of the integral is
still I.

Proof. Let x = c be the exceptional point and define the function g by

g(x) =
{

f (x) x 
= c

C x = c,
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a b

xk xk11

ak21 ak ak11

C

FIGURE 6.3
Supercoincidence of the exceptional point c.

where C 
= f (c). The point x = c might not coincide with any of the tags in a
partition P of [a, b]. At most, however, it could coincide with two tags, say xj and
xj+1, if these coincide with the partition point aj (Figure 6.3). The exceptional
point will change, therefore, at most two terms in any Riemann sum for f .

Thus, for a tagged partition P of norm N, we have

∣∣∣∣∣
n∑

k=1

f (xk)�ak −
n∑

k=1

g(xk)�ak

∣∣∣∣∣ ≤ ∣∣f (xk) − g(c)
∣∣�ak +

∣∣f (xk+1) − g(c)
∣∣�ak+1

≤ 2 [|f (c)| + |C|] N

(why?). If ε > 0 is given, show how to choose δ > 0 so that tagged partitions of
norm N < δ lead to

∣∣∑n
k=1 g(xk)�ak − I

∣∣ < ε.

The completion of the proof is left to you. �

Corollary 6.6.1. Theorem 6.6 extends to the general case where any finite number
of points of a Riemann-integrable function are changed.

■ Example 6.4
Let f be the function back in Section 6.1 that would have bothered Newton:

f (x) =
{

2 0 ≤ x < 1/2, 1/2 < x ≤ 1

1 x = 1/2.

We then define the new function

g(x) =
{

f (x) 0 ≤ x < 1/2, 1/2 < x ≤ 1

2 x = 1/2,

and from Theorem 6.6 it follows (assuming integrability) that

1∫
0

f (x)dx =
1∫

0

g(x)dx = 2x
∣∣1
0 = 2.

■
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■ Example 6.5
Let the function g be defined by

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

x2 x ∈
{
[−1,−1/2)

6⋃
k=2

(−1/k,−1/(k + 1))

}
∪ (−1/7, 1]

10 x = −1/k, k = 2, 3, . . . , 7.

By Corollary 6.6.1 (and assuming integrability), we find that the Riemann
integral is

∫ 1
−1 g = 2/3. ■

The Newtonian antiderivative of the function in Example 6.5 does not exist
because g is not the derivative of any function, and Newtonian antidifferen-
tiation can handle only derivatives. Thus, the Riemann integral has a capability
not possessed by the Newtonian antiderivative. In fact, the definition of the
Riemann integral can even be extended to functions f that are undefined at a
finite number of points because Theorem 6.6 and its corollary show that the
values that might be assigned to f at these points are irrelevant.

6.3 SUFFICIENCY CONDITIONS FOR
RIEMANN-INTEGRABILITY

Theorems 6.1 through 6.6 have all had Riemann-integrability as part of their
hypotheses. We turn now to sufficiency conditions for this; we pursue two lines
of development, here and in the next section.

Definition. A step-function σ(x) is a function defined on [a, b] that has a constant
(but, not necessarily, identical) value on each open subinterval (ak−1, ak) of some
partition of [a, b].
Step-functions are very simple functions (Figure 6.4); we should expect them
to have nice properties. If P = {ak}nk=0 is a partition of the closed, bounded
interval [a, b], we let σk denote the value of σ(x) when x ∈ (ak−1, ak), k = 1,
2, . . . , n.

Theorem 6.7. If σ is a step-function on [a, b], then

b∫
a

σ =
n∑

k=1

σk�ak.

Proof. Let P1 = {ak1}nk=0 be an arbitrary partition of [a0, a1], and for each
k ∈ {1, 2, . . . , n} let xk1 be a tag of [ak−1,1, ak1]. Then if σ is initially restricted
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y

x

x11 x31 x22

a21

a11

a0 a1 a2 a3 a4 an�1an

(a) (b)

a31 a12 a22

FIGURE 6.4
A step-function on [a, b].

to [a0, a1] and is redefined at its endpoints (if necessary), we have

a1∫
a0

σ(x)dx = lim
N→0

n∑
k=1

σ(xk1)�ak1 = lim
N→0

n∑
k=1

σ1�ak1

= σ1 lim
N→0

n∑
k=1

�ak1 = σ1 lim
N→0

(a1 − a0) = σ1�a1.

Hence, the restriction of σ to [a0, a1] is integrable and mathematical induction,
together with Theorem 6.5, then extends this to all of [a, b]. �

The reason for introducing step-functions is so that we may use them to bracket
other functions. The result is a kind of “Squeeze Theorem” that can be applied
to integrals.

Theorem 6.8. Let f be defined on [a, b], b > a. Suppose that for any ε > 0 and
for all x ∈ [a, b] there are step-functions ρ(x), σ(x) such that ρ(x) ≤ f (x) ≤ σ(x) and
0 ≤ ∫ b

a [σ(x) − ρ(x)]dx < ε. Then f is Riemann-integrable on [a, b].
Proof. Let ε > 0 be given and assume that there are step-functions ρ(x), σ(x)
such that for x ∈ [a, b] we have ρ(x)≤ f (x)≤ σ(x) and 0≤ ∫ b

a [σ(x) − ρ(x)]dx < ε.
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From Theorems 6.2 and 6.7 we have
∫ b

a ρ(x)dx ≤ ∫ b
a σ(x)dx. Hence, if σ(x) is

momentarily fixed, then by the Completeness Axiom

sup
ρ

b∫
a

ρ(x)dx = I1

exists for all such integrals where ρ(x) ≤ f (x). Similarly,

inf
σ

b∫
a

σ(x)dx = I2

exists for all such integrals where σ(x) ≥ f (x). We cannot have I2 < I1, since
then we would have I2 <

∫ b
a σ(x)dx for some step-function σ(x), a contradiction.

Thus, I1 ≤ I2 holds. But 0 ≤ ∫ b
a [σ(x) − ρ(x)]dx < ε is true for any ε > 0, so we

conclude that it is true in the limit of ε = 0, that is, I1 = I2 = I.

Accordingly, we can choose step-functions ρ(x), σ(x) such that

b∫
a

ρ(x)dx > I − ε

2
,

b∫
a

σ(x)dx < I + ε

2
.

Then choose δ > 0 so small that for any partition with N < δ we have for the
Riemann sums

n∑
k=1

ρk�ak >

b∫
a

ρ(x)dx − ε

2
,

n∑
k=1

σk�ak <

b∫
a

σ(x)dx + ε

2
.

Combination of the four preceding inequalities then gives (verify!)

I − ε <

n∑
k=1

ρk�ak ≤
n∑

k=1

f (xk)�ak ≤
n∑

k=1

σk�ak < I + ε.

It follows that lim
N→0

∑n
k=1 f (xk)�ak = I, so f is Riemann-integrable on [a, b]. �
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■ Example 6.6
Let f : [0, 2] → R1 be defined by f (x) = −x2 + 2x. Suppose that the 2n + 1
partition points ak are equidistant; also, for any k = 1, 2, . . . , 2n and all
x ∈ (ak−1, ak), let

ρk(x) =
{

f (ak−1) k = 1, 2, . . . , n

f (ak) k = n + 1, n + 2, . . . , 2n

σk(x) =
{

f (ak) k = 1, 2, . . . , n

f (ak−1) k = n + 1, n + 2, . . . , 2n.

Since f is symmetrical about the line x = 1 and has a maximum at x = 1, then
these definitions ensure that for all x ∈ [0, 2] we have ρ(x) ≤ f (x) ≤ σ(x). The
step-functions are assumed to have been redefined at all endpoints so as to
give them “sided” continuity there. At this point, drawing a sketch would be
extremely helpful.

We can now establish that (Exercise 6.17)

b∫
a

[σ(x) − ρ(x)]dx =
2∫

0

[σ(x) − ρ(x)]dx

= 2
2n

2n∑
k=1

[σk(x) − ρk(x)] = 2
n

.

Hence, if ε > 0 is given, then n is chosen so that n >
⌈2

ε

⌉
. It then follows that

b∫
a

[σ(x) − ρ(x)]dx < ε,

and by Theorem 6.8, f (x) = −x2 + 2x is Riemann-integrable on [0, 2]. ■

Theorem 6.9. If f is defined and monotonic on [a, b], b > a, then f is Riemann-
integrable on [a, b].
Proof. Assume that f is increasing on [a, b]. For any partition P = {ak}nk=1 of
norm N, define the step-functions

ρ(x) = f (ak−1), ak−1 ≤ x < ak (k = 1, 2, . . . , n)

σ(x) = f (ak), ak−1 ≤ x < ak (k = 1, 2, . . . , n).
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Show that 0 ≤ ∫ b
a [σ(x) − ρ(x)]dx ≤ N[f (b) − f (a)] and indicate how to choose

δ > 0 so that Theorem 6.8 can be applied. The completion of the proof is left
to you. �
A function f defined on [a, b] is finitely piecewise monotonic there iff [a, b]
can be partitioned into a finite number of closed subintervals, on each of which
f is monotonic. For example, f (x) = sin x is finitely piecewise monotonic on
[0, 3π/2].
Corollary 6.9.1. If f is defined and finitely piecewise monotonic on [a, b], then it is
Riemann-integrable there.

Proof. The proof is left to you. �

■ Example 6.7
The following integrals exist:

(a)
∫ 2

1 f (x)dx (Example 6.1)

(b)
∫ x

0 cos t dt (Example 6.2)

(x ∈ R)

(c)
∫ 1

0 e−x2
dx (Example 6.3)

(d)
∫ 4

1
ln(1+y)

2+y dy. ■

6.4 THE CONTRIBUTION OF DARBOUX
Riemann gave a second necessary and sufficient condition in his 1854 paper
for the existence of the integral, but supplied no details. This was done in 1875
by the French geometer Jean-Gaston Darboux (1842–1917).

Let f be defined and bounded on [a, b], b > a. We define M = sup
x

f (x) and

m = inf
x

f (x), x ∈ [a, b]. Similarly, for each closed subinterval [ak−1, ak] of a par-

tition P of [a, b] we define Mk = sup
x

f (x), mk = inf
x

f (x), where x ∈ [ak−1, ak].
These numbers exist by the Completeness Axiom. The upper Darboux sum
that corresponds to f and to P is

U(P, f ) =
n∑

k=1

Mk�ak,

and the lower Darboux sum is

L(P, f ) =
n∑

k=1

mk�ak.
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It is apparent that since for each k we have m ≤ mk ≤ Mk ≤ M, then L(P, f ) is
bounded from above by

∑n
k=1 M�ak = M(b − a) and a U(P, f ) is bounded from

below by
∑n

k=1 m�ak = m(b − a), independently of the choice of partition P.
It is also clear that L(P, f ) ≤ U(P, f ), since all �ak ’s are positive numbers. By the
Completeness Axiom, the following real numbers then exist:

b∫
a

f = inf
P

U(P, f ),

b∫
a

f = sup
P

L(P, f ),

where inf, sup mean with respect to all possible partitions P of [a, b]. The two
real numbers are called, respectively, the upper Darboux integral and the lower
Darboux integral.

■ Example 6.8
Let f (x) = 16x3 − 24x2 + 9x + 1 and n = 10. The following data are obtained
for subintervals [ak−1, ak] of [0, 1] and of uniform length 0.1:

k mk Mk k mk Mk

1 1 1.676 6 1.216 3/2

2 1.676 1.968 7 1.028 1.216

3 1.968 2 8 1 1.032

4 1.784 1.972 9 1.032 1.324

5 3/2 1.784 10 1.324 2

Hence, L(P, f ) = (1 + 1.676 + 1.968 + · · · + 1.324)(0.1) = 1.353, and
U(P, f ) = (1.676 + 1.968 + 2 + · · · + 2)(0.1) = 1.647. Consequently,∫ 1

0 f ≤ 1.647 and
∫ 1

0 f ≥ 1.353. ■

Darboux then made the following definition:

Definition. A function f is integrable on [a, b], b > a, iff
∫ b

a f = ∫ b
a f , and we write

(provisionally) for the common value (D)
∫ b

a f .

The prefatory (D) indicates that we do not know at this point if Darboux’s
integral is the same as Riemann’s. Darboux proved that it is (and so shall we).
His formulation was a model for still later theories of integration. The following
new concept is needed in Darboux’s formulation:

Definition. A partition P∗ of [a, b] is a refinement of partition P of [a, b] iff the
division points a∗k in P∗ are all of the division points ak in P plus at least one new
point.
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In what follows, a sequence of three lemmas followed by a sequence of four
theorems will take us up to the very important connection between continuity
and Riemann-integrability (Theorem 6.13).

Lemma 6.4.1. If f is a bounded function on [a, b] and P∗ is a refinement of P, then
L(P, f ) ≤ L(P∗, f ) ≤ U(P∗, f ) ≤ U(P, f ).

Proof. The middle inequality is true because it holds for any partition of [a, b].
Suppose now that P∗ contains just one more point than does P; denote this
extra point c and suppose that c ∈ (aj−1, aj). We define⎧⎪⎪⎨

⎪⎪⎩
m∗

k = mk = inf
x

f (x) x ∈ [ak−1, ak], k 
= j

m∗
c = inf

x
f (x) x ∈ [aj−1, c]

m∗
j = inf

x
f (x) x ∈ [c, aj].

Figure 6.5 shows possible geometric situations for subinterval [aj−1, aj]; there
are only three allowed pairs of relations for mj, m∗

c , m∗
j .

Thus, we always have mj ≤ m∗
c and mj ≤ m∗

j . In view of this, we obtain for L(P, f )

L(P, f ) =
j−1∑
k=1

mk�ak + mj(aj − c + c − aj−1) +
n∑

k=j+1

mk�ak

=
j−1∑
k=1

mk�ak + mj(c − aj−1) + mj(aj − c) +
n∑

k=j+1

mk�ak

≤
j−1∑
k=1

m∗
k�ak + m∗

c (c − aj−1) + m∗
j (aj − c) +

n∑
k=j+1

m∗
k�ak

= L(P∗, f ).

f (x)

x
aj21 ajc

f (x)

x
aj21 ajc

mj 5 m*c

mj , m*j

mj , m*c

mj 5 m*j

mj 5 m*c

mj 5 m*j

f (x)

x
aj21 ajc

FIGURE 6.5
Inequalities in a partition refinement.
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The case where P∗ contains many more points than P is handled by mathe-
matical induction. The details of it, and of the analogous inequality U(P∗, f ) ≤
U(P, f ), are left to you. �

Lemma 6.4.2. If f is a bounded function on [a, b] and P1, P2 are any two partitions
of [a, b] whatsoever, then L(P1, f ) ≤ U(P2, f ).

Proof. Let P∗ = P1 ∪ P2 denote the partition whose division points are those
of P1 and those of P2. Then P∗ is a refinement of P1 and a refinement of P2. It
follows from Lemma 6.4.1 that

L(P1, f ) ≤ L(P∗, f ) ≤ U(P∗, f ) ≤ U(P2, f ). �

Lemma 6.4.3. If f is a bounded function on [a, b], then
∫ b

a f ≤ ∫ b
a f .

Proof. Momentarily fix the partition P1; Lemma 6.4.2 shows that L(P1, f ) is a
lower bound for the set of all upper Darboux sums U(P, f ) and, in particular,
to the infimum of this set:

L(P1, f ) ≤
b∫

a

f .

Letting P1 now be variable, we see that
∫ b

a f is an upper bound to the set of all
lower Darboux sums L(P, f ) and, in particular, to the supremum of this set:

b∫
a

f ≤
b∫

a

f .

�

Theorem 6.10. Let f be a bounded function on [a, b]. Then f is Darboux-integrable
on [a, b] if for every ε > 0 there is a δ > 0 such that for all partitions P of [a, b] of
norm N < δ we have

U(P, f ) − L(P, f ) < ε.

Proof. Suppose that foreachε > 0there isaδ > 0suchthatU(P, f ) − L(P, f ) < ε

holds for all partitions P of norm N < δ. Then, by definition,

b∫
a

f ≤ U(P, f )
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= [U(P, f ) − L(P, f )] + L(P, f )

< ε + L(P, f )

≤ ε +
b∫

a

f .

As this is true for all ε > 0, it is true in the limit of ε = 0; that is,
∫ b

a f ≤ ∫ b
a f . But

by Lemma 6.4.3 we have
∫ b

a f ≥ ∫ b
a f ; the two inequalities imply

∫ b
a f = ∫ b

a f . �

Theorem 6.10 may be considered the sufficiency part of a “Cauchy-like” criterion
for Darboux-integrability. The obvious necessary part of the criterion is also
valid.

Theorem 6.11. Let f be a bounded, Darboux-integrable function on [a, b]. Then for
any ε > 0 there is a δ > 0 such that for all partitions P of [a, b] of norm N < δ, we
have U(P, f ) − L(P, f ) < ε.

Proof. Let ε > 0 be given; then, by definition of infimum and supremum, there
are partitions P1, P2 such that

L(P1, f ) >

b∫
a

f − ε

4
, U(P2, f ) <

b∫
a

f + ε

4
.

The new partition Q = P1 ∪ P2 is a refinement of both P1 and P2, so by
Lemma 6.4.1 we have

L(P1, f ) ≤ L(Q, f ) ≤ U(Q, f ) ≤ U(P2, f ),

or equivalently,

U(Q, f ) − L(Q, f ) ≤ U(P2, f ) − L(P1, f )

<

⎛
⎜⎝

b∫
a

f + ε

4

⎞
⎟⎠−

⎛
⎜⎝

b∫
a

f − ε

4

⎞
⎟⎠

=
⎛
⎜⎝

b∫
a

f −
b∫

a

f

⎞
⎟⎠+ ε

2
= ε/2. (*)
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Since f is bounded, then |f (x)| ≤ K , x ∈ [a, b]. Also, suppose that Q has n > 1
subintervals; set δ = ε

8(n−1)K . Let P be any partition of [a, b]with norm N < δ. We

define the refinement P∗ = P ∪ Q. Suppose P∗ were to have only one point that
is not in P. Call this point c, and suppose that it falls in subinterval [aj−1, aj]
of P. All terms of L(P∗, f ), L(P, f ) would coincide except for those involving
[aj−1, aj]. We obtain upon subtraction and use of the Triangle Inequality,

L(P∗, f ) − L(P, f ) = m∗
c (c − aj−1) + m∗

j (aj − c) − mj(aj − aj−1)

< |m∗
c |(c − aj−1) + |m∗

j |(aj − c) + |mj|(aj − aj−1)

< K(c − aj−1 + aj − c) + K(aj − aj−1)

< 2KN.

But, in actuality, P∗ has at most n − 1 points that are not in P (Figure 6.6), so
if all such points are included, we obtain

L(P∗, f ) − L(P, f ) < 2(n − 1)KN

<
ε

4
.

From Lemma 6.4.1 again, since P∗ is a refinement of Q, then L(Q, f ) ≤
L(P∗, f ), so

L(Q, f ) − L(P, f ) <
ε

4
.

Similar reasoning to the previous steps produces for the analogous upper
Darboux sums (verify!)

U(P, f ) − U(Q, f ) <
ε

4
.

a b
Q (n 5 5)

P* 5 P <Q
(has 4 pts not in P)

P

FIGURE 6.6
Tallying points in a refinement.
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Combination of the two inequalities gives

U(P, f ) − L(P, f ) < [U(Q, f ) − L(Q, f )] + ε

2
< ε,

from equation (*). Thus, if ε > 0, then any partition P with norm N < δ =
ε

8(n−1)K satisfies U(P, f ) − L(P, f ) < ε. �

We are now ready to establish the connection between the Darboux integral and
the Riemann integral. This will allow us to use facts about either formulation
to prove theorems valid for both integrals.

Theorem 6.12. Let f be a bounded function on [a, b]. Then f is Riemann-integrable
on [a, b] iff f is Darboux-integrable there, and the two integrals are equal.

Proof. (→) Suppose that f is Riemann-integrable:

∫ b

a
f = I.

Let ε > 0 be given; then there is a δ > 0 such that for all tagged partitions P
with norm N < δ we have

∣∣∣∣∣
n∑

k=1

f (xk)�ak − I

∣∣∣∣∣ < ε. (*)

We now make a specific choice for each of the tags; for each subinterval
[ak−1, ak] choose xk to be any point in [ak−1, ak] such that f (xk) ≤ mk + ε. The
corresponding Riemann sum is then

S =
n∑

k=1

f (xk)�ak ≤
n∑

k=1

(mk + ε)�ak

=
n∑

k=1

mk�ak + ε(b − a)

= L(P, f ) + ε(b − a). (**)

Hence, we obtain from equations (*) and (**)

I − ε − ε(b − a) < S − ε(b − a) ≤ L(P, f ) ≤
b∫

a

f ,
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and since this is true for every ε > 0, then in the limit of ε = 0 we have

I ≤
b∫

a

f .

Similar reasoning in which each tag xk is any point in [ak−1, ak] such that f (xk) ≥
Mk − ε leads to the result (verify!)

b∫
a

f ≤ I.

Thus, we have, upon combination,
∫ b

a f ≤ ∫ b
a f . Since Lemma 6.4.3 has given

us
∫ b

a f ≤ ∫ b
a f (whether f is Darboux-integrable or not), we can conclude that∫ b

a f = ∫ b
a f , so I = (D)

∫ b
a f .

(←) Suppose that f is Darboux-integrable. Let ε > 0 be given; there is δ > 0
such that for every partition P with norm N < δ we have from Theorem 6.11

U(P, f ) − L(P, f ) < ε. (*)

Now suppose that tags are chosen for each subinterval of [a, b]; we have for
k = 1, 2, . . . , n that mk ≤ xk ≤ Mk, so

L(P, f ) =
n∑

k=1

mk�ak ≤
n∑

k=1

f (xk)�ak ≤
n∑

k=1

Mk�ak = U(P, f ). (**)

From equations (*) and (**) and the definitions of the upper and lower
Darboux integrals, we obtain

b∫
a

f ≤ U(P, f ) < L(P, f ) + ε ≤ S + ε

and

b∫
a

f ≥ L(P, f ) > U(P, f ) − ε ≥ S − ε.
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Finally, from Darboux’s definition of the integral we obtain

−ε < S − (D)

b∫
a

f < ε.

As ε > 0 is arbitrary, this shows that (D)
∫ b

a f = ∫ b
a f. �

■ Example 6.9
Let f be the Dirichlet function (see Example 4.6), and let P be any partition
of [0, 1]. We have

1∫
0

f = inf
P

n∑
k=1

Mk�ak = 1

1∫
0

f = sup
P

n∑
k=1

mk�ak = 0.

Since 0 
= 1, it follows from Theorem 6.12 that f is not Riemann-
integrable. ■

Theorem 6.13. If f is continuous on [a, b], then f is Riemann-integrable on
[a, b], b > a.

Proof. By Theorem 4.16, f is uniformly continuous on the compact set [a, b].
Hence, if ε > 0 is given, then there is a δ > 0 such that for any x1, x2 ∈ [a, b] that
satisfy |x1 − x2| < δ, we have |f (x1) − f (x2)| < ε

b−a . Now let P be any partition
of [a, b] with norm N < δ. Then on each subinterval [ak−1, ak] it follows that
0 ≤ Mk − mk < ε

b−a , so

U(P, f ) − L(P, f ) =
n∑

k=1

(Mk − mk)�ak

<
ε

b − a

n∑
k=1

�ak = ε.

By Theorems 6.10 and 6.12 we conclude that f is (Riemann)-integrable
on [a, b]. �
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■ Example 6.10
The following integrals exist, by virtue of Theorem 6.13:

(a) all the integrals in Example 6.7;

(b)
∫ 2π

0 sin(
√

x)dx;

(c)
∫ −1

0
2x2−3x−5
x3+2x−2 dx;

(d) I = ∫ π/4
0

dz√
1−k2 sin2 z

, (sin−1 k = π/3). 6 ■

Corollary 6.13.1 (Mean-Value Theorem for Integrals). If f is continuous
on [a, b], then there is a point c ∈ [a, b] at which

b∫
a

f (x)dx = f (c)(b − a).

Proof. By Theorem 6.13, the integral exists. Let M = sup
x

f (x) and m =
inf

x
f (x), x ∈ [a, b]; use Theorems 6.2, 4.10, and 4.14. The completion of the

proof is left to you. �

■ Example 6.11
Since f (t) = 1

1+t2 is continuous on R1, then F(x) = ∫ x
0

dt
1+t2 exists for any

x ∈ R1. Suppose x2 > x1; then by Theorem 6.5 and Corollary 6.5.1, we have

F(x2) − F(x1) =
x2∫

0

dt
1 + t2 −

x1∫
0

dt
1 + t2 =

x2∫
x1

dt
1 + t2 .

From the Mean-Value Theorem for Integrals, there is a c ∈ [x1, x2] such that∫ x2
x1

dt
1+ t2 = 1

1+ c2 (x2 − x1) > 0. Hence, F(x) is an increasing function. Further,

F(0) = 0 implies that F(x) > 0 for x > 0. The function F is an entry point into
a formal development of the trigonometric functions (Exercises 6.38, 6.50,
6.51). ■

We defined earlier a finitely piecewise monotonic function. Rather analogously,
a finitely piecewise continuous function on [a, b] is one for which [a, b] can
be partitioned into a finite number of closed subintervals, on the interiors of
which f is continuous and for which both one-sided limits at the endpoints
are finite. Step-functions are simple examples of finitely piecewise continuous
functions.

6This is an elliptic integral of the first kind; more on elliptic integrals in Exercises 6.15, 6.16, and 6.46.
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Theorem 6.14. If f is finitely piecewise continuous on [a, b], then f is integrable on
[a, b].
Proof. Let P be the partition a = a0 < a1 < a2 < · · · < an = b, and suppose
that f is continuous on each open interval (ak−1, ak), k = 1, 2, . . . , n. Assume
also that on each open interval the two limits lim

x→a+k−1

f (x), lim
x→a−k

f (x) exist in R1.

For each k we define the function⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fk(x) =

f (x) ak−1 < x < ak

lim
x→a+k−1

f (x) x = ak−1

lim
x→a−k

f (x) x = ak.

Then fk is continuous on [ak−1, ak] and by Theorem 6.13 each integral∫ ak
ak−1

fk(x)dx exists. But by Corollary 6.6.1, the values of fk at the two points
ak−1, ak are irrelevant, so if these values are changed back to f (ak−1) and f (ak),
then the integrand can be rewritten as f and we have

ak∫
ak−1

f (x)dx =
ak∫

ak−1

fk(x)dx.

Finally, Theorem 6.5 extends this procedure to all the subintervals in P and f is
integrable on all of [a, b]. �

■ Example 6.12
The proviso of the assumption of integrability can now be removed from
Example 6.5. As another example, suppose that S = {n−1 : n = 1, 2, . . . , 100}.
Then if g is defined by g(x) =

{
x3 x /∈ S

2 x ∈ S
, we have

∫ 2
0 g(x)dx = 4. ■

6.5 THE FUNDAMENTAL THEOREM OF THE
CALCULUS

The celebrated Fundamental Theorem of the Calculus was presented by Newton
and Leibniz in their work. Newton’s predecessor, Isaac Barrow (1630–1677),
was aware of the relationship between finding the tangent to a curve and the
calculation of an area under that curve, but he probably did not appreciate its
significance (Kline, 1972).

It has become standard to state the modern version of the Fundamental Theo-
rem as a pair of independent statements, one involving integration of derivatives
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and the other involving differentiation of indefinite integrals. Our exposition
is based on Cunningham (1965).

Theorem 6.15 (Fundamental Theorem of the Calculus—A). If f is conti-
nuous on [a, b] and differentiable on (a, b) and f ′ is integrable on [a, b], then

b∫
a

f ′ = f (b) − f (a).

Proof. Let P = {ak}nk=0 denote a partition of [a, b] with norm N. The difference
f (b) − f (a) is given by a telescoping sum

f (b) − f (a) =
n∑

k=1

[f (ak) − f (ak−1)].

On each subinterval [ak−1, ak] we can apply the Mean-Value Theorem because f
is continuous on [a, b] and differentiable on (a, b). The completion of the proof
is left to you. �

As stated, Theorem 6.15 applies to integrals whose integrands are derivatives
that are defined on (a, b) and are bounded on [a, b]. There are, of course, other
functions that are not derivatives but that are still Riemann-integrable, and to
these integrals Theorem 6.15 (as stated) does not apply. However, by a suitable
modification of the wording, the Fundamental Theorem of the Calculus—A
can be made to apply to all Riemann integrable functions (Botsko, 1991).

On the other hand, not every derivative is Riemann-integrable. The condition
of integrability of f ′ is needed in the hypotheses of Theorem 6.15. A standard
example is the function

f (x) =
{

x2 sin(1/x2) 0 < x ≤ 1

0 x = 0.

Its derivative is (verify!)

f ′(x) =
{

2x sin(1/x2) − 2x−1 cos(1/x2) 0 < x ≤ 1

0 x = 0.

But f ′(x) is unbounded in any neighborhood of the origin, so the integral
∫ 1

0 f ′
does not exist (Theorem 6.1). There are even functions f such that f ′ is defined
and bounded on [a, b], and yet, f ′ is not integrable (Chatterji, 1988). Finally, a
criterion exists that tells us just when a derivative f ′ is Riemann-integrable over
[a, b] (van de Lune, 1975).
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Integration formulas, no matter how complicated and no matter how they
are deduced (Exercise 6.35), depend upon the Fundamental Theorem of
the Calculus—A. The importance of the theorem, therefore, cannot be
overestimated.

■ Example 6.13
The integrand in

∫ 4a
2a

√
x2−a2

x dx, a > 0, is the derivative of the function

f (x) =
√

x2 − a2 − a sec−1(x/a)

(0 ≤ Sec−1u < π/2 if u ≥ 1).

This function is differentiable (and continuous) at all x ≥ a, as is the
integrand. By Theorem 6.13 the integral exists, and Theorem 6.15 gives

4a∫
2a

√
x2 − a2

x
dx = f (4a) − f (2a)

= a
[(√

15 −√
3
)
+ (

Sec−12 − Sec−14
)]

.
■

Theorem 6.16 (Fundamental Theorem of the Calculus—B). If f is
continuous on [a, b] and F(x) = ∫ x

a f for each x ∈ [a, b], then

F′(x) = d
dx

x∫
a

f (t)dt = f (x).

Proof. Let |h| be nonzero but sufficiently small so that x + h ∈ [a, b] for all
x ∈ [a, b]. At the left (right) endpoints, h must be positive (negative). Then

F(x + h) − F(x) =
x+h∫
a

f −
x∫

a

f

=
x+h∫
x

f from Theorem 6.5.

This holds because f is continuous on [a, b] and on any subinterval of it, so f is
integrable there. From the Mean-Value Theorem for Integrals (Corollary 6.13.1),
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we can write

x+h∫
x

f = hf (ch),

for some ch satisfying x < ch < x + h (if h > 0), or x + h < ch < x (if h < 0).
Hence, we obtain

F(x + h) − F(x)
h

= f (ch). (*)

As h → 0, ch → x, and since f is continuous on [a, b], then f (ch) → f (x). The
left-hand side of equation (*) must also approach a limit; by definition, this is
F′(x), and we arrive at F′(x) = f (x). �

Corollary 6.16.1. If f is continuous on [a, b], then

F(x) =
x∫

a

f (t)dt

is also continuous on [a, b].
Proof. This follows immediately from Theorems 6.16 and 5.1. �

■ Example 6.14
A major use of the Fundamental Theorem of the Calculus—B is in connec-
tion with the generation of transcendental functions. Recalling Approach 2
following Example 4.8, we see that ln x = ∫ x

1
dt
t is continuous at every x > 0,

since 1/t is continuous at every t > 0. ■

■ Example 6.15
The Fresnel integrals, which occur in the physics of diffraction at a slit, are
defined as

C(x) =
x∫

0

cos(πt2/2)dt, S(x) =
x∫

0

sin(πt2/2)dt.

The integrals exist for any real x because the integrands are continuous on
[0, x]. Hence, by the Fundamental Theorem of the Calculus—B, we then have

C′(x) = cos(πx2/2), S′(x) = sin(πx2/2).
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These functions are transcendental functions. It is possible to deduce that
C(x), S(x) are themselves transcendental functions.7 ■

Refer once again to Figure 6.1. Do you see that the figure provides a geometric
interpretation of the Fundamental Theorem of the Calculus—B?

Theorems 6.15 and 6.16 have to be regarded as amazing. The processes of
differentiation and integration are defined independently of each other, but
the two theorems show that differentiation and integration are related in a
simple and pretty way.

6.6* NUMERICAL INTEGRATION—SIMPSON’S
RULE

Any procedure for the estimation of the value of a definite integral that does not
make use of the Fundamental Theorem of the Calculus and does not express
the value in exact, closed form (e.g., as π2/6) may be called numerical inte-
gration. Simpson’s Rule, named after the self-taught English mathematician
Thomas Simpson (1710–1761) and published by him in 1743, is one such
procedure.

Let f be continuous on [a, b], and let P = {
ak
}n

k=0 be a partition of the interval
into n subintervals of width h = (b − a)/n; we stipulate that n be even. Choose
any odd k, 0 < k < n, and define u = x − ak. We seek a parabola Qk(u) = Au2 +
Bu + C that passes through the three points (−h, f (ak−1)), (0, f (ak)), (h, f (ak+1))

(Figure 6.7). This leads to the system of equations

⎧⎪⎨
⎪⎩

Ah2 − Bh + C = f (ak−1)

C = f (ak)

Ah2 + Bh + C = f (ak+1).

The solution of this system is, from Cramer’s Rule,

A =

∣∣∣∣∣∣∣
f (ak−1) −h 1

f (ak) 0 1

f (ak+1) h 1

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣

h2 −h 1

0 0 1

h2 h 1

∣∣∣∣∣∣∣

7For this we need a little algebra, namely, that sums, differences, products, and quotients of algebraic
functions are themselves algebraic (Herstein, 1975). The strategy now is to show that if f is algebraic, then
f ′ is also algebraic (try to prove this last statement). The particular improper Fresnel integrals C(∞) and
S(∞) have the common value ½ (Olds, 1968).
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FIGURE 6.7
A parabola Qk(u) that passes through three points on a curve.

= 1
2h2 [ f (ak−1) − 2f (ak) + f (ak+1)]

B = −1
2h

[ f (ak−1) − f (ak+1)]

C = f (ak).

Then, upon evaluation of
∫ b

a Qk(u)du in order to find the “area” enclosed by the
parabolic arc, we find (verify!)

b∫
a

Qk(u)du = h
3

[ f (ak−1) + 4f (ak) + f (ak+1)].

Finally, we apply this formula to successive cases k = 1, 3, 5, . . . , n − 1, and add
the contributions due to each parabolic arc. The final result, An( f ), for the
estimated “area” is as follows.

Theorem 6.17 (Simpson’s Rule). If f is continuous on [a, b] and a partition
P = {ak}nk=0 is constructed as described earlier, then

b∫
a

f (x)dx ≈ h
3

[ f (a0) + 4f (a1) + 2f (a2) + 4f (a3) + 2f (a4)

+ · · · + 4f (an−1) + f (an)]

= An( f ).
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■ Example 6.16
The integral in Example 6.10(d) cannot be evaluated analytically, but must
be evaluated numerically. Taking n = 8, we have from Theorem 6.17,

I = F(k, π/4) ≈ A8( f )

= π

96

{
1 + 4

[
1 − 3

4
sin2(π/32)

]−1/2

+ 2
[

1 − 3
4

sin2(π/16)

]−1/2

+4
[

1 − 3
4

sin2(3π/32)

]−1/2

+ · · · + 4
[

1 − 3
4

sin2(7π/32)

]−1/2

+
√

8
5

}

≈ π

96
{1 + 4.0144894 + 2.0291712 + 4.1327230 + 2.1197992

+ 4.3817660 + 2.2814255 + 4.7872142 + 1.2649111}
= 0.8512243.

The tabulated value is 0.85122375 (Abramowitz and Stegun, 1965). ■

The previous example is quite satisfying. It is possible to improve upon
Theorem 6.17 by modifying the mechanics of the handling of the parabolic
arcs (Richert, 1985; Velleman, 2004). We can also replace the parabolic arcs by
cubic, quartic, or higher-degree splines in order to achieve greater accuracy.

Nevertheless, despite its relative simplicity, Simpson’s Rule tends to work
surprisingly well. How well does it work? We can quantify this if sufficient
continuity conditions are imposed upon f .

Theorem 6.18. If f , f ′, f ′′, f (3), f (4) are continuous on [a, b], if An( f ) is the nth-
order Simpson approximation to

∫ b
a f (x)dx, and if M = sup

x
|f (4)(x)|, then

∣∣∣∣∣∣
b∫

a

f (x)dx − An( f )

∣∣∣∣∣∣ ≤ (b − a)5M/(180n4).

Proof. Corresponding to each odd k, k = 1, 3, 5, . . . , n − 1, we define the
differentiable function

gk(h) =
ak+h∫

ak−h

f (x)dx − h
3

[f (ak − h) + 4f (ak) + f (ak + h)],

where h = ak+1 − ak is now regarded as a continuous variable (that is, the norm
of the partition of [a, b] is allowed to change continuously). The expression on
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the right can be interpreted as the error in the area made by approximating the
integral shown by an “area” under one parabolic arc.

Four differentiations of gk(h) lead ultimately to (verify!)

g(4)

k (h) = −h
3

[
f (4)(ak + h) + f (4)(ak − h)

]− 1
3

[
f (3)(ak + h) − f (3)(ak − h)

]
.

It is easily verified that gk(0) = g′k(0) = g′′k (0) = g(3)

k (0) = g(4)

k (0) = 0. Also, in
obtaining g′k(h) from gk(h), we have called upon Exercise 6.41.

Since f (4) is continuous on [a, b], it assumes a maximum value somewhere there
(Theorem 4.10), that is, there is a number M > 0 such that −M ≤ f (4)(x) ≤ M
for all x ∈ [a, b]. It then follows that

h∫
0

−M dx ≤
h∫

0

f (4)(ak ± x)dx ≤
h∫

0

M dx,

or
∣∣ f (3)(ak + h) − f (3)(ak − h)

∣∣ ≤ 2Mh. An application of the Triangle Inequality

to g(4)

k (h) above now gives

∣∣∣g(4)

k (h)

∣∣∣ ≤ h
3

(M + M) + 1
3

(2Mh) = 4hM/3.

Writing this as −4tM/3 ≤ g(4)

k (t) ≤ 4tM/3, where t is now a dummy variable,
we integrate four times, using 0 as the lower limit on the integrals and h
alternately as the upper limit and as a new dummy variable. We arrive at

−h5M/90 ≤ gk(h) ≤ h5M/90.

For a given (even) n, there are n/2 odd h’s, so addition of all the errors yields,
finally,

∣∣∣∣∣∣
b∫

a

f (x)dx − An( f )

∣∣∣∣∣∣ ≤
∑

k

|gk(h)|

≤ (n/2)(h5M/90)

= (b − a)5M/
(
180n4),

since h = (b − a)/n. �
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■ Example 6.17
What order of Simpson approximation to

∫ π/2
0 sin(2x)dx will guarantee an

error of magnitude less than 1 × 10−5?

If f (x) = sin(2x), it is found that f (4)(x) = 16 sin(2x), so |f (4)(x)| ≤ M = 16.
Hence, we require from Theorem 6.18

(π/2)5 · 16
180n4 < 10−5,

or n > 17. Thus, the 18th-order Simpson approximation (A18( f )) will
certainly do. A lower-order approximation may also suffice. ■

■ Example 6.18
Consider

∫ 1
0

√
8t2 + 1dt; the integrand has an antiderivative, and we find

that
∫ 1

0

√
8t2 + 1dt ≈ 1.81161262. Use of Theorem 6.17, with n = 6, gives

A6( f ) ≈ 1.8116324, so
∣∣ ∫ 1

0

√
8t2 + 1dt − A6( f )

∣∣ ≈ 1.98 × 10−5. If we let
f (t) = (8t2 + 1)1/2, then we can establish that f (4)(t) = 192[ f (t)]−5{4 −
5[ f (t)]−2}, and that f (4)(0) = −192 and f (4)(1) = 1984/729 ≈ 2.72. Poten-
tial local extrema of f (4)(t) occur where f (5)(t) = 0; this leads to t = √

3/32,
and f (4)(

√
3/32) = 49,152

√
7/2401 ≈ 54. Hence, |f (4)(t)| is bounded above

by M = 192, and we have from Theorem 6.18

∣∣∣ ∫ 1

0

√
8t2 + 1dt − A6( f )

∣∣∣ ≤ (1 − 0)5(192)/[180(64)]

≈ 8.23 × 10−4.

Note that the upper bound to the error that is supplied by Theorem 6.18 is
not necessarily very sharp. ■

6.7 IMPROPER INTEGRALS
The symbols

∫∞
0 e−t2

dt and
∫ 4

3
dt√
t−3

are not, strictly speaking, the symbols for

Riemann integrals. Yet they look like they could usefully represent meaningful
quantities, and like the notation

∑∞
n=1 an, they call for some extension of the

relevant theory. Also, like the notation
∑∞

n=1 an, the notation for improper
integrals such as the preceding two requires some care in its definition, as neither
integral can be viewed as the limit of a Riemann sum as the norm N → 0. The
first way in which an integral cannot be a limit of a Riemann sum is if the
interval of integration is infinite.

Definition. Let a ∈ R1 be fixed and suppose that for all real x ≥ a the function
f is Riemann-integrable on [a, x]. If the upper limit of integration is allowed to be
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unbounded, the symbol
∫∞

a f (t)dt shall denote an improper integral of the first
kind.8

■ Example 6.19
All the following are symbols for improper integrals of the first kind, either
directly from the definition or from minor extensions of the definition:

(a)
∫∞

0 e−t2
dt;

(b)
∫ 1
∞(ln t)dt;

(c)
∫ 1
−∞

dt
1+t2 ;

(d)
∫∞
−∞

t2dt
1+t4 . ■

The second way in which an integral cannot be a limit of a Riemann sum is if
on a finite interval of integration [a, b] there is a point at which f is unbounded
(see Theorem 6.1).

Definition. Suppose that there exists an x ∈ [a, b], −∞ < a < b < ∞, at which f
is unbounded or indeterminate, and suppose that for positive ε

(a) ε < min {x − a, b − x} implies that
∫ x−ε

a f (t)dt and
∫ b

x+ε
f (t)dt are

Riemann-integrable, or

(b) ε < b − a implies that either
∫ b

a+ε
f (t)dt or

∫ b−ε

a f (t)dt is Riemann-
integrable.

Then the symbol
∫ b

a f (t)dt shall denote an improper integral of the second kind.

■ Example 6.20
All the following are symbols for improper integrals of the second kind, either
directly from the definition or from minor extensions of the definition:

(a)
∫ 1
−1

dt
t3 ;

(b)
∫ 4

3
dt√
t−3

;

(c)
∫ π/2
π/4

√
(sin t)(tan t)dt;

(d)
∫ 1
−1

t dt
3√t2−1

. ■

8The designations improper integrals of the “first kind” and “second kind” are employed by Shilov, but
these terms are modifications of “infinite integral of the first (second) kind,” which were introduced by
Hardy. These latter terms suggest analogies with infinite series.
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So far, improper integrals have been nothing more than symbols; this was the
way in which the treatment of infinite series began. The theory of improper
integrals, in fact, has a number of parallels to that of infinite series.8 We proceed
to add some content to the concept of an improper integral; for simplicity, we
adopt the generic symbol I( f ) for an improper integral of the function f .

Property 1. (Scalar Multiplication) The product ( · ) of c ∈ R1 and the
improper integral I( f ) is the new improper integral I(cf ).

Property 2. (Integral Addition) Addition (⊕) of the two improper integrals
I( f ) and I(g) on a common interval of integration is the new
improper integral I( f + g) on that same interval of integration.

By far, the most important definitional property of an improper integral is that
of convergence (or not) of the integral.

Property 3. (Convergence) An improper integral of the first kind is said to
converge to the number I ∈ R1 iff lim

x→∞
∫ x

a f (t)dt = I (or, anal-

ogously, lim
x→−∞

∫ b
x f (t)dt = I). We then write

∫∞
a f (t)dt = I (or,

analogously,
∫ b
−∞ f (t)dt = I).

An improper integral
∫ b

a f (t)dt of the second kind converges to

I ∈ R1 iff lim
ε→0+

∫ x−ε

a f (t)dt = I1 ∈ R1, lim
ε→0+

∫ b
x+ε

f (t)dt = I2 ∈ R1,

and I1 + I2 = I (and, analogously, if the aberrant point x is a or b).
We then write

∫ b
a f (t)dt = I.

An improper integral that does not converge is said to diverge (or
to be divergent).

As with infinite series, Properties 1 and 2 have nothing to do with convergence.
Fortunately, also, these properties lead to desirable practical consequences.

Theorem 6.19. Suppose that improper integrals I( f ) and I(g), presumed to be
defined on a common interval of integration, converge to A and B, respectively. Then
if c ∈ R1, we have (a) c · I( f ) = cA, and (b) I( f ) ⊕ I(g) = A + B.

Proof.

(a) We prove this part for an I( f ) of the first kind; the proof for an improper
integral of the second kind is analogous. Suppose that I( f ) = ∫∞

a f (t)dt;
let F(x) = ∫ x

a f (t)dt, x ≥ a. Then for any c ∈ R1, Theorem 6.4(i) gives

c F(x) = c

x∫
a

f (t)dt =
x∫

a

c f (t)dt.
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By hypothesis and by Theorem 1.10(i), applied to the case where the
domain of F(x) is a subset of Re, we then have

lim
x→∞ cF(x) = c lim

x→∞ F(x) = c A = lim
x→∞

∫ x

a
cf (t)dt =

∫ ∞

a
cf (t)dt.

(b) Proof of this part is left to you. �

■ Example 6.21
In Example 6.19, only (b) diverges. To prove that (c) converges, for example,
we write

F(x) =
1∫

x

dt
1 + t2 = Tan−1t

∣∣1
x

= (π/4) − Tan−1x.

Then, by definition (and Exercise 6.50), we obtain

1∫
−∞

dt
1 + t2 = lim

x→−∞ [(π/4) − Tan−1x]

= 3π/4.

The result is interpretable graphically in Figure 6.8.

Area 5
2
�

Area 5
4
�

y

t

1

1021

0.5

FIGURE 6.8
Geometric meaning of the improper integral

∫ 1
−∞ dt

1+t2 .
■
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■ Example 6.22
In Example 6.20, only (a) diverges. The integrand there is unbounded in any
interval about t = 0. Then, by definition,

1∫
−1

dt
t3 = lim

ε→0+

−ε∫
−1

dt
t3 + lim

ε→0+

1∫
ε

dt
t3

=
[

lim
ε→0+

(−1
2ε2 + 1

2

)]
+
[

lim
ε→0+

(
−1

2
+ 1

2ε2

)]
.

The result is an indeterminate expression of the form −∞+∞; hence, the
improper integral diverges. ■

Some comments are pertinent to Example 6.19(d) and Example 6.22. The fol-
lowing test, which is quite analogous to the Comparison Test in Theorem 3.4,
would be useful in connection with Example 6.19(d).

Theorem 6.20 (Comparison Test for Improper Integrals). Suppose that for
all t ≥ a we have 0 ≤ f (t) ≤ g(t). If

∫∞
a g(t)dt converges and f is Riemann-integrable

on any interval [a, x], x = a, then
∫∞

a f (t)dt converges and

∞∫
a

f (t)dt ≤
∞∫

a

g(t)dt.

Proof. It follows from Theorem 6.2 that

0 ≤
x∫

a

f (t)dt ≤
x∫

a

g(t)dt ≤
∞∫

a

g(t)dt.

Since F(x) = ∫ x
a f (t)dt and G(x) = ∫ x

a g(t)dt are bounded above by
∫∞

a g(t)dt,
which converges by hypothesis, and since F(x), G(x) are increasing functions,
then from the Completeness Axiom both F(x), G(x) have limits as x → ∞. An
adaptation of Theorem 2.8 then gives lim

x→∞ F(x) ≤ lim
x→∞G(x). �

Theorem 6.20 has a plausible geometric interpretation; we show this in
Figure 6.9. Note that the theorem is stated for nonnegative-valued integrands.

■ Example 6.23
In Example 6.19(d) choose any a ∈ (−∞,∞); a common, but arbitrary,
choice is a = 0. Then for c ≥ 0, define F(x) = ∫ c

0
t2dt
1+t4 + ∫ x

c
t2dt
1+t4 , x > c. The

first integral exists because t2/(1 + t4) is continuous on [0, c]. For the second
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t

y

a

y 5 g(t)

y 5 f (t)

FIGURE 6.9
The geometric meaning of the Comparison Test for Improper Integrals of the First Kind.

integral we have t2

1+t4 < 1
t2 , so by Theorem 6.20 we obtain

lim
x→∞

x∫
c

t2dt
1 + t4 ≤ lim

x→∞

x∫
c

dt
t2 = lim

x→∞

(−1
x

+ 1
c

)
= 1

c
.

It follows that
∫∞

0
t2dt
1+t4 converges. Parallel reasoning shows that

∫ 0
−∞

t2dt
1+t4 also

converges; hence, the integral in Example 6.19(d) converges. ■

A different issue arises in connection with Example 6.22. It might be argued
that the terms −1/(2ε2) and 1/(2ε2) cancel and, of course the 1/2 and −1/2
also cancel, so the final limit ought to be 0. The definition of the value of
an improper integral of the second kind in which the aberrant point is an
interior point, however, requires that the two indicated limits be handled
separately.

But just as it has been possible to construct alternative methods of summability
of infinite series (see Section 3.2), so it has been possible to define alternative
ways of attaching a value to certain improper integrals. Thus, let f be defined on
[a, b], except possibly at c ∈ (a, b), where f is either undefined or indeterminate.
Then if

∫ b
a f (t)dt diverges but the single limit

lim
ε→0+

⎡
⎣ c−ε∫

a

f (t)dt +
b∫

c+ε

f (t)dt

⎤
⎦ = L

happens to exist (in R1), then we call this limit the Cauchy principal value of∫ b
a f (t)dt, and we write (P)

∫ b
a f (t)dt = L.
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■ Example 6.24
It follows that although

∫ 1
−1

dt
t3 diverges, we have (P)

∫ 1
−1

dt
t3 = 0. ■

For some improper integrals that converge, it may still be possible to define a
Cauchy principal value, obtained (as required, by definition) from the simul-
taneous symmetric evaluation of two limits. The following example shows that
when I( f ) is convergent, its value I is still the same as its Cauchy principal
value.

■ Example 6.25
The integral I( f ) = ∫∞

0
dt√

t(1+t)
is improper at both limits.

Choose any c ∈ (0,∞); then

I = lim
x→∞

x∫
c

dt√
t(1 + t)

+ lim
ε→0+

c∫
ε

dt√
t(1 + t)

.

An antiderivative is 2 Tan−1√t (verify!), so from Theorem 6.15 we have

I = lim
x→∞

[
2 Tan−1√x − 2 Tan−1√c

]+ lim
ε→0+

[
2 Tan−1√c − 2 Tan−1√ε

]
= (

π − 2 Tan−1√c
)+ (

2 Tan−1√c − 0
)

= π.

On the other hand, we can bypass the point c and write

(P)

∞∫
0

dt√
t(1 + t)

= lim
ε→0+

1/ε∫
ε

dt√
t(1 + t)

= lim
ε→0+

[
2 Tan−1

√
1/ε − 2 Tan−1√ε

]

= 2(π/2) − 2(0)

= π. ■

Theorem 6.20 was a first look at the parallelism between improper integrals
and infinite series (and sequences). We continue this theme in Example 6.26
and Theorems 6.21 and 6.22.
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■ Example 6.26
Does

∫∞
0

sin t
2+cos t dt converge?

Here, we use a sequence definition of convergence: I( f ) converges to I ∈ R1 iff
for each sequence {xn}∞n=1 such that lim

n→∞ xn = ∞, we have lim
n→∞ I( f )(xn) = I.

If {xn}∞n=1 is defined by xn = 2πn, then

I( f )(xn) =
2πn∫
0

sin t
2 + cos t

dt

= −ln(2 + cos t)|2πn
0

= 0,

so lim
n→∞ I( f )(xn) = 0.

On the other hand, if {x∗n}∞n=1 is defined by x∗n = (4n + 1)π/2, then lim
n→∞ x∗n is

still ∞, but now we find

I( f )(x∗n) = −ln(2 + cos t)|(4n+1)π/2
0

= ln(3/2),

so lim
n→∞ I( f )(x∗n) = ln(3/2) 
= lim

n→∞ I( f )(xn). We conclude from earlier

remarks that I( f ) does not converge. ■

Theorem 6.21 (Limit Comparison Test for Improper Integrals). Let f , g
be two positive functions defined on [a, b) and Riemann-integrable on any closed
subinterval [a, x] ⊂ [a, b). If 0 < lim

t→b−
[ f (t)/g(t)] < ∞ holds, then the two improper

integrals I( f ) and I(g) converge or diverge together.

Proof. Let L = lim
t→b−

[ f (t)/g(t)]; by definition, this implies that for any ε > 0

there is a tn > 0 such that

L − ε ≤ f (t)
g(t)

≤ L + ε

whenever t0 ≤ t < b (if b ∈ R1) or whenever t ≥ t0 (if b = ∞). Since g(t) > 0
and 0 < L < ∞, then

(L − ε)g(t) ≤ f (t) ≤ (L + ε)g(t),
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and Theorem 6.20 gives for t0 ≤ x < b

(L − ε)

x∫
t0

g(t)dt ≤
x∫

t0

f (t)dt ≤ (L + ε)

x∫
t0

g(t)dt. (*)

Choose ε small enough so that L > ε. Then if I( f ) converges, so does
∫ x

t0
f (t)dt,

and so does
∫ x

t0
g(t)dt from the first inequality in equation (*).

Finally, we conclude that I(g) converges. From the second inequality in
equation (*), similarly, we have that convergence of I(g) implies convergence
of I( f ). Conclusions about divergence also follow from equation (*) and
Theorem 6.2. �

Corollary 6.21.1. If f , g are as previously but lim
t→b−

[f (t)/g(t)] = 0, then the

convergence of I(g) implies the convergence of I( f ).

■ Example 6.27
Let I( f ) = ∫∞

0

√
te−t2

dt; choose g(t) = (t2 + 1)−1. Then we have I(g)=
lim

x→∞ [tan−1x − tan−10] = π/2. Two applications of l’Hôpital’s Rule give

lim
t→∞

[√
te−t2

/(t2 + 1)−1
]
= 0.

It follows from Corollary 6.21.1 that I( f ) converges. ■

t
a1 a2 a3 a4 a5 a6 a7

FIGURE 6.10
Diagram for Leibniz’s Test.

We are not always so lucky to have improper integrals in which the integrand
is of one sign throughout. An analog for improper integrals of the Alternat-
ing Series Test for infinite series (Theorem 3.9) is sometimes referred to as
Leibniz’s Test for Improper Integrals. Refer to Figure 6.10 in connection with
the statement of the theorem.

Theorem 6.22 (Leibniz’s Test for Improper Integrals). Let f be defined
on [a,∞) and have infinitely many zeros there at a1, a2, a3, . . . , where a ≤ a1 <

a2 < a3 < · · · and lim
n→∞ an = ∞. Suppose f alternates in sign regularly, f (t) > 0 if
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a2n−1 < t < a2n and f (t) < 0 if a2n < t < a2n+1. For each interval the quantity

Fn =
an+1∫
an

f (t)dt

is presumed to exist. Also, suppose that |Fn+1| ≤ |Fn| for all n ≥ N and that
lim

n→∞ |Fn| = 0. Then the improper integral I( f ) converges.

Proof. For any x > a let n be such that an ≤ x < an+1. By Theorem 6.5, applied
repeatedly, we have

x∫
a

f (t)dt =
a1∫

a

f (t)dt + [F1 + F2 + · · · + Fn−1] +
x∫

an

f (t)dt.

The first integral on the right is a constant. The quantity in the brackets con-
verges as n → ∞ because the terms there satisfy the hypotheses of Theorem 3.9.
Finally, the last integral on the right is not larger than

∫ an+1
an

|f (t)|dt = |Fn|
in magnitude and by hypothesis |Fn| approaches 0 as n → ∞. It follows, by
summation, that

∫ x
a f (t)dt approaches a finite value as x → ∞. �

■ Example 6.28
Consider

∫∞
1

sin t√
t

dt. The zeros of the integrand occur at t = π, 2π, 3π, . . . .

Furthermore, for any t ≥ 1 we have

|sin t|√
t

>
|sin(t + π)|√

t + π
,

so |Fn| =
(n+1)π∫
nπ

1√
t
|sin t|dt

>

(n+1)π∫
nπ

1√
t + π

|sin(t + π)|dt

=
(n+2)π∫

(n+1)π

1√
x
|sin x|dx (x = t + π)

= |Fn+1|.
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Also, |Fn| ≤
(n+1)π∫
nπ

{(
1√
t

)
max

|sin t|max

}
dt

= 1√
nπ

(n+1)π∫
nπ

dt

= √
π/n.

This latter approaches 0 as n → ∞, so lim
n→∞|Fn| = 0. The hypotheses of

Leibniz’s Test are all satisfied, so the given integral converges. ■

In view of the close parallelism between the theory of infinite series and that
of improper integrals, it is reasonable that there should exist a convergence test
for infinite series that uses concepts from improper integrals. Our exposition is
drawn from (Hardy, 1967).

Theorem 6.23 (Integral Test).9 If f (t) is a nonconstant function that is positive,
decreasing, and continuous for all real t ≥ n0, n0 ∈ N, then the series

∑∞
k=n0

f (k)
converges iff the improper integral I( f ) = ∫∞

n0
f (t)dt converges. When I( f ) = L ∈ R1,

then
∑∞

k=n0
f (k) has a sum strictly less than L + f (n0).

Proof. For any natural number k ≥ n0, we have f (k) ≥ f (t) ≥ f (k + 1), when
k ≤ t ≤ k + 1. For each such k, Theorem 6.2 gives

0 ≤
k+1∫
k

[ f (k) − f (t)] dt ≤
k+1∫
k

[ f (k) − f (k + 1)] dt = f (k) − f (k + 1).

Hence, if for each k we define Fk−n0 by

Fk−n0 = f (k) −
k+1∫
k

f (t)dt,

then 0 ≤ Fk−n0 =
k+1∫
k

[ f (k) − f (t)] dt ≤ f (k) − f (k + 1). (*)

9The Test was discovered by and presented by MacLaurin in his 1742 book Treatise of Fluxions, and was
rediscovered in the next century by Cauchy.



256 CHAPTER 6: Integration

Summing both ends of equation (*) from k = n0 to k = N, we obtain by
repeated use of Theorem 6.5

0 ≤
N∑

k=n0

Fk−n0 =
N∑

k=n0

f (k) −
N+1∫
n0

f (t)dt < f (n0) − f (N + 1) < f (n0). (**)

In (**) the next-to-the-last inequality is a strict inequality since in (*) f (k)
would equal f (k + 1) for all k ≥ n0 only if f (t) were a constant function for all
t ≥ n0. We exclude this uninteresting possibility. Figure 6.11 gives a geometric
interpretation of (**).

Since the Fk−n0 ’s are generally positive, their partial sums are positive, increas-
ing, and bounded from above by the constant f (n0). Hence, by Theorem 2.2,∑∞

k=n0
Fk−n0 automatically converges; that is, the limit in (***) exists (in R1).

lim
N→∞

⎢⎢⎢⎣ N∑
k=n0

f (k) −
N+1∫
n0

f (t)dt

⎥⎥⎥⎦ (***)

Suppose that the improper integral I( f ) converges to L ∈ R1. It follows from
(***) that

∑∞
k=n0

f (k) must also converge, and from (**) its sum will be strictly
less than L + f (n0). On the other hand, if I( f ) diverges, then so must

∑∞
k=n0

f (k),
in order for the limit in (***) to be real. �

y

F0

F1

F2

FN

f (t)

f (n0) 2 f (N 1 1)

t
n01 1 n01 2 n01 3

(N ) (N 1 1)

n01 4n0

FIGURE 6.11
Geometric interpretation of MacLaurin’s Integral Test.
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■ Example 6.29

The series
∞∑

k=1

1
k3/2 converges, for lim

x→∞
∫ x

1
dt

t3/2 = lim
x→∞

⌊−2√
x
+ 2

⌋
= 2. The sum

of the series, according to Theorem 6.23, is less than 2 + 1
13/2 = 3. It is known

that the sum is, in fact, approximately 2.6124 (Liang and Todd, 1972).

Similarly, it is straightforward to show that for r > 0 we have
∞∑

k=0

1
(r+k)2 < r+1

r2

(verify!). ■

6.8 RIEMANN INTEGRALS IN Rn

This concluding section will be just an introduction to the topic herein. Only
a few ideas will be presented, and there will be no discussion of methods for
the evaluation of multiple integrals. The development of the Riemann integral
in Rn, n > 1, proceeds along lines roughly analogous to those for the integral
in R1. We shall illustrate this explicitly with integrals in R2 (double integrals).

Let a function f (p), p = (x, y), be defined and bounded on a closed, bounded
set D in the plane and let T be a closed, bounded rectangular region such that
T ⊃ D (Figure 6.12). On T we erect a rectangular partition P by drawing r + 1
lines parallel to the y-axis that pass through the x-axis at points a = a0 < a1 <

a2 < · · · < ar = b and s + 1 lines parallel to the x-axis that pass through the
y-axis at points c = c0 < c1 < c2 < · · · < cs = d. Rectangle T is thus partitioned
into n = rs smaller, closed subrectangles {Ri}ni=1, with areas �A1, �A2, . . . , �An.

y

d
T

�

O

c

x
a

a1

c1

ar21

cs21

b

FIGURE 6.12
Construction of a partition of a closed, bounded rectangle in R2.
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In each subrectangle, Ri, a randomly chosen point pi, i = 1, 2, . . . , n, serves as
a tag for that subrectangle, thereby providing us with a tagged partition P of
rectangle T. Additionally, we let di denote the length of a diagonal of the ith
subrectangle. The norm N of P is N = max

i
{di}. Since some rectangles of T may

consist entirely of points exterior to D, we adopt the following artifice. A new
function F on T is defined by

F(p) =
{

f (p) p ∈ D

0 p /∈ D.

Then the Riemann sum S for f , given D, P, and f , is

S(D, P, f ) =
n∑

i=1

F(pi)�Ai.

Definition. Let f (p) be defined and bounded on D ⊂ T ⊂ R2, and let F be defined as
earlier. Let ε > 0 be given. Then f is Riemann-integrable on D iff there is a constant
I and a number δ > 0 (in general, dependent on ε) such that for all rectangular
partitions P of norm N < δ and for all sets of tags {pi}ni=1, we have

|S(D, P, f ) − I| < ε.

The number I is called the Riemann double integral of f over D, and we write

I =
∫∫
D

f ,

or, equivalently, as
∫∫
D f (x, y)dxdy.

Many of the theorems on double integrals are obvious analogs of those for
integrals in R1, and the proofs of the former are generally quite similar to those
for the latter. The numbering of the next few theorems, which are given without
proof, reflects the analogies. As in the one-dimensional case, so with integrals in

R2, we have that if lim
N→0

S(D, P, f ) = lim
N→0

n∑
i=1

F(pi)�Ai exists, then it is unique.

Theorem 6.1′. If f (x, y) is Riemann-integrable over D, then f (x, y) is bounded
on D.

Theorem 6.2′. If f (x, y), g(x, y) are Riemann-integrable over D and f (x, y) ≤
g(x, y) there, then

∫∫
D f ≤ ∫∫

D g.

Theorem 6.4′. If f (x, y), g(x, y) are Riemann-integrable over D and c ∈ R1, then

(i)
∫∫
D cf = c

∫∫
D f ;

(ii)
∫∫
D( f + g) = ∫∫

D f + ∫∫
D g.
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Theorem 6.6′. If f (x, y) is Riemann-integrable over D to I and the value of f at
one point p = (x, y) in D is changed, then f is still Riemann-integrable over D and
the value of the integral is still I.

As with the integral in R1, the double integral can be understood equivalently
via the approach of Darboux. Let P be any untagged partition of a rectangle T
that contains the closed, bounded region D on which f is defined and bounded.
We define F on T as we did previously, and we denote

M = sup
p

F(p), m = inf
p

F(p),

where p ∈ T. Similarly, for each subrectangle Ri we define

Mi = sup
pi

F(pi), mi = inf
pi

F(pi), pi ∈ Ri.

The upper Darboux sum and the lower Darboux sum that correspond to f
and to the partition P are, respectively,

U(P, f ) =
n∑

i=1

Mi�Ai, L(P, f ) =
n∑

i=1

mi�Ai.

The following two real numbers then exist (why?):∫∫
D

f = inf
P

U(P, f ),
∫∫
D

f = sup
P

L(P, f ),

where inf, sup mean with respect to all possible partitions P of T.

Definition. A function f is Darboux-integrable on a closed, bounded region D of
R2 iff

∫∫
D

f = ∫∫
Df , and their common value is the Darboux integral of f over D,

which we write simply as (D)
∫∫
D f .

As we did with one-dimensional Riemann integrals, so we can consider refine-
ments of partitions P of sets T in R2. This leads (by reasoning analogous to that
given in Section 6.4) ultimately to:

Theorem 6.12′. If either (R)
∫∫
D f or (D)

∫∫
D f exists, then so does the other, and

the two integrals are equal.

The analog of the very useful Theorem 6.5 requires some care in its statement,
and we need to digress briefly for a brief discussion of area (Courant and John,
1974; Knopp, 1969). The characteristic function for a set D, denoted by ID(p),
is defined by

ID(p) =
{

1 p ∈ D

0 p /∈ D.

We define the area of D ⊂ R2 in terms of the characteristic function for D.
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FIGURE 6.13
A set without area.

Definition. A bounded set D in R2 has area iff its characteristic function is inte-
grable over D. The area, A(D), is the value of the double integral

∫∫
D ID. In the trivial

case where D is the empty set, Ø ⊂ R2, we define (or set) A(Ø) = 0.

■ Example 6.30
Let D be the set of those points p = (x, y), both of whose coordinates are
irrational numbers, that are contained in the closed, unit square T : 0 ≤ x ≤
1, 0 ≤ y ≤ 1 (Figure 6.13). Let P be an arbitrary partition of T. Then in every
subrectangle Ri, no matter how fine may be P, there are points pi with both
coordinates irrational (so pi ∈ D) and there are points pi in which at least
one coordinate is rational (so pi /∈ D). Hence, for any P the upper Darboux
integral of ID has the value 1 (corresponding to each pi ∈ D)

∫∫
D

ID = inf
P

U(P, ID) = 1,

and the lower Darboux integral of ID has the value 0 (corresponding to
each pi /∈ D). It follows that ID is not integrable over D, so D does not
have area. ■

The concept just defined as area, when extended in the obvious way to R3,
is known as volume. When extended to arbitrary Euclidean spaces, the con-
cept is known as Jordan content (after the French mathematician Camille
Jordan (1838–1922)). A set D ⊂ Rn with Jordan content is said to be
Jordan-measurable.10

10Jordan content, when generalized to even more arbitrary spaces, is known as measure (Royden, 1988;
Borden, 1998), of which Lebesgue measure is a special case.
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FIGURE 6.14
A regionD in R2 with Jordan content.

The frontier (or boundary) of a set D ⊂ Rn consists of all points p such that any
deleted ball around p, no matter how small, contains points of D and points
not belonging to D. An important theorem is the result that a set D ⊂ Rn has
Jordan content iff its frontier has Jordan content 0 (Olmsted, 1961).

■ Example 6.31
A popular trick question: What is the area of a circle of radius 1? ■

■ Example 6.32
The shaded region D in Figure 6.14 consists of all points p = (x, y) for which

1 < x < 5 and sin(πx/2) < y < 1 +
[√

4 − (x − 3)2
]/

4. The frontier of D is

the union of the two simple arcs. It has Jordan content (area) 0 (can you see
why?); hence, D has Jordan content. ■

■ Example 6.33
The frontier of the set D in Example 6.30 is a set with easily calculated positive
Jordan content. We may conclude in this case that the set D itself does not
have Jordan content (area) (Exercise 6.64). ■

The generalization of Example 6.32 is that any bounded set in R2 whose
frontier consists of a finite number of rectifiable, simple arcs has Jordan content
(area). This, of course, is a common situation.



262 CHAPTER 6: Integration

Continuing the sequence of theorem analogs that began with Theorem 6.1′, we
suppose that f is defined on the bounded, Jordan-measurable set D ⊂ R2, and
that D can be represented as a union D1 ∪ D2.

Theorem 6.5 (Finite Additivity)′. Let f be Riemann-integrable on each of the
Jordan-measurable sets D1 and D2, and also on their intersection D1 ∩ D2, which
has Jordan content (area) 0. Then f is Riemann-integrable on D = D1 ∪ D2 and∫∫

D

f =
∫∫
D1

f +
∫∫
D2

f .

Proof. Let S = D1 ∩ D2; then D = (D1\S) ∪ D2 and (D1\S) ∩ D2 = Ø.

Next, we define F by

F(p) =
{

f (p) p ∈ D1\S

0 p /∈ D1\S.

Let D be contained in a bounded rectangle T. We then have, from
Theorem 6.4′(ii) and the definition of F,

∫∫
D

f =
∫∫
D

[F + ( f − F)]

=
∫∫
D

F +
∫∫
D

( f − F)

=
∫∫
D1\S

F +
∫∫
D2

( f − F)

=
∫∫
D1\S

f +
∫∫
D2

f . (*)

Similarly, since D1 = D1\S ∪ S and (D1\S) ∩ S = Ø, then∫∫
D1

f =
∫∫
D1\S

f +
∫∫
S

f .

Substitution of this into equation (*) yields

∫∫
D

f =
∫∫
D1

f +
∫∫
D2

f −
∫∫
S

f . (**)



Exercises 263

Equation (**) shows that f is Riemann-integrable over D. By Theorem 6.1′,
f is bounded on D: |f (p)| < C, p ∈ D. Since S = D1 ∩ D2 has zero area, then a
partition P on T of small enough norm N can be erected so that, if any ε > 0
is given, there is a corresponding δ > 0 such that if N < δ, then the sum of the
areas

∑n
i=1 �Ai of the rectangles that cover S is less than ε/C. A corresponding

Riemann sum for f on S then satisfies∣∣∣∣∣
n∑

i=1

f (p)�Ai

∣∣∣∣∣ ≤
n∑

i=1

C�Ai < C
( ε

C

)
= ε.

As ε > 0 is arbitrarily small, then in the limit as N → 0 we have
∫∫

S f = 0.
Equation (**) then reduces to the desired result. �
Theorem 6.13′. If f is bounded and continuous on a bounded set D ⊂ R2 that has
Jordan content, then

∫∫
D f exists.11

■ Example 6.34
Let f : R2 → R1 be defined by f (p) =

(
cos x1

x2

)
ex1+x2 , p = (x1, x2), and let D

be the disk D = {
(x1, x2) : (2 − x1)2 + (2 − x2)2 < 1

}
. Then f is bounded

on D : |f (p)| ≤ 1
1 · e3+3 < 404. It is also continuous on D because it is the

product of functions continuous on D. Set D itself is bounded and has Jordan
content (area) π. Hence, by Theorem 6.13’,

∫∫
D f exists. ■

EXERCISES

Section 6.1

6.1. This Exercise and the next one deal with the topic of antidifferentiation. Suppose
that F is continuous on [a, b], and is an antiderivative for the constant function
K(x) = 0, x ∈ (a, b). Show that these facts imply that F(x) = C for all x ∈ [a, b] and
for some C ∈ R1.

6.2. Suppose that G, H are two functions continuous on [a, b] and that G′(x) = H′(x)
for all x ∈ (a, b). From these hypotheses, prove that any two antiderivatives of a
function f : [a, b] → R1 must differ by a constant.

6.3. The three main methods of antidifferentiation are (i) integration by substitution,
(ii) integration by parts, and (iii) use of partial fractions. For each f , find D−1f ,
antiderivatives of the following functions.
(a) f (t) = 4

√
2t+1;

11The conclusion of Theorem 6.13′ also holds if the set of discontinuities of f has Jordan content 0.
A generalization of this that involves, as expected, some measure theory, is known as (the important)
Lebesgue’s Criterion for existence of a multiple Riemann integral (Brown, 1936). This can be regarded
as a generalization of Theorem 6.14.
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FIGURE 6.15
A plausible Leibniz type of integration of cos t.

(b) f (t) = Tan−1(2t);
(c) f (t) = (1 + t3)−1;
(d) f (t) = √

t2 + a2;
(e) f (t) = sinh3t.

6.4. This argument could have been used by Leibniz in order to integrate cos t
(Mathews and Shultz, 1989). Figure 6.15 shows a graph of cos t from t = 0 to t = x,
0 < x < π/2. The x-axis is partitioned there into n equal subintervals. Above each
subinterval is erected the circumscribing rectangle of base x/n.
(a) First prove Lagrange’s Identity

n−1∑
k=0

cos(kθ) = 1
2
+ sin((2n − 1)θ/2)

2 sin(θ/2)
.

(b) Use part (a) in order to write an expression for the sum of the areas of n circumscribing
rectangles in a diagram such as that shown.

(c) Leibniz would see that the desired result could be obtained by requiring the rectangles
to be as “thin as possible.” Interpret this in modern terms and carry it out, thereby
showing that

∫ x
0 cos t dt = sin x.

6.5. Explain why a function that is not bounded on an interval [a, b] is not Riemann-
integrable.

6.6. For each of the following functions,the interval of integration,the partition {ak}nk=0,
and the tags {xj}nj=1 are given. Compute the Riemann sums S and compare these
with the corresponding values of the Riemann integral.
(a) f (x) = cos x; [0, π/2] ak = kπ/16

xj+1 = (1 + 3j)π/48

k(j) = 0, 1, 2, . . . , 8(7)

(b) f (x) = √
1 + x; [3, 8] ak = (k + 6)/2

xj+1 = (13 + 2j)/4

k(j) = 0, 1, 2, . . . , 10(9)
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(c) f (x) = x−2; [1, 243/32] ak = (3/2)k

xj+1 = (11/9)(3/2)j

k( j) = 0, 1, 2, . . . , 5(4)

6.7. The American mathematician N. Wiener (1894–1964) defined the integral as
follows (Sklar, 1960):

b∫
a

f = lim
n→∞

n∑
k=1

f
(

a + k(b − a)

n

)(
b − a

n

)
,

provided that the limit exists.

(a) Now let f be the Dirichlet function: f (x) =
{

1 x ∈ Q
0 x /∈ Q.

Show that by Wiener’s defi-

nition, one has
∫ √

2
0 f = 0.

(b) Indicate why the integral
∫ √

2
0 f does not exist in the Riemann sense.

Section 6.2

6.8. Write out the proof of Theorem 6.2. Use the Theorem to prove that the Riemann
integral

∫ 2
1

sin t
t dt, which does exist, is less than 2/3. In fact, the integral has the

approximate value of 0.65933, but this requires more work.

6.9. There is no known antiderivative in closed form for f (t) = ln(ln t).
(a) Establish that on the interval [e, 4] we have

−1
2

(ln t)2 + 2 ln t − 3
2
≤ ln(ln t) ≤ 1

3
(ln t)3 − 3

2
(ln t)2 + 3 ln t − 11

6
.

(b) Apply Theorem 6.2 and show that

−2(ln 4)2 + 12 ln 4 − 18 + 2e <

4∫
e

ln(ln t)dt <
4
3

(ln 4)3 − 10(ln 4)2

+ 32 ln 4 − 118
3

+ 4e,

that is, 0.2285 <
∫ 4

e ln(ln t)dt < 0.2354.

A numerical integration yields 0.2341 as an approximate value of the integral.

6.10. In Example 6.3, show that F′(x) ≤ 0 on [0, 1].Would this example have been useful
to Newton, who in 1680 might have been interested in the antidifferentiation
of e−x2

?

6.11. (a) How do you know that it is legitimate to apply the Mean-Value Theorem to each
subinterval in the proof of Theorem 6.3?

(b) Prove part (ii) of Theorem 6.4.

6.12. Make use of Theorem 6.5 and evaluate
∫ 2

1/2
ln t

1+t2 dt.
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6.13. Refer to Exercise 6.7 and to Wiener’s value for
∫√2

0 f . Now look at Wiener’s values

for
∫ 1

0 f and
∫√2

1 f , and tell why we are unhappy with Wiener’s definition of the
integral.

6.14. Fill in the last few details in the proof of Theorem 6.6.

6.15. Let T be a cubic or quartic polynomial in t with no repeated factors, and let
R(t,

√
T) be a rational function of t,

√
T . Then a Riemann integral of the form∫ x

0 R(t,
√

T)dt is an elliptic integral if it cannot be expressed in terms of
elementary functions.12

An elliptic integral is a new kind of transcendental function.13 There are three
basic kinds of elliptic integrals,14 expressed here in terms of the function T(t) =
(1 − t2)(1 − mt2), 0 < m < 1:

First Kind: F(x, m) = ∫ x
0 dt/

√
T(t)

Second Kind: E(x, m) = ∫ x
0 (1 − mt2)dt/

√
T(t)

Third Kind: �(x, n, m) = ∫ x
0 (1 − nt2)−1dt/

√
T(t), n 
= 0.

(a) Transform these three kinds of elliptic integrals into corresponding equivalent expres-
sions by means of the substitutions t = sin θ, x = sin φ.

(b) Now consider the ellipse (x2/a2) + (y2/b2) = 1, where a = 1, b = 1/2. We rewrite this
parametrically by substituting x = a sin θ and y = b cos θ. The perimeter C of the ellipse
is then given by the parametric arclength formula as

C = 4

π/2∫
0

[(
dx
dθ

)2

+
(

dy
dθ

)2
]1/2

dθ.

Hence, show that C is given by an elliptic integral of the second kind.
(c) An infinite series expansion of E(1, m) is (Abramowitz and Stegun, 1965):

E(1, m) = π

2

[
1 −

(
1
2

)2 m
1

−
(

1 · 3
2 · 4

)2 m2

3
−
(

1 · 3 · 5
2 · 4 · 6

)2 m3

5

−
(

1 · 3 · 5 · 7
2 · 4 · 6 · 8

)2 m4

7
− · · ·

]
.

Use the first seven terms of this series to estimate the perimeter C of the ellipse in
part (b).

6.16. It was not realized by Legendre when he proposed his tripartite classification of
elliptic integrals (Exercise 6.15) that the three classes are not actually independent
of each other (Niven, 1943). As before, we define T(t) = (1 − t2)(1 − mt2).

12These are rational functions, trigonometric and hyperbolic functions and their inverses, and exponential
and logarithmic functions. Our definition of an elliptic integral is from the classic work (Whittaker and
Watson, 1963).
13Proved in 1834 by the French mathematician Joseph Liouville (1809–1882).
14The tripartite classification is due to Adrien-Marie Legendre (1752–1833), and appeared in his book
Exercices de calcul intégral (1811). Notation for elliptic integrals is not uniform.
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(a) Show that d
dt

[
t/
√

T(t)
]

is given by

1√
T(t)

⌊
−1 + 1

1 − t2 + 1
1 − mt2

⌋
.

(b) Integrate the result in (a) from t = 0 to t = x to obtain

x√
T(x)

= −F(x, m) + �(x, 1, m) + �(x, m, m).

(c) Show that d
dt

[
mt

√
(1 − t2)/(1 − mt2)

]
is given by

1√
T(t)

⌊
1 − mt2 − 1 − m

1 − mt2

⌋
.

(d) Integrate the result in (c) as you did in (b).
(e) Combine the results of parts (b) and (d) to show that elliptic integrals of the first and

second kinds can be expressed as functions of those of the third kind.
( f ) Given that �

(√
3

2 , 1
2 , 1

2

)
= 1.3822 and �

(√
3

2 , 1, 1
2

)
= 1.9511, compute F

(√
3

2 , 1
2

)
and

E
(√

3
2 , 1

2

)
.

Section 6.3

6.17. In Example 6.6, establish that
∫ b
a [σ(x) − ρ(x)]dx = 2

n .

6.18. (a) Complete the proof of Theorem 6.9.
(b) Tell how Example 6.6 could have been done by using Theorem 6.9 instead of

Theorem 6.8.

6.19. (a) Write out the proof of the Corollary 6.9.1.
(b) Explain how you know that each integral in Example 6.7 exists.

6.20. If on the interval [0, 1] the function f is not finitely piecewise monotonic, does this
mean that f is then not Riemann-integrable there? Discuss.

Section 6.4

6.21. Verify the entries in Example 6.8 for k = 3, 8.

6.22. Fill in the missing details in the proof of Lemma 6.4.1. To illustrate this Lemma,
add two more division points to the partition in Example 6.8 and then compute
L(P∗, f ), U(P∗, f ).

6.23. Let f be a function bounded on the finite interval [a, b], and suppose that
{Ln}∞n=1 is a sequence of lower Darboux sums L(P, f ) and {Un}∞n=1 is a corre-
sponding sequence of upper Darboux sums. If the sequences are arbitrary but
lim

n→∞[Un − Ln] = 0 holds, then prove that f is integrable on [a, b].
6.24. A student asserts that if f is defined on and is strictly bounded on [a, b], | f (x)| < K ,

and because for any x we have f (x) = | f (x)|, and if |f (x)| is Riemann-integrable on
[a, b], then f is itself Riemann-integrable on [a, b]. If this assertion is true, prove it
by use of theorems in the present section. If it is not true,discuss a counterexample
with ideas in the present section.
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6.25. Regarding some parts of Example 6.10:
Part (b). If the integrand were sin x, the value of the integral would be 0.

Determine the smallest positive number k such that
∫ kπ

0 sin(
√

x)dx is 0.
Part (c). Account for the existence (in R1) of this integral.
Part (d). Show that this integral is an elliptic integral of the first kind (Exercise 6.15).

6.26. Complete the proof of the Mean-Value Theorem for Integrals.

6.27. The following proof of the Mean-Value Theorem for Integrals is similar in spirit to
our alternative proof of Theorem 5.7. Let f be continuous and, hence, integrable
on [a, b]. Define the determinantal function D(x) by (Putney, 1953)

D(x) =

∣∣∣∣∣∣∣
G(x) H(x) 1
G(a) H(a) 1
G(b) H(b) 1

∣∣∣∣∣∣∣ ,

where G(x) = ∫ x
a f (t)dt and H(x) = x − a.

(a) Why is D(x) continuous on [a, b]?
(b) Why are D(a), D(b) both zero?
(c) Why does it follow that there is a number c, a < c < b, such that D′(c) = 0? Expand

D′(c) to see what this means.

6.28. Let f be continuous on [a, x], x ≥ a, and be differentiable at a, f ′(a) 
= 0. Regard a
as fixed but x as variable, and for each x let cx designate a number in (a, x) such
that the Mean-Value Theorem for Integrals holds. Certainly as x → a, then cx → a
also. Now consider

Ha(x) =
∫ x
a f (t)dt − xf (a) + af (a)

(x − a)2 .

Prove that lim
x→a

cx−a
x−a = 1

2 (Jacobson, 1982).

6.29. (Generalized Mean-Value Theorem for Integrals) Suppose that f , g are
continuous on [a, b] and g(x) ≥ 0 there. Prove that there is a c ∈ [a, b] such that

b∫
a

f (x)g(x)dx = f (c)

b∫
a

g(x)dx.

6.30. Refer to Exercise 6.28; let f (t) = cos t and a = 0, and let I(x) denote
∫ x
a f (t)dt.

Complete the following table. Do we have a violation of Jacobson’s theorem?
Read Bao-Lin (1997) and make a report on its contents.

x I(x) f (cx) cx
cx−a
x−a

1
1/4
1/16
1/64
1/128
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6.31. (Bunyakovski’s Inequality)15 Refer to Exercise 1.35 for guidance. If f , g are
continuous on [a, b], b > a, prove that

∣∣∣∣∣∣∣
b∫

a

f (x)g(x)dx

∣∣∣∣∣∣∣ ≤
⎡
⎢⎣

b∫
a

[f (x)]2dx

b∫
a

[g(x)]2dx

⎤
⎥⎦

1/2

.

In some spaces of functions, Bunyakovski’s Inequality takes the place of the
classical Cauchy-Schwarz Inequality (see Section 1.5).

Section 6.5

6.32. Refer back to material that followed Theorem 6.15.

(a) Show that the derivative of f (x) =
⎧⎨
⎩

x2 sin(x−2) 0 < x ≤ 1

0 x = 0
is

f ′(x) =
⎧⎨
⎩

2x2 sin(x−2) − 2x−1 cos(x−2) 0 < x ≤ 1

0 x = 0.

(b) Verify that the integrand in Example 6.13 is the derivative of

f (x) =
√

x2 − a2 − a Sec−1(x/a), x ≥ a > 0.

(c) Obtain the f (x) in part (b) on your own.

6.33. Determine lim
n→∞

⌊
n+1
n2+1

+ n+2
n2+4

+ n+3
n2+9

+ · · · + n+n
n2+n2

⌋
. Where did you use

Theorem 6.15?

6.34. Determine lim
x→0+

x5
[∫ x

0 t
√

sin tdt
]−2

.

6.35. (Riemann Integration by Substitution)16 Let t(x) be differentiable on (a, b)
and let both t, t′ be continuous on [a, b]. Then the range of t(x) is an interval I, and
if f (t) is continuous on I, then

b∫
a

f [t(x)]t′(x)dx =
t(b)∫

t(a)

f (t)dt.

(a) Explain how the existence of I is a consequence of Theorems 6.12 and 6.13.
Also explain how you know that f [t(x)] is continuous on [a, b].

(b) Choose any t0 ∈ I and define F(t) = ∫ t
t0

f (y)dy. Why is this permitted? Why does
F′(t) = f (t) for all t ∈ I?

(c) Next, define h(x) = F[t(x)]. Why does h′(x) = F′[t(x)]t′(x) = f [t(x)]t′(x)? How do we
then know that f [t(x)]t′(x) is continuous on [a, b]?

15Hardy says that this inequality was first given (in 1859) by the versatile Russian mathematician
V.Ya. Bunyakovski (1804–1889) (Grigorian, 1978; Hardy, Littlewood, and Pólya, 1967).
16Many writers prefer to call this “Change of Variable.”
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(d) Hence, what is the justification for writing

b∫
a

f [t(x)]t ′(x)dx =
b∫

a

h′(x)dx = h(b) − h(a)?

(e) Fill in the last tiny steps.

6.36. Prove that for any c ≥ 0 we have
∫ c/

√
1+c2

0
dx√
1−x2 = ∫ c

0
dt

1+t2 .

6.37. (Second Mean-Value Theorem for Integrals) If f , g are continuous on [a, b]
and g′(t) is nonnegative and continuous on [a, b], then there is a c ∈ [a, b] such
that

b∫
a

f (t)g(t)dt = g(a)

c∫
a

f (t)dt + g(b)

b∫
c

f (t)dt.

To prove this, begin with the left-hand side, define F(t) = ∫ t
a f (x)dx, and make use

of Exercise 6.29 and the Fundamental Theorem of the Calculus—B.

6.38. Figure 6.16 shows a sector of the unit circle centered at the origin. We define
the measure of ∠QOP to be twice the area of sector OPQ. Denote by m > 0 the
slope of OP, and by A(m) the area of OPQ. Let OP′ = x0 and be variable. We have
A(m) = area �OPP′ + area segment PP′Q.
(a) Show, with the aid of the Fundamental Theorem, that A′(m) = 1

2 (1 + m2)−1 and,
hence, the measure of ∠QOP is y = ∫ m

0
dt

1+t2
.

(b) Guided by the elementary geometry of the picture, we know (after the fact) that
tan ∠QOP = tan y = m, so we make the reasonable definition that Tan−1m = ∫ m

0
dt

1+t2
.

Thinking of m now as any real number x, not necessarily connected with geometry,

P9

P(x 0, mx0)

(x0, 0)

Q(1, 0)

1

x

y

O

FIGURE 6.16
Introduction of the arctangent function.
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we see that the integral defines a unique number for each real x. Why? How
does the Fundamental Theorem tell us, additionally, that Tan−1x = ∫ x

0
dt

1+t2
is strictly

increasing?
(c) How do we now know that Tan−1x has an inverse function that is continuous and

strictly increasing? We denote this inverse function by tan x, the tangent.
(d) Again, from the figure, we write cos y = 1/

√
1 + m2 and sin y = m/

√
1 + m2 as rea-

sonable definitions for two new functions, called cosine and sine. What is sin y/ cos y,
and what is d(tan y)/dy?

This development continues in Exercises 6.50 and 6.51.

6.39. Let f and its first n + 1 derivatives be continuous on [a, b]. Choose any x in the
interval a < x ≤ b and define

Fn(t) = −f (t) + f (x) − (x − t)f ′(t) − (x − t)2

2! f ′′(t) − · · · − (x − t)n

n! f (n)(t).

(a) Work out F′
n(t) and then apply Theorem 6.15 to obtain

f (x) = f (a) + (x − a)f ′(a) + (x − a)2

2! f ′′(a) + · · · + (x − a)n

n! f (n)(a)

+
x∫

a

(x − t)(n)

n! f (n+1)(t)dt.

Thus, we have the Integral Form of the Remainder in Taylor’s Theorem.
(b) Now make use of Exercise 6.29 and deduce Lagrange’s Form of the Remainder (see

Theorem 5.11).
(c) Finally, show how to obtain Cauchy’s Form of the Remainder,

Rn(x) = (x − a)(x − c)nf (n+1)(c)
n! ,

for some c ∈ (a, x). For some problems, Cauchy’s form is more useful than Lagrange’s
form (see discussion after Theorem 5.14).

6.40. The papers (Botsko, 1991; van de Lune, 1975) are very pertinent to this section.
Read and digest them, and write up a report on your reading.

Section 6.6*

6.41. For use in the proof of Theorem 6.18, derive the result

d
dh

ak+h∫
ak−h

f (x)dx = f (ak + h) + f (ak − h).

6.42. Verify in the proof of Theorem 6.18 that

g(4)
k (h) = −h

3

[
f (4)(ak + h) + f (4)(ak − h)

]
− 1

3

[
f (3)(ak + h) − f (3)(ak − h)

]
.
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6.43. Refer to Example 6.3. Show that application of Simpson’s Rule with n = 8 gives
the estimated value of

∫ 1
0 e−t2

dt ≈ 0.74683. The tabulated value is 0.746824
(Abramowitz and Stegun, 1965).

6.44. The Debye functions, {D(n, x)}∞n=1, are important in theories of the specific heat
of metals:

D(n, x) =
x∫

0

tn

et − 1
dt, |x| < 2π.

(a) Establish that on the interval [0, 1] we have

t

1 + 1
2 t

≥ t2

et − 1
≥ t

e − 1
,

and, hence, 0.3781 > D(2, 1) > 0.2910. The tabulated value of the function D(2, x) at
x = 1 is 0.353939 (Abramowitz and Stegun, 1965).

(b) Although this integral is improper at the lower limit, the impropriety is removable by
the appropriate assignment of value to the integrand at t = 0. Do this and then apply
Simpson’s Rule (n = 8) to estimate D(2, 1).

6.45. The error function, erf x, is important in probability and statistics:

erf x = 2√
π

x∫
0

e−t2
dt, x ≥ 0.

(a) Prove that lim
x→∞ erf x exists (in R1).

(b) The tabulated value of erf 1.76 (to 6 places) is 0.987190 (Abramowitz and Stegun, 1965).
Apply Simpson’s Rule (n = 8) to estimate erf 1.76.

6.46. In Exercise 6.15 it is better to leave the expression for C in the form with θ as the
variable of integration, since this form of the integral is not improper.We then have
E
(
1, 3

4
) = C/4. Apply Simpson’s Rule (n = 10) to estimate E

(
1, 3

4
)
. Compute the

percent error; the tabulated value of E
(
1, 3

4
)

is 1.211056 (Abramowitz and Stegun,
1965).

Section 6.7

6.47. Prove part (b) of Theorem 6.19.

6.48. (a) In Example 6.19, prove that (b) diverges.
(b) In Example 6.20, prove that (c), (d) converge.

6.49. Review Example 6.23. Then prove that the integral in Example 6.19 (d) has a value
less than 5

√
2/2.

6.50. We have from Exercise 6.38 that if y = Tan−1x = ∫ x
0

dt
1+t2 , then x =

Tan y, 1/
√

1 + x2 = cos y, and x/
√

1 + x2 = sin y.



Exercises 273

(a) Show that if t = u−1 and if M is large, then

y = Tan−1M = 2

1∫
0

dt
1 + t2 −

1/M∫
0

du
1 + u2 .

How does this immediately show that the improper integral
∫∞

0
dt

1+t2
converges?

(b) We now define the number π by the relation

1
2

π =
∞∫

0

dt
1 + t2 .

Use part (a) plus an application of Simpson’s Rule (n = 12) to estimate π.
(c) Show that lim

x→−∞
∫ x

0
dt

1+t2
= −1

2 π. This and the definition in part (b), incidentally, clear

up two facts that we took for granted in Example 6.21. Hence, in summary, we have that
if − 1

2 π < y < 1
2 π, then −∞ < tan y < ∞.

(d) We have immediately that cos 0 = 1 and sin 0 = 0. The values of cos y, sin y, and
y = ± 1

2 π are defined to be the limits of these functions as x → ±∞. What are these
limits?

6.51. Refer to the previous exercise.
(a) Since x = tan y, show that dx

dy = (tan y)′ = 1 + x2, and that if we define sec y = 1/ cos y,

then (tan y)′ = sec2 y.
(b) If we write (cos y)′ = d(cos y)

dx
dx
dy , then show that (cos y)′ = −sin y.

(c) Similarly, show that (sin y)′ = cos y. How does this show that sin y is monotonic on
(−π/2, π/2)? Is cos y also monotonic on this interval?

(d) Outside of (−π/2, π/2) for tan y and outside of [−π/2, π/2] for cos y and sin y, we
define tan(y + π) = tan y, cos(y + π) = −cos y, sin(y + π) = −sin y. Prove that sin y is
continuous at y = π/2.

6.52. (Laplace Transforms) If f (t) is a given function, then a function F(s) obtained
as the following improper integral of the first kind,

F(s) = L[ f (t)] =
∞∫
a

K(s, t)f (t)dt,

is known as an integral transform of f .When the kernel of the transform,K(s, t),
is e−st and a = 0, the transform is called a Laplace transform.17 Some conditions
on f and on s are naturally needed for convergence.

Let Fn(s) be the Laplace transform of sinn(kt), where k 
= 0, n is a nonnegative
integer, and s > 0. Show that for any n ≥ 2 we have

Fn(s) = k2n(n − 1)

s2 + k2n2 Fn−2(s).

Now work out F0(s), F1(s), F2(s), F3(s), F4(s). Extra credit if you can obtain an
explicit expression for Fn(s), n ≥ 1.

17After the French mathematical physicist Pierre-Simon Laplace (1749–1827).
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Integral transforms are of great utility in mathematics, and the literature is
voluminous. If you would like to read a little of it, please consult any of the follow-
ing: Borden (1998), Dence (2007), Dettman (1969), Sneddon (1995), Watson (1981),
and Widder (1941).

6.53. For each improper integral determine if it converges, diverges but has a Cauchy
principal value, or diverges and does not have a Cauchy principal value.
(a)

∫ 1
0

dt√
t+2t3

;

(b)
∫∞

0
dt

t3/2 ;

(c)
∫∞
−∞

t√
t2+1

dt;

(d)
∫ 1

0
tndt√
1−t2

, n ∈ N;

(e)
∫∞

1 sin(
√

t)dt;

( f)
∫ π/2

0 t
√

sec t dt;

(g)
∫ π/2

0
dt√

1−sin t
;

(h)
∫∞

2
sin(t−1)√

t
dt;

(i)
∫∞

1 t sin(t−3) dt;

(j)
∫ 1
−1

2t4

t3
dt.

6.54. Verify the values of the following improper integrals:
(a)

∫ 1
0

√
1+t
1−t dt = π

2 + 1;

(b)
∫ 1

0 t ln(t)dt = −1/4;

(c)
∫∞

0
dt

t4+1
= π

√
2

4 ;

(d)
∫ 1

0
t2dt√
1−t

= 16
15 ;

(e) (P)
∫∞
−∞

1+t
1+t2

dt = π;

( f)
∫ 1√

7−3
dt√

t2+6t+2
= 1

2 ln 7.

6.55. The gamma function can be defined by

�(α) =
∞∫

0

tα−1e−tdt.

(a) Determine for which α ∈ R the integral converges.
(b) Show that for any α in part (a), we have �(α + 1) = α�(α).
(c) What values of �(α) are obtained when α is a natural number?

6.56. Refer to the previous exercise.
(a) Although we have not yet had the pertinent theory (see, later, Exercise 7.56), present a

plausibility argument for the assertion

�′(α) =
∞∫

0

tα−1e−t ln t dt.

What do you then conjecture is �′′(α)?
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(b) How does the functional form of �(α), �′′(α) tell you that �(α) has a relative minimum
at some α = α0? How do you deduce that 1 < α0 < 2?

(c) From parts (a) and (b) and from Exercise 6.55, sketch semiquantitatively the graph of
�(α) versus α for 0 < α ≤ 4.

(d) Show that the expression for �′(α) in part (a) can be rewritten as

�′(α) =
1∫

0

[
tα−1e−t − t−α−1e−1/t] ln t dt.

The integrand approaches 0 at both endpoints.
(e) It is known that the α0 in part (b) is less than 1.47. Write a computer program for a series

of Simpson’s Rule calculations (n = 20) over a range of values of α. See if you can find
an interval in which �′(α) must be 0 at some point.

6.57. Use the Integral Test to decide which of the following series converge:

(a)
∞∑

k=1

k
k3+1

;

(b)
∞∑

k=2

1
k
√

k−1
;

(c)
∞∑

k=1

sec−1(2k)
k2 ;

(d)
∞∑

k=0

k3

2k .

6.58. This exercise shows the use of an improper integral for the evaluation of a finite
sum of binomial coefficients (Dence, 2010).
(a) For any n ∈ N, let fn(s) ∼= sn

2
√

1−s
. Then let w = 1 − s and show that

1∫
0

fn(s)ds =
n∑

k=0

(
n
k

)
(−1)k

2k + 1
.

(b) On the other hand, in fn(s) make the substitution s = sin2 t. Now show that

1∫
0

fn(s)ds = 4n(n!)2

(2n + 1)! ,

and, thus, we have obtained

S2n+1 =
n∑

k=0

(
n

k

)
(−1)k

2k + 1
= 4n(n!)2

(2n + 1)! .

(c) Determine lim
n→∞ S2n+1.

Section 6.8

6.59. Write out the proof of Theorem 6.1′.
6.60. Write out the proof of Theorem 6.2′.
6.61. Write out the proof of Theorem 6.4′ (ii).
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6.62. Let T be the rectangular region T = {(x1, x2) : 1 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 3}, and on this
erect a partition P in which there are 11 equally spaced lines parallel to the x2-axis
and 11 equally spaced lines parallel to the x1-axis. Let D be the closed unit disk
centered at (2, 2), and tag each subrectangle Ri ⊂ T by choosing the geometric
center of Ri. Define f :D→ R1 to be f (x) = f ((x1, x2)) = x1 + x2 − 1. Compute
S(D, P, f ), which will be an estimate of

∫∫
D (x1 + x2 − 1). It can be shown that

the double integral has the value of 3π ≈ 9.42.

6.63. Refer to Example 6.31.
(a) Give a definition in terms of a Riemann sum for a set S in R2 to have Jordan content

(area) 0.
(b) Tell how, corresponding to any given ε > 0, you could explicitly construct a partition P,

that you could use in your definition in part (a) in order to show that the circle of radius
1 has Jordan content 0.

6.64. Explain how you know, as stated in Example 6.33, that consideration of Bd(D) in
Example 6.30 shows thatD itself is not Jordan-measurable.

6.65. The analog of the definition given in the opening paragraph of Section 6.3 is this:

Definition. A step-function σ(x, y) is a function that is defined on some closed,
bounded rectangle T and which has constant values σi on the interiors of the subrectangles
{Ri}ni=1 relative to some partition P of T.

Prove that any step-function defined on T is Riemann-integrable and that the
double integral has the value

∫∫
T σ(x, y) = ∑n

i=1 σi�Ai, where �Ai is the area of
the ith subrectangle. (Do not assume thatTheorem 6.13’ has been established yet.)

6.66. (Mean-Value Theorem for Double Integrals) Let D ⊂ R2 be compact, con-
nected, and have Jordan content, and suppose that f (x, y) is continuous on D.
Prove that there is a point p in the interior ofD such that∫∫

D

f (x, y) = f (p)A(D),

where A(D) is the area ofD. This generalizes Corollary 6.13.1.

SUPPLEMENTARY PROBLEMS

Additional problems on integration for your enrichment and for challenge can
be found in Appendix C.

Good luck!
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Commutation of Limit Operations
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7.1 UNIFORM CONVERGENCE
Let C(D) denote the set of real-valued functions continuous on D ⊆ R1. By
analogy to the definition given in the second paragraph of Section 3.6, we say
that a sequence

{
fk
}∞

k=0, fk ∈ C(D) converges pointwise on D to some function
f iff for each x ∈ D we have lim

k→∞
fk(x) = f (x), that is, given ε > 0 and given

x0 ∈ D, there is an N ∈ N such that k > N implies fk(x0) ∈ B
(

f (x0); ε
)
. It is

plausible that f itself should be a member of C(D). A simple example shows
this assertion to be false.

■ Example 7.1
The sequence

{
fk(x)

}∞
k=0 is defined for each k by fk(x) = [sin(πx/2)]k, D =

[0, 1]. Each fk(x) clearly belongs to C(D). For this sequence we have

lim
k→∞

fk(x) = f (x) =
{

0 0 ≤ x < 1
1 x = 1.

This is plainly discontinuous at x = 1, so f is not an element of C(D). ■

The preceding result is reinforced by consideration of the graphs of some of the
fk ’s. The limit function f and members f1, f2, f6, f12 are shown qualitatively in
Figure 7.1.

The definitions of pointwise convergence of a sequence of functions and of
continuity of a function f at a cluster point x0 ∈ D indicate that the continuity
of the limit function f of the sequence would be guaranteed if, at any cluster

1
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FIGURE 7.1
Some functions f (- - -) and the limit function fk(—).
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point x0,

f (x0) = lim
x→x0

f (x) = lim
x→x0

[
lim

k→∞
fk(x)

]

and, simultaneously,

f (x0) = lim
k→∞

fk(x0) = lim
k→∞

[
lim
x→x0

fk(x)
]

.

That is, commutation of two limit operations is needed.

■ Example 7.2
The two limit operations for the preceding sequence do not commute

everywhere on D = [0, 1], for lim
k→∞

[
lim

x→1−
{sin(πx/2)}k

]
= lim

k→∞
1k = 1 but,

in contrast, we have lim
x→1−

[
lim

k→∞
{sin (πx/2)}k

]
= lim

x→1−
f (x) = 0. ■

The reason that the two limit operations in Example 7.1 do not commute
everywhere on D is that for some ε > 0 there fails to be an N ∈ N such that for
all k > N and all x ∈ D,

∣∣ fk(x) − f (x)
∣∣ < ε holds. This is implicit in Figure 7.1.

■ Example 7.3
Suppose that there were such an N for the sequence in Example 7.1; let ε > 0
be given. The number x0 = (2/π) sin−1(ε1/(N+1)

)
lies in (0, 1). Then for any

x ∈ (x0, 1) we have

∣∣ fN+1(x) − f (x)
∣∣ ≥ ∣∣∣∣[sin

(π x0

2

)]N+1 − 0

∣∣∣∣
=
[

sin
{

π

2
2
π

sin−1(ε1/(N+1)
)}]N+1

= ε,

which is a contradiction. ■

We are led to make the following definition, which has become standard
(Hardy, 1919).

Definition. A sequence
{
fk
}∞

k=0 of functions converges uniformly (or is uniformly
convergent) on D ⊆ R1 to a function f : D → R1 iff for each ε > 0 there is an
N ∈ N such that for all x ∈ D and all k > N we have

∣∣ fk(x) − f (x)
∣∣ < ε, that is,

fk(x) ∈ B( f (x); ε).
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The crucial part of the definition is that N depends only upon ε and not upon
x. It is also clear that uniform convergence of a sequence

{
fk(x)

}∞
k=0 on the set

D ⊆ R1 implies pointwise convergence of the sequence on D. The converse is
generally false; however, a result known as Dini’s Theorem provides additional
hypotheses under which pointwise convergence will imply uniform conver-
gence (Sprecher, 1987). The definition of uniform convergence is interpretable
geometrically by the generic curves in Figure 7.2.

fk(x), k . N

f (x) 1 ´

a b
x

D

2´

y

f (x) 2 ´

FIGURE 7.2
Uniform convergence of functions fk : D → R1, D = [a, b].

It is plausible that uniform convergence might be important in other inter-
changes of pairs of limit operations. For example, consider these two cases:

CASE (A): Let
{
fk
}∞

k=1 be defined by fk(x) = kxe−kx2
, D = [0, 1].

(a) Each fk is continuous on D and lim
k→∞

fk(x) = 0 for all x ∈ D.

(b) We observe that
∫ 1

0

[
lim

k→∞
fk(x)

]
dx = 0, whereas

lim
k→∞

∫ 1
0 fk(x)dx = lim

k→∞

[−1
2

∫ 1
0

(
−2kxe−kx2

)
dx
]
=

lim
k→∞

−1
2

(
e−k − e0

) = 1
2 .

CASE (B): Let
{
fk
}∞

k=1 be defined by fk(x) = k−1 cos(kx), D = [0, 20].
(a) Each fk is continuous on D and lim

k→∞
fk(x) = 0 for all x ∈ D.

(b) We observe that d
dx

[
lim

k→∞
fk(x)

]
= 0, whereas

lim
k→∞

f ′k(x) = lim
k→∞

[− sin(kx)] = 0 for only finitely many x ∈ D

and fails to exist everywhere else in D.
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■ Example 7.4
Suppose the sequence in Case (A) had been conjectured to be uniformly
convergent on D = [0, 1]. Then if we choose ε = 1/4 arbitrarily, there should
be an N ∈ N such that for all k > N and for all x ∈ D we would have

∣∣ fk(x) − f (x)
∣∣ = ∣∣∣kxe−kx2 − 0

∣∣∣ < 1/4,

and, in particular, 2Nxe−2Nx2
< 1/4. But the number x = 1

2
√

N
lies in [0, 1]

and we have the contradiction:

2N
1

2
√

N
e−2N

( 1
4N

)
=
√

N
e

> 0.60.

Hence, the sequence in (A) cannot be uniformly convergent on D. See
Theorem 7.3 and a follow-up comment immediately after Example 7.8. ■

■ Example 7.5
The sequence

{
fk
}∞

k=1 in Case (B) converges uniformly on [0, 20] to f (x) = 0,
since if ε > 0 is given, then

∣∣fk(x) − f (x)
∣∣ = ∣∣k−1 cos(kx)

∣∣ < k−1 < ε for all
x ∈ [0, 20] and for all k > N = ⌈

ε−1
⌉
. However, we note that

{
f ′k
}∞

k=1 is not
uniformly convergent on [0, 20] because {−sin(kx)}∞k=1 is not even point-
wise convergent everywhere on [0, 20]. See Section 7.5 for a follow-up
comment. ■

Recall from Section 2.7 the definition of a Cauchy sequence of real numbers.
As expected, there is an analog for sequences of functions.

Definition. A sequence of functions
{
fk
}∞

k=0 is termed uniformly Cauchy on
D ⊆ R1 iff, given any ε > 0, there is an N ∈ N such that for all x ∈ D and for
all n > m > N we have

∣∣ fn(x) − fm(x)
∣∣ < ε.

Theorem 7.1 (Cauchy Criterion for Uniform Convergence). A sequence
of functions

{
fk
}∞

k=0 is uniformly convergent on D ⊆ R1 iff it is uniformly
Cauchy on D.

Proof. (→) Assume that
{
fk
}∞

k=0 is uniformly convergent on D ⊆ R1. This part
of the proof is left to you.

(←) Assume that
{
fk
}∞

k=0 is uniformly Cauchy on D ⊆ R1. Choose any a ∈ D.
Then if ε > 0 is given, there is an N ∈ N such that for any n > m > N we have∣∣fn(a) − fm(a)

∣∣ < ε. Hence,
{
fk(a)

}∞
k=0 is Cauchy in R1, and by Theorem 2.16 it
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converges. But a was arbitrary, so
{
fk
}∞

k=0 is pointwise convergent on D to some
function f .

Again, if ε > 0 is given, there is an N ∈ N such that for all n > m > N and for
all x ∈ D we have

∣∣fn(x) − fm(x)
∣∣ < ε/2,

that is, fm(x) − ε
2 < fn(x) < fm(x) + ε

2 . Keep m fixed but let n → ∞; we then
obtain

fm(x) − ε

2
≤ f (x) ≤ fm(x) + ε

2
.

Hence, for all x ∈ D and all m > N we have

∣∣fm(x) − f (x)
∣∣ ≤ ε

2
< ε.

This says that
{
fk
}∞

k=1 is uniformly convergent on D. �

7.2 LIMIT INTERCHANGE FOR CONTINUITY
We now resume more directly the thread of discussion initiated at the start of
the previous section. We shall prove that continuity is preserved in the space
C(D) under the stipulation of uniform convergence, and that this implies the
commutation of two limit operations.

Theorem 7.2. If
{
fk
}∞

k=0, fk ∈ C(D) converges uniformly to f on D ⊆ R1, then
f ∈ C(D).

Proof. Choose any x0 ∈ D and let ε > 0 be given. Then by hypothesis there is
an N ∈ N such that for all x ∈ D

∣∣fN(x) − f (x)
∣∣ < ε/3. (*)

Since each fk is continuous on D, then there is a δ > 0 such that |x − x0| < δ

implies

∣∣fN(x) − fN(x0)
∣∣ < ε/3. (**)

We can also rewrite (*) for the special case x = x0:

∣∣fN(x0) − f (x0)
∣∣ < ε/3. (***)
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Finally, the Triangle Inequality yields, when (*), (**), and (***) are combined,
that |x − x0| < δ implies

∣∣f (x) − f (x0)
∣∣ = ∣∣{f (x) − fN(x)

}+ {
fN(x) − fN(x0)

}+ {
fN(x0) − f (x0)

}∣∣
≤ ∣∣fN(x) − f (x)

∣∣+ ∣∣fN(x) − fN(x0)
∣∣+ ∣∣fN(x0) − f (x0)

∣∣
= ε.

Thus, f is continuous at x0, and since x0 ∈ D was arbitrary, then f is continuous
on D. �

■ Example 7.6
The contrapositive of Theorem 7.2 yields immediately the result that the
sequence discussed in Example 7.1 cannot be uniformly convergent. ■

Theorem 7.2 may be rephrased as giving a sufficient condition for the commu-
tation relation

lim
x→x0

[
lim

k→∞
fk(x)

]
= lim

k→∞

[
lim

x→x0
fk(x)

]
. (****)

It is not a necessary condition, for we can construct a sequence
{
fk
}∞

k=0 of func-
tions continuous on D = [0, 1] that is not uniformly convergent and, yet, the
equality above holds (Exercise 7.11).

Under the conditions of the Theorem, however, lim
k→∞

fk(x) = f (x) on the left-

hand side of equation (****) because the fk’s converge pointwise on D. Then
lim

x→x0
f (x) = f (x0) because we now know from the Theorem that f ∈ C(D). On

the other hand, on the right-hand side of equation (****), lim
x→x0

fk(x) = fk(x0)

because each fk ∈ C(D). Then lim
k→∞

fk(x0) = f (x0) because the fk ’s converge

pointwise on D. Finally, since both double limit operations yield f (x0), then
they are equal.

The Theorem is beautiful. We might ask, however, if it is at all practical. Why
not just show directly that a limit function f is continuous and dispense with
consideration of uniform convergence? But how would you show this if it is
not mechanically possible to obtain a simple, closed form for f ? For example,
f might emerge as a nontrivial series. See Theorems 7.1′, 7.2′, shortly, as well
as Example 7.14.

Ideas for extension of the material so far: (a) In what sense can it be said
that C(D) is a complete metric space? (b) Can C(D), as defined, be prof-
itably generalized to spaces of continuous mappings from one metric space
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into another metric space? (c) Is there a valid analog in C(D) of the famous
Bolzano-Weierstrass Theorem for Rn? We leave these questions, and others of
this ilk, for you to anticipate in a future course.1

7.3 INTEGRATION OF SEQUENCES AND SERIES
In connection with the type of interchange of limit operations alluded to in
Example 7.4, we shall now restrict our discussion to sequences of functions
defined and Riemann-integrable on a compact interval [a, b]. The following
Lemma, which properly belonged in Chapter 6, will be needed in Theorem 7.3
and again in Theorem 7.9.

Lemma 7.3.1. If f is defined and integrable on the finite interval [a, b], b > a, then∣∣f ∣∣ is also integrable on [a, b], and we then have

∣∣∣∣∣∣
b∫

a

f (x)dx

∣∣∣∣∣∣ ≤
b∫

a

∣∣f (x)∣∣ dx.

Proof. Let P = {ak}∞k=0 be a partition of [a, b], and choose any subinterval
Ik = [ak−1, ak] and any pair of points x1, x2 ∈ Ik. Since f is integrable, then by
Theorem 6.1 it is bounded on [a, b], and so is

∣∣f ∣∣.
Next, for each Ik we denote the following four numbers:

⎧⎨
⎩

Mk = sup
x∈Ik

f (x) M∗
k = sup

x∈Ik

∣∣f (x)∣∣
mk = inf

x∈Ik
f (x) m∗

k = inf
x∈Ik

∣∣f (x)∣∣ .

There are four cases to consider (see Figure 7.3):

CASE 1: 0 ≤ mk ≤ Mk. Then M∗
k = Mk and m∗

k = mk, and so M∗
k − m∗

k =
Mk − mk.

CASE 2: mk ≤ 0 ≤ −mk ≤ Mk. Then M∗
k = Mk and m∗

k ≥ 0 ≥ mk, and so
M∗

k − m∗
k ≤ Mk − mk.

CASE 3: mk ≤ 0 ≤ Mk ≤ −mk. Then, as Mk is not negative and−m∗
k cannot be

positive, we have Mk ≥ −m∗
k and then −mk − Mk ≤ m∗

k − mk, which
implies M∗

k − Mk ≤ m∗
k − mk because M∗

k = −mk. Rearrangement
then gives M∗

k − m∗
k ≤ Mk − mk.

CASE 4: mk ≤Mk ≤0. Then M∗
k = − mk ≥m∗

k = − Mk, so m∗
k −M∗

k = − Mk −
(−mk), that is, M∗

k − m∗
k = Mk − mk.

1Or, you can take a peek at Phillips (1984) and Sprecher (1987).
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FIGURE 7.3
Suprema and infima for f and

∣∣f ∣∣.
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The four cases collectively imply, since each �ak = ak − ak−1 > 0, that(
M∗

k − m∗
k

)
�ak ≤ (Mk − mk) �ak.

Summing over all k, we obtain, in the symbolism of Section 6.4,

U(P,
∣∣f ∣∣) − L(P,

∣∣f ∣∣) ≤ U(P, f ) − L(P, f ). (*)

This applies to all partitions of [a, b] because the choice of P was arbitrary. By
Theorem 6.11 there is, corresponding to each ε > 0, a δ > 0 such that for all P
of norm N < δ, we have U(P, f ) − L(P, f ) < ε. By Theorem 6.10 this says that∣∣f ∣∣ is integrable on [a, b].
Finally, since − ∣∣f ∣∣ ≤ f ≤ ∣∣f ∣∣ for all x ∈ [a, b], then from Theorem 6.2 we have

−
b∫

a

∣∣f (x)∣∣ dx ≤
b∫

a

f (x)dx ≤
b∫

a

∣∣f (x)∣∣ dx,

and this is equivalent to
∣∣∣∫ b

a f (x)dx
∣∣∣ ≤ ∫ b

a

∣∣f (x)∣∣ dx, since the integrand in the

integral on the right-hand side is never negative. �

■ Example 7.7
Let f (x) = x cos x and [a, b] = [−π/2, π/4]. We obtain

π/4∫
−π/2

∣∣f (x)∣∣ dx =
0∫

−π/2

−x cos x dx +
π/4∫
0

x cos x dx

= [−x sin x − cos x]
∣∣0−π/2 + [x sin x + cos x]

∣∣π/4
0

=
(

1 + π

4

) √
2

2
+ π

2
− 2

≈ 0.833,

and

∣∣∣∣∣∣∣
π/4∫

−π/2

f (x)dx

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

π/4∫
−π/2

x cos x dx

∣∣∣∣∣∣∣
=
∣∣∣[x sin x + cos x]π/4

−π/2

∣∣∣
=
∣∣∣∣∣
(

1 + π

4

) √
2

2
− π

2

∣∣∣∣∣
≈ 0.308

< 0.833. ■
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Theorem 7.3. If
{
fk
}∞

k=0 is a uniformly convergent sequence of functions integrable
on the finite interval [a, b], b > a, then f = lim

k→∞
fk is also integrable on [a, b] and we

have

b∫
a

f (x)dx = lim
k→∞

b∫
a

fk(x)dx.

Proof. We first prove that f is integrable on [a, b]. For each k ∈ N let εk =
sup

x∈[a,b]

∣∣fk(x) − f (x)
∣∣. It follows, since lim

k→∞
fk(x) = f (x), that

fk(x) − εk ≤ f (x) ≤ fk(x) + εk. (*)

The upper and lower Darboux integrals then satisfy the following inequalities
(refer to Lemma 6.4.3):

b∫
a

[ fk(x) − εk] dx ≤
b∫

a

f (x)dx ≤
b∫

a

f (x)dx ≤
b∫

a

[ fk(x) + εk] dx.

The difference of the two middle integrals cannot exceed the difference of the
two terminal integrals; we then obtain

0 ≤
b∫

a

f (x)dx −
b∫

a

f (x)dx ≤ 2εk(b − a).

As lim
k→∞

fk(x) = f (x), then lim
k→∞

εk = 0 from the definition of εk, and the upper

and lower Darboux integrals are then equal. We conclude (by definition) that
f is then integrable on [a, b].
We next prove the equality in the statement of the theorem. Since f and each fk
are integrable, then so is fk − f , and from Lemma 7.3.1 it follows that

∣∣ fk − f
∣∣

is also integrable on [a, b]. Let ε > 0 be given. There is an N ∈ N such that for
all k > N and for all x ∈ [a, b] we have

∣∣fk(x) − f (x)
∣∣ <

ε

2(b − a)
.

Invoking Theorem 6.2, we obtain for all fk, k > N,

b∫
a

∣∣ fk(x) − f (x)
∣∣ dx ≤

b∫
a

ε dx
2(b − a)

= ε

2
.
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Finally, from Lemma 7.3.1 again, we have

∣∣∣∣∣∣
b∫

a

fk(x)dx −
b∫

a

f (x)dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣

b∫
a

[ fk(x) − f (x)]dx

∣∣∣∣∣∣ ≤
b∫

a

∣∣fk(x) − f (x)
∣∣ dx ≤ ε

2
,

or equivalently, for every ε > 0,

b∫
a

f (x)dx − ε

2
≤

b∫
a

fk(x)dx ≤
b∫

a

f (x)dx + ε

2
.

Hence,
∫ b

a f (x)dx = lim
k→∞

∫ b
a fk(x)dx. �

■ Example 7.8
Consider the sequence

{
fk
}∞

k=1, fk(x) = k
[
k + (

1 + k−1
)

ln x
]−1 , x ∈ [2, 7].

We have

lim
k→∞

fk(x) = lim
k→∞

[
1 + (

k−1 + k−2) ln x
]−1 = 1,

so the sequence converges pointwise to f (x) = 1. Then

∣∣fk(x) − f (x)
∣∣ =

(
1 + k−1

)
ln x

k + (
1 + k−1

)
ln x

<

(
1 + k−1

)
(2)

k + (
1 + k−1

)
(1/2)

on [2, 7]

= 2k + 2
k2 + k/2 + 1/2

<
4k + 2

k(k + 1/2)

< 4k−1,

and
∣∣fk(x) − f (x)

∣∣ < ε if 4k−1 < ε iff k > 4ε−1. Hence, the sequence
converges uniformly on [2, 7], and from Theorem 7.3 we obtain

lim
k→∞

7∫
2

fk(x) =
7∫

2

1 · dx = 5.

■
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Like Theorem 7.2, Theorem 7.3 is a sufficient condition for the commutation
of the limit operations.2 So although the absence of uniform convergence of{
fk
}∞

k=0 on a compact interval [a, b]does not necessarily mean that commutation
of two limit operations is invalid (Exercise 7.14), we should not be surprised
when, as in Example 7.4, failure of commutation does occur.

Since sequences and series are closely related, we should expect the material so
far in this section to have natural analogs for series of functions.

Definition. A series
∑∞

k=0 fk(x) is uniformly convergent on a set D iff the sequence
of partial sums {Sn(x)}∞n=0, Sn = ∑n

k=0 fk(x) is uniformly convergent to a function
f : D → R1.

To emphasize the analogies, we renumber the previous theorems with primes
for statements about series. Their proofs follow immediately from the corre-
sponding statements for sequences.

Theorem 7.1′ (Cauchy Criterion for Uniform Convergence). A series∑∞
k=0 fk(x) is uniformly convergent on D ⊆ R1 iff, given any ε > 0, there is an

N ∈ N such that for all n > m > N and all x ∈ D we have
∣∣∑n

k=m+1 fk(x)
∣∣ < ε.

Theorem 7.2′. If the series
∑∞

k=0 fk(x), fk ∈ C(D), converges uniformly to f on
D ⊆ R1, then f ∈ C(D).

Theorem 7.3′. If the series
∑∞

k=0 fk(x) is uniformly convergent on the finite
interval [a, b], b > a, and each partial sum Sn(x) = ∑n

k=0 fk(x) is integrable on
[a, b], then

∑∞
k=0 fk(x) = lim

n→∞ Sn(x) is also integrable on [a, b], and we have∫ b
a

[∑∞
k=0 fk(x)

]
dx = ∑∞

k=0
∫ b

a fk(x)dx.

■ Example 7.9
(Weierstrass’s M-test)3 For

∑∞
k=0 fk(x), x ∈ D, let Fk = sup

x∈D

∣∣fk(x)∣∣, and let∑∞
k=0 Mk be any convergent series of nonnegative numbers such that each

Fk ≤ Mk. If ε > 0 is given, then by Exercise 3.6 and the Triangle Inequality
there is an N ∈ N such that for any n > m > N we have uniformly on D∣∣∣∣∣∣

n∑
k=m+1

fk(x)

∣∣∣∣∣∣ ≤
n∑

k=m+1

Fk ≤
n∑

k=m+1

Mk < ε.

By Theorem 7.1′, we conclude that
∑∞

k=0 fk(x) converges uniformly on D to
some function f : D → R1.

2The sufficiency of uniform convergence for commutation of the two limit operations had been over-
looked by Cauchy and not treated by him in his 1823 book, Cours d’analyse. Cauchy’s work (and errors)
inspired Abel.
3Weierstrass’s discovery of uniform convergence and his use of the M-test (in lectures) date from the
1840s.
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There are other tests more delicate than the M-test (Exercise 7.22).

It need hardly be stressed that Weierstrass’s M-test (or any similar test) is a
sufficient condition for uniform convergence. ■

■ Example 7.10
The series

∑∞
k=1 fk(x), fk(x) = xk−1/

(
k3/2 · 3k) has a radius of convergence

R = 3; by the p-Series Test (Exercise 3.23(b)) and by Theorem 3.9, it converges
at x = 3,−3, respectively. Weierstrass’s M-test applies if we take Mk = k−3/2,
so we conclude that

∑∞
k=1 fk(x) converges uniformly on [−3, 3] to some

function f (x). ■

■ Example 7.11
The function f (x) in the previous example is continuous on [−3, 3], according
to Theorem 7.2′. Further, each partial sum Sn(x) = ∑n

k=1

[
xk−1/

(
k3/2 · 3k

)]
is integrable on [−3, 3] (Theorem 6.13), so by Theorem 7.3′ we have (verify!)

3∫
−3

[ ∞∑
k=1

xk−1

k3/2 · 3k

]
dx = lim

n→∞

3∫
−3

[
n∑

k=1

xk−1

k3/2 · 3k

]
dx

= lim
n→∞

n∑
k=1

3∫
−3

xk−1

k3/2 · 3k
dx

= lim
n→∞

n∑
k=1

[
1 − (−1)k

] 1
k5/2

= 2

(
1 −

√
2

8

) ∞∑
k=1

k−5/2.4

■

7.4 INTEGRATION OF POWER SERIES
Power series, such as the series in Example 7.10, have several nice features. For
example, any power series in x, x ∈ R1, has a radius of convergence, R (Theo-
rem 5.12). The following basic property of power series is not shared with other
kinds of series of functions.

4The last series shown is a particular case of the Riemann zeta function: ζ(5/2) (see Exercise 3.44). Its
value may be estimated as 1.34149, from information in Apostol (1985). The definite integral then has
an estimated value of 2.20869. Despite what Exercise 3.23(b) might suggest, we can show without the
use of any heavy machinery (Osler, 2008) that a broader definition of ζ(s) leads to simple, rational values
for ζ(0) and ζ(−n), n ∈ N.
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Theorem 7.4. Let R > 0 be the finite radius of convergence of
∑∞

n=0 cn(x − a)n.
Then for any r ∈ [0, R) the series automatically converges uniformly to a continuous
function f (x) for all x that satisfy −r ≤ x − a ≤ r.

Proof. If |x − a| ≤ r < R, then for each n we have |cn(x − a)n| ≤ |cn| rn. By
hypothesis,

∑∞
n=0 |cn| rn converges, so by the Weierstrass M-test (Example 7.9)

the series
∑∞

n=0 cn(x − a)n converges uniformly for |x − a| ≤ r to some function
f (x). By Theorem 7.2′ f (x) is continuous for |x − a| ≤ r. �

■ Example 7.12
The series

∑∞
k=0(−1)k xk+1

k+1 has R = 1. By Theorem 7.4 it converges uniformly
to a continuous function on any compact interval I ⊂ (−1, 1). We see, from
Example 5.18, that this continuous function is f (x) = ln(1 + x). ■

The series in Example 7.12 diverges at x = −1, and Weierstrass’s M-test is of no
help in deciding if the uniform convergence can be extended to x = 1. However,
by Exercise 3.6 there is for each ε > 0 a corresponding N ∈ N such that n >

m > N implies
∣∣∣∑n

k=m+1(−1)k 1
k+1

∣∣∣ < ε (why?). So it is conceivable, but not yet

proved, that for each ε > 0 an N can be found such that for all x ∈ [r, 1], −1 <

r ≤ 1, n > m > N implies
∣∣∣∑n

k=m+1(−1)k xk

k+1

∣∣∣ < ε. If so, then by Theorems 7.1′

and 7.2′ the original series in Example 7.12 would be uniformly convergent and
continuous on [r, 1] ,−1 < r ≤ 1. See Theorem 7.6, shortly.

Since the partial sums of a power series are everywhere continuous, they are
integrable. Combination of Theorems 7.3′ and 7.4 then yields the following
result. Note the restriction to a finite interval.

Theorem 7.5. If R > 0 is the finite radius of convergence of the power series

∞∑
k=0

ck(x − a)k and if [r1, r2] ⊂ (−R, R), then

r2+a∫
r1+a

[ ∞∑
k=0

ck(x − a)k

]
dx =

∞∑
k=0

r2+a∫
r1+a

ck(x − a)k dx.

Proof. The proof is left to you. �

In short, we can integrate a power series term-by-term on any compact interval
inside its interval of convergence. The discussion after Example 7.12 raises the
possibility that in some cases the range of integration can be extended to one or
both of the endpoints of the interval of convergence. In general, the behavior
of a power series there is more delicate than at interior points.
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By way of illustration, let us consider again the arctangent function from
Exercise 6.38:

Tan−1x =
x∫

0

dt
1 + t2 .

For |t| < 1, the Taylor series representation of the integrand is

1
1 + t2 = 1 − t2 + t4 − t6 + · · · =

∞∑
k=0

(−1)kt2k.

For any x ∈ [0, R), R = 1, the t-series is uniformly convergent on [0, x], and
term-by-term integration on [0, x] is valid, by Theorem 7.5:

Tan−1x =
x∫

0

[ ∞∑
k=0

(−1)kt2k

]
dt =

∞∑
k=0

x∫
0

(−1)kt2k dt

=
∞∑

k=0

(−1)k x2k+1

2k + 1
. (*)

But what can we say when x = 1? The original series (in t) diverges at t = 1, so
the uniform convergence of that series cannot extend to t = 1. This is a worse
situation than the x = 1 case in Example 7.12!

To answer the question just posed, we look at the integrated series (*). Let us
call this series F(x):

F(x) =

⎧⎪⎨
⎪⎩

Tan−1x 0 ≤ x < 1
∞∑

k=0
(−1)k(2k + 1)−1 x = 1.

So Tan−1x and F(x) agree on the interval [0, 1). From Corollary 6.16.1 we know
that Tan−1x is continuous at x = 1. In order to say that lim

x→1−
[F(x) − Tan−1x] =

0, it is necessary that F have one-sided continuity at x = 1 (strict continuity of

F at x = 1 is not possible because
∑∞

k=0(−1)k x2k+1

2k+1 diverges at any x > 1). From
Theorem 7.2′ it follows that F will be continuous on [0, 1] if it is uniformly
convergent on [0, 1].
The Norwegian mathematician Abel5 proved a theorem that is just what we
need here and also clears up what was alluded to after Example 7.12. The

5See footnote 2, Chapter 3; see also Ore (1970, 1974).
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elementary proof (next) uses only the definition of a uniformly convergent
series and a couple of ideas from Chapter 3 (Buck, 1978).

Theorem 7.6 (Abel’s Limit Theorem). Suppose that
∑∞

k=0 ck(x − a)k has
radius of convergence R, 0 < R < ∞, and that the series

∑∞
k=0 ckRk converges to

L. Then lim
u→R−

∑∞
k=0 ckuk = L.

Proof. For each n ∈ N let Cn = ∑∞
k=n ckRk, from which we have Cn − Cn+1 =

cnRn. The convergence of
∑∞

k=0 ckRk to some L ∈ R1 implies that if ε > 0

is given, then for all sufficiently large n,
∣∣∑∞

k=n ckRk
∣∣ = ∣∣∣L −∑n−1

k=0 ckRk
∣∣∣ < ε,

that is, lim
n→∞ Cn = 0. Now let x − a ∈ [0, R); we obtain from the definition of

the Cn’s

∣∣∣∣∣∣
∞∑

k=n+1

ck(x − a)k

∣∣∣∣∣∣ = |(Cn+1 − Cn+2)

(
x − a

R

)n+1

+ (Cn+2 − Cn+3)

(
x − a

R

)n+2

+ (Cn+3 − Cn+4)

(
x − a

R

)n+3

+ · · ·
∣∣∣∣∣

=
∣∣∣∣Cn+1

(
x − a

R

) n+1

+
{

Cn+2

(
x − a

R

)n+1 [x − a
R

− 1
]

+ Cn+3

(
x − a

R

)n+2 [x − a
R

− 1
]
+ · · ·

}∣∣∣∣∣ .

The last line follows from the fact that for any x − a ∈ [0, R), the series∑∞
k=n+1 ck(x − a)k and its equivalent are absolutely convergent (Ratio Test),

and from Riemann’s Rearrangement Theorem (Theorem 3.11) any rearrange-
ment of terms in an absolutely convergent series leaves the sum unchanged.
Hence, by repeated use of the Triangle Inequality

∣∣∣∣∣∣
∞∑

k=n+1

ck(x − a)k

∣∣∣∣∣∣ =
∣∣∣∣∣∣Cn+1

(
x − a

R

)n+1

+
[

x − a
R

− 1
] ∞∑

k=n+1

Ck+1

(
x − a

R

)k
∣∣∣∣∣∣

≤ |Cn+1|
(

x − a
R

)n+1

+
∣∣∣∣∣∣
[

x − a
R

− 1
] ∞∑

k=n+1

Ck+1

(
x − a

R

)k
∣∣∣∣∣∣

≤ |Cn+1|
(

x − a
R

)n+1

+
[

1 − x − a
R

](
x − a

R

)n+1 ∞∑
k=n+1

∣∣Ck+1
∣∣ (x − a

R

)k−n−1

.

(*)
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Let ε > 0 be given. Then there is an N ∈ N such that n > N implies |Cn| < ε/2.
Thus, for any x − a ∈ [0, R) it follows from (*) that for n > N

∣∣∣∣∣∣
∞∑

k=n+1

ck (x − a)k

∣∣∣∣∣∣ ≤
ε

2

(
x − a

R

)n+1

+
[

1 − x − a
R

](
x − a

R

)n+1
ε

2

∞∑
k=0

(
x − a

R

)k

= ε

2

(
x − a

R

)n+1
[

1 +
(

1 − x − a
R

)
1

1 − ( x−a
R

)
]

= ε

(
x − a

R

)n+1

< ε.

This last inequality is also true when x − a = R, for then
∣∣∣∑∞

k=n+1 ck (x − a)k
∣∣∣ is

|Cn+1|, which is less than ε/2 for n > N.

By definition, we conclude that
∑∞

k=0 ck (x − a)k is uniformly convergent on
[0, R]. The statement

lim
u→R−

∞∑
k=0

ckuk =
∞∑

k=0

ckRk = L

then follows from Theorem 7.2’. �

The following remarks are pertinent to the proof of Theorem 7.6:

1. The result that
∑∞

k=0 ck(x − a)k is uniformly convergent on [0, R] is not
a restriction, for Theorem 7.4 already has told us that

∑∞
k=0 ck(x − a)k

is uniformly convergent also on [r, 0],−1 < r < 0. Hence, the uniform
convergence extends to the entire interval [r, R].

2. It is clear from the mechanics of the proof of Theorem 7.6 that the
uniform convergence could have been proved for [r, R],−1 < r < 0,
but at the slight expense of additional clutter by more absolute value
signs.

3. The validity of the theorem is in no way dependent upon the origin of
the series

∑∞
k=0 ck(x − a)k. Of present interest is the case where this series

has arisen by integration of a prior series.

4. If
∑∞

k=0 ck(x − a)k has radius of convergence R, 0 < R < ∞, then
so does the integrated series

∑∞
k=0

ck
k+1 (x − a)k+1. This follows if
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R=
{

lim
k→∞

∣∣∣ ck+1
ck

∣∣∣}−1

holds, since then by the Ratio Test

lim
k→∞

∣∣∣∣∣ ck+1

ck

k + 1
k + 2

(x − a)k+2

(x − a)k+1

∣∣∣∣∣ = |x − a|
[

lim
k→∞

k + 1
k + 2

] [
lim

k→∞

∣∣∣∣ ck+1

ck

∣∣∣∣
]

= |x − a|
[

lim
k→∞

∣∣∣∣ ck+1

ck

∣∣∣∣
]

= |x − a| · R−1

< 1 iff |x − a| < R.

If the ratio of the |ck|’s does not have a limit, then we must fall back
on the use of the lim sup and employ Theorem 5.13. In order to imple-
ment this for the integrated series

∑∞
k=0

ck
k+1 (x − a)k+1, we need the

subsidiary result that if a sequence {ak}∞k=0 converges to some A > 0 and
{uk}∞k=0 is any real-valued sequence, then lim

k→∞
sup (akuk) = A lim

k→∞
sup uk

(Exercise 7.28). In this more complicated situation, we still obtain for
the integrated series

∑∞
k=0

ck
k+1 (x − a)k+1 a radius of convergence of R,

if the initial series
∑∞

k=0 ck (x − a)k has a radius of convergence of R.

In view of Remarks (3) and (4), the following useful corollary of Theorem 7.6
now results:

Corollary 7.6.1. If f (x) = ∑∞
k=0 ck(x − a)k has radius of convergence R, 0 < R <

∞, and
∑∞

k=0 ckRk diverges to ±∞ but
∑∞

k=0
ckRk+1

k+1 converges, then

a+R∫
a

f (x)dx =
∞∑

k=0

ckRk+1

k + 1
.

Proof. The proof is left to you. �

■ Example 7.13
Returning to Example 7.12, we can apply Theorem 7.6 and conclude that
the series is uniformly convergent on [r, 1],−1 < r ≤ 1, and, hence, contin-
uous there. It follows that ln 2 = ∑∞

k=0 (−1)k (k + 1)−1. This series is poor
for the estimation of ln 2; 20 terms give only 0.66877. But if the series in
Example 7.12 is integrated twice and 0 is used as the lower limit in each



302 CHAPTER 7: Commutation of Limit Operations

integration, then we can obtain (Exercise 7.30 outlines a slightly different
procedure)

ln 2 = 5
8
+ 1

2

∞∑
k=0

(−1)k 1
(k + 1)(k + 2)(k + 3)

.

Twenty terms of this series now give ln 2 ≈ 0.69312. ■

■ Example 7.14
Returning to our discussion of Tan−1x, we conclude from Corollary 7.6.1
that

F(1) =
1∫

0

dt
1 + t2 =

∞∑
k=0

(−1)k 1
2k + 1

= Tan−11.

Additionally, letting t = u−1, we obtain

1∫
0

dt
1 + t2 =

1∫
∞

−u2du
1 + u−2 =

∞∫
1

du
1 + u2

=
∞∫

0

du
1 + u2 −

1∫
0

du
1 + u2

= π

2
−

1∫
0

du
1 + u2 (by definition of π).

Hence, we arrive finally at the interesting series

Tan−11 = π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · =

∞∑
k=0

(−1)k 1
2k + 1

.

This historically important series was arrived at independently by the German
mathematician Leibniz (1646–1716), the Scottish mathematician James
Gregory (1638–1675), and the South Indian mathematician Kerala Gargya
Nilakantha (ca. 1450–1550) (Roy, 1990). It is possible that in the future the
series may also be discovered among the ancient writings of some Japanese
or Chinese mathematician. ■

■ Example 7.15
An application of Abel’s Limit Theorem was used in Vernescu (2008)
in order to sum an interesting series. Newton’s Binomial Theorem gives,
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for x ∈ (−1, 1),

(
1 − x2)−1/2 − 1 =

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2n · n! x2n. (*)

For any nonzero x ∈ (−1, 1), we obtain from (*)

− d
dx

ln
[
1 +

√
1 − x2

]
= 1

x
√

1 − x2
− 1

x

=
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2n · n! x2n−1. (**)

The series on the right is uniformly convergent on any compact interval
[a, b] ⊂ (0, 1), so by Theorem 7.5 we obtain

−ln
[
1 +

√
1 − b2

]
+ ln

[
1 +

√
1 − a2

]

=
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2n (2n) n! b2n −
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2n (2n) n! a2n. (***)

The function F(x) = ∑∞
n=1

1·3·5···(2n−1)
2n(2n)n! x2n is continuous on [0, 1), and equals

0 at x = 0. At x = 1, the series for F(x) converges to some L ∈ R1 by the Ratio
Test. Hence, by Theorem 7.6, equation (***) becomes, for [0, 1],

−ln 1 + ln 2 = lim
x→1−

F(x) − 0 = L,

that is,

2L = 2F(1) = lim
x→1−

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

(n)(2n)(n!) x2n

=
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

(n) (2n) n!
= ln 4.

■

7.5 DIFFERENTIATION
We saw in Example 7.5 that there is not a close analog of Theorem 7.3 for the dif-
ferentiation of a sequence of functions. The example implied a connection with
the failure of the sequence of derivatives to converge uniformly. The following
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theorem, a sufficient condition for commutation of two limit operations, is both
plausible and true.

Theorem 7.7. If
{
fk
}∞

k=0 is a sequence of functions continuously differentiable6 on
[a, b] and pointwise convergent there to f , and if

{
f ′k
}∞

k=0 converges uniformly on [a, b],
then for any x ∈ [a, b] we have

d
dx

[
lim

k→∞
fk(x)

]
= f ′(x) = lim

k→∞
f ′k (x) .

Proof. Let r ∈ [a, b] be arbitrary but fixed, and let x ∈ [a, b]. Suppose that
lim

k→∞
f ′k(x) = h(x) on [a, b]. Since each f ′k is continuous on [a, b] and

{
f ′k
}∞

k=0

is uniformly convergent on [a, b], then by Theorem 7.3 we have

lim
k→∞

x∫
r

f ′k(t) =
x∫

r

h(t)dt.

But by the Fundamental Theorem of the Calculus—A (Theorem 6.15), the
left-hand side can be rewritten as lim

k→∞
[fk(x) − fk(r)]. Hence, we have by

hypothesis

f (x) − f (r) =
x∫

r

h(t)dt.

Finally, using the Fundamental Theorem of the Calculus—B (Theorem 6.16),
we obtain

f ′(x) = d
dx

x∫
r

h(t)dt = h(x) = lim
k→∞

f ′k(x).
�

Although the theorem is a theorem about differentiation, its proof drew on ideas
from integration. This was facilitated by the f ′ks being continuous on [a, b]. The
hypothesis of the theorem can be weakened so that integration is no longer
useful; the proof is somewhat more involved (Sprecher, 1987).

The principal use of Theorem 7.7 is its adaptation for the differentiation of
series of differentiable functions. The specific case of power series is given in
Theorem 7.8.

6Denotes that each fk is differentiable on [a, b] and each corresponding f ′k is continuous on [a, b].
Differentiability at a, b means, of course, sided differentiability.
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Theorem 7.7′. Let
{
fk
}∞

k=0 be a sequence of functions continuously differentiable on
[a, b], and suppose that

∑∞
k=0 fk converges pointwise to f on [a, b] and that

∑∞
k=0 f ′k

converges uniformly there. Then for each x ∈ [a, b]

f ′(x) = d
dx

∞∑
k=0

fk(x) =
∞∑

k=0

f ′k(x).

Proof. For each n, let gn = ∑n
k=0 fk and g′n = ∑n

k=0 f ′k, and go on to apply
Theorem 7.7. The completion of the proof is left to you. �

■ Example 7.16
Let

{
fk(x)

}∞
k=1 be defined by fk(x) = cos(kx)

k5/2 ,−1 ≤ x ≤ 1. Each fk(x) is continu-
ously differentiable on [−1, 1]. The Weierstrass M-test shows that

∑∞
k=1 fk(x)

converges uniformly (and, thus, pointwise) on [−1, 1]. A second application
of the M-test shows that

∑∞
k=1 f ′k(x) =

∑∞
k=1

− sin(kx)
k3/2 converges uniformly on

[−1, 1]. We conclude from Theorem 7.7’ that

d
dx

∞∑
k=1

cos(kx)
k5/2 = −

∞∑
k=1

sin(kx)
k3/2 . ■

■ Example 7.17
Let

{
fk(θ)

}∞
k=1 be defined by fk(θ) = cos(kθ)

22k−1 . It can be established that 1 +∑∞
k=1 fk(θ) converges pointwise on [−π, π] to 15

17−8 cos(θ) (Exercise 7.41).
Additionally, we have that the series

∞∑
k=1

−k sin(kθ)

22k−1

is uniformly convergent on [−π, π] (Exercise 7.42). We conclude from
Theorem 7.7’ that

∞∑
k=1

−k sin(kθ)

22k−1
= d

dθ

(
15

17 − 8 cos θ

)
= −120 sin θ

(17 − 8 cos θ)2 .

For example, at θ = sin−1(4/5), the series sums to −2400
3721 . ■

We now apply Theorem 7.7’ to power series. For this purpose we need to
know that if

∑∞
k=0 ck(x − a)k has radius of convergence R, 0 < R < ∞, then

so does the derived series
∑∞

k=1 kck(x − a)k−1. This can be established by use
of the lim sup in a manner similar to that for the integrated series (see Point
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(4) in Section 7.4, as well as Exercise 7.28). You are requested to work this
out in Exercise 7.43. An alternative proof that is worth reading because of its
elementary nature (it does not use the lim sup concept) is found in Apostol
(1952).

■ Example 7.18
The series ln

(
1 + u

a

) = ∑∞
k=1

(−1)k+1

kak uk, a > 0, has R = a (verify!). Hence, so

does the series
∑∞

k=0
(−1)k

ak+1 uk. ■

■ Example 7.19
If a series

∑∞
k=0 ck(x − a)k has radius of convergence R and converges at one

of the endpoints, then the derived series may or may not converge at that

endpoint. Compare
∑∞

k=1 (−1)k−1 xk

k , which has R = 1 and converges at
x = 1, with the series

∑∞
k=0 (−1)kxk, which also has R = 1 but does not

converge at x = 1. ■

Theorem 7.8. If f(x)= ∑∞
k=0 ck(x − a)k has radius of convergence R, 0 < R < ∞,

then for any r ∈ (0, R) we have

f ′(x) =
∞∑

k=1

kck (x − a)k−1, x − a ∈ [−r, r].

Proof. Each gk(x) = ck (x − a)k is continuously differentiable on |x − a| ≤ r.
By hypothesis,

∑∞
k=0 gk(x) converges pointwise to f (x) on | x − a | ≤ r, so from

remarks earlier,
∑∞

k=1 g′k(x) also converges pointwise on |x − a| ≤ r. From
Theorem 7.4 we may then conclude that

∑∞
k=1 g′k (x) converges uniformly

on | x − a | ≤ r. Hence, by Theorem 7.7’ the function f (x) is differentiable on
|x − a| ≤ r, and we have

f ′(x) = d
dx

∞∑
k=0

gk(x) =
∞∑

k=1

g′k (x) =
∞∑

k=1

kck (x − a)k−1.

�

Corollary 7.8.1. If f (x) = ∑∞
k=0 ck(x − a)k is as in Theorem 7.8, then f is

infinitely differentiable on |x − a| ≤ r.

■ Example 7.20
Suppose that for all |x − a| < R we have

∞∑
k=0

bk(x − a)k = f (x) =
∞∑

k=0

ck(x − a)k.
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Letting x = a, we obtain b0 = c0. Now differentiate across the equation; from
Theorem 7.8 we deduce

∞∑
k=1

kbk(x − a)k−1 = f ′(x) =
∞∑

k=1

kck(x − a)k−1,

for all |x − a| < R. Letting x = a here, we now obtain b1 = c1. By mathe-
matical induction, together with Corollary 7.8.1, we conclude that for each
k ∈ N ∪ {0} we have bk = ck, that is, the power series representation of f
(about a) is unique. ■

■ Example 7.21
For any n ∈ N, Corollary 7.8.1 implies that f (n)(x) = ∑∞

k=0 ck
dn

dxn (x − a)k.
Fix n; then we have

dn

dxn (x − a)k =
⎧⎨
⎩

0, identically k < n
0 at x = a k > n
n! k = n.

Thus, f (k)(a) = ckk!, that is, ck = f (k)(a)

k! and the unique power series repre-
sentation of f about a, indicated in Example 7.20, is just the Taylor series
for f . ■

■ Example 7.22
Let f (x) = (

1 + x2)1/2; by Newton’s Binomial Theorem we have

f (x) = 1 +
∞∑

k=1

(
1/2
k

)
x2k,

and in Exercise 5.61 it was established that the right-hand side represents f
if x2 < 1. In view of Example 7.21 (where we take a = 0), we deduce that

(
1/2
k

)
= (1/2)(1/2 − 1)(1/2 − 2) · · · (1/2 − k + 1)

k!

= f (k)(0)

k! .

Thus, it is unnecessary to do tedious differentiations, for Newton has given
us the pattern. The first few terms in the expansion of f (x), 0 ≤ x < 1, are

(
1 + x2)1/2 ≈ 1 + 1

2
x2 − 1

8
x4 + 1

16
x6 − 5

128
x8.

■
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■ Example 7.23
Let f (x) = (

1 + x2
)1/2 and let r satisfy 0 < r < 1. By Theorem 7.8 and

Example 7.22, we have for all x ∈ [−r, r]

f ′(x) = x(1 + x2)−1/2 =
∞∑

k=1

2k
(

1/2
k

)
x2k−1.

Atx 
= 0, (1 + x2)−1/2 =
∞∑

k=1

2k
(

1/2
k

)
x2k−2

=
∞∑

k=0

2(k + 1)

(
1/2

k + 1

)
x2k

= 1 − 1
2

x2 + 3
8

x4 − 5
16

x6 + · · · ,

which is valid also at x = 0. What happens if you do a Cauchy multiplication
of this series and the one in Example 7.22? ■

7.6 WEIERSTRASS’S FUNCTION; LEIBNIZ’S
THEOREM

We shall close out this chapter and this text by presenting two differentia-
tion topics of a somewhat specialized nature: (A) an example of a function
(as promised in Section 5.1) that is continuous everywhere in R1 but is dif-
ferentiable nowhere there, and (B) a theorem that, fittingly, connects the two
fundamental operations of calculus—differentiation and integration—and that
dates back to the time of the German father of calculus, Leibniz.

(A)

Consider the following function, a particular case of a family of functions
examined by Weierstrass (Titchmarsh, 1939):

f (x) =
∞∑

k=0

(
2
3

)k

cos
(

9kπx
)

, x ∈ R1.

No term of this series exceeds in magnitude (2/3)k and since
∑∞

k=0 (2/3)k = 3,
then by the M-test this series converges uniformly on R1, and from Theorem 7.2’
the function f (x) is continuous on R1.
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The Cauchy quotient for f is now written

f (x + h) − f (x)
h

=
m−1∑
k=0

(
2
3

)k cos
[
9kπ(x + h)

]− cos
(
9kπx

)
h

+
∞∑

k=m

(
2
3

)k cos
[
9kπ(x + h)

]− cos
(
9kπx

)
h

= Rm + Sm,

where m ∈ N is arbitrary. From the Mean-Value Theorem, each numerator
satisfies

∣∣∣cos
[
9kπ(x + h)

]
− cos(9kπx)

∣∣∣ = 9kπ

∣∣∣h sin(9kπck)

∣∣∣ ≤ 9kπ |h| ,

for some ck ∈ (x, x + h). Hence, by summation we obtain

|Rm| ≤
m−1∑
k=0

(
2
3

)k

9kπ = π

(
6m − 1
6 − 1

)
< π · 6m

5
.

Next, we obtain a lower bound for |Sm|. We can write uniquely

9mx = am + ym,

where −1
2 ≤ ym < 1

2 and am ∈ Z; then define the sequence {hm}∞m=1 by hm =(
1 − ym

)
/9m. We then have

0 < hm ≤ 1 − (−1/2)

9m = 3
2 · 9m ,

and as k ≥ m for the terms in the series for Sm, then

9kπ
(
x + hm

) = 9k−mπ
[
9m (

x + hm
)] = 9k−mπ(am + 1).

Since 9 is odd, it is clear that

cos
[
9kπ(x + hm)

]
= cos

[
9k−mπ(am + 1)

]
= (−1)am+1,
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and also

cos
(

9kπx
)
= cos

[
9k−mπ

(
am + ym

)]
= cos

(
9k−mπam

)
cos

(
9k−mπym

)
− sin

(
9k−mπam

)
sin

(
9k−mπym

)
= cos

(
9k−mπam

)
cos

(
9k−mπym

)
= (−1)am cos

(
9k−mπym

)
.

Substitution into the definition of Sm now yields

Sm =
∞∑

k=m

(
2
3

)k (−1)am+1 − (−1)am cos
(
9k−mπym

)
hm

= (−1)am+1

hm

∞∑
k=m

(
2
3

)k [
1 + cos

(
9k−mπym

)]
.

All terms of this series are nonnegative, so its sum exceeds the first term and
we have

|Sm| >
1

|hm|
(

2
3

)m

[1 + 0]

≥ [(
2 · 9m) /3

] (2
3

)m

= 2
3
· 6m.

Finally, using the Triangle Inequality in the form |x − y| ≥ ||x| − |y|| (Exer-
cise 1.33(a)), we have∣∣∣∣∣ f

(
x + hm

)− f (x)

hm

∣∣∣∣∣ = |Sm + Rm|

= |Sm − (−Rm)|
≥ ||Sm| − |−Rm||

≥
∣∣∣2
3
· 6m − π

5
· 6m

∣∣∣
=
(

2
3
− π

5

)
· 6m.

As m → ∞, then on the left-hand side hm → 0, as desired. But the right-hand
side diverges to ∞; hence, f ′(x) does not exist in R1 for any x ∈ R1.
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Weierstrass’s unusual function was presented in lecture form before the Berlin
Academy of Sciences in 1872, although Weierstrass may have known it, or at
least suspected its existence, much earlier. It electrified the mathematical com-
munity and made many members even more leery of overly trusting intuition
and nonanalytical reasoning.7

(B)

Leibniz’s Theorem for the differentiation of definite integrals is of great utility.
Here we shall restrict our considerations to proper Riemann integrals (but see
Exercise 7.55). Several proofs of the theorem are available; our proof makes
contact with compactness (Section 4.7) and uniform continuity (Section 4.9).
Other proofs appear later (Exercises 7.51, 7.52). Recall from Section 5.10 the
notation for partial derivatives.

Theorem 7.9 (Leibniz’s Theorem). If f , D2f are defined and continuous
on the closed, bounded rectangle D = {

(x, y) : a1 ≤ x ≤ a2, b1 ≤ y ≤ b2
}
, then

d
dy

∫ a2
a1

f (x, y)dx = ∫ a2
a1

(
D2f

)
dx.

Proof. By Theorem 6.13, the integral g(y) = ∫ a2
a1

f (x, y)dx exists. Then if y0, y0 +
k ∈ [b1, b2], the Cauchy quotient can be written as

g
(
y0 + k

)− g
(
y0
)

k
=

a2∫
a1

f
(
x, y0 + k

)− f
(
x, y0

)
k

dx

=
a2∫

a1

[(
D2f

)
(x, c0)

]
dx, (*)

by the Mean-Value Theorem, where c0 ∈ (
y0, y0 + k

)
. The number c0 depends

in some complicated way upon x. In spite of this,
(
D2f

)
(x, c0) is a continuous

function of x because D2f is continuous on all of D. Accordingly, the integral
in equation (*) exists.

From the Heine-Borel Theorem (Theorem 4.8), we know that D is compact.
Since D2f is continuous on all of D, then by Theorem 4.16 it is uniformly
continuous on D. Thus, if ε > 0 is given, then there is a δ > 0 such that for all
x ∈ [a1, a2] and whenever

∣∣y − y0
∣∣ < δ, we have

∣∣(D2f
)
(x, y) − (

D2f
)
(x, y0)

∣∣ <
ε

1 + (a2 − a1)
. (**)

7Weierstrass communicated the general case of his family of functions to German colleague Paul du Bois-
Reymond (1831–1889), who subsequently published it in 1875. Many more examples soon followed,
and the literature on such functions is now large. Some remarks, with numerous original references, can
be found in Hawkins (1975).
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If we restrict k in equation (*) so that 0 < |k| < δ, then c0 ∈ (
y0, y0 + k

)
implies

c0 ∈ (
y0 − δ, y0 + δ

)
, and an application of Lemma 7.3.1 to the integration of

equation (**) yields

∣∣∣∣∣∣
a2∫

a1

[(
D2f

)
(x, c0) − (

D2f
)
(x, y0)

]
dx

∣∣∣∣∣∣
≤

a2∫
a1

∣∣∣ [(D2f
)
(x, c0) − (

D2f
)
(x, y0)

] ∣∣∣ dx

<

a2∫
a1

ε

1 + (a2 − a1)
dx < ε. (***)

Clearly, as ε → 0, then δ → 0 and also k → 0. Finally, as k → 0, then c0 → y0

in equation (***), and equation (*) becomes

lim
k→0

g
(
y0 + k

)− g
(
y0
)

k
= lim

c0→y0

a2∫
a1

[(
D2f

)
(x, c0)

]
dx

or

g′
(
y0
) =

a2∫
a1

[(
D2f

)
(x, y0)

]
dx.

Since y0 ∈ [b1, b2] was arbitrary, then

d
dy

a2∫
a1

f (x, y)dx =
a2∫

a1

(
D2f

)
dx.

�

■ Example 7.24
Let F(y) = ∫ π/2

0 f (x, y)dx, where

f (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tan−1(y tan x)
tan x 0 < x < π

2 , 0 < y ≤ 5

y x = 0, 0 < y ≤ 5

0 x = π
2 , 0 < y ≤ 5

0 y = 0.
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We can verify that f is continuous on D = {
(x, y) : 0 ≤ x ≤ π

2 , 0 ≤ y ≤ 5
}
,

and that D2f is also continuous on D. From Leibniz’s Theorem we have
(verify!)

F′(y) =
π/2∫
0

[(D2f
)
(x, y)]dx = π

2
1

1 + y
.

Then integration gives F(y) = ∫ y
0

π
2

dt
1+t = π

2 ln
(
1 + y

)
. Setting y = 1, we

obtain

F(1) =
π/2∫
0

x cot x dx =π

2
ln 2,

which is not at all easy to obtain by direct integration (Wiener, 2001)
(Exercise 7.49). ■

The differentiation of definite integrals ought to be useful in the solution of
differential equations. Suppose that y(t) is unknown but that y′(t) is presumed
continuously differentiable on some domain D. The following expression
might appear in a differential equation,

d
dt

dy
dt

+ y(t),

from which it is apparent that attempted integration of this will not take us
very far. We hunt for an integrating factor that will allow us to make progress.
A simple choice is sin(t), and we find that

∫ [
d
dt

dy
dt

+ y(t)
]

sin t dt =
∫

d
dt

dy
dt

sin t dt +
∫

y(t) sin t dt

=
[

sin t
dy
dt

−
∫

dy
dt

cos t dt
]

+
[
−y (t) cos t +

∫
dy
dt

cos t dt
]

= sin t
dy
dt

− y(t) cos t + C. (*)

The object is to isolate y(t); that is, to obtain values of y(t) for arbitrary choices
t = x in D. In order that the right-hand side of equation (*) shall lead to this
objective for us, we do the following: (a) replace sin(t) by sin(x − t), (b) impose
initial conditions y(0) = 0 and y′(0) = 0, and (c) carry out the integration in
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equation (*) from t = 0 to t = x. Equation (*) is then modified slightly and
reduces to (verify!)

x∫
0

[
d
dt

dy
dt

+ y(t)
]

sin(x − t) dt = y(x). (**)

■ Example 7.25
Find a particular solution of

d2y
dx2 + 2y(x) = x2, −2 < x < 2, y(0) = y′(0) = 0.

Reasoning from equation (**) and allowing for the coefficient of 2, we write
for the integral representation of a particular solution

y(x) = 1√
2

x∫
0

sin
[√

2 (x − t)
]

t2dt.

The variable x appears in the integrand and in the upper limit. Let us,
therefore, define u(x) ∼= x, v(x) ∼= x − t, and write

y(x) = �(u, v) = 1√
2

u∫
0

sin
[√

2 v
]

t2dt,

To verify that this satisfies the differential equation, we proceed to differen-
tiate �:

dy(x)
dx

= d�(u, v)
dx

= ∂�

∂u
du
dx

+ ∂�

∂v
dv
dx

,

from a Chain Rule. Since u(x) = x, then the first term is handled by the
Fundamental Theorem of the Calculus—B:

∂�

∂u
= 1√

2
sin

[√
2(x − x)

]
x2 = 0.

The second term is handled by Leibniz’s Theorem:

∂�

∂v
= 1√

2

u∫
0

√
2 cos

[√
2 v

]
t2dt,
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and so, dy(x)
dx = ∫ u

0 cos
[√

2 v
]

t2dt.

A second differentiation now gives

d2y(x)
dx2 = cos

[√
2(x − x)

]
x2 +

x∫
0

[
−√

2 sin
[√

2 v
]

t2
]
dt

= x2 −√
2

x∫
0

sin
[√

2 v
]

t2dt.

Finally, making the appropriate substitutions into the differential equation,
we obtain as desired.

d2y(x)
dx2 + 2y(x) =

⎡
⎣x2 −√

2

x∫
0

sin
[√

2 v
]

t2dt

⎤
⎦

+ 2 · 1√
2

x∫
0

sin
[√

2 v
]

t2dt

= x2.

The function 1√
2

sin
[√

2(x − t)
]

is known as the Green’s function for

the operator D2 + 2; the Green’s function technique is very important in
applications. ■

EXERCISES

Section 7.1

7.1. Define the sequence
{
fk(x)

}∞
k=1 by fk(x) = kx

1+kx2 , x ∈ [0, 1].
(a) In the spirit of Figure 7.1, sketch f1, f2, f4, f9 and the limit function f on a common pair

of axes.8

(b) Discuss the possible uniform convergence of
{
fk(x)

}∞
k=1 on [0, 1].

7.2. Show that the sequence
{
fk(x)

}∞
k=1, fk(x) = 2k

3+2kx , converges uniformly on [1,∞)

but does not do so on (0,∞).

7.3. Suppose that
{
fk(x)

}∞
k=1 and

{
gk(x)

}∞
k=1 are uniformly convergent on a com-

mon domain D ⊆ R1. Prove that
{
hk(x)

}∞
k=1, where hk(x) = fk(x) + gk(x), is also

uniformly convergent on D.

8 Diagrams like Figure 7.1 were made popular in the 1890s by the Harvard-based American mathematician
William Fogg Osgood (1864–1943).
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7.4. In the spirit of Case (A), construct a sequence of continuous functions
{
fk
}∞
k=1, fk :

[0, 1] → R1, such that lim
k→∞

fk(x) is the zero function but lim
k→∞

∫ 1
0 fk(x) = ∞.

7.5. Regarding Case (B),
(a) Explain how you know that lim

k→∞
f ′k(x) = 0 for only finitely many x ∈ [0, 20] and that the

limit fails to exist everywhere else in [0, 20];
(b) If

{
fk
}∞

k=1 in (B) had been defined by fk(x) = k−2 cos(kx), would lim
k→∞

f ′k(x) then have

equaled d
dx

[
lim

k→∞
fk(x)

]
for all x ∈ D? Is

{
fk(x)

}∞
k=1 now uniformly convergent on D?

7.6. Suppose that the sequence S = {
fk
}∞

k=1 converges uniformly on D ⊆ R1. Prove
that any subsequence of S also converges uniformly on D.

7.7. Review in Section 4.9 the definition of a function being uniformly continuous
on a set S. Now suppose that F is uniformly continuous on S = R1. Define
the sequence

{
fk
}∞
k=1 by fk(x) = F

(
x + 2k−3/2). Use Theorem 7.1 to prove that{

fk
}∞
k=1 is uniformly convergent on R1.

7.8. Complete the proof of Theorem 7.1.

Section 7.2

7.9. Explain how Theorem 7.2 provides the explicit answer to the implicit question in
Exercise 7.1(b).

7.10. Prove the following slightly more general version of Theorem 7.2: If M, M′ are
metric spaces and

{
fk
}∞
k=0 is a sequence of functions from M to M′ that converges

uniformly on some open ball in M centered at p0 ∈ M, and if each fk is continuous
at p0, then lim

k→∞ fk is also continuous at p0.

7.11. Define the sequence
{
fk
}∞

k=1 as follows:

fk(x) =

⎧⎪⎨
⎪⎩

2kx 0 ≤ x ≤ 1
2k

2 − 2kx 1
2k < x ≤ 1

k
0 1

k < x ≤ 1.

(a) On a common pair of axes sketch f1, f2, f4.
(b) Does the sequence have a limit function, and if so, is it continuous on [0, 1]?
(c) Is the sequence uniformly convergent on [0, 1]?
(d) What conclusion do you draw?

7.12. Let f (p) be real-valued and continuous on the set D = {p : p = (x, y), a ≤ x ≤ b,
c ≤ y ≤ d}. Show that the function F(y) = ∫ b

a f (p)dx is continuous on [c, d]. In
other words, verify the limit commutation

b∫
a

[
lim

y→y0
f (p)

]
dx = lim

y→y0

b∫
a

f (p)dx

for any y0 ∈ [c, d].



Exercises 317

Section 7.3

7.13. Construct an example to show that the converse of the first half of Lemma 7.3.1
is false.

7.14. Give an example of a sequence of functions
{
fk
}∞

k=1 that converges pointwise but
not uniformly on [0, 1], and yet

1∫
0

[
lim

k→∞
fk(x)

]
dx = lim

k→∞

1∫
0

fk(x)dx.

What do you conclude?

7.15. Define the sequence
{
fk
}∞
k=1 by fk(x) =

{
2k−1 0 ≤ x ≤ k
x−2 x > k.

(a) Show that the sequence is uniformly convergent on [0,∞).
(b) However, also show that

∞∫
0

[
lim

k→∞
fk(x)

]
dx 
= lim

k→∞

∞∫
0

fk(x)dx.

Is this a violation of Theorem 7.3?

7.16. Write out the proof for Theorem 7.1′.
7.17. Write out the proof of either Theorem 7.2′ or Theorem 7.3′.
7.18. In each case prove that the given series converges uniformly on D:

(a)
∑∞

k=1 k2xk , D = [− 2
3 , 2

3

]
;

(b)
∑∞

k=1

(
x ln x

)k , D = [0, 1];
(c)

∑∞
k=0

sin(2kx)
k2+2

, D = (−∞,∞);

(d) 1 +∑∞
k=1

(2k−1)!!
(2k)!! c2k(sin θ)2k, D = [0, π/2], 0 < c < 1

(2k − 1)!! = 1 · 3 · 5 · · · (2k − 1), (2k)!! = 2 · 4 · 6 · · · (2k);

(e)
∑∞

k=0
xk
k! , D = [−10, 10];

(f )
∑∞

k=1
k5/2√

x(k4+2)
, D = [c,∞), c > 0;

(g)
∑∞

k=1(−1)k(1 − x) xk2
, D = [0, 1].

7.19. Regarding Example 7.11,
(a) Verify the results in the last two lines.
(b) If the series in the integrand is approximated by the partial sum s9(x), what is the

estimated value of the integral? Compare with the stated “exact” value.

7.20. Prove that
∫ 1

0 xxdx = ∑∞
k=1

(−1)k−1

kk . (Missouri MAA Examination, 2000)

7.21. (Abel’s Identity) This exercise provides a preliminary result needed for the
proof, in the next exercise, of a test for uniform convergence of a series that is more
delicate than the Weierstrass M-test. Let

{
uk
}∞
k=1,

{
vk
}∞

k=1 be two sequences and
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let the sequence
{
Wk

}∞
k=0 be defined by

Wk =
{

0 k = 0
Wk−1 + uk k > 0.

Show that if n, m are natural numbers and n > m > 1, then

n∑
k=m+1

ukvk = Wnvn+1 − Wmvm+1 −
n∑

k=m+1

Wk(vk+1 − vk).

The form of the result is reminiscent of the formula for integration by parts.

7.22. (Abel’s Test for Uniform Convergence) If
{
uk(x)

}∞
k=1,

{
vk(x)

}∞
k=1 are two

sequences of functions9 defined on a common interval I, and if the following
hold:
(a) the partial sums of

∑∞
k=1 uk(x) are uniformly bounded; that is, there is an M > 0 such

that for all n ∈ N and for all x ∈ I, we have
∣∣∑n

k=1 uk(x)
∣∣ < M;

(b) {vk(x)}∞k=1 converges uniformly on I to 0;
(c)

∑∞
k=1 |vk(x) − vk−1(x)| converges uniformly on I,

then the series
∑∞

k=1 uk(x)vk(x) converges uniformly on I.

Proof. Let ε > 0 be given. Then interpret, in succession, Hypothesis (b), Hypoth-
esis (c) (use Theorem 7.1′), and Hypothesis (a) in conjunction with Abel’s
Identity (what should you denote by Wn?). The completion of the proof is left
to you.

7.23. Consider the series f (x) = x
3 +∑∞

k=1
(−1)kx2k+1

2k+3 , D = [−1, 1].
(a) Explain why the Weierstrass M-test is not of much use here.10

(b) Show, separately, that the series converges pointwise for −1 < x < 1, for x = −1, and
for x = 1.

(c) Establish, using Exercise 7.22, that the series is uniformly convergent on [0, 1].
(d) What do you conclude from Theorem 7.2′?

7.24. Prove that each of the following results is valid:
(a)

∫ 2
1

(∑∞
k=1 ke−kx

)
dx = e/

(
e2 − 1

)
;

(b)
∫ 3

1

(∑∞
k=1

ln(kx)
k2

)
dx = 2

∑∞
k=1

ln k
k2 + (3 ln 3 − 2) · π2

6 ;

(c)
∫ π

0

(∑∞
k=1

cos(kx/2)

k2

)
dx = 4

∑∞
j=0

48j2+48j+13

[16j2+16j+3]3 ≈ 1.9379;

(d) erf (x) = 2x√
π

∑∞
k=0

(−1)kx2k

k!(2k+1)
(refer to Exercise 6.45).

7.25. Bessel, in his investigation (1824) of the solutions of the family of differential
equations

9One, or even both, of these sequences could be sequences of constants. The test will still be valid, but in
the latter of these two cases the test becomes just a test for ordinary convergence of an infinite series of
constants.
10Bromwich says that the French mathematician René Baire (1874–1932) designated those series that
pass the Weierstrass M-test by the suggestive term normally convergent. The series in this exercise is not
normally convergent.
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x2 d2y

dx2 + x
dy
dx

+ (x2 − n2)y = 0,

{
y(0) = 1
y′(0) = 1,

n ∈ N ∪ {0},

originally wrote for a solution Jn(x) when n = 0,

J0(x) = 1
π

π∫
0

cos [x sin θ] dθ.

(a) Establish by induction that for any k ∈ N ∪ {0} we have
∫ π

0 (sin θ)2kdθ = (2k)!π
22k(k!)2 .

(b) Now prove that J0(x) = ∑∞
k=0

(−1)k

(k!)2
( x

2

)2k , and state for which x this expression is
equivalent to the integral.

(c) Estimate J0(1) and compare with the tabulated value of 0.76519769 (Abramowitz and
Stegun, 1965).

Section 7.4

7.26. Write out the proof of Theorem 7.5.

7.27. (a) Expand e−t2 in powers of t2. Show that the series is uniformly convergent on [0, 1].
(b) Retain terms up to t20 in the series of part (a). From this estimate

∫ 1
0 e−t2 dt, and compare

with the tabulated value of 0.74682413 (Abramowitz and Stegun, 1965).

7.28. If the power series
∑∞

k=0 ck(x − a)k has radius of convergence R, 0 < R < ∞, then
so does

∑∞
k=0

ck
k+1 (x − a)k+1. We prove this as follows:

(a) Suppose that a sequence {uk}∞k=0 converges to U > 0, and that {vk}∞k=0 is any real
sequence with nonzero real ρ = lim

k→∞
sup vk . Show that there is a subsequence of k’s,{

kj
}∞

j=1, such that lim
j→∞ vkj = ρ and lim

j→∞ ukj = U.

(b) Then why does U · ρ ≤ lim
k→∞

sup (ukvk) follow?

(c) There exists an N ∈ N such that for all k > N we have uk 
= 0. Explain this. Then we
can write lim

k→∞
u−1

k = U−1; why?

(d) Then why does U−1 · lim
k→∞

sup (ukvk) ≤ ρ? Combine this with the result in (b) and draw

the expected conclusion.
(e) Apply the result in (d) and Theorem 5.13 to the series

∑∞
k=0

ck
k+1 (x − a)k+1 =

(x− a)
∑∞

k=0
ck

k+1 (x − a)k, and deduce the theorem stated at the start of this Exercise.
Example 5.17 may be useful.

7.29. Write out the proof of Corollary 7.6.1.

7.30. Start with the Taylor series expansion

ln(1 + t) =
∞∑

k=0

(−1)k
tk+1

k + 1
, −1 < t ≤ 1.

Integrate both sides of this equation twice, letting the lower limit be 0 and the
upper limit be x in each case. Show that if x is set equal to−1/2, then the following
expression for ln 2 is obtained:

ln 2 = 1
2
+

∞∑
k=0

1

2k(k + 1)(k + 2)(k + 3)
.
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How well does this estimate ln 2 if just 12 terms of the series are taken? Is this
procedure better than that in Example 7.13?

7.31. Abel’s Limit Theorem and Corollary 7.6.1 have analogs for series∑∞
k=0 ck(x − a)k (of radius of convergence R), where we are interested in

x − a → −R+. In view of this, show that for
∑∞

k=1(−1)k+1 xk

k , which is the series
for ln(1 + x) in Examples 7.12 and 7.13, we have

1∫
−1

⎡
⎣ ∞∑

k=1

(−1)k+1 xk

k

⎤
⎦dx = 2(ln 2 − 1).

7.32. Prove that
∫ 2

0

(∑∞
k=1(−1)k+1 xk

2k ·k
)

dx = 2
∑∞

k=1
(−1)k+1

k(k+1)
= ln 16 − 2.

7.33. Refer to Young’s result in Section 3.4. What would be the approximate error
(according to Young) in Example 7.13 if 100 terms in the second summation were
taken?

7.34. (a) Use Newton’s Binomial Theorem to show that the derivative of Sin−1x, x2 < 1, is
given by

dSin−1x
dx

= 1 +
∞∑

k=1

(2k − 1)!!
2kk! x2k (see Exercise 7.18(d)).

(b) Now prove that

π

6
= 1

2
+

∞∑
k=1

(2k − 1)!!
23k+1k!(2k + 1)

.

(c) Use the result in part (b) to estimate π. How many terms of the infinite series will give
a value for π that is correct (after rounding) to 7 decimal places?

7.35. Refer to Exercise 7.34.
(a) Prove that the series in part (a) diverges at x = 1.
(b) Next, prove that π

2 = 1 +∑∞
k=1

(2k−1)!!
2kk!(2k+1)

. Is this relation useful for the estimation of π?

(c) On the other hand, obtain the relation

π

12
=

√
2 −√

3
2

⎡
⎣1 +

∞∑
k=1

(2k − 1)!!
k!(2k + 1)

(
2 −√

3
8

)k
⎤
⎦ .

How many correct decimal places in π are obtained (after rounding) if only the first six
terms of the series are taken?

7.36. Refer to Exercise 6.15(c). The substitution t = sin ϕ converts the elliptic integral
into the equivalent integral

E(1, m) =
π/2∫
0

√
1 − m sin2 ϕ dϕ,

in which form the integral is proper for m ∈ [−1, 1].
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(a) Expand the integrand by means of Newton’s Binomial Theorem and show that this
series converges on D = [0, π/2] if −1 < m < 1.

(b) Prove that the series is uniformly convergent on D if, in fact, −1 ≤ m ≤ 1.
(c) Derive the recursive relationship

π/2∫
0

(sin ϕ)2k+2dϕ = 2k + 1
2k + 2

π/2∫
0

(sin ϕ)2kdϕ.

(d) Obtain the first seven terms in the integration of the series in part (a), and use them to
estimate E(1, 1/4). The tabulated value is 1.4674622 (Abramowitz and Stegun, 1965).

7.37. Let y(x) = (
Sin−1x

)
/
√

1 − x2.
(a) Find a first-order, linear, nonhomogeneous differential equation that y(x) satisfies.
(b) Let y(x) = ∑∞

n=0 anxn. Determine the explicit form of the an’s in order that the series
shall be a formal solution of the differential equation.

(c) Determine R, the radius of convergence of the series.
(d) Estimate π/4.

(e) Prove that π2/8 = ∑∞
n=0

22n(n!)2
(2n+2)! . This expansion was given by Euler in 1737.

Section 7.5
7.38. Prove that each of the following results is valid:

(a) d
dx

∑∞
k=1

sin(kx)
k3 = ∑∞

k=1
cos(kx)

k2 , D = R1;

(b) d
dx

∑∞
k=1

xk
2k(k+1)

= 1
2

∑∞
k=0

xk
k+2 , D = [−r, r], 0 < r < 1;

(c) d
dx

∑∞
k=1

sin(kx)
k3x

= ∑∞
k=1

[
kx cos(kx)− sin(kx)

k3x2

]
, D = [r,∞), r > 0;

(d) d
dx

∑∞
k=1 e−kx cos(2kx) = −∑∞

k=1 ke−kx[2 sin(2kx) + cos(2kx)], D = [r,∞), r > 0.

7.39. An alternative toTheorem 7.7 appears in (Dubins,1960): If
{
fk(x)

}∞
k=0 is a sequence

of real-valued functions defined on a closed, bounded interval I, and if (i)
{
fk
}∞
k=0

converges uniformly on I, (ii) each fk is twice differentiable on I (sided derivatives

at the endpoints), (iii) there exists an M > 0 such that
∣∣∣f ′′k (x)

∣∣∣ < M uniformly in

k and x, then d
dx

[
lim

k→∞
fk(x)

]
= lim

k→∞
f ′k(x) for all x ∈ I. Read the paper, write out

the proof in your own words, state and prove an alternative to Theorem 7.7′, and
apply this alternative to Example 7.17.

7.40. Complete the proof of Theorem 7.7′.
7.41. In this exercise we work out the sum of this series (which, by Theorems 3.4 and

3.8, clearly converges) from Example 7.17:

1 +
∞∑

k=1

fk(θ) ∼= 1 +
∞∑

k=1

cos(kθ)

22k−1
.

The approach for doing this is by a series expansion of a particular rational
algebraic function of cos θ.
(a) Let the parameter m be nonzero (m = 0 is uninteresting) and define

F(θ) = 1 − m cos θ

1 − 2 m cos θ + m2 , −π ≤ θ ≤ π.
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The function
(
1 − 2 m cos θ + m2

)−1 can be expressed as
∑∞

k=0(2m cos θ − m2)k, pro-
vided that

∣∣2m cos θ − m2
∣∣ < 1. But in order to guarantee that F(θ) can be rearranged as

a convergent power series in m, we can require that 2|m cos θ| + m2 ≤ 2|m| + m2 < 1
hold for all θ ∈ [−π, π]. Why will this suffice? Show that 0 < |m| ≤ 2

5 will work.
(b) Hence, with m restricted as above, we can write F(θ) = ∑∞

k=0 Ckmk , where each Ck is
a function of cos θ. Prove first the following lemma: If n ∈ N, then for any θ we have
cos[(n + 1)θ] + cos[(n − 1) θ] = 2 cos(nθ) cos θ.

(c) Use the lemma to next prove that Ck = cos(kθ) for each k ∈ N ∪ {0}.
(d) From the result in (c), deduce that

cos θ − m
1 − 2m cos θ + m2 =

∞∑
k=1

mk−1 cos(kθ).

Finally, by making a suitable choice for m, consistent with the restriction in part (a),
deduce that for any θ ∈ [−π, π] we have

1 +
∞∑

k=1

fk(θ) = 15
17 − 8 cos θ

.

7.42. This exercise continues the analysis of Example 7.17. Prove that the series of
derivatives

∞∑
k=1

f ′k(θ) = 2
∞∑

k=1

−k sin(kθ)

4k

converges uniformly on [−π, π] by showing that
∑∞

k=1
k
4k = 4

9 .

7.43. Refer to Exercise 7.32. Use the method there to prove that if
∑∞

k=0 ck(x − a)k has
radius of convergence R, 0 < R < ∞, then so does

∑∞
k=1 kck(x − a)k−1.

7.44. Use Example 7.22 to obtain a good estimate of
√

73.

7.45. Consider the generating function g(x) in Exercise 3.42. Prove that
∑∞

n=0
an
n! xn is

differentiable term-by-term at x = 9/8, and determine the value of the derivative
there. How well do you do if you estimate the derivative at x = 9/8 by adding only
the first six terms of the differentiated series?

7.46. Newton, in his first letter to Leibniz in 1676, gave the expansion11

sin
(
αsin−1x

) = αx + α

∞∑
k=1

(−1)k

(2k + 1)!

⎧⎨
⎩

k∏
j=1

[
α2 − (2j − 1)2

]⎫⎬
⎭x2k+1, α ∈ R1.

(a) Determine R, the radius of convergence of the series.
(b) Does the series converge at the endpoints?
(c) It is convenient to let x = sin θ. Obtain a series expansion for cos(αθ), α 
= 0.
(d) In the series obtained in (c), let α = 3 and deduce an elementary trigonometric identity.
(e) In the series obtained in (c), let α = 1/2 and θ = π/4. Estimate cos(π/8).

11 Private communication to one of the authors (JBD) from R. Roy (Beloit College).
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Section 7.6

7.47. Write a short program and plot the first few partial sums of f (x) = ∑∞
k=0( 6

11
)k cos

(
11kπx

)
for x ∈ [0, 1/2]. How might you describe qualitatively the fea-

ture that makes this function nondifferentiable everywhere on [0, 1/2]?
7.48. Consult (Hildebrandt, 1933), which gives another example of a function f continu-

ous on R1 and differentiable nowhere. Read this short paper, write up the analysis
in your own words, and include graphs and calculations to enrich your report.

7.49. Wiener is right; direct integration of
∫ π/2

0 x cot x dx (in Example 7.24) is not easy.
However, we can do this:
(a) Show that I = ∫ π/2

0 x cot x dx is equivalent to − ∫ π/2
0 [ln(sin x)]dx.

(b) Replace sin x by its Taylor series; show that this leads to

I = −
π/2∫
0

[
ln x − x2

6
− x4

180
− x6

2835
− x8

37800
− · · ·

]
dx.

(c) With the series truncated as shown, obtain an estimate for I, and compare with the
exact value.

7.50. Use Theorem 7.9 to prove each of the following assertions:
(a) If F(x) = ∫ ln 2

0 sin
(
xey

)
dy, then lim

x→0
F′(x) = 1.

(b) If F(x) = ∫ 1
0 sin(xy)dy, x 
= 0, then

∣∣∣ d99

dx99

( 1−cos x
x

)∣∣∣ ≤ 1
100 .

(c) If F(x) = − ln x + ∫ x2

1
e−t/x

t dt, x > 0, then F(x) is a decreasing function.

7.51. (Leibniz’s Theorem) Assume that the following hold: (i) f is defined and con-
tinuous on the closed, bounded rectangle D = {(x, y) : a1 ≤ x ≤ a2, b1 ≤ y ≤ b2};
(ii) D2f is defined and continuous on D, (iii) for any function g(x, y) continuous on
D,

∫ a2
a1

g(x, y)dx is continuous in y,
∫ b2
b1

g(x, y)dy is continuous in x, and the equality

y∫
b1

dt

a2∫
a1

g(x, t)dx =
a2∫

a1

dx
∫ y

b1

g(x, t)dt

holds for any y ∈ [b1, b2].12

(a) How does it follow that

a2∫
a1

f (x, y)dx =
a2∫

a1

dx

⎡
⎢⎣

y∫
b1

D2f (x, t)dt + f (x, b1)

⎤
⎥⎦

holds for any y ∈ [b1, b2]?

12This is a weak version of Fubini’s Theorem (after the Italian mathematician Guido Fubini (1879–
1943). It is not hard to prove it for Riemann integrals; our Section 6.8 broke off just before a presentation
of this result. We, therefore, take this version of Fubini’s Theorem for granted. Naturally, the Theorem can
be strengthened by weakening the hypotheses somewhat.
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(b) Obtain the relation

a2∫
a1

f (x, y)dx =
y∫

b1

dt

⎡
⎢⎣

a2∫
a1

D2f (x, t)dx

⎤
⎥⎦+

a2∫
a1

f (x, b1)dx.

(c) Finally, how does it follow that

d
dy

a2∫
a1

f (x, y)dx =
a2∫

a1

D2f (x, y)dx?

(Seeley, 1961).

7.52. Leibniz’s Theorem can also be obtained as a consequence of the Theorem of the
Equality of Mixed Second-Order Derivatives (our Exercise 5.77). See if you can
prove this on your own. If you get stuck, then consult Fisher and Shilleto (1986)
and write up the brief proof there more completely and in your own words.

7.53. This exercise and the next lay the groundwork for the proof of the extension of
Leibniz’s Theorem to improper integrals of the first kind. The following definition
is standard.

UNIFORM CONVERGENCE OF AN INTEGRAL

Suppose that for all x ∈ [a, b] the integral
∫∞

0 f (x, y)dy converges.We say that
the convergence is uniform on [a, b] iff for each ε > 0 there is a number
δ > 0 such that for all x ∈ [a, b] and for all c ≥ δ we have

∣∣∣∣∣∣
∞∫
c

f (x, y)dy

∣∣∣∣∣∣ < ε.

(a) Prove the following simple test for uniform convergence of an integral:
∫∞

0 f (x, y)dy is
uniformly convergent on [a, b] if for all sufficiently large y the inequality

∣∣f (x, y)
∣∣ < M/yk

holds, where M > 0 and k > 1.
(b) Let D = [a, b],where 0 < a < b; apply the test in part (a) to the integral

∫∞
0 e−xydy, x ∈ D.

(c) Use Theorem 6.22 to establish that, if ε > 0 is given, then there is a number r > 0 such
that for any u∗ ≥ r we have

∣∣∣∫∞
u∗

sin u
u du

∣∣∣ < ε. From this, show that if D = [a, b], 0 < a <

b, then
∫∞

0
sin xy

y dy is seen to be uniformly convergent on D if we take (in the definition)
δ = u∗/a.

7.54. Theorem 7.10 (Fubini’s Theorem). If f (x, y) is continuous on D = {(x, y) : x ≥
0, b1 ≤ y ≤ b2} and the integral

∫∞
0 f (x, y)dx converges uniformly on [b1, b2], then

b2∫
b1

dy

∞∫
0

f (x, y)dx =
∞∫

0

dx

b2∫
b1

f (x, y)dy.
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(a) Assume that
∫∞

0 f (x, y)dx is integrable on [b1, b2], and let c satisfy 0 < c < ∞. Establish
that

∣∣∣∣∣∣∣
b2∫

b1

dy

∞∫
0

f (x, y)dx −
c∫

0

dx

b2∫
b1

f (x, y)dy

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

b2∫
b1

dy

∞∫
c

f (x, y)dx

∣∣∣∣∣∣∣.

(b) Show how to choose c in part (a) so that there results

b2∫
b1

dy

∞∫
0

f (x, y)dx = lim
c→∞

c∫
0

dx

b2∫
b1

f (x, y)dy

=
∞∫

0

dx

b2∫
b1

f (x, y)dy.

(c) (Optional) For extra credit, establish that G(y) ∼= ∫∞
0 f (x, y)dx is continuous on [b1, b2]

and, hence, is integrable there.

7.55. Theorem 7.10 (Leibniz’s Theorem for Improper Integrals). If f (x, y) sat-
isfies the hypotheses in Theorem 7.10 and, additionally, D2 f is continuous on D
and

∫∞
0 D2f (x, y)dx converges uniformly on [b1, b2], then

d
dy

∞∫
0

f (x, y)dx =
∞∫

0

D2f (x, y)dx.

(a) How does it follow immediately that for any y ∈ [b1, b2]

y∫
b1

dt

∞∫
0

D2f (x, t)dx =
∞∫

0

dx

y∫
b1

D2f (x, t)dt

holds?
(b) Then how does it follow that the equation in (a) can be rewritten as

y∫
b1

dt

∞∫
0

D2f (x, t)dx =
∞∫

0

f (x, y)dx −
∞∫

0

f (x, b1)dx?

(c) Finally, differentiate both sides, justifying what you do.

7.56. Refer to Exercise 6.56. Let D = [a, b], 0 < a < b; prove that �(α) is infinitely
differentiable at any α ∈ D.

7.57. The difficult integral
∫∞

0 e−x2
dx has been evaluated by several methods. A recent,

interesting method that uses Leibniz’s Theorem appeared in Weinstock (1990).
Read this and write up the proof in your own words.
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APPENDIX A

Hints and Answers to Selected
Exercises

Chapter 1

1.4. (a), (b), (f) hold.
1.6. (b) Suppose that the set P of positive elements is nonempty; let x ∈ P.

Now look at x added to itself.

1.12. Suppose x > x were to hold for some x ∈ R; now look at x + (−x).
1.15. Suppose that there were two (distinct) suprema of S.
1.19. (a) x > y and z < 0 mean [x + (−y)] ∈ P,−z ∈ P.

1.25. Suppose that a, b ∈ N exist such that a2/b2 = 5. Now look at the
factorizations of both sides of a2 = 5b2.

1.32. z =
√

53
53 · (−6, 1,−4).

1.33. (a) Begin two lines of development separately with x = (x − y) + y and
y = (y − x) + x.

(b) Do this in cases.

1.35. (b) ||x||2 + 2c(x ∗ y) + c2||y||2 > 0.

1.39. (c) f = {
(x, y) : y = x2 + 1, x ∈ R1

}
, I = [0, 1].

1.40. (a) Start with y ∈ f ( f−1(H)) ⊆ S; deduce that f ( f−1(H)) ⊆ H. Then
reason why proper set inclusion, f ( f−1(H)) ⊂ H, can be rejected.

1.41. Assume that f (I), f (J) are defined for any x in either I or J and, therefore,
f may be taken as onto f (I ∪ J).

1.42. (c) Neither makes sense.

1.43. (a) Let y ∈ R( f ) be arbitrary; then look at (x1, y), (x2, y) ∈ f .

1.45. Construct an indexing scheme for the elements of Q− ∪ {0} ∪ Q+.
1.46. (b) 53,615.

1.48. Explore the geometry of a right triangle inscribed in a semicircle.
1.49. Let S′ denote the set of all cluster points of a set S;

(a) S′ = [0, 1]
(d) S′ = {0}.

329
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1.51. Suppose that L1, L2 are distinct values of lim
x→a

f . Choose ε = ||L1 − L2||,
and look at ||L1 − L2|| = ||(L1 − y) ⊕ (y − L2)||, where y = f (x).

1.53. (b) In the implementation of the Triangle Inequality, use |f (x)|<1+|F|.
1.60. (a) lim

x→1−
√

1 − x3 = 0;

(e) lim
x→∞

⌊
3x

x+2 − x2

x+2

⌋
= −∞.

Chapter 2

2.2. (a) Use differentiation.
(c) Mathematical induction.

2.5. (b) Bounded above by x6; bounded below by 0.

2.6. (b) Mathematical induction.

2.7. (b) Becomes decreasing.

2.10. Look at bn+1/bn.

2.11. Look at xn − xn+1, and make use of ln
(
1 + 1

n

) = ∑∞
k=1(−1)k+1 1

knk .

2.13. (b) Obtain xn+1 = 12+2x3
n

3x2
n

, and from this, 3
√

12 − xn+1 = −2x3
n+3 3√12x2

n−12
3x2

n
.

Multiply by 3x2
n , factor the cubic, and look at the minimization of the

quadratic factor.

2.14. (b) Show that xk+2 − xk+1 = xk ≥ 1 for k ≥ 2.

2.15. (a) Use differentiation.

2.23. (b) Increase half of the factors in the numerator by 1, and increase half
of the factors in the denominator by 1.

2.24. (b) (ii) lim
n→∞ xn = 3.

2.27. lim
n→∞ pn = (2/5, 1/5). An artistic hint is to note, after drawing several of

the auxiliary lines on a full sheet of paper, that there is a kind of periodicity
(period = 8) of the nature of the points pn.

2.28. (a) Start with the MacLaurin series for cosine:

cos(1/n) = 1 − (1/2n2) + (1/24n4) − · · · .

2.31. (d) Given any x0 ∈ (−1, 1), there is a sequence {nk}∞k=1 of natural
numbers such that x0 is a cluster point of {cos nk}∞k=1.

2.32. Construct nested open intervals I1 ⊃ I2 ⊃ I3 ⊃ · · · but with x0 ∈ (−1, 1]
as the common right-hand endpoint of them.

2.36. Let s = {
xn1 , xn2 , xn3 , . . .

}
be the set of terms of an arbitrary convergent

subsequence of {xn}∞n=1. Then inf S ≤ inf s ≤ sup s ≤ sup S (why?). Now
use the facts that lim

k→∞
xnk is bracketed by inf s and sup s,and that

{
xnk

}∞
k=1

is arbitrary.
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2.41. (f) Write n−1 csc(n−1) as n−1

sin(n−1)
; then make use of the first two terms in

the MacLaurin series for sine:
sin(1/n) = n−1 − (1/6n3) + (1/120n5) − · · · .

2.42. Consider odd m and even n.
2.47. (a) Choose ε = 1/2. There is an N ∈ N such that n > N implies

|xn − xN+1| < 1/2; arrive at |xn| < 1
2 + |xN+1|.

(b) Use, actually, Corollary 2.11.1.

Chapter 3

3.8. (b) Examine nn/10 versus 2n.
(c) Examine

√
n! versus 2n.

3.11. (a) Use mathematical induction to show that yn − yn−1 = 1
2 (an−1 + an).

3.12. (a) In the symbolism of Exercise 3.11, show that lim
n→∞ y3n−1 = 1 and

lim
n→∞ y3n = 1/2, so lim

n→∞ yn does not exist and
∑∞

n=1 bn is not

summable Y .

3.14. Start with
∞∑

n=1

1
Xn(9)

=
8∑

k=1

1
k +

∞∑
k=2

∑
10k−1≤Xn<10k

(
1

Xn(9)

)
.

3.17. Use mathematical induction to show that Fn > 1
2

(8
5

)n
for n ≥ 10.

3.26. (a) Look at |an| − |an+1|.
3.27. 49 terms.
3.28. 1.8 × 10−12.
3.31. (f) Converges absolutely;

(k) Diverges;
(l) Diverges.

3.35. (a)

( ∞∑
n=0

n + 1
n!

)
⊗
( ∞∑

n=0

2
n!

)
=

∞∑
n=0

2
n!

n∑
k=0

(k + 1)

(
n
k

)

=
∞∑

n=0

2
n! (n · 2n−1) +

∞∑
n=0

2
n! (2

n)

= 4
∞∑

n=0

2n

n! .

3.39. s7 =
7∑

k=0

ck = 87947/279936; % error = 21.5%.

7∑
k=0

|ck| = 1555105/279936; % error = 7.41%.



332 APPENDIX A: Hints and Answers to Selected Exercises

3.40. (b)
5∑

n=1

1
1 + 2n < f (2) <

∞∑
n=1

1
2n .

3.42. For the second part of the exercise, show by mathematical induction that

an = (−1)n−11 · 3 · 5 · · · (2n − 3)/22n;

then look at Exercise 2.10.
3.44. ζ(2) = ζ(3)

∑∞
n=1

�(n)

n3 becomes

∞∑
k=1

1
k2 =

( ∞∑
k=1

1
k3

)
⊗
( ∞∑

n=1

�(n)

n3

)
=
( ∞∑

k=0

1
(k + 1)3

)
⊗
( ∞∑

n=0

�(n + 1)

(n + 1)3

)

=
∞∑

n=0

n∑
k=0

1
(k + 1)3

�(n − k + 1)

(n − k + 1)3

= 1
13

�(1)

13 +
⌊

1
13

�(2)

23 + 1
23

�(1)

13

⌋

+
⌊

1
13

�(3)

33 + 1
23

�(2)

23 + 1
33

�(1)

13

⌋

+
⌊

1
13

�(4)

43 + 1
23

�(3)

33 + 1
33

�(2)

23 + 1
43

�(1)

13

⌋
+ · · · .

Continue the pattern for n = 5, 6, and then rearrange terms.
3.45. The transposition produces

x
ex − 1

+ x
2
= 1 +

∞∑
n=2

Bn

n! xn.

Examine the left-hand side when x is replaced by −x.

3.46. Begin with coth x = ex+e−x

ex−e−x
ex

ex = 1 + 1
x

2x
e2x−1 .

3.47. Using terms out to B10, we obtain cot(π/4) ≈ 1.000000164.

3.48. (c)
∑100

k=1 k5 = 171,708,332,500.

3.49. (c) Differentiate both sides of the defining equation with respect to x.

3.50. Rearrange the defining equations in Exercise 3.49(a) to give

zexz = (ez − 1)

∞∑
n=0

Bn(x)
n! zn.

Chapter 4

4.2. Recall Lemma 2.3.1.
4.4. (a) → (b): Since a ∈ Int(D(f )), there is an n-ball Bn(a; δ) of small enough

δ > 0 such that Bn(a; δ) ⊂ D(f ).
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4.10. Continuous only at x = 0.
4.12. (d) x = 0; removable.
4.16. Use Lemma 2.3.1.
4.18. Use Theorems 4.2 and 4.3.
4.20. (a) Continuous on R.
4.22. Make use of the identity sin(x1) − sin(x2) = (

2 cos x1+x2
2

) (
sin x1−x2

2

)
, and

of the MacLaurin series for sin x. Finally, call on Exercise 4.21.
4.26. (b) Consider an adaptation of Corollary 2.9.2.

4.30. (a) For the set inclusion B(p; δ) ⊆ f−1[ f (B(p; δ))], begin by letting x ∈
B(p; δ) be arbitrary.

(b) For the set inclusion f [ f−1(B′( f (p); ε))] ⊆ B′( f (p); ε), begin by let-
ting y ∈ B′( f (p); ε) be arbitrary.

4.31. (a) Let x, x′ ∈ R1\Si; show that gi(x) ≤ |x − x′| + gi(x′).
(b) If f (x) = g1(x) − g2(x), then T = f−1((−∞, 0)).

4.33. (a) Use Theorem 4.5.
4.34. If n is replaced by ∞ in

⋃n
k=1 Fk = M\⋂n

k=1 Fc
k, both sides may turn out

to be neither open nor closed.
4.37. (a) It is useful to show that for n ≥ 4 we have n! > 2n. Then lim

n→∞ xn <

67/24.

(b)
∑∞

k=q+1
q!
k! = 1

q , which is less than 1.

4.39. Begin by letting � = {Bn(p; k) : k ∈ N} be an open cover of S.
4.40. A reasonable conjecture is that diam(S) ≈ 4.5363.

4.43. ABSOLUTE MINIMUM = −1
2

(√
5 − 1

)
exp

[
−(7 +√

5)/4
]
;

ABSOLUTE MAXIMUM = 2.
4.45. Lemma 4.8.2: (→) Suppose that there is a nonempty, proper subset

S1 ⊂ M that is both open and closed; let S2 = Sc
1 = M\S1.

4.49. Use Theorem 4.13.
4.50. (a) x ≈ 4.720358.
4.52. (c) Use Theorem 4.15.

(d) Assume f −1 is discontinuous at some y0 ∈ R( f ). As f−1 is, neverthe-
less, defined at y0 ∈ I, the discontinuity must be a jump discontinuity.
Assume from part (c) that lim

y→y−0
f−1(y) < f−1(y0) < lim

y→y+0
f−1(y), and

choose a such that lim
y→y−0

f−1(y) < a < f−1(y0). Is there a y ∈ R( f )

such that a = f−1(y)?

4.57. Consider f (x) ∼= x and g(x) ∼= cos x, D = [0,∞). First show that g is, in
fact, uniformly continuous on D (a hint is contained in Exercise 4.22).
Next, consider h(x) ∼= f (x)g(x), and choose ε=1/2, x0 = (2n + 1)π/2,
n ∈ N, and x = x0 + (δ/3), δ ∈ Q.
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4.58. S can be covered by finitely many n-balls of radius 1
2δ(ε) (why?). Apply

the Triangle Inequality to an arbitrary pair of points in each n-ball, and
make use of the uniform continuity.

4.59. (b) First prove the general theorem that function composition preserves
uniform continuity.

4.63. λ = 1/3; limiting result ≈ 1.324718.
4.65. (a) λ = 3/5; x ≈ 0.6566204.

4.66. Suppose that x, x′ are two distinct fixed points of the contraction f ; then
d(x, x ′) = d( f (x), f (x′)).

Chapter 5

5.4. Half of the analysis: suppose a ∈ Q and assume that f ′(a) exists; let x’s
be irrational.

5.10. The identity cos(a) − cos(b) = −2 sin a+b
2 sin a−b

2 is useful.

5.12. (a) To get started, let y 
= f (a) be in U; then y − b = f (g(y)) − f (a) =
φa [g(y)]

(
g(y) − g(b)

)
.

5.14. Use Exercise 5.13(a).
5.19. (c) Yes.

5.21. One.
5.22. (b) Arrive at f (b) − f (a) = f ′(c)(b − a), c ∈ (a, b).

5.24. (a) Write the Mean-Value Theorem separately for the intervals [0, θ],
[θ, π/4].

5.25. (e) Do integrations of both sides of the inequality in part (b).

5.26. Begin by writing the equation of the line through B, C in Figure 5.5(a).
5.31. By Corollary 5.7.2, for any nonnegative numbers a, b and any natural

numbers m, n,

anbm ≤
(

ma + nb
m + n

)m+n

.

The natural numbers are continuous with the nonintegral, positive reals.

5.32. Examine
(

1 − 2
6r+1

)r
> 2

3 .

5.34. If f is assumed not to have a relative minimum at c, then there is an x0 ∈
[a, c) ∪ (c, b] such that f (x0) < f (c). Consider separately x0 ∈ [a, c), x0 ∈
(c, b].

5.35. Think of the operator D ∼= d
dx as the sum of two operators D1 and D2,

where D1 operates only on f and D2 operates only on g. Endow D1, D2
with desired properties.

5.36. (b) For all n, Ln(0) = n!.

5.38. Working with logarithms will be useful.
5.40. (a) a = ½
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(b) Use the theorem that if f is integrable on some interval I, if g(x), h(x) ∈
I are such that f (g(x)), f (h(x)) are continuous at x, and if g′(x), h′(x)
exist, then

d
dx

∫ h(x)

g(x)
f (t)dt = f (h(x))h′(x) − f (g(x))g′(x).

5.42. Interpret s6 from Table 3.2 to mean the sum of the first six nonzero terms;
R11(1) < 2.1 × 10−9.

5.44. T7(θ) = θ + θ3

3 + 2θ5

15 + 17θ7

315 ; |tan(1/2) − T7(1/2)| ≈ 4.7 × 10−5.
5.45. Mathematical induction.
5.46. Make use of the Ratio Test, Theorem 3.3, Exercise 2.22, and Corollary

5.11.1.
5.47. (b) Yes.

5.49. (b) Two real roots: x = ±4.2426406.

5.50. Take the kth root of both sides.
5.51. (a) Second part of Property (7): let x2 > x1 be arbitrary and use Theo-

rem 2.8.
(c) Use Property (5).

5.52. (b) Use Property (6) for exponential functions.
(d) The analysis is similar in spirit to that used in Exercise 5.38.
(e) Make use of the Mean-Value Theorem (Theorem 5.7). Consider,

separately, the cases x > 0 and −1 < x < 0.

5.53. See the hint for Exercise 5.38.
5.55. (a) Arrive at xf ′(x) = αx + αx [ f (x) − 1] − x2f ′(x), where f (x) = 1 +∑∞

k=1
(
α
k

)
xk.

5.56. Arrive at 1
n(n+1)

> xn − xn+1 > 1−n−1

2n(n+1)
≥ 0.

5.58. Show that 0 < ln n <
√

n iff 0 < n <
√

n + n
2 + n

√
n

6 < e
√

n.

5.59. |R6(3/4)| < 0.0201, but the actual |R6(3/4)| = ∣∣f (3/4) − T6(3/4)
∣∣ ≈

0.00720.
5.60.

∑∞
k=0 ck = −3/4.

5.61. (g) Write 13 = (9/4)3 + [13 − (9/4)3]; apply the Binomial Theorem to
this.

5.62. (e) 4.

5.63. Use the Mean-Value Theorem.

5.65. (a) Arrive at F′(z)
G′(z) = (−z−2)f ′(z−1)

(−z−2)g′(z−1)
= f ′(x)

g′(x) .

(b) 1.

5.66. The limit is 1.
5.68. (a) Make use of the SqueezeTheorem; the substitution x = u−1 is useful.
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(b) Establish by induction that g(n)(x) = g(x)
∑3n

k=1 c(k, n)
(1

x

)k
,where the

c(k, n)’s are real.
(d) R = ∞.

5.70. If f (x1, x2) = x1 + x2
2 + 2x1x2, E(h) = 2h1h2+h2

2√
h2

1+h2
2

.

5.73. (b)
(∇2F

)
(p) = −1

‖p‖2 , p 
= 0.

5.74. (a) Assume that L1, L2 are two distinct linear mappings, and that
E1(h), E2(h) are the corresponding functions.

(b) For any natural number k ∈ [1, n], let h = t · uk, where t 
= 0 is small
and uk = (0, 0, . . . , 1k, 0, . . .) is a unit basis vector in Rn.

(c) What are lim
h→0

L ∗ h and lim
h→0

E(h) ‖h‖?

5.77. (a), (b) Use the Mean-Value Theorem.
5.78. Begin by writing Carathéodory’s definition of f being differentiable at a.

Chapter 6

6.2. Use Exercise 6.1.
6.3. (a) D−1f = f (t)

ln 4

⌊√
2t + 1 − 1

ln 4

⌋+ C.

6.4. (a) Use mathematical induction and the trigonometric identity for
sin(θ + φ).

(c) l’Hôpital’s Rule will be useful.

6.6. (a) S ≈ 1.0338;
∫ π/2

0 cos xdx = 1.

6.8. Make use of the Taylor series for sin t.
6.9. (a) Refer to Example 5.18.

6.12. The integral is less than 1.

6.15. (a)
∏

(x, n, m) = ∫∞
0

sec θdθ

(1−n sin2 θ)
√

1−m sin2 θ
, φ = Sin−1 x.

(b) C ≈ 4.85120.

6.16. (d)
∫ x

0

(
mt

√
1−t2

1−mt2

)
dt = E(x, m) − (1 − m)

∏
(x, m, m).

(f) F
(√

3
2 , 1

2

)
≈ 1.1424; E

(√
3

2 , 1
2

)
≈ 0.9650.

6.18. (a) If f is monotonic increasing, choose δ = ε/[ f (b) − f (a)].
6.19. (b) Example 6.7(d): Show that on [0, 4] f (y) = ln(1+y)

y+2 is increasing on
[0, 2.59112] and decreasing on [2.59112, 4].

6.23. Use Lemma 6.4.3 and the Squeeze Theorem.
6.25. (b) k ≈ 6.426907.
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6.28. Express Ha(x) in two different ways: (1) by using Exercise 6.27(a) and
l’Hôpital’s Rule, and (2) by applying Corollary 6.13.1 to the numerator
of Ha(x).

6.29. Use Theorems 4.10 and 6.2.
6.33. The limit is π

4 + 1
2 ln 2.

6.34. The limit is 25/4.

6.36. In the theorem of Exercise 6.35, let t(x) there be defined by x√
1−x2 , where

0 ≤ x ≤ c√
1+c2 , c > 0.

6.37. Begin by applying integration by parts to
∫ b

a f (t)g(t)dt(u = g(t),
v = ∫ t

a f (x)dx = F(t)).

6.38. (c) Use Corollary 6.16.1 and Exercise 4.52.

6.39. (c) In the integral form of the remainder in part (a), let 1/n! play the role
of the g(x) in Exercise 6.29.

6.41. Use the definition in Section 6.2 and Theorem 6.16.

6.44. (a) Begin by rewriting t2

et−1 as t(
et−1

t

) ; eventually, use Theorem 6.2.

6.45. (a) For all t ∈ (1, x], x > 1, e−t2
< e−t holds. Show that erf x increases,

and use Theorem 2.2 (as adapted for real-valued functions,
generally).

6.48. (b) Example 6.20(c): converges to 4
√

8.

6.49. Begin by simplifying the problem to I = 2
∫∞

0
u2du
1+u4 = 2

∫ 1
0

u2du
1+u4 +

2
∫∞

1
u2du
1+u4 . Be prepared to factor 1 + u4 in R1.

6.50. (b) Begin with π = 4
∫ 1

0
dt

1+t2 , from part (a). Simpson’s Rule gives
π ≈ 3.14159264.

6.51. (d) You are to show that lim
y→(π/2)−

sin y = lim
y→(π/2)+

sin y = sin(π/2).

6.52. Two integrations by parts and use of mathematical induction will give
explicit formulas for Fn(s) when n is even and n is odd.

6.53. (c) Diverges, but has a Cauchy principal value.
(i) Converges.

6.54. (c) Factor 1 + t4 as the difference of two squares.
(f) Let t = u − 3.

6.55. (a) α > 0.

6.56. (d) Begin with �′(α) = ∫ 1
0 tα−1e−t ln t dt + ∫∞

1 uα−1e−u ln u du.

6.57. (a) In
∫∞

1
xdx

x3+1 let x = t−1.
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6.58. (c) Use the simplified version of Stirling’s Approximation in Exer-
cise 3.19.

6.59. Pattern the proof after that of Theorem 6.1.

6.60–6.61. Ditto, analogously.

6.62. S(D, P,f ) = 9.60.

6.64. Establish that Bd(D) is actually T.

6.65. First prove that a function σ(p) that is defined on a closed, bounded
rectangle R and has a constant value on Int(R) is Riemann-integrable.

Next, use Theorem 6.5′ to show that
∫∫

R σ(p) = ∫∫
Int(R)

σ(p). Proceed
to take σ(p) = 1 everywhere in R. Finally, make use of Theorems 6.4′(i),
6.4′(ii).

6.66. Assume that Theorem 4.10 can be extended to real-valued functions
defined on compact subsets of R2.

Chapter 7

7.2. Use the concept of uniformly Cauchy.
7.5. (b) Yes; yes.

7.11. (c) No.

7.14. See Exercise 7.11.

7.18. (e) Establish that k ≥ 25 implies 10k

k! < 1
(k−24)2 .

(f) Let Mk = 1√
c
k−3/2.

7.19. (b) Estimated value is ≈2.1948.

7.20. Begin by writing xx = ex ln x.
7.24. (b) For k ≥ 16, use Mk = k−3/2 in order to show uniform convergence.

7.25. (b) All real x.

(c) Agreement is excellent.

7.28. (a) Use Corollary 2.13.1.

(d) {uk}∞k=0 , {vk}∞k=0 are bounded. Then let xk ∼= 1
uk

and wk ∼= ukvk, so
limk→∞ sup vk = lim

k→∞
(xkwk).

7.29. Use Exercise 7.28.
7.30. ln 2 ≈ 1

2 + s9 ≈ 0.693147024.

7.33.
∣∣∣ln 2 −

(
5
8 + 1

2

∑100
k=0 (−1)k 1

(k+1)(k+2)(k+3)

)∣∣∣ < b99
2 =

1
2

⌊
1

2(100)(101)(102)

⌋
≈ 2.43 × 10−7.

7.34. (c) π ≈ 3
⌊

1 +∑n
k=1

(2k−1)!!
8kk!(2k+1)

⌋
= 3sn ≈ 3.14159198.
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If we require |π − 3sn| < 3bn
2 < 1 × 10−8, then (2n−1)!!

8nn!(2n+1)
< 0.67 × 10−8,

and n = 11 will suffice.
7.35. (a) Use Raabe’s Test (Exercise 3.22).

(b) Not useful.

(c) Let x = 1
2

√
2 −√

3 in the series for Sin−1x from Exercise 7.34(a)
(upon integration). Six terms yield π ≈ 3.141592654.

7.36. (b) Establish by induction that (2k−3)!!
2kk! < 1

k3/2 if k ≥ 2, and take Mk =
k−3/2.

(c) Prove the recursive relationship as in Exercise 7.25(a). The explicit
formula is

∫ π/2
0 sin2kϕdφ = π

2
(2k)!

22k(k!)2 .

(d) The estimated value is E(1, 1/4) ≈ 1.46746261.

7.37. (a) (1 − x2)y′(x) − xy(x) − 1 = 0.

(b) In (a), let y(x) = ∑∞
n=0 anxn. Use the facts that Sin−1x is an odd

function of x, and
√

1 − x2 is an even function of x.
(c) R = 1.
(d) π

4 ≈ 0.785277, if the pertinent series is truncated to 10 terms.

(e) Use Raabe’s Test to show that the series for y(x) diverges at x = 1.
However, Corollary 7.6.1 applies.

7.38. (b) Abel’s Test (Exercise 7.22) is useful.

7.41. (a) Use Theorem 3.11.
(c) Mathematical induction.

7.42. Each term of the indicated series satisfies
∣∣∣k sin(kθ)

4k

∣∣∣ ≤ k
4k = Mk.

7.43. The Ratio Test shows that
∑∞

k=1 kck(x − a)k−1 has the same radius of
convergence as does

∑∞
k=1 kck(x − a)k. Apply Exercise 7.28(d) to this

latter series.
7.45. g′(x) = 1

2

∑∞
n=1 n

(1/2
n

)( x
2

)n−1, x ∈ [−r, r], r ∈ (0, 2).

7.46. (a) R = 1, whenever α is not an odd integer.
(b) Use Raabe’s Test (Exercise 3.22).

(c) cos(αθ) = cos(θ)
[
1 +∑∞

k=1
(−1)k

(2k)!
{∏k

j=1[α2 − (2j − 1)2]
}
(sin2 θ)k

]
.

7.49. (b) Begin with I = − ∫ π/2
0

⌊
ln x + ln

(
1 +∑∞

k=1 (−1)k x2k

(2k+1)!
)⌋

dx, and

then use the series for ln(1 + u), where u ∼= ∑∞
k=1 (−1)k x2k

(2k+1)! .
Obtain, finally, I ≈ 1.088759, to be compared with 1.088793.

7.50. (a) Use the analog of Theorem 7.9 in which D1 replaces D2.

(c) If F(x) = − ln x + ∫ x2

1
e−t/x

t dt, x > 0, differentiation of the integral
gives two terms (see Example 7.25).
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7.51. (b) Use Fubini’s Theorem here.
(c) Use the Fundamental Theorem of the Calculus—B in this step.

7.52. Get to
∫ a2

a1
D2f (x, y)dx= ∫ a2

a1
(D2,1g)(p)dx, where p ∈ D= {

(x, y) : a1 ≤
x ≤ a2, b1 ≤ y ≤ b2

}
and g(p) ∼= ∫ x

a1
f (t, y)dt.

7.53. (b) Use the test in part (a); the integral
∫∞

0 e−xydy is uniformly convergent
on D = [a, b], 0 < a < b < ∞.

(c) Write
∫∞

0
sin u

u du = ∫ π

0
sin u

u du + ∑∞
k = 1

∫ (k + 1)π

kπ
sin u

u du, and use
Theorem 6.22. Finally, for the desired uniform continuity, if ε > 0 is
given, then require a δ > 0 such that for all x ∈ D and all c ≥ δ,∣∣∣∣

∫ ∞

c

sin(xy)
y

dy

∣∣∣∣ < ε.

In this, let u = xy.

7.54. (a) Apply (weak) Fubini to
∫ c

0 dx
∫ b2

b1
f (x, y)dy.

(b) Assume that Fc(y) ∼=
∫∞

c f (x, y)dx is integrable on b1 ≤ y ≤ b2. Use
Lemma 7.3.1 and the uniform convergence (by hypothesis) of∫∞

0 f (x, y)dx.
(c) Let y0 ∈ [b1, b2] be fixed (momentarily) and y1 ∈ [b1, b2] be vari-

able, and let G(y) ∼= ∫∞
0 f (x, y)dx; let ε > 0 be given. Then look at∣∣G(y1) − G(y0)

∣∣, and use the uniform continuity of f on the rectangle
R0 = {

(x, y) : 0 ≤ x ≤ c, b1 ≤ y ≤ b2
}
, where c is such that

∣∣fc(y)∣∣ <

min
{

ε
4 , ε

4(b2−b1)

}
.

7.55. (a) Theorem 7.10.
(b) Fundamental Theorem of the Calculus—A.
(c) Fundamental Theorem of the Calculus—B, assuming (or if we prove)

that
∫∞

0 D2f (x, t)dx is continuous on b1 ≤ t ≤ b2.
To prove this latter, argue from the uniform continuity of D2f (x, y) on the
rectangle R0 = {

(x, y) : 0 ≤ x ≤ c, b1 ≤ y ≤ b2
}
.

7.56. Begin by writing �(α) = ∫∞
1 tα−1e−tdt + ∫ 1

0 tα−1e−tdt = I1 + I2. Show
that I1 converges uniformly on [a, b], 0 < a ≤ α ≤ b < ∞. For t ∈ (0, 1],
use tα−1e−t ≤ tα−1, and establish that I2 is uniformly convergent on
[a, b]. Use similar reasoning to establish the uniform convergence of∫∞

0 tα−1e−t(ln t)dt on [a, b]. Generalization to derivatives of �(α) of any
order is immediate.



APPENDIX B

Sample Final Examinations

* * * FINAL EXAMINATION 1 * * *
(closed book; 120 min)

1. (16 pts) DEFINITIONS
Provide brief but accurate definitions or statements of the following
concepts:
(a) limit of f : Rn → R1 is ∞ as x approaches x0 ∈ Rn;
(b) open set;
(c) Mean-Value Theorem;
(d) the real-valued function f is uniformly continuous on S ⊂ R1.

2. (16 pts) EXAMPLES
Give and explain examples that illustrate each of the following observations:
(a) an interval I that is not compact and a nonconstant function f that is

continuous on I and attains its supremum on I;
(b) a collection C of open sets whose intersection is not open;
(c) a function f that is unbounded on [0, 1] but is integrable there;
(d) a function f :R1 → R1 that is continuous on all of R1 and is differentiable

everywhere except at two points.

3. (12 pts) LIMITS
Determine the following limits and show all work:
(a) lim

n→∞ an, if {an}∞n=1 is defined by an = (
1 + 1

3n

)3n/5
;

(b) lim
n→∞ bn, if {bn}∞n=1 is defined by bn = (−1)n

(−1/2
n

)
, where

(
c
n

)
=

c(c−1)(c−2)···(c−n+1)
n! ;

(c) lim
n→∞

n∑
k=3

1
k(k−2)

.
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4. (12 pts) INTEGRALS
Ascertain the following facts about the indicated integrals:
(a)

∫ 13/4
1/3

ln t
1+t2 dt > 0;

(b)
∫ 1

0

√
1+t
1−t dt = π

2 + 1;

(c) If D(n, x) is defined by D(n, x) = ∫ x
0

tn

et−1 dt, n ∈ N and |x| < 2π, then
D(2, 3/2) < 3 − 4 ln(7/4).

5. (14 pts) PROOF
Let f : (−2, 2) → R1 be defined by f (x) = 2x3 + 3x2 − 36x + 5. Prove (a)
that f has an inverse function f−1, and (b) determine and justify the value of
(f−1)′(−26).

6. (14 pts) PROOF
Prove the Mean-Value Theorem for Integrals: If f is continuous on [a, b], then
there is a point c ∈ (a, b) such that

∫ b
a f (x)dx = f (c)(b − a).

7. (16 pts) PROOF

Let f : [0, 2] → R1 be defined by f (x) =
∞∑

k=0
(−1)k x2k+1

(2k+2)! . Prove that

∫ 2
0 f (x)dx =

∞∑
k=0

(−1)k
(

1 + 1
2k+2

)
4k+1

(2k+3)! .

8. (5 pts; not required; no partial credit) BONUS
State the Continuum Hypothesis. What is the status of this proposition?

* * * FINAL EXAMINATION 2 * * *
(closed book; 120 min)

1. (16 pts) DEFINITIONS
Provide brief but accurate definitions or statements of the following concepts:
(a) Cauchy sequence;

(b) the series
∞∑

k=0
xk is absolutely convergent in Rn;

(c) Heine-Borel Theorem;
(d) Fundamental Theorem of the Calculus.

2. (16 pts) SHORT ANSWER
(a) If a sequence is monotonic and bounded, then what do we know for

sure about it? Explain.
(b) If S = R\Q, then

(i) is S open, closed, both, or neither?
(ii) is S compact?
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(iii) what is the interior of S?
(iv) what are the boundary points of S?

(c) If f : R1 → R1 is defined by

f (x) =
{

x x ∈ Q
−x x /∈ Q,

where (if at all) is f continuous?

(d) If �(α) = ∫∞
0 tα−1e−tdt, for which α ∈ R does the integral converge?

3. (12 pts) SERIES

(a) A series
∞∑

n=1
an has the sequence of partial sums {sn}∞n=1, where each

sn = (−1/3)n. Determine the general term an.

(b) Determine whether
∞∑

n=1

n! n2

(2n)! converges or not; explain.

(c) If
∞∑

n=1
xn converges absolutely, then explain how you know that

∞∑
n=1

x2
n

x2
n+3

converges.

4. (12 pts) INTEGRALS
Ascertain the following facts about the indicated integrals:
(a) Determine lim

x→0+
x8

[∫ x
0 t(1 − cos t)dt

]−1;

(b) Apply the Integral Test to determine if
∞∑

k=1

Sec−1(2k)
k2 converges or

diverges;
(c) Verify that (P)

∫∞
−∞

1+t
1+t2 dt = π.

5. (14 pts) PROOF
Let S be the set of numbers x such that 0 < x < 1/2. Prove that S is
uncountably infinite.

6. (14 pts) PROOF
The function f is defined by f (x) = x3 + x − 3, x ∈ [0, 4]. Prove that f is
uniformly continuous on its indicated domain.

7. (16 pts) PROOF
Suppose that

{
fk(x)

}∞
k=0 and

{
gk(x)

}∞
k=0 are uniformly convergent on a com-

mon domain D ⊆ R1. Prove that {hk(x)}∞k=0, where hk(x) = fk(x) + gk(x) is
also uniformly convergent on D.

8. (5 pts; not required; no partial credit) BONUS
State the Riemann Hypothesis. What is the status of this proposition?
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* * * FINAL EXAMINATION 3 * * *
(closed book; 120 min)

1. (16 pts) DEFINITIONS
Provide brief but accurate definitions or statements of the following
concepts:
(a) limit superior of a sequence {xn}∞n=1 in R1;
(b) Completeness Axiom;
(c) Cauchy principal value of an improper integral of the second kind;
(d) Weierstrass’s M-Test.

2. (16 pts) EXAMPLES
Give and explain examples that illustrate each of the following observations:
(a) a sequence of irrational numbers that converges to a rational number;
(b) a power series in x that represents ln 3 when x is assigned a judicious

value;
(c) a fourth-degree polynomial P(x) with leading coefficient 1 and such

that 2 is a root of P(x) = 0 and also of P′(x) = 0, but is not a root of
P′′(x) = 0;

(d) a simple relationship that connects In = ∫ π/2
0 sinnx dx with In−2, n ≥ 2.

3. (12 pts) LIMITS AND SERIES
(a) Determine

lim
n→∞

n∑
k=1

[
sin

(
π/2
k

)
− cos

(
π/2
k

)
− sin

(
π/2

k + 2

)
+ cos

(
π/2

k + 2

)]
;

(b) If
∑∞

k=1
1
k2 = π2

6 , then determine
∑∞

k=1
1

(2k−1)2 , and provide justification
for your procedure;

(c) If θ ∈ (0, π/2], then prove that
(

sin θ
θ

)3
> cos θ.

4. (12 pts) INTEGRALS
Ascertain the following facts about the indicated integrals:
(a) e <

∫ 3
2

xdx
ln x < 23

8 ;

(b) If f is integrable on [a, b], b > a, then

∫ b

a
f (x)dx =

∫ b

a
f (a + b − x)dx;

(c) lim
n→∞

[
n

n−1∑
k=0

1
n2+k2

]
= π/4.
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5. (14 pts) PROOF

Establish, with justification, that
∫∞

0
dt

(et+1)(e−t+1)
= 1/2.

6. (14 pts) PROOF
Suppose that S, T are bounded subsets of R and that S ⊆ T. Prove that
inf T ≤ inf S.

7. (16 pts) PROOF

Consider the sequence
{
yn
}∞

n=1, where yn =
n∑

k=1

1
k − ln n. Prove that this is

a decreasing sequence and that it converges.

8. (5 pts; not required; no partial credit) BONUS
What is meant by the Fourier transform of a function f (x)? Then state
two questions about such a transform to which we might wish to have
answers.
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APPENDIX C

Supplementary Problems for
Further Study1

C.1 SEQUENCES
1. The sequence {un}∞n=0 is defined by

un =
{

1 n = 0
u0
0! + u1

1! + · · · + un−1
(n−1)! n > 0.

Show that the sequence converges and that the limit L satisfies 14/4 <
L < 15/4.

2. We let the symbol �x� denote (sometimes known as the greatest inte-
ger function, or the floor function) the largest integer that does not
exceed x. The sequence {P(N)}∞N=1 is defined by the statement that P(N)
is the number of partitions of the positive integer N that consist only of
2’s and 3’s. For example, P(6) = 2 because 6 = 3 + 3 = 2 + 2 + 2. It is
known that

P(N) =
{⌊N

6

⌋
N ≡ 1(mod6)⌊N

6

⌋+ 1 N ≡ 0, 2, 3, 4, 5(mod6).

Reexpress P(N) as a single formula.
3. The sequence

{
f (n)

}∞
n=1 is defined by the statement that f (n) is the product

of all the positive divisors of n. When n, m are distinct, can it ever happen
that f (n) = f (m)?

4. Each side of an equilateral triangle is partitioned into n equal subintervals.
All possible straight lines interior to the triangle are drawn parallel to the
sides. For example, when n = 3, the 3-triangle shown is obtained. Then
the sequence {un}∞n=1 is defined by the statement that un is the number

1Sources, or leading references, appear in the Instructor’s Solution Manual to Accompany Advanced Calculus.
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of triangles present in the n-triangle, including the n-triangle itself. Thus,
u1 = 1 and u2 = 5. Compute u20, and find the general formula.

5. A sequence of polynomials, {Pn(x)}∞n=0, is defined by the relation

∞∑
n=0

Pn(x)
zn

n! = exp
(

xz − 1
2

z2
)

.

Derive a relationship that connects Pn+1(x), Pn(x), and Pn−1(x).
6. Two sequences {an}∞n=0 and {bn}∞n=0 are defined as follows:

an =
⎧⎨
⎩

3
√

3 n = 0

2
(

an−1bn−1
an−1+bn−1

)
n > 0

bn =
{

3
2

√
3 n = 0√

an−1bn−1 n > 0.

Show that both sequences converge, and to the same limit. What is this
limit?

7. Show that the interesting sequence {un}∞n=1, where

un =
{

c n = 1
cun−1 n > 1,

is convergent for c > 0 iff e−e ≤ c ≤ e1/e.
8. A sequence {an}∞n=1 of real numbers is defined by an+1 = |an| − an−1, n >

0, a0, a1 ∈ R. Show that regardless of the choice of a0 and a1, the sequence
is periodic with period 9.

9. The sequence of polynomials {Pn(x)}∞n=0 is defined by

Pn(x) =
{

1 n = 0
x n = 1
2xPn−1(x) − Pn−2(x) n > 1.

Show that the polynomials are commutative under function composition,
that is, for any nonnegative integers m, n we have Pm[Pn(x)] = Pn[Pm(x)].
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10. The sequence of rep-units is given by {Rn}∞n=1, where Rn = (10n − 1)/9.
It is known that for n ≤ 10000, Rn is prime for just five choices of n. Fre-
quently, members of the sequence {Hm}∞m=1, where Hm = 102m − 10m + 1,
are divisors of some Rn. Establish these properties:
(a) If n = 6m, then Hm divides Rn.
(b) If p is any odd prime, then Hp is composite and, in particular, 13 divides

Hp if p > 3.
(c) If m = 3p, where p > 3 is a prime, then 19 divides Hm.

11. Define the sequences {xn}∞n=0 and
{
yn
}∞

n=0 by the relation xn + yn
√

2 =
(3 + 2

√
2)n.

(a) Show that any ordered pair (xn, yn) is a solution of x2 − 2y2 = 1.

(b) A third sequence,
{
qn
}∞

n=0, is defined by

qn =
(

2 +√
2
)(

3 + 2
√

2
)n +

(
2 −√

2
)(

3 − 2
√

2
)n

.

Show that for those n ≥ 0 that make qn a perfect square, it is also true
that xn + yn is a perfect square.

(c) Find two n that do as indicated in part (b).
12. Establish whether the sequence {an}∞n=1, where

an = [
(n + 1)n+1(n − 1)n]/n2n+1,

is decreasing, increasing, or neither.
13. A sequence of numbers, {Cn}∞n=0, is defined by

Cn = 1
n + 1

(
2n
n

)
.

(a) Show that every Cn is a positive integer.
(b) Establish that the Cn’s also are given by the generating function

∞∑
n=0

Cnxn = 1 −√
1 − 4x

2x
.

14. A primitive Pythagorean triangle is a right triangle, all of whose sides are of
integral lengths, and the only common divisor of the three lengths is 1. For
example, (36, 77, 85) are the dimensions (x, y, z), x < y < z, of a primitive
Pythagorean triangle. We note that the smallest leg is even and is a perfect
square. Are there infinitely many primitive Pythagorean triangles with this
property, or is the sequence of such triangles finite?
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15. Let r be an as-yet unspecified positive constant and let C ≥ 0 be specified.
A sequence {cn}∞n=0 is defined recursively as follows:

cn =
{

C n = 0

cn−1 + r +
[
cn−1

/√
1 + c2

n−1

]
n > 0.

For which choices of r does the sequence converge?
16. What might be called the Tanny sequence, {T(n)}∞n=0, is defined by

T(n) =
{

1 n = 0, 1, 2
T(n − 1 − T(n − 1)) + T(n − 2 − T(n − 2)) n > 2.

Prove that this sequence is “well-behaved” (not erratic) and that
lim

n→∞T(n)/n = 1/2.

17. Let the sequence {Dn}∞n=2 be defined by the relation

Dn = ln n − 2
n∑

k=2

1
2k − 1

.

Prove that the sequence is an increasing sequence, and find the value of
lim

n→∞Dn.

18. A sequence {xn}∞n=1 is defined by

xn =
{

Tan−12 n = 1
xn−1 + Tan−1 8n

n4−2n2+5 n > 1.

Find the value of lim
n→∞ xn.

19. Define the sequence {Dn}∞n=1 by the statement that Dn is the greatest
common divisor of the four entries in Mn − I, where Mn implies matrix
multiplication and

M =
(

3 2
4 3

)
, I =

(
1 0
0 1

)
.

For example, M2 − I =
(

16 12
24 16

)
and D2 = GCD(12, 16, 24) = 4. Prove

that lim
n→∞ Dn = ∞.

20. A sequence of rectangles is constructed as follows: Rectangle 1 is a square
of area 1. Then we adjoin, alternately alongside of or on top of the previous
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rectangle, rectangles of unit area so as to create new rectangles of area
2, 3, 4, 5, and so on.

r15 1 r25 2 r3 5
4
3

r45
16
9

Each term of the sequence {rn}∞n=1 is the ratio of the length to the height of
rectangle n. The first four terms of this sequence are as follows:
r1 = 1 r2 = 2 r3 = 4/3 r4 = 16/9.
Find lim

n→∞ rn.

21. The sequence {xn}∞n=2 is defined by the statement that xn is the value of
the determinant of the (n − 1) × (n − 1) matrix Mn shown below. Now
consider the allied sequence {xn/n!}∞n=2. Is it bounded?

Mn =

⎛
⎜⎜⎜⎜⎜⎝

3 1 1 1 . . . 1
1 4 1 1 . . . 1
1 1 5 1 . . . 1
1 1 1 6 . . . 1
...

...
...

...
...

1 1 1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

22. A sequence {an}∞n=1 is defined as follows:

an =
{√

2 n = 1√
2 + an−1 n > 1.

Determine lim
n→∞4n(2 − an).

23. Let {Pn(x)}∞n=1 be the sequence of polynomials defined by

Pn(x) =
⎧⎨
⎩

x − 1 n = 1

x2 − x − 1 n = 2
xPn−1(x) − Pn−2(x) n > 2.

Prove that for each n the roots of the equation Pn(x) = 0 are the n real
numbers 2 cos[(2k − 1)π/(2n + 1)], k = 1, 2, . . . , n.

24. For the sequence {rn}∞n=0, defined by

rn =
{

3 n = 0

r2
n−1 − 2 n > 0,
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evaluate the limit

lim
N→∞

[
N−1∏
n=0

rn

]1/2N

.

25. A sequence {βn}∞n=1 is defined by the requirement

[
(n + 1)2

n(n + 2)

]βn

=
[

n(n + 2)

(n + 1)2

]n+1 (n + 1
n

)
.

The allied sequence {an}∞n=1 is defined by an = (1 + 1/n)n+c , where 0 <
c < 1. Establish the following:
(a) For each n, the value of βn is the value of c required for an = an+1.
(b) The sequence {βn}∞n=1 is an increasing sequence.
(c) lim

n→∞βn = 1/2.

26. Let the sequence {zn}∞n=0 be defined by

zn =
{

1 n = 0(
1 + z2

0 + z2
1 + · · · + z2

n−1

)
/n n > 0.

The table below gives the first 10 members of the sequence. Is zn always a
natural number?

n zn n zn

0 1 5 28
1 2 6 154
2 3 7 3520
3 5 8 1551880
4 10 9 267593772160

C.2 INFINITE SERIES
1. Let {F(n)}∞n=0 be the famous Fibonacci sequence:

F(n) =
{

0 n = 0
1 n = 1
F(n − 1) + F(n − 2) n > 1.

Evaluate the sum of the series
∞∑

k=0

1

F(2k)
.
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2. The following infinite series was designated by D.H. Lehmer in 1985 as
“interesting”:

1 + 1
4
+ 3

32
+ 5

128
+ · · · +

(
2n
n

)
8n + · · · .

Evaluate the sum of this series.
3. Let the function L be defined by the statement that L(n) is the number

of large digits in the positive integer n, where the large digits are 5, 6, 7,
8, 9. For example, L(156172) = 3. Prove that the following series has the
indicated sum:

∞∑
k=0

L(2k)

2k
= 2

9
.

4. Establish the following summation result:

2
√

3
∞∑

n=0

(−1)n

3n(2n + 1)
= π.

5. Prove that the following series converges, and then find its sum.

∞∑
n=1

Tan−1(2/n2).

6. The triangular numbers, {Tn}∞n=1, have the form Tn = n(n + 1)/2. Find the
sum of the infinite series

3
T1

+ 1
T2

− 1
T3

− 1
T4

+ · · ·,

where all the succeeding numerators are 1’s, the denominators are the Tn’s,
and the signs change after every two terms (+,+,−,−,+,+, etc.).

7. The infinite series expansion of
√

2x2 − 3x3, |x| < 2/3, is written down.
Express in closed form the coefficient of x1997.

8. The Fibonacci polynomials, {Un(x)}∞n=1, are defined by

Un(x) =
⎧⎨
⎩

1 n = 1
x n = 2
xUn−1(x) + Un−2(x) n > 2.

Find a generating function for the Un(x)’s, that is, obtain a function f (x, y)
such that formally (no consideration of convergence), we have

f (x, y) =
∞∑

n=1

Un(x)yn.
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9. Prove that

∞∑
k=1

(
1 + 1

2
+ 1

3
+ · · · + 1

k + 1

)
1

k(k + 1)
= 2.

10. The following is a nice generalization of the alternating harmonic series for
ln 2:

ln k =
∞∑

n=1

⎡
⎣
⎛
⎝k−1∑

j=1

1
kn − (k − j)

⎞
⎠− k − 1

kn

⎤
⎦, k = 2, 3, 4, . . . .

Establish it.
11. Establish that for any positive integer N and any fixed x > 0

N∑
n=1

1
(1 + nx)[1 + (n + 1)x] =

N
(1 + x)[1 + (N + 1)x] .

Then make use of this to prove that

1
12 · 2

+ 1
22 · 3

+ 1
32 · 4

+ 1
42 · 5

+ · · · = π2 − 6
6

.

12. Does the following rearrangement of the alternating harmonic series
converge?

1 − 1
2
− 1

4
− 1

6
− 1

8
+ 1

3
− 1

10
− 1

12
− 1

14
− 1

16
+ 1

5
− · · · ·

If it does, then to what does it converge?
13. A rather beautiful sum is obtained for the series

∞∑
n=0

1
(4n + 1)(4n + 3)

.

What is it?
14. Again, if the sequence {F(n)}∞n=1 is defined as in Problem 1, evaluate the

sum of the alternating series

∞∑
n=1

(−1)n−1

F(n)F(n + 2)
.
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15. Show that the series
∑∞

m=1

[
(2m + 1) ln

(
1 + 1

m

)− 2
]

converges to a
positive number less than 1/6.

16. For each integer n≥1, let D(n) be the number of digits in the base-10
expansion of 2n. Prove that

∞∑
n=1

D(n)

2n >
1169
1023

.

17. Let
∑∞

n=1 an be a convergent series of nonnegative numbers whose sum
is A, and let sn denote the nth partial sum. Show that the related series∑∞

n=1 nan converges iff
∑∞

n=1 (A − sn) converges.
18. Prove that the two series

∞∑
n=1

sin(n)

n
and

∞∑
n=1

[
sin(n)

n

]2

amazingly converge to the same number, namely, (π − 1)/2.
19. Define I(n), for each positive integer n, to be the integer closest to 3

√
n. For

example, I(10) = 2 and I(100) = 5. Evaluate the sum
∑∞

n=1 [I(n)]−4.

20. Evaluate: lim
x→1−

∑∞
n=0 xn ln

[
1+xn+1

1+xn

]
.

21. The sum of the series
∑∞

n=4

[∑n−2
k=2

(
n
k

)−1
]

is a rational number. What

number is it?
22. Let a satisfy 0 < a < 1 and β satisfy 0 < β < π/2. Obtain the sum of the

series

∞∑
k=0

ak(sin θ + kβ)

as a function of θ and the parameters a, β. When θ = π/6 and β = π/3,
which values of a in (0, 1) will yield a sum of 1 for the series?

23. Seemingly unimportant changes in the terms of a series can have a dra-
matic effect on the nature of the sum. Thus,

∑∞
n=2

1
n2 has a transcendental

sum, but if n2 + 3n − 4 replaces n2, the new series has a rational sum.
Find it.

24. The unique real solution of x − cos x = 0 has been referred to as the Dottie
number,d. If this number is expressed as a power series in π,d = ∑∞

k=1 ckπ
k,

then determine the first three nonzero terms.

25. Evaluate y = lim
n→∞

∏(
1 + k

n

)√n/k3

.
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C.3 INTEGRALS
1. For each natural number n let In = ∫∞

1
dx

1+xn+1 . Prove that

ln 2
n

< In <
ln 2
n

+ 1
4n2 .

2. Let n be a natural number. Show that the value of the integral

π/2∫
0

sinn x
sinn x + cosn x

dx

is independent of n.
3. In the figure shown, the line y = y0 is drawn so that area A = area B.

Determine y0.

0.50

y

A

B

1
x

0.5

y0

4. Suppose that the function F : [1,∞) → (e,∞] is an increasing function and
that

∫∞
1

dx
F(x)diverges to ∞. Prove that the allied integral

∞∫
1

dx
x ln[F(x)]

also diverges to ∞.

5. Determine the value of
∫ π/2

0
dx

1+[tan x]
√

2
.

6. Let {m1, m2, m3} be any set of three natural numbers.What is the maximum
possible value for

2π∫
0

cos(m1x) cos(m2x) cos(m3x)dx?
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7. Show that the following integral has a value that is the product of a rational
number and a power of π:

π∫
0

x3

ex + 1
dx.

8. Let c ∈ R be arbitrary but fixed. Determine the value of

∞∫
0

dx
(1 + x2)(1 + xc)

.

9. Show that if n is any natural number, then the integral
∫ 3

0
1+xn

(1+x)n+2 dx has

the value 1
n+1

[
1 + 3n+1−1

4n+1

]
.

10. Let the symbol {x} denote x − �x�, that is, the decimal part of x. Prove that
the integral

I =
1∫

0

{
1
x

}
ln x dx

has the value γ + γ1 − 1, where γ = lim
n→∞

[∑n
k=1

1
k − ln n

]
is Euler’s con-

stant and γ1 = lim
n→∞

[∑n
k=1

ln k
k − (ln n)2

2

]
is the first generalized Euler’s

constant.
11. Prove that

∫ 1
0

ln(x+1)

x2+1 dx = π
8 ln 2.



This page intentionally left blank



APPENDIX D

Index of Special Symbols

Symbol Meaning Section No.

⊕ Addition (of, in): improper integrals; 6.17; 3.1;
infinite series; a ring; sequences; Exercise 5.7;
a vector space 2.3; 1.5

≈ Approximately equal to 2.2
A(D) Area of set D ⊂ R2 6.8
B(a; r); Bd(a; r) Ball of radius r and centered at a in a 2.1

metric space <M, d>

Bn(p0; r) Ball in Rn, n > 1 1.5
Bn(a; δ)\{a} Deleted n-ball 1.9
{Bn}∞n=0 Sequence of Bernoulli numbers 3.6
{Bn(x)}∞n=0 Sequence of Bernoulli polynomials Exercise 3.48(

n
j

)
Binomial coefficient;

(
n
j

)
= n!

(n−j)! j! Exercise 2.6

Bd(S) Boundary of a set S 1.8
{Bn}∞n=1 Sequence of closed, bounded boxes in Rm 2.4
D × S Cartesian product of sets D, S 1.6
�x� Ceiling function of x ∈ R 2.5
S Closure of a set S; S ∪ Bd(S) 1.8
C Collection of sets; parameterized curve 4.5; 5.4
C Set of all complex numbers 1.1
g[f ] Composition of functions g, f Exercise 1.42
∧ Conjunction of two propositions 1.1
Corollary X.Y Corollary number 2.4

(D)
∫ b

a f Darboux integral over the interval [a, b] 6.4
D Differentiation operator 6.1
D Closed, bounded set in R2, on which a 6.8

function f (p) is to be integrated
D−1 Antidifferentiation operator 6.1

359
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Symbol Meaning Section No.

{Dn(x)}∞n=1 Sequence of Debye functions Exercise 6.44
∼= Is defined by 3.1
D1f , D2f Partial derivatives of f (x1, x2) with 4.7; 5.10

respect to x1, x2, respectively
|D2,1f , D1,2f Mixed second-order partial derivatives of Exercise 5.77

the function f
∨ Disjunction of two propositions 1.1
dn(x, y) Metric distance in Rn between vectors x, y 1.5
D(f ) Domain of a function f 1.6
↔ Double implication 1.1
F(x, m), E(x, m), Elliptic integral of the first kind, the Exercise 6.15
�(x, n, m) second kind, and the third kind, respectively
Ø Empty set 1.1
erf(x) Error function; 2√

π

∫ x
0 e−t2

dt Exercise 6.45

γ Euler’s constant Exercises 2.11, 3.32,
5.56

φ(n) Euler phi-function of n ∈ N 1.7
∃ Existential quantifier 4.2

exp(x) Lim
k→∞

(
1 + x

k

)k = lim
k→∞

(
1 − x

k

)−k; ex 5.7

Ext(S) Exterior of a set S 1.8
F Closed set 4.6
�x� Floor function of x ε R 3.3
C(x), S(x) Fresnel integrals 6.5
f : D → S Function from set D into set S 1.6
f ′(a) Derivative of f (x) at x = a 5.1
f ′′(a), f ′′′(a), Second, third, and higher-order 5.5
· · ·, f (n)(a) derivatives of f (x) at x = a
{Fk}∞k=1 Fibonacci sequence 2.1
f−1 Inverse function of f Exercise 1.43
f−1(H) Inverse image of a set H under a Exercise 1.39

function f
f |S Restriction of a function with respect 1.6

to its domain (S ⊂ D(f ))
f (S) Direct image of a set S under the function f 1.6
�(α) Gamma function;

∫∞
0 tα−1e−tdt Exercise 6.55(

c
n

)
Generalized binomial coefficient Exercise 2.10

grad f ; ∇f (p) Gradient of f at p 5.10
x > y (y < x) x is greater than y; [x + (−y)] ∈ P 1.2
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Symbol Meaning Section No.

<G,∗> Group Exercise 4.19
{Hk(x)}∞k=1 Sequence of Hermite polynomials 2.1
ID Characteristic function for a set D 6.8
→ Implication 1.1
I(f ) Improper integral 6.7∫∞

a f ,
∫ b
−∞ f ,

∫∞
−∞ f Improper integrals of the first kind 6.7

inf S Infimum of the set S 1.3
∞∑

n=1
an Infinite series; sum of a series 3.1

x ∗ y Inner product of vectors x, y 1.5
Int(S) Interior of a set S 1.8
(a, b); [a, b]; Intervals: open, closed, neither 1.5
(a, b]; [a, b) (half-open)
{In}∞n=1 Sequence of intervals 2.4
{Ln(x)}∞n=0 Sequence of Laguerre polynomials Exercise 5.36
L[f (t)] Laplace transform of f (t); Exercise 6.52∫∞

a K(s, t)f (t) dt, K(s, t) ∼= e−st , a = 0
Lemma X.Y.Z. Lemma number 2.3
lim
x→a

f = L The limit of the function f as x 1.9
approaches a is L

lim
x→a+

f ( lim
x→a−

f ) Right-hand (left-hand) limit of f as x Exercises 1.57, 1.58
approaches a from above (below)

lim
n→∞ inf xn Limit inferior of the sequence {xn}∞n=1; 2.6

inf E, E =
{

x ∈ Re : lim
k→∞

xnk = x
}

lim
n→∞ sup xn Limit superior of the sequence {xn}∞n=1; 2.6

sup E, E =
{

x ∈ Re : lim
k→∞

xnk = x
}

∫ b
a f Lower Darboux integral; sup

P
L(P, f ) 6.4

L(P, f ) Lower Darboux sum;
n∑

k=1
mk � ak 6.4

<M, d> Metric space (general) 2.1
⊗ Multiplication (in, of): a ring; infinite Exercise 5.7;

series (Cauchy); sequences in R1 3.5; Exercise 2.43
• Scalar multiplication (in, of): an 6.7; 3.1; 2.3;

improper integral; an infinite series; 1.5
a sequence; a vector space

N Set of all natural numbers 1.1
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Symbol Meaning Section No.

∼ p Negation of a proposition p 1.1
N Norm of a partition 6.1
||x|| Norm of a vector x 1.5
� Open cover of a set S in a metric space; 4.7

{Oα}
P Set of all real positive numbers 1.2
P Partition 6.1
P Tagged partition 6.1
P∗ Refinement of a partition P 6.4

(P)
∫ b

a f Principal value (Cauchy) of
∫ b

a f 6.7
Q Set of all rational numbers 1.1
Q+ Set of all positive, rational numbers 1.7
R Radius of convergence of a power series 5.8
R Set of all real numbers 1.1
R1, R2, . . . , Rn Real Euclidean vector spaces 1.5
Rn(x) Remainder at x when f is approximated 5.6

by its Taylor polynomial out to a term
that involves the nth derivative of f

<Rn, dn> Real Euclidean metric space, n ∈ N 1.5
R(f ) Range of a function f 1.6
Re Extended real number system 1.9∫ b

a f Riemann integral over the interval [a, b] 6.1∫∫
D

f Riemann double integral of f over D 6.8

n∑
k=1

f (xk)�ak Riemann sum 6.1

S(D, P,f ) Riemann sum for f in R2, given the 6.8
region D, the tagged partition P, and f

<S, ⊕, ⊗> Ring Exercise 5.7
{xk}∞k=1 Sequence 2.1
S\T Sets: complement; elements in set S but 1.1

not in set T
S ∩ T Sets: intersection 1.1
S ⊂ T, S ⊆ T Sets: proper subset, subset 1.1
S ∪ T Sets: union 1.1
∈ (/∈) Set membership (nonmembership) 1.1
sgn(x) Signum function of x Exercise 4.11
σ(x), ρ(x) Step-functions defined on [a, b] 6.3
σ(x, y) Step-function defined on a closed, Exercise 6.65

bounded rectangle T
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Symbol Meaning Section No.{
xkn

}∞
n=1 Subsequence of the sequence {xk}∞k=1 2.1

(M)
∞∑

n=1
an Summable M Exercise 3.12

(Y)
∞∑

n=1
an Summable Y Exercise 3.11

sup S Supremum of the set S 1.3
Tn(x) nth-Order Taylor polynomial for f 5.6
Theorem X.Y Theorem number 1.4
∀ Universal quantifier 4.2∫ b

a f Upper Darboux integral; inf
P

U(P, f ) 6.4

U(P, f ) Upper Darboux sum;
n∑

k=1
Mk �ak 6.4

<V, ⊕, •> Vector space Exercise 1.30
Z Set of all integers 1.1

ζ(s) Zeta function of Riemann;
∞∑

k=1

1
ks , s > 1 Exercise 3.44
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107
Cauchy’s convergence criterion, 59,

97
Cauchy’s definition of the derivative,

154–158
Cauchy’s Form of the Remainder,

183
Cauchy’s Root Test, 82
Cauchy-Schwarz Inequality, 17, 32,

269
Ceiling function, 53n, 66
Chain Rule, 158, 159, 314
Characteristic function, 259 369
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Closed binary operation, 16
Closed box, 50f
Closed curves, 148
Closed sets, 124–125
Closure, 7t, 124

of S, 23–24
Cluster points, 23–24

Bolzano-Weierstrass Theorem and,
51

Nested Intervals Theorem and, 48
of sequences, 47–52
of subsequences, 53–54

Codomain, 19
Coefficients, generalized binomial,

63, 203
Commutativity, 7t
Compact sets, 235

characterizing, 126
connected, 132

Compactness, 125–129
Comparability, 7
Comparison Test, 76, 91. See also

Infinite series
geometric meaning of, 250f
for Improper Integrals, 249

Comparison Theorem, 46, 82
Complement, of T relative to

S, 6t
Complete, simply-ordered

fields, 11
Completeness, Axiom of, 8–11,

175, 225
Complex numbers, 5t
Composite functions, 158
Composition of two functions,

33
Compound propositions, 4t
Conclusion, 11
Conditional convergence, 83–86
Conjunction, 4t

truth table for, 29f
Connected sets, 130–133

identifcation of, 132
Connectedness, 130–136

data for, 134t
path, 148

Constants
Euler’s, 63n, 102, 202n
Lipschitz, 139

Continuity
elementary consequences of,

118–121
first definition of, 110–113
of functions, 111f

limit interchange for, 288–290
uniform, 136–139

Continuous function, 157n
finitely piecewise, 236
inverse image definition of, 123f

Contraction Mapping Theorem,
139–142, 141f

Contractions, 139
Contradiction

Law of, 5t
proof by, 12

Contraposition, Law of, 30
Contrapositive, truth table

for, 12f
Convergence

absolute, 83–86, 87–92
Cauchy criterion for uniform, 287,

295
of Cauchy products, 89
conditional, 83–86
of improper integrals, 247
of infinite series, 72–75
interval of, 182
normal, 318n
pointwise, 92, 284
of power series, 182f
radius of, 180–183
of sequences, 43
uniform, 93, 285, 286f, 295, 318
uniform, of integrals, 324–325

Convergence tests, 78–82
Limit Comparison, 78
ratio, 80
root, 80–81

Convergent sequences, theorems on,
44–47

Corollaries, 48n
Cosine, definition of, 271
Countably infinite sets, 21
Cours d’analyse (Cauchy), 295n
Cramer’s Rule, 241
Curves, 148

area under, 213f
closed, 148

D
Darboux-integrable, 259
Darboux integral, 259

lower, 228
upper, 228

Darboux sums
lower, 227
upper, 227

de Morgan’s Laws, 146
Debye function, 272
Decomposition, 215n
Decreasing functions, 167
Decreasing sequences, 42
Definite integrals, 214
Deleted n-ball, 25
Derivative(s), 158, 303

brief selection of, 154t
Carathéodory’s definition,

158–160
Cauchy’s definition, 154–158
of f , 192
of f (x) = cos x, 158t
of f (x) = ex , 158t
of f (x) = ln x, 158t
of f (x) = sin x, 158t
of f (x) = xc , 158t
first-order partial, 188
Fréchet, 205
higher-order, 200
of integrals (See Leibniz’s

Theorem)
integration of, 238

Diameter, 127
Differentiable, 191
Differentials of function, 190
Differentiation, 303–308

of integrals, 239
Differentiation test, 100
Dini’s Theorem, 286
Direct image, 19

under f , 19f
Direct proof, 11
Dirichlet function, 117n, 196
Dirichlet series, 104n
Disconnectedness, 130
Discontinuities, 116–117

essential, 117, 118f
infinite, 117
jump, 117
removable, 117, 118f

Discrete L’Hôpital’s rule, 187
Disjoint, 6
Disjunction, 4t

truth table for, 29f
Distributive Law, 7t
Divergence, of improper integrals,

247
Divergent sequences, 43
Divergent series, 72

slowly, 101
Domain, 19
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Double implication, 4t
Double integrals, 257

Mean-Value Theorem, 276

E
Elementary negations, 115t
Elementary theorems on sums,

75–78
Elliptic integrals, 236n, 266
Empty set, 6
Equality of Mixed Second Partials,

205
Equations

Laguerre’s differential, 200
symbolic, for Bernoulli

polynomials, 104
Error function, 272
Essential discontinuity, 117,

118f
Euclidean algorithm, 21
Euclidean norm, 16
Euclidean vector spaces, 15–18,

61
Euclid’s Theorem, 13
Euler φ-function, 22, 104

values of, 23t
Euler-MacLaurin Summation

Formula, 99n, 207
Euler’s constant, 63n, 102, 203n
Excluded Middle, Law of, 5t
Exercices de calcul intégral (Legendre),

266n
Exercices de mathématiques (Cauchy),

183n
Existence theorem, 165
Existential quantifier, 114
Exponential function, 175–180

partial graph of, 178f
Extended real number system, 27
Exterior points, 23

F
Fibonacci sequence, 41–42, 81,

94
Field axioms, 6
Fields, complete, simply-ordered, 11
Finite additivity, 220, 261
Finite Induction, 14
Finitely piecewise continuous

function, 236
Finitely piecewise monotonic,

227
First derivative test, 169

First-order partial derivatives,
188

Floor function, 81
Fluent, 212n
Fluxion, 212n
Formal operations, 94
Fourier series, 215n
Fourier transforms, 277, 279
Fréchet derivative, 205
Fresnel Integrals, 241n
Frontier, 261
Fubini’s Theorem, 323n, 324
Function(s)

absolute value, 17
arctangent, 270f, 298
binomial, 203
Cauchy, 204
ceiling, 53n, 66
characteristic, 259
composite, 158
continuity, 111f
continuous, 123f, 157n
Debye, 272
decreasing, 167
differentiability of, 187–195
differentials of, 190
Dirichlet, 117n, 196
error, 272
Euler φ, 22, 23t, 104
exponential, 175–180, 178f
finitely piecewise continuous, 236
floor, 81
gamma, 274
general aspects of, 18–20
generating, 93, 104, 105
Green’s, 314
increasing, 167
inverse, 33
limits of, 25–29, 284f
linearization of, 188f
Lipschitz, 139, 145
logarithmic, 175–180, 178f
propositional, 113
Riemann zeta, 104, 296n
Ruler, 144
scalar, 205
series of, 92–96
signum, 143
step, 223, 224f, 276
uniform convergence of, 286f
uniformly Cauchy, 287
Weierstrass’s, 308–315

Fundamental sequence, 57n

Fundamental Theorem of Arithmetic,
13, 32n

Fundamental Theorem of Calculus,
214, 237–241, 314

differentiation of integrals
(part B), 239

integration of derivatives (part A),
238

G
Gamma function, 274, 325
Generalized binomial coefficient, 63,

203
Generalized Mean-Value Theorem,

164, 164f
for integrals, 268

Generating functions, 93
for Bernoulli numbers, 95
for Bernoulli polynomials,

105
Geometric mean, 31, 167
Geometric series, 73

in plane geometry, 74f
Geometry, plane, 74f
Globally, 121
Gradient, 190
Greatest common divisor, 21
Green’s function, 314
Grid, 215n
Group, 144

H
Harmonic series, 76

partial sums of, 77t
thinned-out, 77

Heine-Borel Theorem,
127–128

Hermite polynomials, 40
Higher-order derivatives, 200
Hölder Inequality, 199
Hypotheses, 11

I
Identity(ies), 7t

Abel’s, 317
additive, 7t, 16
Bernoulli’s, 143
elements, 144
Lagrange, 264
multiplicative, 7t

Implication, 4t, 29f
double, 4t
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Improper integrals, 245–256
comparison test for, 249
convergence of, 247
divergence of, 247
of first kind, 246
geometric meaning of, 248f
Leibniz’s test for, 253–254
Leibniz’s Theorem for, 325
limit comparison test for, 252
of second kind, 246

Increasing functions, 167
Increasing sequences, 42
Indefinite integrals, 214
Independent variables

first, 188
second, 188

Inequalities
Arithmetic Mean-Geometric

Mean, 167
Bernoulli’s, 14–15, 42, 168, 176,

202
Bunyakovski’s, 269
Cauchy-Schwarz, 17, 32, 269
Hölder, 199
Minkowski’s, 16n
of partition refinement, 229
Quadrilateral, 45n
Triangle, 17, 45, 91, 299

Infimum, 9
for f , 291f

Infinite discontinuity, 117
Infinite series

convergence of, 72–75
definition, 72

Infinite sets, 20–22
countably, 21
uncountably, 21

Injection, 20, 135, 147
Inner product, 16
Integers, 5t
Integrability, 228
Integral Form of Remainder, 271
Integral Test, 255

geometric interpretation of, 256f
Integral transform, 273
Integrals

as area under curve, 213f
Cauchy principal value, 250–251
Darboux, 259
definite, 214
differentiation of, 239 (See also

Leibniz’s Theorem)
double, 257, 276
elliptic, 236n, 266

Fresnel, 241n
Generalized Mean-Value Theorem

for, 268
improper, 245–256, 248f, 325
indefinite, 214
lower Darboux, 228
Mean-Value Theorem for, 270
Riemann, 216, 257–263
uniform convergence of, 324–325
upper Darboux, 228

Integration
of derivatives, 238
of power series, 296–303
of sequences, 290–296
of series, 288–290

Integration, numerical, 241–245
Interior points, 23
Intermediate-value theorem (IVT),

130–136
illustration of, 134f
selected data for, 134t

Intersection, of S and T, 6t
Intervals

of convergence, 182
nested sequence of, 49f

Inverse elements, 144
Inverse function, 33
Inverse Function Theorem, 160, 196
Inverse image, 33
Inverses

additive, 7t, 16
multiplicative, 7t

Irrational numbers, 5t, 9–10
representation of, 85t

Isolated points, 111f

J
Jordan content, 260, 261f
Jordan measurable, 260
Jump discontinuity, 117

K
Kernels, 273

L
Lagrange’s Identity, 264
Laguerre polynomials, 200
Laguerre’s differential equation, 200
Laplace transforms, 273
Law(s)

Associative, 144
of Contradiction, 5t

of Contraposition, 30
de Morgan’s, 146
Distributive, 7t
of Excluded Middle, 5t
of Negation, 5t
of Syllogism, 5t

Lebesgue’s Criterion, 261
Left Distributive Law, 7t
Left-hand limit, 35
Leibniz notation, 154
Leibniz series, 97
Leibniz’s Rule, 200
Leibniz’s test

diagram for, 253f
for improper integrals, 253–254

Leibniz’s Theorem, 308–315, 323
for Improper Integrals, 325

Leibniz-type integration of, 264f
Lemmas, 45n
L’Hôpital’s rule, 184–187

discrete, 187
Limit Comparison Test, 78–79

for improper integrals, 252
Limit inferior, 54–57
Limit interchange, 288–290

for continuity, 288–290
Limit point, 47n
Limit superior, 54–57
Limits, 25f

of functions, 25–29, 284f
left-hand, 35
of sequences, 43
subsequential, 53

Lindelöf ’s Covering Theorem, 145n
Linear mapping, 189
Linearity, 16
Linearization, 188f
Lipschitz constant, 139
Lipschitz function, 139, 145
Localized regions, 119f
Logarithmic function, 175–180

partial graph of, 178f
Logic, 4–6

Aristotelian, 5t
Lower Darboux integral, 228
Lower Darboux sum, 227

M
Mapping, 19

one-one, 20
Mathematical Induction, Principle

of, 14
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Maximum-minimum value theorem,
125–129

Mean-Value Theorem, 162–168, 236,
309

for double integrals, 276
illustration of, 163f
for Integrals, 270
second, 270

Measure, 260n
Mertens’ Theorem, 89
Mesh, 215n
Method of summability, 75
Methodus Differentialis (Stirling),

99n
Metric, 17
Metric space, 17
Metric subspaces, 124
Minkowski’s Inequality, 16n
Monotonic, finitely piecewise,

227
Monotonic sequences, 42
Multiplication, 196

Cauchy, 88
scalar, 72

Multiplicative identity, 7t
Multiplicative inverses, 7t

N
Natural numbers, 5t

definition of, 13
Negation, 113–116

elementary, 115t
Law of, 5t

Nested Intervals Theorem, 48
cluster points and, 48

Nested sequence of intervals (boxes),
48–50

Net, 215n
Newton-Raphson Method, 149,

202
Newton’s Binomial Theorem, 62,

155, 302, 307
Nonreflexivity, 7
Normal convergence, 318n
Numbers

Bernoulli, 95, 96t, 104
complex, 5t
irrational, 5t, 9–10, 85t
natural, 5t, 13
positive, 7
rational, 5t
real, 5t, 27

Numerical integration, 241–245

O
One-one mapping, 20
Open ball, 18f
Open intervals, 18f
Open n-ball, 18
Open sets, 23, 121–124
Operations, formal, 94
Orthogonal vectors, 32

P
Parabolas in Simpson’s Rule,

241–242
Parallelogram, area of, 165f, 166f
Partial sums, 72

of harmonic series, 77t
Partitions, 215

construction of, 257f
Path-connectedness, 148
Paths, 148
Plane geometry, geometric series in,

74f
Points

accumulation, 47n
boundary, 23, 111f
cluster, 23–24, 47–52, 53–54
exterior, 23
interior, 23
isolated, 111f
limit, 47n
tallying, 232f
types of, 24f

Pointwise convergence, 92, 284
Polynomials

Hermite, 40
Laguerre, 200

Positive numbers, 7
Positive rationals, 21f
Positive series, 76
Positivity, 16
Power series, 92

convergence of, 182f
integration of, 296–303

Predicates, 113
Premises, 11
Prime Number Theorem, 181n
Primitives, 212
Principle

of Mathematical Induction, 14
Well-Ordering, 15

Products, Cauchy, 88, 91
Proofs, 11–15

by contradiction, 12
direct, 11

Properties, Archimedean,
13–14

Propositional functions, 113
Propositions, 4

compound, 4t
p-Series Test, 101
Pythagorean Formula, 16n

Q
Quadrilateral Inequality, 45n
Quantifier, 113–116

existential, 114
statements with one, 115f
universal, 114

Quaestiones super Geometriam Euclidis
(Oresme), 77n

Quotients, Cauchy, 187

R
Raabe’s test, 100, 106
Radius of convergence, 180–183
Range, 19
Ratio test, 80, 299
Rational numbers, 5t
Re, 248
Real line, 10f
Real numbers, 5t, 6–8

extended systems, 27
Rectangles, 257f
Recursively defined sequences, 41
Refinement, 228

partition, 229
tallying points in, 232f

Regular summability, 99
Relative extremum, 160, 169–171

first derivative test, 169
potential locations of, 161

Relative maximum, 160
Relative minimum, 160
Remainders, 172

Cauchy’s Form of, 183
Integral Form of, 271

Removable discontinuity, 117,
118f

Representation, 171
Restriction, 20
Riemann double integral, 258
Riemann integration, by

substitution, 269
Riemann sums, 216
Riemann zeta function, 104,

296n
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Riemann-integrable, 216, 258
necessary conditions for, 217–223
sufficiency conditions for,

223–227
Riemann-integral, 216
Riemann’s Rearrangement Theorem,

87, 299
Rolle’s Theorem, 160–162
Root tests, 80–81, 107
Ruler Function, 144

S
Scalar, 16

multiplication, 72
Scalar functions, 205
Second derivative test, 169n,

170f
Second Ratio Test, 82
Sequences

Appell, 105n
bounded, 41
Cauchy, 57–61
cluster points of, 47–52
convergence of, 43, 44–47
decreasing, 42
definition, 40, 116–117
divergent, 43
Fibonacci, 41–42, 81, 94
fundamental, 57n
general properties of, 40–42
increasing, 42
integration of, 290–296
limits of, 43
monotonic, 42
nested, 48, 50
nested, of intervals, 49f
recursively defined, 41
single-cluster, 53
terms of, 40

Series
addition, 72
alternating, 83–86, 85t
alternating harmonic, 103
Dirichlet, 104n
divergent, 72, 101
of functions, 92–96
geometric, 73
harmonic, 76, 77, 77t
infinite, 72–75
integration of, 288–290
Leibniz, 97
positive, 76
power, 92, 182f, 296–303

Taylor, 174
telescoping, 79

Sets, 4–6
area of, 221
closed, 124–125
compact, 126, 132, 235
connection, 132, 133
construction of, 6t
countably infinite, 21
empty, 6
infinite, 20–22
open, 121–124
operations, 6t
symbols for, 5t
uncountably infinite, 21

Signum function, 143
Simple ordering, 7
Simpson’s Rule, 241–245
Sine, definition of, 271
Single-cluster sequence, 53
Squeeze Theorem, 64
Step-function, 223, 224f, 276
Stirling’s Approximation, 99–100
Subboxes, 50–51
Subsequence, 41, 53–54

cluster points of, 53–54
Subsequential limit, 53
Subsets

Re, 248
S as, of T, 6t

Subspaces, metric, 124
Sufficiency condition, 193,

289
Summability, 98

method of, 75
regular, 99

Sums
lower Darboux, 227
upper Darboux, 227

Supercoincidence, 222f
Supremum, 9

for f , 291f
Surjection, 20
Syllogism, Law of, 5t
Symbolic equation (for Bernoulli

polynomials), 104
Symmetry, 16

T
Tagged, 215

partitions, 216f
Tangents, 271
Taxicab metric, 145

Taylor series, 174
Taylor’s Theorem, 163, 171–175
Telescoping series, 79
Terms of sequences, 40
Theorem(s), 11

Abel’s Convergence, 88n
Abel’s Limit, 299
Arzelà-Ascoli, 327
Bolzano-Weierstrass, 51, 55
Cantor’s Intersection, 50n
Cauchy-Hadamard, 181
Comparison, 46, 82
Contraction Mapping, 139–142,

141f
on convergent sequences,

44–47
Dini’s, 286
elementary, on sums, 75–78
Euclid’s, 13
existence, 165
Fubini’s, 323n, 324
Fundamental, of Arithmetic, 13,

32n
Fundamental, of Calculus, 214,

237–241, 314
Generalized Mean-Value, 164,

164f, 268
Heine-Borel, 127–128
intermediate-value, 130–136,

134f, 134t
Inverse Function, 160, 196
Leibniz’s, 308–315, 323
Leibniz’s, for Improper Integrals,

325
Lindelöf ’s Covering, 145n
maximum-minimum value,

125–129
Mean-Value, 162–168, 163f, 236,

309
Mean-Value, for Double Integrals,

276
Mertens’, 89
Nested Intervals, 48
Newton’s Binomial, 62, 155, 302,

307
Prime Number, 181n
Riemann’s Rearrangement, 87,

299
Rolle’s, 160–162
Squeeze, 64
Taylor’s, 163, 171–175

Thinned-out harmonic series, 77
Topology, 121
Transformation, 19
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Transforms
integral, 273
Laplace, 273

Transitivity, 7
Treatise of Fluxions (MacLaurin),

75–78, 99n, 214, 255n
Triangle Inequality, 17, 45,

91, 299
Truth tables, 4

for conjunction, 29f
for contrapositive, 12f
for disjunction, 29f
for implication, 29f

U
Uncountably infinite sets, 21
Uniform continuity, 136–139
Uniform convergence, 93, 284–288,

295
Abel’s Test for, 318
Cauchy criterion for, 287, 295
of a sequence of functions, 286f
of integrals, 324–325

Uniformly Cauchy sequence,
287

Union, of S and T, 6t
Unit circle, arcs on, 66f
Universal quantifier, 114

Upper Darboux integral, 228
Upper Darboux sum, 227

V
Variables, independent, 188
Vector, 16

operators, 205
Volume, 260

W
Weierstrass M-test, 295–296
Weierstrass’s function, 308–315
Well-Ordering Principle, 15
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