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TENSOR ANAlYSIS

By MATTHEW S. SMITH

Principles and Applications of Tensor Anal-
ysis presents a detailed step-by-step develop-
ment of tensor notation and thegry, advanced
concepts in tensor analysis, differential geom-

etry, and analytical mechanics in tensor form.

This chapter emphasizes the important concepts
of relative tensors, covariant tensors, contra-
variant tensors, mixed tensors, metric tensors,

base vectors, and Kronecker deltas.
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AND THE COVARIANT DERIVATIVES

Includes the Christoffel symbols, covariant de-
rivatives, intrinsic derivatives, and Laplace’s

equation. Because of the many |mpon‘cmt ap-

tensor form, using generalized curvilinear co-
ordinates. Some of the more important applica-
tions in potential theory are included as illustra-
tive examples.
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Preface

Since the extensive use of tensors by Einstein, important
applications in other fields, such as differential geometry,
classical mechanics, and the theory of elasticity, have evolved.
Therefore, the ability to understand and apply tensors is a
definite advantage to engineers, physicists, and applied math-
ematicians. Tensor equations are powerful analysis tools that
give added insight to the understanding of the fundamental
laws of physics and engineering.

This text, using practical examples throughout, system-

atically explains and demonstrates basic tensor theory and
its applications. The book is divided into four chapters The
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Christoffel symbols, covariant derivatives, and Laplace’s
equation. The third chapter includes the Riemann-Christoffel
tensors, and the application of tensor analysis to several
topics in differential geometry. The latter were selected be-
cause they have numerous important applications in the gen-
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eral theory of relativity, analytical dynamics, and the theory

of elasticity.

The fourth chapter presents the application of tensor
analysis to some of the most important concepts in classical
and relativistic mechanics. The section on classical dynamics
includes Lagrange’s equations of motion and a solution of the
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two-body problems. The equations for the two-body problem
are written as a geodesic to give the student a feeling for
dynamical trajectories treated as geodesics prior to the study
of the general theory of relativity.

The sections on relativistic mechanies include a discussion
of space-time for the special theory of relativity, the Lorentz
transformations, and the relativistic equations for momentum,
energy, and force. The text ends with a short discussion of
curved space and Einstein’s gravitational equations for the
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It is hoped that an understanding of the material in this
text will provide the student with the ability to solve a variety
of problems using tensor analysis, as well as giving him an
additional understanding of the related sciences.

MATTHEW S. SMITH

February, 1963
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Chapter I

Basic Tensor Theory

Tensor analysis is the study of invariant objects, whose
properties must be independent of the co-ordinate systems
used to describe the objects. A tensor is represented by a set

of functions called components. For an object to be a tensor
it must be an invariant that transforms from one acceptable

co-ordinate system to another by the tensor laws. These laws
are explained in detail, with examples, in Chapter 1.
Several examples of tensors are velocity vectors, base
vectors, metric coefficients for the length of a line, Gaussian
curvature, and the Newtonian gravitation potential.

Many of the important differential equations for physics,
nncr‘mnp'rlnor and anhhm‘l mathematics can also be written as
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tensors. Examples of differential equations that can be written
in tensor form are Lagrange’s equations of motion and
Laplace’s equation. When an equation is written in tensor
form it is in a general form that applies to all admissible
co-ordinate systems.
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TENSOR ANALYSIS

SUMMATION NOTATION

The summation notation used throughout this text will
be demonstrated explicitly by the examples in the first chapter.
The general summation will be of the type:

S = aX, +a,X,+ ... + &Xa (1.0)

This type of summation is generally expressed in the

calculus:
n
S = ;I a, xi (1.1)

1i=1

\

I

|

The superscripts on X are not powers; they are used to
distinguish between the various x’s. In rectangular cartesian
co-ordinates and vector notation, Equation 1.1 would be:

i .
S = S a, Xt
ci:1
where,
X'=X,X=y,x*=2
a]_:i,a:!:j,a:’:k

With this interpretation of Equation 1.1 and the specific
values for a; and x! as noted, sum S would be:

S =ix + jy + kz

For additional simplification, Einstein dropped the N
in Equation 1.1 and the summation is then expressed:

S = axi! (1.2)

14



BASIC TENSOR THEORY

In conclusion, it is to be remembered that Equations 1.0,
1.1, and 1.2 are equivalent, and xi expresses variables, not
powers of X.

In the subsequent portions of the text, a superseript index
will indicate a contravariant tensor, while a subscript index
will indicate a covariant tensor.

The rank of a tensor is the sum of the covariant and
contravariant indexes. This will be explained in detail in the
section of this chapter on higher rank and mixed tensors.

RELATIVE TENSORS

The term relative tensor is used to describe scalars that
are transformed from one co-ordinate system to another by
means of the functional determinate known as the Jacobian.
To illustrate this concept, the differential increment of area
(dA) is indicated in Fig. 1-1.

In cartesian co-ordinates (x,y) itis:




TENSOR ANALYSIS

dA =dx dy
In polar co-ordinates (r, ®) it is:
dA =rdoedr

Now, the connection between the x, y cartesian co-ordi-
nates and the r, ® polar co-ordinates is:

X=—1rcosoe

y=r1rsind

r=(x*+y»)%
y

= tan! —
X

The Jacobian of the cartesian co-ordinates with respect to
the polar co-ordinates is formed from the following partial
derivatives:

oX oX

= ¢0s 0, S =T sin ®

oy . 0
—— = 581n 0, ——Z—-:::I'COSG‘)

or 00

This set of partial derivatives are used to form the follow-
ing Jacobian:

CcoS ® —rsin @
=r (cos?@ 4 sin?@) =1r (1.3)

Sin® rcoso®




BASIC TENSOR THEORY

with respect to the cartesian co-ordinates is formed from the
following partial derivatives:

or or
= CcoS ©® — sin ®
ox G ) f
00 1 20 1 o
= —~ ——sin ®, ——— — ——C0S
oX r ®’ oy r
This set of partial derivatives are used to form the follow-
ine Tarnhian
J.l.l& T CAWNI N LA A A
cos @ sin @
1 . 1 ::..L (cos®@ + sin2@) = 1 (1.4)
— TSln ® TCOS Q] T T

Now, returning to the expression for differential area in
cartesian co-ordinates and polar co-ordinates, the following
equation can be written:

S dx dy = S dr d®




n

s 2% s (1.6)
>y

Exponent n in Equations 1.5 and 1.6 is used to determine
f a relative scalar. The examples in this section
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are relative scalars having a weight equaling one; therefore,
n = 1. An absolute scalar has a weight of zero; i.e., n = 0.
To illustrate Equation 1.5, we use the values:

S=r
| cos ® sin ®
I ayi . . 1
xi | T 1 1 -y
0 -5 sin © — cos ®

yiranges fromi=1toil =

B

xi ranges fromj=1toj =2

g

S = —%—(r) =1 (1.7)

Equation 1.7 is the desired result.

Now the notion of relative tensors can be extended to vol-
umes and mass. To illustrate this concept, we start with the

equation for an incremental mass in orthogonal cartesian co-
ordinates.

dM = pdxdydz (1.8)

Now the incremental mass in spherical co-ordinates is writ-
ten in terms of relative tensor S:

18



d_M = §d1‘ de do
S is evaluated by the relative tensor equation :

ox!

0

yJ

—~
ek
o

.’

s =285
| 0¥’ |

Q)

In this example S = p, where p is called the scalar density.
X'=X, xX*=y, x*=12
Vi=r,y =2 y'=0
The geometrical relationship between the cartesian co-or-
dinates and the spherical co-ordinates is indicated in Fig. 1-2.

The corresponding mathematical relationship between the co-
ordinates is:

rsin®

r cos®

r sinQcos®

// r sin®sin®

19



X — r sin ® cos @ Y
y =rsinesine (1.10)
Z — r cosd
o
xi
The partial derivatives for the Jacobian o are:
ox in & ® ox cos ® cos @ ox
- —_— T -
3 sin @ cos 0, >3 S ' 56

ay-~-sin<i>sin® y — 1 cos dsin ® Y _
or _ ’ od — ’ 00 o
r sin ® cos 0
oz o (o) . 0z o
= — - rsin &, ——— =
T: cos &, > 56

Using these values, the resultant determinate is:

n & A _vaind ain M
o J L WDlli W OIlll U

[<3] ') » nna &
3968 W £L S

NN NN
AVAVIS B ) U0 ATAVS~4

Sin®sin® rcos®sin® rsind®cos®|=r*sin® (1.11)

cos & -r sin ® o)

Now, Equation 1.6 can be evaluated:

~~
pomd
i
1A

e

S = r’sine,p
and the equation for dM is:

20



dM = pr?sin @ dr d® de (1.13)

Equation 1.138 is the desired result for dM. If the value for
dM had been given initially in spherical co-ordinates, the cor-
responding value in cartesian co-ordinates could be found by
the equation:

dM = Sdxdydz (1.14)

where,
S — | 24 iE (1.5)
| ax’ [\ \&e )

ADMISSIBLE TRANSFORMATIONS

From the previous examples, it has been demonstrated that
relative tensors transform from one co-ordinate system to an-
other by means of the functional determinate known as the
Jacobian. Since a relative tensor is defined to be a function of
the Jacobian, a necessary and sufficient condition for an ad-
missible transformation of co-ordinates is that it is a member
of a set in which the Jacobian does not vanish.

This condition is also necessary and sufficient for absolute
tensors. Therefore, the set of all admissible transformations
of co-ordinates form a group with nonvanishing Jacobians.
If notation | J | is used for the Jacobian, the definition for
an admissible transformation of co-ordinates can be expressed:

J| # o (1.15)

= 1 (1.16)
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TENSOR ANALYSIS

An example of Equation 1.16 can be found in Jacobian Equa-
tions 1.8 and 1.4.

(1) (=) = 1 (1.17)
\ P

N DIMENSIONAL SPACE

In general terms a co-ordinate system represents a one-to-
one correspondence of a point or object with a set of numbers.
To measure distance, we can use a rectangular cartesian co-
ordinate system. This is called a metric manifold, or space of
V.. :

Now, a space or manifold of N dimensions is expressed by
the symbol Vy; and it is a co-ordinate system of N dimen-
sions, if for each set of N numbers there is one corresponding
point or object.

A sub space Vix where M = N -1 is called a hypersurface.

An example of hypersurface in Euclidean space is a plane. It
is a hypersurface of V,.

i R RL AL

CONTRAVARIANT TENSORS

The prototype for contravariant tensors is the vector
formed by taking the total differential of a variable in one co-

Ainat + 141 + +~ +hL 1 +1, A
orainate sysiem witn respect 1o une variables in another au-

IIllSSlDle CO- oramate SYbEem. .lE 1S a LOIIEI‘dVdI'lan'B EQHSOI‘ I&d
1. To present the concept, cartesian co-ordinates x and y;
and polar co-ordinates r and @ as indicated in Fig. 1-1 are used.

X —=rcoso

(1.18)
y = rsine J

Differential dx in terms of r and ® is a contravariant tensor
Rank 1.

22



BASIC TENSOR THEORY
oX X
dx = _ .

X = dr+ —g- do (1.19)
oX
—— = COS ®
or
oX )
a@ —= —-TrYSsSIin e

If Equation 1.19 is divided by time differential dt, it be-
comes the familiar velocity vector.

dx X dr ox do
& T or @@ T 30 @

P Y2ty

Equation 1.20 is also a contravariant tensor Rank 1. The cor-

. dr .
responding contravariant tensor equation for-af 1S:

dr or dx or dy

dt_axdt+aydt

(1.21)

In tensor notation, a contravariant tensor, Rank 1, can be
expressed :

Syi
B —_ 9 a.
ir —— L3

ox¢*

—~
-t
)
N

-’

Equation 1.22 is the contravariant law for tensors, Rank 1.

To illustrate Equation 1.22, we write the corresponding
tensor notation for Equation 1.20.

dx

B:Et"‘

(1.23)

23



ENSOR ANALYSIS

oy! ox

— , (e=12 1.24
= = Ty ( ) (1.24)
_ L dr )
T
) (1.25)
e A — de
=05 — Tdt
F ox P in ©
Or X = T C0S 0, 57 = cos 0, an 56 = —Tr-sin

Equation 1.20 can be expressed:

dx dr . de 1.96
qf = €080 — - rsine—- (1.26)

. . y
The corresponding tensor equations for —are:

dt
dy oy dr oy do
® T or ® T e & (121
dy _ . dr © 1.28
—gr = sin@—g— + reose — (1.28)

dr
To ﬁnd-—a-t—in terms of Equation 1.22, the terms in tensor no-

tation are:

24



BASIC TENSOR THEORY
. Al dx
Xt = X frovannd
! dt
"4
X = vy, A2 — ,?7
dt
r = (x2 4 y?) % (1.29)
or o or )
— COS§ = sin ®
ox ) 4
L 9 VAP R FERVE I S R I ™ ayi A - e 4L
VY1Ul LIIESEe values, Leilsor equatlion b' — ~xa Av glves e
following result
dr ® dx in © 1.30)
— CO0S sin .
&t a T It (

Rank 1. Each tensor component can be transformed to a new
admissible co-ordinate system by using the corresponding
partial derivative of the new co-ordinate system with respect
to the old co-ordinate system.

The prototype for the covariant tensor is the covariant
vector formed by taking the partial derivative of an absolute
scalar. The chain rule for partial derivatives gives the correct
pattern for this type of transformation. It is a covariant Ten-
sor Rank 1.

vmend Al n m 4L AT mczrdnnndn e xritadinmal
To present the concept, Newtonian gravitational po

V in cartesian co-ordinates and polar co-ordinates is used.
Using Fig. 1-8 as a guide, the equation for gravitational po-
tential V is:

25



ENSOR ANALYSIS

Fig. 1-3
p Mm (Length)+
V=-—F—»= (Force) (Time)* (1.81)
r = (x*+y%)"
v & (1.32)
® = tan* -
X
/

Force F: in the direction of the x axis is:

oV 1 2y

oy = % (1.69)
oV oV or oV 00

3% = 5 X —+ ————a® —-————ax (134)

For a particle M in orbit about a central body m,-——%—@)—
oV Mm r
0. Now, using the values d =L —, and 0

or r? X

Equation 1.34 yields the result:

=— €0s O in

26



oV w Mm
% - cos ® = K (1.35)

In tensor notation a covariant tensor, Rank 1 can be ex-
pressed :

oxe

B1 == T
oy

A, (1.36)

Equation 1.36 is the covariant law for tensors, Rank 1. Using

the tensor notation in Equation 1.36, the force F, in the direc-
tion of the y axis is calculated as follows:

VAN AL A Vainw aht WivaAw RAW VA A AV aaws

2 - ay }y - y .
oV A
1 — —
x* =r, A, = o1
oV
X2 = @, A2 —_ -—é?-a-— f (1.38)
or o _0° .
3 — Sin ay = CoSs )
A oV = O, F, has th lue:
S =% — 0, F, has the value:
\"% M
%y =" sine (1.39)

HIGHER RANK AND MIXED TENSORS

The equation for a covariant tensor of Rank 2 is:

27



(1.40)

o7 oy ¥
The equation for a contravariant tensor, Rank 2, is:

-
- ~__t

gi — oy oV

af
> 5P A (1.41)

The equation for mixed tensor, Rank 2, is:

. (2. S )
By == =0 A, (1.42)

Equation 1.42 is covariant, Rank 1 and contravariant, Rank 1.

For a tensor of Rank N, where N is any positive number,
components A would be multiplied by N partial derivatives.

METRIC TENSORS AND THE LINE ELEMENT

Metric tensors assume a position of prime importance in
tensor analysis. They are used in the Christoffel symbols, co-
variant derivatives, intrinsic derivatives, and all of the differ-
ential equations in tensor form that are used in this text.

Fig. 1-4.

28



BASIC TENSOR

Metric tensors g;; of the line element ds® are covariant
tensors, Rank 2. To present the concept of the metric tensors,
line element ds is written as a vector in cartesian and polar
co-ordinates. Using Fig. 1-4 as a reference, line element ds in

cartecian eco-ordinateq jc*
WO AL WNIANTACAAL

W VA NALALEF U/ ANT o

ds = idx 4 jdy (1.43)

The length of the line element squared is found by squaring
both sides of Equation 1.43 and taking the dot product of the
right-hand side.

A2 3
un® == 1

Using an orthogonal co-ordinate system and elementary vector
analysis, the dot products are:

iei =1 Y

a s —. N
£ J pendil § J

1

i*i=1 J
Therefore, the square of the line element is:
ds? = dx* 4 dy? (1.46)

Now, if the square of the line element is computed in polar

co-ordinates:
iX = ircos®
(1.47)
jy = jrsine
The result is:
ds? = r? de* 4 dr? (1.48)

29



TENSOR ANALYSIS

Equation 1.48 is computed using the relation:

ds = (jrcos®—irsin®)d® + (icos® - jsin @) dr

(1.49)
The procedure is to square both sides of Equation 1.49 and
take the dot product of the right-hand side, using the results

in Equation 1.45.

Now, using the metric tensors g;; in Equation 1.46 yields
the results:

1

1, g.=1 )

o
511 I

ds® = g,,dx*> 4 g, dy? j

—~
-y
e
D

S

In a similar fashion, metric tensors g;; in Equation 1.48
yields the results:

én = 1, ézz = r? 3
(1.51)

ds* = g, dr* + g,, de? }

Coefficients g,,, g,, and g,,, ,, are covariant tensors, Rank 2.
To illustrate the transformation of the metric tensors, we
will use Equation 1.40 for the transformation of covariant

-
D
3
n
D
1
2
!d
]
3
W‘
o

ox* x#8
B, = = 5y A, (1.40)

Now, to determine g,, and g,, in Equations 1.51 in terms of
g,, and g,, in Equations 1.50, the corresponding terms in Equa-
tion 1.40 are:

By = B, = g2 (1.52)

30



BASIC TENSOR THEORY
_ oX X oy oy
2 = S5 3 &u + 36 3o &= (1.53)
g, =1g,=1
ox _ r Sin @ o _ r cos @
5o . TTIn® —e =
g, = I? (sin?® 4+ cos?0®) = r? (1.54)
To calculate g,, in terms of g,, and g,, we repeat the proce-
dure with the wvalues
Bij == Bll p— éll (1.55)
— oX ©OX oy oy
gll - ar ar gll ar ar g22 (1'56)
oxX oy
o7 = cos 0, 57 = sin ®
g, = cos?® + sin2@ = 1 (1.57)

Using the computed values for g,, and g,,, as indicated in
Equations 1.57 and 1.54, we get the familiar result for the
line element in polar co-ordinates r and ©:

ds? = dr* 4+ r3de: (1.58)

fundamental tensor. The corresponding contrava metric
drvmcnte to AallAd dlan ncsndecacrontamd Locon oo ncnid a1l dacnonae Tl
LCIIDUL 1d Callea ULl Lulivldvdllall ilTuliuadiiicil 1 welldvr.,. rul

sor is found by the equation:
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ENSOR ANALYSIS

gl = — (1.59)

The contravariant metric tensor gii transforms by the equa-
4t ..
L1011 .

i i
B — gi'a gZﬂ Ass (1.41)

To illustrate the procedure, the metric tensors from the fol-
lowing equation are used:

ds?

I

o dx 4+ o.. dv2
&11 Ra S22 1Y

I 22

== Eu dr? -+ Ez‘.’ de?

Using Equation 1.59, the corresponding contravariant metric
tensors are calculated:

1 1
gn prend . - 1 g~ = . =1
g1 ’ g2
1 1 1
ng —_— — — 1’ g.’!2 — — —
g1 g r-

To calculate g22 from g** and g?%, Equation 1.41 is used.

- 00 20 00 00
22 - 11 2
& =87 ox T8 oy oy (1.60)
- 1
g2 = = (sin* ® + cos® Q)
g2 — :; (1.61)
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This is the desired result.
The determinate of the metric tensors is denoted by sym-
bol g. For Euclidian space, it is:

o - O
o211 ©i12

o

g = o1 822 o3 (162)

g31 g32 g33

If the co-ordinate system is orthogonal, the determinate re-
duces to:

o N N
511 YV hd

g=|0 g.0 (1.63)
0 0 g

The general formula to find the contravariant metric tensors
is:

y Gii
) == —
& g
Gii is a cofactor of elements gii in the determinate g.
For all of the examples in this text, orthogonal co-ordinate
systems are used. This simplifies the evaluation of the metric
tensors and the tensor equations.

BASE VECTORS

A base vector for a given co-ordinate system is used to
determine a differential change in a position vector with re-

4 4~ 1ol m 1 1
spect to a varlame. To clarify and illu

set of orthogonal cartesian co-ordinates X, y, and z, wi
vectors i, j, and k, and position vector P are indicated in

Fig. 1-5.
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// jy=sjrsine
" Fig. 1-5.
P=ix + jy 4+ kz (1.65)
The corresponding base vectors are:
oP ,
5% = e, = 1
oP
—_—— — e, = (1.66)
3y €. S
oP
— = e, = Kk
0%
Now, the total differential of position vector P is:
oP P 2P
dP = d — d d
x BT oy Wt @
dP = e, dx + e, dy + e, dz " (L67)
dP = idx + jdy + kdz J

34




Now, the same position vector P expressed in cylindrical co-
ordinates r, ®, and z is:

P=1ircos® 4+ jrsin® + kz (1.68)
Mha anvewacnnandine haaon rrantAana an avrlindwinal rAa Avdinatac avrace
LILT \JULLCDPUJLULLLS MaAaoT VOULULULO 11l DJ 11111 IVAl VUV L ULLIA VU AL T .
oP _ . .. )
—= e, — 1C0sS0 sin ®
or 1 + ]
aP - . . - (1 69)
—_— = e, — —-1Trsino rcos o .
56 2 + ) -
oP -
=e = k
0Z

J

Now, the total differential of position vector P in cylindrical
co-ordinates is:

o oP . 0oP 2P ]
dP = >t dr + 56 de + >z dz
dP = e, dr + &,d® 4+ e,dz > (1.70)

dP = (icos® + jsin®) dr +
(-irsin® 4+ jrcos®) do + kdz

Base vectors are covariant tensors, Rank 1. To illustrate
this relation e, in Equations 1.66 will be found in terms of

e, and e, in Equations 1.69.

00

€& =& X

+ e,

% (1.71)

e, = (icos® 4 jsin®) cos®
+ (-1rsin® 4 jrcos @) (--—;—— sin @)
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e, = 1

The metric tensors can be expressed‘ as the dot product of
the base vectors. To illustrate the procedure, the following

examples are presented:

g, =¢€ e € =1el1=1
(1.72)
g = € 06 = J o] =1
€. = €, o e, = (icos® + jsin®) o b
(icos® + jsin®) = 1
. (1.73)

gap = € o 8 = (<irsin® 4 jrcos®) e
(-irsin® + jrcos®) = r?

Therefore, in any admissible orthogonal co-ordinate system,
the metric tensors are:

gii = ei [ ] ei (1°74)

Either the product of a covariant metric tensor and a con-
travariant tensor, or a contravariant metric tensor and a co-
variant tensor are called associated tensors. An example of
an associated tensor is the product of a contravariant metric
tensor and a covariant base vector. The result is a contravari-
ant base vector. To illustrate this fact, polar co-ordinates r
and O, and cartesian co-ordinates x and y are used. In the

polar co-ordinates, the metric tensors and covariant base vee-
tors are:
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L ¢ (1.75)
e, = icos® -+ jsine

s = —-irsin® 4- jrcose®

J

Now, to find the contravariant base vectors, the following
equation is used:

i PSS P
11

P 71 rron
el = gilte (1.70)

Using Equation 1.76 and the values in Equations 1.75, base
vectors e! and e? are:

- - - o - N
el = g (icos® | jsin ®)
— icos® + jsin®
— = e . . > (1.77)
e? — g?»* (-irsin® -4+ jrcos®)
i j
— —sin® +——cos0®
r o
To show that e! and e? are indeed contravariant base vectors,
Rank 1, they will be used to compute e* = i.
. .. oX 3
e = {1¢cos® 4 Jsin® =7
i j o4
+ | - —sin® +—cos @ | —
r + r 20 - (1.78)

e! = 1 (cos?® 4 sin? @)
+ jsin®cos® — jcos @ sin @

L
el = i )
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From Equation 1.76 and the following calculations it can
be seen that the contravariant metric tensor, Rank 2, and the
covariant base vector, Rank 1, form a contravariant base vec-
tor or tensor, Rank 1. Now, the corresponding equation for a

coxvrarlant base vector 1n terms of a Pnth‘QVﬂY'Islhf h‘}IQO vnn‘l‘nr
amAd o aAaTre s s nd wnn ndren A oo o~
Alll d Covadlldlll 1ICLLIV WIIDUL iD

—éi = éii el (1.79)

In repetition, associated tensors are formed by taking the
inner product of any covariant and contravariant tensors. The
inner product is the product of a covariant component, Rank
P and the corresponding contravariant component, Rank Q.
This product forms a new tensor covariant, Rank P-1, and
contravariant, Rank Q-1.

Another example of an inner product is the product of co-
variant and contravariant metric tensors. Using the metric
tensors in Equations 1.75, the product g,; g* = 1 will be
calculated to demonstrate that g,, g'* is a mixed tensor, co-
variant Rank 1, and contravariant Rank 1.

ar X _ _ 20 X

5% or + £, g% = 30 (1.80)

€11 g11 — -g—'n én

gagt = (1) (1) =

- - 1\
99 22 = r2 — =
g, & (r?) ( r2) 1
or 0 X 0

= CO0S 0, = COS
oX 0
00 1 X )
% = 1 sin 0, =5 = ~r sin @

g,.8" = 1 (cos?® + sin?e) = 1 (1.81)
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KRONECKER DELTAS

The Kronecker Delta is defined by the equations:

Q) k )
O ; I, 11 ) Kk
- (1.82)
k
8 = 0,ifj # k
J J

An example of a Kronecker Delta is the equation:

xk i k
o oy _ (1.83)

oyl oxi O J
To illustrate Equations 1.82 and 1.83, the relation between
cartesian co-ordinates x and y, and polar co-ordinates r and
® is used.

First, welet k = j =1, andi =1, 2
1 oX Oor 2X 00
8 i  or 2x T 30 3%
1
R = Cc08?20@ 4 sin*’® =1
L ]

Next, weletk = j = 2,andi =1, 2

2

__ayar+aya@
82"aray 00 y

[\

8 Sin?® -4 cos20 =1
2
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The Kronecker Delta is a mixed tensor, Rank 2, whose com-
ponents in any other admissible co-ordinate system again form
a Kronecker Delta.
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Derivatives

CHRISTOFFEL SYMBOLS

Christoffel symbols are certain combinations of the partial
derivatives of fundamental tensors g.;, and gii. The Christoffel
symbols are not tensors, but they are used to form tensor
equations, called covariant derivatives, and intrinsic deriva-
tives. The derivation of the Christoffel symbols and these im-
portant resulting tensor equations will be presented in this
chapter.

In the following section, Christoffel symbols of the first
the second kind will be derived. The Christoffel symbols of the
first kind will be derived for a three dimensional co-ordinate
system. Three indices, i, j, and k (each ranging from one
to three), will be used.

We start with the equation for covariant metric tensor g;;

in terms of base vectors &
N de AddbS N A AT AT AR A A N “iy

£ O
Cjy CXe

gy = & ° g (2.0)
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Now, the partial derivative of the fundamental metric tensor
can be expressed:

&1 ¢ (213
I T ML (2.1)
aa oa

Xu

Q)

Q)

Permutating indices i, j, and k in Equation 2.1 we get the
following two equations:

0Lk (ol Oex

5% = % * & 4 3% * & (2.2)
agjk _ an ° : ask 12 9\
X = % £ - % ® &j (£.9)

The next step is to add Equations 2.2 and 2.3; then subtract
Equation 2.1 from the sum. For this summation we will
make use of the following relations:

a&: aej 2 4
oxi T oxt (24)
Equation 2.4 is true for the following conditions:
r r
g1 = ?__‘. R and g = ?: (2.5)
0 oXJ

The term r in Equation 2.5 is a position vector.

a& d an
oxi an oxi

Now, the corresponding expressions for

Der r Dt %
- —— an — I ————
oOXi oxixi’ oxi oxi xi
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To complete the proof, we need condition:

2 2'1:
oxi xi xi xJ
Making use of Equation 2.4, the sum of the Equations (2.2 4+
2.3 — 2.1) can be expressed:

told 1 08k 08ix 0815
x| T3 [ 3% T oxt T axk] (2.0)

Equation 2.7 is a Christoffel symbol of the first kind. A nota-
tion used in tensor analysis for Christoffel symbols of the first
kind is [ij, k].

Using this notation, the equation is:

.. 1[ogx  ogx oy ...
1), kKl = ’:‘2"| axj axi - a‘xk (&.9)
L J

In Euclidean cartesion co-ordinates, all Christoffel sym-
bols are zero as metric tensors g;; are constants. To illustrate
Christoffel symbols of the first kind that are not zero, polar
co-ordinates r and @ are used. The corresponding metric ten-
sors are:

gll - 1’ g22 — I'2

The variables x!, x2, and x® are:

For these values, the Christoffel symbols of the first kind are:
[11,1] = o0, [22,2] = O
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I

[12,1] 0, [21,2] =r

[11,2] 0, [22,1] = -r

[12,2] =, [21

ni pros—

1] =0
11 =o

’

Now, to derive the formula for Christoffel symbols of the
second kind in a three dimensional co-ordinate system, we
start with Equation 2.7. From using Equation 2.7 and the no-
tation in Equation 2.8, the following equation can be written,
where the three indices i, j, and k range from one to three
as in the previous derivations.

Osi .
axj = [IJ, k] ek (2.9)

If the dot product of & is made with both sides of Equation
2.9,and & * & = 1, Equation 2.9 will reduce to Equation 2.8.
Now, if the dot product of ¢ is made with both sides of Equa-

tion 2.9, it will give the formula for the Christoffel symbols
of the second kind.

am
ox!

° @ = [ij, k] &k ¢ £ (2.10)

The dot products ¢ ¢ ¢ are the contravariant metric ten-
sors. A notation used in tensor analysis for Christoffel sym-

bols of the second kind is: { iaj }

Using this notation and the result gk¢ — ¢k o o Christoffel
symbols of the second kind can be expressed:

a ka s
1]} = gka [ij, k] = %‘" [agu + agj'k _ 8 ](2.11)

ox oxi oxk

&



The Christoffel symbols of the second kind for polar co-ordi-
nates r and @ in terms of Equation 2.11 are:

rll 2 Y
= 0, < = 0

\
[ 7 [
1 22
. o

w
<
\

F 2 Y 1

12

~ o

I
J
R
A
~
|
o

As initially noted in the preceding section, the Christoffel
symbols are not tensors. To demonstrate this fact, the follow-
ing transformations are included. The transformation equa-
tions of the metric tensors in a y and an x co-ordinate system
can be expressed:

oX* XA
oyt oy

]

=t

\Y)
N

g.ii - gaﬂ (' ¥

gi; are the metric tensors in the y co-ordinate system and g5
are the metric tensors in the x co-ordinate system. The Chris-
toffel symbols of the first kind in the y co-ordinate system will
be expressed:

(2.13)

L L o5 ]

. 1
[IJ’ k]} — -—2_-[ Ay vt - Y*
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Now the partial derivatives of Equation 2.12 are:

ogy oxe  oxf RS
* [ oykoy' oy oyxoy’ oy

oyk
Nvra A AvY Ao
oa Ua ua Ubgp

' oyl oyk oxv (2.14)

For a three dimensional orthogonal co-ordinate system,
Equation 2.14 represents nine partial derivatives as i, j, and
k each range from one to three. These partial derivatives are:

a§11 a§22 aéw
oy’ oy’ oyt
aéll a§22 a-g-.33
oy’ oy’ oy?
a-éll ﬁ§22 ’O\é‘.’u}
oy’ oy’ oy?

Of course, any or all of the partial derivatives could be zero.
If all three of the metric tensors were constants, all of the
partial derivatives would be zero. As previously stated, this is
the case in rectangular cartesian co-ordinates.

In Equation 2.14, the dummy indices « and 8 of the second
term in the parenthesis can be interchanged because g8p =
g0 With the interchange of « and s, Equation 2.14 can now
be expressed:

_ l' 'xe  OxP 97xe axﬂ'l
7% = 8as | Syiay oy Avkyi Dyl
Vv LYy Vv v Vv UJ L4 J

(2.15)
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Equation 2.15 is the last term in the brackets on the right
hand side of Equation 2.13. The first two terms in the brackets
agik agjk

— and :
oy! oy
permutation of indices. Referring back to Equation 2.12,
changing indices and taking the partial derivatives as indi-

cated in Equation 2.14, we get the following two equations:

can be found in term

can b ms of Equation 2.15 by

L _ o'k XY o’Xe XY
o oy'oyt Oy + dyiovk oy
oxX* oX¥ 0°OX° 0og,
: . @ 2.16
oyt oyk oy 0ox?8 ( )
L 22xP XY 028 XY
ovt dvioyl ovk + oyioyk Yy
oxf XY ?xX° g,
4 _ By (2.17)

If Equations 2.16 and 2.17 are added and Equation 2.15 is
subtracted from the sum, the following equation will result:

N - S
1'% |y T v oy ovF [aﬁ’ij

azxa axﬁ
+ — g (2.18)
Jyioyl oyk Teb
The second term on the right-hand side of Equation 2.18 is
one-half the sum of the first terms on the right-hand side of

sum (2.16 4+ 2.17 — 2.15). If this term were zero, the Chris-
toffel symbols of the first kind would be covariant tensors,
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Rank 3. But this is not the case and nonvanishing Christoffel
symbols of the first kind are not tensors.

Now it will be demonstrated that Christoffel symbols of the
second kind are not tensors. First, the Christoffel symbols of

the second kind in a y co-ordinate system are derived from
Equation 2.13 as follows
k
= ghu [ ij,,u. ] (219)
1] y y
where,
vk Jy~
k. — pd 2.20
g % o0 ¢ (2.20)

Now multiply Equation 2.18 by the corresponding sides of
Equation 2.20 and substitute » = k in Equation 2.18 to ob-
tain the following equations:

. ) G i j Y
i ; v (e, oyl oy X
oyk  2%xe
+ ox° Qy'oy & e
r 1= N . r ) \
- _ oy* ox* oxf | P + 0*x* Yk
ii |y Tooxr vyt oy «8 | x oyidyl ox¢
(2.21)
2vyra
Equation 2.21 can be solved for ——— . The first step is to
vy JJ-°

Nwrm

multiply Equation 2.21 by -%-;; ; then substitute y = k and
sum:
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o’x*  ox™ QY

+ AviAavi AvY  Axa
Co OJ OJ O

(2.22)

As explained in Chapter 1, the products listed below are
Kronecker deltas:

xm Y7 m
v o 0,
%= QY m
v ox= %

When the summation is made for » = #, and ®» = ¢, both
terms have a value of one; but all other values » = », and
m o o gre zero. With this summation, Equation 2.22 takes
the form:

J2xm Y Ixm m 2xe  PxB
oy oyl ii |y oy «8 | x oyt oy!

(2.23)

Equation 2.23 is the second partial derivative of one co-ordi-
nate system with respect to another admissible co-ordinate sys-
tem. It is not a tensor, but it is used to develop the tensor
equations for covariant derivatives.

COVARIANT DERIVATIVES

xd.
If we write the tensor equation B, = 2vi A and take
)
the partial derivative using the operator a;i , the result

1S not a tensor.
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{ B A 2xa
o8 _ ox o 2%, | 9% 4 (224)
oy! oyt oyl %P oy oy
2xa‘ . .
Using Equation 2.28 to evaluate the term =yToy in Equation
2.24, and substituting « = m, and y = « yields the result:
i a B A b4 xe
2]31' = g}; Ba?; Zx; Ty } gy'y A
Y 1) y
(e ) XY  OxF ,
- > — = A, (2.25)
L oy J x oy oy
ox*® . .
Now substituting the value By = >y A _ in Equation 2.25
yields the result:
OB, Y ) [2A (v )]  Tox oxp
i i
oy! iij }y [BX {“B jx oyt oy’
(2.26)

The term in brackets of Equation 2.26 is called the covariant
derivative of a covariant tensor. Rank 1. It i1s a covariant

s YV Eva alvaaV Vaalda y avivasah <& V&L ALY

tensor, Rank 2. Now, the covariant derivative of a covariant
tensor, Rank 1, can be written:

2A, @
Aus = =g - {;-}A“

In repetition, Equation 2.27 is a covariant tensor, Rank 2. -

2% s ome
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In a similar fashion, we will find the covariant derivative
of a contravariant tensor, Rank 1. The partial derivative of

the equation Bi = gza As with respect to the operator
9 is:
oy’ )
aBi _ aAa axﬁ ayi + Ac azyi axﬁ
oyi T 2xf DQyl 0Oxe 0x4Dxf Yy

(2.28)

By making use of Equation 2.23, Equation 2.28 can be revised
to yield the result:

Bi i Aa « 8 i
L n Bv — 0 n An ox ' oy
oy si [y oxP .8 | x oyl oxe

(2.29)

The term in the brackets on the right-hand side of Equation
2.29 is the covariant derivative of a contravariant tensor,
Rank 1. It is a mixed tensor, Rank 2.

In tensor notation, the covariant derivative of a con-
travariant tensor, Rank 1, can be written:

Ai (17
= + < L Ae (2.30)
Lei)

In repetition, Equation 2.30 is a mixed tensor, Rank 2.

Q

A)ij -

Q)

HIGHER RANK AND MIXED COVARIANT DERIVATIVES

The covariant derivative of a mixed tensor, A!;, Rank 2,
can be expressed in tensor notation by the equation:
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— Aia + Aaj

(2.31)

Equation 2.31 is a mixed tensor, Rank 3. It is covariant, Rank
2, and contravariant, Rank 1. The covariant derivative of a
covariant tensor, A;;, Rank 2, can be expressed in tensor

notation by the equation:

DAy f"‘}A fa)A

A
Bar="—=x - Yy .. [ 7Y .. °°
(1K ) LIx)
(2.32)
Equation 2.32 is covariant tensor, Rank 3
mL ~ AnTra wsand JA“:TVA ‘~1va A-l-' -~ QA“J-\'nnvvnu:g\“" 4"\“ [ FaS o) A n
LIIC LUuUvdadlialliy uclivaluive 1 a llliliavallaililv uciliipur, o0,
Rank 2, can be expressed in tensor notation by the equation:
DA ! | ]
A’,Jk = axk + Aadi + Ala
ak ak

Equation 2.32 is a mixed tensor, Rank 3, contravariant, Rank
2, and covariant, Rank 1.

INTRINSIC DERIVATIVES

Tv\ h]ﬁg\“‘-;\u b ] b e o P P Y 02 2

1l vilapiel 1 1v wasS SIOwIl that th 1€ Vvelioc y vector is a
contravariant tensor, Rank 1. Now, if we take the derivative
of a velocity vector with respect to time, the result is not a

tensor. The following example illustrates the case:
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dr or dx or dy
dt — 92x dt+ay dt

(2.34)

d‘—’r_ r {dx\ N or dx N azrldy\‘*’_l_gid?y
T~ ox \d) Tox aF oy (&) T oy @

It is obvious that Equation 2.34 is a contravariant tensor,
Rank 1, while Equation 2.35 is not a tensor.

Now, to put the acceleration term in the form of a tensor,
we use the intrinsic derivative. The equation for the intrinsic
derivative will be derived using an orthogonal cartesian co-
ordinate system and the vector:

A = Al (2.36)
The total differential of Equation 2.36 is:

dA = dAisl + Aid&‘( (2.37)

If Equation 2.37 is divided by dxi, we have the partial deriva-
tive:

0A oAl . Qe
™ T oW Ao (%59

Now, using Equation 2.10,

lol]
%

o @ = [ij,K] &k ¢ &

we can establish the results:

881 44
. -_-{ s } (2.39)
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oe:
a;‘ = { i“j }ea (2.40)

The next step is to substitute Equation 2.40 in Equation 2.38,

G i +{ v }Aiea (2.41)

ox ox?
2A DAs a i
% = [an -+ { ij } A ] £, (2.42)
A o
Svj = A% ¢, (2.43)

The term in the brackets of Equation 2.42 is the covariant
derivative A,%; of a contravariant tensor. Therefore, the co-
variant derivative A,2; of the vector A¢ is a vector whose

components are the components of referred to a base

ox!
2A
vector system ¢;. An equivalent form for 5% is:
oA A 2.4
‘"é;{j" a.j € ( . 4)
Now, to find the intrinsic derivative of a tensor, we dif-
ferentiate a vector with respect to parameter t
dA A dxi 5 4
T = o9 & (2.45)
The term —~— in Equation 2.45 is a covariant derivative.
U

-~ A

0
X/
the result in Equation 2.45, and use the relation:

Therefore, we can use Equation 2.42 for and substitute
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dAe DAe  dxi
dt ~— oxi dt
to obtain:

dA dAs a . dxi
—_ = | = Al 2.46
dt“[dt+{ij} dt]s“ (2.46)

Now the vector is defined by the equation:

§Ac dAse a — 12 3)
TE =& t 1) =12
(2.47)
Equation 2.47 is called the absolute or intrinsic derivative of
A= with respect to parameter t

Now, if we return to the problem of finding the total ac-
celerations in terms of polar co-ordinates r and @, the results
are readily obtained with Equation 2.47.

dr
First, to find the total radial acceleration, we let T =
Aa
____sAr 2.48
5t dt" { 22 } (248)
1

{ 29 } — -r, and all other Christoffel symbols of the

nd kind with a in the upper position o ymbol

e f 1 S
for the total radial acceleratmn that is the sum of linear and
centrifugal accelerations.
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SAr d®r de 2
st - @ T ( T ) (2.49)
de
Now, to find the total angular acceleration we let = As
sA® d2e N (2 ) ar de 2 ) dge dr
— — _< B reermand
5t dtz 12 dt dt 91 dt dt
(21 (2 ] ,
4 . = { V= — (2.50)
2] 112

and all other Christoffel symbols of the second kind with a (2)
in the upper position of the symbol are zero. This gives the
familiar result for the total angular acceleration.

SA® dze 2 dr de 251
- dE T T @ @ (2.51)

Equation 2.51 can be converted into the familiar equation for
the total tangential acceleration by multiplying it with r.

r8A® _ dze 0 dr
-3 T4 ® &

(2.52)

In conclusion, the intrinsie derivative of a tensor is a
tensor of the same type as the initial tensor. Therefore, the

intrinsic derivative of the velocity vector with res
-l J ¥V W W, YY AWViL A WD

n
AN A A A £ P
parameter t is a contravariant tensor, Rank 1. To illustrate
dx
this fact, we will find I from Equations 2.49 and 2.51.
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dx [ dor do \*1oax dze 2 dr de ] 2x
Nt — - — T e + ) +
I A | | T T T @ aE | 3e
dx [ dr [ de ‘\2- _
i R B I
(do 2 dr de | o (2.58)
T laE Tt TR @ '

In repetition, the intrinsic derivative of a tensor is a tensor
of the same type and rank as the initial tensor. The corres-
ponding equation for this intrinsic derivative of a covariant
tensor Rank 1 is:

N dA., koY, @9
5t T @ ‘{ij} C g (2984

LAPLACE'S EQUATION

Laplace’s equation V2 & has many applications in engineer-
ing and physics. It can be written using the contravariant
metric tensors and the covariant derivative of a covariant

“ ‘.-C ‘-‘O_I e
co of the cO 'msnnf Cctor & in enrvilinear
W\ 4 VAAN, v AA ARAVLL W - A ~ - e B B

vv VNT A =, iy A v v A S v
.

co-ordinates is a Laplacian. In tensor notation, the equation is:

Ve = gi (8,); = gi a‘f@. _ k 0%
oxi X ij oxk

~ 'I ,,,,,,

To illustrate Equation 2.54, the Laplacian will be found for
curvilinear co-ordinates r and ®. Now, the corresponding
notation for the co-ordinates r and @ in Equation 2.54 is:
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- . @1
v2q>:_—1_a_i-{1 _ai__{z 9%

| or? 11 or 11 00

1 [ 2% { 1 Y\ 2% _ { 2 \ 22 |

T e T l22 S~ 22 S o0
- (2.55)

is:

D@ 1 2% 1 P2
Vo — - 2.56

TL ’:g\‘QLl\Nﬂn“ o~ Am-pq:m;n‘-an_ -r nMIJ 'y SV qnghf] .E‘Nicg\"-:l\v\ 0 K/‘ \'?:Q.If]ﬂ
11 Calltdiall CU-ULULLLALED allu altT Ustu, Iiyuaiivill L.0% yI1lClus
the familiar result:

0@ o'®

V2o ! _ (2.57)
ox oy

The two terms in Equation 2.57 are a result of the fact that

ai uny .lDbUJ.LUl byl.llUUJ.b .IJJ. car u::mau .LIJJ.U I CO-0% U. 1iactes are Zero.

As initially noted in this section, Laplace’s equation has
many applications in engineering and physics. Two of the most
important are:
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1. The Laplacian of a potential

M
r

2. The wave equation.
Therefore, these two forms will be used to illustrate the use of
Laplace’s equation.

The first example will be for the Laplacian of potential

d =-—" The absolute value of this function is the form for

the Newtonian Gravitational Potential, Einstein’s Gravita-
tional Potential for the General Theory of Relativity, the Elec-
trostatic Potential, and the Potential for Magnetism.

If two bodies, m;, and m,, are separated by a distance r, in
a Newtonian field, the potential is:

o = — = Kt (2.58)

If the same two bodies are separated by a relativistic distance
r, in an Einstein field for the General Theory of Relativity, the
potential is:

M
r

d — 1 — _
k3 e

~
Do
Ot
e
~

where,

2 pm, m,

Mo—

C is the speed of light.
If two electrostatic charges, or two magnetic poles are
separated by a distance r, the potential is:
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- = — (2.60)

d = +

The plus or minus is used because like charges or poles

€pel, ana upyumuc cnarges or poies atiracu.
Now using Equations 2.58 and 2.54 it will be proved that
the Laplacian of a potential function that satisfies the inverse

square law is zero.

gi 0% _ { K } @1 -0 (261)
oxi oxJ ij oxk

If an orthogonal cartesian co-ordinate system is used, all
Christoffel symbols are zero and E quation 2.61 assumes the
form:

0@ (ol o*®
Ve e 57 = 0 (2.62)
The next step in the proof is to operate on (- . ) with
a2
ox*
L{ - _M ‘ — M or (2.63)
ox |\ r l rr  ox veened
Because it is an Orthogonal Co-ordinate System, r = (x2

r X
+ y* + z?)* and %}-{—: - Using these results, Equation

2.63 is modified and operated on a second time by

-

-~
oA

0 (Mx) M 3Mx ?Jr

X rs = Tr T T Tox (2.64)
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In a similar fashion the next two terms in the Laplacian
can be evaluated. The results are:

D2 M M 3My?
ayz( T ) — T T T (2.66)
o MY M 3Mz?
2\ - 7)) T T (2.67)

M
r
proved to be zero in cartesian co-ordinates. But Equation 2.61
is a tensor. Therefore, if the Laplacian vanishes in one co-
ordinate system, it must vanish in all acceptable co-ordinate
systems.

The final examples are for the wave equation. It applies to
sound waves, electromagnetic waves, gravitational waves for
the General Theory of Relativity, and the mechanical vibra-
tons of strings and membranes.

If the tensor form of the Laplacian is set equal to the func-

In conelugion was
- A& A4 A N AN A , YV CAN

1 2%
tion 65%?’ the result is the complete wave equation for a
three dimensional Euclidean space.
1 2% 1 o k } 0%
CoF = g[“a"m {0 = ] (269
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Term C is called “characteristic velocity,” and it is the
speed of propagation. For sound waves, it is the speed of
sound. For electromagnetic or gravitational waves, it is the
speed of light.

If the wave egquation is written in orthogonal cartesian
4L " NV U\i“wvlv‘& L v -~ cv v a WeVE WANAIACALL
~ J:“g\“-f\n nmn:“ t\nnni':ﬂr\ n]] ﬂhm;u‘*‘n#a] GtTM‘f\n]ﬁ QA FFAA <4
CO-0rdai ldaied, dagalll DTLAUDT all UILLISLULLTL JY1Livuls altc 48, 1U
assumes the form:
1 2% 2 . 2 3 (2.69)
C: ot T ox oy* T oz* '

A solution of Equation 2.69 for spherical waves propa-
gating from a point source is:

& = A sin il (Ix + my 4 nz - Ct) (2.70)

I, m, and n are direction cosines that satisfy the condition:
P4+ m>+n=1 (2.71)

A is the wave length and it can be computed using the equation

A =—F (2.72)
f is the frequency of the source. For sound waves it could be
N\

the V1brat10ns of a metal bar. For an electromagnetic radio
wave, it could be an oscillating circuit.

To write the equation for plane waves, or the mechanical
vibrations of a string, only one co-ordinate is used:

1 2% 220
me ~ 4o - ~ 2 (2'73)
C ot oX

A solution for plane waves is:
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— A sin

(x — Ct) (2.74)

Solutions in the form of Equations 2.70 and 2.74 are called
retarded potentials. Therefore, it takes a wave a finite time
t to travel a distance D.

t =—— (2.75)

If Equation 2.73 is used for the mechanical vibrations of a

ino le mmnlanad CORRR A mass ver unit leneth
115y —— s repldaced b T. 1L IS5 Ule l1ldss pel e 12 LI

of the string, and T is the tension force applied to the string.
A solution for the mechanical vibrations of a string is:

n—ow
. . nnXx
& — ; A, sin v, tsin P
: 1 (<. 60)
n—1

This is a Fourier trigonometric series where L is the length
of the string and . are the natural frequencies for each mode
length.

In summary, there are many other important applications
of Laplace’s equation. Some of the better known are the Heat
equation, Poisson’s equation, the Continuity equation for in-
compressible fluids expressed in terms of a velocity potential,
and the Compatibility equations for stresses in the Theory of
Elasticity.
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Chapter I

Riemann - Christoffel
Tensors & Differential Geometry

RIEMANN - CHRISTOFFEL TENSORS

A Riemann - Christoffel tensor of the second kind is a
mixed tensor, Rank 4. It is contravariant, Rank 1, and
covariant, Rank 3. To derive this tensor, we take the second
covariant derivative of a covariant tensor, Rank 1.

A first covariant derivative of the tensor A, is:

SA ( a )
Ay, = 220 _ LA, 3.1)
> L)

Now, if we use Equation 2.32 and take the second covariant
derivative of Equation 3.1 with respect to x¥, the result is:

2{ ° l (e ) o

O A L iJ 08
Aup = o LICRY VD B
OxkOXI ox %

ij
(Equation 3.2 continued on page 70.)
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( Y 3
Ay
1a

ik
(3.2)
The next step is to form another second covariant derivative
of A,, A, y;, and subtract it from A, ;. The resultis

a
a B 0 { ij A
A:, K Al, kj -— Aﬁ - k a
’ ik o ox
- Aﬁ + aXJ -Aa,
1) a k
(3.3)

An interchange 0
PP Sy 4+l o 4
ug_uauuu 3.3 that

yields the resuit:

{in) o{i}
A:,jl: - Al,kj = [— 1. L

f the indices « and B in the two terms of

have the product of the Christoffel symbols




RIEMANN-CHRISTOFFEL TENSORS & DIFFERENTIAL GEOMETRY

The term in the brackets of Equation 3.4 is the mixed Rie-
mann-Christoffel tensor, covariant, Rank 3, and contravari-
ant, Rank 1. Using tensor notation, it can be expressed:

Vel Y -
«a a
24 .5 L 24 & L
L 1k ) L)
Ra'ljk = - — +
X oxk
B @ B o
- (3.5)
ik Bj ij Bk
TFanat+inn Q@ K ia nallad a PRiarmann _ CTThumagbAafPal tananr nf +lha ann
.u\.iuauxuu Q.U 1D LALITU A AviTlLIIAilll = UVI9IILIDUVULLTL LCLIODUL VUl L1IT DT~
.. Y Y_ _ 1 A ™S _ __ PP Ve b P P R o L | ) P N~ 11 0 q1_ | .
14 KiInda. A nieinalni - CLIristoliel tensor Oxr tne I1irst Kina 1s
the associated tensor:

Rijkl = fia Rajkl

This result can be written:

rsl ] ~ N3, b |
R — L 13 J _ oLJn, 1] T
B o oxk ox! '
o [44
[i1, «] - [ik, «] (3.6)
jk jl

uation 3.6 is the covariant Riemann - Christoffel tensor of
first kind, Rank 4. If the Christoffel symbols in Equation

ARLAAIAY AVIvALLR N Bl RS W NS e A Add AT NS MRS wivvasa

Eq
1€

3.6 are written out in terms of the metric tensors, and the
indicated partial derivatives, the following identities result:

lekl == -—ijkz 7
iju: = —ijkl
\ (3.7)
Rkllj - Rijkl
lekl + Rtklj + Riljk =0 J
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In two dimensions there is only one distinet nonvanishing
component, R.,:.. It is called the curvature tensor of a surface.

RICCI TENSOR

Rij prm— g‘lkijx

It can be written out in tensor notation as:

o{ L} o{ i}

Rn = 1"3'-' / ot s J Z +
’ ox oxe '
a B a B '
- (3.8)
B la B« ij
The curvature invariant R is defined:
R = g‘ij R:j (3.9)

The Ricci tensors can be used to find the Gaussian curva-
ture of a surface, and the curvature invariant is twice the
Gaussian curvature. These important facts will be explained
in the following section.

GAUSSIAN CURVATURE

The Gaussian curvature or the total curvature of a surface
in tensor notation is:

(3.10)

If a curved surface is expressed in orthogonal curvilinear co-
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ordinates, Equation 3.10 can be evaluated in terms of Equation
3.6, and the determinate of the metric tensors. For othogonal
curvilinear co-ordinates u!, u?, and metric tensors g;, g:., the

equation for K is:
(1 2ge) . o [ 1 D2Eu)]
(\/g aul) au"’(\/E auz)_l

(3.11)

-4 [ ol

57?[ ou

K = -

Using the same co-ordinates u® and u?, total curvature K can
also be expressed in terms of the Ricei tensors by the equa-
tions:

R N
11
K =
g‘ll
> (3.12)
R..
-K =
g22 J
Equations 3.12 are the components of the invariant
R = 2K (3.13)

R is called the Einstein curvature.
To illustrate Equations 3.11 and 3.12, the case for the sur-
be ine

ere with a radius r will

ds? = r2d®* -+ r®sin® & d @2

Variables u' and u?, metric tensors g,,, .., and determinate
g are:
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Vg = r*sin &
With these values and Equation 3.11, we get the following
value for K:
K -1 D 2r2sin ® cos d n
— O
2Vrisin?®| o Vrt sinz &
1
K = _
r_

For Equations 8.12, the corresponding Ricci tensors are:

R, = -1

1
TY AL

the curvature:

e

a surface can be foun
tensors or the Ricci tensors.

In the general theory of relativity, the Ricci tensors are
used to extend the concept of curvature to the study of curved
space. This will be explained in the section of Chapter 4 on

Einstein’s gravitational equations.

A agrann ~nf YV 108 caatd 4~ Thn Act € 4+l ra Desasrarne M wos 4 A F A1)
£33 DPALT UL ¥V N 1D dalu l/U UC llab 1L UIICT JAVITLIL 11L = UWIIL1IDLUILCL
tensor is identically zero. The condition Riji = 0 is necessary

and sufficient for a flat space. An example of a flat space is
the Euclidean plane with the familiar line element ds? = dx?
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+ dy? in rectangular Cartesian co-ordinates or ds? = dr* +
r:d®? in polar co-ordinates.

SERRET - FRENET FORMULAS

To lead into the important Serret - Frenet form “l,w for

“ v AwEena A j VAEANY Addafy A UEMALY AT WL A oV - A o a.v.s aida

space curves, a brief introduction using vector analysis is in-
cluded. In Fig. 3-1 we have a space curve r = r(s). The length
of the arc PP? is ds, and as P* approaches P, as a limit ds =
dr. With this equality, the unit tangent vector T is:

dr
— =T (3.14)
us
Pl
\
o T
/
de
e
\
4 1
Fig. 3-1.

Since T is a unit tangent vector, it changes as r moves through

an angle d® by an amount dT = Tde, that is always normal
to T. Therefore, the first Frenet formula in terms of T is:

i AR A N e S VALY, Akd W

dT

5 = kN (3.15)
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1
N is the unit normal and k :Tis called the curvature.

Smce T 1s normal to N, a thlrd vector, B, the unit binormal,

B=TXN (3.16)

puy)
@

w
U

N

Now, the second Frenet formula expressed in terms of the
unit binormal B is:

dB
—a'g-' = —TIN (3 17)
r = - is called the torsion of the curve at P.
The next step is to compute IR using the relation N =
BXT.
dN B % dT
K e (3.18)
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If we substitute Equations 3.15 and 3.17 in Equation 3.18,
the third Frenet formula in terms of the normal N is:

dN

—  — kT + B (3.19)
ds

Equations 3.15, 3.17, and 3.19 are the three Serret - Frenet
formulas. They are fundamental in the theory of space curves.
The three Frenet formulas can be expressed in terms of the
Christoffel symbols. In the first Frenet formula, Equation
3.15, the unit tangent T can be expressed as the sum of com-

§T
ponents, Ti. Therefore, the unit normal N = ™ has the cor-
: . 8T ke s
responding components Ni — 53 and they are intrinsic de-

rivatives of the contravariant vectors:

dxi

de
AN

T =

Using Equation 2.47 and substituting ds for dt, the Frenet
equation in tensor notation for the curvature k is:

1 i k
N = 4T { \f s
ds L i 1r ds

JJ.L )

(3.20)

To illustrate Equation 3.20, we use a circle on the surface of
a cylinder. The line element in cylindrical co-ordinates is:

ds® = dr* 4+ r°de® + dz°

The corresponding value for the line element on the surface
of a cylinder is:

ds* = rzde* + dz

77



TENSOR ANALYSIS

dxi
Now the components of tangent T to the circle are T = ra
b . dr . de 4T dz
WereT:—a—;:O,T:-—-—,an —-—"—(Tg—:o

ds

To find the unit tangent vector, T T¢, we use the length of

the line element for the circle:
dsz = r?2 de?

From the length of the line element, it is obvious that:

{d@)2 1
ds I

\ /
- de 1
— ds T r

Using the following results and Formula 3.20, we will now
compute the curvature kN.

T 1 dT? o
— r’ ds
dx?
5 = T = 0, as X! = r — constant
dx?
=T = 0,asx®* = z = O (for the circle)

ds

For this example, the components of Formula 3.20 are:

1 1 2
kN = dT _|_ T dx
ds 29 ds

-

L}
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. dx* ]
T = ds — r
1
kN' — —
r
2 1
KN? — dT n T2 dx _0
ds 21 ds
dT> 3 dxck
kN* = .+ Ti — = 0)
us> L J k J us
This gives the familiar result for a circle, kN —= — where
N = -1. Now, the second Frenet formula 8.17, expressed in

terms of the Christoffel symbols, is:

dB: (1] dx
LN = n Bi (3.21)
ds J k ds

Where Bi are the components of the unit binormal B.
The third Frenet Formula 3.19, expressed in terms of the
Christoffel symbols is:

1 i k
XTi 4 .Bi = N _9X (322
ds ik ds

T are the components of the unit tangent vector T, and B! are
the components of the unit binormal B.
T mmematoc s dlin dlacamnan Tlaao o TV celn 0 N € O PR, |
411 COLICIUS10IL, LIl Lllec riIclclL roriluldas, 0.49, o.41, 411U
3.22, in tensor notation are the intrinsic derivatives of contra-
variant vectors. Using the symbol for the intrinsic derivative
8, these formulas are:
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—STi kNi 3.23
ol (3.23)
5Bt _
e oy —-TN,‘ (3.24)
oS
8Ni
L — KTi + /B (3.25)

8s

A simple example of a dynamics problem using the Serret-
Frenet formulas is a mass M, traveling along a curved path
with a velocity T, that is tangent to the trajectory. For this
case centrifugal force Fy is

Fiy = MK Ni (T1)2

GEODESICS
A geodesie is the shortest line between two points. On a
Euclidean hlam, it is a straight line. O‘. the surface of a sphere,

it is the arc of a great circle. The equations for geodesics can
be derived by the caleulus of variations, from the metric line
element:

ds = Vg dx! dxi (3.26)

Equation 3.26 can be expressed in terms of the velocity com-
ponents,

.. dxi
X! = ——
dt
Ao — \ [ en A4 19 Or7\
usS =— -— V &1j uv \9.4()

The length of the line element for a time interval t, to t, is:
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t,
s = VeEr % dt (3.28)
t,

Now, to find the extremals or minimum length for Equation
3.28, Euler’s equation for a functional can be used. To derive
Euler’s equation, the calculus of variations is applied to the

functional J:
t.
J = f F (t, x, x) dt (3.29)
t,
Now we write a se

a second T that dif
small variation. It is the J -+ & J, where 8 J is the small
variation. For this variation, the boundary conditions at t; and
t., are § J = O.
Now, for the functional J to be an extremal, the integral:

must be zero.

t.
8 = - — 5% dt = O (3.30
ﬂ ( = °% + =5 8% ) (3.30)

1

-

oF or .

The second term under the integral in Equation 3.30 can be
integrated by parts.

[t 2F . oF 1 [ " d [ oF \
o ) —_— _ SX — ( - )8X dt
t, ()8 [@):¢ t, t, dt oX
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The first term on the right side of Equation 3.32 is zero, as
§x = O at boundaries t, and t.. Equation 3.80 then becomes:

t
ag= [ [2F 3——_dIaF\3---|dt:O
/. | 2% at |\ ox | |
J UL L i i J
(3.33)

Since the integral from t, to t, must be zero, the term in the
brackets can be divided by 8x and set equal to zero. This re-
sult is Euler’s equation for the extremal of a functional.

oF d [ oF \

=X T @ \ak)_—_() (3.34)

Now, Euler’s Equation 3.34 can be expressed in generalized

co-ordinates x%, and — F xk The result is:

oxk

dF &*
Fxi-—— =0 (3.35)

The next step is to evaluate Equation 3.35 for the line element:

ds = Vg, £ % dt (3.27)

The corresponding values for F, Fxk, and FXk are:

F = V &1 Xt xi (3.36)
...\ 3oy .. .
Fxk = 3 ( g.;Xixi ) gafj xi XJ
\ /7 v
-3
ka = ( gljki}‘d ) - gu; 5({
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Using these values, Euler’s equation for the line is:

081; i
d gix Xi axk '
A4 e e -_— ———— - O (3'37)
at I Vg X' XJ I 2\/ng xi xi
B -

From Equation 3.27 we can get the result:

- =8= Ve, X% (3.38)

Now, substitute Equation 3.38 into Equation 3.37:
ogyy i %
d gn: ) & axk

If we perform the indicated differentiation in Equation 3.39,
the result is:
.. .. oL .. . £ix xi §

xi 4 ogu xi xi 3 ixi = (3.40
&ix 5% - axkxx = —— @G )

The next step is to let parameter t become arc length s, and
set:

ds
S = ds =V ng xixi =1 (3.41)

Then, the left-hand term in Equation 3.40 becomes zero, and

+1\ o AI\“'G Af\“ I\"ﬂ A‘#f\“nﬂ“‘ n+1 Fas s R % ¢ | 4'1\ wor oy

LLIT UULD UCTLIULTC UlllciTliLialivil wiull Icopclu U

o a
S. The second term on the right-hand side can be expressed
as the sum of two terms. With these changes in Equatio
we obtain:

CS
0o
>
L
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dzxi " oL 0Lk 0833 dxi dxi
F ———— _ = O
£ ds? TE [ oxi T oxt oxk ] ds ds
(3.42)

The second term in Equation 3.42 is a Christoffel symbol of
the first kind. If we form the inner product of Equation 3.42
and the contravariant metric tensor g, the result is the equa-
tion for a geodesic in terms of the Christoffel symbols of the
second kind.

Ezf_+‘{ ldx ® _0o (a3

as” L i J J ds as

Now the equation for a geodesic on a two-dimensional mani-
fold, or surface V, with the co-ordinate ui is:

. i .
vy { l Ww A _ 5 (349

(i’ j’ k = 1, 2)

The concept of the geodesic is important in the study of dif-
ferential geometry, Newtonian dynamics, and the general
theory of relativity. To illustrate the application of Equation
3.44, two examples will be used. The first example is the
geodesic line on a Euclidean plane. If the space is Euclidean,
the metric tensors are constants and the Christoffel symbols
vanish. Then, Equation 3.44 reduces to:

v _ o i = 1,2
— = (=12
dut

— = A,

ds

ui"—:‘-A:S-[—Bx
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This result, where A; and B, are the constants of integration,
gives the two components of a straight line on a plane. There-
fore, the geodesics on a Euclidean plane are straight lines.

The second example is for the geodesics on the surface of

a sphere. The first step is to use the spherical co-ordinates,
wl 2 o) 0 wvin Adsveen w  Awadl -‘-LA -..AJ-..:- ) -V,
u' = $, w* = O, a radius 1, and the metric line element
. .
ds? = r2d®* 4 r?sin? & de? (3.45)

The metric tensors g,; and gii for Equation 8.45 are:

. 1
g, =r? g = —
r-
2 o1 "@ 2 1
= I? sIn® P =
g2 » & r2 sin® @

and the only nonvanishing Christoffel symbols have the fol-
lowing values:

1
= — sin®cos ®
22
2 2
,[ — { — cot &
L 12 ) (21 J

Using these Christoffel symbols and Equation 3.44, the two
equations for the components of the geodesics on the surface
of the sphere are:

d2® i { de ) 2
———— sin ® cos & — =0
ady~ \ us ,

d=e 9 cot do de o
ds? T 2cote ds ds
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Now, if we let ® be a constant,

¥ is also equal to zero, as TIS constant. Now, it can be con-

cluded that the arcs of great circles are geodesics.

The concept of a geodesic can be extended to the dynamies
of bodies in gravitational fields. In Chapter 4 the geodesic con-
cept will be used for orbital bodies in a Newtonian gravita-

dlenal £..13 ammd Loace Alidbal LA 2 TV o atntnla wala <y o ~
Liolial 1icia, 4Iliu 10 oipviuvdl DUUL €S ll.l LInsiein s LC}.dthlbtlb

~”»

gravitational field.
PARALLEL DISPLACEMENTS

Equation 3.44 can be written in terms of the components
of the unit tangent vectors to a geodesic. First, we let Al rep-
resent the components of the tangent vectors:

. du! .
Al — 5 = T (3.46)
The corresponding line element is:
ds? = g ul w (3.47)

Now, Equation 3.44 in terms of the tangent vectors Ajl, and the
condition stipulated by Equation 3.47 is:

i i k
A’ A W g (3.48)
dS jk dS

A Y

(i, j’k = 1’ 2)

In conclusion, Equation 3.48 defines the parallel displace-
ments of the tangent vectors to a geodesic. The parallel propa-
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gation of the tangent vectors to a given curve is a geodesiec.
But, it must be emphasized that the parallel displacement of
tangent vectors do not form a straight line unless the surface
is a Euclidean plane.

The distance (ds) from a point p to a point p* on a sur-
face can be measured by the change in the position vector
(dr). If the position vector to the surface is expressed in cur-
vilinear co-ordinates u! and u?, distance ds? is:

| —~ ~ r -
ds? = dr - dr ;I or dut +;2L du? | . [ _9F du*
L ow owr | " | ow
o qu ] (3.49)
ou*
or or [ . \°* _or or
ds? =— o — du! 2— . — du' du?
ou ou’ '\ ,l STy ou* ™
or or *
. 2 3.50
e e ( du ) (3.50)

The metric tensors for the surface in curvilinear co-ordinates
u' and u? are:

— or or

g1 = =i ¢ Su (3.51)

_ or or

g = aul . 3112 (352)

F— arﬂ . ar., (3.53)
du? u’
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With these results, the first fundamental form for the surface
in terms of the curvilinear co-ordinates u! and u? is:

ds? = gy (dub)? + g dutduz + g, (duz)?  (3.54)
If curvilinear co-ordinates u' and u® are orthogonal, g,, is

zero, and Equation 3.54 reduces to the familiar form for the
line element of a surface.

ds* = g, (dul)® + g, (du?): (3.55)

The tangent vector to a surface in terms of co-ordinates
u! and u? is:

o dr or dut  Or du?
4

— Tds out  ds T 2w ds

The corresponding term for the curvature is:

dT d*r % |' dut 'l . %r dut du?
ds — ds* — 2(u)?*[ ds u' 2u®* ds ds
or [ dw }° or duw or dwu?
a(u2)2[ ds ] out  ds? + 2u*  ds® (3.56)
. dT
Since & = k.N, curvature k. can be found by the equation:
R O
— TE (3.57)
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o’r dut 7° o'r |du* du?
ko =| N - 21 N -
[ 8(111)2][ ds ] T [ ou du* | ds ds
| |

. r
The terms with @ and S0 drop out as:
or or
N Sut = 0, N S = 0

b, = N - .

ZICOE (3.59)

— r
b12 = N - —?_——:"T (360)

ou* ou*

_ o*r
b, = N ¢+ ——— 3.61
22 a(ug)g ( )

b, (dut)? 4+ 2b, dutdu® + b, (du?)?

k. — ( ) + 2dS2 + Do ( ) (362)

The numerator of Equation 3.62 is called the second funda-
mental form for a surface. In tensor notation, it can be ex-

pressed:
B = b, (du)® + 2b,, dutdu? + by, (duz)2 (3.63)

Terms b.., b.s, and b., are covariant tensors, Rank 2.
The normal curvatures in the directions of co-ordinate curves
u* and u? are:
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E11
k, = 3.64
g1 ( )
L (3.65)
2 Loo

The total curvature K can be expressed in terms of the de-
terminate b of covariant tensors by, 512, and b,, and determin-

ate g of the corresponding metric tensors g, g:., and g.. for
the first fundamental form.

P
K =— (3.66)
g
The equations of Gauss in terms of b are:
E — —1 —22 - —212 = R1212 (367)
b Rioe
K= = — (3.68)
g g

To demonstrate that b = Ry, the following analysis is
included. Let the position vector to the surface be described
by orthogonal cartesian co-ordinates xi, xi, and x*; and the
surface be deseribed by curvilinear co-ordinates U¢ and UB.
Using this notation, the surface vectors can be expressed:

oxt .
= % (3.69)

The first covariant derivative of Equation 3.69 is:
e T e T A

Xia.ﬁ — - + an Xl(ﬁ _ x i
ous ouf ijk Jx afB Ju !
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As noted, x' are cartesian co-ordinates, and the Christoffel

symbols{ jlk < are zero. Therefore, the covariant derivative

of Equation 3.70 at the pole is:

i - 8 ~
) ox! 0 )
xi = - 1 3.71
o ou* ouf Juv ou” { a B }u o GTU

Permutation of indices in Equation 3.71 and subtracting
yields the result:

” -

5 > [ %)

o e -l 2] N 1..
e Lauﬂiav Ju auviaﬁ }uJ 6
(3.72)

The term in the brackets is a Riemann-Christoffel tensor
of the second kind. It is of the same form as Equation 3.5 with
the last two terms equal to zero. Now using the symbol for
Riemann-Christoffel tensors, Equation 3.72 assumes the form:

xi - X! — Ro_xi (8.73)

a,fy a,yB afvy 8

If Nt is a unit normal to the surface, and referring to
Equations 3.59 through 8.61 b .5 has the values:

Ar
— UL
R i e i i —_
baﬁ = Ni « x Y where x! = S0 (3.74)
in terms of bm3 and Ni, xi g ls:
xla.ﬂ = baBNl (3.75)
rmt. e e et d AL . L TVndlioan O P S
111€ Ccovarlalll aerivatrive 0L L(udllOll o.{v 15
i — i h I i
X' ey = N - baﬂ + baM N (3.76)
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To evaluate N,i_y Weingarten’s formula is used.

N} = - g, x (3.77)

B

AN . orefh
- gep

~i —_ h h i {2 71
P3N a,ﬁﬁy —— Uaﬁ,l‘/ 49 N \Ve i )

~r
yfAﬂ RS

af

Substituting Equation 3.78 in Equation 3.73 and the per-
mutation of symbols yields the result:

(b )Ni — g% (bbb, -b, b,)x, =R x,

(3.79)

af,y - ba'y,ﬂ

The inner product of Equation 3.79 by Ni and the ortho-
gonal condition, Ni « xi. = 0, yields the result:

— e

-b =0 (3.80)

afy,y av,B

The inner product of Equation 3.79 by gixi,, yields the
results:

U
Q
N
22!
>
<3
I
=2
e
™
=2

= Roupy } (3.81)

Py
b = Rpaﬁ’y

Equations 3.80 and 3.81 are called the Codazzi equations.
Therefore, as initially noted in Equation 3.68 for two di-
mensional surfaces:

B = R1212 (3.82)
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Chapter IV

THE DYNAMICS OF A PARTICLE FOR CLASSICAL MECHANICS

In the Newtonian physics the law for the force on a free

particle is Fi = Mal. From this law we can derive the con-
M .

ranta Af mamantiim NT i anAd Ir2inatin anaronr R {vil 2

\.cyu vl LLLUILLCLLUMILL, iYL Y ) Alidl ND1IIT ULV TIL1ICL J’ 2 \ Y )

Velocity vector vi, is a contravariant tensor, Rank 1. Ac-
celeration vector ai, can be expressed as a tensor by writing
it in terms of the intrinsic derivative of the velocity vector.

i dxi
b dt
@ 1 dxi  dxk
a‘r — 4.1
& ) g [ D

i

Equation 4.1 is the equivalent of Equation 2.47 with = Ai

It is a contravariant tensor, Rank 1. Examples of the acceler-
ation tensor are included in the section for intrinsic deriva-
tives in Chapter 2.
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The product of the mass of a particle and its intrinsic de-
rivative, a!, can be thought of as the contravariant tensor com-

ponents, Fi of a force, F.
Fi = Mai (4.2)

The actual components of the force, Fi, are found by the
equation:

Fi = /g Fi (4.3)
The corresponding term for an increment of work, dWi, is:
dWi = g, Fi dxi (4.4)

Now, kinetic energy T of a particle can also be expressed as
a tensor equation:

M
2

T —

g1y i X (4.5)

An example of the kinetic energy in polar co-ordinates, r and
®, using Equation 4.5 is:

5 (r* + r*e?)

LAGRANGE'S EQUATIONS OF MOTION FOR

Newton’s Law, for a force F,, in the form used by La-
grange can be expressed:
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d[aT]-_al—_- , (4.6)

dt % oxi

The term on the right-hand side of Equation 4.6 for a con-
servative system expressed as a function of the Newtonian
gravitational potential is:

oV
Fo=-—x (4.7)

As explained in Chapter 1, Equation 4.7 is a covariant tensor,
Rank 1.

Now, referring back to Equation 4.6, the equivalent form
in tensor notation for the terms on the left-hand side is de-
termined as follows:

oT ..
- = Mg; X (4.8)
d { .\ [ .. o085 .. ., \
T{t__( Mg'xj XJ ) =M ( gi; X -+ axk x) xk ) (4'9)
T M x
= ki (4.10)

If we subtract Equation 4.10 from Equation 4.9, and use the
result:

o813 1[agij n agu]

oxk . 2| oxk %

we get the following equations:

d [T _ 8T _ yf g% + [ik i xx) (411)
dt ox! oxX!
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d T T b 1 L] °
90 | - 2 =M% 4 Lo
dt ). xi jk
(4.12)
TTeine Ranatiane 419 and 47 wa hava T acran on’s anmatinng
Uﬂl.l.ls J_J\:lu.auxuu.a Leddd QLI TEe by YYOU LlAYTO uu5 i v v TYuUuarviviio
of motion for a particle in a Newtonian gravitational field.
1
L .k aV
Mg, | x! + Xixk | = - , (4.13)
i
ik ox
To illustrate Equation 4.138, we use the motion of a2 narticle
AV Al AUTUL LAV U\iuuu.u.u. T-LU, YVWOU UV Vilw 11ilVWVLIVAL VUL & H“L UJ.\/L\I’
M Arcnimilhad o mmlat am ~vdicatoc v and o
vi, aescrivcua v puial CO-0O1Ulilldal I 4l Y.
XX=r g, =1
X’ = 0, g = I?
r 1 3 1 Y7
. ® v
VIor I Xl L J L{X2\2I:_ (4.14)
B T3 A7) X! \F.13)
| 22 | ]
\
2 2
Mggg .}.(2 + - }.{2 —+‘ }.(2 5(1 =0
12 | 21

(4.15)

The right-hand side of Equation 4.15 is zero because the gravi-
tational potential is a function of distance r. Using the values
for g,, and g.,, the only nonvanishing Christoffel symbols are:

NI MEME

22

Now, Equations 4.14 and 4.15 assume the familiar form
for the orbit of a particle, M, about a central body, m y» M.
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M [T )2 oV 4.16
r — r@® = — >t ( )
M ( r:e 4+ 2r(;)1") =0 (4.17)

CLASSICAL SOLUTION OF THE TWO-BODY PROBLEM

The solution of Equations 4.16 and 4.17 will give the orbit
of a particle, M, about a central body, m»M, (Fig. 4-1). These
equations can be set equal to zero and expressed:

; ) / Fig. 4-1.

/// X

/ :
Fordt 4 =0 (4.18)
w(-;-i{-( v 6 ) — 0 (4.19)

If Equation 4.19 is integrated, we get the result:

= h

@

r2

~
g:s
1 \Y)
D
Sam”

de .
Letting-—(—i—,-c-— — 0, Equation 4.20 can be revised.
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h
de =5 dt (4.21)

H« a for all nawrta

Ta N cam nf
A3 VilT oad.l.lc LUL all Pa.‘-u vi

the path. The term 5

and h is a constant of integration. Now, the following rela-
tions can be derived from Equation 4.21, and used to elimin-
ate parameter t from Equation 4.18.

do® is the differential area of a triangle,

de \2 h?
— 1 = : (4.22)
\ dt | It '
dr dr h
- = e - (4.23)
d*r h d h dr 124
dtz = r? de r? de (4.24)

Substituting Equations 4.22 and 4.24 in Equation 4.18 yields
the result:

n d h dr h? 1

o\ T @) - T Tem=0 (425)
1

Now, if we substitute u = - in Equation 4.25, we get the

following equation:

fu="" (4.26)
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h2

r= pm [1 —¢cos (@ —a)]

is the eccentricity and « is called the perihelion constant.
uqua,tluu 4.26 will be compareu with Einstein’s equauuu
for the two-body problem, using the general theory of relativ-
ity. Einstein’s solution is presented in the last section of this

chapter.

THE GEODESIC EQUATIONS FOR THE TWO-BODY PROBLEM
IN CLASSICAL MECHANICS

The two-body problem can be treated in Newtonian physics
as a geodesic. The geodesic equations for the dynamical
curves of an orbital trajectory in a Newtonian gravitational
field are the same as Lagrange’s equations of motion. This
fact will be demonstrated to explain the concept of treating
the two-body problem as a geodesic. The geodesic concept is
used by Einstein to develop his equations of gravity in the
general theory of relativity.

To present the equations of dynamical curves as geodesics
that correspond to any given energy constant, ¢, we use a
modified line element in Riemannian space.

ds? = 2(c - V) g;; dx! dx! (4.27)
The g, are functions of kinetic energy T = (¢ — V)
g; = Mgy (4.28)
— dxi dxi

O 12 Ve rnd Ae? bn e na Al emnmrmcartAarme lanradla )2
In equauon 4.27 line element as? nas tne aimensions (lengin)°®,

(force)?, and (time)?; and v is the Newtonian gravitational
potential. If we divide Equation 4.27 by dt?, we get the velocity
along the trajectory:
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ds

- (4.30)

- dxi 4w |3
— 2 (¢ - i’
[ (e=v) gy — dt]

PR ST, P

the relation T = u., - v;, Wwe can SiIipi u..'y qua
and get the result:

Using the term for the kinetic energy in Equatlo 4.29, and
[ S,
L1Vl

A ON
“t. 2V

ds
dt

= 2 (c—-V) (4.31)

The next step is to find the velocities and accelerations in
terms of curvilinear co-ordinates xi. First, we let K = 2(c - v)

'\“IJ ‘-n]r/\ L ‘‘‘‘‘‘‘‘ # N“"\*"\“ A 01
alilu lanc L.U.C L.U.VC.I.DC U.L uquauuu G de
dt K (4.32)
ds ’

Now, we can operate on Equation 4.32 and find the velocities
and accelerations with respect to xi.

Avi Avi

= o K (4.33)
dzxi dzxi K- dxi dK ks 434
& - @& X - @ (4.34)

The geodesic differential equations of the dynamical trajec-
tory corresponding to the line element in Equation 4.27 are

* .
. 1 .
dzxi dxi dxk
S J k S S
¥ r 1 N\
4
Ml . 4Acenn I | LSRR SO o ) FONILIY R« . IR FU DRI & Iy B I
11e te 1111 15 e viristoliel Sympols witn respect to
jk



_ gii )
hiy = Kgij;, hil = gK
K = 2 (cov) - (4.36)
é'ij = IVngj J

Using Equations 4.33 and 4.84 in Equation 4.35 yields the re-
sult:

- .
1d2xi_1dexi+\[1\r1 o dxk
K® dt K:  dt dt A B R T T
LIk) )
(4.37)
* i
The Christoffel symbols } are evaluated using the re-
ik
lations in Equations 4.36, as indicated in Equation 4.38.
* o1 ) N g — — 1
_ 27 | Kogy n Kogs _ Kogn 4
ik 2K oxk oxi Ox#
e [ - 2K , - 2K - 2K
5K [ g X + Zxp 5% gix axﬁ] (4.38)

The first term in Equation 4.38 reduces to Christoffel symbols
of the second kind with respect to g;; and it will be denoted

by the symbol {jlk} . The second term is reduced by taking

Bi

the inner product of _g“ﬁ‘ and the first quantities in the brack-

AR
ets and a substitution for —;)—{3— in the last quantity. To per-

from these operations the following relations are used:
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Eﬁié—jﬁz O’i=j
P e =0i=k

2K 20v
xF T T %P

Using these relations and multiplying Equation 4.37 by K2 and

. dK oK dx!
lettin — i ion:
ng T = 3 & we get the following equation:
dzxi i dxi dxk 1 —,. ov — oxi oxk
_ - B1
dt: +{jk} dt dt K o T q
(4.39)

) _ dxi dxk
Now, using the valueK = gjxw—a—;-
have Lagrange’s equations of motion for the conservative
system consisting of a particle in orbit about a central force
system.

in Equation 4.39, we

1

. i Y .. .
o dxi dx* _ S 9V (4.40)
ik ox?

adt dt

Equation 4.40 is the equivalent of Equation 4.13. The metric
coefficients g; in Equation 4.40 are related to the metric co-

gy = Mg,
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MINKOWSKI SPACE-TIME AND THE
LORENTZ TRANSFORMATIONS

In the special theory of relativity, Newton’s laws are re-

vised in accordance with Einstein’s concept of snace—time.
Einstein was led to his conclu s by the results of experi-

Ak AmARS Vrara [ v Al N a VaANs a \J NI -~ — ~

ments that proved:

1. The velocity of light in a vacuum is a constant with respect
to any inertial system. That is, it does not depend on the
relative velocity of its source and the observer. An inertial
system is defined as a system at rest, or having a constant
velocity in a straight line and free from rotation.

2. The measured lenoth of a line in an inertial svstem varies
WIitn tne reiative veioCity o1 tne O0Server. i1 tne ODSErver

is traveling with an inertial system that has a velocity, V,
the measured length of a line in this inertial system will

be L. If the observer is at rest with respect to the inertial

system containing the line, and the line is in the direction

of the velocity vector, V; the measured length o l1ne
ma 1-_- L. 1 .

will be smaller. The
rest will be:

PRV & I
engtn

L = v1 - L (4.41)

This phenomenon is called the Fitzgerald contraction.

In conjunction with these experimental results, Einstein
postulated that physical laws must have the same form with
respect to all inertial systems.

Now, to write the laws of physics for the special theory of
relativity, we must find an invariant with respect to all in-
ertial systems. It is obvious that the Euclidean line element
dS? = dx* 4+ dy® 4 dz* is not an invariant with respect to
all inertial SYSLeI‘nS because of the F uzge'ram contraction. To
meet this need for an invariant that is consistent with the
constant velocity of light and the Fitzgerald contraction, we

have the four dimensional space-time of Minkowski and the
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Lorentz transformations. The space-time line element in Min-
kowski space using orthogonal cartesian co-ordinates is de-
fined :

dS® = dx* 4 dy® + dz® -

—_— T i U —

2dt = 0O (4.42)

To explain Equation 4.42, we refer to Fig. 4-2. The square
of the distance from a light source at point P to the origin,
in any inertial system, must be the sum of the squares of the

projected lengths of PO along the co-ordinate axis, X, y, z. It
is also true that the distance from P to the origin must be
equal to the product of the velocity of light, C, and the time,
dt, required for light to travel from P to the origin.

Now, if we have another inertial system, X, y, z, that has
a velocity, V, with respect to the initial system, x, y, z, the
space - time line element must also be zero.

dS: = dx® + dy® + dz2 - C2dtr = O (4.43)

Cd{’/

J

/7
/ &

P

l\__,—\./-\_./'
ax

Fig. 4-2.
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If the orientation of the axis in the two inertial systems is
the same, and relative velocity vector V is parallel to the x and
X axis; measurements taken along x by an observer in the x,
y, z system will be shortened in accordance with the Fitz-
gerald contraction.

ae = 1-_V | ax
| |

7~
tl:v.
IS
e
~

2

But the velocity of light is a constant. Therefore, the incre-

ment of time, dt, measured by the observer in the x, y, z sys-
tem must be modified for Equation 4.48 to maintain its in-
variant value of zero. The complete set of transformations for
the invariant four-dimensional space-time line elements are

the Lorentz transformations.

_ 1 3
X —m——— (x -Vt
/ V,_,( )
T C
y=1yY
. > (4.45)
7z = Z
_ 1 Vx
t = L t - o
Vi-T¢c )

Now, to prove that the Minkowski space - time line element
is invariant with respect to a Lorentz transformation, we check

the equation for line element dS? in the X, y, z inertial system
that is moving with a constant velocity, V, with respect to the

- -0 S 1t T ed TTefon e Tlsnodtmane A A -0 —r  aandd
X, ¥, z inertial system. Using Equations 4.45, y = ¥y, and
Z =7

z. Therefore, dx2 — c dt® must be identical to dxz — C2 dtz.
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_ dx - Vdt

A
P -o

— Crdxz - 2C*Vdxdt + C2Vzdt? (4.45)
ax® = Cz — V2

v
B dt-’~c'2—dx

2

C2dt? - 2V dx dt + dx?

— C2
c:-Ve

(4.46)

Ctdx? - V2dx® 4+ C* V2 4tz - C*dt?
(C* - V2)

dxt - C2dt2 =

dx? — C2dt? = dx? - Cz dt (4.47)

Thus, it can be concluded that Minkowski space - time line
element dS? is invariant with respect to a Lorentz transforma-
tion. Using the concept of the metric tensors, the space - time
line element can be written in the following two forms:

dS? = C2dt®* - gy dxidxd, (i,j = 1,2, 3) (4.48)
usz — a dvadxﬂ { 2 — 1 9 9 A) {A AQN
—_= B o y \& P — iy, &y 9yay \ XXV )

11 = g1 Q22 = a2y B33 = Las 8y = C?
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The Minkowski space - time line element is used as the in-
variant for Einstein’s special theory of relativity. In the fol-
lowing sections on the special theory of relativity, Newton’s
laws of motion are rewritten to comply with the Lorentz trans-
formations and the Minkowski space - time line element.

THE FOUR-DIMENSIONAL MINKOWSKI MOMENTUM VECTOR
AND EINSTEIN'S ENERGY EQUATION

Because of the Lorentz transformation, the Newtonian
velocity vector,

dxi
dt

and the corresponding acceleration vector,

A2 i
u” a

dt?

do not comply with Einstein’s postulate that physical laws
must have the same form with respect to all inertial systems.
But, with the differential, dS, in terms of the Minkowski
space - time line element, we do have the required invariant
to write the laws of analytical mechanics for the special theory
of relativity. Using invariant dS, the Minkowski four-di-
mensional momentum vector is defined.

dxi
P=—mC— ((U=1234) (4.50)
dS
] dxi
To evaluate the components of velocity vector as we use a

set of orthogonal co-ordinates, x = x!, y = x? z — x?% and
t = x*
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= (C:dt? - dx* — dy? - dz?)%

as — ) dx \? dy \°* dz\* 1%
=1 C - ] \& “\& dt (4.51)

In Equation 4.51, the total velocity squared is:

. dx \?* dy \? dz \?
=lw) fl®) e (4.52)
If we substitute corresponding value V2 in Equation 4.51, we

will have line element dS in terms of velocity of light C and
relative velocity V.

V2
= (C* =-V)2 dt = CV1 - Ch dt (4.53)

Substituting dS as de termlned by Equation 4.53 into Equation

p M, C dxi M. dxi

"‘C 4 V2 dt / v: dt  (4.54)

e e
Component P* = m, C i is called relativistic mass m of

dS
particle.
m,
Pt = m =
V2 (4.55)
-

e AT

Quantity m. is called the rest mass of the particle. The rest
mass is the value calculated by an observer moving with the
same velocity as the particle.
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From Equation 4.55, Einstein’s energy equation can be de-
rived. The first step is to multiply by Co.

m-—

If V<<C, a Maclaurin expansion yields the approximate re-
sult:

[
P
-
o

mC* = m, C* +

N

The first term on the right, m, C?, is called the intrinsic energy

m,
of matter. The second term on the right, —— V2, is the fa-

miliar term in classical mechanies for kmet nergy.

Returning to Equation 4.55, relativistic mass m becomes
infinite as the velocity of the particle approaches the speed of
light. Therefore, the relativistic mass must be thought of as
the variable resistance to acceleration, and not as the meas-
ure of ponderable matter in the Newtonian sense.

THE MINKOWSKI ACCELERATION AND FORCE VECTORS
Prior to presenting the Minkowski acceleration and force

vectors, the Newtonian force vector will be explained in terms
of the t1me rate of change of the relat1v1stlc momentum. This

o
o &
"1
(¢°)
o
ban
o
S
-
3
;.Q
<
&

force vector are not always in the sam
tion for the Newtonian force vector is:
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‘ d m, V?
F=-x 7 (4.58)
LT

To illustrate the fact that the total acceleration vector and
resulting force vector are not always in the same direction,
we let V. = V? be the total velocity of a particle with respect
to an inertial frame, and compute the component of force,
F., along the x axis. Using Equation 4.58, we get the following
results:

/\
x
\../

m,

m,

\/_ (V)2 V. [\/1_ (V) ] V. (4.59)

Letting a. = V,, and combining terms in Equation 4.59,
F. has the value:

F. =

m,

F. =
[ [ (Vx)z]s A (4.60)

Cz

In a similar fashion, the component of force, F,, for an acceler-
ation vector, a,, is:

m.

= SO b (4.61)
l-——

Now, if we take the vector sum, a, + a,, it will be at an
angle with initial velocity vector V.. But, the vector sum,
F, + F,, will make a smaller angle with initial velocity
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vector V,, because inertial mass m. in the x direction is larger
than inertial mass m, in the y direction.

m,
m! - r I 7wv N 2 i | 3 A 8N
| / (Vo)® | (4.62)
LY ¢ ]
m,
my, —
\/ (V)2 (4.63)
The foregoing analysis indicates that we must think of
R PR S I [ JUNEE & FESRESRRIY. S T | [ T . S S K
LIle 11eruidl IndasSs a5 Liie darlaple resisitaince a8 ondaerapie

'L
matter to acceleration. Now, to find a force vector, Pi, in terms
of Minkowski space-time invariant dS, it is necessary to find
a new equation for the acceleration. The equation that
complies with this condition is the Minkowski accelera-
tion vector, fi.

sui d2xi i dxi  dxk

5§ = a5 T . aS~ as
jk

fi =

(4.64)

(1,j = 1,2,3,4)

Equation 4.64 is essentially Equation 2.47 as applied to the
dxt
four-dimensional space - time manifold. The term ui = == is

a component of the Minkowski velocity vector. The equation

for Minkowski force vector P!, in terms of rest mass m, and
Minkowski acceleration vector fi, is:

P
Puad o
p=d

»
)

-’

~~
N
N
N

e’

?i oo l'n.oc;2fi
The term f* = 0, as x* = t.
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The Minkowski force is related to Newtonian relativistic force
Fi by the equation:

= v:
Fi = Pi 1 - ——C—_;— (4.66)
To illustrate Equations 4.65 and 4.66, Minkowski force Px
along the x axis for a total relative velocity V. will be com-

puted, and the results compared to Equation 4.60. Using

dx
Equation 4.53, the Minkowski velocity vector, ux — wee is:
. 1 dx
T / (V)2 . (4.67)
C\/l _ \ é\; bl \' TV )

Now, if the reference frame has orthogonal cartesian co-ordin-
ates, the Christoffel symbols are zero and Equation 4.64 re-
duces to:

sux d? x

=38 T @ (4.68)

v
P9

£
I

To find sux, Equation 4.67 is differentiated with respect to
time:

dux

dur = —— dt
(V,)?

1 d? C2 dzx

Sux = — dt -
o ) T o] @

I OE C T Cc

i 1 dzx o
ux = — 3 dt (4.69)
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Now, if Equation 4.69 is divided by the line element:

Minrauralzi arncrnlavatinn wroantar €x alane +hn < cawrloa S
AVLLLLAUYY S allCiTlauivil velwr 17 alung uie€ X axisS 1S
2
£x 1 d*x 470
—1. @ (4.70)

Substituting Equation 4.70 into Equation 4.65 gives Minkow-
ski force vector Px,

d3x

Px — 4.71
\/ (Vx +  dt? (4.71)
1 - ——
kg ry 1 e 4 v d2x - - omea - - e - -_— - -
In Equation 4.71 —— = a,, and Minkowski force P* is in-

deed related to Newtonian relativistic force F*, as calculated
in Equation 4.60 by the factor:

V.)?
— (Vi)

Fx = Px — 2 (4.72)
In conclusion, the total acceleration vector and the total

force vector are not always in the same direction because of
the relativistic mass; and the force required to accelerate a
particle becomes infinite as the relative velocity of the particle
approaches the speed of light.

EINSTEIN'S GRAVITATIONAL EQUATIONS FOR THE
GENERAL THEORY OF RELATIVITY

In the special theory of relativity, all measurements are
made with respect to inertial systems. Thus, the distance (r)
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and the inertial mass (M) of a particle in the Newtonian
gravitational potential must vary in accordance with the
Lorentz transformations. But in the real universe, the con-

cept of an inertial system at best can only be an approxima-
tion. We know that all bodies of ponderable matter are mov-

Ake VV ~ -a S ~ Sva

ing virougn iieiaS O0i 10rCe. 1nese Iie

A
AMAA TIrAava AA
VILT VW1 o o uco-

scribed, to a high degree of approximation, by Newton’s gravi-
tational potential. This means that all bodies are subjected to
gravitational forces and, as a result, their motion must be
accelerated. Therefore, Einstein concluded that the laws of
motion should be independent of co-ordinate systems, and
that the gravitational field influences and even determines the
metrical laws of bpace-bime In an dbberﬂpb to correct for the
inherent errors in using the Lorentz transformations for ac-
celerated particles in a gravitational field he wrote his general
theory of relativity including new equations for space-time
and gravity.

In the special theory, the line element in polar co-ordin-
ates is:

2

dS? = —dr? - r2 de* —r*sin
This is a flat space (Euclidean), and curvature tensor R;j
= 0. Now, if the line element of a particle, M, is written
with metric tensors gi; as functions of the force field, the
g.; become functions of the gravitational potential.

m]’\l\ n“]‘\t\v‘nn]‘lf? ﬂY?mMn"“‘hﬂ] b a g TAY “1h 'pl'\“m "“l’\"ﬁ "'L\f\ 11“[\ I\]I\
1€ SPieEriCaiy SymimelriCair meuric iorini ior une€ iine eie-
A . VRS « I IS b I | P | 41 e P Lo e P L T N
IIleIlE aue Lo DCﬂWd , WIUI Luile g;; aS 1uncrions oI tie

dS? = —eMdr? - r2de? - r?sin? 0de® 4 C*«vdtz  (4.74)

are functions of distance r. The line element in Equa-

faYa¥a] V\nn
UVUTO 11ULV VUL L CO pPUILIU bU llav dPaAltT. 1L1IT dpals

PrO TS |

is cur vea,

G)

h i

distance dr, and differential time dt are func-
tions of total distance r. But, as distance r becomes infinite,
the space must become flat as the gravitational force ap-
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proaches zero as a limit. And, the line element in Equation
4.74 will approach the line element in Equation 4.73 as a limit.

To evaluate A and v, Riceci tensors R;; are evaluated to
comply with the boundary condition, R;; = O, when r = o.

DR Tald

Tht: 51] fUl .uquatxuu 4 74 alL<T .
— — 2 — 2 32 -
g1 = —¢7, 2o = —T5, L33 — =L SIn Q,g,, = &7

Ricei tensors Ry; can be evaluated by Equation 3.8.

CHO-CHY

There are four definite equations for the Ricei tensors
R,,, R.., R.;, and R,,. Using metric tensors g:; for the line ele-
ment as expressed by Equation 4.74, the nonvanishing Chris-
toffel symbols are:

{ 1 1 g 08, _ dA ]
11 2 or 2dr
(1] gt og
< > = - 5 3;2 = —re™
. 2 2 J
Sy . (4.75)
11
.{ —_ - g2 aag;s — —rsinz@¢ >
(53]
« JL R T
- T T2 ar 2 dr
4 4
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[ 2 g2 O 1
3 = =T
\ 12 2 or r
[ 2 ] g2 D L
— — —=S1n® COSt)
2 20
L 33 J N
3 g% 08 1
13 2 or r
[° 1{ _ g ome
o = —5 o — cot®
293 )
J 4 _ g“ ag44 . d'}’
|14 2 or 2dr

(4.75
cont.)

The values for the Christoffel symbols in Equatlons 4.75 yield

the following values for the Ricei tensors when they are sub-
stituted in Equation 3.8, These tensors are set equal to zero
and avralivadad Pase Flha Aassnn Aaery annAidinem D — N Aag w >
allu cvaliluailttcu 1LUL LIIE voUuliu Jy ULLUILIVIL, Lvijy — UV ad 1L 7 oo
R 1 dzy 1 {dy\> 1 dx dy 1 da O’
Ty g T 7| @ 4 dr dr r dr
r
Bp=e? [14 (2 _ 2] a=0
2 \ dr dr
. [ r [d ay] .
R,, = sin?@: ™ 1 4+ —& 4 -sin?@ = O }
2 \'dr dr
R i 1 d>y 1 dy\: 1 dx dy
“ = F “TEe I\ar) TT @ ar
1 dy | _
— —=—1 =0
r r J )
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Now, if we divide R,, by ¢ and add the result to R,,, we get

~

da d
d ar . (4.77)
A + y = Constant
J

But, we must select the values for A and y that will let Equa-
tion 4.74 approach Equation 4.78 as a limit for r> . This
requires that x» and k4 approach zero as r approaches infinity.

an meet thoaca fan
AdLANS\ ViLLWLNO WUVAL

A4+ y=0, A=~ (4.78)
Using the relation A = —y and R,, = O, we can obtain the
result:
v [ 1 ) _ 4.79
dy 1 K,

Now, we let K, — &7, and

Then, substituting these relations in Equation 4.79 yields the
following results:

g, [ 1o F %) _ 4 (4.80)
0 TR T T '
dK, dr
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We integrate Equation 4.81 and obtain:

o2 (4.82)

m
The term Xl 1s the constant of integration and it is associ-

ated with the mass of a central body, m y» M, where M is the
mass of the orbital body. Using Equation 4.82 and the rela-

tions K, = ¢7, A = —v, the line element in Equation 4.74 as-
sumes the form:

dS? = - —%m " r:de® - r2sin’ede® -+

—~
o
go
(V)

s

RELATIVISTIC SOLUTION OF THE TWO-BODY PROBLEM
FOR THE GENERAL THEORY OF RELATIVITY

To solve for the orbit of a particle, M, about a central body,
m y» M, in terms of Einstein’s gravitational equations for the
general theory of relativity, we will use the Schwartzchild

line element; and the dynamical trajectory will be treated as
a geodesic.

pd e ~

dexi 1 dxi  dxk
ax — 0 4.84
ase T { ik } dS~ ~das (4.84)
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Equation 4.84 is of the same form as Equations 3.44 and 4.35.
The first term is analogous to the inertia term in Newton’s
equations of motion and the second term is analogous to the

Newtonian gravitational force.
MmMha fAvet St

i Llc JJ.L [S A%

write and evaluate the four equations for the geodesics in
terms of variables 0, r, &, and t. The first geodesic in terms
of @ is:
2 2
dze 2
S-+2 dr de + (d@)zo
d 12 dS dS 3 3 d
(4.85)
dze 2 dr do N @e0s® de \:? o
& tT 7 ag ag " SO\ Tas) <
(4.86)

de
If the orbit is in the plane, ® = ——;— 45 = 0O, and Equation

is equal to zero.
The next geodesic equation in terms of variable r is:

{u}(ds {;3}(-::;—)!

4.86

o
-+
_—
N
o
o~
S
(¢ o]
3
~’

g s L)

e (AN
/

Two more equations can be written; one in terms of &,
and the other in terms of t. Making use of the condition
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@ — %—, these equations are:
R
ds: 13 | 4 dS
\ 7
d>@ 2 dr do

= 0 (4.90)

2 4 .
L @ dr 5 (a0
ARE L4 [T 8

it & @ wm =0 (4.92)

Integrating Equations 4.90 and 4.92 respectively yields the
results:

de
re — h (4.93)
dS
dt
Log——d—S—— 4+ y = log C (4.94)

But, K, = ¢, and log K, = y.

Now, if we substitute the relation, log K, = v, in Equation
4.94 we get the relation:
at C (4.95)
dS K,

L ol

Because 6 — —42‘——, Equation 4.83 for the line element re-

duces to:
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1
dr? - r:de? 4+ C2K, dt? (4.96)

2m
Cr

K, =1-
If we divide Equation 4.96 by dS2, we get the equation:

1 dr \? de \?2 dt \?
() () s o) wn

dsS

l=-%\3s
From Equation 4.93 we can get the additional relations:
dr h dr
dS — r2 do
dr \?2 h dr \:? 198
dS - r2  do (4.98)
de h
aS —
——dq) 2 ———h2 4.99
dS = Tt (4.99)

Now, if we substitute Equations 4.99, 4.98, and 4.95 in Equa-
tion 4.97 we get the result:

1 h dr \? h? C+
l=- K, ( r:  de ) -~ T, (4.100)
Now, if Equation 4.100 is multiplied by K,, for the value
2m
KO —( 1 - 2 ),
r
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the resulting equation is:

h dr \?2 h? 2m 2mh?
r? de +

To simplify Equation 4.101, it is divided by h? and the substi-

tution u = is made.

du \? ) Ct -1 2m 2mu? o
&) tY=Te towt e %
Now, if Equation 4.102 is differentiated with respect to &,
the result is the equation for an orbital body in terms of Ein-
stein’s gravitational theory using the Schwartzchild line ele-

ment. The resulting equation is:

d*u m - 3mu? L e men
T TV T o T e (£199)

-

Equation 4.108 is of the same form as Equation 4.26 in classi-
cal mechanics, if the Newtonian gravitational constant is

1
modified to accommodate the term o This solution differs
from the classical solution by the small value associated with
3mu?
the term o
. m 3mu? . 3mu?® |
In conclusion, e > e ; therefore, neglectlng~—c—2—— gives

Newton's solution for the two-body problem. The difference
in the solutions has been used to account for the advance of
the Perihelion of Mercury.
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PRINCIPLES AND APPLICATIONS OF
TENSOR ANALYSIS
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CHAPTER 3. RIEMANN-CHRISTOFFEL
TENSORS AND DIFFERENTIAL GEOMETRY

Devoted to the Riemann-Christoffel tensors, Ricci
tensors, Gaussian curvature, Serret-Frenet for-
mulas, geodesics, and the fundamental forms of

a surface.

CHAPTER 4. CLASSICAL
AND RELATIVISTIC MECHANICS

Discusses the dynamics of a particle for classical
and relativistic mechanics. Lagrange’s equations
of motion are developed as tensors for conserva-
tive systems, then written for the two-body prob-
lem and solved. The geodesic concept is intro-
duced by writing the equations of motion for the
two-body problem in classical mechanics, using
dynamic curves as modified line elements in a
Riemannian space. The geodesic concept is used
in conjunciion with the Schwarizchild line ele-
ment for curved space to present Einstein’s solu-
tion of the two-body problem for the general
theory of relativity.
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