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Preface

The objectives in this monograph are to present some topics from the theory
of monotone operators and nonlinear semigroup theory which are directly appli-
cable to the existence and uniqueness theory of initial-boundary-value problems
for partial differential equations and to construct such operators as realizations of
those problems in appropriate function spaces. A highlight of the presentation will
be the large number and variety of examples which are introduced to illustrate
this connection between the theory of nonlinear operators and partial differential
equations. These include primarily semilinear or quasilinear equations of elliptic
or of parabolic type, degenerate cases with change of type, related systems and
variational inequalities, and spatial boundary conditions of the usual Dirichlet,
Neumann, Robin or of dynamic type. The discussions of evolution equations in-
clude the usual initial-value problems as well as periodic or more general nonlocal
constraints, history-value problems, those which may change type due to a possibly
vanishing coefficient of the time derivative, and other implicit evolution equations
or systems including hysteresis models. The scalar conservation law and semilinear
wave equations are briefly mentioned, and hyperbolic systems arising from vibra-
tions of elastic-plastic rods are developed. The origins of a representative sample
of such problems is given in the Appendix.

This is the place to begin study of a particular problem. Once a proper setting
has been established for a given problem to be well-posed, one can then proceed
to investigate those properties of solutions which distinguish the problem, such
as regularity, asymptotic behavior, numerical analysis, stability, special properties,
controllability,.... None of these topics will be discussed here. The objective is
rather to develop for the reader an instinct for the right place (or places) to look
for a solution and the right techniques to use to establish existence-uniqueness in
appropriate function spaces for a broad class of problems. Much attention has been
devoted to develop the connection between the abstract theory and the specific
problems for partial differential equations.

The work is arranged in four chapters and an appendix, and each of these
is divided into numbered sections. All results are formally stated as Theorems,
Propositions, Lemmas, or Corollaries which are independently numbered in the
respective category by their section number and order within that section. Thus,
in Section 4 of Chapter I the second Proposition is called Proposition 4.2, and it
is referenced that way within Chapter I. From any other chapter it will be recalled
as Proposition 1.4.2. Most examples are named alphabetically within their section,
so the third example of Section 1.4 is Example 4.C, and from outside Chapter I it
is called Example 1.4.C.
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The beginning chapter gives a casual but technically precise overview of the
subject in the case of linear problems in one spatial dimension. Most of the ma-
jor notions appear here in this simple setting, including the Lax-Milgram-Lions
Theorem and the Hille-Yosida Theorem, and they are motivated by the classical
Dirichlet and Neumann boundary-value problems and by various initial-boundary-
value problems, respectively. The second and third chapters begin with the theory
of monotone nonlinear operators from a reflexive Banach space to its dual and the
solution of corresponding stationary or time-dependent problems with such oper-
ators. The remainder of each consists of the development of the applications to
appropriate classes of problems. The fourth chapter is concerned with the theory
of accretive operators in a single Hilbert or Banach space. Some very useful topics
of convex analysis are developed independently in both the second and fourth chap-
ters. Each chapter contains a wealth of examples of initial-boundary-value problems
for partial differential equations to which the abstract results apply. The Appen-
dix contains descriptions of the derivation of the partial differential equations and
initial-boundary-value problems for heat transport, for flow through porous media,
and for simple vibration problems of mechanics. These model problems begin from
the most elementary considerations of the physics and proceed to many types of
boundary conditions, the Stefan free-boundary problem, the porous medium equa-
tion, systems to describe diffusion in composite (fissured) media, and models of
plasticity and hysteresis. These are intended to illustrate the variety of nonlineari-
ties that are covered by the monotone theory.

There is much independence and intentional repetition between the four chap-
ters, so one can frequently find a short path to a later section. Chapter I is not
logically necessary for anything that follows, but every reader should at least look
through it. For the less mathematically prepared it provides a quick but self-
contained introduction to some linear functional analysis topics, and to the more
seasoned reader it can serve as an orientation to the developments to follow. For
one who will be satisfied with problems in one spatial dimension, such as two-point
boundary-value problems and parabolic or wave equations in the plane, it contains
the construction of the elementary function spaces necessary to bypass the tech-
nical Sections I1.3 and II1.4. A rather complete exposition of the linear version of
this material is contained in Chapter I and the first three sections of Chapter III.
Chapter III depends heavily on Chapter II. Chapter IV is essentially independent
of all other chapters. It needs only the motivation from Section 1.4, and Section
I1.9 is used in Section IV.9.

This work was written primarily for advanced graduate students in mathemat-
ics or engineering science, researchers in partial differential equations and related
numerical analysis, applied mathematics, control theory or dynamical systems for
whom a precise existence-uniqueness theory for initial-boundary-value problems is
of interest. The completeness and level of the presentation should make the book
much easier to read than most research papers on the subject. The primary pre-
requisite for the reader is a previous acquaintaince with LP spaces and the notions
of continuous and linear. The author has taught variations of this material to such
audiences for the past 20 years, with classroom presentation and style modified
accordingly for the specific group. This is the material that has proven to be most
universally applicable and of interest to the students and seminar participants,
many of whom had research interests outside of mathematics. It is not written as
a traditional text, but rather as a guidebook, to lead the reader along the more
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accessible valley trails, to provide a view of the steep terrain of the higher peaks
and an appreciation of those who travelled them before us.

No attempt has been made to include references to all the research papers
in which this material was originally developed or to recount the history of these
developments. The Bibliography contains references only to books which contain
portions of this material, and one can consult these for further discussion of any
one topic or for references to the various sources and versions of the history. If the
reader develops here a sufficient appreciation of the mathematical structure and
power of these methods to pursue one of these references, then this work will have
served its purpose. :

It is a pleasure to acknowledge a debt of personal gratitude to the people who
contributed to the formulation and preparation of this book at its various stages.
The text benefited substantially from the constructive comments of various students
who read parts of the manuscript at a formative stage for both, and I take great
pride in the success that many of them have experienced in their research. Betty
Banner was responsible for the arduous metamorphosis of my scribbled notes into
an early form of the manuscript. Margaret Combs graceously shared her immense
TEXpertise and gave invaluable professional assistance at every stage of the prepa-
ration. Her enthusiasm in the final stages of the project contributed to its timely
completion. Malgorzata Peszyriska carefully and patiently read the final version of
the manuscript. The reader will benefit from her many helpful remarks and sug-
gestions for improvement of the exposition. For myself, I claim sole responsibility
for any remaining errors or offending omissions.

Finally, the author is grateful to the very professional and seemingly tireless
staff of the National Science Foundation for the effective and productive support of
the research reported here.

R.E. Showalter
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CHAPTER I

Linear Problems ... an Introduction

I.1. Boundary-Value Problems in 1-D

We begin by considering two classical boundary value problems. Let H =
L?(a,b), the space of (equivalence classes of) square-summable functions on the
real interval (a,b). By v’ € H we mean that u is an anti-derivative of a function in
L?(a,b), hence, it is absolutely continuous and the classical derivative u/(z) exists at
a.e. point z in (a,b). We shall consider the two following boundary-value problems.
Let c € R and F' € H be given. The Dirichlet problem is to find

veEH:—u"+cu=FinH, u(a) =u(b) =0,
and the Neumann problem is to find
u€H:—u"+cu=FinH, u'(a) =4'(b) =0.

An implicit requirement of each of these classical formulations is that u” € H.
This smoothness condition can be relaxed: multiply the equation by v € H and
integrate. If also v € H we obtain the following by an integration-by-parts. Let
Vo={veH:v e H and v(a) = v(b) = 0}; a solution of the Dirichlet problem is
characterized by

b b
uGVoand/(u’v'+cuv)da:=/ Fvdx , vE V.

a

Similarly, a solution of the Neumann problem satisfies
b b
ueVland/(u’v’+cuv)dm=/de:v, veV,
a a

where V1 = {v € H : v/ € H}. These are the corresponding weak formulations
of the respective problems. We shall see directly that they are actually equivalent
to their respective classical formulations. Moreover we see already the primary
ingredients of the variational theory:
(a) Functionals. Each function, e.g., F' € H, is identified with a functional,
F : H > R, defined by F(v) = f: Fuvdz, v € H. This identification is
achieved by way of the L? scalar product. For a pair u € V;, v € V; an
integration by parts shows @' (v) = —%(v'). Thus, for this identification of
functions with functionals to be consistent with the usual differentiation of
functions, it is necessary to define the generalized derivative of a functional

f oy 8f(v) = —f(v'), v € V.
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(b) Function Spaces. From L?(a,b) and the generalized derivative & we con-
struct the Sobolev space H'(a,b) = {v € L%(a,b) : v € L?(a,b)}. We shall
see directly that H'(a,b) is a Hilbert space with the scalar product

b
(u,v)gr = / (Oudv + uv) dx

a
and corresponding norm ||u||g: = (v, u)},/f, and each of its members is
absolutely continuous, hence, u(z) — u(y) = f: Ou for u € H(a,b), a <
y < z < b. This space arises naturally above in the Neumann problem; we
denote by H}(a,b) the subspace {v € H(a,b) : v(a) = v(b) = 0} which
occurs in the Dirichlet problem.

(c) Forms. Each of our weak formulations is phrased as

uw € V:a(u,v) = f(v), veV,

where V is the appropriate Hilbert space (either H} or H!), f = F is
a continuous linear functional on V, and af(-,-) is the bilinear form on V'
defined by

b
awm)=/k&wv+awyn, wo eV .

This form is bounded or continuous on V: there is a C' > 0 such that
(1.1) la(u, v)| < C|lullv|vlv , u,vEV.
Moreover, it is V -coercive, i.e., there is a ¢g > 0 for which

(1.2) la(v,v)| > collv||? , veV

in the case of V = H'(a,b) if (and only if!) ¢ > 0 and in the case of V = H{(a,b)
for any ¢ > —2/(b — a)?. (This last inequality follows from (1.3) below but it is
not the optimal constant.) We shall see that the weak formulation constitutes a
well-posed problem whenever the bilinear form is bounded and coercive.

First we focus on the notion of a generalized derivative of functions and, even
more generally, of functionals. These notions are fundamental to the construction of
Sobolev spaces. A non-standard aspect of our presentation is that we shall refer to
any linear functional (not necessarily continuous) on test functions as a distribution.
Since all analysis is done in Hilbert subspaces of such functionals, no topological
notions are needed for the whole space of functionals.

Let —oo < a < b < +00. The support of a function ¢ : (a,b) — R is the closure
in (a,b) of the set {z € (a,b) : p(z) # 0}. Then C§°(a,bd) is the linear space of
those infinitely differentiable functions ¢ : (a,b) — R each of which has compact
support in (a,b). An example is given by

[ expl=1/(1—laP)], laf <1
gO(m)—{o, o] > 1.

A linear functional, T' : C§°(a,b) — R, is called a distribution on (a,b); the linear
space of all distributions is the algebraic dual C§°(a,b)* of C§°(a,b). We shall refer
to C§°(a,b) as the space of test functions on (a,b).

A measurable function u : (a,b) — R is locally integrable on (a,b) if for every
compact set K C (a,b), we have [}, |u|dz < co. The space of all such (equivalence
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i .(a,b). Suppose u is (a representative of) an

(a,b). Then we define a corresponding distribution u by

classes of) functions is denoted by L

element of L] _

b
() = / wz)p@)dz, e C(ab) .

Note that @ is independent of the representative and that the function v — u is
linear from L] to C$°*.

LEMMA 1.1. Ifu=0 then u = 0.

SKETCH OF PROOF. We have [up = 0 for all ¢ € C§°. Extend this to hold
for all continuous functions with compact support by a convolution approximation.
(See 11.3.) Then extend to all bounded measurable functions with compact support
by Lebesgue theory. Finally, choose py(z) = u(z) for |z] < X and |u(z)| < A, set
ea(z) = X for ux(z) > A, pa(z) = = for u(z) < —A, and px(z) =0 for |z| > A
Then let A — oo. O

PROPOSITION 1.1. The mapping u — @ of Li (a,b) into C§°(a,b)* is linear
and one-to-one.

PROOF. The kernel of this map is the zero element. d

We call {%: u € L. _(G)} the regular distributions. Two examples in C§°(R)* are
the Heaviside functional

er1?(<p)=/:oso, peCPR),

obtained from the Heaviside function: H(z) =1if z > 0 and H(z) =0 for z < 0,
and the constant functional

T(90)=/Rso, o € CT(R)

given by T = 1. An example of a non-regular distribution is the Dirac functional
given by
ép)=9(0), ¢eCFR).

According to Proposition 1.1 the space of distributions is so large that it con-
tains all functions with which we shall be concerned, i.e., it contains L{ .. Such
a large space was constructed by taking the dual of the “small” space C§°. Next
we shall take advantage of the linear differentiation operator on C§° to construct
a corresponding generalized differentiation operator on the dual space of distribu-
tions. Moreover, we shall define the derivative of a distribution in such a way that
it is consistent with the classical derivative on functions. Let D denote the classical
derivative, Dy = ¢’, when it is defined at a.e. point of the domain of ¢. As we
observed above, if we want to define a generalized derivative T of a distribution

—~——

T so that for each u € C*(a,b) we have 0u = (Du), that is,

b
o) =~ [ uDp=-Dy), e,

then we must define 0 as follows.
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DEFINITION. For each distribution T € C§°(a,b)* the derivative 0T €
C§°(a,b)* is defined by

0T (p) = —T(Dy) , ¢ € C°(a,b) .

Note that D : C§°(a,b) — C§°(a,b) and T : C§°(a,b) — R are both linear, so
0T : C§°(a,b) — R is clearly linear. Also 9 is just the negative of the dual D*
of the linear map D, 8 = —D* : C§°(a,b)* — C§°(a,b)*. Since 9 is defined on
all distributions, it follows that every distribution has derivatives of all orders.
Specifically, every u € L. . has derivatives in C§°(a, b)* of all orders.

EXAMPLE 1.A. Let f be continuously differentiable on R. Then we have

8F(p) = —F(Dy) = / fDpds= [ Dfe = DI

for ¢ € C§°(R). The third equality follows from integration-by-parts and all other
equalities are definitions. Thus the generalized derivative coincides with the clas-
sical derivative on smooth functions. Of course the definition was rigged to make
this occur.

EXAMPLE 1.B. Let r(z)=zH (z) where H(z) is given above. For this piecewise-
differentiable function we have

o7 = [ Dpa)to= [ pl@)te=Fi(p), weCF®),

so &7 = H even though Dr(0) does not exist.

EXAMPLE 1.C. For the piecewise-continuous function H we have
0fi(¢) =~ [ De@)ds=4(0)=8(p), ¢eCT®),

so OH = 6, the non-regular Dirac functional. More generally, let f : R — R be
absolutely continuous in a neighborhood of each z # 0 and have one-sided limits
f(0%) and £(0~) from the right and left, respectively, at 0. Then we obtain

0o 0 )
_ _ — +
/0 Dy / 1Dy /0 (Df)p + F(0*)p(0)
0 ——
+ / (Df)o - F(07)p(0) = (D)) + ool H)p(0), e T,

where oo(f) = f(07) — £(0~) is the jump in f at 0. That is, 8f = Df + oo(f)9,
and this formula can be repeated if Df satisfies the preceding conditions on f:

8 = (D2]) + 00(D )6 + 00 (£)06 .
For example we have

O(H -sin)=H -cos, O(H:-cos)=—H-sin+6 .
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Before discussing further the interplay between 8 and D we note that a distri-
bution T" on R is constant if and only if T' = ¢ for some ¢ € R, i.e.,

T(<P)=C/R<p, o0 .

This occurs exactly when T' depends only on the mean value of each . This ob-
servation is the key to the description of primitives or anti-derivatives of a given
distribution. Suppose we are given a distribution S on R; does there exist a primi-
tive, a distribution 7" such that 8T = S? That is, do we have a distribution 7" for
which

T(Dy)=-5%), YeCR)?
LEMMA 1.2.
(a) {Dy : ¢ € CR)} = {¢ € CF(R) : [¢ = 0} and the correspondence is
given by ¥ () = ffoo(
(b) Denote the space in (a) by H and let g9 € C(R) with [ o = 1. Then
each ¢ € C§°(R) can be uniquely written as ¢ = { + cpo with ( € H, and
this occurs when ¢ = [ .

PRrOPOSITION 1.2.
(a) For each distribution S there is a distribution T with 0T = S.
(b) If Ty, Tp are distributions with 0Ty = 0T, then Ty = To+ constant.

PROOF.
(a) Define T on H by T(¢) = —S(¥), ¢ € H, ¥(z) = [*_ ¢, and extend to all
of C§°(R) by T(¢o) = 0.
(b) If 8T = 0, then T(p) = T({ + cpo) = T(o) [, so T = T(po)1 is a
constant. O

COROLLARY 1.1. If T is a distribution on R with T € LL (R), then T = f
for some absolutely continuous f, and 0T = Df.

PROOF. Note first that if f is absolutely continuous then D f(z) is defined for
ae. z € Rand Df € L _(R) with Df = 8f as before. In the converse situation of
Corollary 1.1, let g € LL . with § = 8T and define h(z) = [, g, z € R. Then h is
absolutely continuous, 8(T — 7;) = 0, so Proposition 1.2 shows T' = h + € for some

c€R. Thus T = f with f(z) = h(z) + ¢, z € R, O
COROLLARY 1.2. The weak formulations of the Dirichlet and Neumann prob-
lems are equivalent to the original formulations.

Finally we describe the spaces that naturally arise in the consideration of such
boundary-value problems. The Sobolev space H'(a,b) is given by

H'(a,b) = {u € L*(a,b) : Ou € L*(a,b)}

where we have identified u = %. Thus each u € H'(a,b) is absolutely continuous
with

u(w)—u(y)=/ Ou , a<z,y<b.
y
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This gives the Holder continuity estimate (see (2.1) below)
lu(z) — u(y)| < |z —y["?|0ullr2@p) , u€ H'(a,b),a<zy<b.
If also we have u(a) = 0 then there follow

(1.3) lu()| < (b —a)"*|IBullL2apy » @< <D,
(1.4) llullz2(@p) < (b= a)/V2)10ullL2(a,e)

and such estimates also hold for those u € H'(a,b) with u(b) = 0. Let \(z) =
(z—a)(b—a)~! and u € H'(a,b). Then \u € H!(a,b) and 8(\u) = Au+(b—a) lu,
so [|0(Au)||zz < ||Oullzz + (b — a)7jul|zz. The same holds for 8((1 — A)u) so by
writing u = Au+ (1 — A)u we obtain

(1.5) max{|u(z)| : a < z < b} < 2(b— a)'/?||Oul|
+2(b—a)"Y?|ull:, ue HY(a,b).

This simple estimate will be very useful throughout this introductory chapter.
More generally, we define for each integer k > 1 the Sobolev space

H*(a,b) = {u € L*(a,b) : u € L*(a,b)}, 1<j<k.

Estimates analogous to those above can be easily obtained in appropriate subspaces.

1.2. Variational Method in Hilbert Space

Our objective is to review certain topics in the elementary theory of Hilbert
space which lead directly to abstract variational or weak formulations of boundary
value problems. Let V be a linear space over the reals R and the function z,y —
(z,y) from V X V to R be a scalar product. That is, (z,z) > 0 for non-zero z € V,
(z,y) = (y,z) for z,y € V, and for each y € V the function z — (z,y) is linear
from V to R. For each pair z,y € V it follows that

(2.1) (,9)]” < (z,2)(y,y) -

To see this, we note that
0< (tz +y,te+y) =t*(z,2) +2t(z,9) + (v,9) ,  teER,

and so the discriminant of the quadratic must be non-positive. From (2.1) it follows
that ||z|| = (z,2)Y?, x € V, defines a norm on V : ||z|| > 0, ||tz| = |t| ||z||, and
llz + y|l <|lz|| + ||yl for z,y € V and t € R. Thus every scalar product induces a
norm and corresponding metric d(z,y) = ||z — y||. A sequence {x,} converges to
z in V if lim, o ||z, — z|| = 0. This is denoted by lim, . z, = z. A convergent
sequence is always Cauchy: limy, n— o0 ||Zm — Zx|| = 0. The space V with norm || - ||
is complete if each Cauchy sequence is convergent in V. A complete normed linear
space is a Banach space, and a complete scalar product space is a Hilbert space.
Some familiar examples of Hilbert spaces include Euclidean space R™ = {Z =
(1,22, .. ,Tm) : T; € R} with (Z,§) = 37", ;1;, the sequence space £* = {Z =
{z1,29,23,... } + 172, |25 < oo} with (Z,5) = Y72, ;y;, and the Lebesgue
space L?(2) = {equivalence classes of measurable functions f : @ - R : [, |f|? du
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< oo} with (f,g9) = [, f(w)g(w) du, where (2, 1) is a measure space. Another
example is the Sobolev space H(a,b) with the scalar product

(u,v) g1 = (u,v) 2 + (Ou,Bv)2 , u,v € H'(a,b) .

To verify that this space is complete, let {u,} be a Cauchy sequence, so that both
{un} and {8u,} are Cauchy sequences in L?(a,b). Since L?(a,b) is complete there
are u,v € L?(a,b) for which limu, = u and lim&u, = v in L?(a,b). For each

¢ € C§°(a,b) we have
b b
—/ un-D¢=/8ung0, n>1,
a a

so letting n — oo shows v = Ju. Thus u € H!(a,b) and limu, = u in H!(a,b).

Let V4 and V, be normed linear spaces with corresponding norms || - |1, || - ||2-
A function T : V} — Vs is continuous at z € V; if {T'(z,)} converges to T'(z) in V,
whenever {z,} converges to z in V;. It is continuous if it is continuous at every z.
For example, the norm is continuous from V; into R. If T is linear, we shall also
denote its value at = by Tz instead of T'(x).

PROPOSITION 2.1. If T : Vi — V, is linear, the following are equivalent:
(a) T is continuous at 0,
(b) T is continuous at every x € V1,

(c) there is a constant K > 0 such that | Tz||2 < K||z||1 for all x € V1.

PRrOOF. Clearly (c) implies (b) by linearity and (b) implies (a). If (c) were
false there would be a sequence {z,} in Vj with ||Tz,|2 > n||z.|1, but then
Yn = ||Txs|l; '2n is a sequence which contradicts (a). a

We shall denote by £(V;, V) the set of all continuous linear functions from V; to
Va; these are called the bounded linear functions because of (c¢) above. Additional
structure on this set is given as follows.

PROPOSITION 2.2. For each T € L(V1,V2) we have

Il

]

sup{[|T'zllz : ¢ € V1, [|z[1 <1} = sup{||Tzlz : [|lz]l, = 1}
inf{K >0:|Tz|: < K|z|1 , zeVi},

Il

and this gives a norm on L(V1,Va). If V3 is complete, then L(V1,V2) is complete.

PrRoOF. Consider the two numbers
A=sup{||Tzllz: ||zl <1}, p=inf{K>0:|Tz|> < Klz|:, z€ W}.

If K is in the set defining p, then for each z € V; with ||z(|; < 1 we have ||Tz|2 < K,
s0 A < K. This holds for all such K so A < p. If z € V; with ||z||; > 0 then z/||z||1
is a unit vector and so ||T'(z/||z]|1)|l2 < A. Thus ||Tz||2 < Al|z|; for all z # 0, and
it clearly holds if z = 0, so we have u < A. This establishes the equality of the three
expressions for ||T||, and it is easy to check that this defines a norm on L£(V3, V).

Suppose V; is complete and let {T},} be a Cauchy sequence in £(V;,V2). For
each z € V4,

[Tmz — Tnzllz < |Tm — Toll llzll2
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so {Thz} is Cauchy in V3, hence, convergent to a unique T’z in V5. This defines
T :Vy; — V, and it follows by continuity of addition and scalar multiplication that
T is linear. Also

[Tnzllz < I Tnll llzlly < sup{[|Tmll}zll2
so letting n — oo shows T is continuous with |T'|| < sup{||T:.||}. Finally, to show
lim7, = T, let € > 0 and choose N so large that ||T,, — T,| < € for m,n > N.
Then for each € Vi ||[Tmz — Thz||2 < €l|z||1, and letting m — oo gives

Tz — Thz|l2 < ellz| , zeEV.
Thus, ||T —T,| < e forn > N. O

As a consequence it follows that the dual V' = L(V,R) of any normed linear
space V is complete with the dual norm

[fllv: = sup{|f(z)| : z € V, [l]lv <1}

for fe V.

Hereafter we let V denote a Hilbert space with norm || - ||, scalar product
(+,+), and dual space V’'. A subset K of V is called closed if each z, € K and
limz, = z imply z € K. The subset K is convez if z,y € K and 0 < ¢t <1 imply
tz + (1 —t)y € K. The following minimization principle is fundamental.

THEOREM 2.1. Let K be a closed, convex, non-empty subset of the Hilbert
space V, and let f € V'. Define p(x) = (1/2)||z||>— f(z), = € V. Then there ezists
a unique

(2.2) z € K :9(x) <eply), yeK.

PROOF. Setd = inf{go(y) : y € K} and choose z,, € K such that lim,_,« ¢(zn)
= d. Then we obtain successively '

d < 9(1/2(zm +2n)) = (1/2)(0(2m) + @(2n)) = (1/8)l|zn — zml|*
1/8)lzn = zm* < @(m) + @(an) — 2d

and this last expression converges to zero. Thus {z,} is Cauchy, it converges to
some z € V by completeness, and z € K since it is closed. Since ¢ is continuous,
¢(z) = d and z is a solution of (2.2). If z; and z» are both solutions of (2.2), the
last inequality shows (1/4)||z; — 22|l < d+d —2d =0, so 2, = x3. O

The solution of the minimization problem (2.2) can be characterized by a vari-
ational inequality. For x,y € V and t > 0 we have (1/t) (cp(:c+t(y—z)) —cp(x))) =

(z,y —z) — f(y — ) + (1/2)t||ly — z||?, so the derivative of ¢ at z in the direction
y — x is given by

@ (@)(y — ) = lim(1/8) (o (z + tly - 2)) - o(2))
(2:3) = (@y-2)-fy-2).

An easy calculation shows the above equals ¢(y) — p(z) + (z,y) — (1/2)||z|* -
(1/2)]|yl|?, so (2.1) gives '

(2.4) P@)y—=z)<ply) —p), zyeV.
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Suppose z is a solution of (2.2). Since for each y € K we have z +t(y — z) € K for
small ¢ > 0, it follows from (2.3) that

ze€K:¢(z)(y—z)>0, yeEK.

Conversely, for any such z it follows from (2.4) that it satisfies (2.2). Thus, we have
shown that (2.2) is equivalent to

(2.5) zeK:(z,y—z)> fly—1z), ye K.

The equivalence of (2.2) and (2.5) is merely the fact that the point where a quadratic
function takes its minimum is characterized by having a non-negative derivative in
each direction into the set.

As an example, let zo € V and define f € V' by f(y) = (@o,y) for y € V. Then
o(x) = (1/2)(llz — zo||* — ||zol|?) so (2.2) means that z is that point of K which is
closest to zg. Recalling that the angle § between z — z and y — z is determined by

(z — 2o,y — ) = cos(0) ||z — zol| lly — =] ,

we see (2.5) means z is that

point of K for which —7/2 <

0 <m/2 for every y € K. We

define z to be the projection

of zp on K and denote it by X

PK(:E()). O X

COROLLARY 2.1. For each closed convex non-empty subset K of V there is a
projection operator Px : V. — K for which Pk(xzo) is that point of K closest to
xo € V; it is characterized by

Pk (z0) € K : (Px(20) — 20 ,y — Px(20)) >0, yeK.
It follows from this characterization that the function Py satisfies

| Px (z0) — Px (yo)lI> < (Px(20) — Pk (¥0), o — o) » Zo,Yo €V .

From this we see that Py is a contraction, i.e.,

“PK(‘TO) - PK(:UO)” < ”'TO _yOH ) o, Yo € |4 )

and that Pk satisfies the angle condition

(Px (20) — Pr(Y0),Zo — %) >0, Zo,yo €V .
That is, the operator Py is monotone (cf., Section I1.2).

COROLLARY 2.2. For each closed subspace K of V and each o € V there is a
unique
z€K:(x—xz0,y)=0, yeK.

Two vectors x,y € V are called orthogonal if (z,y) = 0, and the orthogonal
complement of the set S is S* = {x € V : (z,y) = 0 for y € S}. Corollary
2.2 says each o € V can be uniquely written in the form zp = z; + zo with
z1 € K and z5 € K+ whenever K is a closed subspace. We denote this orthogonal
decomposition by V = K @ K+.
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The Riesz map R of V into V' is defined by Rz(y) = (z,y) for z,y € V. It is

clear that ||Rz|lv’ = |z|lv; Theorem 1 with K = V shows by way of (2.5) that R
is onto V', so R is an isometric isomorphism of the Hilbert space V' onto its dual

V. Specifically, for each f € V' there is a unique z = 73,_1( flev.

COROLLARY 2.3. For each f € V' there is a unique
(2.6) zeV:(z,y)=f(y), yev.

We recognize (2.6) as the weak formulation of certain boundary value problems.
Specifically, when V = H} or H!, (2.6) is the Dirichlet or Neumann problem,
respectively, with ¢ = 1. An easy but useful generalization is obtained as follows.
Let a : V x V — R be bilinear (linear in each variable separately), continuous (cf.
(1.1)), symmetric (a(z,y) = a(y,z),z,y € V) and V-elliptic: there is a ¢y > 0 such
that

(2.7) a(z,z) > collz|?, zeV.

Thus, a(-,-) determines an equivalent scalar product on V: a sequence converges in
V with || - || if and only if it converges with a(-,-)!/2. Thus we may replace (-,-) by
a(-,-) above.

THEOREM 2.1A. Let a(-,-) be a bilinear, symmetric, continuous and V -elliptic
form on the Hilbert space V, let K be a closed, conver and non-empty subset of V,
and let f € V'. Set o(z) = (1/2)a(z,z) — f(z), x € V. Then there is a unique

(2.8) ze€K p(@)<eply), yeK.

The solution of (2.8) is characterized by

(2.9) z€K:a(z,y—2z)> fly—2x), yeK.
If, in addition, K is a subspace of V, then (2.9) is equivalent to
(2.10) ze€ K :a(z,y) = f(y) , yeK.

Now (2.10) is precisely our weak formulation, and we see it is the special case
of a variational inequality (2.9) which is the characterization of the solution of the
minimization problem (2.8). When af(-,-) is not symmetric we can still solve the
linear problem (2.10), although it no longer is related to a minimization problem.

THEOREM 2.2 (LAX-MILGRAM). Let a(-,-) be bilinear, continuous and V-
coercive (see 1.2), and let f € V'. Then there is a unique

(2.11) z€Via(z,y)=fy), yeV.

PROOF. For each z € V the function “y — a(z,y)” belongs to V', so by
Corollary 3 there is a unique a(z) € V : (a(z),y) = a(z,y), y € V. This defines
a € L(V,V), and we similarly construct 8 € L(V,V) with (z, 8(y)) = a(z,y) for
z,y € V. Since (2.11) is equivalent to a(z) = ’}3_1(]‘), it suffices to show « is
invertible. First, « is one-to-one, since

collz])* < la(z,2)| = | (e(), 2)| < lle(@)]| 1l ,

and so a(z) = 0 implies z = 0. Also, ¢||z|| < ||a(z)]|| for all z € V. Second, we
show the range of a, Rg(a), is closed. If lim, o 2, = 2z and 2z, = a(z,), then
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collzn — Zm| < ||2n — zm|| so {z,} is Cauchy, hence, convergent to some = € V.
But « is continuous, so a(z) = z € Rg(c). Finally, since K = Rg(a) is a closed
subspace, hence V = Rg(a) ® Rg(a)*, we need only show Rg(a)t = {0}. But if
y € Rg(a)* then for every x € V, 0 = (a(z),y) = (z,8(y)), so B(y) = 0. As above,
3 is one-to-one, so y = 0. Thus Rg(a) = V. d

Let’s consider briefly the dependence of the solution of (2.11) on the data a(-,-)
and f in the problem. We denote by A the operator in £(V, V') which is equivalent
to the bilinear form a(-,-) and given by

Az(y) =a(z,y), z,yeV.

Thus (2.11) is equivalent to Az = f, and we note that A = R o o, where o arose
in the proof of Theorem 2. Suppose we are given two such bilinear forms and
linear functionals. Denote the corresponding operators by A;, Az, and consider
the solutions of A; (z1) = f1, A2(z2) = f2. Then we have

Ar(zy — z2) (21 — 22) = (fL = f2) (21 — 22) + (A2 — A1)z2(21 — 22)
and from here we obtain

collzr — z2l* < (Ilfr — fellv: + [I(A2 — A1) (z2)lv)llz1 — 22|

where cp is the constant in (2.7) for A;. This yields in turn the estimate

collzy — 22|l < |Ifs = fellv: + A2 = Adllcvvnyll fallv /o -

COROLLARY 2.4. Assume, in addition, that a(-,-) is V-elliptic. Then the so-
lution of (2.11) in V depends continuously on f in V' and on A in L(V,V").

Finally we show that the nonlinear problem (2.9) can be resolved for non-
symmetric forms. The proof will make use of the following elementary fixed-point
theorem.

PROPOSITION 2.3. Let K be a closed non-empty subset of a Banach space V,
and let T : K — K be a strict contraction:

IT@) -TWI <Mz—oll, zyeV,
where 0 < X\ < 1. Then T has a unique fized point, anz € K : T(z) = x.

PROOF. Let zo € K and define {z,} by T(z,) = Tp41, n > 0. Forn, k > 1

we have
n+k

[Tntks1 = Tnll < Y ll2j41 — 5|
="
n+k
< ) Nz — ol
J=n
<AL =Xz~ ol
so {x,} is a Cauchy sequence in K. The limit of this sequence is a fixed point in K.
Finally, if 2; and z, are fixed points, |21 — z2|| = [|T(z1) — T(z2)|| < A||z1 — z2||
so (1 = \)||z1 — z2|| = 0. Thus, z; = x5, so there is exactly one fixed point of T'.00
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COROLLARY 2.5. Let K and V be as above and assume T™ is a strict-contrac-
tion for some integer n > 1. Then T has a unique fized point in K.

THEOREM 2.3 (LIONS-STAMPACCHIA). Let a(-,-) be a bilinear, continuous and
V -elliptic form on 'V, and let K be a closed, convex and nonempty subset of V. Then
for each f € V' there exists a unique

(2.12) t€K:a(@z,y—z)=fly—z), yeEK,
and the mapping f — x : V' — K is continuous.

PROOF. Let z; and z; be solutions corresponding to f; and f. Then a(z1,z2—
z1) > flze — 21), a(z2, 21 — x2) > f(z1 — z2), and we add these to get a(z; —
2,21 — 22) < (f1 — f2)(21 — x2). This gives ||z1 — 22|l < (1/co)||f1 — fallv: from
which follows the uniqueness and continuous dependence.

To prove existence, let 7 > 0 and define F(z) € V' for each z € V by

F(z)(y) = (z,y) —ra(z,y) +rf(y), yeV.
Then note that z is a solution (2.12) if and only if
zeK:(zx,y—z) > F(z)(y—1z), yeEK.

But this is equivalent to z = PK(’}S,—IF(Q:)); so z is characterized as the fixed

point of the function PK’INQ_lF. Now Pk is a contraction, and R is an isometric
isomorphism, so it suffices to show F' is a strict contraction. But we have

|(F(z1) — F(22)) (v)| = |(#1 — 22,y) — r(alzs — x2),9)|
where o : V — V was constructed in Theorem 2.2, and
lz - ra(@))? = |lz|® - 2ra(z, z) + r*[la(@)||* < (1 = 2reo +r2C?)||z||? .

Choose 1 < 2¢y/C? so A = (1 — 2r¢cy + r2C?)Y/2 < 1. Then we have ||F(z;) —
F(z2)|lv: < Allz1 — @2]|, so it follows that PK’INZ—IF has a unique fixed point. O

In the following section we shall illustrate how the Theorems of this section
can be applied to the Sobolev spaces constructed in Section 1 to show that the
boundary-value problems of Dirichlet, Neumann and various other types are all
well-posed. Extensions of these Theorems to considerably more general situations
and related nonlinear boundary-value problems in R™ will be developed in Chapter
I1. Also see Theorem II1.2.1 for an extension of Theorem 2.2 which is applicable to
linear evolution equations.

1.3. Applications to Stretched String Problems

We consider the simplest problem of elasticity, the vertical displacement u(z)
within a fixed plane of a string of length £ > 0 whose initial position (u = 0) is the
interval 0 < z < ¢. The string is stretched by a tension 7' > 0 and it is flexible and
elastic, so this tension acts in the direction of the tangent and the string has no
resistance to bending. A vertical load or force F'(x) per unit length is applied and
this results in the displacement u(xz) at each point z. For each segment [z, z;] the
vertical components of force must balance, and this gives

T2
—T'sinf,, + T'sinf,, =/ F(z)dx

1
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where sinf, = v/(z)/y/1 + (v/(z))? is the vertical component of the unit tangent
at (z,u(z)). We assume displacements are small, so 1 + (u)? 2 1 and we obtain

__T(u’(;z;Q) — u'(:pl)) = /xz F([C) dx , 0<zi<z21</¢.

T1

If F is locally integrable on (0,¢) it follows that v’ = Ou is locally absolutely
continuous and the equation

(3.1) ~Td*u=F  in L} .(0,¢)

describes the displacement of the string in the interior of the interval (0,¢). At the
end-points we need to separately prescribe the behavior. For example, at £ = 0
we could specify either the position, u(0) = ¢, the vertical force, TOu(0) = fo, or
some combination of these such as an elastic restoring force of the form T0u(0) =
h(u(0) — ¢). Such conditions will be prescribed at each of the two boundary points
of the interval.

To calculate the energy that is added to the string to move it to the position u,
we take the product of the forces and displacements. These tangential and vertical
changes are given by

14

¢
T./o (V1+ (w)?—1)dz - /0 F(z)u(z) dz

where the first term depends on the change in length of the string, and for small
displacements this gives us the approximate potential energy functional

¢

(3.2) o) = / ((T/2)(8u)? — Fu) da .
0

Here we have used the expansion for small values of r

1
\/1+r2=1+§r2+--- .

We shall see the displacement u corresponding to the external load F' can be ob-
tained by minimizing (3.2) over the appropriate set of admissable displacements.
Moreover, this applies to more general loads. For example, a “point load” of mag-
nitude Fy > 0 applied at the point ¢, 0 < ¢ < £, leads to the energy functional

£
o(u) = T/2 /0 (0u)? dz — Fyu(c)

in which the second term is just a Dirac functional concentrated at c.

Next we give a set of boundary-value problems on the interval (a,b). Each
is guaranteed to have a unique solution by Theorem 2.1A. Each example will be
related to a stretched-string problem, and for certain special cases we shall compute
the displacement u to see if it appears to be consistent with the physical problem.
In all of these examples, we rescale the load so that we may assume T' = 1. Thus,
the load becomes the ratio of the actual load to the tension.
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EXAMPLE 3.A. The displacement of a string fixed at both ends is given by the
solution of
u€ Hy(0,0): —0%u=f
where f € H}(0,£)'. This problem is well-posed by Theorem 2.1A; note that the
corresponding bilinear form is H}-elliptic by the estimate (1.4). If we apply a load
F(z) = sgn(z — £/2), where the sign function is given by sgn(z) = z/|z|, = # 0,
the resulting displacement is

[ —3a(t/2-x), 0<z<£/2
ue) = { Yo—t/2)(-z), 4/2<z<l

K ; :

If we apply a point load, §. concentrated at x = ¢, the displacement is

wz)=1/2(c—|z —c|) + (1/2 — ¢/O)z

with maximum value u(c) = ¢(1 —~ ¢/£). Both of these solutions can be computed
directly from the ordinary differential equation by using Proposition 1.2.

ExAMPLE 3.B. Non-homogeneous boundary conditions arise when the dis-
placements at the end-points are fixed at non-zero levels. For example, the solution
to

we H(0,0):uw(0)=fi, u(l)=fo, —-0u=F
is obtained by minimizing (3.2) over the set of admissable displacements
K ={ve HY0,£) : v(0) = f1,v(f) = fo} .

This minimum u satisfies (2.9) where
e ¢
a(u,v):/ Oudvdz , f(v)=/ Fvdz  u,ve HY(0,0).
0 0

Since the set K is the translate of the subspace Hg(0,£) by the function
up(z) = (£ —z)fi/l+xfa/l,
this variational inequality is equivalent to
ve K :a(u,p)=flp), ¢€Hs0,0).

Moreover, this problem is actually a “linear” problem for the unkown w = u — ug
in the form

w € Hy(0,4) : a(w,p) = f(p) —aluo, ) , ¢ € Hy(0,4),

and thus it is well-posed by any one of the Theorems of Section 2.
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ExAMPLE 3.C. Unilateral boundary constraints arise when the admissable dis-
placements are given by

K ={ve H(0,£) :v(0) =0, wv({)>0}.

Since K is a cone, the displacement u that minimizes (3.2) over K is characterized
by

uw€e K :a(u,p) > f(p), for p€ H'(0,8), p(0) =0, ¢(¢) >0,
and a(u,u) = f(u),
and this is equivalent to
u e HY0,£) : —=0%u=F in L*(0,4)
u(0)=0, and u(£) >0,0u(?) >0, ou(f)u(f) =0.

The conditions at ¢ state that the displacement is non-negative, the vertical force
of the constraint is non-negative, and one or the other is equal to zero. For the
problem in which a force is loaded at the point ¢, 0 < ¢ < ¢, with magnitude Fyp,
the functional is

f(v) = Fov(c) = FO‘SC('U) ) vE Hl(O,f) )

and the corresponding solutions can be computed as follows. The general solution
of

—0%u=Fyb., u(0)=0

is given by
u(r) =z — Fo(x —c)H(z —¢) , 0<z<?,
and we need additionally to have
ul)=cl—Fy({—-c) >0,

(9’U,(£) =C — Fo Z 0

with equality in at least one. Thus we have either
a1 =Fy>0:u(z)=F(z—(z—c)H(x-c)),
or else
aa=(1-¢c/f)Fy <0:u(z) = Fo((1 - c/f)z — (x— c)H(z —c))

depending on the sign of Fy. Thus, if Fy > 0

/ , | C N .,
C ! i ) *
0 ¢ { N/%
the string does not touch the constraint at x = £ and has zero vertical force acting

on that end, while if Fj < 0 the string is supported by the constraint with a force
given by du(f) = —(c/€)Fy > 0.
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ExXAMPLE 3.D. Unilateral internal constraints on the string occur, for example,
if the entire string is constrained as for the admissable displacements

K={ve H;0,0):v(x) >0,0<x</}.
With a distributed load F'(x) as above the solution is characterized by
(3.3) u€ H}0,0):u>0, Pu+F<0, (0’u+F)(u)=0.

For the specific load given by F(z) = sgn(z —£¢/2) we can directly compute a strong
solution of this problem, and it is given by

1./ 14 1

3 5)2 +(V2- 1)(5)@ —-4) - §($ ~£/2)* sgn(z - £/2)
u(z) = (1-v2/2)<z<t,

0, 0<z<(1-v2/2).

Thus we find the interval is divided into two distinct regions. In the first, the
displacement is up against the obstacle or constraint, © = 0. In the other, the
displacement is free of the constraint and it satisfies the differential equation. These
two alternatives are implied by the equation in (3.3). The first inequality is the
constraint and the second states that the effect of the constraint is that of a non-
negative force, —(0?u+ F), distributed along the string. Note that the dependence
of the displacement u on the force F' is non-linear. The location of the first region
of constraint is the major difficulty in this problem, for if it were known then one
could obtain the solution by resolving a Dirichlet problem on the complementary
region. This is an example of a free-boundary problem wherein the crux is to locate
the unknown boundary between the contact region and its complement.

EXAMPLE 3.E. Our next problem arises from a stretched string which has a
specified vertical force at the left end and an elastic restoring force at the right end.
Thus, define V = H(0,£) and

¢
a(u,v) = / Oudv dz + hu(f)v(L) , u,veV,
0

¢
flv) = /o Fvdz — fou(0) + fev() , veV.

From (1.5) we find these are continuous functionals on V/, and by similar estimates
it follows that a(-,-) is H(0,¢)-elliptic if » > 0. With this assumption, it follows
from Theorem 2.1A that there is a unique weak solution of the boundary-value
problem

u€ HY(0,£) : —=0%°u=F in L*(0,4)

8u(0) =fo, 61&(() + hu(f) =fe.
Note that the equation in L?(0,¢) shows that du is absolutely continuous on [0, 4],
so the boundary conditions are meaningful. Finally, we see that a(-,-) fails to be
H'-elliptic if h = 0. In that case there is non-uniqueness of solutions, since any
constant added to a solution gives another solution, and there exists a solution only
if

4
/OF(a:)dx—fo+fe=o,
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i.e., the total force on the string is zero. In the absence of a restoring force (h = 0)
this constraint on the forces is necessary for existence of a physically consistent
displacement of the stretched string.

Orientation.

We saw in Section 1 that various boundary-value problems have a weak for-
mulation in Sobolev spaces which are actually equivalent to the respective strong
or direct formulations. Then in Section 2 we found that this weak formulation is
equivalent to a minimization principle (2.2), and that it corresponds to a variational
problem, (2.5) or (2.11). Section 3 indicates that these can be related to “minimum
energy” statements in a classical setting.

Linear boundary-value-problems can be characterized by operators on Hilbert
space in two rather natural but different ways. The first is motivated by the abstract
variational problem (2.11). Each bilinear continuous form a(:,-) on the Hilbert
space V is equivalent to a continuous linear operator A : V — V', and these are
related by

a(z,y) = Az(y), xyeV.
The problem (2.11) is equivalent to the operator equation

zeV:Az=f in V.

This operator A from the space to its dual is one-to-one or onto exactly when
the boundary-value problem has uniqueness or is always solvable, respectively, and
A~! being continuous (e.g., a(-,-) is V-coercive) corresponds to the continuous
dependence of the solution z on the data f in (2.11).

The second approach is to characterize the boundary-value problem as an un-
bounded operator A on a single space H: the domain D(A) of the operator A is the
set of functions in H which satisfy all the boundary conditions, and the value of A is
just the action of the differential equation on any such function in D(A). Since the
domain and range both are in the same space, various polynomials (or more general
functions) of A or its resolvent, (\I+A)~!, can be constructed in H. However, such
an operator is almost never continuous, and the domain is usually a proper subset
of the Hilbert space, so the analysis is rather delicate. We shall briefly study this
second way of characterizing boundary-value problems and its connection with the
corresponding variational operators \A. Then we study in Section 5 the exponential
function of such an unbounded operator A which characterizes the corresponding
Cauchy problem.

I1.4. Unbounded Operators

Let H be a Hilbert space, D a subspace (algebraic) of H and let A: D — H
be linear. Such a map we call an unbounded operator on H with domain D. The
graph of A is the subspace

G(A) ={[z, Az] : z € D}

of the product H x H. Note that H x H is also a Hilbert space with componentwise
addition and scalar multiplication, and its scalar product is

([1:1’12]’ [yl,y2])HxH = (ml,yl)H + (m2’y2)H .

The operator A is called closed if G(A) is a closed subspace of H x H. That is, A
is closed if whenever z,, € D, z, — = and Az, — y in H imply that z € D and
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Az = y. This is a much weaker condition than continuity of A, since convergence
of {Az,} is an assumption, not a conclusion.

Suppose A : D — H is an unbounded operator on H and that D is dense in
H. The adjoint of A is defined as follows. Let D* be the subspace of those y € H
for which the linear map z — (Az,y) : D — R is continuous. Such a map has
a unique extension by uniform continuity to all of H and thus there is a unique
vector A*y € H such that

(4.1) (Az,Y)g = (z, A™Y)H , zeD,yeD*.

It follows easily that A* : D* — H is an unbounded operator (i.e., linear) on H,
and it is called the adjoint of A.

Since A* is defined by (4.1) with D* being “maximal”, it follows directly that
A* is closed. Note that we can define A* only if D is dense.

LEMMA 4.1. If A is closed and D is dense, then D* is dense.

PROOF. Let P : H x H — G(A)* be the projection onto the orthogonal
complement of G(A4) in Hx H. Ify € H, y # 0, then [0,y] ¢ G(A) so P[0,y] = [u,]
satisfies ([u,v], [0,y])mxH = (v,¥)u # 0. But

(u,z)g + (v, Az)g =0, zeD

so v € D*. Thus, we see that for each y # 0 there is a v € D* with (v,y)y # 0.
This shows (D*)* = {0}, so D* is dense. a

DEFINITION. An (unbounded) operator A : D — H is accretive if
(Az,z)g >0, z€D,
and it is m-accretive if, in addition, A + I maps D onto H, i.e., Rg(A+I) = H.

Such operators will occur frequently and play an important role in our work
below. We give some examples in H = L%(a, b).

EXAMPLE 4.A. Set D = H}(a,b) and A = 8. Then A is closed, D is dense, and
the adjoint is given by A* = —8 on D* = H'(a,b). Note that A is accretive, A* is
not accretive, and that Rg(A + I) is the orthogonal complement of {exp(z)}. Thus
A is not m-accretive. Finally, the second adjoint A** is equal to A; in particular,
it has the same domain.

EXAMPLE 4.B. Set D = {v € H'(a,b) : v(a) = cv(b)} and A = §. Then
A* = -9 on D* = {v € H'(a,b) : v(b) = cv(a)} and A is closed, as follows directly
or by comparison with A*. Furthermore, A and A* are accretive only if |c| < 1,
and then both are m-accretive with

I+Au=f if and only if

b
u(a:):/ G(z,s)f(s)ds , a<z<b,

where

—(z—s) eb—a , a < < ,
G(z,s) = © { =857

et=e—c| ¢, r<s<b.
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The integrand G(-,-) is the Green’s function for A + I, and it is characterized for
each s € (a,b) as the solution of

G(',S) €D ) (I+A)G('as) = b, )
where é, is the Dirac functional at s.

EXAMPLE 4.C. Set D = {v € H}(a,b) : 8?v € L%*(a,b)} and A = —52. Then
one can show directly that A is closed, or that A = A*, from which it follows that
A is closed. It is easy to check that A is accretive and from Section 2 that A is
m-~accretive. This operator corresponds to the Dirichlet problem.

LEMMA 4.2. If A is m-accretive then (I + A)~! is a contraction on H, hence,
A is closed.

PROOF. For u € D we have
lull} < (U + Au,u),y < T+ A)ullallulla

so (I + A)~! is a contraction. Since an operator is closed if and only if its inverse
is closed, and it is closed if and only if its sum with a multiple of the identity is
closed, the result follows. O

Actually Example 4.c illustrates a general situation that occurs frequently. Let
V be a Hilbert space which is dense in another Hilbert space H, and assume the
identity V — H is continuous. Let a(-,-) be a continuous bilinear form on V.
Then we define D to be the set of all v € V such that the function v — a(u,v)
is continuous on V with the H-norm. For each such u € D there is then a unique
Au € H such that

a(u,v) = (Au,v)y , ueED,veV,

and this defines a linear operator A : D — H. This construction is similar to that
of the adjoint above, and the special case of

H = L%(a,b) , V = H}(a,b) , a(u,v) = (Ou, 0v)y

gives our last example.

Consider the adjoint form on V given by b(u,v) = a(v,u), u,v € V. This leads
likewise to an operator B : D(B) — H given by

a(u,v) = (u, Bv)y , u € V,v € D(B).

Then we obtain the following.

PROPOSITION 4.1. Assume there is a A € R and a ¢ > 0 such that

a(v,v) + Ay 2 cllol};, . wveV.

Then D is dense in H, the operator A+ A : D(A) — H is one-to-one and onto
and its inverse is continuous, A is closed, and A* = B
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PrROOF. If F € H then v — (F,v)y is continuous and linear on V, so by
Theorem 2.2 there is a unique

ueV:a(u,v)+ Au,v)g = (F,v)m , veV.

Thus v € D and (A+ ANu = F, so A+ XA maps D one-to-one onto H. Similarly,
B + )\ maps D(B) one-to-one onto H. If w € D in H then there is a v € D(B)
with (B + M\)v = w, and so

0= (u,w)g = (u,(B+ M), = ((A+ Nu,v),, , ueD.

Since A 4+ AI is onto, v = 0 and w = 0, so D+ = {0}. This shows D is dense.
We can deduce that A is closed from the fact that (A + \)~! is continuous or from
A = B*, which follows by symmetry from the next part of the proof.

Suppose v € D(B). Then for every u € D we have (Au,v)g = a(u,v) =
(u, Bv), and this shows that v € D(A*) with A*v = Bv. That is, A* is an extension
of B. Next let u € D* and choose uy € D(B) so that (B + A)ug = (A* + A)u. For
each v € D we have

(A4 Mv,u) ;= (v, (A" + Nu) ;= (v, (B+ Auo) ; = ((A+ A, u0) -
Since A + A is onto H this implies v = ug € D(B), hence, D* = D(B). O

COROLLARY 4.1. Assume that a(-,-) is non-negative, i.e.,
a(v,v) >0, veV,
and that there is a ¢ > 0 for which
a(v,v) + |vllf 2 el ,  veV.
Then A is m-accretive.

Here is another example to illustrate the situation, the Neumann problem.

EXAMPLE 4.D. Set H = L%(a,b), V = H'(a,b) and define
b
a(u,v)=/ Oudv , w,veV.

As above this determines an unbounded operator A on L?(a,b) : Au = F € L?(a,b)
is equivalent to

uw€V:a(u,v) = (F,v)Le, veV,
and this weak Neumann problem is equivalent to

uev, -0’u=F, Ou(a) = Ou(b) =0 .
Thus, we find
D = {ueV:0% € L*(a,b) ,0u(a) = du(b) = 0}

and A = —0% : D — L%(a,b). From Proposition 1 it follows that A is m-accretive,
A = A*, and that A 4+ A is a bijection of D onto L%(a,b) for every A > 0. The
situation is different at A = 0. Specifically, it is clear that Au = F is possible only

if f: F =0, i.e., F is orthogonal in L? to the constant functions. Conversely, one
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can show that this condition on F is sufficient for the existence of a solution. (For
example, solve the mixed problem

—d*u=F, u(a) =0u(b) =0,

and then note that fab F = 0u(a).) In summary, we find the range of A and kernel
of A are given by
Ker(A) = { constant functions } ,

Rg (A) = Ker(A4)~* .

We shall characterize the m-accretive operators among those which are accre-
tive. But first, note that if B € L(H) is a strict contraction, ||B||zx) < 1, then
I — B is a bijection of H onto itself. This follows directly, either from the power-
series representation (I —B)~* =Y ' B™ in L(H), from Proposition 2.3, or from
Proposition 4.1 with V = H and a(u,v) = ((I — B)u,v) .

PROPOSITION 4.2. The following are equivalent:

(a) A:D — H is accretive and there exists a pn > 0 such that Rg(ul + A) = H,
(b) A is m-accretive, and

(c) A is accretive, D is dense in H, and Rg(A\I + A) = H for every A > 0.

ProOF. Clearly, (c) implies (b) and (b) implies (a). Suppose (a) holds. Then
(p+A)~t e L£(H) and ||(u + A)7!|| < 1/u. From our preceding remark it follows
that if A — p|/pu < 1, then (I + (A —p)(u+ A)_l)—1 € L(H). In this case we have

AN+ = (= +w+ D)+ A7 = (A-pe+ A7 +1),

so Rg(A+A) = H whenever 0 < A < 2u. By induction it follows that R(A+A4) = H
for every A > 0. To show D is dense, let z € D, set z = (u+ A)z for some z € D,
and note that 0 = (z,7)y > ul|z||?, so x = 0, hence, z = 0. This shows D+ = {0}.
The preceding shows (a) implies (c), and so the equivalences are now obvious. O

In the next section we shall show that the m-accretive operators are further

characterized as those for which the initial-value problem

%Zﬂ-Au(t):O, 0<t, u(0)=uo
is a well-posed problem. Formally, we write u(t) & exp(—tA)ug; the m-accretive
operators are precisely those for which the indicated “exponential operators” can
be constructed as contractions on H.

It is easy to see how the unbounded operator A with domain D in H constructed
as above from the continuous bilinear form a(-,-) on V is related to the continuous
A € L(V, V') which is equivalent to a(,-). In fact, the graph of 4 is the restriction
of the graph of A4 to V x H. That is, note that H' — V'’ by “restriction to V”
of functionals on H, so D = {u € V : Au € H'} and then Au € H is just that
Au € H' which corresponds through the identification of H with H' by its Riesz
map. Thus, with this identification H = H' in the proof of Proposition 4.1, it is
clear that A+ Al is an isomorphism of V onto V' and A+ \I is just its (necessarily
onto) restriction to H C V'. (More generally, if R is the Riesz map of H onto H',
then A = R71A.) Finally, note that A is accretive on H exactly when the linear
operator A satisfies

Av(v) >0, veV.
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This property of A is called monotone and will predominate in Chapters II and III.
Not every m-accretive A corresponds to a monotone A as above; those which do
are a special class.

DEFINITIONS. Let V, H be Hilbert spaces with H = H' and let A € L(V,V’)

be monotone:
Av(v) >0, veV.

The corresponding unbounded operator on H, A = A|y g, is then accretive and
we shall call it regular accretive when it is so determined by a triple {A,V, H}.
Assume further that for every € > 0, A + ¢l is V-elliptic. (This implies that A is
monotone.) Then Rg(A + eI) = V’ for each € > 0 and so Rg(A + €I) = H, hence,
A is m-accretive, and we shall call it regular m-accretive.

One can show that every accretive self-adjoint operator on H is regular m-
accretive. For this, let V be the closure of D(A) with the scalar product (u,v)y =
(u,v) g + (Au,v)g.

1.5. The Cauchy Problem

Let H be a Hilbert space, D a subspace, and A: D — H an unbounded linear
operator. The Cauchy Problem for the evolution equation
(5.1) u'(t) + Au(t) =0, t>0,

is to find a solution u € C([0,00), H) N C*((0,00), H) such that u(t) € D(A) for
t > 0 and u(0) = up, where uy € H is prescribed. The continuity or differentiability
of the vector-valued function u : [0, 00) — H is defined exactly as in the real-valued
case H = R, but with absolute-value replaced by the H norm.

Suppose that for each up € D there is a unique solution u of the Cauchy
Problem; then define S(t)up = u(t) for ¢t > 0, up € D. Since A is linear it follows
each S(t) : D — D is linear for ¢t > 0. Furthermore, since the translate u(t + 7) is
a solution of (5.1) for each 7 > 0, we find from the uniqueness that

St + m)up = S(t)S(m)uo , t,7>0;5(0)=1.
If u(t) = S(t)uo then

1/2 5 O = ~(4u(®), u(t))

so if A is accretive then ||u(t)|| is decreasing for ¢ > 0, hence, ||S(¢)uo|| < ||uo|| and
thus each S(t) is a contraction on D. If D is dense in H each S(t) has a unique
extension to a contraction on H and we obtain the following.

DEFINITION. {S(t) : t > 0} is a linear contraction semigroup (or LCS) if
S(t) : H — H is a linear contraction for each ¢t > 0,

S(t+7)=85@t)S(r) for t,7>0, S(0)=1,
and S(-)z € C([0,00), H) for each z € H .

For example, suppose A € L(H) and A is accretive. Then one can define by
power series in L£(H) the operator

exp(4) = »_ A"/n!
n=0
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and thereby the family of operators S(t) = exp(—tA), t > 0. It follows that

d .
75t =~A-S(t) in L(H)

and hence u(t) = S(t)up is the solution of the Cauchy Problem for (5.1) with
u(0) = ug. Note that the operator —A can be recovered from the semigroup by
computing the right-derivative at t = 0,

—Aug = t£%1+{(u(t) —u(0))/t} = D u(0) .

DEFINITION. The generator of the LCS {S(t) : ¢ > 0} is the operator B defined
by Bz = D*(S(0)z) for each z belonging to

DB)={z€H: hli)rg+ h~'(S(h)x — z) = DT (S(0)x) exists} .

Our preceding remarks verify most of the following.

PROPOSITION 5.1. Let A € L(D, H) be closed and accretive, D dense in H,
and assume for every ug € D there ezists a solution u € C'([0,00), H) of (5.1) on
t > 0 with u(0) = ug. Construct {S(t) : t > 0} as above, so u(t) = S(t)uo, t > 0.
Then {S(t) : t > 0} is a LCS on H whose generator is an extension of —A.

PROOF. Since A is accretive, each Cauchy problem has at most one solution,
so the construction of {S(t) : ¢ > 0} is done as above. For each uy € D we have

t ¢
S(t)uo — o :/ o = —/ Au(s)ds,  t>0,
0 0
and the integrand is continuous on [0, 00), so DT (S(0)ug) = —Aug. O

Our objective is to find sufficient conditions on an operator A in order that the
Cauchy problem for (5.1) will have a solution. Thus we shall characterize those
operators which are generators of linear contraction semigroups. To begin, suppose
that B : D(B) — H is the generator of {S(t) : t > 0} as above. Then for each
z € D(B)

S(t+ h)z — S(t)z = (S(h) — I)S(t)z = S(t)(S(h) — Iz, h>0,t>0,
so dividing by h and letting h — 0 shows
D*S(t)z = BS(t)z = S(t) Bz , z€D(B),t>0.
In particular, S(t) : D(B) — D(B). Also, for 0 < h <t
S(t)x — S(t—h)z =St —h)(S(h) —I)z

and the S(¢t — h) are uniformly bounded so we may divide this by h and take the
limit to obtain

D-S(t)z=S({t)Bzx, xzeD(B),t>0,

where D~ denotes the left-derivative.
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LEMMA 5.1. For each x € D(B) the function S(-)x belongs to C*([0,00), H),
and for each t > 0, S(t)z € D(B) and

Stz —z = /Ot BS(s)zds = /Ot S(s)Bzds .

COROLLARY 5.1. B is closed.

Proor. If z, € D(B), x, — = and Bz, — y in H, then
h
h(S(h) — I)zn = h—l/ S(s)Bznds, h>0,n>1,
0
so we let n — oo and then h — 0 to obtain DT S(0)z = y. O

COROLLARY 5.2. Ifug € D(B) and u(t) = S(t)ug, t > 0, then
u € C([0,00), H) satisfies u'(t) = Bu(t), t > 0, and u(0) = uo.

LEMMA 5.2. D(B) is dense in H, [; S(s)zds € D(B) and

t
S(t):v—:c=B/ S(s)zds t>0,z€H.
0

PRrROOF. For each t > 0 we set z; = fot S(s)zds. Then if h > 0 we have
¢
S(h)x; — x; = / (S(h+s) —S(s))zds
0

=/ht+hS(s)a:ds—/Ot S(s)mdsiAhS(s)zds

t+h h
= S(s)wds—/ S(s)zds .
0

t

Dividing by h > 0 and taking the limit shows z; € D(B) and Bz; = S(t)z — z as
desired. Finally, note that z;/t € D(B) and z;/t — z ast — 0, so D(B) is dense.

Fix A > 0 and note that {e~*!S(t) : t > 0} is a linear contraction semigroup
whose generator is B — A. We have let A denote the operator AI. From Lemma 5.1
and Lemma 5.2 we obtain, respectively,

e MSt)r —x = /Ot e S(s)(B - Nzds , ze€D(B),t>0,
e"\tS(t)y—y=(B—/\)/Ote_*sS(s)yds , yeEH ,t>0.
Take the limit as ¢t — oo in these to get
z= /000 e S(s)(A\ — B)zds , z € D(B)

y=()\—B)/ e S(s)yds , yeH.
0
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The first shows A\ — B is one-to-one and the second that it is onto H, so it follows
that

(=Bl < [ e dslyll = A7l
This completes the proof of the first half of our main result.

THEOREM 5.1 (HILLE-YOSIDA). A necessary and sufficient condition for B
to be the generator of a linear contraction semigroup is that D(B) is dense and
A\ — B)~! is a contraction on H for every A > 0.

PROOF (CONTINUED). The sufficiency will be established in three steps. First
we approximate B by By € L(H), then construct the semigroup {exp(tBy) : t >
0} for A > 0, and finally show the limit limy_,. exp(¢tBy) is the desired linear
contraction semigroup.

LEMMA 5.3. Define By = AB(A—B)™1, A > 0. Then By = -A+X2(A\-B)"! ¢
L(H) and for each z € D(B) , ||Bxz|| < ||Bz||, limy—o Baz = Bz.

PrOOF. For z € D(B)
(Bx+AN(A=B)x=X?z and \— B isonto H, so
By=-A+X(\-B)"!.
From this follows (A — B)By = AB and B) = A(A — B)"!B. Since A\(A— B) ! isa
contraction, the desired estimate follows. Also, for z € D(B), |A\(A—B) " lz—z| =

+IBaz|| — 0, s0 A(A—B) ™'z — & for each = € D(B), hence, for each z € H. Thus
B, — Bz for each z € D(B). O

LEMMA 5.4. Define Sx(t) = exp(tBx) € L(H), t > 0, A > 0. Then {S\(t) :
t > 0} is a linear contraction semigroup with generator By for each A > 0. For
z € H, S\(t)x converges in H as A — oo, uniformly on each interval [0,T], T > 0.

PROOF. From S)(t) = exp(—Mt) exp(A\*(A — B)~'t) we obtain
[Sx ()] < exp(—At) exp(At) = 1

for t > 0, A > 0. The remaining semigroup properties are obtained from calculus of
power series in L(H). Similarly we obtain

S,\(t)—S#(t)=/0 %(S,,(t—s)s,\(s))ds=/0 S.(t —8)Sx(s)(Bxr — By) ds

by calculus in £(H), and thus the estimate
[Sx(®)z = Su(t)zl| < ¢|Br(z) — Bu(z), =€ D(B).

With Lemma 5.3 this shows that {S)(¢)z} is uniformly Cauchy in H for 0 < ¢t < T.
Each S)(t) is a contraction so the limit exists for each € H, uniformly on bounded
intervals. O

To finish the proof of Theorem 5.1, we define S(t)z = limy_ oo Sa(t)z. It
follows that {S(t) : t > 0} is a linear contraction semigroup. For z € D(B),
Sx(-)Baz — S(-) Bz uniformly on bounded intervals, so from

t
SA(t)cc—a:=/ Sx(s)Bxz ds
0
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we obtain in the limit
t
S(t)w—x:/ S(s)Bzds, weD(B),t>0.
0

This shows D*S(0)z = Bz, z € D(B), so B is a (possible) restriction of the
generator of {S(t) :t > 0}. But I — B is onto H, so B equals the generator. O

From Proposition 4.2 we obtain the following.

COROLLARY 5.3. A necessary and sufficient condition for —A : D(A) — H to
be the generator of a linear contraction semigroup is that A be m-accretive.

We consider two fundamental examples.

EXAMPLE 5.A. Let H = L?(0,1) and A = 9 on D(A4) = {u € H*(0,1) : u(0) =
cu(1)} with |¢| < 1. We showed in Section 4 that A is m-accretive, so by Theorem
5.1 we see the initial-boundary-value problem

(5.2.a) Owu(z,t) + Ozu(z,t) =0, 0<z<l,t>0,
(5.2.b) u(0,t) = cu(1,t)
(5.2.c) u(z, 0) = up(z)

has a unique solution for each uyp € D(A). An explicit representation for this
solution can be easily found. Since any solution of (5.2.a) is of the form u(z,t) =
F(z —t), it follows that

uw(z,t) =uo(z — 1), 0<t<z<1,
and then (5.2.b) implies
u(z,t) =cug(l+z—1t), z<t<z+1.
By an easy induction we obtain
u(z,t) = c"up(n+z —t), n—1l+zxz<t<n+z,n>1.

This representation of the solution gives some additional information. First,
the Cauchy problem can be solved only if ug € D(A), because u(-,t) € D(A) implies
u(, t) is (absolutely) continuous and this is possible only if uq satisfies the boundary
condition (5.2.b). Second, the solution satisfies u(-,t) € H*(0, 1) for every t > 0 but
will not belong to H2(0,1) unless dug € D(A). That is, we do not in general have
u(-,t) € H?(0,1), no matter how smooth the initial function ug may be. Finally,
the representation above defines a solution of (5.2) on —oo < t < oo by allowing n
to be any integer. Thus, the problem can be solved backwards in time as well as
forward. This is related to the fact that —A generates a group of operators.

EXAMPLE 5.B. For our second example we take H = L*(R), V = H'(R) and
define a(u,v) = (8u,v) g for u,v € V. Corollary 4.1 shows that the operator

A=-0* ,D(A) ={uecV:8ucL*R)}
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is m-accretive. Thus by Theorem 5.1 we obtain existence and uniqueness for the
initial-value problem

(5.3.a) dyu(z,t) = 02u(z,t) , —o<r<oo,t>0,
(5.3.b) u(z,0) = ug(z) ,

with ug € D(A). We shall obtain a useful representation for the solution. First
note the only bounded solutions of the form exp(ax + Bt) are exp(fiuz — u’t),
u € R. Taking real parts and then integrating all these together lead to

u(z,t) /00 e Ht cos(px) dp L /00 e~ cos <z)\) dX
u ) = = — —_

0 Vit Jo Vi
and this is a solution for ¢t > 0. To evaluate this integral, set

K(s) = /Ooo e cos(sA) dA

and check that K’(s) = —(s/2)K(s), hence, K(s) = Mexp(—s%/4). Finally,
K(0) = M = /7/2, so we have shown
U(x,t) = (w/4t)'/? exp(—a?/4t) .

By a re-scaling suggested by the following result, we are led to the special function

K(z,t) = (4mt) "2 exp(—x?/4t) , t>0.
LEMMA 5.5.
(i) K is C°(R x R}) and each O7'OF K converges to zero exponentially as
|z| — oo.
(ili) K >0, JgK(z,t)dz=1, t>0.

(iv) For 6 >0, lim;—,o K(z,t) = 0 uniformly for |z| > 6.
(v) Foré >0, lim;_,o flwl>5 K(z,t)dz = 0.

PROOF.
(i) This follows from I"Hopital’s rule.
(ii) Differentiate and check.
(iii) By a change of variable this integral is

(4mt)~1/2 / exp(—u?)(4t)"/? du
R
so the result follows.
(iv) For |z| > 6 we have K (x,t) < (4mt)~1/2 exp(—62/4t).

(v) / K(z,t)de = n1/? e du—0 ast—0. O
|z[>6 lu|>8/(4t)

PROPOSITION 5.2. Let ug be bounded and continuous on R. Define
f]RK(x - é’t)UO(é) dE , t> 0 )
u(z,t) =
ug() t=0.

Then u is bounded and continuous on {(z,t) : t > 0}, it is infinitely differentiable
on {(z,t) : t > 0}, and it satisfies (5.3).
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PRrROOF. The function u is well-defined and C* by (i), a solution of the heat
equation by (ii), and from (iii) we obtain sup, ,(u) < sup, uo, so u is bounded. It
remains only to check the continuity on R x [0, 00).

Let 29 € R and £ > 0; choose A > |zo|. Since g is uniformly continuous on
[—A, A] there is a § > 0 such that (zo — 26,29 + 26) C [—A, A] and z,y € [-A, 4],
|z —y| < 26 imply |up(z) —uo(y)| < £/2. By a change of variable and (iii) we obtain

uw(z,t) — uo(zo) = /I K(s,t)(uo(z + 5) — uo(wo)) ds
s|>6
+ K(s,t)(uo(z + s) — uo(z0)) ds .
Is|<é
If |z — zo| < é then for |s| < § we have
z+s€e[-A 4], |z + s —zo| <26
50 |ug(z + 8) — up(xo)| < /2. Thus the second term above is bounded by &/2 by
(iii). Thus we have
|u(z, t) — up(zo)| < K(s,t)ds - 2sup |ug| +€/2
ls| 26 z

and the result follows from (v). a

Example 5.B illustrates the regularizing effects that occur with evolutions gov-
erned by regular m-accretive operators. Consider the case of such an operator A
which arises from a triple {a(-,-), V, H} for which a(-,-) is symmetric. Thus A is self-
adjoint: A = A*. Let {S(¢) : t > 0} be the semigroup generated by — A, ug € D(A4),
and u(t) = S(t)uo. Thus, (5.1) holds and u(0) = ug. We seek estimates which im-

ply “regularity” of the solution w(t). First, from (Au(t),u(t))y = —§E||(u(t)|| 4
we obtain

T 1
(5.4) /O a(u(t), u(t)) dt = S (lluollE — lu(T)IIZ) -

Foreachh >0andt > 7 >0, u(t+h)—u(t) = S{t—71)(u(r+h)—u(r)), so S(t—71)
being a contraction shows ||u/(¢)||lg < ||v/(7)]||, hence, ||u'(:)||z is non-increasing.
We have

w1y = = gralutt), o) =~ ( Fa(ulo) u)) + Ja(u(0),ulv)

since a(-,-) is symmetric, and this yields

T T
(5.5) /0 e 6) Iy dt + a(u(T), u(T)) = 5 / a(u(t), u(t)) dt .

Using the non-increase of ||u/(-)||g and (5.4), we obtain

2
I (D) < ol

and this leads to the following parabolic regularizing property of the LCS.
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THEOREM 5.2. If A is reqular m-accretive and self-adjoint, the generated LCS
satisfies the following:

S(t) maps H into D(A) , and |[tAS(t)|cca) < \% , t>0.

ProOOF. Let w € H and w, € D(A) for n > 1 with w, — w. We have
Stw, — St)w and ||AS(t)(wm — wn)||lg < |Wm — walla/V2t, so {AS(t)w,}
converges in H. But A is closed, and so the desired result follows. O

In the proof of Lemma 5.1 we found that A commutes with S(¢) on D(A),
AS(t)z = S(t)Az € D(A) for € D(A), so it follows that S(t) maps D(A) into
D(A?) for t > 0. Thus S(t) = S(t/2)S(t/2) maps H into D(A?) with

2
1A2S () ey = ||AS(t/2>AS(t/2>||¢<H><(t f) |

By induction we obtain the following.

COROLLARY 5.4. For everyt > 0 and integer p > 1

S(t) maps H into D(AP) , and || APS(t)|lccmy < (t\/_>P .

This gives the spatial regularity of the solution u(t) of the Cauchy problem.

COROLLARY 5.5. For every ug € H there is a unique solution v € C([0,00), H)
NC*((0,00), H) of (5.1) with u(0) = ug, and it satisfies u(t) € D(AP) for every
t>0andp>1.

For any m-accretive operator, A + I is a bijection of D(A) onto H, and if we
define a norm on D(A) by

lzllo = (lzl} + I 42%)?, =€ D(4),

it follows that D(A) is a Hilbert space isomorphic to H. Similarly, D(AP) is a
Hilbert space with scalar-product

(IL‘,y)DP = (.'l?, y)H + (AP:B, Apy)H ) T,y € D(AP) )

and (A + I)P is an isomorphism of D(AP) onto H. For the special case of a self-
adjoint regular accretive operator as above we can deduce from the identity

Apu(t+h)—u(t) _S(t—e+h)—S(t-¢

) 4p
3 = 3 APS(e)ug , 0<e<t, h>0,

that limp,_,o+ (th;u@) = o/(t) in the space D(AP). When A is a differential

operator this shows u/(t) agrees with the partial derivative with respect to time and
a corresponding temporal regularity of the solution of (5.1).
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1.6. Wave Equations

Consider again the vertical displacement within a fixed plane of a string of
length £ > 0. As before, let T' > 0 be the tension applied to stretch the string.
Here we shall study the time-dependent displacement u(z,t) for t > 0, 0 < z < £,
and describe the vibrations of the string resulting from an initial displacement
u(z,0) = uo(z) and an initial velocity u.(z,0) = ui(x) as well as specific boundary
conditions at the endpoints z = 0, £.

To derive the equation for these transverse vibrations of the string, recall from
Section 3 that for a section of the string, z; < z < x5, during the time interval,
t; <t < tq, the total impulse is given by

ta
/ T (ug(z2,5) — uc(z1,8)) ds .
t1

If the density of the string at z is given by p > 0, the change in momentum of this
section is just

/wz p(ue(z, t2) — ue(z,t1)) do

1
and so this equals the impulse by Newton’s second law. For a sufficiently smooth
displacement u(z,t), the equality of these integrals for each such z; < z2 and
t; < to shows that the displacement satisfies the wave equation
0? 0?
(6.1) W(pu(w, t)) — Twu(a:,t) =0, O<z<{, t>0.

Notice that the total energy of the string at each time ¢ is given by the sum

1t o, 1 [t
— [ pui(z,t)dzc+ - [ Tui(z,t)dzx
2 Jo 2 Jo

of kinetic and potential energy which are determined, respectively, by the velocity
u; and vertical force Tu,. We shall show that various mixed initial-boundary-
value problems for (6.1) are well-posed by reducing this second-order evolution
equation to an equivalent first-order system to which Theorem 5.1 directly applies.
This abstract development will be followed by a specific example for which we can
display the solution explicitly and compare its properties with those guaranteed by
the theory.
We shall regard (6.1) as a special case of the evolution equation

(6.2) u”(t) + Bu/(t) + Au(t) =0, 0<t,

where A is an unbounded operator with domain D in a Hilbert space H and B is
another operator. To obtain (6.1) from (6.2) we shall choose A to correspond to
an appropriate Dirichlet or Neumann problem as in Corollary 4.1; thus, A will be
regular m-accretive. The operator B will be continuous and linear from V to H
and accretive on H. Such an operator arises naturally from models of friction in
the wave equation and it also is convenient to include it in our discussion for the
following reason. The function u is a solution of (6.2) if and only if the function w
given by w(t) = e~ u(t), t > 0, satisfies

6.3)  w'(t)+ @M +B)w' (@) + NI+ B+ Aw)=0, ¢t>0.
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Thus, (6.2) and (6.3) are equivalent, and this observation permits us to relax the
hypothesis on A and B. Specifically, it suffices to require that the operators A\2I +
AoB + A and 2\l + B satisfy certain conditions for some Ag.

As in Section 4, let V be a Hilbert space which is dense and continuously
imbedded in another Hilbert space H. Let a(:,-) be a continuous, symmetric,
bilinear and elliptic form on V', and let A : D — H be the unbounded operator
on H constructed in Proposition 4.1; that is, A is the regular m-accretive operator
constructed from a(,-), V and H with

(6.4) a(u,v) = (Au,v)m , vueD,veV.

Note that a(,-) is a scalar-product on V' whose norm is equivalent to the V-norm;
hereafter we take a(-,-) as the scalar-product on V. Let B : V — H be continuous
and linear, and suppose B is accretive in H:

(Bu,u)g >0, ueV.
Consider the product space H = V x H with the scalar-product
(@, 0)n = a(u1,v1) + (u2,v2)H , u,veH.
This is a Hilbert space, and we define on it the operator A : D — H given by
A% = [—ug, Auy + Bug] , ©eD,

with domain D = D x V. This is the operator that arises when we write (6.2) as a
first-order system

o' () - v(t)=0

v'(t) + Au(t) + Bu(t) =0,

for then the function 4(t) = [u(t),v(t)], t > 0, is a solution of the equation
(6.5) @)+ Adlt) =0, t>0,

in the space H. Conversely, the first component of a solution of (6.5) satisfies the
second-order (6.2).

Our plan is to show the Cauchy problem for (6.5) is well-posed; by Theorem 5.1
it is sufficient to show that A is m-accretive on H. First note that for @ € D

(At @)y = —a(ug,w1) + (Au1 + Bug,u2)n
= (Bug,u2)H ,

so A is accretive. Note the critical dependence of this calculation on the choice of
the scalar-product on V and H, and that A is accretive exactly when B is accretive.
To show that the range of A + A is H, we let f = [f1, f2] € H be given and seek a
@ = [u1,u2] € D such that A+ A = f, ie.,

up €D, w€eV:iduy—us=fi, Aug+Au;+Buy=fy.
This system is equivalent to

u1 € D: (NI +AB+Au; =A+B)fi + fo,

uz = Aug — f1,
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so it suffices to show that the range of A2 + AB + A is all of H. But the bilinear
form @(-,-) defined on V' by
a(u,v) = A(u,0)m + A(Bu,v)m +a(u,v) ,  wveV
is continuous and coercive, so the desired result follows from Theorem 2.2. That
is, for each h € H there is a unique
uweV:a(u,v) = (h,v)g , veV,
and this is equivalent to
u€D:(NI+B+Au=h.

Thus, A is m-accretive on H and this leads to the following result.

PROPOSITION 6.1. Let V and H be Hilbert spaces with V dense and continu-
ously imbedded in H. Let a(-,-) be a continuous, bilinear and symmetric form on

V and let B € L(V, H) for which either B is symmetric and there are numbers Ao,
¢ > 0 such that

a(u,u) + Xo(Bv,v)u + M|vllf 2 cllvll} ,  veV,
(Bv,v) g + 2X0|lv]|%, >0, vevV,
or else the above hold with \g = 0. Let A : D — H be the operator constructed
from a(-,-), V and H according to (6.4). Then for each pair up € D, ug € V there
is a unique solution u € C*([0,00),V) N C?([0,00),H) of
(6.6.a) u’(t) + Bu'(t) + Au(t) =0, t>0
(6.6.b) u(0) = up , w(0) = .

PROOF (CONTINUED). By our remarks leading to (6.3), if B is symmetric it
suffices to let A\g = 0 in our hypotheses. Since A is m-accretive the Cauchy problem
for (6.5) with @(0) = [uo,u1] has a unique solution @ € C*([0,00),H). Then the
first component is the corresponding solution of (6.6). a

Example. We shall apply Proposition 6.1 to resolve the initial-boundary-value
problem for the wave equation with null displacement at the endpoints. After
rescaling the coefficients and interval, this problem has the form

(6.7.a) Ou(z,t) — Ou(z,t) =0, 0<z<1,t>0,

(6.7.b) u(0,8) = u(1,t) , t>0,

(6.7.c) u(z,0) = up(z) , Ou(z,0) =ui (), 0<z<1.

Set H = L?(0,1), V = H}(0,1), and define a(u,u) = fol u(z)0v(z) dz on V, so
the corresponding regular m-accretive operator is given by A = —8% on D(A) =

H(0,1) N H?(0,1). According to Proposition 6.1, there is a unique solution u €
C*(]0, 00), H}(0,1)) N C?%([0, 00), L?(0,1)) if the initial data satisfies ug € D(A),
u; € V.

For the special case of (6.7) we can find an explicit representation for the
solution. Extend the functions ug and u; from the interval (0,1) to all of R so they
are odd with respect to both of the endpoints, z = 0, £ = 1. These extensions are
2-periodic, and the above requirements on the initial data in Proposition 6.1 are
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sufficient to make the extensions of up, dup and u; all continuous on R. Using these
extensions, we define
1 1 T+t
u(z,t) = E(uo(z+t)+uo(z—t))+—2-/ u1(s)ds .
T—t

Due to the indicated continuity conditions, among others, it follows that u is the
solution to (6.7) given by Proposition 6.1. This representation shows that the con-
ditions imposed on the initial data are appropriate. Since the problem is reversible,
that is, it is well-posed for all ¢ € R, it follows that these conditions are actually
necessary for a solution as given above.



CHAPTER 1II

Nonlinear Stationary Problems

I1.1. Banach Spaces

Banach space is a complete normed linear space X. Its dual space X' is the
linear space of all continuous linear functionals f : X — R, and it has norm
Ifllx: = sup{|f(z)| : ||lz|| < 1}; X’ is also a Banach space. We shall denote the
value of f € X' at z € X by either f(z) or (f,z). Likewise from X’ we construct
the bidual or second dual X" = (X'). Furthermore, with each z € X we can
define p(z) € X" by o(z)(f) = f(z), f € X'; this satisfies clearly ||p(z)| < ||z]|.
Moreover, for each z € X there is an f € X’ with f(z) = ||z|| and ||f|]| = 1, so it
follows that ||p(z)|| = ||z||. Since ¢ is linear we see that ¢ : X — X" is a linear
isometry of X onto a closed subspace of X"; we denote this by X — X". If v is
onto X" we say X is reflegive: X = X". Closed subspaces, duals and products of
reflexive spaces are likewise reflexive.

Convergence in X is the usual norm convergence or strong convergence: a
sequence {z,} in X converges to z if lim, o ||z, — z|| = 0, and this is de-
noted by z, — =z or lim, ,,,x, = z. This is related to the strong topology
on X with neighborhood basis B(r) = {z € X : ||z|| < r}, 7 > 0, at the ori-
gin. There is also a weak topology on X obtained from the base of neighborhoods
B(r; fisfay .- fa) ={z € X 1 |fij(z)| <r,1<j<n},r>0, f; € X'. This is the
weakest topology on X for which every f € X’ is continuous; a (net or) sequence
{zn} in X is weakly convergent to z if lim,_,« f(z,) = f(z) for every f € X', and
this is denoted by z, — x or w — lim,_,o , = z. Finally, if X happens to be a
dual space, say X = Y’, there is also the weak* topology on X obtained from the
neighborhood basis B(r; fi, ..., fn) as above for 7 > 0 but f; = ¢(y;), 1 < j < n,
ie, B(r;y1,... ,yn) = {z € X : |z(y;)| <r, 1 < j < n}. Thisis precisely pointwise
convergence, and it is weaker than the weak topology on X; it is equivalent to it
exactly when X is reflexive.

Finally, we remark on compactness in the three topologies. First, the unit ball
B={z € X :|z| <1} in X is compact if and only if dim(X) < co. (The same
holds for B’ in X', of course.) Second, B’ is weakly compact in X' if and only if
X is reflexive, and, third, B’ is always weakly* compact in X’. (This follows since
B’ is a closed subspace of a product of compact spaces.) The following very deep
result is important in many applications; see [59, p.141].

THEOREM 1.1 (EBERLEIN-SHMULYAN). A Banach space is reflexive if and only
if it is sequentially weakly compact, i.e., every bounded sequence contains a weakly
convergent subsequence.

35
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A set S C X is bounded if S C B(r) for some r >0:z € S = |jz|| < .
Likewise it is weakly bounded if some multiple of each weak neighborhood base
contains S : for each f € X’ there is an r for which z € S = |f(z)] < r.

THEOREM 1.2 (UNIFORM BOUNDEDNESS). A set S in Banach space is weakly
bounded if and only if it is bounded.

Let X and Y be Banach spaces and T : X — Y a function. Then T is contin-
uous (weakly continuous) if it is continuus with X and Y each endowed with their
corresponding norm (resp., weak) topologies. Similar terminology is used for weak*
when both are dual spaces, and the modifier “sequentially” means that sequences
(not nets) are considered. T is called demicontinuous if it is continuous from X
with norm convergence to Y with weak convergence, and it is called completely
continuous if it is continuous from X with weak to Y with strong convergence.

weakly continuous

/ N

completely continuous demicontinuous

N /

continuous

The function T is bounded if S bounded in X implies the image T'(.S) is bounded in
Y, and it is compact if it is continuous and S bounded implies T'(S) is precompact,
i.e., its closure is compact.

‘Assume hereafter that X is reflexiveand T: X — Y.

LEMMA 1.1. If T is completely continuous, then it is compact.

PRrOOF. If S is bounded in X then a sequence in T'(S) is given by {T(z,)}
with {z,} in S; a subsequence z,, — z in X so T'(z,) = T(z) in Y. 0

Conversely, let’s suppose T : X — Y is compact. If x, — z in X then
{z.} is bounded, weakly and strongly. If it is not that T'(x,) — T(x), there is
a subsequence {z, } for which T'(z, ) remains outside a strong neighborhood of
T(z). Now {z, } bounded implies {T'(z,/} contains a convergent subsequence, say
T(xn) — vy, and this is a contradiction if y = T'(z). Thus we have proved the

LEMMA 1.2. If T is compact and weakly sequentially continuous, then T is
completely sequentially continuous.

Note that T being weakly sequentially continuous implies that T' is bounded. Also
we needed above only that the graph of T be closed in X,, x Ys. Here X,, denotes
X with weak convergence, and Y; is Y with strong convergence.

Finally, note that complete continuity or compactness is so severe a restriction
that it never holds for the identity in an infinite-dimensional Hilbert space. That
is, if {e, } is an orthonormal basis for Hilbert space X, then for each x € X we have
T =32 (en, 7)€, and ||z]|2 = 320, |(en, z)|?, 50 limp—,o0(€n,z) = O for each
z € X 2 X' Thus e, — 0, but |le,|| =1 so it is impossible for any subsequence to
be strongly convergent.

Assume hereafter that T : X — Y is linear. If T is bounded then by linearity
there is a K > 0: |T(z)|| < K]||z| for all z € X and (again, by linearity) this is
equivalent to (uniform) continuity. This proves that 7" is bounded if and only if it
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is continuous. Recall the dual or adjoint of T is the linear T’ : Y/ — X' defined by
T (f)(z) = f(T(z)) for f €Y',z € X. Thus, T'(f) = foT € X'. If thenet z, — z
in X and f € Y, then f(T'(z4)) = (T"'f)(za) — (T'f)(z) = f(T(x)), s0 Tza — Tz
in Y. This shows that T being continuous implies that T is weakly continuous.
Suppose X is reflexive. If T is not bounded, there is a bounded sequence {z,} such
that ||Tz,| — oo. But then there is a weakly convergent subsequence {z,:} for
which {T'(z,/)} is not bounded and, hence, not weakly convergent. This shows that
T being weakly continuous implies that T" is bounded. Thus, for a linear operator
in reflexive Banach space, we have the equivalence of continuity, weak continuity
and boundedness.

I1.2. Existence Theorems
We begin with a fundamental fixed-point result; see [44, p. 82].

THEOREM (BROUWER). If f is a continuous map of the closed unit ball B™ of
R™ into itself, then there exists an z € B" : f(z) = x.

There is another form of this result which is more geometric.

THEOREM. There does not exist a continuous function r of B™ into its bound-
ary OB™ with r(z) =z V x € 0B™.

Such a function r is called a retract of B™. These two results are equivalent.
To see this, let r be a retract of B™. Define the antipodal map a : dB™ — dB™ by
a(z) = —z. Then aor : B™ — B™ has no fixed point, so the Brouwer Theorem
implies the No-Retract Theorem. Conversely, suppose f : B™ — B"™ has no fixed
point: f(z) # z for z € B™. Then for each x € B", there is a unique r(z) € dB™ :
r(z) =z +t(z — f(z)) with t > 0, and 7 is a retract of B™.

r(x)

A special and useful case is the following intermediate-value theorem:

PROPOSITION 2.1. Let f : B* — R™ be continuous and (f(z),z) > 0 for every
z € O0B™. Then f has a zero.

PROOF. Otherwise, the map =z — —f(z)/| f(z)]| of B® into B™ has a fixed
point o = — (o) /|| (o) | for which (£(z0), 20) = —£(z0)| < 0. O

This is an example of how an a-priori estimate and continuity lead to the existence
of a solution to a nonlinear equation, f(z) = 0. We shall obtain such results in the
setting of Banach space where f : K — K is continuous and K is a compact convex
set.

Let V be a reflexive Banach space; consider a function A : V — V’'. We say
that A is monotone if (A(u) — A(v),u —v) >0V u,v € V, and hemicontinuous if
for each u,v € V the real-valued function ¢ — A(u + tv)(v) is continuous. (Clearly
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this last condition is true if the restriction of A to each line segment is continuous
into V’ with weak convergence.)

DEFINITION. A is type M if u, — u, Au, — f and limsup Au,(u,) < f(u)
imply that Au = f.

LEMMA 2.1. If A is hemicontinuous and monotone then it is type M.

PROOF. Let {u,} be given as above. By monotonicity, {Au, —Av, u, —v) >0,
v € V so we obtain (f —Av,u—v) > 0forallv € V. For any w € V we set v = u—tw
with ¢ > 0 and let ¢ converge to zero; hemicontinuity implies (f — Au)(w) > 0 for
allwe V,so Au = f. ]

LEMMA 2.2. If A is type M and bounded then it is demicontinuous.

PROOF. Let u, — uin V. Since A is bounded there is a susequence {u,} for
which A(un) — f. But | Aun: (un') = f ()] < |(Aun = f) (W) +[| Ag || [|un: —ul] — O
80 limy,— 00 Atn (un/) = f(u). Since A is type M it follows that Au = f; since a
subsequence as above can be extracted from any susequence of {u,}, it follows that

Au,, — Alu). O

COROLLARY 2.1. Let Vj be a finite dimensional space, j : Vo — V' an injection
and j' : V' — Vj the dual operator. Then j'Aj : Vo — Vj is continuous.

THEOREM 2.1. Let V be separable reflexive Banach space and f € V'. Assume
A:V = V' is type M, bounded, and there is a p > 0 such that

(2.1) Av(v) > f) Vv eV || >p.
Then f € Rg(A) : there existsu € V : Au= f.

PRrROOF. We use Galerkin’s method to reduce the problem to the finite-
dimensional case. Let {w;,ws,...} be an independent set of vectors whose lin-
ear span is dense in V, and let V;,, denote the linear span of {w;,ws,... ,wy,} for
each m > 1. Let j., : R™ — V,, denote representation with respect to this basis.

Fix m > 1 and consider the approximate problem in V. ,

Um € Vin + Alum)(w;) = f(w;) , I1<j<m.
This is equivalent to finding um, = jm(lm ), where
U € R™ : F(im) = (jmAjm) (@m) — jmf =0 .

But F : R™ — R™ is continuous and satisfies (F'(u),u)gm > 0 for |Ju|| > p so F
has a zero.

For each m > 1 we have a u,, as above and, hence, Aum(um) = f(um). Again
from (2.1) we find |junm,|| < p, and A is bounded so there is a subsequence (denoted
by {um} again) for which u,, — u, A(um) — f and Aum(um) = f(um) — f(u).
Since A is type M, A(u) = f. a

DEFINITION. The function A: V — V' is coercive if
Au(u)
flull

as ||lul]| = o0 .



11.2. EXISTENCE THEOREMS 39

COROLLARY 2.2. If A is type M, bounded and coercive on a separable reflexive
Banach space to its dual then A is surjective.

ExaMPLE. Let A : R — R be monotone, continuous and f € R. Then
“A(r)r > fr for large |r|” if and only if f belongs to the interior of Rg(A).

REMARK. An operator A is called locally bounded if the image of any conver-
gent sequence is bounded. The proof of Lemma 2.2 shows that this is sufficient
with type M to obtain demicontinuity. Thus, for monotone .4, demicontinuity is
equivalent to hemicontinuity and local boundedness. A deeper result of Browder
and Rockafellar is that monotonicity implies local boundedness, so for monotone
operators, hemicontinuity and demicontinuity are equivalent.

If uniqueness holds for the equation A(u) = f, then the original sequence
{um} in the proof of Theorem 2.1 must converge (weakly) to u. This follows from
an argument similar to the proof of Lemma 1.2. Sufficient conditions for uniqueness
are the following.

DEFINITIONS. A is strictly monotone if (Au — Av,u — v) > 0 for all u # v in
V and A is strongly monotone if there is a ¢ > 0 for which

(Au — Av,u —v) > c|ju — ||}, wv€eV.

Note that strongly monotone implies coercive and that in Theorem 2.1 we have
Um — u (strongly). Moreover, for monotone operators we have the following useful
characterization of solutions.

PROPOSITION 2.2 (MINTY). If A:V — V' is monotone and hemicontinuous,
then Au = f if and only if (Av — f,v —u) >0 for allv € V. If also A is bounded
and satisfies (2.1), then the set of solutions U = {u € V : Au = f} is closed,
convex, non-empty and bounded.

PRrOOF. Clearly Au = f implies (Av— f,v —u) > 0 for v € V. Conversely, set
v = u+tw and let ¢ converge to zero to obtain (Au — f,w) > 0 for all w € V. Thus
U =\yey Cv where C, = {u € V : (Av— f,v—u) > 0} is closed and convex. If A
satisfies (2.1) then U is bounded and, by Theorem 2.1, A also bounded implies U
is non-empty. O

DEFINITION. A is mazimal monotone if it is monotone and Au = f if (and
only if) (Av— f,v—u) >0forallveV.

Thus A has no monotone proper extension. From Proposition 2.2 and the
proof of Lemma 2.1 it follows that monotone and hemicontinuous imply maximal
monotone which in turn implies type M.

A useful variation on Theorem 2.1 is given next; although boundedness of A is
relaxed, A is locally bounded by the preceding Remark.

THEOREM 2.2 (MINTY-BROWDER). Let V be a separable reflexive Banach
space and f € V'. Assume A : V — V' is monotone, demicontinuous and that

(2.1) holds. Then f € Rg(A).

PROOF. As before we obtain a sequence u,, € V;, such that (Au,, — f,w) =0
for w € V,,, and u,, — u. fv € V,, and m > n, then 0 < (Av — Aup, v — up) =
(Av— f,v —uy,) since v — Uy, € Vi, hence, 0 < (Av— f,v—u) forallv € Un21 Va.
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The same holds for all v € V' by demicontinuity since (J,,5, V» is dense in V, and
the maximal monotonicity shows Au = f. a

We have shown that a monotone continuous operator is type M and have proven
an existence result for equations with these rather general operators. Next we give
some examples of type M operators, one of which indicates that this class is very
sensitive to perturbations, and then we introduce the more stable class of pseudo-
monotone operators for which we can resolve a wider class of problems, namely,
inequalities. In Section 6 we shall present a variety of examples of variational in-
equalities and then introduce a class of elliptic operators which are quasimonotone,
that is, monotone in only the highest order terms.

Let A:V — V' be a function, V a separable reflexive Banach space. We list
some examples of conditions which imply A is type M, that is, if u, — v in V,
A(u,) — f in V' and limsup Au,(un) < f(u), then A(u) = f.

EXAMPLE 2.A. Let A be weakly closed: u, — u and Au,, — f imply Au = f.
Clearly, A is then type M. Note that “bounded and weakly closed” is equivalent
to “weakly continuous” in this space. Thus every continuous and linear operator
from V to V' is type M; this holds without any monotonicity.

EXAMPLE 2.B. Type M plus completely continuous is type M: if A is type M
and if B is completely continuous, then A + B is type M. This is immediate since
U, — u implies Bu,, — Bu and so Bu,(u,) — Bu(u). Thus the type M property
is stable under “compact perturbations” in this setting.

EXAMPLE 2.C. Type M plus monotone, weakly continuous is type M. Suppose
A is type M and B is monotone, weakly continuous. Let un, — u, (A+B)(u,) — f
and limsup(A + B)(un)(un) < f(u). Since B is weakly continuous, Bu, — Bu and
so Au, — f — B(u). Since B is monotone we have A(uy)(u,) < A(un)(u) + (A+
B)(un) (un — u) — Bu(upn —u), so limsup Au, (un) < (f —Bu)(u). But Ais type M,
so A(u) = f — B(u).

Even with monotonicity it is difficult to relax the severe condition of weak
continuity of the perturbation in the above. The next example shows that even
Lipschitz continuity is not sufficient.

EXAMPLE 2.D. Let V = V' be separable Hilbert space with orthonormal basis
{en : n > 1}. Set A = —I, the negative of the identity, and P the projection
onto the unit ball K = {v € V : ||[v|]| < 1}. Recall from 1.2 that this projection is
characterized by

PueK:(Pu—u, Pu—v)<0VveK
Also, we note that for u,v € V
(Pu— Pv, u—v) = (Pu— Pv, u— Pu) + ||Pu— Pv||* + (Pu— Pv, Pv—v)
> ||Pu~ Pu||*,

so P is a monotone contraction.

Choose u,, = €1 +en, n > 2. Then Pu, = %um (A+ P)(up) = (% —1)u, so
un — e1, (A+P)(un) — (J5—1)e1 = f, and ((A+P)(un, un)) = 2(5-1) < (f,e1).
However, (A + P)(e;) =0 # f, so we see that A + P is not type M.
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Given A: V — V' and f € V' as above, suppose we wish to solve the variational
inequality (cf. 1.2.12)

(2.2) ve K: Au(v—u) > flu—u), ve K,

where K is a closed convex subset of V. In order to retain information on the
value of the left side of this inequality when we take weak limits, for example, in
a Galerkin approximation procedure as in the proof of Theorem 2.1, we introduce
the following class of operators.

DEFINITION. Let V be a reflexive Banach space. An operator A : V — V'
is pseudo-monotone if u, — u and limsup Au,(u, — u) < 0 imply Au(u — v) <
lim inf Auy,(u, —v) for all v e V.

Note in the above that from v = u we obtain lim Au, (u, —u) = 0 and so it follows
that Au(u —v) < liminf Au,(u—v) forallv e V.

PROPOSITION 2.3. If A is monotone and hemicontinuous then A is pseudo-
monotone. If A is pseudo-monotone, then A is of type M.

PRrOOF. Suppose u, — u and limsup Au,(u, — u) < 0. By monotonicity,
Auy (un—u) > Au(u,—u) — 0so liminf Au, (up,—u) > 0; thus lim Au, (v, —u) = 0.
Let v € V and set w = (1 —t)u +tv, t > 0. Then u, —w = t(u — v) + (u, — u) and
by monotonicity 0 < (Au, — Aw, u, — w); this implies

tAun (u — v) > —Aun(un — u) + Aw(t(v — v) + (un — u)) .
Taking the lim inf and dividing by ¢ gives
liminf Au,(u —v) > Aw(u —v) .
Now let ¢ | 0 and use hemicontinuity to get
liminf Au,(u — v) > Au(u —v) .

Since lim Aup(u, —u) = 0, we are done.
For the second part, let u, — u, Au, — f and lim sup Au,(u,) < f(u). Then
for any v € V we have

Au(u — v) < liminf Auy, (u, — v) < limsup Aup, (u, —v)
< flu—v)
so it follows that Au = f. O
COROLLARY 2.3. If A is pseudo-monotone and locally bounded then it is demi-
continuous.

PROOF. This is immediate from Lemma 2.2, but we can easily prove it directly.
If u,, — u then (for some subsequence) we have A(u,) — f in V’. Thus, Aun(u, —
u) — 0, so from the definition of pseudomonotone we obtain

Au(u — v) < liminf Au,(u, —v) = f(u—v), veV,

and this implies Au = f. This holds for any subsequence, so we conclude Au,, — Au
by the uniqueness of weak limits. a
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PROPOSITION 2.4. Let A and B be pseudo-monotone; then A+ B is pseudo-
monotone.

PROOF. Assume u, — u and limsup(A + B)(u,)(un, — u) < 0. We claim that
lim sup Auy, (u, — 1) < 0 and lim sup Bu, (u, — u) < 0. Otherwise, by symmetry
lim sup Bu, (u, —u) = £ > 0 and, by passing to a subsequence, lim Bu, (u, —u) = €.
This gives lim sup Au, (u, —u) = limsup{(A+ B)u, (un —u) — Buy (up,—u)} < 0—e.
Since A is pseudo-monotone we have Au(u—v) < liminf Au,(u, —v) for allv € V;
setting v = u gives

0 < liminf Au, (u, — u) < limsup Aup (un, —u) < —€,

a contradiction. With the claim established, the proof now follows by the super-
additivity of the “lim inf”. O

We have shown the class of pseudo-monotone operators is “intermediate” be-
tween monotone, hemicontinuous and type M, and that it is stable with respect
to addition. Moreover, we note that this class is “strictly intermediate”. It is easy
to construct pseudo-monotone examples which are not monotone; in Example 2.D
we had (A + P)up(u, —€1) = % —1<0,s0 A+ P is not pseudo-monotone. By
Propositions 2.3 and 2.4 it follows that A = —I is not pseudo-monotone, but this
is easy to see directly. In fact, —I is pseudo-monotone in Hilbert space V if and
only if dim(V) < co. In general, for Hilbert space we have —I pseudo-monotone if
and only if weak convergence is equivalent to strong convergence.

THEOREM 2.3 (BREzIS). Let V be a separable reflerive Banach space, K a
closed, convexr non-empty subset of V, A : V — V' a bounded pseudo-monotone
operator, and f € V'. Assume there is a vg € K and p > 0 such that

(2.3) Av(v—v) > flu—v) VveK, |v[|=>p.
Then there exists a solution of the variational inequality (2.2).

PRrROOF. We proceed in four steps. Assume K is bounded, so (2.3) is vacously
true, and (i) solve the finite-dimensional problem by Brouwers fixed-point theorem,
(ii) use boundedness of A to get an appropriate subsequence of “approximate”
solutions, then (iii) use the pseudo-monotone property to show the weak limit is a
solution. Finally, (iv) use (2.3) to eliminate the assumption that K is bounded.

First, let {wy,ws,...} be dense in K, V,, be the linear span of {wi,... ,wn},
and K,, be the convex hull of {wy,... ,wy,} for m > 1. Let j, : V;, — V and
its dual j;, : V' — V. denote injection and restriction, respectively. Note that
U{K;, : m > 1} is dense in K. Fix m > 1 and consider the finite-dimensional
problem

Um € Ko 50y AdmUm (V — um) = i f(v — um) vE Ky, .
This is equivalent to
Um € Kt (Ummy ¥ —Um) > (Um + Jin f — GinAdmUm, U — Um) , v €K,
where we identify V;, 2 R™ = V! | and this is equivalent to

Um = P(um + J;lrnf - j;n-Ajm'U'm)
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where P is projection onto K,,, in R™. But the function u — P(u+j.,f—j., Ajmu)
is continuous from any closed ball B containing K, into B so the Brouwer fixed-
point theorem shows this equation has a solution.

Since we assumed K is bounded, by passing to a subsequence, denoted by
{um}, we have u,, — u € K, and || A(up,)|| < M since A is bounded. Let’s show
lim sup Aum (um — u) < 0. For any € > 0 choose 4 € Ky with ||u — @|| < e. Then
At (U, — @) < f(um — @) for m > N, since Ky C K;,,, so we obtain

lim sup At (U — ©) = lim sup{ Atm (um — @) + Aum (@ —u) } < ([|f]| + M)e .

But € > 0 is arbitrary so the claim is done.

Since A is pseudo-monotone it follows that Au(u — v) < liminf Aum, (Um — v)
forallv € V. Ifv € K,, and m > n, then Aup, (um —v) < f(tm —v) so Au(u—v) <
flu—v) forallv e K,,n>1. But U{K, : n > 1} is dense in K, so u is a solution
of (2.2).

It remains only to remove the assumption that K is bounded. Set R =
max{||vgl|, p} and Kr = {v € K : ||v|| < R}. Since Kg is bounded there is a

ug € K : A(ug)(v —ug) > f(v—ugr) , veE Kg .

Since vy € Kp it follows A(ur)(ur — vo) < f(ur — vo) so (2.3) implies [lug| < p.
For any v € K set vy = (1 — t)ug + tv with ¢t > 0 so small that v; € Kr. Observe
vy —ug = t(v—ugr) so it follows that ug is a solution of the original problem on K
and the proof is finished. O

For the special class of monotone operators, we have a weak characterization
of solutions as well as additional properties of the set of solutions.

COROLLARY 2.4. If A is monotone, hemicontinuous, then u is a solution of
the variational inequality (2.2) if and only if

(24) ve K: Av(v—u) > f(v—u), veK .

If also A is bounded and satisfies (2.3) then the set of solutions is closed, convez,
non-empty and bounded.

PROOF. Since A is monotone, every solution satisfies (2.4). Conversely, if u
satisfies (2.4) and v € K, we choose 0 < t < 1 and v; = u+t(v—u) = (1—-t)u+tv €
K as a test vector to obtain v; — u = t(v — u), hence,

Ave)(v —u) 2 flv—u) .

Now use hemicontinuity to let ¢ — 07; this shows the problems are equivalent.
Clearly the solution set is convex and closed, since the set of u € K satisfying (2.4)
for a fixed v is closed and convex and we may take intersections. Also (2.3) implies
it is non-empty and bounded. ) O

We mention some easy but useful remarks. The condition (2.3) implies that
any solution of the variational inequality satisfies the explicit bound ||u|| < p. Thus
(2.3) is an a-priori estimate on solutions. It is vacously true if K is bounded; if A
is coercive it holds for every f € V’. Finally, if A is strictly monotone there is at
most one solution of the variational inequality.
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I1.3. LP Spaces

Let G be an open (or Lebesgue measurable) set in R™ and 1 < p < co. Then
LP(G) is the set of equivalence classes of measurable functions u : G — R such that
J lu(z)|P dz < oo, where we identify functions whose values equal a.e. on G. From
the (crude) inequality, |a + b|P < 2P(aP + bP) for a,b > 0, it follows that L? is a
linear space. The space L>°(G) consists of all (equivalence classes of) essentially
bounded measurable functions, u : G — R, for each of which there is a K < oo with
lu(z)] < K a.e. € G. The infimum of such K is denoted by ||ul|z(g); clearly
L*(G) is a linear space.

We develop some fundamental 1nequaht1es

LEMMA 3.1 (CAUCHY). ab < <2 4+ & for a,b > 0.

PROOF. (vea— ﬁ b)?2 > 0. a
LEMMA 3.2 (JENSEN). If f : G — R is integrable and ¢ : R — R is converz,

then
o(og L 10@) < o5 [ oli@) e

PROOF. Set a = ﬁ Jo f and choose m € R : m(t — a) + p(a) < (t) for all

t € R. (That is, m is the slope of a line of support of the graph of ¢.) Set t = f(z)
and integrate over G. O

LEMMA 3.3 (YOUNG). ab < %p + bpi,, for a,b>0 and % + I% =1

PRrROOF. Set

o
IN
8
IA

ploga ,
f(z) = , G=(0,1), ot)=¢". O
p'logh,

Sl

3=
IA
8
IA
=

lpbp

LEMMA 3.3A. ab<“:“p+€ =

LEMMA 3.4 (HOLDER). [ [u(z)v(z)|dz < |[ullrs vl 1 < ooy 5+ 5 = 1,
where

1/p
oo = ([ u@pds) ™ for 1<p <00

PROOF. The cases p = 1, +00 are immediate. Otherwise,
[ wldo < Sl + =,
and we set € = |[v]| o /||u|55 " O

LEMMA 3.5 (MINKOWSKI). |[u+v||rr < |lullze + |[v]|Le-
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PRrROOF. For 1 < p < o0,
’ 1_%
S ol < ([l o) (s + olzs)
The cases p = 1,00 are easy. O

Here is an interpolation inequality.

LEMMA 3.6. LetlSpSqu,%:%—}-l_T" and 0 < a < 1. Then

llullzr < llullgs lullzz® -

PROOF.
lull = / fufer+(1-er
(1—a)r
< ([l ([ oot
= ||| |l S "
since % + gl_—qak =1. O

The next inequality is an imbedding result.

LEMMA 3.7. If u(G) < 00, 1 <p < q < oo then LI C LP and
1_1
lulle < p(G)?» " llullLe -

PROOF.

1—-2
Ity = [ a1 < i ([ 1) 0
G G

The next result describes the intersection of the LP spaces.

LEMMA 3.8. Ifu € LP, for p > 1, then limg_,o ||u|lLe = ||u||Lee.

PrOOF. If 0 < m < ||lul|z= and A,, = {z : |u(z)| > m}, then |lu|ps >
mu(An)/? and 0 < p(An) < oo. Therefore lim , |lullzs > m, hence
lim,  llullze = [Jullze. If f|ulle < oo then |u(z)|? < |u(z)[P|lullz= so |lullze <

1—
B/ ]| P9

1P/ 50 T o0 |1l za < [lull L. =

PROPOSITION 3.1. LP(G) is a Banach space, 1 < p < co.

PRrROOF. For p = +o00, {u,} Cauchy in L*°(G) implies there is a set A of zero
measure such that forx € G~ A, m,n > 1

|tn (T) = U (2)] < |Jtn — UmllLeo [un ()| < sup ||tm|lLe -
m

Thus u, — u uniformly on G ~ A; set u(z) = 0 for z € A. Then ||Julj~ <
sup ||un||Le and ||u, — ullLe — 0 as n — oco.
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Suppose 1 < p < oo and {u,} is Cauchy in LP. There is a subsequence
{un,} for which |[un,,, — tn,|lr < 5. Set vm(z) = E;":l [tn;,, (%) = Un, (2)], SO
[omllze < 3°7%; 25 < 1, and v(z) = liMy 00 U (z) in Reo. From Fatou’s lemma,

/ lv(z)|Pdz < lim |vm (2)]Pdz <1 so v(z) < oo ae.
G

m—oo JG

and the series
o0

{tny @) + Y (tny21 (2) = 0, (2)) }
j=1
is (absolutely) convergent to (definition) u(z) = lim;_,co un, (), a.e. on G. Set
" u(z) = 0 otherwise. Let € > 0 and choose N: m,n > N implies |[up, — uml|/zr < €.
Fatou’s lemma shows for n > N that

@) = w@P de = [ lim fun, () - wn (o)

< lim | fun,(2) — un(z)|P dz < P
j—oo JG

so u — u, € LP, (hence, u € L?,) and u, — u in LP. O

The proof of Proposition 3.1 also yields the following useful result.

COROLLARY 3.1. Every Cauchy sequence in LP(G) has a subsequence which
converges pointwise a.e. on G.

We consider the approximation of functions in LP(G) by those which are smooth
and vanish near the boundary, 0G. For any real-valued function ¢ on G we define
the support of ¢ to be the closure in G of the set {z € G : p(z) # 0}, and we
denote it by supp(yp). For any pair of sets we denote by K CC G that K is
compact, G is open, and K C G. This implies there is a strictly positive distance
between K and 0G. Finally we define C§°(G) = {¢ : G — R | ¢ is infinitely
differentiable and supp(p) CC G}. This linear space is frequently called the space
of test functions because it is dense in many function spaces over G and it is easy
to justify computations on such functions.

In order to construct smooth approximations of general functions, we specify a
regularizing sequence: for each £ > 0, let ¢, € C§°(R™) be given with

we >0, supppe C{zeR":|z|<e}, /(,05=1.

Such functions can be constructed in the form . (z) = e "3 (z/¢) from a single
(1 as given above.
Let f € L] .(G) and define the mollifier M, corresponding to {®} by

loc

MN@) = o) = [ ety = [ fwpa-vay,

where we have extended f to all of R™ as zero. From the first integral representation
it follows that

supp f. C supp f +{y : [yl < e} .
That is, f:(z) # 0 only if z € supp(f)+{v : |y| < €}, supp f is closed and the e-ball
is compact, so their set sum is closed, hence, it contains supp(f.). From the second
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integral representation and Leibnitz’ rule, it follows that f. € C*°(R™). Thus we
have M, : L. . — C§° and the support of M, f is at most ¢ larger than that of f.

loc

PROPOSITION 3.2. (a) If f € Co(G), then f. — f uniformly. (b) If f € LP(QG),
1<p< oo, then | felle < || fllzr and fe — f in LP(G).

PRrROOF. The proof of (a) follows from the calculation

£2) = F@I < [ 1£@=1) = F@)loelo) dy

<sup{|f(z—y) - fl@):y € f, |yl <e}.
For (b) the case p = 1 follows from

el < / / 1@ - v)loe () dedy = [ fllLs -

To prove this for p > 1, let ¢ € Co(G) and estimate
| [ i) as] < [[ 11— i) o)y
< [ 150 9l 0c(0)

and take the supremum ovgt those 1 with L -norm at most one. For the conver-
gence proof, first let 7 > 0, then choose g € Co(G) with ||f — gllL» < . Then we
have || f: — ge|lL» < 1 and, hence, ||f — fe|lLr < 27+ ||g — gellLr- The last term goes
to zero with &, by part (a), so we are done. 0

We consider the dual of LP(G). For each v € L?' (G) define R, (u) = Jovu,u €
LP(G). Then R, € (L?)" and ||Ry|l(zry < |[v]l» follows from Holder’s inequality,
Lemma 3.4. We shall show R : L?' — (LP)’ is an isometry.

Suppose 1 < p < oo and set u(z) = |v(z)[P ~'sgnv(z), ¢ € G, where the
sign function is defined by sgnw = 1 if w > 0 and sgnw = —1 if w < 0. Then
lulP = |v|P®' =1 = |v|?’ so u € LP and

’ / —1r 1
Ruw) = [l = ol = oll oo
Therefore ||Ry||(zry = ||v]| > . Suppose p =1 and |[v]jz > 0. Let 0 < & < [|v||e
and choose A C G with 0 < u(A) < oo, |v(z)| > ||v||ree — € for all z € A. Set
u(r) = sgnv(z), ¢ € A and u(x) =0 on G ~ A. Then u € L}(G) and

Ro(u) = /A lv(z)| dz > u(A)([[vll= =€) = llullL: (lv]l L —€)

SO “Rv“(Ll)' = “U“Loo .
This shows the first part of the following; the second is proved using the Radon-
Nikodym Theorem.

THEOREM 3.1 (RIESZ). The map v — R, : LF' — (L)’ is an isometry for
1 <p < oo; it is a bijection if 1 < p < oo.

COROLLARY 3.2. LP is reflexive if 1 < p < oo.
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PROOF. Denote by R, : LP — (L?') the Riesz map R (u)v = Jquvdz, and
similarly by R, : LP — (LP)' the map Rpv(u) = Jovudz. The dual of R, is
R, (LP)" — (LP') given by Ryp(v) = p(Rpv) for ¢ € (LP)" and v € L7,

Set X = LP(G) so ¢ : X — X" is given by ¢(u)(Rpv) © Rpv(u) = Rpyu(v)
VY ue LP, v e LP, hence, R, (p(w)) = Ry (u) and ¢ = (R,)~! o Ry is onto.

We shall identify LP = (L"), 1 < p < oo, and (LP)" = LP for 1 < p < oo as
above. Thus certain functions on G are identified with linear functionals on L?(G)
as prescribed above by R, and ¢, and these are consistent.

THEOREM 3.2 (NEMYTSKII). Let f : G x R — R satisfy the Caratheodory
conditions
(i) f(-,r): G — R is measurable for each r € R, and
(ii) f(z,): R — R is continuous for a.e. z € G.
Let 1 <p,q < oo, k € LYG), and assume

|f(z,8)] < cléfP/T +k(z), aexzeG, E€R.
Then the operator defined by

F(u)(z) = f(z,u(z)) , ae.z€G, ueclLP(G)
gwes F : LP(G) — L(G) which is bounded and strongly continuous.

PROOF. We may assume f(z,7) is continuous in r at every z € G. If u(z) =
limu,(z) where each u, is a simple function, then (Fu)(z) = lim(Fu,)(z) for
z € G. Each F(u,) is the sum of a countable set of functions f(x,c;)X;(z) where
X; is the characteristic function of a measurable set, so each F'(u,) and hence F'(u)
is measurable. Also |F(u)||rs < ¢l[uP/?||rs + ||k|lza = c||u||’£{,q + ||k||lza so F is
bounded from LP to L9.

To show F' is continuous, let u,, — u in LP and assume for the moment that
{un} has the properties of the subsequence {uy,} in the proof of completeness of
LP above. Since f(z,u) is continuous in u, it follows lim, . F(u,)(z) = F(u)(x)
for a.e. z € G. Also we have

() (@) < elun(@)] + k(z) < (3 hinsr (@) — n(@)] + fen(2)]) + k(z)
n=1
=g(z) and g € LY(QG) .
From Lebesgue’s Theorem we obtain
I1F(un) = F(u)llze = /IIF(un)(m) - F(u)(z)|*dz — 0

so F(up) — F(u) in L9. Thus every subsequence (of the original sequence) has a
subsequence for which F'(u,) converges to F'(u) in L9. O

COROLLARY 3.3. If f satisfies the Caratheodory conditions and |f(z,€)| <
clélP~! + k(z) where k € LP', 1 < p < oo then F : LP — [P = (LP) is bounded
and continuous. If also f(z,-).: R — R is non-decreasing, then F : LP — (LP)' is
monotone.
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PROOF. Choose ¢ =p/, 1 + 5, = 1so p/p’ =p—1. Also

(F(u) - F(v), u—v) /G (f(z,u@) - f(z,v(a))) (u(a) - (@) dz >0,
since (f(z,&) — f(z,n))(—n)>0forall {,neR, z € G. O

COROLLARY 3.4. Let N > 1 and f : G x RN — R satisfy Caratheodory con-
ditions as above: f(x,€) is continuous in &€ € RN and measurable in x € G. Let
1<p,q< o0, k€ LIG) and assume

N
If(z,8)| < e |&P/9+k(z) , ae. z€G, £€RY.

=1

Then F(u)(z) = f(z,u1(x),uz(z),... ,un(z)), = € G, defines F : [LP(G)]N
L%(G) continuous and bounded.

Operators constructed between LP spaces as above by substitution are referred
to as Nemytskii operators. As we have seen they are frequently continuous in the
strong topology. Things are different in the weak topology.

ExXAMPLE 3.A. The sequence t,o( 2) = \/g sin(nz), n > 1, is an ortho-normal

basis for L?(0,7); specifically, ¢, — 0 in L?(0,). Similarly, cos(nz) — 0 so from
sin®(z) = 3 (1—cos2z) it follows ()2 — 2 in L2(0,m). Thus, u — u? is not weakly
continuous on L?(0,7). Furthermore, {¢,} is bounded in LP(0,7), 1 < p < oo,
Co(0,7) is dense in L¥'(0,7) = (LP)" and Jowen — 0 for all ¢ € Cy(0,7) as
above, so ¢, — 0 in every LP(0,7), 1 < p < oo, and (p,)% — % in every L(0,7),
1 < q < co. Hence u — u? is not weakly continuous LP — L9 for any 1 < p,q < oo!

We shall give a sufficient condition for a subset of LP(Q) to be compact. Since
this is a metric space it follows that a set is compact, i.e., sequentially compact, if
and only if it is complete and totally bounded. A subset F' of the space X is called
an e-net if F is finite and X = U{B:(a) : a € F'}. That is, F is finite and the set of
all balls of radius centered at points of F' is a covering of the space X. The space
X is totally bounded if there is an e-net for each € > 0.

PRrROPOSITION 3.3. The space X is compact if and only if it is complete and
totally bounded.

PROOF. The necessity is straight forward, and we only verify the sufficiency of
these criteria. Since X is complete, to show compactness it suffices to show every
sequence has a Cauchy subsequence. If we have a sequence {11, 12, Z13, - . . } given,
then by total-boundedness there is a subsequence {z21, T22, 23, ... }, all of whose
points lie in one sphere of radius 1/2 (since there is a 1/2-net which contains the
original sequence). Likewise there is a subsequence {z31, 32, %33, ... }, all of whose
points lie in one sphere of radius 1/3. Continue selection subsequences in this
manner and check that the diagonal sequence {11, Z22, %33, ...} is Cauchy.

COROLLARY 3.5. In a complete space, a closed set is compact if and only if it
is totally bounded.

These notions are particularly useful for establishing criteria for subsets of
function spaces to be compact. An example which we use below is the following.
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THEOREM 3.3 (AscoLl). Let K be a compact set (in a metric space) and let
F be a bounded subset of functions in C(K,R). If F is uniformly equicontinuous,
i.e., for each € > 0 there is a 6 > 0 such that |f(z1) — f(z2)| < e if f € F and
d(z1,29) < 8, then F is precompact in C(K,R). That is, its closure F is compact.

THEOREM 3.4 (FRECHET-KOLMOGOROV). Let G be open in R™ and K CC G.
Let F be a bounded subset of LP(G), 1 < p < co. Suppose that for every ¢ > 0
there is a §, 0 < § < dist(K, OG) such that

(/ |f(z+h)—f(a:)[pdm)l/p<e,forallhe]R", h <6, feF.
K

Then F|k is precompact in LP(K).

PROOF. With no loss of generality, we assume G is bounded. Also, we let f
denote the zero-extension to R™ of each function f on G. It follows that {f : f €
F} = F is bounded in LP(R™) and in L'(R™).

Fix n > %; then we have with M, = M,

M,7(0) = T@I < [ 7o =)~ F@lealw)dy

and writing ¢, = go,lz/ P. <p,11/ 4 applying Hoélder’s inequality, Lemma 3.4, we obtain

M, F(z) — F(z)P < / Fl@—v) — F@)Pony) dy .

ly|<1/n

Thus we have
/ M, F(z) - F(@)P de < / / F@—1) - F@P do on(y) dy < .
K ly|<1/n JG

That is,
IMuf = Flloy <,  n2%, feF.
Next consider F,, = {Mnﬂ K:fE€ F} for a fixed n. Since ¢, is bounded,
1Mo fllLoo @y < Nnllzoe@yllflli@ey ,  fEF,

and we have for z1,z9 € K

| Mo f(21) = Mnf(@2)] < |21 — 22| [ pnllwiellFllcs
so F, is uniformly bounded and equicontinuous. From Ascoli’s Theorem 3.3 it
follows that F, is precompact in C(K,R), hence, in LP(K).
Finally, let € > 0 be given and choose n > 1/6. Since F, is precompact in

LP(K) there is a finite collection of balls of radius & which cover F,. The set of
corresponding balls of radius 2¢ then cover F|k. O

SR

COROLLARY 3.6. Let G be open in R™ and F a bounded subset of LP(G).
Suppose for € > 0 and compact K CC G there is a 6 > 0, § < dist(K,dG), such
that ‘

/ f@ty) - f@Pde<e?, |h <6, ferF,
K

and for € > 0 there is a compact K CC G, such that || f||r(c~k) < €, f € F.
Then F is precompact in LP(G).
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PROOF. Given € > 0, fix K as above so that || f||zr(g~k) < €, f € F. Thus
F|k is precompact in LP(K) and can be covered by a finite collection Be(f;),
fi € LP(K), 1 < i < N. Extend these as zero to get f, € L?(G). Then it follows
that F C U, Bae(F,). O

We close with a remark on demicontinuity.

LEMMA 3.9. Ifu, — u in LP(G), 1 < p < 400 and up(z) — v(z) ae. 2z € G
then u = v.

PROOF. Let Gy C G with u(Gp) < 0o. Then Egorov’s Theorem implies that for
each ¢ > 0 there is a measurable A C Go with u(Gp ~ A) < € and u,, — v uniformly
on A. For each measurable B C A, [ g Un — S p v by uniform convergence. Also
Xp € LP since u(B) < 0o so by weak convergence Jptun=[gXB un — [5Xpu=
J5u, and so [p(u—wv) =0 for every B C A. It follows that u(z) = v(z) a.e. in G.O

PROPOSITION 3.4. If {u,} is bounded in LP(G), 1 < p < oo, and if up(z) —
v(z) a.e. ¢ € G, then u, — v.

PROOF. Otherwise there is an ¢ > 0, f € (L?)’ and subsequence {uy,} for
which | f(un; —v)| > ¢, j > 1. Pick a further subsequence un, — w in LP and note
from above u = v, a contradiction. O

The point of Proposition 3.4 is that we need only to have the function F(u) =
f(-,u(-)) to be bounded and to have f(z,-) continuous in order to get F' : LP — L4
to be demicontinuous.

I1.4. Sobolev Spaces

We shall introduce certain spaces of functions which with their derivatives
belong to LP(G) and describe the sense in which they have values on 8G. First we
construct a space which is very large and contains all its derivatives. Recall that
C§°(G) is dense in every LP(G), 1 < p < co. We call C§°(G) the space of test
functions on G.

DEFINITION. D* = C§°(G)*, the algebraic dual of C§°(G), is the linear space
consisting of all linear functionals on C§°(G). These linear functionals are called
generalized functions on G.

EXAMPLE 4.A. For each f € L (G) (that is, f|x € LY(K )~for each K CC G)
we define f € D* by f(¢) = Jo fodz, ¢ € C§°(G). Then f — f is an injection by
which we identify Li (G) C D*.

EXAMPLE 4.B. For each f € L”, 1 < p < 00, we have given Rf € (LP)’ by
Rf(v) = [5 fvde, v € LP(G) and have agreed to identify f = Rf. If we denote
by i : C§°(G) — LP(G) the identity with dense range, and by ¢* : (LP)’ — D* the
algebraic dual which is one-to-one (it is just restriction to C’3°(G)), then we find
i*(Rf) = Rf oi = f, so these identifications are compatible.

wy L oo
= T

/

L? — L1

loc
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EXAMPLE 4.C. Let 2y € G and define §,, € D* by
6zo((p) = ‘)0(:170) ) w € CSO(G) .

Then 8,, ¢ Ll similarly we can construct &s(p) = Jswds for any lower-
dimensional manifold S in G.

Suppose f € L} (G) and for a.e. (z1,... ,Tn—1) that z — f(z1,...,2p_1,T)
is absolutely continuous with derivative D, f € L. .. For each ¢ € C$°(G)

Drf(p) = /G (Duf)p = - /G (D) = —(Dap) = D F(0)

where D}, : D* — D* is the adjoint of D, : C§° — Cg§°. Thus 5;17 = —Dx f for all
such f and this forces the following.

DEFINITION. The partial derivative of the generalized function T' € D* in the

j*h-coordinate direction is the generalized function 0;T = —D;T; that is,

9;T(p) = —T(Djp) for ¢ € C5°(G) .

When T = f as above, we call 0;T = 0; f the generalized derivative of f. Of course

we rigged this so that 0; f=D; f so this extended notion is compatible with the
usual notion of derlvatwe Moreover we can repeatedly differentiate every element
of D*, hence, every f € Ll (G).

LEMMA 4.1. Let D = {u € LP(G) : 9ju € LU(G)}, 1 < p,q < oo, and let
0; : D — L9(G) be the corresponding linear function. Then 8; has closed graph in
LP x L9.

PRrOOF. If up, — u in L? and Gju, — v in L9, then Ojun(p) = —un(Djp) —
—u(Djp) = Oju(p) as n — oo so dju = v. O

DEFINITION. Let G be a domain in R", 1 < p < 00, 0 < m = integer. W™P(QG)
is the linear space of all u € LP(G) for which 8%*u € LP(G) for all multi-indices

a = (a1,...,0y) of non-negative integers with order |a| = 337 a; < m, where
0% = 971052 ... 0%~. With the corresponding norms given by
1/p
llls = [ 3 10%ull0ey ] +  1<p<oo and
|a|<m

“u”m,oo = Ilc;lllgxm ||8"u||Loo(G) y

each is the Sobolev space of order m in LP(G).

We digress in order to connect this notion to related ones that frequently occur
in the literature. For any pair u,v € L] (G), v = D*u in the weak sense and v is
called the at” weak derivative of u if

Lurre=0f [uo, pecE©).

This is clearly equivalent to ¥ = 3%u, so weak and generalized derivatives are
equivalent notions.
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Certain properties are obvious. The multiple derivative 0%u is independent
of the order of differentiation, since this is true of D®yp. Similarly it follows that
0°0P = 9**A. Finally, let v be the o' weak derivative of u in L] (G) as above
and consider the mollifier M, constructed in Section 3. From the definition of
derivative we obtain

D" Meu(z) = [ us)D2pe(a~v)dy =
(-1)lel / u(y) Dy pe(z —y)dy = M0%(z) , z€G, 0<e<dist(z,0G).
G

That is, M.9% = D*M_, in the interior of G. Thus, if v = 8%u in L{, (G), then by
setting u, = M 1u we obtain (with u = 0 outside of G) a sequence u,, € C*(G)
such that for any compact K C G

U, — u and D*u, — v in L'(K)

as n — oo. In this case, v is called the strong derivative of u. From Lemma 4.1 it
follows that every strong derivative is also a weak or generalized derivative, so all
three notions are equivalent.

Finally, we shall show that smooth functions are dense in W™?(G), 1 < p < o0,
so this space is equivalently obtained as the completion of C*°(G) N W™P(QG).

THEOREM 4.1 (MEYERS-SERRIN). If 1 < p < 0o, then C®(G) NW™P(G) is
dense in W™P(G).

PROOF. For each integer n > 1 set
1
G, = {:c € G : |z| < n and dist(z, 0G) > ;l—}

and let .Go = G_; = ¢. Then the sequence Q,, = G,11 ~ G,,_1 is an open cover of
G. For each n > 1 let §; € C5°(Qy) with §; > 0 and }°72, B;(z) = 1 for z € G.
Such a collection {g8;} is called a partition-of-unity subordinate to the open cover
{Q,}. Let u € W™P(G) and € > 0. Since supp(B,u) C Oy, there is an a, > 0 such
that the mollifier M, = M, satisfies

1
supp My (Bnt) € | Qs

j=—1
and €
1M (Bu) = Buullmp < 5 -

Define w = Y oo | M, (B,u) and note that for z € Q, we have

1
w(@) = Y Mny;(Barju) -

j=—1

Hence, w € C*(f2) and

o] 1
”U - w”m,p < Z Z ||Mn+j(,8n+ju) - ﬂnu”m,p <3e,

n=1j=—1

so the desired approximation is achieved. a
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The domain G has the segment property if for each x € JG there is an open
neighborhood N, and vector @ # 0 such that z € GNN,, 0 < t < 1 imply z+t7 € G.
Such a domain lies on one side (locally) of its (n—1)-dimensional boundary. By mol-
lifier arguments similar to those above, one may prove the following approximation
property:

If 1 < p < oo then the subspace of restrictions to G of functions in C§°(R") is
dense in W™P(G).

Here are some elementary properties of the Sobolev spaces.

PROPOSITION 4.1. W™P(G) is a Banach space.

PROOF. If {u,} is Cauchy in W™? and |a| < m then {0%u,} is Cauchy in LP,
hence, u, — v and 8%u,, — v, in LP(G). Since 8* has a closed graph, v, = 0%u.0]

By considering the map u — (0%u)|qj<m of WP into the product space
LY(G) = LP(G)N, N being the number of multi-indices with order |a| < m, we
find that W™P is isomorphic to a subspace of a product of LP spaces.

COROLLARY 4.1. If1 < p < 0o, then W™P is separable and every T € (W™P)’
is given by

T(u) = Z / to0%udzx u € WP
laf<m ¥
where § = (to) belongs to [LP'|N. If 1 < p < oo then W™? is reflezive.
PROPOSITION 4.2. A sequence {un} in W™P, 1 < p < o0, is weakly convergent

if and only if {8%u,} is weakly convergent in LP for all o, || < m; in this case we
have u, — u in W™P if and only if each 0%u, — 8%u in LP.

PRrROOF. We may assume all sequences are bounded. If u, — u in W™P then
for ¢ € C§°(G) we have

Oun(p) = (=1)*un(8%0) — (=1)*u(8%0) = 8*u(y)

and {0*u,} is bounded in L? with C3°(G) dense in L?', so 8%u,, — 8%u in LP.

Conversely, let u, — u and 8%u, — v, in LP; each 0% is weakly closed,
so 0%u, — 0%u. The result follows from the representation of (W™P)’ given in
Corollary 4.1.

The dual of W™P?(G) is generally more than a space of generalized functions
on G. Certainly the restriction to C§°(G) of an element of (W™P)’ belongs to D*;
however, this restriction is not injective because C§°(G) is (in general) not dense in
W™P(QG). The problem is that W™P elements may have non-zero boundary values,
as we shall see below.

DEFINITION. W("P(G) is the closure of C§°(G) in W™P(QG).

COROLLARY 4.2. If 1 < p < oo, then every T € (W P(G))" is given by
T= zlalﬁm 8° f., where each fo € LP (G). Conversely, every linear combination of
at most m*-order derivatives of LP" functions is a generalized function in (Wg™P)'.

We define the trace operator, i.e., restriction to values on the boundary, in
the special case of a half-space. Let G = R} = {z = (z/,z,) : z, > 0} C R
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so G = R"~1. For any ¢ € C5°(R") we define 79 = ¢|sc and note that the
restrictions to G of such functions are dense in WP(G), 1 < p < co. We compute

o0 o0
(e, 0)P = — /0 Dylgl? dzn < p /O 0P~ Dgl (p—1=p/F)

< plIDall o || 10177 1l o = P Dnspll o ey Il gy 5
apply Young’s inequality, and integrate over R"~! to get successively
o, 0)P < [ Dupla’, Neoie,, + o', s (0 1)
”'Y‘Plle(Rn 1y = ”Dn‘P”LP(Rn) +(p 1)“‘P||LP(Rn

Thus, the trace operator v : C§°(R™)|ry — C§° (R™~1) has a unique extension by
continuity to

y:WWP(RY) — LP(R™) 1<p<oo.
Note that the formula

uw(x', xy,) = / Opu(’, s)ds + yu(z') ,  eR"Y 2,>0
0

extends to u € WHP(R7) from smooth functions.

Let’s characterize the kernel of v, ker(v). This is a closed subspace of WP(R?%)
which contains C§°(R" ). Suppose u € ker(y). We shall show there is a sequence
in C§°(R7) which converges in WhP(R7) to u. Pick a sequence §; : R — R by
0;(t)=0,t<1/4,6,(t)=1fort>2/7,and 6;(t) = j(t—1/7) otherwise, and define
u;(z’,zn) = 6;(xn)u(z). Each u; is in the closure of C§°(R?}) (by a convolution
approximation) so it suffices to show lim;_,oo u; = u in WHP(R7).

By Lebesgue’s dominated convergence theorem it follows that u; — u in LP
and for each k with 1 < k < n — 1 that Ok(u;) = 0;(0ku) — Oku in LP(R7) as
j — oo. Similarly, ;0,u — O,u and 0, (8;u) = 0;(0nu) + 8ju, so it suffices to show
fiu — 0 in LP(R%). Since yu = 0 in LP(R™!) our formula above gives

Tn
u(z',z,) = / Opu(z’,t) dt , g eR", 2,>0,
0

S0 we compute

on 1/p (
]u(xl’xn)l < (/ Ianu(x’,t)|1’ dt) w}/ﬂ ,  (Holder)
0
oo 2/7 [Tn
/ |0; (zn)u(z’, za) [P dzn < / / |Opu(z’, t)|P dt .'L‘ﬁ_ljp dz,
0 0 o
2/j pon
= P(2/j)P—1/ / |6nu($l,t)|pdtdzn

0 0

2/i r2/i
= 2P—1j/ / |Onu(x,t)|P dz., dt
0 t

2/j
521’—13'(2/;')/ |Onu(x’,t)[P dt .
0
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Integration over R*~1 gives

2/j
18,0l s, < 27 / / 1OuulP dz |
0o Jre-t

and this converges to zero as j — oo. This proves the following.

LEMMA 4.2. The kernel of v : WHP(RT) — LP(R™™1) s the closure in
WLP(R) of C§°(RR) : ker(vy) = Wy P (R?).

Finally we shall describe the extension of the trace operator to a bounded open
domain G C R™. Assume G is an n — 1 dimensional C™ manifold. Letting
Q={yeR": |y <1},Q={y€Q:y, =0} and Q1 = {y € Q : y» > 0},
we state this last condition as follows. There is a collection of open bounded
sets {G; : 1 < j < N} with U{G; : 1 < i < N} D 9G and corresponding
v; € C™(Q,G;) which are bijections of Q, Q4+ and Qo onto G;, G; N G and
G; NOG, respectively, and each Jacobian J(y;) is positive. (Each pair (p;,G;) is a
coordinate patch.) Let Gy = G. We can construct 8; € C§°(G;), 0 < j < N, with
B;(z) >0, and Z;V:O Bi(z) = 1for z € G. Thus, {B; : 1 < j < N} is a partition-of-
unity subordinate to the open cover {G;:1 < j < N} of G, and {§; : 0 < j < N}
is a partition-of-unity subordinate to the open cover {G; : 0 < j < N} of G.

If f is a function defined on G then

N . n
Acfs;/wm] ﬂjfdsz;/czo(ﬂjf)osoj(y,O)Jj(y>dy

where s = ¢;(y',0) and

1/2
o)

By the smoothness property, |J;(y')] < K, 1 < j < N,y € Qo, since m > 1.
Finally, we construct the trace on 0G as indicated.

5= {35 (At

k=1

WLhe(@G) — Wy P(G) x WhP(Q4 )N
N
u= 20@‘“ — Bou , (Bju)opj , 1<j<N
J:

!

N
y(u) = Zlﬁﬂju — (Bjucp;) = (Bivi(u)op;, 1<j<N
]:

Lr(9G) LP(Qo)"
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That v(u) € LP(0G) follows from the estimates

N N
Y(w)|P ds < / vjulfds < K / 1y; (w) 0 @57, dy'
/8G|<>| 223 [, g ROR

N

N
<K-Kj Z fluo ‘Pj”fzvl,p(QJr) < K-KjKg Z ”””gvl'P(GﬂGj)
Jj=1 Jj=1

< K-Kp-Kp-Nlullfys g

where K is the maximum of all Jacobians, K, is the norm of trace from half-space,
and K, is the largest norm in WP under change of variables @; : WHP(Q4) —
WLP(G N Gj). Clearly, if u € C(G) N WLP(G) then v(u) = u|sg. We summarize
the above as follows.

PROPOSITION 4.3. Let 1 < p < oo and assume G is a bounded domain in
R"™ whose boundary G is a C' manifold of dimension n — 1. Then the linear
trace operator v : WYP(G) — LP(8G) is continuous and uniquely determined by
v(u) = ulsg on those u € C1(G). For any u € WYP(G), v(u) = 0 in LP(8G) if
and only if u € Wy (Q).

We consider the extension of functions in W1P(G) to all of R™ in the situation
of Proposition 4.3. First, one shows for the special case of a cube, Q, that

(@) u(z',z,), Tn>0
Fu(x) =
u(z',—zn), zn<0.

determines an extension operator E : W'P(Q.) — WHP(Q) for which E(u)|q, =
u, and ||E(u)|lwir@) = 2|lullwirg,)- We apply this operator to each of the
functions (Bju) o p; € WHP(Q,), and note that each E(Bju o ¢;) has support
within Q. Thus we obtain an extension operator Eg : W1P(G) — WyP(G) as
above where G is any open set containing U{G, : 0 < j < N}. Of course, any open
G D G could have been specified first and then the partition {G;} chosen as before
with G; € G. This leads to the following.

COROLLARY 4.3. Let G be given as above and G be open, G O G. There exists
an extension operator Eg : WYP(Q) — W3P(G) for which Equ(z) = u(x) for
z € G and

IEc@llwsc) < CG, O)lullwiney , ueWH(G).

THEOREM 4.2 (RELLICH-KANDOROCHOV). Let G be a bounded domain in R™
and 1 < p < co. Then the imbedding Wy’ (G) — LP(G) is compact. If also the
boundary G is a C* manifold of dimension n — 1, then the imbedding W'P(G) —
L?(G) is compact.
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ProoF. Choose an open set Gwith K=Gcc@G,G denoting the closure of
G. For each ¢ € C§°(G), the zero-extension belongs to C§°(G), and we denote it
by ¢. For any h € R™ with |h| < dist(G, dG) we have for z € G

1 1
go(sc+h)—<p(x)=/ % (:v-l—th)dt:/ h-Veo(z + th)dt
0 0
1
oz + ) — p(@)P < [hP / V(e + th)P dt
0

Since G + th C G for t € [0, 1], we obtain from a change of order of integration

Lo+ m-pwpa<ie [{[ G}
<l [ 9ol d.

This estimate holds for all € Wy'(G). Let F be the unit ball in W, (G). From
the Frechet-Kolmogorov Theorem 3.4 it follows that F|g is compact in LP(G), but
F|g is contained in the unit ball in Wy*(@G). O

For the case of a domain G with smooth boundary, note that the composite

operator,

wir(G) £S5 WiP(@) — LM(G) — IP(G)
consisting of the continuous extension, the compact imbedding, and the continuous
restriction, is necessarily compact.

We cite finally the following result from [1, p. 97]. It is very important for
many types of nonlinear problems, especially those in which one needs to show that
certain products of functions belong to an LP class. The domain G satisfies the
cone condition if there is a fixed cone K such that at any point y € G one can
place the vertex at y with K — y lying within G. This is true, for example, in the
case of polyhedra and of bounded domains with G being a C!' manifold.

THEOREM 4.3 (SOBOLEV). Let G be a bounded domain which satisfies the cone
condition in R™, 1 < p < 0o, and let m > 0 be an integer.

Ifm< %, then

np
™,p q <qg< .
wrre) - LUG),  p<as —

Ifm= %, then the above holds for p < g < 0o. If p =1, this holds for ¢ = 0o, and
W™H(G) — Cb(G) ,

where C,(QG) is the space of continuous and bounded functions on G with the sup
norm. If mp > n, then

W™P(G) — Cp(Q) .
Assume OG is locally Lipschitz. If m — 1 < % < m, then

W™ (G) - CG) , 0<)\§m—§-,
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where C*(G) is the space of (uniformly) continuous functions on G which satisfy a
Holder condition of exponent A, 0 < A< 1. If m—1= %, then the above holds for
all 0 < X\ < 1; if also p = 1, it holds for A = 1.

I1.5. Elliptic Boundary-Value Problems

We shall begin with an elementary but instructive model problem, a nonlinear
Dirichlet problem. This will be resolved by our general existence theorems applied
to operators from a Sobolev space to its dual. This will lead to additional general
results as well as applications.

EXAMPLE 5.A. Let G be a domain in R, 1 < p < 00, and define a : R — R by
a(§) = |€P7Lsgné = |€|P~2¢. Also let F € LP (G), where 1/p+ 1/p’ = 1 as usual,
and consider the nonlinear Dirichlet problem of finding a function u : G — R which
satisfies

(5.1.a) - Zaja(aju(m)) =F(z), z€G,
(5.1.b) u(s) =0 s€0G,

in some sense. For example, since a(-) determines a Nemytskii operator from LP(G)
to LP (G) we seek u € W1P(G); then the condition (5.1.b) on G is meaningful in
the sense of trace. Finally, the partial differential equation (5.1.a) should hold (at
least) in the sense of D*(G), i.e.,

Z/Ga(aju(:v))ﬁjcp(z) dr = /GF(a:)w(a:) dz , v e CP(Q),

and this is equivalent to requiring this identity to hold for all ¢ € W(} P(G).

The linear case (p = 2) as discussed in Chapter I suggests that the Dirich-
let problem (5.1) can be formulated as an operator equation. Thus, define V =
Wy P(G) and

Au(v) = Z/Ga(aju(z))ajv(x) dt, w,veV.

This is meaningful by the estimates

n ,—-’I P\ 1/p 1/p
|Au(v)] 52(/ |0;ul? (p—l)) (/ |6jv|p>
j=1 V& G

n 1/p" , n 1/p .
< (Z najun'zp) (Z najvuip) < Nlz 2 follwes
=1

i=1
from which it follows that A : V — V' is bounded. Moreover, A is the sum of
terms which are composition of 8; : Wy ® — LP, a(-) : LP — L?', and 07 = —0; :
r - (W(;L 'P)!, each of which is continuous, so A : V — V' is continuous. For a
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pair u,v € V we have
(Au— Av, u—v) = Z/G(a(aju(x)) - a(ajv(m))) (Bju(x) — B;v(z)) d

and the integrands are non-negative a.e. in G because a(-) is monotone; thus, A is
monotone and type M. Our Dirichlet problem (5.1) is of the form Au = f in V’,
where f € V' is defined by

flv) = /GF(a:)v(z) dz , vevV,

and we need only to verify that A is V-coercive in order to apply our general
existence theorems. Note that

Av(v) =Y 19;0l[%, -
j=1

LEMMA 5.1 (POINCARE). Assume G is bounded in the first coordinate direc-
tion:
sup{|z1]| : z = (z1,... ,2,) EG} =K <@ .
Then |[v]|L» () < PK||81v]|Le(c) for all v € WyP(G).

PrOOF. It suffices to consider ¢ € C§°(G) and note

01 (z1lo(@)[?) = |o(2)P + z1plo(x) [P~ sgn(p(x))drp(z) .

Integrating this identity over G and using the divergence theorem yields the esti-
mate

/G (@) dz < pK ol 810 ]11r

and, hence, the desired result. O

COROLLARY 5.1. If G is bounded in some direction, there exists ¢ > 0 for
which

Z 10501175y = cllvlifyrog » ve Wy (@) .
j=1

We remark that Lemma 5.1 holds if v € W1P(G) and yv(s) = 0 for those
s € 0G with sivi(s) > 0, where 7 = (v4,...,v,) is the unit outward normal on
OG. The problem (5.1) extends easily to the following.

PROPOSITION 5.1 (BROWDER-VISHIK). Let G be a domain in R™, bounded in
some direction, 1 < p < co. Assume given the functions A; : G x R"*!1 — R for
j=0,1,... ,n which satisfy

(i) Aj(=z,§) is measurable in x and continuous in &,

(i) 4;(2, 9l < cXjo 6P + k(), EER™, z€C
(i) 3 io(45(x,€) — A;(z,m)(& — ) 20,  EneR™L,ze@
(V) XioAi(@ 88 2 i, I6P —k(z), Ee€R™,zeG
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where cg > 0, k € LPI(G). Let Fy, Fy,... , F, be given in Lp'(G). Then the set of
solutions to the generalized Dirichlet problem

(5.2) ueWyP(G): Z/GAJ- (z,u(z), Vu(z))d;v(z) dz

Z/ i(2)8;0(z) dxfor all v € WyP(G)
=0

is closed, convez, bounded and non-empty.

PROOF. From (i) and (ii) we define A : W) P(G) — WgP(G) by the left
side of (5 2) and note that it is continuous with bound given by [|A(u)|| 2.7y <

c||u||p + ||k|l o (n + 1)/7". That A is monotone and coercive follow from (iii)
and (1v) respectively. a

Non-homogeneous boundary conditions can be attained routinely in the above
situation. We need only consider the translation Ag(u) = A(u + up) where ug €
W'P(Q) is prescribed. Alternatively, we may set K = uo + W;?(G) and use
Theorem 2.3. The partial differential equation solved in D*(G) in (5.2) is

n
—ZBA z,u(z), V u(z)) =F0(:c)—zaij(x)
j=1

which is quasz’lmear with “first-order” distributions on the right-side — rather non-
regular and not necessarily even functions. The easiest examples of A;’s satisfying
(iii) are those which depend only on z,&;, i.e., A;(z,§) = c;(z)a;(§;) with0 <¢; €
L*(G) and a; : R — R monotone and continuous. We shall relax these implicit
restrictions in the class of quasimonotone operators in Section 6.

Finally, note that if the inequality in (iii) is strict for £ # 7, then whenever
u,v € Wy’ (G) with Au = Av, hence, (A(u) — A(v), u— v) = 0, then

n

Z(Aj (z,u(z), Vu(z)) — Ai(z,v(z), V'v(:c))) i (u(z) —v(z)) =0, ae z€G,

=0

hence, (u(z), Vu(z)) = (v(z), Vo(z)) in R™! for a.e. z. That is, there is at most
one solution. But this rather special restriction can be considerably relaxed!

We pass on to different boundary-value problems for similar quasilinear equa-
tions. For simplicity we consider the following special case:

Let G be a bounded domain in R™ with G a C! manifold, 1 < p < oo, and
a(§) = |€P~tsgné, b(:) € L*(G), c(-) € L*(8G), both b(-) and c(-) are non-
negative, and define

(5.3) Au(v) = / {éa (8;u(z))0v(z) + b(z)a(u(z ))v(:v)} dx

+/ c(s)a(u(s))v(s)ds , u,v € WHP(G) .

oG
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Here we denote u(s) = (yu)(s), where v : WHP(G) — LP(8G) is the trace operator.
Let F € L? (G), Fy € L” (8G) and set

= / F(z)v(z)dzx +/ Fy(s)yv(s)ds , veEWP(Q) .
G oG

Although A, f are defined on all of W1P(G), we shall frequently consider their
restrictions to a given closed subspace V, with Wy*(G) € V C W'2(G). The
extreme case V = WOl P (with b = 0, ¢ = 0, Fy = 0) gave us the original model
problem, the Dirichlet problem (5.1) known as the boundary-value problem of first
type. In this case, the boundary conditions are obtained from the inclusion, u € V,
and these are called the stable boundary conditions. That is, they are imposed by
the definition of the closed subspace V.

EXAMPLE 5.B. Choose V = W'P(G), the other extreme case. Then A:V —
V' is monotone, continuous and bounded; if b(z) > by > 0 then A is strictly-
monotone and V-coercive. Thus, there is a unique

(5.4) uw€eV:Aul) = f(v), vevVv,

and we shall characterize it as a partial differential equation and boundary con-
dition. Note that there are no boundary constraints imposed in this case by the
inclusion, u € V. First, since C§°(G) C V we obtain

- Z 0;a(0ju) + b(z)a(u) = F
j=1
in L” (G) C D*(G). Substituting this back into the functional equation yields
/{Za(au)av+za (a(8ju))v } / (c(s)a(u) — Fo)vds =0, veV
¢ i lel

Now (formally, unless u is smoother) this first integrand is Z;.l:l 0;(a(0ju)v) and
the divergence theorem gives

/. (éa@u)w + cls)a(u) - Fo)w@ ds=0, vev.

But Rg(7) is dense in LP(9G), so it follows that a (sufficiently smooth) solution of
(5.4) is characterized by

(5.5.a)
u€eWhHP(G) : Za a(dju) + b(z)a(u) = F in L (G)
(5.5.b) Za(aju)uj +¢(s)a(u(s)) = Fy in LP(3G) .

When ¢ = 0 this is a nonlinear Neumann problem, a boundary-value problem of
second type, while for ¢ > 0 it is a Robin problem, a boundary condition of third

type.
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EXAMPLE 5.C. Problems of mized type (e.g., first and third type) arise as
follows. Let I'; be a subset of G and I's; = 8G ~ I'y, the complement. Choose
V = {u € WYP(G) : yu|r, = 0}. Then the solution to the functional equation (5.4)
satisfies the stable boundary condition u|r, = 0 since u € V, and it also satisfies
the third type complementary boundary condition (5.5.b) on I'y, since Rg{vy|v} is
dense in L?' (T'2).

EXAMPLE 5.D. Finally, we mention a boundary condition of non-local charac-
ter. For this we choose

V={veW"(G):y(v) is constant in LP(8G) } .

Since the (one-dimensional) subspace of constant functions is closed in LP(0G) and
7 is continuous, it follows that V is closed in WP(G); as before, A : V — V' is
strictly-monotone, continuous, bounded and coercive. If Au = f, as above, then
we find

(5.6.a) u€W'P(G), - 8;a(du) + b(z)a(u) = F in L¥(G)
j=1
(5.6.b) yu(s) = ¢y, s € 0G , for some ¢y € R, and

(5.6.c) /an;a(aju)Vj ds + a(co) /BG c(s)ds = /BG Fy in R.

This is the Adler problem, a boundary-value problem of fourth type. Note that
the constant ¢y is not known a-priori; otherwise, this would be an over-determined
Dirichlet problem. Note that (5.6.b) is the stable boundary condition and (5.6.c)
is the complementary boundary condition.

In each of the preceding problems we used the same operator A but varied the
space V; A:V — V' is monotone, continuous and bounded. It is not necessarily
coercive: if b(-) and ¢(-) are both zero, then Au(u) = 0 whenever u is constant. If
V' contains non-zero constant functions then A is not coercive on V. We shall show
these are the only ways this A can fail to be coercive!

We shall use the Rellich-Kandorochov Theorem 4.2 to implement the following
general situation.

PROPOSITION 5.2. Suppose p,q,r are seminorms on a linear space V and that
|zl = p(z) + (), |z| = p(x) + q(z) are norms. Let' B ={V, |- ||}, B1 ={V,|- |},
By = {V,r(-)} and assume B — By is continuous, B — By is compact, and B is
reflexive. Then By — B is continuous, hence, || - || and |- | are equivalent norms.

PROOF. Otherwise there is a sequence {v,} such that |v,| — 0 and [jv,|| =1
for n > 1. Since {v,} is bounded in B, some subsequence (with the same notation)
satisfies v, — v in By, v, — v in B. But then v, — v in By so v = 0. Since v, — 0
in By and Bj, we have v,, — 0 in B. O
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As an immediate application take V a closed subspace of WP(G), 1 < p < oo,
and

n 1/p
p(v) = (Znajvn’g,,(c)) , rw) = [l
i=1

o(v) = ( /G b(@) v (@)l dx)l/p + ( /6 _cla)hs)” ds)l/p  vev.

where b € L*°(G), ¢ € L*°(JQG) are non-negative. Then Proposition 5.2 applies if
p+ ¢ is a norm, that is, if one of b(-) or ¢(-) is non-identically-zero or if zero is the
only constant function in V. Thus, in either case, it follows that A : V — V' is
V-coercive and so we obtain existence of solutions.

Finally, we shall extract the essential points of our disection of A : V — V'
into a partial differential equation (5.5.a) and a complementary boundary condition
(5.5.b). This construction results in an abstract Green’s theorem.

Assume V|, B are Banach spaces and v : V — B is a strict homomorphism with
kernel given by ker(y) = V. Thus the quotient map is an isomorphism of V/Vj
onto B, and it follows that the dual map v*(g) = g o 7y defines an isomorphism of
B’ onto V5- = {f € V' : fly, = 0}, the annihilator of Vj in V.

EXAMPLE 5.E. Take V = WL1P(Q), v = trace, and B = Rg(7); it is known
that B = W1=1/P2(3@). We have shown that Vo = W, (G); since C3°(G) is dense
in Vp it follows Vj C D*(G).

Assume mg : V xV — R is a continuous semi-scalar-product, |-| is a continuous
seminorm on V and define |v|x = mo(v,v)/2 + |v|, v € V; X = {V,| - |x} is a
seminorm space, and X’ C V'. Assume Vj is dense in X; then X’ C V. We call
X' a pivot space since its elements belong to both Vj and V'. Let M; : B — B’ be
given.

EXAMPLE 5.E (CONTINUED). Set mo(u,v) = [,mo(z)u(z)v(z)dz where

mo(z) > 0 and mg € LP/P7%(G), p > 2. Then X' = {m(l,/2u cu € LYG)}.
Similarly construct Mip(¥) = [, m1(s)p(s)i(s)ds, v,9 € B.

Define M : V — V' by Mu(v) = mo(u,v) + My(yu)(yv), for u,v € V, and
M :V — Vj by Mu= M(u)|y,. Thus Mu € X’ and Mu(v) = mg(u,v) for u,v €
V, since Vp is dense in X. This gives the identity Mu(v) = Mu(v) + M;(yu)(yv),
u,v € V, hence, M(u) = Mu + v M;v(u), u € V, a trivial decomposition of this
element of V' as the sum of one each from V{ and from Vj-.

Let A:V — V' be given and define the formal operator A(u) = A(u)|y, to be
the indicated restriction and consider it on the domain D = {u € V : A(u) € X'}.
Then for each u € D, A(u) — A(u) € Vi~ in V’. Since Rg(y') = Vi*, there is
a unique dqu € B’ for which A(u) — A(u) = ¥'(8au). This defines the operator
04 : D — B’ for which

(5.7 Au(v) = Au(v) + dau(yv) , vueD, veV.

This is the abstract Green’s formula for A, and d4 is the corresponding boundary
operator. Such formulas will be very useful in a vast variety of situations, and they
will be used frequently hereafter. We summarize this elementary construction in
the following.
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PROPOSITION 5.3. Assume v : V — B is a strict surjective homomorphism
between Banach spaces and Vy is the kernel of v. Assume my : V XV — R is a
continuous semi-scalar-product and | - | is a continuous seminorm on V; let |v|x =
mo(v,v)Y/? + |v|, and assume V, is dense in the seminorm space X = {V,| - |x}.
Thus X' C V' and X' — V. Assume that operators M; : B — B and A:V — V'
are given; define M € L(V,X') and M : V = V' by Mu(v) = mp(u,v), Mu(v) =
mo(u, v) + My (yu) (), u,v € V, so that M = M ++' M. Define the formal part
AV >Vjof Aby Au= Auly,, ueV, and set D ={u eV : Au€ X'}. Then
there is a unique 84 : D — B’ for which (5.7) holds.

EXAMPLE 5.E (CONTINUED). Let the operator A on V = W1P(G) be given
by (5.3). Then the formal part is A(u) = —>°7_, 9;a(0;u) +b(z)a(u) and D is the
set of u € WHP for which the partial differential equation takes values in X, the
space determined above by mq(z). (If mo(z) = 1, then X’ = L?(G).) Although the
boundary operator is defined on all of D, we can compute its value on the smooth
functions u € D by the divergence theorem as

au(y) = /aG <Z a(Bu)v; + c(s)a(u(s)))¢(s) ds, € Rg(y),

j=1

just as above. In fact, 84 is given on D by the identity (5.7) once we verify that
its value depends only on ~v.

We show how the preceding construction is useful in representing the solution of
an abstract functional equation as a formal part (the partial differential equation)
and a complimentary part (the boundary condition in Rg()); these conditions
are in addition to those imposed directly by the space V. Given the spaces and
operators above, let F € X', g€ B and define f € V' by f = F +~ (g) Consider
the functional equation

(5.8) wEV  AM(u)+Aw)=f in V.
That is,

A(Mu(v) + My (yu)(yv)) + Au(v) = F(v) + g(yv) , veV.
From our abstract Green’s theorem it follows that this is equivalent to

(5.9.a) wu€D, AM(u)+Au)=F in X', and
(5.9.b) AMi(yu) + 8a(u) =g in B .

This is the desired decomposition of the functional equation (5.8) into a partial
differential equation (5.9.a) and a complementary boundary condition (5.9.b).

An Elliptic System.

All of our examples above of boundary-value problems for an elliptic equation
can be extended in various ways to the case of elliptic systems. However it is often
the case that the structure of these systems does not permit the direct application
of our general existence theorems, especially with respect to monotone or coercive
properties. Here we shall describe a model system to which our theory does directly
apply. This will be done in the abstract setting developed above. We shall then
show by examples that this model system contains a variety of systems of boundary-
value problems, including those which are coupled along a common boundary, or



66 II. NONLINEAR STATIONARY PROBLEMS

throughout an interior region, or the case of an elliptic problem in the tangent space
on a boundary or interior submanifold of a domain which is coupled to a problem
on the full domain.

Suppose Vi, Va, U are reflexive Banach spaces. For j = 1,2, let A\; € L(V},U)
with dual A} € L(U’,V]) and assume operators A; : V; —» V/ and B: U — U’ are
given. On the product space V = Vi x V, with elements denoted by u = [uq, us],
u; € V;, we define A: V. — U by du= A\u; — Augand A: V - V' by

(5.9) Au(v) = Ajug (v1) + Aguz(v2) + B(Au + ug)(Av) u,v €V,

where uy € U is given. Thus, Au = [Aju1, Asua] + NB(Au + ug), u € V, where
Ng = [N g,—Xyg] € V' is the dual of . For any f = [fi, f2] € V’, the equation
Au = f is equivalent to the system

(5.10.a) up € V1 1 Ajug + N B(A1ur — Aaug +wo) = f1in V)
(5.10.b) ug € Vo : Agug — /\'213()\1u1 — Aaug + Uo) = fyin VQ/ .

The special form of the coupling A is motivated by models in which exchange flux or
forces are determined by differences. However, we need here only that A € L(V,U).
In order to apply the results of Section 2 to such a system, the following observations
are necessary.

PROPOSITION 5.4. If each of the operators Ay, Az, B is either monotone,
hemicontinuous, demicontinuous, continuous, or bounded, then the operator A, as
given by (5.9), has the same property. If both of A;, Az are Type-M and if N'BX is
either completely continuous or monotone and weakly continuous, then A is Type-
M.

PROOF. The verifications of all but the last property are immediate. The
Type-M property follows from Example 2.B and Example 2.C. a

EXAMPLE 5.F. Let G; and G3 be disjoint bounded domains in R™ which share

a common portion I' of their boundaries: I' is a manifold of dimension n — 1 with
I' CG1NBG,. Let U = LP(T') and V; = WLP(G;) for j = 1,2, and set \; = v|r,
the restriction of the traces to I'. Choose for simplicity (cf., (5.3))

Aju(v) = /G {i a(@iu)(ﬂiv} dz , u,v€EV;

J o i=1

so the formal operators are given by

n
Aju = Aqu = — Eaja(aju) in V}
j=1
and the boundary operators are
n
Oa,u = Za(@iu) v, j=1,2,
i=1

where 77 is the unit outward normal on 8Gj, hence, ! = —i> on I'. Let F; €

L¥(G;), g; € L¥ (8G;) and define

fj(v)=/Fjvd$+/ givivds, veV;,
G a9G;

7
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for j = 1,2. Let b: R — R be continuous with |b(£)| < ¢(|£[P~! + 1) and define B :
U = LP(T") — U’ by Nemytskii’s Theorem 3.2 as B(¢))(z) = b(¢(z)), z € T'. Then
the system (5.10) is the generalized formulation of the boundary-coupled elliptic
system

(5.11.2) A;j(u;) = Fj in LP(G;) ,8a,u; = g; in LP (8G; ~T), j=1,2
(5.11.b) 84, uy + b(m1us — Youz) = g1 ,Oa,uz — b(y1u1 — Yausz) = go in LP'(T) .

Such problems arise as the description of diffusion in two regions Gi, G2 with a
distributed flux b(y1u; — y2u2) across their common boundary interface I', or in
elasticity where G1, G4 are membranes with a distributed elastic constraint along
the interface T'.

EXAMPLE 5.G. Let Gy C G be bounded domains in R™ and set V; = Wy ?(Q),
U = LP(Gy), and let A; : V; — U be the restriction to Gy of the imbedding.
The dual \; : U" — V] is the zero-extension operator. Define A;, A;, 04, as
above on G; = G, j = 1,2. Likewise define f; as above, but with g; = 0, and
construct B : LP(Go) — LP (Go) from b(-) as above. With this data the system
(5.10) corresponds to the interior-coupled system.

(5.12.8)  Ayuy + MNb(uy —up) = Fy in P (G),  w; =0 in LP(8G) ,
(5.12.b)  Agup — Apb(ug —up) = Fy in LF(G),  ug =0 in LP(8G) .

Such problems arise as double porosity models of diffusion through a composite
media. Each equation results from conservation of fluid within each of the two
components of the medium, and the second term corresponds to the flux exchanged
between the two component materials. The description of displacements of a par-
allel pair of membranes which are elastically connected on Gy is also given in this
form.

EXAMPLE 5.H. Let G be a bounded domain in R™ and let I' C G be a smooth
manifold of dimension n—1. Set V; = W1P(G), Vo, = WHP(T), and U = LP(T'), and
define A\; = «|r, the trace restricted to I', Ap = I, the identity. Define A, as before
on G and construct Aj similarly with tangential coordinates in T'. (For simplicity,
we could assume I' C R""! i.e., that T is flat.) Then A, is an elliptic operator in
the tangential variables and 04, is characterized as a derivative in the direction of
the outward normal to 8T'. Choose B : LP(I') — L?'(I') as in Example 5.F. Assume
F el (@), F; € L (), g, € L* (8G), go € LP (AT") are given and define

fl(v)=/ Flvd:c+/ qiyvds , veV,
G aaG

fo(w) = / Fgwds+/ goyrwdt weVy,
r ar

where yr : WHP(T') — LP(OT) is the trace operator. A solution of the system (5.10)
with such data is characterized by

(5.13.a) Ayu; = Fy in P (G), 8a,u1 =g in LP (G ~T) ,

(5.13.b) 9a,u; +b(yus —u2) =¢; in )74 (),

(513C) A2’U.2 — b(’yul — UQ) = F2 in Lpl (F) y 6A2'u2 = g2 in Lp, (BF) .
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Here (5.13.a) is a boundary-value problem in the region G and (5.13.c) is a
boundary-value problem for an elliptic equation in the tangent space. The ex-
change flux, b(vyu; — ug), occurs in the first as a sink on the boundary and in the
second as a source in the interior. Such a problem describes diffusion in a region
on part of whose boundary is a singular region of such high permeability that there
is substantial diffusion tangential to the boundary. Similar problems occur when
there is an (n — 1)-dimensional submanifold in the interior within which diffusion
occurs in the tangential directions. Such models are used to describe flow in narrow
fractures in a medium.

EXAMPLE 5.1. Let G be a bounded domain in R™ for which the hypersurface
I'={z = (2',z,) € G: z, =0} is a domain in R""!. Set G; = {z € G : z, < 0}
and G, = {z € G : z, > 0}, and define V}, \;, A;, f; for j = 1,2 as in Example 5.F.
Choose U = LP(T') x W, P(T'). Let b; : R — R be continuous with |b;(£)| <
c(|€P~! +1), j = 1,2, and define By : LP(T) — LP (') by Ba(p)(s) = b1(p(s)),
seT, and By : Wy P(I') —» Wy P(G) by

n-1

Baph) = [ (Ceoom)is.  wvewmm.

3=
Thus the formal part is given by Bap = — Z;:ll 0;b2(0j¢). We define B: U — U’
by
Bo(y) = Bip1(¥1) + Bap2(v2) , @ =le1,02], ¥ =[th1,92] €U .
Finally, let o € [0, 1] and define the space
V={v=[v1,v2] € Vi x Va: a1 + (1 — a)dove € WyP(I)} .

Note that V' is a Banach space with the norm

ollv = llvilva + llvallve + llemavr + (1 = @) yovellypery -
Define A € L(V,U) by

Av = [Av1 — Aqvg , aAv1 + (1 — a)dqvs] , veV,

and A:V — V' by (5.9). The results of Proposition 5.4 hold for this case, and the

equation Au = f is equivalent to the system
u € Vit Ajuqg + )\/181()\1U1 — )\QUQ) + a)\’lBg(w) = f1in Vll s
w = ahu; + (1 —a)duy € WP,
Ug € V2 . A2u2 - )\/231(/\111,1 - )\2’&2) + (1 — O[))\IQBQ(’LU) = fg in V2I .

From the abstract Green’s theorem we find that this system is characterized by

(5.14.8) Aj(uj) = Fj in L” (G;) , 8a,uj =g; in LF (8G; ~T), j=1,2,
(5.14.b)  8a,ur +b1(Mur — Y2uz) + aBy(w) = g1 and

Bayus — by(mur — youz) + (1 — @)Ba(w) = g5 , in L¥ (T)
(5.14.c) w=amui + (1 —a)yuy) , in WyP(T) .



I1.6. VARIATIONAL INEQUALITIES AND QUASIMONOTONE OPERATORS 69

The pair of equations in L (I') can be written in the equivalent form

(5.14.b") By(w) = —04,u1 — Oa,u2 + g1 + g2,
(1= a)[0a,u1 — g1 + bi(nur — y2u2)] = a0a,u2 — g2 — bi(n1wa — Y2u2)]
and this alternate form is useful for the applications.

The system (5.14) occurs as a model of diffusion in two regions which are
connected by a narrow fissure I' along their common boundary. Thus, suppose
we have two regions G1, G of different materials and assume the fraction of each
material in the fissure varies linearly with respect to the distance from the region.
Let a € [0,1] denote the location of the interface I' as a function of the fraction
of the width from G5, so that a = 0,1 correspond respectively to 0G5 and 9G;.
We assume the concentration in the fracture varies linearly with the transverse
distance, so the concentration w on I' is given by (5.14.c). The diffusion in the
regions G1, G2 and on their boundaries away from I is described by (5.14.a). The
flow in the fissure system is modelled by a transverse component and a tangential
flow along I'. The first equation of (5.14.b’) gives the tangential flow field by the
total flux coming into the fissure along 8G; and 8G2. According to (5.14.c), the
transverse gradient

1 1

Tt —w) = ~(w = 72u) = mNus =~ 12U

is independent of &, 0 < a < 1. That part of the transverse flux induced in the
fissure by this concentration difference is by (y1u1 — Y2u2); the second equation of
(5.14b’) fixes the proportion of total flux that enters the fissure from the two sides.

I1.6. Variational Inequalities and Quasimonotone Operators

Our objectives here are to illustrate some applications of Theorem 2.3. We
begin by constructing a variety of examples of variational inequalities that can
be resolved in the form (2.2). Then we show that the class of pseudo-monotone
operators contains many quasilinear elliptic equations which are monotone only
in their principle part and for which the remaining lower order terms comprise a
compact perturbation. This provides a substantial extension of the problems for
which existence results can be obtained by the methods of Section 2.

‘We first describe some examples of variational inequalities for elliptic boundary-
value problems. For simplicity we shall take the special class of operators A: V —
V' given by (5.3); all of the remarks below apply as well to the more general classes
of monotone operators as given in Proposition 5.1 and the quasimonotone case
described below. Thus we consider here

N
(6.1.a) Au(v) = /G{Z a(O;u(x))dv(z) + b(a:)a(u(z))v(m)} dz

+ /6 . c(s)a(yu(s))yv(s)ds,  wveV,

where V is a closed subspace of W'?(G), 1 < p < 0o, G is a bounded domain in
RY, and a(€) = |€|P~2¢. Let F € LP (G), Fy € LP (AG) and define f € V' by

(6.1.b) flv) = /GF(x)v(x) dz + /aG Fo(s)yv(s)ds, vevV.
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Here v : V — LP(0G) is the trace operator, and its range is denoted by B = v[V].
For a given closed, convex, non-empty subset K of V' we consider the variational
inequality (2.2). Note that if K = V this is just the equation A(u) = f in V', and
if K is a cone (ie., t(x+y) € K for z,y € K, t > 0), then (2.2) is equivalent to

(6.2) u€ K:Au(w) > f(v), ve K, and Au(u)= f(u) .

This follows from (2.2) by replacing v with v + u and then setting v = 0, and it
easily implies (2.2) by subtraction. This characterization of solutions of (2.2) in the
case of a cone will be useful below.

EXAMPLE 6.A. BOUNDARY CONSTRAINT. Consider the subset of L (8G)
given by C = {¢p € B : ¢¥(s) > 0, a.e. s € OG}. This set is closed and convex,
and, since v is continuous and linear, it follows that K = {v € V : yv € C} is also
closed and convex. Furthermore, C and K are cones, so any solution of (2.2) is also
a solution of (6.2). To characterize such a solution u, we first set v = +¢ in (6.2),
@ € C§°(G), to obtain

(6.3.a2) weV:Au=Fin L”(G)
where A is the formal part of A given by

N
Au = — Zaja(aju) + b(z)alu) .

j=1
Thus we can apply the abstract Green’s formula (5.7) to obtain from (6.2)
(6.3.b) yu € B ,(0au — Fo,9) >0forp € C, and (Qau— Fop)yu=0.

That is, u is a solution of the elliptic equation (6.3.a) which satisfies in a generalized
sense the boundary conditions

yu >0, ae. in LP(0G) ,
(6.3.b) dau > Fy a.e. in L” (8G) , and
(0au — Fo)yu =0 a.e. in L'(9G) .

These conditions hold if d4u € LP' (8G), whereas we have in general only 4u € B'.
If u is sufficiently smooth then this is the case and we have 8 u given by
Oau(s) = Za(c’)ju)uj + c(s)a(u(s)) , ae. s € dG,

j=1

as in Section 5. These pointwise constraints of (6.3.b") are meaningful if we can
deduce from regularity theory for solutions of (6.3.a) that u € W?P?(G). However,
(6.3.b) is meaningful without any such additional information on the solution wu,
and it is equivalent to

yu>0in B, Oau—Fy>0in B, and (0au— Fp,u) =0,

where the cone C gives the ordering on B and in B’.

The classical form of (6.3) is known as the Signorini problem of elasticity.
This describes the equilibrium position of an elastic body which is supported at
its boundary by a rigid frictionless constraint surface corresponding to u = 0. The
boundary 8G is partitioned by the solution into two subregions: Iy, on which yu = 0
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and Jau > Fy, and 'y, on which yu > 0 and d4u = Fy. The functional 8au — Fy
is just the force exerted by the constraint on the body; this force is active only
on that subregion I'g. If I’y or I'; were known, the solution could be more easily
obtained by solving the corresponding mixed Dirichlet-Neumann boundary value
problem. But finding this unknown Iy is the essential problem here, analogous to
various problems with a “free boundary.”

Problems with constraint (only) in the boundary conditions can be character-
ized rather elegantly in the abstract situation of Proposition 5.3. Thus, assume
we have a generalized trace v : V — B with kernel V; and range B, a seminorm
|v|x = mo(v,v)}/? + |v| given by a continuous seminorm and semi-scalar-product
on V, so that X = {V,| - |x} has dual X’ C V', and that V} is dense in X, so that
we can identify the pivot space X’ — V{ by restriction. Let M; : B — B’ be given
and set

MU(U) = mO(u, ’U) + Ml(’YU)(’Y’U) ) uwv€EV
to obtain M = M + +'Mi~y, where M : V — V{ is the formal operator obtained
from M. Let A :V — V' be given, denote its formal part by Au, Au = Auly,, and
then we have the abstract Green’s formula

Au(v) = Au(v) + dau(yv) , veD,veV,

where D = {u € V : A(u) € X'} is the domain of the dual boundary operator
O4:D— B.

Assume we have F' € X’ and g € B’ given; define f € V' by f(v) = F(v)+g(yv),
v € V. Let C be a closed convex set in B for which K = {v € V : yv € C} is also
non-empty. Consider a solution of the variational inequality

(6.4) ue K : (AMu+ Au)(v—u) > f(v—u), vEK .
Since K 4+ Vy = K and v maps K onto C, it follows easily that this is equivalent to

(6.4.2) u€V AMu+ Au=F in X’
(6.4.b) yu € C,(AMiu+ 0au) (P —yu) 2 g(b —yu) , PeC.

That is, u € D and the variational inequality on V' is naturally decoupled into an
equation in X’ and a variational inequality on B’.

Finally, we note that the non-homogeneous Dirichlet problem is obtained by
setting C = {go} for a given boundary condition go € B. More generally, we get
the mixed Dirichlet-Neumann problem by setting C = {¢) € B: ¢ = go a.e. on 'y}
for a given Ty C 9G.

EXAMPLE 6.B. INTERIOR CONSTRAINT. In order to simplify the situation, we
choose hereafter V = W} ?(G) and set ¢ =0, Fy = 0 in (6.4). Thus we obtain null
Dirichlet conditions on 8G. Define the closed cone

K={veWy?@G):v(x) >0, ae z€G}
and consider (6.2). A solution is characterized by

(6.5) weWeP(G):u>0, Aw) -F>0, (Auw)—F)u=0.
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The first inequality holds a.e. in G and the second in the dual space V’. The
domain G is partitioned by the solution v into two regions

Go={zeG:u(x)=0}, Gy={zeG:u(z)>0}
and we have (formally)
(6.6) Au=FinG,, yu=00n0G,, Osu=00n8G, NGy .

If G4 is known then u can be obtained from the Dirichlet problem implicit in (6.6).
However the difficulty is to find such a G4 for which the third condition in (6.9)
holds. Thus the unknown boundary, 0G, is to be determined from the pair of
boundary conditions in (6.6).

Such a problem arises in elasticity theory to describe the equilibrium position
of a membrane (IV = 2) which is loaded by a distributed force F'(z) and constrained
below by an obstacle. According to (6.5) we see the vertical force exerted upward
by the constraint is Au — F' > 0, and this is non-zero only on Gy, the set on
which the constraint is in contact with the membrane. The essential difficulties in
this problem involve the regularity of the solution and of the free surface which
separates Go and G ..

EXAMPLE 6.C. GRADIENT CONSTRAINT. With the same space V and operator
A as above, we now consider the closed, convex and bounded set

K={veV:|Vu(@)|r <1, ae. z€G}.
A solution u of (2.2) corresponds formally to the two sets
Go={z€G:||Vu(@)l <1}, Gi={zeG:|Vu@)|=1}

and we have Au = F' in Gy with both of u, Vu continuous across the “free surface”
which separates Go and G;. This corresponds to the elastic-plastic torsion problem
in mechanics in which the stress Vu is pointwise bounded. The domain G is divided
into the elastic region Go where the usual equilibrium equation holds, and a plastic
region in which the stress is at the threshold at which the material begins to flow.
That is, |[Vu(z)|| > 1 in the plastic region corresponds to “yielding” of the material
to flow. A solution is clearly Lipschitz continuous. The regularity problem is to
show that Vu is smooth across the free surface.

EXAMPLE 6.D. GLOBAL CONSTRAINT. All of the examples above have in-
volved constraints that are applied pointwise, i.e., locally. Here we consider the
closed cone

K= {v e WlP(G) : / vdz zo}
G

and consider a solution of (6.2). In order to characterize a solution we consider the
following.

LEMMA 6.1. Let B be a Banach space, f € B’ and set C = {v € B: f(v) > 0}.
Then

geB :gv) >0, vel
if and only if g = cf for some ¢ > 0.
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PROOF. If v € ker(f), then +v € C and thus g(v) = 0. Thus ker(f) C ker(g)
and the result follows since these kernels are hyperplanes in B. a

From Lemma 6.1 we see that a solution of (6.5) is characterized by

67)  ueWMPQG): /

e
(This could be shown directly by choosing v = d;¢, ¢ € Cg°(G), 1 < j < n,
since then such a v € C.) Such a problem in elasticity would correspond to the
equilibrium displacement u of a membrane (N = 2) which is loaded by a distributed
force F'(x) and constrained below by a minimum volume, such as that of an enclosed
incompressible fluid. The uniform constraint load ¢ of the fluid on the membrane
is non-negative, and it is necessarily zero unless the constraint is attained, i.e.,
f cu=0.

Systems of variational inequalities to which our theory immediately applies
can be constructed as in Section 5. Specifically, in the situation of Proposition
5.4, the variational inequality (2.2) is equivalent to a system of the form (5.10).
If the constraint set is merely a product, K = K; x K, with K; convex in Vj,
j = 1,2, this system has the structure of a pair of inequalities on the respective
spaces. However, more interesting convex sets in the product are obtained from
constraints on the pair of components. A good illustration is the following.

LEMMA 6.2. Let C = {v = [v1,v2] € R? : v; > vo}. Then for u, f € R?,
vueC: f(v) >0, veCl

u>0, Aluw)—-F=c>0, c~/u=0.
G

18 equivalent to
up—uz >0, fi+fo=0,f1>0, fi(ug—u2)=0.
Thus we have either uy = ug and fi = —fo >0, or else uy > us and f1 = fo =0.

This result follows from the observation that f(v) = fi(v1 — va2) + (f1 + f2)v2
with arbitrary vs € R.
If we choose our operators, spaces and data as in (5.11) and set

K ={ve WYP(G)) x WHP(Gy) : yivy > youp in LP(T)}
then the variational inequality (6.2) is equivalent to
(6.8.2) A;(u;) = Fj in L” (G;) , 8a,u; = g;in LP (3G; ~T),  j=1,2,
(6.81) 8a,u1 + Oa,uz = g1 + g2 In LP (T)
(6.8.c) yiur > Youz , Oa,u1 +b(yiur — y2u2) —g1 20,
(Oa,ur + b(mur — Y2uz) — g2 , MU — You2) =0

Such a problem corresponds to the displacements of a pair of elastic membranes
on adjoining regions for which the first is constrained above the second along the
common boundary T" by the force 04,u1 + b(y1u1 —y2u2) — g1 between them. This
force is non-zero only on the subset of I' where y,u; = v2u2, where they are in
contact.

Similarly if we choose our operators, spaces and data as in (5.12) and set

K ={veWiP(Q) x We*(G) : v > vy in LF (Q)},
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then (6.2) is formally equivalent to

(6.9.a) uy,Ug € Wol’p(G) 1 Ajug + Agug = Fy + Fy in )i (@),
(69b) Ui Z usg , Alulz\'lb(ul - UQ) Z F1 ,
(A1u1 + )\'lb(ul — Uz) —F,u — U2> =0.
Such a problem corresponds to the description of a pair of parallel membranes for
which the first is bounded below by the second. The force of the second on the first

is Ajuy + X'b(uy — ug) — Fi; it is non-negative everywhere and it is non-zero only
where 11 = uo, i.e., where the membranes are in contact.

We next construct a class of nonlinear elliptic operators in divergence form
which are monotone only in those terms in the principle part, i.e., the highest order
terms. The remaining terms must be of lower order, and this is characterized by a
compactness assumption.

Let G be bounded domain in RY, V a closed subspace of W'P(G) which
contains W, ?(G), 1 < p < 0o, and assume the imbedding V — LP(G) is compact.
Assume given the functions a; : G x R x RN — R for 0 < j < N which satisfy
(P1) a;(z,m,€) is measurable in z € G and continuous in (n,£) € R x RY |

(P2)  laj(z,n, )| < c(k(@) + P~ + [€IP!) , ae. € G, neR, E€RY,
where k € L (G), 1/p+1/p' = 1. Define A: V xV — V' by
(6.10) Ay, v)(w) = A1 (u,v)(w) + Ao (u)(w) ,
N
A (u,v)(w) = /G {Zaj(x, u(x),%(x))ajw(x)} dr ,

Ap(u)(w) = /Gao(a:,u(:c),ﬁu(m))w(:n) dr, uw,v,weV.

This operator satisfies the estimate
-1 -1
A, v)llv: < C{IIEN Lo + flullf + [l0l57 7}
so it follows from Nemytskii’s Theorem 3.2 that A is continuous. Assume also that

N

(P3) > (aj(z,n,€) —a;(z,m, )& — &) >0

j=1

forae. x€G, neR, §7$£~GIRN,
N
Za’j (:Ea 7, §)§]
j=1

€l + 1€fP—*
uniformly for 1 bounded, at a.e. z € G .

(Py) — +o0 as ||| — +o0,

From P; it follows that A(u,v) is monotone in v:

(A1 (u,v1) — A1 (u,v2),v1 —v2) >0, u,v1,vp €V .
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Our objective is to examine the dependence of A(u,u) on u with respect to weak
convergence.

First consider v, — u and w,, — w in V and a fixed v € V. Then we have
un — u and w, — w while d;u, — 0;u and d;w, — O;w in LP(G). Thus each of
aj(-,un,ﬁv) — a;(-,u, Vo) in LP (@), so

lim A; (un,v)w, = A (u,v)w

n—oo

That is, the first part or “higher order” term is harmless.

Consider the second part, Ag. If w = 0, it follows that Ag(u,)w, — 0 since
{Ao(un)} is bounded in LP'. Specifically we have lim A(un,v)(un — u) = 0, and
this leads to the following result:

ifu, »uinV,v €V, and A(un,v) — f in V', then A(un,v)(u,) — f(u).

Assume further that limsup,, ., A(un,un)(un —u) < 0, as suggested by the
definition of pseudomonotone. From above we have lim A(un,, u)(u, —u) = 0 so we
obtain

lim sup(A(tn, un) — A(un, u), un — u) =

lim(A(un, un) — A(Un, u), up —u) =
lim F (z)dz =0

n—o0

because the integrands satisfy

N

F.(z) = Z(aj (z,un(z), 6un(:v)) — a;(z,un(z), ﬁu(:r))) (Bjun(z) — Oju(z))
>0, ae. z€G,

by P3. Thus F,, — 0in L' (G) and by passing to a subsequence we obtain F,,(z) — 0
at a.e. x € G. Pick an x € G for which we have Py, P3, Py, u,(z) — u(z) and
F,(z) — 0. From P, we have

N
Fu(@) ZZ 2, Un (), Vitn (2)) 0y (2) = Co (1 + [ Gt (D)2 + [t (2) )

and by P, it follows that ||Vuy, (z)||g~ is bounded. Let £ be an accumulation point
of {Vu,(z)}. Then in the limit we obtain

N

Z(aj (z,u(z),€) — aj(z,u(z), 6u(w))> (¢ — Bju(z)) =0,

Jj=1

so P3 shows that £ = ﬁu(:v) Applying the preceding argument to an arbitrary
subsequence shows that Vu,(z) — Vu(z). From P; it follows that

a0 (2, un(z), Vun(z)) — ao(z,u(z), Vu(z)) , ae. z€G .

Since Ag(uy) is bounded in LP' (@), it follows from Proposition 3.4 that Ag(u,) —
Ao(u) in LP' (G). The preceding proves the following.
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LEMMA 6.3. Assume u, — u and w, — w in V, and let lim, o sup A(uy,, u)-
(un —u) <0. Then it follows that
lim A(un,un)(un, —u) = lim A(up,u)(u, —u) =0
n—00 n-—oo
and

lim A(up,v)w, = Ay, v)w , veV.

n—oo

THEOREM 6.1 (LERAY-LIONS). Let G be a bounded domain inR™, 1 < p < oo,
and V a closed subspace, Wy'*(G) C V. C WYP(G). Assume that V — LP(G) is
compact. Let the operator A:V — V' be given by A(u) = A(u,u) and (6.13), and
assume Py, Py, P3 and Py hold. Then A is pseudo-monotone.

PROOF. Let up, — uin V and limsup A(u,)(un,—u) <0. Letv e V,0<t <1,
and set v; = (1 — t)u + tv. Then P gives

<A(unaun) - A(un’vt)aun - Ut) > 0
and writing u, — v¢ = u, — u + t(u — v) shows that
t(A(un) — A(un, ve), u = v) 2 (A(tn, v) — A(un), un — u)

and the preceding Lemma shows the right side converges to zero as n — oco. Take
the liminf, divide by ¢t > 0, and then let ¢ — 0 to obtain

liminf A(u, ) (urn —v) > A(u)(u — v)
as required. O
In the situation of Theorem 6.1, one needs only coercivity to establish the ex-
istence of a solution to the corresponding variational inequality or equation. There

are various combinations of hypotheses which achieve this; a rather general one is
the following.

LEMMA 6.4. Assume Py, P, and
N
R) D a;(@m8)& = clléllP — Kq(K(2) + Inl?)
j=1
lao(z,m,€)| < Kq(k(z) + Inl~" + lI€)197")

for some q, 1 < qg<p, and K(-) € L}(G). Let V < {v € WIP(G) : yv(s) = 0, a.e.
s € To}, where Ty has positive measure in OG. Then A is V -coercive.

PROOF. From Ps we obtain
Av,v)() > ¢l Vo7, — C{1 + [[vllze + vl Le + [Vullde} -

From Proposition 5.2 it follows that the first term is equivalent to ||v|[};.,,, and
Young’s Lemma 3.3.A shows that for each € > 0 there is a C; > 1 for which

|s|? <els]P + Ce seR.
These remarks imply that for some ¢y > 0, C; > 1,
A, v)() 2 collvlffyr, = Cr(lvlie +1),  weV. a
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REMARK. With the Sobolev embedding Theorem 4.3 the similar result can be
obtained with ¢ < p+ 6(N) for some §(N) > 0.

Let’s characterize the solution of the variational equations for the operator
(6.10) as a partial differential equation in G and boundary conditions on dG. For
this we use the abstract Green’s formula (5.7). Thus we choose V' to be a subspace
of WY?(@) which contains Vo = W,P(G) and B C LP(dG) to be the range of the
trace operator on V, i.e. v : V — B is surjective. Choose ¢, 1 < ¢ < p, and
[vlx = ||[v||lza(e) for v € V. Then V < X is continuous and Vp is dense in X'

Consider A : V — V' given by A(u) = A(u,u) as above, where A(:, -) is defined
by (6.10). That is,

N
A(u)(v) = / {Zaj(x,u, 611,)8]-1) + ao(z, u, ﬁu)v} dz , u,veV.
a 4
Jj=1
The formal operator, the restriction to Vjp, is given as the generalized function
N
(6.11) Aw) = Au)lv, = = _ a;(,u, Vu) + ao(-, u, Vu)
j=1

in VJ. The domain of the Green’s operator is D = {u € V : A(u) € L7 (@)}, and
84 : D — B' C LP (3G) satisfies

Au(u) = Au(v) + dau(yv), ueD,veV.

If we further require that each aj(',u,ﬁu) € WLP(G), 0G is smooth, and that
u € W2P(Q), respectively, we obtain in succession

/G(ajaj (z,u(z), Vu(z)) - v(@) + a;(z, u(z), Vu(z)) - ij(a:)) dz
= / 9 (a;(-,u, Vu) - v) dz =/ ya; (-, u, Vu)vy(v) ds
G oG

=/ aj(S,’yU(S),7(6“))1/]‘(3)’)’7)(3) ds .
oG

Thus the Green’s operator is given by
N —

(6.12) Oa(u)(s) = Zaj (s5,vu(s), Vu(s))v;(s)
—

where each term is in L? (3@G). Let’s choose V = {v € WY?(G) : yv = 0 in LP(T)}
where I'y has positive measure in 0G. Denote the remainder of the boundary by
I'y = G ~ Ig. Thus each term of (6.12) is in L?'(T';).

Let the data F € LY (G) = X', g € LP (I';) C B’ be given and define

flv) = /GF(a:)v(a:) da:+/ g(s)yv(s)ds , veV.

I8

Then f € V' and we have u € V, A(u) = f, if and only if
ueWY(G): A(w) = F in LY (G) ,
yu =0 in LP(Ty) ,0au = g in L (Ty) ,
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where A and 9,4 are given by (6.14) and (6.15). The existence of such a solution
follows from Theorem 2.3 in the special case of K = V. Similar results are im-
mediate for variational inequalities by making appropriate choices for K as in the
Examples above.

I1.7. Convex Functions

For the case of a continuous and symmetric linear operator A : V — V/,
we saw in Section 1.2 that the problem of solving the linear equation Au = f
was equivalent to minimizing the quadratic convex function ¢ : V' — R given by
o(u) = . Au(u) — f(u). This occurs because A is the derivative of the first term in
. Here we shall consider a rather general class of convex functions and find that
their derivatives are monotone and hemicontinuous functions (when they exist).
More important, the subgradient d¢ of a convex function ¢ extends the notion of
derivative to non-smooth functions, and it leads us to the notion of multi-valued
operators or relations. These will be very useful in various contexts. Moreover, we
shall extend our existence theorems to include the class of operator equations of
the form

ueV:A(u)+0p(u)d f in V'

where A is pseudo-monotone.
Let V be a Banach space and ¢ : V — Ry = (—00,+00] an extended real-
valued function. Then ¢ is convez if

o(tu+ (1 —t)v) < tp(u) + (1 —t)p(v) , wveV, 0<t<1.

It is proper if p(u) < oo for some u € V; its effective domain is dom(p) = {u € V :
¢(u) < oco}. For any set S C V we define the indicator function by Is(u) = 0 if
u € S, Is(u) = 400 if u ¢ S. Then I is convex if and only if S is convex, and Ig
is proper if and only if S is non-empty.

A problem of general interest is to minimize a convex function ¢ on a convex
set S. This is equivalent to minimizing ¢+ Is over the whole space V/, so it is useful
to permit ¢(u) = +o0o. Suppose we had a convex function ¢ with ¢(u) = —oco at
some 4 € V. Then for any v € V the convexity of ¢ shows that we can find a
£ €[0,1] such that ¢ = —co at tu+(1—t)vfor0 <t <tand ¢ = +oofort <t < 1.
Such functions are too special to be of interest to us, and they unduly complicate
our calculations. Hence, we never allow “—o0” as a value for our functions.

The epigraph of ¢ : V — R, is given by

epi(p) = {(v,a) €V xR: p(u) <a} .

Note that u € dom(yp) if and only (u,a) € epi(p) for some a € R. We summarize
some elementary properties as follows.

PROPOSITION 7.1. If ¢ is convex and A > 0, then Ay is convex. If 1 and
o are convex, then o1 + @o is conver. If each po is convex, o € A, then sup q
is convezr and epi(Supye 4 Yo) = N{epi(pa) : a € A}. The function ¢ : V — Ry
is convex, proper, and lower-semi-continuous if and only if epi(p) is, respectively,
convez, non-empty, and closed in V x R.
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PROOF. The first three statements are elementary. To prove the fourth, assume
 is convex and let (u,a), (v,b) € epi(y). Then p(u) < a < 00, p(v) < b < oo and
for all t € [0,1] we have p(tu+ (1 —t)v) < ta+ (1 —t)b, so

t(u,a) + (1 —t)(v,0) = (tu+ (1 —t)v, ta+ (1 —t)b) € epi(yp) .

Conversely, if epi(y) is convex then dom(y) = Py (epi(¢)) is convex and we need
only to consider u,v € dom(y). But p(u) = a < 0o and ¢(v) = b < 0o so from

t(u,a) + (1 —t)(v,b) = (tu+ (1 —t)v , ta+ (1 —t)b) € epi(p)

we obtain p(tu + (1 — t)v) < tw(u) + (1 — t)p(v). The remaining equivalences are
elementary. O

The continuity of a convex function follows from local upper-boundedness.

LEMMA 7.1. If p : V — R, is convex and upper-bounded on a neighborhood
of a point, then ¢ is continuous at that point.

PROOF. By translation we obtain an open sphere S = {u € V : |Ju| < r}
such that p(u) < 1foru € S, p(0) = 0. Set S =eS = {u €V : |u|| <er}
with € > 0. Then for each u € S. we have —u/e € S, s0 0 = ¢(0) = p(u/(1+
e)+ (1 -1/(1+¢)(—u/e)) < o)/(1+¢)+ (1—1/(1+ ¢€))p(—u/e), hence,
o(u) > —ep(—u/e) > —e. Also, u/e € S implies p(u) < ep(u/e) + (1 —€)p(0) < e
so we have |o(u)| < € for all u € S;. |

PROPOSITION 7.2. If the convex ¢ : V — Ry, is upper-bounded on a neighbor-
hood of some point, then ¢ is continuous at each point of the interior of dom(p).

PROOF. Let S be as above and v € int(dom(yp)). Choose p > 1 such that

pv € dom(p). Then for each u € V of the form u = v+ (1 — %)w with w € §

we have u = %(pv) +(1 - %)w and so p(u) < %go(pv) +(1- %) That is, ¢ is

upper-bounded on a neighborhood of v. O

The proof of Lemma 7.1 shows that ¢ is actually locally Lipschitz in the
int(dom(yp)). Furthermore, it follows that any convex function ¢ on a finite-
dimensional space is continuous on int(dom(y)). (Take any n-dimensional simplex
in int(dom(p)) and observe that ¢ is bounded there by its values on the vertices.)

PROPOSITION 7.3. A proper convez l.s.c. ¢ on a Banach space V is continuous
on int(dom(y)).

PRrROOF. We may suppose 0 € int(dom(y)) and ¢(0) < a for some a € R. The
level set S = {v € V : p(v) < a} is closed, convex and so also is B = SN (-S).
The set B is “balanced”: v € B and |A| < 1 imply ¢(Av) = ¢(Av + (1 — A)0) < a.
For any v € V there is a Ag > 0 such that |A| < Ao implies Av € int(dom(p)) and
by the above remark the restriction of ¢ to [-Agv, Agv] is continuous. Thus it is
continuous at the origin, so there is a A, > 0 such that 0 < p(Av) —¢(0) < a—¢(0)
for |A] < A,. That is, B is “absorbent”: for v € V there isa A\, > 0: |A] < A,
implies Av € B. Such a set ... called a barrel ... is necessarily a neighborhood. To
see this, let B be a barrel. Since B is absorbing, V = U{nB : n > 1}. Since V is
a complete metric space, it is not of first category, so some nB, hence, B contains
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an interior point zg. If o = 0 we are done. Otherwise, —zy € int(B), since it is
balanced, and by convexity we have 0 = 1/2z¢ + 1/2(—x) in the interior of B. O

The (directional derivative of ¢ : V — Ry, at u € dom(y) in the direction v is
the (one-sided) limit

?ﬂ%@fyg%ww+h0—ﬂw)

where it exists. If ¢ is convex and u € dom(p) then for v € V and 0 < s < t we
have ¢(u + sv) = o($(u+tv) + (1 — $)u) < Fo(u+ tv) + (1 — $)p(u), hence,

plutsv) —p(u) _ pluttv) - pu)
s - t ’
Thus the difference-quotient is monotone in ¢ and necessarily has a limit in
[—00,4+00]. The G-differential of ¢ : V — Ry at u € dom(p) is an f € V'
for which f(v) = ¢'(u,v) for all v € V. Such an f is unique, it is denoted by ¢'(u),
and we say ¢ is G-differentiable at u.

PROPOSITION 7.4 (KACHUROVSKII). Let K be convex in V and let ¢ : V —
R be G-differentiable at each u € K, K = dom(p). The following are equivalent:
(a) ¢ is convez,
(b)  ¢'(u)(v—u) <) —p(u) for all u,v € K, and
() (¥ (uw)—¢'@)(u—0)>0 forallu,ve K.

- PROOF. Since p(u+t(v—u) < to(v)+(1—t)p(u) it follows that (a) implies (b).
By adding to (b) the corresponding inequality for ¢'(v) it follows that (b) implies
(c). To show that (c) implies (a), let u,v € K and define g(t) = p(tu + (1 — t)v)
for 0 <t < 1. Then ¢'(t) = ¢'(v+t(u —v))(u—v) and for 0 < s <t < 1 we have

(6/(0) = ')t~ 5) = (¢ (v + tlu =) = @' (v + s(u—2)) ) (t = )(u— ) > 0
so ¢’ is non-decreasing on [0, 1]. By the mean-value theorem there follows

9(t) —9(0) _ g(1) - g(t)
t—-0 ~— 1-t

hence, g(t) <tg(1) + (1 —t)g(0), and this implies (a). O

0<t<1,

Note that since g’ is a monotone derivative it is necessarily continuous. Thus
the proof shows that the derivative of a convex function is monotone and hemicon-
tinuous.

An affine function on V is a function given in the form

L(v) =c+u*(v), veV
where (u*,c¢) € V' x R. The graph of £ is then
g) ={ (n,t) eEVxR: L) =t }={ (v,t) eEVxR:—u*(v)+t=c},

a hyperplane in V xR, given by h* = ¢ where h*(v,t) = —u*v+1t = ((—u*, 1)(v,t));
it is non-vertical and identified with the normal (—u*,1) € V' x R. The meaning
of part (b) of Proposition 7.4 is that the continuous affine function

L) = p(u) + ¢ (u)(v—u) , vevV
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is everywhere below epi() and coincides with it at v = u. That is, the graph of £ is
a hyperplane of support to epi(p) at u. In examples we shall see a correspondence
between the smoothness of ¢ and the uniqueness of such supporting hyperplanes.

DEFINITION. Let ¢ : V — R, be convex and proper. The subdifferential of ¢
at u € dom(yp) is the set of all functionals v* € V' such that

u'(v—u) <p)—pl), vEV,

and is denoted by d¢(u). Each such u* € dyp(u) is also called a subdifferential of ¢
at u, and when Op(u) # p we say  is subdifferentiable at u.

We consider separately the existence and uniqueness of a subdifferential.

PROPOSITION 7.5. Ifp: V — Ry is convex, proper, and continuous atu € V,
then Bp(u) is closed, convez, bounded, and non-empty.

PROOF. It is immediate that d¢(u) is closed and convex, even in general. To
show it is bounded, choose § > 0 so that ||[v — u|| < é implies |p(v) — (u)| < 1.
For u* € dp(u) choose v with ||v|| = 1. Then

1> p(u+ 6v) — p(u) > u*(6v) = du*(v)

so we have |Ju*|| < 1/6.

It remains to show there exists a subgradient at v € dom(p). Since ¢ is
continuous at u it follows that epi(¢) has non-empty interior; it contains Ss(u) X
(p(u) + 1, +00) in V x R. Thus the convex body epi(y) lies on one side of a
hyperplane containing (u, ¢(u)), a point not in the interior of epi(¢). That is, there
exist u* € V' and a € R such that

—u*(v) +at > ¢ for all (v,t) € epi(p)

and —u*(u) +ap(u) = c. Now if a = 0 we get u*(u—v) > 0 for all v € dom(yp) and
since u € int(dom(p)) this means u* = 0, a contradiction. Thus we may assume
a =1 above, hence,

—u*(v) +t>c=—u"(u) +p(u) for t>p(v),
and this shows with ¢ = ¢(v) that u* € dp(u). O

PROPOSITION 7.6. Let ¢ : V — Ry, be convez and proper. If  is G-differenti-
able at u € int(dom(yp)), then dp(u) = {¢'(u)}. If ¢ is somewhere continuous and
Op(u) is a singleton, then ¢ is G-differentiable at u.

PRrROOF. Let u* € dp(u) so u*(v—u) < p(v) —¢(u), v € V. Set v = u + tw
and let ¢ | 0 to obtain u*(w) < ¢'(u)(w) for all w € V. Then u* = ¢'(u). Since ¢
is convex we have for each v € V'

o(u) + to' (u,v) < p(u+tv) for teR,

so the affine subset {(u+tv, @(u)+t¢'(u,v)) :t € R} in V xR is disjoint from the
convex, open and non-empty interior of epi(¢). Thus there is a closed hyperplane
containing this affine set and disjoint from int(epi(¢)). This hyperplane is the
graph of a continuous affine function below epi(y) and is exact at (u, p(u)). The
corresponding functional is the unique subdifferential and agrees with ¢’(u,v) for
allveV.
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We briefly consider some calculus with subgradients. First note that if A > 0
then d(Ap) = A0y for the proper convex .

PROPOSITION 7.7. Let p1 and 2 be conver functions and suppose there is a
point in dom(p;) Ndom(ps) at which i is continuous. Then

91 + p2) = Op1 + Op2 .

PROOF. It is clear that 9p1 + dpa C I(p1 + w2) always holds. Suppose that
u* € 8(p1 + p2)(u). That is,

p1(v) —p1(u) —u' (v —u) 2 p2(u) —p2(v), vEV,
so the two sets

E={(v,t)eVxR:p1(v) —p1(u) —u*(v—u) <t },

F={(v,t)eVxR:py(u)—pa(v) >t}

can have only boundary points in common. Moreover, E is convex with non-empty
interior, since it is the epigraph of a convex function somewhere continuous. F is
the reflection of epi(p2), so F' is convex. Thus there is a closed hyperplane which
separates E and F'. It is non-vertical, since otherwise it would separate dom(y;)
from dom(p2), so there exist u3 € V' and ¢ € R such that

P1(v) —p1(u) —u (v —u) 2 —u3(v) + ¢ 2 p2(u) —pa(v) ,  vEV.
Setting v = u shows ¢ = u3(u) so we obtain
u—uy =ul €0p1(u), uz €0pr(u), u=ultu;

as desired. O

Suppose that ¢ : W — R, is convex on the linear space W, that A: V - W
is linear, and dom(¢) N Rg(A) is non-empty. Then the composite ¢ o A is convex
and proper on V. For each w* € d¢(Au) we have

w*(w — Au) < p(w) — p(Au) , wew,
hence, denoting the dual operator by A’ : W’ — V' we have
Nw*(v —u) = w*(Av — Au) < 9o A(v) — po Au) veV.
That is, A'w* € 8(p o A)(u) for each w* € dp(A(u)):
A -9pA CO(poA).
The reverse inclusion and chain rule follows by a separation argument.

PROPOSITION 7.8. Let ¢ : W — Ry, be convex, A : V — W be continuous
and linear, and assume ¢ is continuous at some point of Rg(A). Then (po A) =

A -8y - A.
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PROOF. (Continued): Let u* € d(p o A)(u) so
uw (v —u) + p(Au) < p(Av) veV.

The affine set S = {(Av, u*(v—u)+¢(Au)) : v € V} in W x R meets epi(¢p) only at
boundary points, and int(epi ¢) is non-empty, so there is a non-vertical hyperplane
—w*(w) +t = ¢, w € W determined by w* € W’ and ¢ € R, which is disjoint from
epi(p) and contains S. Thus,

—w*(Av) +u* (v —u) + p(Au) = ¢, veV.
Setting v = u shows ¢ = —w*(Au) + p(Au), so
w*(A(v—u)) =u*(v—u), vevV,
and we have u* = A’(w*). Finally, this hyperplane is below epi(y) so
w*(w — Au) + p(Au) < p(w) , wewWw.
That is, w* € 0p(Au) as we desired. O

We show with an elementary example that Rg(A)Ndom(yp) # ¢ is not sufficient
for the above. Consider ¢(s) = —/s, s > 0, and ¢(s) = +oo for s < 0. If A =0,
W =V = R, then dp(0) = ¢ but (¢ o A(0)) = {0}. The continuity of p o A
was used to show the hyperplane is non-vertical, i.e., we use int dom(p o A) # ¢.
Specifically, suppose that —w*(w) + at > ¢V ¢(w) < t. If a = 0 then we obtain
w*(Av — Au) <0V v € dom(p o A) and thus w* = 0, a contradiction.

Derivatives arise naturally in minimization problems. Consider a convex set
K C V and a convex, proper function ¢ : K — Ry, with dom(¢) C K. Then the
minimization problem

vu€E K :pu) <), all ve K

is equivalent to 0 € p(u). Another useful but less obvious criterion for a mini-
mization is given as follows. Let K = epi(p) N (K xR) = {(z,t) e VxR:z € K,
p(z) <t} and @(z,t) =t for (z,t) € V x R. Then v minimizes ¢ on K if and only
if
ue K :p(u)<t forall ve K and t> p(v),
hence,
(u,0(u)) € K : ¢(u, p(u)) < @(v,t) for (v,t) € K .

Note that @ is differentiable: ¢'((u,t)) = (0,1) € V' x R.

Let A: V — V' and f € V'. Recall that if K is a closed convex non-empty
subset of V and ¢ = Ik, the indicator function of K, then the variational inequality

(7.1) veEK:(f-Au), v-u) <0, ve K
is equivalent to
(7.2) ueV:(f—A), v—u) <o) —pu), veEV.
That is, (7.1) is equivalent to
A(u) + dp(u) > f .
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Cons1der a general convex, proper function ¢ and let V=Vx R, K = epi(y),
= (£,0) € V' and A(v,t) = (Av,1) € V' for (u,t) € V. Then (f — A, T —1) =
(f A(u), v—u) — (t — s) for

= (us), o=@t eV.
If w is a solution of (7.2) then @ = (u,¢(u)) € K and
(f = A(@), 5 — @) = (f — Au), v—u) - (t—p(u)) <0
whenever t > p(v), v € V| so
(7.3) aeK:(f-A@), 9-a) <0, tekK.
Conversely, if @ = (u, s) is a solution of (7.3), then for all v € V', ¢t > (v)
(f —A(u), v—u) <t—s<t—ou)
so (7.2) follows. These remarks prove the following.

LEMMA 7.2. u is a solution of (7.2) if and only if (u,p(u)) is a solution of
(7.3).

By combining Lemma 7.2 with Theorem 2.3 we obtain the following.

THEOREM 7.1. Let V be a separable reflexive Banach space, A:V — V' be
bounded and pseudo-monotone, and f € V'. Let ¢ : V — Ry be proper, conver,
lower semi-continuous, and assume there is a vg € dom(p) and R > 0 such that

(7.4) (Av—f, v—w0) + ¢(v) — (o) >0 for |lv|| > R.
Then there exists a solution of
wueV:(f—A), v—u) <p)—pu), veV.
PROOF. We need only to check that the coercivity condition (7.4) implies the

corresponding estimate in Theorem 2.3. Note that with @y = (vo, ¢(vg)) we have
for each ¥ = (v,t) € K = epi(p)

(AT — f, 5 — 1) = (Av — f, v— o) +t — p(vo)
> (Av ~ f, v — o) + ¢(v) — p(vo) -
If (A(#) — f, © — @) < 0, then () implies |[v]| < R, so

t< sup {f —A(w), w—1v) + ¢(vy) and
lwl|<R

t>inf{ p(w):w| <R},

ie., [t| < C(R). That is, (A(@) — f, © — D) < 0 implies ||5]|2 < R% + C(R)? = p*
as desired. O

COROLLARY 7.1. If there is a vy € dom(p) such that

. Av(v — o) +p(v)\ o
ol e ( ol ) = oo

then Rg(A + 0p) =
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I1.8. Examples

EXAMPLE 8.A. CONVEX FUNCTIONS ON R.

Let F : R — R be a monotone function. It is then continuous at all but a
countable number of points. Set F~(z) = lim,_,,- F(y), F*(z) = lim,_,+ F(y),
so F~ = F* a.e. on dom(F). We then define

(8.1) o(z) = /I " (s)ds = L " Ft(s)ds,

0 0

where zo € dom(F) C dom(yp) is given. Note that ¢ is convex and there is an
interval (a,b) C dom(F') C dom(y) C [a,b]. The subgradient is characterized by
3
y € 0p(z) if and only if y(£ —x) 5/ F~ for £€eR.

To see this, note first that if y < F*(z) then z < ¢ implies y(§ — z) < ff Ft,
and if y > F~(z) then £ < z = f; F~ < y(z — ¢) which implies the above.
Hence, y € [F~(z), F*(z)] implies y € dp(z). The converse follows, since F~ is
left-continuous and F'* is right-continuous, so

Op(z) =[F~(z), F"(z)], =€R.

EXAMPLE 8.B. CONVEX INTEGRANDS.

PROPOSITION 8.1. Let ¢ : R — Ry be proper, convex, lower semi-continuous
and either 0 = p(0) = min(p) or the measurable @ C R™ has finite measure. Define
®:LP(0) 5 Ry, 1 <p< oo, by

(8.2) ®(u) = /Q<p(u(x)) dz if p(u) € L*'(Q), oo otherwise.

Then ® is proper, convex, lower semi-continuous, and f € d®(u) if and only if

fer” Q) ,u € LP(2) and f(z) € Bp(u(z)) , ae. z€N.

PRrROOF. Each set {y : ¢(y) > a} is open and u is measurable, so {z : p(u(z)) >
a} is measurable for each a € R, hence ¢ o u is measurable. Let’s show ® is LSC.
Since ¢ has an affine lower bound, we may assume it is non-negative. (Otherwise, we
add that lower bound to obtain a non-negative ¢.) If u, — u in LP and ®(u,,) <r
for n > 1, there is a subsequence for which (after a change of notation) we have
un(x) — u(z) a.e. z € Q. Since ¢ is LSC, ¢(u(z)) < lim,_,o inf p(uy(z)), a.e. z.
Fatou’s Lemma shows ®(u) < lim,_,o inf ®(u,) < r.

Suppose f € L*', u € L? and f(z) € dp(u(z)), a.e. z. Then f(z)(v(z)—u(z)) <
o(v(z)) — p(u(z)) and p ou € L'; an integration shows f € 0®(u). Conversely, let

1@ 6@ -u@)t < [ (o) - plu@)) s, ver.

For each measurable M C Q we set w(z) = v(z) if x € M and w(z) = u(z) if
z€Q~ M. Then w € L? and

/M{ f(@)(v(z) —u(=z) — o(v(z)) + ¢ (u(z)) } <0
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for each such M, so we have

f@)(v(z) —ul®)) < p(v(x)) —@(u(z)), ae ze,
for each v € LP, so f(z) € dp(u(x)), a.e. z. d
EXAMPLE 8.C. BOUNDARY FUNCTIONALS.
Let 1 < p < o0, G be a bounded domain in R”, the boundary G be a C*

manifold of dimension n — 1, and denote by 7 the trace operator from W1?(G) into
LP(dG). Let ¢ : R — R be convex and continuous and suppose it satisfies

lp(s)l <C(lslP+1), seR.
Thus we define

(83) B(u) = /6 elu)ds,  ueW ().

Since ® is a composite of a convex and a linear function as in Proposition 7.8, the
function ® is convex and continuous, and its subgradient is given by
0% (u) = (8p(yu)) , ueWwh?

where the dual 7 : LP (8G) — (W'?)" is given by
Vo) = [ gomisds,  vew',
aG

for g € LP (8G). That is, F € 8®(u) if and only if there is a g € dp(yu) in LP' (3G)
for which

Flv) = /a gomleds,  vew'?.

EXAMPLE 8.D. DIRICHLET INTEGRANDS.
For each integer k, 0 < k < n, let there be given a continuous, convex function
¢k : R — R which satisfies

pr(s) <C(Isl”+1), seR,

for some p, 1 < p < 0o. Define
(8.4) ®(u) = Z/ ok (Oku(z)) dz u € WP(G)
k=0 G

where G is a domain in R™. Note that ® is a sum of continuous, convex functions on
the Sobolev space WP(G), each of which is the composition of a convex integrand
on LP(QG) following the continuous linear 8y, : W1? — LP. By Propositions 7.7 and
7.8, the subgradient can be computed term-by-term and is given formally by

0%(u) = > 0 (0pk(Bku)) , ueW"P(G),

k=0

where the dual 8, : L — (W'P)' is given by

. f(v) = /Gf(z)akv(x) dz , veWHP(G),
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forl1 <k <nand f € LY Y, = Op is the identity. To be precise, we have
F € 0®(u) if and only if there exists fi, € dpx(du) in LP' for each k, 0 < k < n,
for which

F(v) = kzﬂ/cfk(z)akv(z) dz ve W (G) .

By restricting this functional to Vy = Wol’p (G) we see the formal part is the distri-
bution

Fo=-) Ofs+foeVy

k=1
and we denote this by

(0®)o(u) = — i Ok Opr (Oru) + Opo(u) .
k=1

Note that by the classical Green’s Theorem if the boundary of G is smooth and
each Ox fr € L', 1<k <n, then

F(v) — Fp(v) = /BG{éfk(S)Vk(S)} v(s)ds veV.

As in Section 5 we construct an abstract Green’s Theorem for 6® for which
(8.5) 0®(u) = (8®)o(u) +7' (B (v)) , ueD,

where D = {u € WYP(G) : (8®)o(u) N LP (G) # 0} and 8y : D — B’ is the
corresponding boundary operator onto the dual of B = Rg(vy). Finally we remark
that it is the sum of a Dirichlet integrand and a boundary functional that frequently
arises in applications.

Let’s consider again the general problem of minimizing the proper, convex
¢ : V — Ry. Note that u is a solution of

u€eV:pu) <), vevV

if and only if 0 € dp(u). Also, if K is a convex subset of V which contains a
vg € dom(yp), then u is a solution of

u € K :p(u) <p), veK

if and only if u minimizes ¢+ Ik over V, and this is equivalent to 0 € (¢ + Ix)(u).
In addition, if ¢ is continuous at some vy € K then u minimizes p on K if and only
0 € dp(u) + 8Ik(u) by Proposition 7.7, and this is equivalent to

veK, fedp), flv—uw)>0, al vek.

Thus, one obtains a characterization of solutions of variational inequalities for multi-
valued operators (subgradients) as minima of convex functions on the whole space
or as minima on the convex set. The following is an easy sufficient condition for
the existence of minimizers.
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THEOREM 8.1 (WEIERSTRASS). If K is convez and closed in a reflerive Ba-
nach space V, ¢ : V — Ry, is lower-semi-continuous and conver with dom(p)NK #
0, and p(v) — o0 as ||v|| = oo with v € K, then ¢ attains its infimum on K.

In most applications the convex functional is identified as the energy associated
with the state u of a system. As in the preceding examples this is frequently a local
function of u, i.e., it depends on the values of u or its derivatives at each point in
the domain G. Our next example is non-local: the function depends on the “total
energy” or “total flux” of the system.

PROPOSITION 8.2. Let A, B be continuous symmetric monotone linear opera-
tors from V to V' and a,b € R. The function

¢(u) = 1/2max{ Au(u)+a, Bu(u)+b }, uev,
is convex and continuous. Its subgradient is given by
{A(u)} if Au(u)+a > Bu(u) + b,
Op(u) =49 {Mu)+(1—-NBu, 0<A<1} if Au(u) +a = Bu(u)+ b,
{B(u)} if Au(u)+a < Bu(u) + b.

PRrROOF. We need only to verify the computations of the subgradient, and the
first and last cases follow from G-differentiability of ¢ in the respective regions. In
the middle case we obtain

t ™ (p(u + tv) — p(u)) = max{ Au(v) + % Av(v) , Bu(v) + % Buv(v) } ,

so we have the equivalence of f € dp(u),

(8.6) f) <t Heu+tv) —pw), veV,t>0,
and of
(8.6") f(v) < max{ Au(v), Bu(v) }, veV.

This last condition is equivalent to f = AAu + (1 — A)Bu for some A, 0 < A\ < 1.
For this we use the following.

LEMMA 8.1. Let f, f1,fo € V*. Then f is a linear combination of fi and fo
if and only if the ker(f) D ker(f1) Nker(f2).

PROOF. The “only if” is clear. Suppose ker(f) D ker(f;). If fi is not iden-
tically zero, fi(vo) # 0, then f(v) = (f(vo)/f1(vo))f1(v), since ker(f;) has co-
dimension 1. That is, f is a multiple of f;. Suppose ker(f) D ker(f1) N ker(f2).
For each v € ker(f;) we have f(v) = 0 whenever fi(v) = 0. Thus there is an
a1 € R: f(v) = a1 f1(v) for v € ker(f2). That is f — a; f1 vanishes on ker(f2) so as
above f — a3 f1 = ag fo for some ay € R. O

To finish Proposition 8.2, we note that the condition (8.6") on f implies

min{ Au(v), Bu(v) } < ayAu(v) + a1 Bu(v) < max{ Au(v), Bu(v) }
where f; = Au, f» = Bu. O
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EXAMPLE 8.E. ENERGY-DEPENDENT ELLIPTIC EQUATIONS.
Choose V = W, (@), f(v) = Jo Fv, v € V, where F is given in L*(G) and
define

1 - 1

(8.7) go(v):—/le|2+—rnax 1,/|v|2 . vev.
2Ja 2 G

Then dp(u) > f is equivalent to

€ Wy ?(Q) : —Au +sgn™ (/ |u|? do — l)u S>F.
G

EXAMPLE 8.F. FLUX-DEPENDENT EQUATION.
Define V' and f as before but set

(8.8) e(v) = %max{l, / |§vl2} , veV.
G
Then dp(u) 3 f is characterized by
ueWy2(G) : —sgn+(/ |Vul? - I)Au >F.
G

In these examples we have used the real-valued subgradient
{0}, ifr<o,
sgnt(r)=¢ [0,1], ifr=0,

{1}, ifr>o0.

This is the positive sign or Heaviside relation. Also see Proposition 8.6 below.
We consider again the relationship between subgradients and the directional
derivative,
¢'(u,v) = lim #7 (ip(u+ tv) — p(u)) -

This will be used to study the differentiability of the norm and compositions with
it. Thus let V' be a normed linear space and assume ¢ : V — R is proper and
convex.

LEMMA 8.2. The following are equivalent for an f € V':
(@) feop(u), ie, flv—u) <p(v)—pu), veV,
by flv—w) < (u,v—u), veV, and
() flv—u) <t Hpu+tlv—u)—p), 0<t<l,veV.

PRrOOF. If we set v = u + t(w — u) in (a) we obtain
fw—w) <7 (p(u+tw—u) - pw) Spw) - o), 0<t<1.

Recall that the difference quotient is monotone in t, so the limit as t — 0% exists
in Ryo. O

For the special case of the norm, ¢(v) = ||v||, on V we obtain yet another
equivalent statement,

d [fll=1 and f(u)=ull .
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This equivalence is straightforward and will be obtained more generally below, but
first we characterize the G-differentiability of the norm. Note by Proposition 7.6
this occurs exactly when the subgradient is a singleton.

DEFINITION. A normed space is strictly convez if u # v, |Jul| = ||lv|]| = 1 and
0<t<1imply |tu+ (1—t)v| <1

PRrOPOSITION 8.3. The following are equivalent:
(a) V is strictly convez.
(b) u#w, ||u]l = |jv|| =1 imply |[tu + (1 — t)v|| < 1 for some t € (0,1).
(c) Any convex subset of the unit sphere contains at most one point.
(d) Any non-zero f € V' takes its mazimum value on the unit sphere at most
once.

ProOOF. That (b) = (a) follows by an easy convexity argument; we check
that (a) = (c) = (b), so the first three are equivalent. If |ju]| = ||v]| = 1 and
f(u) = f(v) = £l #0, then for t € (0,1)

Il = fltu+ Q=)o) <[If]l ltu+ (1 = t)]]
so |ltu+ (1 —t)v|]] = 1 and w = v by (a). Thus (a) = (d). Conversely, if |u| =

lv]| = 11/2(uw + v)|| = 1, there is an f € V' : ||f|| = 1 and f(u + v) = 2. Since
f(u) <1 and f(v) <1 we have f(u) = f(v) so u =v by (d). d

COROLLARY 8.1. The norm on 'V is G-differentiable at each u # 0 if and only
if the dual space V' is strictly convez.

PROOF. Each non-zero u € V' C V" attains its maximum on the unit sphere
of V' at most once by (d) of Lemma 2 and of Proposition 8.3. |

The next two results will be useful for obtaining estimates on solutions of
evolution equations.

PROPOSITION 8.4. Letu,v € V. Then |ju+tv|| > ||u]| for allt > 0 if and only
if there is an f € Op(u) such that f(v) > 0, where p(w) = |w|| above.

PROOF. Let f be as given. Then ||f|| ||u| < f(u + tv) < ||fll ||v + tv|| so the
result follows if ||f|| # 0, and it is trivial if || f|] = 0. Conversely, if ||u| < |ju + tv||
for t > 0 we select for each ¢t > 0 an f; € Op(u + tv). Then

lull < llu+tvll = fe(u+tv) = fi(u) + tfi(v) < ull +tfi(v) < Jlull + o]l ,

so we have f;(v) > 0, t > 0, and lim;o fi(u) = |lul. Since the unit sphere of V'
is w*-compact, there is a subsequence {f: } w*-convergent to an f € V’'. Then
|fl <1and f(u) = [|ull, so |[fll =1 and f € dp(u) with f(u) > 0. 0

The derivative of the norm of a function is computed as follows.

PROPOSITION 8.5. If the function u : [0,T) — V is right-differentiable at
te[0,7), ie.,
ut(t) = hli%1+ At (u(t+ h) —u(t)) in V,

then so also is p(u(t)) = ||u(t)| and

ar, .
)] = ¢! (u(t), v (1) -
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ProoOF. For sufficiently small h > 0 we have ‘
| (It + D) = @) = (lu(t) + hu* @) = u@)]])|
= | llu(t + B)Il = llu(t) + hu* @O)] |
< lu(t + k) —u(t) — hut (t)]| .
Divide by h > 0 and take the limit as h — 07. O
Next we compute the subgradient of a convex function of the norm. See (8.6)
and (8.7) for examples.

PROPOSITION 8.6. Let ® : Ry — R, be convez, ®(0) = 0, and V a normed
space. Then f € V' belongs to the subgradient of ®(|| - ||) atu €V, i.e.,

(a) flo—u) <@([loll) - @(llull) , veV
if and only if
(b) f@) =1 llwll and  [If]] € 82(|lull) -

PROOF. Suppose (a) and set v = ||ul|w for any unit vector w. Thus we obtain
lull f(w) < f(u), |lw|]| = 1, and thereby the first part of (b). If u # 0, set v =
(t/]lul)u in (a) to obtain

I = llul) < flv—w) <2@) —2(JJull) , teR.

If u = 0 this follows by letting v = ¢tw in (a) with ||w|| = 1, so (b) follows from (a).
Conversely, (b) implies

F—u) <[fIl (loll = llul) < @(lvl) = 2(lul) ,  veV. 0

We note that if ®(r) = r we obtain part (d) of Lemma 8.2. Also, if ®(r) = 172
and V is a Hilbert space with scalar-product (-,-), then f is given by f(v) = (u,v),
v €V, so the derivative of 3(|| - ||2) is just the Riesz map from V to V'

DEFINITION. For any normed space V the map J: V — V|
Jy={ feV: flu)=|f1*=lul*}
is the normalized duality map.

From Proposition 8.6 it follows that J(u) is closed, convex and non-empty.
When V"’ is strictly convex, J is a function (single-valued). More generally, we have
the following.

DEFINITION. Let ¢ : Ry — R, be continuous, monotone, surjective and £(0) =
0. The multi-valued operator J¢ : V — V'

Je(w)={ feV': flu)=fll llull, 17l = &Cllull) }
is the corresponding duality map with gauge €.

As before, J¢(u) is closed, convex, non-empty and Je is a function when V’
is strictly convex. To see this, note that for f,g € Je¢(u) and 0 < t < 1 we have
tf+(1—-t)ge V' and

(tf + (1 =t)g,u) = (¢ + (1 = )ENul)ull ,
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so Je(u) is convex. But by Proposition 8.3.c, it follows that J¢(u) is a singleton.
Since J¢ is a G-differential, it is monotone. More precisely, for u,v € V'

(J(u) = J (), w—v) 2 (Ellul) = &) (lll = l1oll)

and a corresponding estimate holds in the multi-valued case where V"’ is not strictly
convex.

PROPOSITION 8.7. IfV is a reflexive Banach space and V' is strictly convex,
then Je : V. — V' is monotone and demicontinuous.

PROOF. Let up, — u in V. Then [|Je(un)|| = €(|lunll) — &(||lu]l) since § is
continuous, and we may suppose Je¢(un,) — f in V’. Then || f|| < &(||u||) and

f(u) = 1im J(un) (un) = lim §(|lun|l|unll = E(llul)lu]l -
Finally, f(u) < [If|| llull, so [If| = £(llull) and we have f = J¢(w). 0

DEFINITION. A normed space V is uniformly convex if for each ¢, 0 < € < 2,
there exists a § > 0 such that if ||Jul| <1, |[v]| <1 and ||lu —v|| > ¢, then |lu+v| <
2(1 - 4).

This is equivalent to requiring that if ||un|| < 1, |va|| < 1 and |[un + vl — 2,
then ||un, —vn| — 0. From the parallelogram law it follows that every Hilbert space
is uniformly convex.

PROPOSITION 8.8. If V' is uniformly convez, then Jg is uniformly continuous
on each bounded set in V. That is, for € > 0 and M > 0 there is a 6 > 0 such that
if ull, [Iv]l < M and |lu —v|| <6, then ||Je(u) — Je(v)]| <e.

PROOF. We give the argument for the normalized case, ¢ (s) = s, but the
general case is similarly obtained. Assume there are sequences in V with ||u,| <
M, ||lvo|| € M, and |ju, —v,|| = 0. If u, — 0, then v, — 0 and we have
lJun| = llun]l = 0 and ||Jvs|| = |lvn|| = 0, so ||Jun, — Ju,|| — 0 and we are done.

Hence, we may assume (by passing to subsequences denoted similarly) that
lun]l > @ > 0 and |v,|| > . Set z, = u,/||us| and y, = v,/||vn| so that
lzall = llynll = 1 and

Tn = Yn = (Un = v0)/[[tunll + (unl| ™" = [lvnl| ™ )vn — 0.
Since ||J(zn)|| = ||/ (yn)|| = 1 we have

2> “J(xn) + J(yn)“ > <J~’L'n + Jyn,$n>
= (J-'L'mxn) + <Jyna'yn) + <‘]ym$n _yn> >21+1- Hﬂﬁn _yn“ s

and this shows lim ||J(z,) + J(yn)|| = 2. Since V' is uniformly convex it follows
that ||J(z,) — J(yn)|| — 0. We also have

Jun = Jup = (J(@n) = I () lunll + (lunll = llvnll) I (¥n) ,

and this converges to zero. O

We conclude with some examples of duality maps that are useful in certain
applications.
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LP(2). Let 1 < p < oo and § measurable in R™. The duality map with gauge
&(r) = rP~! is the subgradient of the convex function

1. 1/ »
—|vlf, == [ |v(z)|Pdz, veLP(Q),
p””L pnl()l )
and by Proposition 8.1 this is characterized by
feJw) = /Qf(:v)U(w)dw= I£llze lellze and [|£llze = llull?s"
<> f(z) € |u(@)|” 'sgn(u(z)) , ae z€Q

for f € LP () and u € LP(Q).

WyP(R). Let 1 < p < oo and G a bounded domain in R”. Then by Poincaré’s
Lemma 5.1, Wol"’ (G) is a Banach space with norm

n 1/p
ol = (Znajvn’zp) .
j=1

The duality map with gauge £(r) = rP~! is (a subgradient) characterized by

feJe(w) = fu)=fllw-rolullwgs and [fllw-ro = (lulyg-)"~"

= f= _Zaj (105uP~" sgn(d;u)) in D*

Jj=1

for f € WP = (W} P), see Section 4, and u € Wy*(G).

11.9. Elliptic Equations in L!

Let G be a bounded domain in R™ with smooth boundary dG. Consider the
linear elliptic differential operator given by

Au = — i 9;(a;j0;u) + zn:&-(aiu) + au
ij=1 i=1
where the coefficients satisfy

aij , a; €CYG) and a€L>(G),

a(z) >0 and a(z)+ zn:aiai(a:) >0,
i=1

i a;j(z)€&; > colé]? £eR”
ig=1

for a.e. £ € G and ¢y > 0. The meaning of the Dirichlet problem for Au is different
in each LP(G). The appropriate definition of Apu = f € LP(G) for 1 < p < o0 is
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that

w e WP (G) : /G (zn: a1, 0rudy + (Zn: 8, (asu) +au)>v) - /G o

1,j=1 i=1
veWi(G) .

The natural domain is D(4,) = {u € WyP(G) : Ayu € LP(G)}. We cite the
following fundamental results for these operators

THEOREM 9.1 (AGMON-DOUGLIS-NIRENBERG). The operator A, is closed
and densely-defined in LP(G) with domain D(A,) = Wy P(G) N W2P(G) for 1 <
p < 00, and (I + AA,)~! is a contraction for each A > 0.

For 1 < i < n we have

/Gai(aiu)u = —/Gaiu8¢u= (1/2)/G(Biai)u2 ,

so it follows that

/G (iz:;&'(aiu)u+au2> _ /G <(1/2)Xn:3¢ai+a)u2 >0.

i=1
This shows (Agu,v)r2 is coercive. Thus, we see that —A, generates a contraction
semigroup on LP(G), and the coercivity estimate shows A, is a surjection.

The case p = 1 is different. The spaces L! and L* are not mutually dual so
we cannot employ the adjoint arguments used in the proof of Theorem 9.1; also see
Lemma 9.1. Since there is not a duality map L> — L', a-priori estimates are more
difficult to obtain. As before, we define D(4;) = {u € W,''(Q) : Aju € LY(G)}
where Aju = f € L'(G) means

u € W&’I(G) : / (Z aijaiuajv—z aiu3¢v+am)> =/ fu, v € W01’°°(G) .
G = G

4,5=1
We shall prove the following.

PRrOPOSITION 9.1.

(a) D(A;) is dense, and (I + AA;)~" is a contraction on L' for each A > 0.

(b) D(A;) c Wy for 1 < q < n/(n—1) and there is a c(q) > 0 :
c(@llullwre < ||ArullL: for uw € D(Ay).

(c) Aj is the L'-closure Ay of As.

(d) supg(I + AA;)~1f < max{0,supg f} for each A > 0 and f € L!, that is
I + AAD) fllpeoq)y < If T llLeo(e) where 2t = max{0,z} denotes the
positive part of x € R.

LEMMA 9.1. A; D A, and A, satisfies (b).

PROOF. From the Sobolev Theorem 4.3, we obtain W2! C W17  so D(A2) =
W, 2 NW22 c Wha. Also Wy? € W' so Ay C A;. That is, we have D(Az) C
D(A,;). Consider the adjoint equation

— Xn: 61;((11']'8_7"0) — iaiaﬂ) +av = — i&;hi .
i=1 i=1

i,j=1
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Stampacchia (1963) showed there is a unique solution v € H} N L* if each h; € LP,
p > n: for each w € H}

/ (Z aijajv&-w - Zai&-vw + avw) = / Z h;0;w
G \{j=1 G i1
and it satisfies

n
[vllize <CY - lhallze -
=1

By choosing w = u € D(A3) we obtain

E/Ghiai'u:/GvAgu < Jollpoe | Azullr < C Y l1hall e | Azuli 1 -
=1

=1

Since A1, ..., hy is arbitrary in (LP)™ it follows that
> ol < CllAgully ,  g=p/(p—1) <n/(n—1).
i=1

Since the graph of A; is closed in Wh! x L1, it follows that Ay C A;. O

LEMMA 9.2. Let ¢ : R — R be Lipschitz, monotone and ©(0) = 0. Then
(A2u, 0c(u)) . 20 for uwe D(A) .

PROOF. We have

(s p(w) o = [ (32 (o000 ) + 3 aasadiolu) + aupla) )
i,5=1 i=1

and the first term is non-negative by ellipticity of A and monotonicity of ¢. To

estimate the other terms set ((t) = f(f s¢'(s) ds and note 0 < {(t) = top(t) — fot @ <

te(t). The sum of the second and third terms is

/G(—zn:aiusol(u)aiu+au<p(u)) > L(‘éaiaiC(u)+aC(u))

=/G(;6¢ai+a)C(u) >0. 0

LEMMA 9.3. A, satisfies (a).

PROOF. Let f € L% u = (I + AM3)"'f so u+ AMou = f. For € > 0 define
@e(u) = L(u— (I +esgn)~'u) = sgn(u) for |u| > € and = u/e for |u| < . Multiply
by we(u) and integrate: [, up(u) < [ foe(u) < ||f]lr. By letting ¢ — 07 we
obtain [lu||z1 < ||f||L:, hence, (I + AA2)~! is a contraction on L2

Finally note that if f, € L? and f, — f € L' with convergence in L!, then
un = (I + AA3) "1 f, converges in L' to u = (I + AA)~'f and ||lu||z: < ||f|lz:. O

LEMMA 9.4. A, is one-to-one.
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PRrROOF. For each g € LP, p > n, there is a solution v of the adjoint problem
v €Wy P NW2P:

/(Z a;;0v0;w — Zalavw—i-avw):/gw, w € C§°
G G

1,7=1
Since W2? C C(G) by Theorem 4.3, we can let w € W,''. Taking w = u where
Aju =0 we obtain [ gu = [;vA1u =0 for g as above, so u = 0. a
COROLLARY 9.1. I+ A\A; is one-to-one for each A > 0.

We have shown Ay C A;, I + A, is onto and I + AA; is one-to-one. Thus
= A; and all of Proposition 9.1 is proved except (d). The proof of this maximum
principle is the same as the L!-estimate in (a).

LEMMA 9.2A. For e > 0 define o} (u) = L (u— (I +esgn™)'u) = sgn'(u)
foru>¢e oru<0 and ¢} (u)—u/sfor0<u§€ Then

(Au , of(u—k)),, >0 for ue D(4y), k>0.

LEMMA 9.3A. Aj satisfies (d).

PROOF. If (I + Mz)u = f € L? then u — k + Mau = f — k. Multiply by
©F (u— k), integrate and let ¢ — 0" to obtain

/G(u—kﬁs/cm—

where rt = rsgn®(r). Setting k = sup f* shows (u — k)™ = 0, and so we obtain

lu Nz < I1F Tl - O

COROLLARY 9.2. A; satisfies (d).

PROOF. Let f € L' and choose f, € L? such that f, — fin L, f,(z) — f(z),
fa(z) < f(2)T, and u,(z) = (I+AA2) 71 fo(z) — u(z) a.e. € G. Thenlet n — oo
in un(2) < |f7 [l < IFF Lo 0

We shall extend Lemma 9.2 and Lemma 9.2A to more general monotone func-
tions. Also, the negative part of any x € R will be denoted by 2~ = min{0,z}. A
useful estimate is given by the following.

PROPOSITION 9.2. Let T : L}(G) — L*(G) satisfy
(a) ||Tu—Tv|z2 < ||lu—v|z1,u,v € L, and
(b) —Jlu”|lze < Tu(z) < ||ut||z~ ae. z € G. Let j : R — Ry be conver,
lower-semi-continuous and j(0) = 0. Then for each u € L*(G)

i) s [ ).
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PRrOOF. Consider the special case ji(r) = (r —t)T with ¢t > 0. Set v(z) =
min{u(z),t} so v € L! and |u(z) — v(z)| = (u(z) —t)T. Also Tw(z) < ||[vF|lLe <t
so

(Tu(z) — t)+ < (Tu(z) - Tv(:v))+ < |Tu(z) — Tv(z)| ,
hence

/ (Tu(z) —t)+da: <|lu—n|p: = / (u(z) —t)+da:
G G

as desired. The same holds for u — —T'(—u) and so for t < 0 we have

f (~Tu(z) + t)+ dr < / (—u(z) + t)+ dz .
G G

These may be summarized by

(9.1) /G[t(Tu(x)—t)]+dm§/G[t(u(z)—t)rdz, teR.

Consider the smooth case with 0 < j” € L*°(R) and, hence, j/(0) = 0. First
check that ~
, ) +
O OISO
—00
Then it follows that we can multiply (9.1) by j”(¢)/|¢t| and integrate via Tonelli to
obtain the desired estimate.
Finally, for any function j as given in the Proposition 9.2 we construct a se-
quence of smooth functions as above, e.g., jc(r) = inf;er{(1/2¢)|r — t|2 + j(t)} ,
which converge monotonically to j from below. Then

/GjE(Tu)s/Gﬁ(u)s/Gj(u), £>0,

and this implies the desired estimate. a

COROLLARY 9.3. ||Tullr» < |lullze , [[Tut|ze < ||ut||Le forp > 1.
PRrOOF. Take j(r) =rP and (r*)P. O

The next result is central and roughly asserts that [, Au - 8(u)dz > 0 for any
maximal monotone graph 8 C R x R which contains the origin.

PROPOSITION 9.3. Let 8 be a mazimal monotone graph in R xR and 0 € $(0);
let A satisfy (a) and (d) of Proposition 9.1; let 1 < p < o0 and 1/p+1/p' = 1.
Then for each pair u € LP,v € LP with Au € LP and v(z) € B(u(z)) a.e. x € G

/ Au(z)v(z)dx >0 .
G

PROOF. Let the convex lower-semi-continuous j : R — R, be the indefinite
integral of 8 with j(0) = 0; that is, j = 8. (See Example 8.A.) For each A > 0
set Tx = (I + AA)~!, so (a) and (b) of Proposition 9.2 are satisfied. Note that
MT\A = I — Ty on D(A) so Ty — I pointwise on L!. Since v(z) € 9j(u(z)), a.e.
z € G, we have v(z)(0 — u(z)) < j(0) — j(u(z)), hence, 0 < j(u(z)) < v(z)u(zx), so
jou € L. Likewise

=2 (z) (ThAu(z)) = v(z) (Tau(z) — u(z)) < j(Thu(z) —j(u(z)), ae z€q,
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so from Proposition 9.2 we obtain
/ ThAu(z)v(z)dz >0, A>0.
G

If p = 1 the result follows from the strong convergence T\ Au — Au in L!. If 1 <
p < oo then Proposition 9.2 shows | Th Au||z» < ||Au||L» and the result follows from
the weak convergence Th Au — Au in LP. If p = oo then ||ThAu|pe < ||Au||L-; a
subsequence a.e. convergent gives the result by dominated convergence.

We have shown that the operator A; satisfies the hypotheses on the abstract
linear operator A in L'(G) in the following result. As a consequence, for any
maximal monotone graph 3 with 0 € ((0) it follows by setting 8 = a~! that
the composite nonlinear operator A; o 8 is m-accretive in L!(G), and its resolvent
equation satisfies some useful comparison estimates. Additional examples will be
given below.

THEOREM 9.2 (BREZIS-STRAUSS). Let o be a mazimal monotone graph in
R xR and 0 € a(0). Let A: D(A) — LY(G) be linear and satisfy the following:
(i) D(A) is dense and (I + MA)~! is a contraction in L' for each X > 0;
(i) supg(I +AA)~f < (supg f)* = [[fTllL= for f € L' and A > 0;
(iii) there is a ¢ > 0 such that

cllullzr < [|Aullpr for we D(A).
Then for each f € L' there is a unique pair u € D(A), v € L' such that
(9.2) Aut+v=f and v(z)€alu(r)), ae T€G.
If uy,v1 and uz,ve are solutions corresponding to fi, fo as above, then
(93)  N(or = w2)ller S N(fr = F2) llza s N(or —v2)"lles < MI(f1 = fo) 7 llee
and, hence,
(94) lor = valler < |f2 = fallo -
If f1 > f2 a.e. thenvy > vp a.e. on G.

PROOF. The last claim follows from the second estimate in (9.3), and (9.4)
follows by adding (9.3). By symmetry it suffices to verify the first estimate in (9.3).
Multiply the equation

Alug —ug)+(v1 —v2) = f1 — fa

by v(z) = sgng (u1(z) — uz(x) + vi(x) — v2(z)) where sgn(r) = 1 for r > 1 and
= 0 otherwise. Note v(z) € sgnt(ui(z) — uz2(z)) Nsgn™ (vi(z) — vo(z)) since « is
monotone. From Proposition 9.3 we obtain

(o1 —v2) | s = /G (v —v2) < /G (fi—fo)v < /G (fr= F2) "o < I(Fu = fo)H e -

It remains to show Rg(A + ) is all of L!. To show the range is closed, let
Au, +v, = f, — f in L' with v, € a(u,) for n > 1. Then (9.4) implies v, — v
in L' and (iii) implies u, — w in L' with Au+v = f. Since (I + a)7! is a
Lipschitz function we may take the limit in u, = (I + &) !(u, + v,) to obtain
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u= (I +a)"!(u+v), hence, v € a(u). It suffices now to show Rg(A + ) is dense
in L!.

In order to solve (9.2) we shall regularize both operators, replacing A by A+el
and a~! by ! + A where £, A > 0. Note the equivalence of (\I + a~!)(y) 3 z,
y€alr—Ay), z—Ay+Aa(z—Ay) 2z and y = (1/A)(I — (I + Aa)~1)(z). Thus we
set ay = (1/A)(I — (I + Aa)~1), the monotone Lipschitz (Yosida) approximation of
«, and consider the equation

(9.5) eu+ Au+ax(u) = f .

This is equivalent to
u=(1+X) " (IT+W1+eNA) T (M + T+ ) '),

and so this strict contraction on the right side guarantees there is a solution in L*.
But we shall need more ... estimates in L? ... so we consider L' N L>™ with the
norm ||ul| = |jul|z1 + ||ullz=. If f € L*NL*™ and € > 0 is fixed, then for each A > 0
there is a solution u) € L' N L of (9.5) obtained as a fixed-point in this space, and
it satisfies |[ux]| < (14 X&) "L (Al f]l + luall), hence, [Juxll < (1/€)]|f]l- Next multiply
(9.5) by sgn(uy) and integrate to obtain from Proposition 9.3 |lax(uy)|[z: < ||fllL:-
Similarly get an L? estimate and let p — oo to give ||ax(up)||ze < ||f|lz~ for each
A > 0. This shows that {a(ux)} is bounded in L2, and we next deduce that {u,}
is Cauchy in L?. Take the difference of (9.5) at A, 4 and scalar product with uy —u,
to obtain from Proposition 9.3

ellur —wullfz + (ea(un) — au(uy) » un —uy) . <0.
Substitute in the right term
uy—uy, = (I=(IT+xa) ur+ ((T+ra) tuy — T+ pa) tu,) — (T—(T+pe) Hu,
and note the middle product is non-negative because ay € a( + Aa)™! ; this gives
ellun = wallZz + (@r(ur) — au(uy) , Aen(un) — pa(u,)) <0

Since || (1) 22 is bounded, it follows that {uy} is Cauchy in L2. From Lemma 9.5
below it also follows that {c(uy)} is Cauchy in L?. By passing to a subsequence
we obtain uy — u and a)(uy) — v in L?(G) with u,v € L'NL*. As before we find
v(z) € a(u(z)) a.e. and (eI + A)uy — f —v in L?(G). Set w = (eI + A)~(f —v);
then w € D(A) N L*>® and (eI + A)(uy — w) — 0 and uy — w = u. Thus

eut+Autv=7f, v € afu) .

Finally, let f € L' and f. € L' N L*™ with f. — f in L'. For € > 0 let u, be
the solution as above of

eue + Aue +v. = fe Ve € aue) -

As before we get e||ue|lpr + ||[vellpr < ||fellzr from Proposition 9.3 and then (iii)
gives

cllueller < 2(fellzr <20l ,
hence, eu. — 0 and f = lim._o(f. —eu.) belongs to the closure of Rg(A+ «). This
finishes the proof of Theorem 9.2 except for the following general result. O



100 II. NONLINEAR STATIONARY PROBLEMS

LEMMA 9.5. Let {2)} be given in a scalar-product space for A > 0 and assume
(2x — 24y Aza —pzy) <0, Au>0.

Then X — ||zx|| is monotone decreasing; if {zx} is bounded then it is Cauchy for
A—0F.

PrOOF. From the calculation
0>2(2x — zu» Aza — pzy) = A+ p)ll2ax — zull> + (A — w) (ll2all? = ll24l1%)

we obtain
A+ m)llzx = zull® < A= w) (1201 = ll2all?)
so A > p implies ||z|| < ||z,]|. Also we have

lzx — zull? < l2ull® = ll2al*,  A>p>0,

so boundedness implies the Cauchy condition. a

EXAMPLE 9.A. This first order operator is the L! realization of Example I.4.B.
Set D(A) = {v € Wh1(a,b) : v(a) = cv(b)}, where a < band 0 < ¢ < 1. Define A =
0 on D(A). It is easy to check that there is a solution u € D(A) of (I +AA)(u) = f
for each f € L'(a,b) and A > 0. For any such solution, we multiply the equation
by sgn(u) and integrate to get ||ul[r1(a) < |IfllL1(a,5), SO (i) holds. Multiply the
identity

u(z) — k + Nu(z) = f(z) — k

by sgn™ (u(z) — k), integrate, and set k = || f*|| foo(q,5) to obtain

l(w — &) *ll 22 o) + (u(b) = )T = (cu(d) — k)" <0.
Since k > 0, ¢ > 0 and the positive part function (-)* is monotone, we have
(w(b) = k)" — (cu(b) = k) > (u(d) — k)" — (cu(b) — ck)*
> (1—c)(ud) -kt >0,
so (u—k)* = 0 and we have (ii). To check (iii), we let Au = f. Multiply by sgn(u)

and integrate to get

lu@)| < luw(@)|+ Ifllr@y , a<z<b.

Integrating Au = f and using the boundary condition give u(a) = = || fllz1(ab)s
so with the above we obtain (iii) from

1
lu(z)| < E”f”Ll(a,b) , a<z<b.

Theorem 9.2 asserts that for any maximal monotone 3 in R x R with 0 < 3(0),
the operator 9 o 3 is m-accretive in L'(a,b). Specifically, if f € L'(a,b) there is a
unique pair

veL(ab) , ueWhi(a,b),
for which u(a) = cu(b) and

v(z) + Ou(z) = f(z) , wu(z)ePv(z)), ae z€(abd),
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and the mapping f — v is an L!(a,b)-contraction. This operator will arise in
the study of scalar conservation laws. Other such first order operators can be so
constructed; one can delete the second order terms from A; above, for example.

EXAMPLE 9.B. We record here a special case of Proposition 9.1. Let 8 be given
as above. Then for each f € L'(G) there is a unique pair

veLlNG) , ue W, Q)
for which the Laplacian Au € L*(G) and
v(z) — Au(z) = f(z) , u(z)€Bv(z)), ae ze€q,

and the mapping f ~ v is a contraction in L' (G). The operator —Aof3 corresponds
to the stationary problem for the porous medium equation, and one can construct
similar operators by varying either the linear elliptic part, —A, as above or the
boundary conditions.



CHAPTER III

Nonlinear Evolution Problems

II1.1. Vector-valued Functions

We shall develop here some of the calculus notions that we shall use hereafter.
These consist of an extension to vector-valued functions of the integral and the
derivative. Here the functions take values in a Banach space. The domain of these
functions can be a general measure space, without adding any technical difficulties
to the development of the Lebesgue integration theory, so we consider this general
situation initially. For the differentiation theory we restrict our attention to those
functions whose domain is an interval of real numbers, so the classical formulation
of the derivative as a limit of difference quotients is valid and intuitive.

Let (S, M, 1) be a measure space and B a Banach space with norm || - || and
dual B’. A step function f : § — B (i.e., a finite-valued function) is measurable
if f~1(x) € M for each z € B and it is integrable if also each u(f~'(z)) < oo for
x # 0. Then we define the integral [¢ fdu = Y p u( fY(z))z as the indicated
finite linear combination of vectors in the range, Rg(f).

A function f : S — B is measurable if there is a sequence f, of measurable
step functions for which f,(s) — f(s) in B for a.e. s € S.

THEOREM 1.1 (PETTIS). The function f : S — B is measurable if and only
if (i) f is a.e. separably valued (some subset of full measure in S is carried by f
to a separable subset of B) and (ii) f is weakly-measurable (for each g € B’ the
real-valued s — g(f(s)) : S — R is measurable).

A function f : S — B is integrable if there is a sequence of integrable step functions
fn such that lim,_,o [g|Ifn(s) — f(s)]|du = 0 and each integrand is integrable.
Then |, s frn du converges in B to a limit which is the same for any such sequence;
this limit is denoted by [ f du.

THEOREM 1.2 (BOCHNER). The function f : S — B is integrable if and only
if f is measurable and s — || f(s)|| is integrable.

THEOREM 1.3 (FATOU). Let f, be integrable and fn(s) — f(s) (weakly) at
ae. s € S with {[g||fnlldu} bounded. Then f is integrable and [4|flldp <
timinf [ 5] dp-

THEOREM 1.4 (LEBESGUE). Let f, be integrable and fn(s) — f(s) (strongly

at a.e. s € S and suppose there is an integrable g : S — R such that || fn(s)| < g(s)
for all n and ae. s € S. Then f is integrable and [g||fn — flldu — 0, hence,

Js fndp— [g fdp in B.

Let 1 < p < 400; we denote by LP(S, B) the space of (equivalence classes of)
measurable functions f : S — B such that ||f(-)|| belongs to L?(S,R). With the

103
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respective norms

11 (/ IFEIPdn)?, 1<p<oo,
S
1l = esssup{[|f(s)]] : s € S},

each LP(S, B) is a Banach space. If B is separable and 1 < p < oo, then LP(S, B)
is separable.

THEOREM 1.5 (PHILLIPS). Let u be o-finite, 1 <p < oo and 1/p' +1/p =1,
and B reflezive. Then the dual LP(S, B) can be identified with L* (S, B').

To be precise, for each g € LP(S, B)' there is a f € L (S, B') such that

g(z) = /S (£(s),z(s)) du(s) , z € LP(S,B).

Specifically, the real-valued s — (f(s),z(s)) is integrable. Finally, if B is Hilbert
space, so also is L?(S, B) with the scalar product

(fag)Lz(S,B) = /S(f(s)ag(s))Bdu ’ f’g € LZ(S’ B) .

Consider the case S = (0,T), an interval of length T > 0. Let f € L'(0,T; B)
and define the primitive

F(t)=/0tf(s)ds, 0<t<T.

THEOREM 1.6 (LEBESGUE). At a.e., t € (0,T), F is (strongly) differentiable
with F'(t) = im0 h"Y(F(t + h) — F(t)) = f(t).

See [1], [7], [27], [59] for proofs and additional information on the above.
Define W1P(0,T; B) to be the set of functions f : [0,7] — B such that for
some g € LP(0,T; B)

f(t)=f(0)+/0 os)ds, te[0,T].

More generally, a function f : [0,7] — B is absolutely continuous if for each € >
0 there is a § > 0 such that for each sequence of disjoint intervals (an,b,) in
[0,T7] verifying Y, (bp — an) < 6 there follows > [|f(bn) — f(an)|| < e. If f €
WL1(0,T; B), then || f(t) — f(s)|| < fst I/ (®)]l dt, so f is absolutely continuous.
Likewise, if f € W1P(0,T; B) with 1 < p < oo, then ||f(t) — f(s)|| < C|t — s|'/#'
for t,s € [0,T).

PROPOSITION 1.1. The function f : [0,T] — B is weakly absolutely continuous
(i.e., for each p € B’ the real-valued t — @(f(t)) is AC), f is weakly differentiable,
and f' € LP(0,T; B) if and only if f € W'?(0,T; B).
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PROOF. The “if” part is clear from above. Conversely, set F(t) = f(0) +
s)ds ,t € [0,T]. For each ¢ € B, o(f(-)) is differentiable a.e. an
S f(s)d 0,T). For each ¢ € B, (f(-)) is differentiabl d

%‘P(f(t)) =o(f'®) , ae tel0,7T].

By weak absolute continuity there follows

P(1(0) = 2(FO) + [ ol ) ds = o(F(®)
forall p € B’ and all t € [0,T]. Thus F = f € WP, O

The preceding proof was made easy by the requirement that the weak derivative
belong to LP. A much deeper result is the following.

THEOREM 1.7 (KOMURA). Assume B is reflexive and f : [0,T] — B is ab-
solutely continuous. Then f is (strongly) differentiable a.e., f' € L'(0,T; B) and

f@)=fO)+ i f ,0<t<T.

Let V be a Banach space. We shall consider solutions u of evolution equations
where u € LP(0,T;V) and the equation holds in the space L (0,T;V’). Then
the strong derivative satisfies v/ € L? (0,T;V"), so it follows that u is absolutely
continuous with values in V’; thus it is meaningful to say initial conditions are
attained in the sense of V. A much better description of initial or pointwise values
is obtained from the following.

Let H be a Hilbert space which is identified with its dual H = H’ by the
Riesz map and in which V is dense and continuously embedded. Then we have
V — H — V' with the equation :

fw)=(f,v)g for feHCV', veV.
Consider the Banach space
W,(0,T) = {u € LP(0,T; V) : o' € L¥ (0, T; V")}

with the norm
lullw, = llullz, + vz, -

Let a < 0 < T < b; we shall construct an extension of each u € W,(0,T) to @& €
Wy(a,b). First, extend u to (a,0) and (T,b) (e.g., by symmetry). Let § € C5°(a,b)
with @ = 1 on (0,T); define & = u - 0 and note that & € Wy(a,b) and & = u on
(0,T). Also, |lullw,0,1) < llllw,(ap) < CO)|lullw,©,r) where C(6) depends on
0, and % equals 0 in a neighborhood of a. Next, we regularize % by the mollifier
U (t) = [a(s)pm(t — s)ds, m > 1, where pn,(s) = mp(ms) and p € C§°(—1,1),
p >0, [p=1Asin Proposition I11.3.2 it follows that u, € C§°((a,b),V) for
sufficiently large m and u, — @ in Wy(a,b) with ||un|lw, < ||dllw,. By the
preceding identification of spaces we have (1/2) & |um,(t)|4 = (ub,(t), um(t))n =
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ul, (t)(um(t)), and this yields
(1/2Dlun(®l = [ n(s) (wn(s)) ds

a
¢

< [ lum(S)llvellum(s)llv ds
a

< "um“%Vp(a,b) ; a<t<b.

Since {uy, } is Cauchy in Wp(a, b), such an estimate on differences w,, —u, from the
sequence shows that it converges (uniformly) to @ in C([a,b], H). Thus we obtain
the following.

PROPOSITION 1.2. Let the Banach space V' be dense and continuously embed-
ded in the Hilbert space H; identify H = H' so that V — H — V’. The Banach
space W,(0,T) = {u € LP(0,T;V) : v’ € LP (0, T; V")} is contained in C([0,T), H).
Moreover, if u € Wy(0,T) then |u(-)|% is absolutely continuous on [0, T,

%lu(t)ﬁ{ =2u/(t)(u(t)) ae te€[0,T],
and there is a constant C for which

lulleqo,m,my < Cllullw, 0,7y » ©w € Wp .

COROLLARY 1.1. Ifu,v € Wp(0,T) then (u(-),v(-))n is absolutely continuous
on [0,T] and

d
E(u(t),v(t))H =/ (t)(v(t)) + ' () (u(?)) , ae tel0,T].

The following compactness criterion will be useful for nonlinear evolution prob-
lems.

PRrROPOSITION 1.3 (LIONS-AUBIN). Let By, B, B; be Banach spaces with By C
B C By; assume By — B is compact and B — B is continuous. Let 1 < p < oo,
1< g< oo, let By and By be reflerive, and define

W = {u e LP(0,T; Bo) : v € LY(0,T;By)} .
Then the inclusion W — LP(0,T; B) is compact.
LEMMA 1.1. For each § > 0 there is a Cs such that

lvlls < éllvlls, + Collvllz, »  veEBo.

PROOF. Otherwise there exists a § > 0 and a sequence {v,} satisfying ||v| B,
=1 and
[onlls > éllonllBy +nlionlls, ,  n2>1.
The sequence is bounded in B, so v, — 0 in B;. Also some subsequence {v,} is

convergent in B, hence, v,, — 0 in B, and this shows v,,, — 0 in By, a contradic-
tion. ]
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PROOF OF PROPOSITION 1.3. Let {u,} be bounded in W. Since W is reflexive
there is a subsequence (which we denote again by {u,}) such that u, — u in W.
That is, we have

up, —u in LP(0,T;By) ,u,, —u in L%(0,T;By) .

We shall show u, — win LP(0,T; B). Without loss of generality, we assume u = 0.
First we show u,(t) — 0 in B; for each t € [0,T]. This will be done for t = 0,
with any other case being similar. Thus we have

un(0) = un(t) — /Ot ul,

= 1/3/8 un(t) dt — l/s/s /t u,, () dr dt
0 0 0

- 1/s/sun(t)dt—1/s/s(s—t)u;(t)dt
0 0

=an + b, .

Since u/, is bounded in L(0,T}; By), for an € > 0 we choose s so small that ||b,|| 5, <
J5 llunliB, < e/2. Then, since up, — 0 in LP(0,T; By), we have a, — 0 in By and,
hence, a, — 0 in B by compactness. Thus ||a.||p, < /2 for sufficiently large n
and we have u,(0) — 0 in By.

Second, observe the continuity of W< C([0, T],B1) shows that {||un|lc(0,1),8:)}
is bounded. By Lebesgue’s Theorem 1.4 and the preceding we obtain u, — 0 in
L?(0,T; By).

Finally, from the Lemma it follows for any § > 0

llunllze(B) < OllunllLr(Bo) + CsllunllLe(sy)

< 8-sup [[um|lLe(sy) + Csllunllze(s,)
m
and the last term converges to zero, so
lim sup |[un||zr(B) < 6 - SUp ||UmlLr(Bo) -
n—oo m

This shows u, — 0 in LP(0,T; B) as desired. d

II1.2. Linear Evolution Equations

‘We begin our discussion of evolution equations by considering in this and in the
following section the case of linear equations. The semigroup approach was given in
Section L.5 for the autonomous linear case, and it will be developed for the nonlinear
case in Chapter IV. Here we shall consider a time-dependent family of operators
and shall resolve the Cauchy problem by a variational method. This is analogous to
the development in 1.2 for elliptic equations and requires an appropriate extension
of the Lax-Milgram Theorem to cover parabolic problems. We shall show with
examples that these results are essentially sharp, and they will provide a guide for
the nonlinear results which will be developed in the remainder of this Chapter.

We first formulate the Cauchy problem or initial-value problem for an evolution
equation. Let V be a separable Hilbert space with dual V'; then V = L%(0,T;V)
is a Hilbert space with dual V' = L%(0,T;V’). Assume that for each ¢t € [0,7]
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we are given a continuous bilinear form a(t;-,-) on V or, equivalently, an operator

A(t) € LV, V'),
At)u(v) = a(t;u,v), wveV, tel0,T],

such that for each pair u,v € V the function a(-;u,v) is in L*°(0,7;R). Then by
the uniform boundedness principle we obtain a K > 0 for which

la(t;u,v)| < Kllu|| |lv]|, woveV, tel0,T].

Suppose u € V and v € V. Then we have t — A(t)u(t)(v) = A*(t)v(u(t)) is
measurable, since ¢t — A*(t)v being weakly measurable with V' separable shows it
is measurable by Theorem 1.11. It follows likewise that ¢ — A(t)u(t) is measurable,
hence, by the uniform bound above that it belongs to V’. Note that if u,v € V then
t — a(t;u(t),v(t)) belongs to L1(0,T;R). Assume H is a Hilbert space identified
with its dual and that the embedding V' — H is dense and continuous; hence,
H C V' by restriction. Finally, let ugp € H and f € V' be given.

PROPOSITION 2.1. The following are equivalent:
(a) weV:d(t)+ AR)u(t) = f(t) in V', u(0) = uo.
(b) u€V : forevery veV with ve WH2(0,T; H), v(T) = 0.

T T T
- / (u(t), v/ (1)), dt + / A(tu(t) (v(2)) dt = / FO () dt + (w0, v(0)),, -
0 0 0

(c) ueV: foreachv eV

dit(u(t)_,v)H +ABu)©) = fO©)  in D0,T)
and u(0) = up.

PROOF. Implicit in (a) is u € W2(0, T); thus the initial condition is meaningful
by Proposition 1.2. Corollary 1.1 shows that (a) implies (b). If (b) holds, then set
v(t) = p(t)v where v € V and ¢ € C§°(0,T) to obtain the equality in D* of (c).
Then choosing ¢ € C[0,T] with ¢(T) = 0 and setting v(t) as before in (b) we
obtain

T T 4
_/O (u(t),v)H<p'(t) dt — /0 yr (u(t), v)H<p(t) dt = (ug,v)(0) .

That is, (u(0),v)¢(0) = (uo,v)e(0) for all such ¢, v, so u(0) = up and we have
(c). Finally, assume (c). Since f — Au € V' it follows from Proposition 1.1 that
u € W»(0,T) and (a) holds. O

Note also that the proof shows u € C([0,T7], H) in the case (b) so we had (u(0),v)n
= lim;—o(u(t),v)g. To find a function u as in Proposition 2.1 will be called the
Cauchy Problem for the evolution equation given in (a). Also we refer to (a) as the
strong formulation, to (c) as the weak formulation, and to the intermediate case
(b) as the variational formulation. This is the one we shall first resolve. There are
many other intermediate formulations which can be useful.

The following is a refinement of the Lax-Milgram Theorem 1.2.2.
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THEOREM 2.1 (LIONS). Let {H,|-|} be a Hilbert space and {®,||-||} a normed
linear space. Suppose E : H x ® — R is bilinear and that E(-, ) is in H' for each
p € ®. Then the following are equivalent:

[C] inf sup |E(u,9)|>¢>0,
llell=1 |u|<1

[E] for each f € ®' there exists a
ueH: E(u,e) = flp), ped.

PROOF. Define the (not necessarily continuous but) linear K : ® — H’ by
E(u,p) = {u, Kp) for u € H and ¢ € ®. Condition [C] is precisely the statement
that |K(@)|ln > cll@|| for ¢ € ®, and this implies that K is invertible, so K~! :
Rg(K) — ® extends by continuity to a linear K1 : Rg(K) — &, the completion
of ®. Let f € ®'; then a u € H satisfies E(u,p) = f(p) for p € ® exactly if
(u,g) = f(K~g) for all g € Rg(K). Thus, if P : H' — Rg(K) is the orthogonal
projection, this would follow from

(u,g) = f(K-1Pg), geH .

Now K—'P : H' — & is continuous and has the continuous dual (K-1P)* : ® =
& — ‘H. Thus we obtain a solution by setting u = (K—1P)*f. This shows that [C]
implies [E].

Suppose [C] is false. That is, there is a sequence

pn €@ flpnl =1, sup |E(u,n)| <1/n
lul<1

for n > 1. According to [E], for each f € ®' there is a uy € H such that
|f (npn)| = |E(ug,npn)| <lugl, n21,

so {ngy,} is (weakly) bounded in ®. Thus {n¢,} is bounded in ® by Theorem IL.1.2,
a contradiction. a

COROLLARY 2.1. The solution u given above for [E] satisfies the estimate

lulr < (1/)]| fller-

PROOF. The operator K~1P : H' — ® has norm equal to 1/c, and its dual
has the same norm. a

COROLLARY 2.2. Let E, and fn be given for each n > 1 as in Theorem 2.1

with the same constant ¢ > 0, and let u, be the corresponding solutions given in
the proof. Then

lun —ulp < (A/){llfn = fllor + Sup, |En(u, ) = E(u, @)} -

PRrROOF. This follows from the identity

En(un_u:‘p):(fn—f)so—(En_E)(u"p)a ped,
the linearity of (K—1P)*, and Corollary 2.1. O
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COROLLARY 2.3. If ® is continuously embedded in H, that is, if || < a1]lo||
for all p € @, and if E is ®-elliptic, that is, there is an a > 0 such that

E(p, ) 2 allol*, ve@,
then ([C] and hence) Theorem 2.1 holds with ¢ = a/c;.

PROOF. From the elliptic estimate and the definition of K we obtain
allel® < lol IKelw < allell | Kol
o (a/c)lloll < Kl 0

Let’s note the following points. Since Rg(K) is not necessarily dense in H’,
much non-uniqueness of solutions u is possible. Moreover we needed only that P
be a bounded linear extension of the identity from Rg(K) to all of H’. The stability
estimate in Corollary 2.1 was shown to hold for some solution, not every solution,
even if we have the stronger assumption of ®-coercivity in Corollary 2.3. Finally,
the dual operator provided an important part of the proof of Theorem 2.1, so a
fully nonlinear version is not immediately obvious.

ExXAMPLE 2.A. Here we consider the Cauchy Problem for an ordinary differ-
ential equation, namely,

W+u=F on (0,T), u(0)=uo.

Propositon 2.1 shows we should choose H = L%(0,1), & = {(p € H L0,T) : o(T) =

0}, f(p) = fOT F(t)p(t) dt + uo - ¢(0), and E(u,p) fo 'Ydt. Note in the
proof of Theorem 2.1 we have K(p) =p—¢' e H="H' for p € ‘I> Also we find

T
Blew)= [ loPai+ /2008, pee,

so E(+,-) is L? = H coercive but not H' coercive. However we do have

T
K(0)2 = / (0 — @) dt = |l 0.1y + |9 (O

so condition [C] holds with the (much stronger) H' norm on ®, and Theorem 2.1
applies to the case of a rather large dual space ® > C[0,7T], since ® C C[0,T]
when ||¢||?> = ||¢||%, +|¢(0)]?. On the other hand, we can apply Corollary 2.3 when
the norm on @ is no stronger than ||¢||> = ||¢||2. + |¢(0)|? and, hence, we have a
smaller ® C L2(0,7) x R. This example illustrates that Corollary 2.3 is a rather
special case of Theorem 2.1, and it is usually quite easy to verify its hypotheses.

EXAMPLE 2.B. We consider next an initial-boundary-value problem on a non-
cyclindrical domain. Let G C R? be a bounded domain whose boundary 9G is a
smooth curve with unit outward normal n = (n.,n:) at each point, and consider
the linear parabolic heat equation

U + AU — Ugy = F (z,t) € G
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with u = 0 on the non-horizontal sides of G and u = ug on the horizontal bottom
of G. We choose spaces

H={uecL*QG):0,uc L*G) and (uny)|oc =0},
®={peHNH(G): ploc =0 where n, =1},
and the bilinear form

E(u,p) = /G(&,;uazga + Auv — udp) , ueEH ,ped.

For ¢ € ® we compute

E(¢,¢)=/G((3z<p)2+w2) +1/2/B<p2

where B is that portion of G where n; = —1, the bottom of G. By definition, the

first term is just ||, and the entire expression is ||¢||3; note that H is complete
and that ® = H’' @ L?(B). Thus, if F € L?(G) and uo € L?(B) are given, then

f(sO)E/GFw+/BuO<p, peED,

defines f € @', and the problem above for the heat equation is in the form of
Corollary 2.3. Note that [C] holds with a much stronger norm on ®, just as in the
preceding example.

The corresponding non-homogeneous case can be reduced to the above in this
situation. If U € H(G) and if u is a solution of the heat equation with u = U on
those points of G where n; < 1, then v = u — U is a solution of

Ve + AU —VUgg = F — (Ug + AU — Uyy)

with v = 0 on the sides and bottom of G, and conversely. In particular, we may
choose such a U with U, = 0 and then the prescribed boundary values need only
be smooth enough to give U; + AU € L*(G).

Finally we return to the abstract Cauchy problem
(2.1) u€ L*(0,T;V): v +Au= fin L*(0,T;V’),  u(0) = ug

where the separable Hilbert spaces V — H — V', bounded and measurable oper-
ators A(t) : V — V', and f € L%(0,T;V’), up € H are given as before. If u is a
solution of the Cauchy problem then by Proposition 1.2 we apply the equation to
u and obtain by integrating

(/DN + [ AOuO@O)de= [ FOue) d+ 1720y, 0<s ST

The usual linearity argument gives the following uniqueness result.

PROPOSITION 2.2. If each A(t) is monotone, i.e.,

At)v(v) >0, veV, tel0,T],
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then there is at most one solution to the Cauchy problem.

To obtain existence of a solution we set H = L?(0,T; V') with the usual scalar-
product and ® = {p € H : ¢’ € L?(0,T; H), ¢(T) = 0} with the norm given by
llel? = |¢l3, + |¢(0)|%. By Proposition 2.1 the Cauchy problem is precisely

ueH:E(u,p)=f(p), ¢,

where we define

T
Blug) = [ {ABu)(pl0) = (u(0).¢' (1) 1} o
and .
1) = [ 1O6) i+ (u,p(0),,
From Corollary 2.3 we obtain an easy sufficient condition for existence.

PROPOSITION 2.3. Assume the operators are uniformly coercive: there is a
¢ > 0 such that
At)ww) >c|v|?, veV, tel0,T],
Then there exists a unique solution of the Cauchy problem, and it satisfies
(2.2) lullZ20,) < (/> (IF 200,757 + uolF) -

The preceding result can be extended in two directions. First, u € H if and
only if v € H where v(t) = e *u(t), 0 <t < T, and u is a solution of the preceding
Cauchy problem exactly when v is the corresponding solution of the problem

veH v + (A() + A)v=eMf(t), v(0)=uo.

(This useful device is known as the ezponential shift.) Thus a sufficient condition
for existence by Proposition 2.3 is that there exist a A € R and ¢ > 0 such that

A)v(v) + M|y > ez, veV, tel0,T].
Similarly uniqueness is obtained from such an estimate, even with ¢ = 0.

Finally, we consider in more detail the situation of Proposition 2.3; here we
identify the operator K : ® — H’ from the proof of Theorem 2.1 as K(yp) =
A*(t)p(t) — ¢'(t). If each A(t) is self-adjoint (A(t)* = A(t)) then we can renorm
‘H by

T
fuly = / A()u(t) (u(t)) dt -
0
The dual norm on f € H' is given by

T
nmw=Afmum*m»ﬁ,

and for those ¢ € ® we have
1K (@)l =/0 (A®)p(t) = #'(t) , p(t) — A[) ¢ (1)) dt
=f0 {A®e() (1) + @' (1) (AR ' (1)} dt + | (0) I

= lloll3, + I3 + le(0) [ -
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Thus we can apply Theorem 2.1 when ® has the much stronger norm given by

lells = lelZz 0.y + 1€ lL20mv) = lellivyory -

In particular, this permits a much larger class of data f € ® for which the Cauchy
problem can be solved.

With the same assumptions as in Proposition 2.3 we can also uniquely solve
the Periodic Problem: find

weV:u(t)+ AR)u(t) = f(t) in V', u(0) = u(T) .
More generally we have the following.

PROPOSITION 2.4. In the situation of Proposition 2.8 and with a given linear
contraction B : H — H, there is a unique

(2.3) w€V:u(t) + A@)u(t) = f(t) in V', —B*u(T) 4+ u(0) = uo ,
where B* is the adjoint of B, and it is characterized by

w€V: for every veV withv e WH2(0,T; H) and v(T) = Bu(0)

T T T
- / (ut), /(1)) , dit + / A@)u(t) (u(t)) dt = / £ (0(8)) dt + (u, 0(0)) , -
0 0 0

Here