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Preface

The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists,
engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds,
dynamical systems, tensors and differential forms. Some applications to Hamiltonian mechanics, fluid me-
chanics, electromagnetism, plasma dynamics and control theory are given in Chapter 8, using both invariant
and index notation.

Throughout the text supplementary topics are noted that may be downloaded from the internet from
http://www.cds.caltech.edu/ "marsden. This device enables the reader to skip various topics without
disturbing the main flow of the text. Some of these provide additional background material intended for
completeness, to minimize the necessity of consulting too many outside references.

Philosophy. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency
of exposition. Without advanced applications, using manifolds of mappings (such as applications to fluid
dynamics), the study of infinite-dimensional manifolds can be hard to motivate. Chapter 8 gives an intro-
duction to these applications. Some readers may wish to skip the infinite-dimensional case altogether. To
aid in this, we have separated some of the technical points peculiar to the infinite-dimensional case into sup-
plements, either directly in the text or on-line. Our own research interests lean toward physical applications,
and the choice of topics is partly shaped by what has been useful to us over the years.

We have tried to be as sympathetic to our readers as possible by providing ample examples, exercises, and
applications. When a computation in coordinates is easiest, we give it and do not hide things behind com-
plicated invariant notation. On the other hand, index-free notation sometimes provides valuable geometric
and computational insight so we have tried to simultaneously convey this flavor.

Prerequisites and Links. The prerequisites required are solid undergraduate courses in linear algebra
and advanced calculus along with the usual mathematical maturity. At various points in the text contacts are
made with other subjects. This provides a good way for students to link this material with other courses. For
example, Chapter 1 links with point-set topology, parts of Chapters 2 and 7 are connected with functional
analysis, Section 4.3 relates to ordinary differential equations and dynamical systems, Chapter 3 and Section
7.5 are linked to differential topology and algebraic topology, and Chapter 8 on applications is connected
with applied mathematics, physics, and engineering.

Use in Courses. This book is intended to be used in courses as well as for reference. The sections are,
as far as possible, lesson sized, if the supplementary material is omitted. For some sections, like 2.5, 4.2, or
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7.5, two lecture hours are required if they are to be taught in detail. A standard course for mathematics
graduate students could omit Chapter 1 and the supplements entirely and do Chapters 2 through 7 in one
semester with the possible exception of Section 7.4. The instructor could then assign certain supplements
for reading and choose among the applications of Chapter 8 according to taste.

A shorter course, or a course for advanced undergraduates, probably should omit all supplements, spend
about two lectures on Chapter 1 for reviewing background point set topology, and cover Chapters 2 through
7 with the exception of Sections 4.4, 7.4, 7.5 and all the material relevant to volume elements induced by
metrics, the Hodge star, and codifferential operators in Sections 6.2, 6.4, 6.5, and 7.2.

A more applications oriented course could skim Chapter 1, review without proofs the material of Chapter
2 and cover Chapters 3 to 8 omitting the supplementary material and Sections 7.4 and 7.5. For such a
course the instructor should keep in mind that while Sections 8.1 and 8.2 use only elementary material,
Section 8.3 relies heavily on the Hodge star and codifferential operators, and Section 8.4 consists primarily
of applications of Frobenius’ theorem dealt with in Section 4.4.

The notation in the book is as standard as conflicting usages in the literature allow. We have had to
compromise among utility, clarity, clumsiness, and absolute precision. Some possible notations would have
required too much interpretation on the part of the novice while others, while precise, would have been so
dressed up in symbolic decorations that even an expert in the field would not recognize them.

History and Credits. In a subject as developed and extensive as this one, an accurate history and
crediting of theorems is a monumental task, especially when so many results are folklore and reside in
private notes. We have indicated some of the important credits where we know of them, but we did not
undertake this task systematically. We hope our readers will inform us of these and other shortcomings of
the book so that, if necessary, corrected printings will be possible. The reference list at the back of the book
is confined to works actually cited in the text. These works are cited by author and year like this: deRham
[1955].

Acknowledgements. During the preparation of the book, valuable advice was provided by Malcolm
Adams, Morris Hirsch, Sameer Jalnapurkar, Jeff Mess, Charles Pugh, Clancy Rowley, Alan Weinstein, and
graduate students in mathematics, physics and engineering at Berkeley, Santa Cruz, Caltech and Lausanne.
Our other teachers and collaborators from whom we learned the material and who inspired, directly and
indirectely, various portions of the text are too numerous to mention individually, so we hereby thank them
all collectively. We have taken the opportunity in this edition to correct some errors kindly pointed out by
our readers and to rewrite numerous sections. We thank Connie Calica, Dotty Hollinger, Anne Kao, Marnie
MacElhiny and Esther Zack for their excellent typesetting of the book. We also thank Hendra Adiwidjaja,
Nawoyuki Gregory Kubota, Robert Kochwalter and Wendy McKay for the typesetting and figures for this
third edition.

Jerrold E. Marsden and Tudor S. Ratiu
January, 2001
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1
Topology

The purpose of this chapter is to introduce just enough topology for later requirements. It is assumed that
the reader has had a course in advanced calculus and so is acquainted with open, closed, compact, and
connected sets in Euclidean space (see for example Marsden and Hoffman [1993]). If this background is
weak, the reader may find the pace of this chapter too fast. If the background is under control, the chapter
should serve to collect, review, and solidify concepts in a more general context. Readers already familiar
with point set topology can safely skip this chapter.

A key concept in manifold theory is that of a differentiable map between manifolds. However, manifolds
are also topological spaces and differentiable maps are continuous. Topology is the study of continuity
in a general context, so it is appropriate to begin with it. Topology often involves interesting excursions
into pathological spaces and exotic theorems that can consume lifetimes. Such excursions are deliberately
minimized here. The examples will be ones most relevant to later developments, and the main thrust will
be to obtain a working knowledge of continuity, connectedness, and compactness. We shall take for granted
the usual logical structure of analysis, including properties of the real line and Euclidean space

1.1 Topological Spaces

The notion of a topological space is an abstraction of ideas about open sets in R™ that are learned in
advanced calculus.

1.1.1 Definition. A topological space is a set S together with a collection O of subsets of S called open
sets such that

Tl. €O and S € O;
T2. ifUl,UQEO, then Uy NU, € O;
T3. the union of any collection of open sets is open.

The Real Line and n-space. For the real line with its standard topology, we choose S = R, with
O, by definition, consisting of all sets that are unions of open intervals. Here is how to prove that this is a
topology. As exceptional cases, the empty set @ € O and R itself belong to O. Thus, T1 holds. For T2, let
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Uy, and Us € O; to show that Uy NUs € O, we can suppose that Uy NUs # @. If © € Uy N Uy, then x lies
in an open interval Ja;,bi[ C U; and also in an interval |ag, bo| C Uy. We can write Jay, b1[ N ag, bo| = ]a, b]
where a = max(ay, az) and b = min(by, bs). Thus x € ]a,b[ C Uy N U,. Hence Uy N Us is the union of such
intervals, so is open. Finally, T3 is clear by definition.

Similarly, R™ may be topologized by declaring a set to be open if it is a union of open rectangles. An
argument similar to the one just given for R shows that this is a topology, called the standard topology
on R™.

The Trivial and Discrete Topologies. The trivial topology on a set S consists of O = {&, S}. The
discrete topology on S is defined by O = { A| A C S }; that is, O consists of all subsets of S.

Closed Sets. Topological spaces are specified by a pair (S, O); we shall, however, simply write S if there
is no danger of confusion.

1.1.2 Definition. Let S be a topological space. A set A C S will be called closed if its complement S\ A
is open. The collection of closed sets is denoted C.

For example, the closed interval [0,1] C R is closed because it is the complement of the open set |—oo, 0[U
1, o0l.

1.1.3 Proposition. The closed sets in a topological space S satisfy:

Cl. @oe€C and S €C;
C2. ifAl,AQ € C then AU Ay € C;

C3. the intersection of any collection of closed sets is closed.

Proof. Condition C1 follows from T1 since @ = S\S and S = S\@. The relations

S\(A; UAy) = (S\A1) N (S\Ay) and S\ (ﬂ 31) = Js\By)

el i€l

for {B;};cr a family of closed sets show that C2 and C3 are equivalent to T2 and T3, respectively. [ |

Closed rectangles in R™ are closed sets, as are closed balls, one-point sets, and spheres. Not every set is
either open or closed. For example, the interval [0, 1] is neither an open nor a closed set. In the discrete
topology on S, any set A C S is both open and closed, whereas in the trivial topology any A # & or S is
neither.

Closed sets can be used to introduce a topology just as well as open ones. Thus, if C is a collection
satisfying C1-C3 and O consists of the complements of sets in C, then O satisfies T1-T3.

Neighborhoods. The idea of neighborhoods is to localize the topology.

1.1.4 Definition. An open neighborhood of a point u in a topological space S is an open set U such
that w € U. Similarly, for a subset A of S, U is an open neighborhood of A if U is open and A C U. A
neighborhood of a point (or a subset) is a set containing some open neighborhood of the point (or subset).

Examples of neighborhoods of € R are |x — 1,24 3], |z — ¢,z + €[ for any € > 0, and R itself; only the last
two are open neighborhoods. The set [,z + 2[ contains the point x but is not one of its neighborhoods. In
the trivial topology on a set .S, there is only one neighborhood of any point, namely S itself. In the discrete
topology any subset containing p is a neighborhood of the point p € S, since {p} is an open set.
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First and Second Countable Spaces.

1.1.5 Definition. A topological space is called first countable if for each w € S there is a sequence
{U1,Us,...} = {U,} of neighborhoods of u such that for any neighborhood U of u, there is an integer n such
that U, C U. A subset B of O is called a basis for the topology, if each open set is a union of elements in
B. The topology is called second countable if it has a countable basis.

Most topological spaces of interest to us will be second countable. For example R™ is second countable
since it has the countable basis formed by rectangles with rational side length and centered at points all of
whose coordinates are rational numbers. Clearly every second-countable space is also first countable, but
the converse is false. For example if S is an infinite non-countable set, the discrete topology is not second
countable, but S is first countable, since {p} is a neighborhood of p € S. The trivial topology on S is second
countable (see Exercises 1.1-9 and 1.1-10 for more interesting counter-examples).

1.1.6 Lemma (Lindeldf’s Lemma). Every covering of a set A in a second countable space S by a family
of open sets U, (i.e., U,U, D A) contains a countable subcollection also covering A.

Proof. Let B={B,} be a countable basis for the topology of S. For each p € A there are indices n and «
such that p € B, C U,. Let B’ = { B,, | there exists an a such that B,, C U, }. Now let U, (,,) be one of the
U, that includes the element B,, of B'. Since B’ is a covering of A, the countable collection {Ug(y,)} covers
A.

Closure, Interior, and Boundary.

1.1.7 Definition. Let S be a topological space and A C S. The closure of A, denoted cl(A) is the
intersection of all closed sets containing A. The interior of A, denoted int(A) is the union of all open sets
contained in A. The boundary of A, denoted bd(A) is defined by

bd(A) = cl(A) N cl(S\A).

By C3, cl(A4) is closed and by T3, int(A) is open. Note that as bd(A) is the intersection of closed sets,
bd(A) is closed, and bd(A) = bd(S\A).
On R, for example,

cA([0,1) =[0,1], nt([0,1)) =]0,1[, and bd([0,1]) = {0, 1}.

The reader is assumed to be familiar with examples of this type from advanced calculus.

1.1.8 Definition. A subset A of S is called dense in S if cl(A) = S, and is called nowhere dense if
S\ cl(A) is dense in S. The space S is called separable if it has a countable dense subset. A point u in S
is called an accumulation point of the set A if each neighborhood of u contains a point of A other than
itself. The set of accumulation points of A is called the derived set of A and is denoted by der(A). A point
of A is said to be isolated if it has a neighborhood in A containing no other points of A than itself.

The set A = [0,1[ U {2} in R has the element 2 as its only isolated point, its interior is int(A) = ]0,1],
cl(A) = [0,1] U {2}, and der(A) = [0, 1]. In the discrete topology on a set S, int{p} = cl{p} = {p}, for any
peES.

Since the set Q of rational numbers is dense in R and is countable, R is separable. Similarly R™ is separable.
A set S with the trivial topology is separable since cl{p} = S for any p € S. But S = R with the discrete
topology is not separable since cl(4) = A for any A C S. Any second-countable space is separable, but the
converse is false; see Exercises 1.1-9 and 1.1-10.

1.1.9 Proposition. Let S be a topological space and A C S. Then
(i) u € cl(A) iff for every neighborhood U of u, U N A # &,
(ii) u € int(A) iff there is a neighborhood U of w such that U C A;
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(iii) u € bd(A) iff for every neighborhood U of u, UNA # @ and U N (S\A) # @.

Proof. (i) u & cl(A) iff there exists a closed set C D A such that v ¢ C. But this is equivalent to the
existence of a neighborhood of u not intersecting A, namely S\C. (ii) and (iii) are proved in a similar
way. [ |

1.1.10 Proposition. Let A, B and A;, i € I be subsets of S. Then
(i) A C B implies int(A) C int(B), cl(A) C cl(B), and der(A) C der(B);
(i) S\ cl(A) = int(S\A), S\ int(A) = cl(S\A), and cl(A) = AU der(A);
(iii) cl(@) = int(@) = @, cl(S) = int(S) = S, cl(cl(A)) = cl(A), and int(int(A)) = int(A);
(iv) cl(AUB) =cl(A) Ucl(B), der(AU B) = der(A) Uder(B), and int(AU B) D int(A) U int(B);
)
)

)=
(v) cl(ANB) C cl(A)Ncl(B), der(AN B) C der(A) Nder(B), and int(AN B) = int(A) N int(B);

(vi) el(U;er A7) D User cl(As), cl(Myer Ai) € Ner cl(Ai),
int(U;c; 4i) D U,y int(A;), and int((;c; Ai) C ;e int(4;).

Proof. (i), (ii), and (iii) are consequences of the definition and of Proposition 1.1.9. Since for each i € I,
Ai € Ujer Ais by (i) cl(A;) C cl(U;er Ai) and hence ;¢ cl(A;) C cl(U;e; Ai). Similarly, since (,o; A C
A C cl(A4;) for each i € I, it follows that (1), ;(A;) is a subset of the closet set [, cl(A;); thus by (i)

cl (ﬂ A) Ccl (ﬂ (Ai)> = ﬂ (cl(Ay)) .

The other formulas of (vi) follow from these and (ii). This also proves all the other formulas in (iv) and (v)
except the ones with equalities. Since cl(A) Ucl(B) is closed by C2 and AU B C cl(A) Ucl(B), it follows by
(i) that cl(AU B) C cl(A) Ucl(B) and hence equality by (vi). The formula int(4A N B) = int(A) Nint(B) is a
corollary of the previous formula via (ii). [ |

The inclusions in the above proposition can be strict. For example, if we let A =]0,1[ and B = [1,2[,
then one finds that

cl(A) = der(A) = [0,1], cl(B) = der(B) = [1,2], int(A) = 0, 1],

int(B) =11,2[, AUB =]0,2[, and AN B =g,
and therefore
int(A) Uint(B) =]0,1[U]1,2[ #]0,2[ = int(A U B),
and
cl(ANB) =@ # {1} = cl(A) Ncl(B).
Let A, =]-1/n,1/n[,n=1,2,..., then

() An = {0}, int(4,) =4,

n>1

for all n, and
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Dualizing this via (ii) gives

U ad(®\A,,) =R\{0} # R =cl ( U (R\An))

n>1 n>1

If A C B, there is, in general, no relation between the sets bd(A) and bd(B). For example, if A = [0, 1] and
B =0,2], A C B, yet we have bd(A) = {0,1} and bd(B) = {0, 2}.

Convergence and Limit Points. The notion of a convergent sequence carries over from calculus in a
straightforward way.

1.1.11 Definition. Let S be a topological space and {u,} a sequence of points in S. The sequence is said
to converge if there is a point uw € S such that for every neighborhood U of u, there is an N such that
n > N implies u,, € U. We say that u,, converges to u, or u is a limit point of {u,}.

For example, the sequence {1/n} € R converges to 0. It is obvious that limit points of sequences w,, of dis-
tinct points are accumulation points of the set {u, }. In a first countable topological space any accumulation
point of a set A is a limit of a sequence of elements of A. Indeed, if {U,} denotes the countable collection
of neighborhoods of a € der(A) given by Definition 1.1.5, then choosing for each n an element a,, € U, N A
such that a,, # a, we see that {a,} converges to a. We have proved the following.

1.1.12 Proposition. Let S be a first-countable space and A C S. Then u € cl(A) iff there is a sequence
of points of A that converges to w (in the topology of S).

Separation Axioms. It should be noted that a sequence can be divergent and still have accumulation
points. For example {2,0,3/2,—1/2,4/3, —2/3,...} does not converge but has both 1 and —1 as accumula-
tion points. In arbitrary topological spaces, limit points of sequences are in general not unique. For example,
in the trivial topology of S any sequence converges to all points of S. In order to avoid such situations
several separation axioms have been introduced, of which the three most important ones will be mentioned.

1.1.13 Definition. A topological space S is called Hausdorff if each two distinct points have disjoint
neighborhoods (i.e., with empty intersection). The space S is called regular if it is Hausdorff and if each
closed set and point not in this set have disjoint neighborhoods. Similarly, S is called normal if it is
Hausdorff and if each two disjoint closed sets have disjoint neighborhoods.

Most standard spaces that we meet in geometry and analysis are normal. The discrete topology on any
set is normal, but the trivial topology is not even Hausdorff. It turns out that “Hausdorff” is the necessary
and sufficient condition for uniqueness of limit points of sequences in first countable spaces (see Exercise
1.1-5). Since in Hausdorff space single points are closed (Exercise 1.1-6), we have the implications: normal
— regular = Hausdorff. Counterexamples for each of the converses of these implications are given in
Exercises 1.1-9 and 1.1-10.

1.1.14 Proposition. A regular second-countable space is normal.

Proof. Let A and B be two disjoint closed sets in S. By regularity, for every point p € A there are disjoint
open neighborhoods U, of p and Ug of B. Hence cl(U,) N B = &. Since {U, | p € A} is an open covering
of A, by the Lindel6f Lemma 1.1.6, there is a countable collection { Uy, | k = 1,2,...} covering A. Thus
Ui>1Ur D A and cl(Uy) N B = @.

Similarly, find a family {V;} such that J,~, Vi D B and cl(V;z) N A = @. Then the sets G,, defined
inductively by Gy = Uy and

Gupr=Unp\  |J di), H.=V,\ |J ()
k=0,1,..., n k=0,1,..., n

are open and G =5, Gn D A, H=J,,5( Hn D B are also open and disjoint. [ |

In the remainder of this book, Euclidean n-space R™ will be understood to have the standard topology
unless explicitly stated to the contrary.
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Some Additional Set Theory. For technical completeness we shall present the axiom of choice and an
equivalent result. These notions will be used occasionally in the text, but can be skipped on a first reading.

Axiom of choice. If S is a collection of nonempty sets, then there is a function

x:6 — US

Se6

such that x(S) € & for every S € 6.

The function Yy, called a choice function, chooses one element from each S € &. Even though this
statement seems self-evident, it has been shown to be equivalent to a number of nontrivial statements, using
other axioms of set theory. To discuss them, we need a few definitions. An order on a set A is a binary
relation, usually denoted by “<” satisfying the following conditions:

a<a (reflexivity),
a <bandb<aimpliesa=>b (antisymmetry), and
a <bandb<cimplies a <c¢ (transitivity).

An ordered set A is called a chain if for every a,b € A, a # b we have a < b or b < a. The set A is said
to be well ordered if it is a chain and every nonempty subset B has a first element; i.e., there exists an
element b € B such that b < x for all x € B.

An upper bound u € A of a chain C' C A is an element for which ¢ < u for all ¢ € C. A maxzimal
element m of an ordered set A is an element for which there is no other a € A such that m < a, a # m; in
other words x < m for all x € A that are comparable to m.

We state the following without proof.

Theorem. Given other axioms of set theory, the following statements are equivalent:
(i) The axiom of choice.

(ii)) Product Axiom. If {A;}icr is a collection of nonempty sets then the product space
[[4:={(@) | 2i€ A}
i€l

is nonempty.

(iii) Zermelo’s Theorem. Any set can be well ordered.

(iv) Zorn’s Theorem. If A is an ordered set for which every chain has an upper bound (i.e., A is inductively
ordered), then A has at least one mazimal element.

Exercises

1.1-1. Let A={(z,9,2) e R®|0 <z <1andy?+2%2<1}.Find int(A).

1.1-2. Show that any finite set in R™ is closed.

1.1-3. Find the closure of the set {1/n|n=1,2,...} in R.

1.1-4. Let A C R. Show that sup(A) € cl(A) where sup(A) is the supremum (least upper bound) of A.
1.1-5. Show that a first countable space is Hausdorff iff all sequences have at most one limit point.

1.1-6. (i) Prove that in a Hausdorff space, single points are closed.

(ii) Prove that a topological space is Hausdorff iff the intersection of all closed neighborhoods of a point
equals the point itself.
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¢ 1.1-7. Show that in a Hausdorff space S the following are equivalent;
(i) S is regular;

(ii) for every point p € S and any of its neighborhoods U, there exists a closed neighborhood V of p such
that V C U,

(iii) for any closed set A, the intersection of all of the closed neighborhoods of A equals A.

o 1.1-8. (i) Show that if V(p) denotes the set of all neighborhoods of a point p € S, a topological space,
then the following are satisfied:

V1. it ADU and U € V(p), then A € V(p);

V2. every finite intersection of elements in V(p) is an element of V(p);

V3. p belongs to all elements of V(p);

V4. if V € V(p) then there is a set U € V(p), U C V such that for all g € U, U € V(q).

(i) If for each p € S there is a family V(p) of subsets of S satisfying V1-V4, prove that there is a unique
topology O on S such that for each p € S, the family V(p) is the set of neighborhoods of p in the
topology O.

HINT: Prove uniqueness first and then define elements of O as being subsets A C S satisfying: for
each p € A, we have A € V(p).

o 1.1-9. Let S = {p = (z,y) € R? | y > 0} and denote the usual e-disk about p in the plane R? by
D:(p) ={q| llg —pll <e}. Define

B.(p) = DS, if p = (x,y) with y > 0;
) {(z,y) € D(p) |y >0}YU{p}, ifp=(z,0).

Prove the following;:

(i) V(p) = {U C S | there exists B:(p) C U} satisfies V1-V4 of Exercise 1.1-8. Thus S becomes a
topological space.

(i) S is first countable.
(iii) S is Hausdorff.

(iv) S is separable.
HiNT: The set { (z,y) € S|z,y € Q, y >0} is dense in S.

(v) S is not second countable.

HINT: Assume the contrary and get a contradiction by looking at the points (z,0) of S.

(vi) S is not regular.

HINT: Try to separate the point (xg,0) from the set { (z,0) | € R }\{(z0,0)}.

¢ 1.1-10. With the same notations as in the preceding exercise, except changing B.(p) to

) D.(p)N S, if p=(x,y) with y > 0;
Belr) = {Dem,e) Ulp). it = (2.0)

show that (i)—(v) of Exercise 1.1-9 remain valid and that
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(vi) S is regular;
HiNT: Use Exercise 1.1-7.
(vii) S is not normal.

HINT: Try to separate the set { (z,0) | x € Q} from the set { (z,0) | z € R\Q}.

¢ 1.1-11. Prove the following properties of the boundary operation and show by example that each inclusion
cannot be replaced by equality.

Bd1l. bd(A) =bd(S\A);
Bd2. bd(bd(A) C bd(A);
Bd3. bd(AUB) Cbd(A)Ubd(B) C bd(AU B)U AU B;
Bd4. bd(bd(bd(A))) = bd(bd(A)).
Properties Bd1-Bd4 may be used to characterize the topology.

o 1.1-12. Let p be a polynomial in n variables z1,..., 2, with complex coefficients. Show that p~!(0) has
open dense complement.
HinT: If p vanishes on an open set of C™, then all its derivatives also vanish and hence all its coefficients
are zero.

¢ 1.1-13. Show that a subset B of O is a basis for the topology of S if and only if the following three
conditions hold:

Bl. o€ B;
B2. UBGBB = S,

B3. if By, By € B, then B; N By is a union of elements of 5.

1.2 Metric Spaces

One of the common ways to form a topological space is through the use of a distance function, also called
a (topological) metric. For example, on R” the standard distance

d(x,y) = (Z(fﬂi - yi)2>

i=1

between x = (x1,...,2,) and y = (y1,...,¥yn) can be used to construct the open disks and from them the
topology. The abstraction of this proceeds as follows.

1.2.1 Definition. Let M be a set. A metric (also called a topological metric) on M is a function
d: M x M — R such that for all my, ma,mg € M,

M1. d(my,mz2) =0 iff m; = my (definiteness);
Mz2. d(my,mq) = d(ma, my) (symmetry); and
M3. d(my,m3) < d(my,ms2) + d(msa, ms3) (triangle inequality).
A metric space is the pair (M,d); if there is no danger of confusion, just write M for (M,d).

Taking m; = ms in M3 shows that d(mq,ms) > 0. It is proved in advanced calculus courses (and is
geometrically clear) that the standard distance on R™ satisfies M[1-M3.
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The Topology on a Metric Space. The topology determined by a metric is defined as follows.
1.2.2 Definition. Fore >0 and m € M, the open e-ball (or disk) about m is defined by
D.(m)={m' € M |d(m',m)<e},
and the closed —ball is defined by
B:(m)={m' e M |d(m',m)<e}.

The collection of subsets of M that are unions of open disks defines the metric topology of the metric
space (M, d).
Two metrics on a set are called equivalent if they induce the same metric topology.

1.2.3 Proposition.
(i) The open sets defined in the preceding definition is a topology.

(if) A set U C M is open iff for each m € U there is an € > 0 such that D.(m) C U.

Proof. To prove (i), first note that T1 and T3 are clearly satisfied. To prove T2, it suffices to show that
the intersection of two disks is a union of disks, which in turn is implied by the fact that any point in the
intersection of two disks sits in a smaller disk included in this intersection. To verify this, suppose that
p € D(m) N Ds(n) and let 0 < r < min(e — d(p, m), § — d(p,n)). Hence D,(p) C D.(m) N Ds(n), since for
any = € D,(p),
d(z,m) < d(z,p) +d(p,m) <r+d(p,m)<e,

and similarly d(x,n) < 6.

Next we turn to (ii). By definition of the metric topology, a set V' is a neighborhood of m € M iff there
exists a disk D.(m) C V. Thus the statement in the theorem is equivalent to U = int (U). [ |

Notice that every set M can be made into a metric space by the discrete metric defined by setting
d(m,n) =1 for all m # n. The metric topology of M is the discrete topology.

Pseudometric Spaces. A pseudometric on a set M is a function d : M x M — R that satisfies M2,
M3, and

PM1. d(m,m) =0 for all m.

Thus the distance between distinct points can be zero for a pseudometric. The pseudometric topology is
defined exactly as the metric space topology. Any set M can be made into a pseudometric space by the
trivial pseudometric: d(m,n) = 0 for all m,n € M; the pseudometric topology on M is the trivial
topology. Note that a pseudometric space is Hausdorff iff it is a metric space.

Metric Spaces are Normal. To show that metric spaces are normal, it will be useful to have the notion
of the distance from a point to a set. If M is a metric space (or pseudometric space) and u € M, A C M,
we define

d(u, A) = inf {d(u,v) |[ve A}
if A+# @, and d(u, @) = co. The diameter of a set A C M is defined by
diam(A) = sup { d(u,v) | u,v € A}.

A set is called bounded if its diameter is finite.
Clearly metric spaces are first-countable and Hausdorff; in fact:

1.2.4 Proposition. FEvery metric space is normal.
Proof. Let A and B be closed, disjoint subsets of M, and let
U={ueM|du,A) <du,B)} and V={ve M |d(v,A) >dv,B)}.
It is verified that U and V are open, disjoint and A C U, B C V. |
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Completeness. We learn in calculus the importance of the notion of completeness of the real line. The
general notion of a complete metric space is as follows.

1.2.5 Definition. Let M be a metric space with metric d and {u,} a sequence in M. Then {u,} is a
Cauchy sequence if for all real € > 0, there is an integer N such that n,m > N implies d(uy,, umy,) < €.
The space M 1is called complete if every Cauchy sequence converges.

We claim that a sequence {un,} converges to u iff for every e > 0 there is an integer N such that n > N
implies d(un,u) < e. This follows readily from the Definitions 1.1.11 and 1.2.2.

We also claim that a convergent sequence {u,} is a Cauchy sequence. To see this, let ¢ > 0 be given.
Choose N such that n > N implies d(u,,u) < £/2. Thus, n,m > N implies

€ e
d(uvuu'm) < d(unau) + d(uaum) < 5 + 5 =€

by the triangle inequality. Completeness requires that, conversely, every Cauchy sequence converges. A basic
fact about R™ is that with the standard metric, it is complete. The proof is found in any textbook on
advanced calculus.

Contraction Maps. A key to many existence theorems in analysis is the following.

1.2.6 Theorem (Contraction Mapping Theorem). Let M be a complete metric space and f : M — M a
mapping. Assume there is a constant k, where 0 < k < 1 such that

d(f(m), f(n)) < kd(m,n),

for all m,n € M; such an f is called a contraction. Then f has a unique fized point; that is, there exists
a unique m, € M such that f(m.) = my.

Proof. Let mg be an arbitrary point of M and define recursively m;11 = f(m;), i = 0,1,2,.... Induction
shows that

d(mi,mig1) < k' d(mg, my),
so that for i < j,
d(mi,m;) < (k' + -+ K1) d(mg, my).
For 0<k<1,1+k+k%>+Ek3+... is a convergent series, and so
Xy XES T & 5 NN

as i,j — oo. This shows that the sequence {m,} is Cauchy and thus by completeness of M it converges to
a point m,. Since

d(rn*7 f(m*)) < d(m*,mi) + d(mh f(mz)) + d(f(ml)ﬂ f(m*))
< (1 + k) d(ms, m;) + k* d(mg, m1)

is arbitrarily small, it follows that m. = f(m.,), thus proving the existence of a fixed point of f. If m/ is
another fixed point of f, then

d(m’,m.) = d(f(m), f(m.)) < kd(m',m.),
which, by virtue of 0 < k < 1, implies d(m’, m,) = 0, so m’ = m,. Thus we have uniqueness. |

The condition k < 1 is necessary, for if M = R and f(z) = x + 1, then & = 1, but f has no fixed point
(see also Exercise 1.5-5).

At this point the true significance of the contraction mapping theorem cannot be demonstrated. When
applied to the right spaces, however, it will yield the inverse function theorem (Chapter 2) and the basic
existence theorem for differential equations (Chapter 4). A hint of this is given in Exercise 1.2-9.
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Exercises

o 1.2-1. Let d((z1,1), (v2,92)) = sup(|z1 — 22|, |y1 — y2|). Show that d is a metric on R? and is equivalent
to the standard metric.

o 1.2-2. Let f(x) =sin(1/z), > 0. Find the distance between the graph of f and (0,0).
¢ 1.2-3. Show that every separable metric space is second countable.

¢ 1.2-4. Show that every metric space has an equivalent metric in which the diameter of the space is 1.
HinT: Consider the new metric dy (m,n) = d(m,n)/[1 + d(m,n)].

¢ 1.2-5. In a metric space M, let V(m) = {U C M | there exists ¢ > 0 such that D.(m) C U }. Show that
V(m) satisfies V1-V4 of Exercise 1.1-8. This shows how the metric topology can be defined in an alternative
way starting from neighborhoods.

o 1.2-6. In a metric space show that cl(A) = {u e M | d(u,A) =0}.

Ezercises 1.2-7-1.2-9 use the notion of continuity from elementary calculus (see Section 1.3).

o 1.2-7. Let M denote the set of continuous functions f : [0,1] — R on the interval [0, 1]. Show that

d(f.g) = / (@) — g(o)] do

is a metric.

o 1.2-8. Let M denote the set of all continuous functions f : [0,1] — R. Set

d(f,g) =sup{|f(z) —g(z)| [0 <z <1}
(i) Show that d is a metric on M.
(ii) Show that f, — f in M iff f,, converges uniformly to f.

(iii) By consulting theorems on uniform convergence from your advanced calculus text, show that M is a
complete metric space.

¢ 1.2-9. Let M be as in the previous exercise and define T': M — M by
7)) =t [ KGo) f)
where a is a constant and K is a continuous function of two variables. Let
kzsup{/IK(%y)ldy‘ OSxél}
0

and suppose k < 1. Prove the following:
(i) T is a contraction.

(ii) Deduce the existence of a unique solution of the integral equation

fay=a+ | " K(e,y) f) dy.

(iii) Taking a special case of (ii), prove the “existence of e*.”
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1.3 Continuity

Definition of Continuity. We learn about continuity in calculus. Its general setting in topological spaces
is as follows.

1.3.1 Definition. Let S and T be topological spaces and p : S — T be a mapping. We say that ¢ is
continuous at u € S if for every neighborhood V of ¢(u) there is a neighborhood U of u such that
o(U) C V. If, for every open set V of T, =Y (V) ={u € S| p(u) € V} is open in S, ¢ is continuous.
(Thus, ¢ is continuous if ¢ is continuous at each w € S.) If the map ¢ : S — T is a bijection (i.e.,
one-to-one and onto), and both ¢ and ¢~' are continuous, ¢ is called a homeomorphism and S and T
are said to be homeomorphic.

For example, notice that any map from a discrete topological space to any topological space is continuous.
Similarly, any map from an arbitrary topological space to the trivial topological space is continuous. Hence
the identity map from the set S topologized with the discrete topology to S with the trivial topology is
bijective and continuous, but its inverse is not continuous, hence it is not a homeomorphism.

Properties of Continuous Maps. It follows from Definition 1.3.1, by taking complements and using
the set theoretic identity S\~ 1(A) = o~ 1(T\A), that ¢ : S — T is continuous iff the inverse image of every
closed set is closed. Here are additional properties of continuous maps.

1.3.2 Proposition. Let S, T be topological spaces and ¢ : S — T. The following are equivalent:
(i) ¢ is continuous;
(ii) @(cl(A)) C cl(¢(A)) for every A C S;

(iii) ¢~ !(int(B)) C int(¢~'(B)) for every B C T.

Proof. If ¢ is continuous, then ¢~ 1(cl(p(A))) is closed. But

AC ol (c(p(A))),
and hence
cl(4) € ¢~ (cl(p(A))),

that is, ¢(cl(A)) C cl(p(A)). Conversely, let B C T be closed and A = ¢~ !(B). Then p(cl(A)) C cl(¢(A)) =
cl(B) = B; that is,
cl(A) C o 1(B) = A,

so A is closed. A similar argument shows that (ii) and (iii) are equivalent. [ |

This proposition combined with Proposition 1.1.12 (or a direct argument) gives the following.

1.3.3 Corollary. Let S and T be topological spaces with S first countable and ¢ : S — T. The map ¢ is
continuous iff for every sequence {u,} converging to u, {@(u,)} converges to p(u), for all u € S.

1.3.4 Proposition. The composition of two continuous maps is a continuous map.
Proof. Ify; :S; — S and ¢y : So — S3 are continuous maps and if U is open in S3, then (@Qo(pl)_l(U) =

o1 (g5 H(U)) is open in S; since @, ' (U) is open in Sy by continuity of ¢o and hence its inverse image by
(1 is open in S, by continuity of ¢ . |

1.3.5 Corollary. The set of all homeomorphisms of a topological space to itself forms a group under
composition.
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Proof. Composition of maps is associative and has for identity element the identity mapping. Since the
inverse of a homeomorphism is a homeomorphism by definition, and since for any two homeomorphisms
©1,p2 of S to itself, the maps (1 0 o and (p10pg) "1 = 902—1 o apfl are continuous by Proposition 1.3.4, the
corollary follows. |

1.3.6 Proposition. The space of continuous maps f : S — R forms an algebra under pointwise addition
and multiplication. That s, if f and g are continuous, then so are f 4+ g and fg.

Proof. Let sy € S be fixed and € > 0. By continuity of f and g at sq, there exists an open set U in S such
that

() = f(so) < 5, and Jg(s) —g(s0)| < 5
for all s € U. Then
(F+9)(5) = (f +9)(s0)| < 1() = £(s0)] + Ig(s) — gls0)| < &
Similarly, for £ > 0, choose a neighborhood V of sy such that
F() = Flso) <3, lgls) = gls0)| < 0

for all s € V', where § is any positive number satisfying

(6 +1[f(s0))d + 19(s0)]0 < €.

Then
(F9)(s) — (F)(s0)| < [(F)] l9(s) — als0)] + |£(s) — F(s0)l lg(so)]
<6+ (s0)])0 + dlg(s0)| <e.
Therefore, f + g and fg are continuous at sg. [ |

Open and Closed Maps. Continuity is defined by requiring that inverse images of open (closed) sets
are open (closed). In many situations it is important to ask whether the image of an open (closed) set is
open (closed).

1.3.7 Definition. A map ¢ : S — T, where S and T are topological spaces, is called open (resp., closed)
if the image of every open (resp., closed) set in S is open (resp., closed) in T.

Thus, a homeomorphism is a bijective continuous open (closed) map.
An example of an open map that is not closed is

v:]0,1[—= R, z— x,
the inclusion map. An example of a closed map that is not open is
¢:R—=R, defined by z — z*
which maps |—1,1[ to [0, 1[. An example of a map that is neither open nor closed is the map

¢ :]-1,1[= R, defined by z — 2°.

Finally, note that the identity map of a set S topologized with the trivial and discrete topologies on the
domain and range, respectively, is not continuous but is both open and closed.
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Continuous Maps between Metric Spaces. For these spaces, continuity may be expressed in terms
of ¢’s and §’s familiar from calculus.

1.3.8 Proposition. Let (My,d;) and (Ma,ds) be metric spaces, and ¢ : My — My a given mapping.
Then @ is continuous at uy € My iff for every e > 0 there is a § > 0 such that dy(ui,u})) < § implies
da(p(ur), p(uy)) <e.

Proof. Let ¢ be continuous at u; and consider D?(¢(uy)), the e-disk at ¢(uy) in M. Then there is a
S-disk D}(uq) in M such that

(D (u1)) € DZ((ur))

by Definition 1.3.1; that is, dy(uy,u}) < & implies

do(p(ur), p(u})) < e.

Conversely, assume this latter condition is satisfied and let V' be a neighborhood of ¢(u;) in Ms. Choosing
an e-disk D?(p(u1)) C V there exists § > 0 such that ¢(D}(u1)) C D?(p(u1)) by the foregoing argument.
Thus ¢ is continuous at u;. [ |

Uniform Continuity and Convergence. In a metric space we also have the notions of uniform conti-
nuity and uniform convergence.

1.3.9 Definition. (i) Let (My,dy) and (Ma,ds) be metric spaces and ¢ : My — My, We say ¢
is uniformly continuous if for every € > 0 there is a 6 > 0 such that di(u,v) < § implies

da(p(u), p(v)) <.

(ii) Let S be a set, M a metric space, on : S — M, n=1,2,..., and ¢ : S — M be given mappings. We
say @, — @ uniformly if for every € > 0 there is an N such that d(p,(u), p(u)) < e for alln > N
and all u € S.

For example, a map satisfying d(¢(u), ¢(v)) < Kd(u, v) for a constant K is uniformly continuous. Uniform
continuity and uniform convergence ideas come up in the construction of a metric on the space of continuous
maps. This is considered next.

1.3.10 Proposition. Let M be a topological space and (N, d) be a complete metric space. Then the col-
lection C'(M, N) of all bounded continuous maps ¢ : M — N forms a complete metric space with the metric

(¢, ) = sup{ d(p(u), P(u)) | u € M }.

Proof. It is readily verified that d° is a metric. Convergence of a sequence f,, € C(M, N) to f € C(M,N) in
the metric d° is the same as uniform convergence, as is readily checked. (See Exercise 1.2-8.) Now, if {f,,}
is a Cauchy sequence in C'(M, N), then { f,,(z)} is Cauchy for each x € M since d(f,, (), fm(x)) < d°(fu, fm)-
Thus f,, converges pointwise, defining a function f(z). We must show that f,, — f uniformly and that f is
continuous. First, given € > 0, choose N such that d°(f,, f) < €/2 if n,m > N. Second, for any = € M,
pick N, > N so that

A(fu(@). S(@)) < 5

if m > N,. Thus with n > N and m > N,

A(fa(@), S (@) < d(fu@), Finl@)) + dfin@). F(@) < 5+ 5 =€,

s0 fn — f uniformly. The reader can similarly verify that f is continuous (see Exercise 1.3-6; look in any
advanced calculus text such as Marsden and Hoffman [1993] for the case of R™ if you get stuck). [ |
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Exercises

1.3-1. Show that a map ¢ : S — T between the topological spaces S and T is continuous iff for every set
B CT,cl(e~Y(B)) C ¢ t(cl(B)). Show that continuity of » does not imply any inclusion relations between
(int(A)) and int(o(A)).

1.3-2.  Show that a map ¢ : S — T is continuous and closed if for every subset U C S, o(cl(U)) = cl(p(U)).
1.3-3. Show that compositions of open (closed) mappings are also open (closed) mappings.
1.3-4. Show that ¢ : ]0,00[ — ]0, 00| defined by () = 1/x is continuous but not uniformly continuous.

1.3-5. Show that if d is a pseudometric on M, then the map d(-, A) : M — R, for A C M a fixed subset,
is continuous.

1.3-6. If S is a topological space, T" a metric space, and ¢, : S — T a sequence of continuous functions
uniformly convergent to a mapping ¢ : .S — T, then ¢ is continuous.

1.4 Subspaces, Products, and Quotients

This section concerns the construction of new topological spaces from old ones.
Subset Topology. The first basic operation of this type we consider is the formation of subset topologies.

1.4.1 Definition. If A is a subset of a topological space S with topology O, the relative topology on A
is defined by O4a ={UNA|U € O}.

In other words, the open subsets in A are declared to be those subsets that are intersections of open sets
in S with A. The following identities show that O 4 is indeed a topology:

(i) oNA=2,SNA=A4;
(11) (UlﬂA)ﬂ(UzﬂA) = (U1QU2)|’1A; and

(iil) Ua(UanA) = (U, Ua) N A.

Example. The topology on the n — 1-dimensional sphere S"~! = {z € R" | d(z,0) = 1} is the relative
topology induced from R": that is, a neighborhood of a point z € S"~! is a subset of S”~! containing the
set D_(x) N S™~! for some ¢ > 0. Note that an open (closed) set in the relative topology of A is in general
not open (closed) in S. For example, D.(x) N S™"~! is open in S"~! but it is neither open nor closed in R™.
However, if A is open (closed) in S, then any open (closed) set in the relative topology is also open (closed)
in S.

If p: S — T is a continuous mapping, then the restriction p|A : A — T is also continuous in the relative
topology. The converse is false. For example, the mapping ¢ : R — R defined by ¢(z) = 0 if x € Q and
p(x) =1 if 2 € R\Q is discontinuous, but ¢|Q : Q — R is a constant mapping and is thus continuous.

Products. We can build up larger spaces by taking products of given ones.

1.4.2 Definition. Let S and T be topological spaces and
SxT={(u,v)|ueSandveT}.

The product topology on S x T consists of all subsets that are unions of sets which have the form U x V,
where U is open in S and V is open in T. Thus, these open rectangles form a basis for the topology.



16 1. Topology

Products of more than two factors can be considered in a similar way; it is straightforward to verify that
the map ((u,v),w) — (u, (v,w)) is a homeomorphism of (S x T') x Z onto S x (T' x Z). Similarly, one sees
that S x T" is homeomorphic to 7' x S. Thus one can take products of any finite number of topological spaces

and the factors can be grouped in any order; we simply write S; X --- x S, for such a finite product. For
example, R has the product topology of R x --- x R (n times). Indeed, using the maximum metric
d _ )
(x,y) = max (2" —y']),

which is equivalent to the standard one, we see that the e-disk at x coincides with the set

1

Jzt —e, !t +e[x - x]z" —g, 2" + €.

For generalizations to infinite products see Exercise 1.4-11, and to metric spaces see Exercise 1.4-14.

1.4.3 Proposition. Let S and T be topological spaces and denote by py : S XxT — S and py : S xT — T
the canonical projections: p1(s,t) = s and p2(s,t) =t. Then

(i) p1 and ps are open mappings; and

(ii) a mapping ¢ : X — SXT, where X is a topological space, is continuous iff both the maps pyop : X — S
and pa o : X — T are continuous.

Proof. Part (i) follows directly from the definitions. To prove (ii), note that ¢ is continuous iff =1 (U x V)
is open in X, for U C S and V C T open sets. Since

N UXxV)=p H U xT)Ne 1 (Sx V)
=(prog) ' (U)N(p2o) " (V),
the assertion follows. [

In general, the maps p;, i = 1,2, are not closed. For example, if S =T = R the set A = {(x,y) | zy =
1, >0} is closed in S x T = R?, but p;(A) = |0, oo| which is not closed in S.

1.4.4 Proposition. A topological space S is Hausdorff iff the diagonal which is defined by Ag = { (s, s) |
s€S}CS xS isa closed subspace of S x S, with the product topology.

Proof. It is enough to remark that S is Hausdorff iff for every two distinct points p,q € S there exist
neighborhoods U, Uy of p, g, respectively, such that (U, x U;) N Ag = @. [ |

Quotient Spaces. In a number of places later in the book we are going to form new topological spaces
by collapsing old ones. We define this process now and give some examples.

1.4.5 Definition. Let S be a set. An equivalence relation ~ on S is a binary relation such that for all
u,v,w € S,

(i) u~wu (reflexivity);
(ii) u~viffv~u  (symmetry); and
(iil) u ~v and v ~w implies u ~w  (transitivity).
The equivalence class containing u, denoted [u], is defined by
[ul={veS|u~uv}.

The set of equivalence classes is denoted S/~, and the mapping 7 : S — S/~ defined by u — [u] is called
the canonical projection.
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Note that S is the disjoint union of its equivalence classes. The collection of subsets U of S/~ such that
7~ Y(U) is open in S is a topology because

(i) 7~ H2) =2, 771(S/~) = S;
(11) ’/Til(Ul n Ug) = 7T71(U1) ﬂ’ﬂ'il(Ug); and
(iii) 71U, Ua) = U, 71 (Ua).

1.4.6 Definition. Let S be a topological space and ~ an equivalence relation on S. Then the collection of
sets {U C S/~ | m=1(U) is open in S} is called the quotient topology on S/~.

1.4.7 Examples.
A. The Torus. Consider R? and the relation ~ defined by
(al,ag)N(bhbg) ifalfbleZand (lg*bQGZ

(Z denotes the integers). Then T? = R?/~ is called the 2-torus. In addition to the quotient topology, it
inherits a group structure by setting [(a1,a2)] + [(b1,b2)] = [(a1,a2) + (b1, b2)]. The n-dimensional torus T"
is defined in a similar manner.

The torus T? may be obtained in two other ways. First, let (I be the unit square in R? with the subspace
topology. Define ~ by x ~ y iff any of the following hold:

(i) x=y;
(ii) 21 =91, 12 =0, yo = 15
(iil) &1 = y1, x2 = 1, y2 = 0;
(iv) @o = yo, 1 =0, y1 = 1; or
(V) o =yo, x1 =1,y =0,
as indicated in Figure 1.4.1. Then T? = [/~ . Second, define T? = S x S!, also shown in Figure 1.4.1.

FIGURE 1.4.1. A torus

B. The Klein bottle. The Klein bottle is obtained by reversing one of the orientations on [J, as indicated
in Figure 1.4.2. Then K = O/~ (the equivalence relation indicated) is the Klein bottle. Although it is
realizable as a subset of R*, it is convenient to picture it in R? as shown. In a sense we will make precise
in Chapter 6, one can show that K is not “orientable.” Also note that K does not inherit a group structure
from R?, as did T2.
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FIGURE 1.4.2. A Klein bottle

C. Projective Space. On R"™\{0} define x ~ y if there is a nonzero real constant A such that x = \y.
Then (R™\{0})/~ is called real projective (n — 1)-space and is denoted by RP"~'. Alternatively, RP"*
can be defined as S"~! (the unit sphere in R”) with antipodal points x and —x identified. (It is easy to
see that this gives a homeomorphic space.) One defines complex projective space CP" ! in an analogous
way where now A is complex. ¢

Continuity of Maps on Quotients. The following is a convenient way to tell when a map on a quotient
space is continuous.

1.4.8 Proposition. Let ~ be an equivalence relation on the topological space S and w : S — S/~ the
canonical projection. A map ¢ : S/~ — T, where T is another topological space, is continuous iff ¢ o7 :
S — T is continuous.

Proof. ¢ is continuous iff for every open set V. C T, = (V) is open in S/~, that is, iff the set (pom)~1(V)
is open in S. [ |

1.4.9 Definition. The setT' = {(s,s') | s ~s'} C S xS is called the graph of the equivalence relation ~.
The equivalence relation is called open (closed) if the canonical projection w: S — S/~ is open (closed).

We note that ~ is open (closed) iff for any open (closed) subset A of S the set 7~ !(7(A)) is open (closed).
As in Proposition 1.4.8, for an open (closed) equivalence relation ~ on S, a map ¢ : S/~ — T is open
(closed) iff p o : S — T is open (closed). In particular, if ~ is an open (closed) equivalence relation on S
and ¢ : S/~ — T is a bijective continuous map, then ¢ is a homeomorphism iff ¢ o 7 is open (closed).

1.4.10 Proposition. If S/~ is Hausdorff, then the graph T’ of ~ is closed in S x S. If the equivalence
relation ~ is open and I' is closed (as a subset of S x S), then S/~ is Hausdorff.

Proof. If S/~ is Hausdorff, then Ag,, is closed by Proposition 1.4.4 and hence I' = (7 x )71 (Agp) is
closed in S x S, where

TXm: S XS = (8/~) x (S/~)

is given by (7 x 7)(x,y) = ([z], [y])-

Assume that I' is closed and ~ is open. If S/~ is not Hausdorff then there are distinct points [z], [y] € S/~
such that for any pair of neighborhoods U, and Uy of [z] and [y], respectively, we have U, NU, # @. Let V,
and V,, be any open neighborhoods of # and y, respectively. Since ~ is an open equivalence relation,

7(Vy) =U, and =(V,)=U,
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are open neighborhoods of [z] and [y] in S/~. Since U, N U, # @, there exist ' € V, and y' € V,, such
that (2] = [¢']; that is, (2/,y’) € T'. Thus, (V, x V) NT' # & for any neighborhoods V,, and Vj, of = and y
respectively and thus, (z,y) € cl(I') by Proposition 1.1.9(i). Because I is closed, we see that (z,y) € T', that
is, [z] = [y], a contradiction. [ |

Exercises

1.4-1. Show that the sequence x,, = 1/n in the topological space ]0,1] (with the relative topology from
R) does not converge.

1.4-2. If f: S — T is continuous and 7' is Hausdorff, show that the graph of f, 'y = { (s, f(s)) | s € S}
is closed in S x T

1.4-3. Let X and Y be topological spaces with Y Hausdorff. Show that for any continuous maps f,g :
X =Y, theset {z € X | f(z) =g(z)} is closed in X. Conclude that if f(z) = g(x) at all points of a dense
subset of X, then f = g.

HiNT: Consider the mapping = — (f(z), g(z)) and use Proposition 1.4.4.

1.4-4. Define a topological manifold to be a space locally homeomorphic to R™. Find a topological
manifold that is not Hausdorff.
HiNT: Consider R with “extra origins.”

1.4-5. Show that a mapping ¢ : S — T is continuous iff the mapping s — (s, f(s)) of S to the graph
Iy={(s,f(s))|s€ S} CSxSisahomeomorphism of S with ' (give I'; the subspace topology induced
from the product topology of S x T').

1.4-6. Show that every subspace of a Hausdorff (resp., regular) space is Hausdorff (resp., regular). Con-
versely, if each point of a topological space has a closed neighborhood that is Hausdorff (resp., regular) in
the subspace topology, then the topological space is Hausdoff (resp., regular).

HINT: use Exercises 1.1-6 and 1.1-7.

1.4-7. Show that a product of topological spaces is Hausdorff iff each factor is Hausdorff.

1.4-8. Let S,T be topological spaces and ~, =~ be equivalence relations on S and T, respectively. Let
¢ : S — T be continuous such that s; ~ so implies p(s1) ~ ¢(s2). Show that the induced mapping
¢ : S/~ — T/~ is continuous.

1.4-9. Let S be a Hausdorff space and assume there is a continuous map o : S/~ — S such that
T oo = ig/., the identity. Show that S/~ is Hausdorff and o(S/~) is closed in S.

1.4-10. Let M and N be metric spaces, N complete, and ¢ : A — N be uniformly continuous (A with the
induced metric topology). Show that ¢ has a unique extension ¢ : cl(A) — N that is uniformly continuous.

1.4-11. Let S be a set, T, a family of topological spaces, and ¢, : S — T, a family of mappings. Let B
be the collection of finite intersections of sets of the form ¢ *(U,) for U, open in T,,. The initial topology
on S given by the family ¢, : S — T, has as basis the collection B. Show that this topology is characterized
by the fact that any mapping ¢ : R — S from a topological space R is continuous iff all p, 0@ : R — T,
are continuous. Show that the subspace and product topologies are initial topologies. Define the product of
an arbitrary infinite family of topological spaces and describe the topology.

1.4-12. Let T be a set and ¢, : S, — T a family of mappings, S, topological spaces with topologies O, .
Let O ={U CT|¢;*(U) € O for each a }. Show that O is a topology on T, called the final topology on
T given by the family ¢, : S, — T. Show that this topology is characterized by the fact that any mapping
¢ : T — R is continuous iff ¢ o ¢, : S, — R are all continuous. Show that the quotient topology is a final
topology.

1.4-13. Show that in a complete metric space a subspace is closed iff it is complete.
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1.4-14. Show that a product of two metric spaces is also a metric space by finding at least three equivalent
metrics. Show that the product is complete if each factor is complete.

1.5 Compactness

Some basic theorems of calculus, such as “every real valued continuous function on [a, b] attains its maximum
and minimum” implicitly use the fact that [a, b] is compact.

Definition of Compactness. The general definition of compactness is rather unintuitive at the beginning.
In fact, the general formulation of compactness and the realization of it as a useful tool is one of the excellent
achievements of topology. But one has to be patient to see the rewards of formulating the definition the way
it is done.

1.5.1 Definition. Let S be a topological space. Then S is called compact if for every covering of S by
open sets Uy (i.e., |, Ua = S) there is a finite subcollection of the Uy, also covering S. A subset A C S is
called compact if A is compact in the relative topology. A subset A is called relatively compact if cl(A)
is compact. A space is called locally compact if it is Hausdorff and each point has a relatively compact
neighborhood.

Properties of Compactness. We shall soon see the true power of this notion, but let’s work up to this
with some simple observations.

1.5.2 Proposition.
(i) If S is compact and A C S is closed, then A is compact.
(ii) If p: S — T is continuous and S is compact, then (S) is compact.

Proof. To prove (i), let {U,} be an open covering of A. Then {U,, S\A} is an open covering of S and
hence contains a finite subcollection of this covering also covering S. The elements of this finite collection,
except S\ A, cover A.

To prove (ii), let {U,} be an open covering of ¢(S). Then {¢~*(U,)} is an open covering of S and thus, by
compactness of S, a finite subcollection {w_l(Ua(i)) |i=1,...,n}, covers S. But then {Uy»y}, 7 =1,...,n
covers ¢(S) and thus ¢(5) is compact. [ |

In a Hausdorff space, compact subsets are closed (exercise). Thus if S is compact, T is Hausdorff and ¢
is continuous, then ¢ is closed; if ¢ is also bijective, then it is a homeomorphism.
Compactness of Products. It is a basic fact that the product of compact spaces is compact.

1.5.3 Proposition. A product space S x T is compact iff both S and T are compact.

Proof. In view of Proposition 1.5.2 all we have to show is that if S and T are compact, so is S x T'. Let
{A.} be a covering of S x T by open sets. Each A, is the union of sets of the form U x V with U and V
open in S and T, respectively. Let {Us x Vg} be a covering of S x T by open rectangles. If we show that
there exists a finite subcollection of Ug x Vi3 covering S x T, then clearly also a finite subcollection of {A,}
will cover S x T

A finite subcollection of {Usz x Vj3} is found in the following way. Fix s € S. Since the set {s} x T is
compact, there is a finite collection

UVgl X Vgl, ey Uﬁi(s) X Vgiw
covering it. If Ug = ﬂj:lu..ﬂ(s) Ug,, then Uy is open, contains s, and

Us x Vyy.. ., Us X Vg,
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covers {s} x T. Let W, = U, x T then the collection {W,} is an open covering of S x T'. If we show that
only a finite number of these Wy cover S x T, then since

We=|J U xV),

j=1,...,i(s)

it follows that a finite number of Ug x Vj will cover S x T. Now look at S x {t}, fort € T fixed. Since this

is compact, a finite subcollection Wy, , ..., W, covers it. But then
U w., =sxT1, (1.5.1)
j=1,...k
which proves the result. [ ]

As we shall see shortly in Theorem 1.5.9, [—1, 1] is compact. Thus T* is compact. It follows from Proposition
1.5.3 that the torus T?, and inductively T", are compact. Thus, if 7 : R?> — T2 is the canonical projection
we see that T? is compact without R? being compact; that is, the converse of Proposition 1.5.2(ii) is false.
Nevertheless it sometimes occurs that one does have a converse; this leads to the notion of a proper map
discussed in Exercise 1.5-10.

Bolzano—Weierstrass Theorem. This theorem links compactness with convergence of sequences.

1.5.4 Theorem (Bolzano—Weierstrass Theorem). If S is a compact first countable Hausdorff space, then
every sequence has a convergent subsequence.! The converse is also true in metric and second-countable
Hausdorff spaces.

Proof. Suppose S is compact and {u,} contains no convergent subsequences. We may assume that the
points of the sequence are distinct. Then cl({u,}) = {un} is compact and since S is first countable, each wu,,
has a neighborhood U,, that contains no other u,,, for otherwise u,, would be a limit of a subsequence. Thus
{U,} is an open covering of the compact subset {u,,} which contains no finite subcovering, a contradiction.

Let S be second countable, Hausdorff, and such that every sequence has a convergent subsequence. If
{U,} is an open covering of S, by the Lindeldf lemma there is a countable collection { U,, | n =1,2...} also
covering S. Thus we have to show that {U,, | n =1,2,...} contains a finite collection covering S. If this is
not the case, the family consisting of sets of the form

S\ U Ui
i=1,....,n

consists of closed nonempty sets and has the property that

1=1,...,n 1=1,....m

for m > n. Choose

mes\ |J U

1=1,...,n

If {p, | n=1,2,...} is infinite, by hypothesis it contains a convergent subsequence; let its limit point be
denoted p. Then

pES\ U U;

i=1,...,n

IThere are compact Hausdorff spaces in which there are sequences with no convergent subsequences. See page 69 of Sims
[1976] for more information.
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for all n, contradicting the fact that {U,, | n =1,2,...} covers S. Thus, {p, | n =1,2,...} must be a finite
set; that is, for all n > N, p, = pny. But then again

pNES\ U U;

i=1,...,n

for all n, contradicting the fact that {U,, | n =1,2,...} covers S. Hence S is compact.

Let S be a metric space such that every sequence has a convergent subsequence. If we show that §
is separable, then since S is a metric space it is second countable (Exercise 1.2-3), and by the preceding
paragraph, it will be compact. Separability of S is proved in two steps.

First we show that for any € > 0 there is a finite set of points {p1,...,p,} such that S = Ui:l,...,n D.(p;).
If this were false, there would exist an € > 0 such that no finite number of e-disks cover S. Let p; € S be
arbitrary. Since D.(p1) # S, there is a point ps € S\D.(p1). Since

De(p1) U De(p2) # S,

there is also a point
p3 € S\(De(p1) U De(p2)),

etc. The sequence {p, | n = 1,2,...} is infinite and d(p;,p;) > e. But this sequence has a convergent
subsequence by hypothesis, so this subsequence must be Cauchy, contradicting d(p;,p;) > € for all ¢, 5.
Second, we show that the existence for every € > 0 of a finite set {p1,...,pp(e)} such that

S = U D.(p;)

i=1,...,n(e)

implies S is separable. Let A,, denote this finite set for ¢ = 1/n and let

A= UA,,

n>0
Thus A is countable and it is easily verified that cl(4) = S. [ |

Total Boundedness. A property that came up in the preceding proof turns out to be important.

1.5.5 Definition. Let S be a metric space. A subset A C S is called totally bounded if for any ¢ > 0
there exists a finite set {p1,...,pn} in S such that

1.5.6 Corollary. A metric space is compact iff it is complete and totally bounded. A subset of a complete
metric space is relatively compact iff it is totally bounded.

Proof. The previous proof shows that compactness implies total boundedness. As for compactness im-
plying completeness, it is enough to remark that in this context, a Cauchy sequence having a convergent
subsequence is itself convergent. Conversely, if S is complete and totally bounded, let {p, | n =1,2,...} be
a sequence in S. By total boundedness, this sequence contains a Cauchy subsequence, which by complete-
ness, converges. Thus S is compact by the Bolzano—Weierstrass theorem. The second statement now readily
follows. [ |

1.5.7 Proposition. In a metric space compact sets are closed and bounded.
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Proof. This is a particular case of the previous corollary but can be easily proved directly. If A is compact,
it can be finitely covered by e-disks:

A= |J D.(p).

i=1,...,n
Thus,
diam(A) < Zdiam(De(pi)) = 2ne. [ |
i=1

From Proposition 1.5.2 and Proposition 1.5.7, we conclude that

1.5.8 Corollary. If S is compact and ¢ : S — R is continuous, then p is bounded and attains its sup and
nf.

Indeed, since S is compact, so is ¢(5) and so ¢(S) is closed and bounded. Thus (see Exercise 1.1-4) the
inf and sup of this set are finite and are members of this set.

Heine—Borel Theorem. This result makes it easy to spot compactness in Euclidean spaces.

1.5.9 Theorem (Heine-Borel Theorem). In R™ a closed and bounded set is compact.

Proof. By Proposition 1.5.2(i) it is enough to show that closed bounded rectangles are compact in R,
which in turn is implied via Proposition 1.5.3 by the fact that closed bounded intervals are compact in R. To
show that [—a, a], a > 0 is compact, it suffices to prove (by Corollary 1.5.6) that for any given € > 0, [—a, a]
can be finitely covered by intervals of the form |p — e, p + €[, since we are accepting completeness of R. Let
n be a positive integer such that a < ne. Let t € [—a,a] and k be the largest (positive or negative) integer
satisfying ke < t¢. Then —n < k <n and ke <t < (k+ 1)e. Thus any point ¢ € [—a, a] belongs to an interval
of the form |ke — &, ke + ¢[, where k = —n,...,0,...,n and hence { ke —e, ke +¢[ | k=0,%1,...,2n} is a
finite covering of [—a, a]. [ |

This theorem is also proved in virtually every textbook on advanced calculus.

Uniform Continuity. As is known from calculus, continuity of a function on an interval [a, b] implies
uniform continuity. The generalization to metric spaces is the following.

1.5.10 Proposition. A continuous mapping p : M1 — My, where My and Ms are metric spaces and My
is compact, is uniformly continuous.

Proof. The metrics on M; and M, are denoted by d; and ds. Fix € > 0. Then for each p € My, by
continuity of ¢ there exists d, > 0 such that if dy(p,q) < d,, then da(¢(p), ¢(q)) < £/2. Let

Ds, j2(p1)s - -+, Ds, j2(pn)
cover the compact space M; and let 6 = min{d;/2,...,0,/2}. Then if p,q € M; are such that di(p,q) < §,
there exists an index 4, 1 <4 < n, such that dy(p,p;) < §;/2 and thus

0;
di(piq) < di(pi,p) +di(p,q) < 3 T § < 6.

Thus,

da(p(p), 0(q)) < da(w(p), p(pi) + da(w(pi)), v(q) < e. L
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Equicontinuity. A useful application of Corollary 1.5.6 concerns relatively compact sets in C(M, N), for
metric spaces (M, dys) and (N, dy) with M compact and N complete. Recall from §1.3 that we put a metric
on C(M,N) and that in this metric, convergence is the same as uniform convergence.

1.5.11 Definition. A subset F C C(M,N) is called equicontinuous at mg € M, if given € > 0, there
exists 6 > 0 such that whenever dy(m,mg) < d, we have dy(p(m),o(mg)) < € for every ¢ € F (§ is
independent of ). F is called equicontinuous, if it is equicontinuous at every point in M.

1.5.12 Theorem (Arzela—Ascoli Theorem). Let (M,dy) and (N,dy) be metric spaces, and assume that
M is compact and N is complete. A set F C C(M,N) is relatively compact iff it is equicontinuous and all
the sets F(m) = {(m) | ¢ € F} are relatively compact in N.

Proof. If F is relatively compact, it is totally bounded and hence so are all the sets F(m). Since N is
complete, by Corollary 1.5.6 the sets F(m) are relatively compact. Let {¢1,...,¢,} be the centers of the
e-disks covering F. Then there exists § > 0 such that if da;(m,m’) < 0, we have dn(¢;(m), p;(m’)) < ¢e/3,
for i =1,...,n and hence if ¢ € F is arbitrary, ¢ lies in one of the e-disks whose center, say, is y;, so that

dn(p(m), p(m’)) < dn(p(m), pi(m)) + dn (pi(m), pi(m'))
+dn(pi(m), p(m")) < e.
This shows that F is equicontinuous.

Conversely, since C(M, N) is complete, by Corollary 1.5.6 we need only show that F is totally bounded.
For € > 0, find a neighborhood U, of m € M such that for all m’ € U,,, dy(¢(m), o(m')) < e/4dforall p € F
(this is possible by equicontinuity). Let U, (1), - - - , Up(n) be a finite collection of these neighborhoods covering
the compact space M. By assumption each F(m) is relatively compact, hence F(m(1))U---U F(m(n)) is

also relatively compact, and thus totally bounded. Let D, 4(x1), ..., De/a(x)) cover this union. If A denotes
the set of all mappings a: {1,...,n} — {1,...,k}, then A is finite and

F= U fom
acA
where Fo, = {¢ € F | dn(p(m(i)), za@)) < €/4 foralli =1,...,n}. But if 9,9 € F, and m € M, then
m € D¢ 4(;) for some i, and thus
dn(p(m), ¥(m)) < dn(p(m), p(m(i)) + dn (e(m(i)), Ta())
+dn (Tagi), v(m(i))) + dn (b (m(i)), ¥(m)) <e;
that is, the diameter of F, is < ¢, so F is totally bounded. ]

Combining this with the Heine-Borel theorem, we get the following.

1.5.13 Corollary. If M is a compact metric space, a set F C C(M,R™) is relatively compact iff it is
equicontinuous and uniformly bounded (i.e., ||p(m)|| < constant for all p € F and m € M).

The following example illustrates one way to use the Arzela—Ascoli theorem.
Example. Let f, :[0,1] — R be continuous and be such that |f,(z)| < 100 and the derivatives f], exist
and are uniformly bounded on ]0, 1[. Prove f,, has a uniformly convergent subsequence.

We verify that the set {f,} is equicontinuous and bounded. The hypothesis is that |f] (z)] < M for a
constant M. Thus by the mean-value theorem,

[fn(2) = fuy)l < Mz —yl,

so given € we can choose 6 = /M, independent of z, y, and n. Thus {f,} is equicontinuous. It is bounded
because

”an = Sup |fn(x)| < 100. ¢
0<z<1
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Exercises

1.5-1. Show that a topological space S is compact iff every family of closed subsets of S whose intersection
is empty contains a finite subfamily whose intersection is empty.

1.5-2. Show that every compact metric space is separable.
HinT: Use total boundedness.

1.5-3. Show that the space of Exercise 1.1-9 is not locally compact.
HINT: Look at the sequence (1/n,0).

1.5-4. (i) Show that every closed subset of a locally compact space is locally compact.

(ii) Show that S x T is locally compact if both S and T" are locally compact.

1.5-5. Let M be a compact metric space and T : M — M a map satisfying d(T'(m1),T(mz)) < d(mq,ms2)
for m; # ms. Show that 7" has a unique fixed point.

1.5-6. Let S be a compact topological space and ~ an equivalence relation on S, so that S/~ is compact.
Prove that the following conditions are equivalent (cf. Proposition 1.4.10):

(i) The graph C of ~ is closed in S x S
(ii) ~ is a closed equivalence relation;
(iii) S/~ is Hausdorff.

1.5-7. Let S be a Hausdorff space that is locally homeomorphic to a locally compact Hausdorff space (i.e.,
for each u € S, there is a neighborhood of © homeomorphic, in the subspace topology, to an open subset of
a locally compact Hausdorff space). Show that S is locally compact. In particular, Hausdorff spaces locally
homeomorphic to R™ are locally compact. Is the conclusion true without the Hausdorff assumption?

1.5-8. Let M3 be the set of all 3 x 3 matrices with the topology obtained by regarding Mz as RY. Let
SO(3) ={ A€ M3 | Ais orthogonal and det A =11} .

(i) Show that SO(3) is compact.

(ii) Let P ={Q € SO(3) | Q is symmetric } and let ¢ : RP? — SO(3) be given by ¢(¢) = the rotation by
7 about the line £ C R®. Show that ¢ maps the space RP? homeomorphically onto P\ {Identity}.

1.5-9. Let f, : [a,b] — R be uniformly bounded continuous functions. Set

F,(x) = /xfn(t)dt, a<xz<h.

Prove that F,, has a uniformly convergent subsequence.
1.5-10. Let X and Y be topological spaces. A map f : X — Y is called proper if the inverse image of
any compact set in Y is compact in X.

(i) Show that the composition of two porper maps is again proper.

(ii) Let X be a compact space, Y a Hausdorff space and f : X — Y a continuous map. Show that f is
proper.

(iii) Let f: X — Y be continuous and proper. If X is Hausdorfl and Y is a locally compact space, show
that X is also locally compact.

HinT: If U is an open neighborhood of € X and K is a compact neighborhood of f(z) € Y, then
cl(U) N f~Y(K) is a closed subset of f~!(K) and so is a compact neighborhood of .
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(iv) Assume that f : X — Y is continuous, closed and such that f~!(y) is compact for all y € Y. Show
that f is proper.

HINT: Let K C Y be compact and {U,}aeca be an open covering of f~1(K). Let F be the fam-
ily of all finite subsets of A and define for every F' € F the open set Up = UgecrU,. For each
y € K the set f~!(y) is compact so there is some F € F such that f~'(y) C Up, that is, y €
Y\ f(X\Up), which says that K is covered by the family of open sets {Y\f(X\Ur) | F € F}.
Thus there are finitely many such sets Y\ f(X\UF,), ¢ = 1,...,n, whose union contains K. Thus,
fTHEK) C Uiz, fTPY\F(X\UFR,)) C Uizt,...nUp, = Uaermu...ur, Ua.

(v) Assume that X and Y are Hausdorff, Y is first countable, and X is either second countable or metric.
Show that if f: X — Y is continuous and proper then it is closed. Thus, under these hypotheses, f is
proper if and only if it is closed and the inverse image of every point is compact.

HiNT: If f(a,) — y with a,, € A, the set B = {y, f(a,) | n € N} is compact. Therefore, AN f~1(B)
is compact and {a,}nen C AN f~1(B). By the Bolzano-Weierstrass Theorem, there is a convergent
subsequence a,, — a € cl(A) = A.

(vi) Assume that X and Y are Hausdorff, Y is first countable, and X is either second countable or metric.
Show that a continuous map f : X — Y is proper if and only if the following condition holds: if
{f(xn)}nen is a convergent sequence in Y there is a convergent subsequence {x,, }nen in X.

HinT: If f is proper the argument in (v) shows that the stated property holds. Conversely the stated
property immediately implies that f is closed and that f~!(y) is compact by the Bolzano-Weierstrass
Theorem, for every y € Y. Now apply (iv).

1.6 Connectedness

Three types of connectedness treated in this section are arcwise connectedness, connectedness, and simple
connectedness.

Arcwise Connectedness. We begin with the most intuitive notion of connectedness.

1.6.1 Definition. Let S be a topological space and I =[0,1] C R. An arc ¢ in S is a continuous mapping
o: 1 — 8 If p(0) = u, p(1) = v, we say ¢ joins u and v; S is called arcwise connected if every two
points in S can be joined by an arc in S. A space S is called locally arcwise connected if for each point
x € S and each neighborhood U of x, there is a neighborhood V' of x such that any pair of points in V' can
be joined by an arc in U.

For example, R" is arcwise and locally arcwise connected: any two points of R™ can be joined by the
straight line segment connecting them. A set A C R" is called convez if this property holds for any two of
its points. Thus, convex sets in R™ are arcwise and locally arcwise connected. A set with the trivial topology
is arcwise and locally arcwise connected, but in the discrete topology it is neither (unless it has only one
point).

Connected Spaces. Less intuitive is the basic notion of connectedness.

1.6.2 Definition. A topological space S is connected if & and S are the only subsets of S that are both
open and closed. A subset of S is connected if it is connected in the relative topology. A component A of
S is a nonempty connected subset of S such that the only connected subset of S containing A is A itself; S is
called locally connected if each point has a connected neighborhood. The components of a subset T C S
are the components of T' in the relative topology of T in S.

For example, R™ and any convex subset of R™ are connected and locally connected. The union of two
disjoint open convex sets is disconnected but is locally connected; its components are the two convex sets. The
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trivial topology is connected and locally connected, whereas the discrete topology is neither: its components
are all the one-point sets.
Connected spaces are characterized by the following.

1.6.3 Proposition. The following are equivalent:
(i) S is not connected;

)
(i) there is a nonempty proper subset of S that is both open and closed;
(iil) S is the disjoint union of two nonempty open sets; and

(iv) S is the disjoint union of two nonempty closed sets.

The sets in (iii) or (iv) are said to disconnect S.

Proof. To prove that (i) implies (ii), assume there is a nonempty proper set A that is both open and
closed. Then S = AU (S\A) with A, S\ A open and nonempty. Conversely, if S = AU B with A, B open and
nonempty, then A is also closed, and thus A is a proper nonempty set of S that is both open and closed.
The equivalences of the remaining assertions are similarly checked. |

Behavior under Mappings. Connectedness is preserved by continuous maps, as is shown next.

1.6.4 Proposition. If f : S — T is a continuous map of topological spaces and S is connected (resp.,
arcwise connected) then so is f(.5).

Proof. Let S be arcwise connected and consider f(s1), f(s2) € f(S) CT.Ifc: I — S, ¢(0) = s1, ¢(1) = s2
is an arc connecting s; to sa, then clearly foc: I — T is an arc connecting f(s1) to f(s2); that is, f(.9) is
arcwise connected. Let S be connected and assume f(S) C UUV, where U and V are open and UNV = @.
Then f~1(U) and f~!(V) are open by continuity of f,

FHOY V)= 1O uV) D FHF8) = S,

and f~1(U)N f~Y(V) = f~1(@) = 9, thus contradicting connectedness of S by Proposition 1.6.3. Hence
f(S) is connected. [ |

Arcwise Connected Spaces are Connected. We shall use the following.

1.6.5 Lemma. The only connected sets of R are the intervals (finite, infinite, open, closed, or half-open).

Proof. Let us prove that [a, b[ is connected; all other possibilities have identical proofs. If not, [a, b = UUV
with U, V' nonempty disjoint closed sets in [a,b[. Assume that a € U. If © = sup(U), then x € U since U is
closed in [a,b[, and x < b since V # &. But then |z, b[ C V and, since V is closed, z € V. Hence x e UNV,
a contradiction.

Conversely, let A be a connected set of R. We claim that [x,y] C A whenever z,y € A, which implies that
A is an interval. If not, there exists z € [x,y] with z ¢ A . But in this case |—00,z[N A and ]z,00[ N A are
open nonempty sets disconnecting A. |

1.6.6 Proposition. If S is arcwise connected then it is connected.

Proof. If not, there are nonempty, disjoint open sets Uy and U; whose union is S. Let zg € Uy and z1 € U;
and let ¢ be an arc joining zg to z1. Then Vo = ¢~ 1(Up) and Vi = ¢~ 1(U;) disconnect [0, 1]. [ |

A standard example of a space that is connected but is not arcwise connected nor locally connected, is

{(z,y) eR*|z>0and y =sin(1/z) }U{(0,y) | -1 <y<1}.
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1.6.7 Proposition. If a space is connected and locally arcwise connected, it is arcwise connected. In
particular, a space locally homeomorphic to R™ is connected iff it is arcwise connected.

Proof. Fix x € S. The set
A ={y € S|y can be connected to x by an arc }

is nonempty and open since S is locally arcwise connected. For the same reason, S\ A is open. Since S is
connected we must have S\A = &; thus, A = S, that is, S is arcwise connected. |

Intermediate Value Theorem. Connectedness provides a general context for this theorem learned in
calculus.

1.6.8 Theorem (Intermediate Value Theorem). Let S be a connected space and f: S — R be continuous.
Then [ assumes every value between any two values f(u) and f(v).

Proof. Suppose f(u) < a < f(v) and f does not assume the value a. Then the set U = {ug | f(up) < a}
is both open and closed in S. [ |

An alternative proof uses the fact that f(.S) is connected in R and therefore is an interval.
Miscellaneous Properties of Connectedness.
1.6.9 Proposition. Let S be a topological space and B C S be connected.

(i) If BC A C cl(B), then A is connected.

(ii) If By is a family of connected subsets of S and B, N B # &, then
BU <U Ba>

Proof. If A is not connected, A is the disjoint union of U; N A and U; N A where U; and U, are open in
S. Then from Proposition 1.1.9(i), Uy N B # & and Us N B # &, so B is not connected. We leave (ii) as an
exercise. -

is connected.

1.6.10 Corollary. The components of a topological space are closed. Also, S is the disjoint union of its
components. If S is locally connected, the components are open as well as closed.

1.6.11 Proposition. Let S be a first countable compact Hausdorff space and {A,} a sequence of closed,
connected subsets of S with A,, C A,_1. Then A = ﬂn21 A,, 1s connected.

Proof. As S is normal, if A is not connected, A lies in two disjoint open subsets U; and Us of S. If
A, N(S\Uy)N(S\Usz) # @ for all n, then there is a sequence u,, € A, N(S\Uy) N (S\Uz) with a subsequence
converging to u. As A,, S\Uy, and S\U; are closed sets, u € AN (S\U;) N (S\Uz), a contradiction. Hence
some A,, is not connected. [ |

Simple Connectivity. This notion means, intuitively, that loops can be continuously shrunk to points.

1.6.12 Definition. Let S be a topological space and c : [0,1] — S a continuous map such that c(0) =
c(l)y=peS. We call ¢ a loop in S based at p. The loop ¢ is called contractible if there is a continuous
map H :[0,1] x [0,1] — S such that H(t,0) = ¢(t) and H(0,s) = H(1,s) = H(t,1) = p for all t € [0,1].
(See Figure 1.6.1.)
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FI1GURE 1.6.1. The loop c is contractible

We think of ¢s(t) = H(t,s) as a family of arcs connecting ¢y = ¢ to ¢1, a constant arc; see Figure 1.6.1.
Roughly speaking, a loop is contractible when it can be shrunk continuously to p by loops beginning and
ending at p. The study of loops leads naturally to homotopy theory. In fact, the loops at p can, by successively
traversing them, be made into a group called the fundamental group; see Exercise 1.6-6.

1.6.13 Definition. A space S is simply connected if S is connected and every loop in S is contractible.

In the plane R? there is an alternative approach to simple connectedness, by way of the Jordan curve the-
orem; namely, that every simple (nonintersecting) loop in R? divides R? (divides means that its complement
has two components). The bounded component of the complement is called the interior, and a subset A of
R? is simply connected iff the interior of every loop in A lies in A.

Alexandroff’s Theorem. We close this section with an optional theorem sometimes used in Riemannian
geometry (to show that a Riemannian manifold is second countable) that illustrates the interplay between
various notions introduced in this chapter.

1.6.14 Theorem (Alexandroff’s Theorem). An arcwise connected locally compact metric space is separa-
ble and hence is second countable.

Proof (Pfluger [1957]). Since the metric space M is locally compact, each m € M has compact neighbor-
hoods that are disks. Let m € M and denote by r(m) the least upper bound of the radii of such disks. If
r(m) = oo, since every metric space is first countable, M can be written as a countable union of compact
disks. But since each compact metric space is separable (Exercise 1.5-2), these disks and also their union will
be separable, and so the proposition is proved in this case. If there is some mg € M such that r(mg) < oo,
then since r(m) < r(mg) + d(m, mg), we see that r(m) < oo for all m € M. By the preceding argument, if
we show that M is a countable union of compact sets, the proposition is proved. Then second countability
will follow from Exercise 1.2-3.
To show that M is a countable union of compact sets, define the set G,, by

Gm={m' € M|dm',m)<r(m)/2}.
These G, are compact neighborhoods of m. Fix m(0) € M and put Ag = G,,(0), and, inductively, define

Appr = J{Gm me A, ).

Since M is arcwise connected, every point m € M can be connected by an arc to m(0), which in turn is
covered by finitely many G,,. This shows that

M = UAn.

n>0



<

30 1. Topology

Since Ag is compact, all that remains to be shown is that the other A, are compact. Assume inductively
that A,, is compact and let {m(i)} be an infinite sequence of points in A, ;1. There exists m(i)’ € A,, such
that m(i) € Gy, - Since A, is assumed to be compact there is a subsequence m(ix)’ that converges to a
point m’ € A,. But

A

- 2
/

IN

2 2

Hence for iy big enough, all m(ix) are in the compact set
{neM|dn,m)<3r(m)/2},

so m(iy) has a subsequence converging to a point m. The preceding inequality shows that m € A, ;1. By

the Bolzano—Weierstrass theorem, A, is compact. [ |
Exercises
1.6-1. Let M be a topological space and H : M — R continuous. Suppose e € int H(M). Then show

H~Y(e) divides M; that is, M\ H ~!(e) has at least two components.
1.6-2. Let O(3) be the set of orthogonal 3 x 3 matrices. Show that O(3) is not connected and that it has

two components.

1.6-3. Show that S x T is connected (locally connected, arcwise connected, locally arcwise connected) iff
both S and T are.
HinT: For connectedness write

§x T = IS x {t3) U ({s0} x T)

teT
for sy € S fixed and use Proposition 1.6.9(ii).
1.6-4. Show that S is locally connected iff every component of an open set is open.

1.6-5. Show that the quotient space of a connected (locally connected, arcwise connected) space is also
connected (locally connected, arcwise connected).

HiNT: For local connectedness use Exercise 1.6-4 and show that the inverse image by 7 of a component of
an open set is a union of components.

1.6-6. (i) Let S and T be topological spaces. Two continuous maps f,g: T — S are called homotopic
if there exists a continuous map F : [0,1] x T"— S such that F(0,t) = f(¢t) and F(1,t) = g(t) for all
t € T. Show that homotopy is an equivalence relation.

(ii) Show that S is simply connected if and only if any two continuous paths ¢1, ¢z : [0,1] — S satisfying
¢1(0) = ¢2(0), ¢1(1) = ¢2(1) are homotopic, via a homotopy which preserves the end points, that is,
F(5,0) = ¢1(0) = ¢2(0) and F(s,1) = c1(1) = c2(1).

(iii) Define the composition c; * ca of two paths c1, ¢z : [0,1] — S satistying ¢1 (1) = ¢2(0) by

c1(2t) ifte1,1/2;
(c1%c2)(t) =
(2t —1) ifte1/2,1].

Show that this composition, when defined, induces an associative operation on endpoints preserving
homotopy classes of paths.
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(iv) Fix sp € S and consider the set m1(5, sg) of endpoint fixing homotopy classes of paths starting and
ending at so. Show that 71 (S, sg) is a group: the identity element is given by the class of the constant
path equal to sg and the inverse of ¢ is given by the class of ¢(1 —t) .

(v) Show that if S is arcwise connected, then (S, so) is isomorphic to 71 (S, s) for any s € S. m1(S) will
denote any of these isomorphic groups.

(vi) Show that if S is arcwise connected, then S is simply connected iff w1 (S) = 0.

1.7 Baire Spaces

The Baire condition on a topological space is fundamental to the idea of “genericity” in differential topology
and dynamical systems; see Kelley [1975] and Choquet [1969] for additional information.

1.7.1 Definition. Let X be a topological space and A C X a subset. Then A is called residual if A is the
intersection of a countable family of open dense subsets of X. A space X is called a Baire space if every
residual set is dense. A set B C X is called a first category set if

BcC UCn,

n>1
where C,, is closed with int(C,) = &. A second category set is a set which is not of the first category.

A set B C X is called nowhere dense if int(cl(B)) = &, so that X\ A is residual iff A is the union of a
countable collection of nowhere dense closed sets, that is, iff X\ A is of first category. Clearly, a countable
intersection of residual sets is residual.

In a Baire space X, if

X=|]JCn

n>1

where C,, are closed sets, then int(C),) # @ for some n. For if all int(C,,) = &, then O,, = X\C,, are open,

dense, and we have
Non=X\|JCn=2

n>1 n>1
contradicting the definition of Baire space. In other words, Baire spaces are of second category.

1.7.2 Proposition. Let X be a locally Baire space; that is, each point x € X has a neighborhood U
such that cl(U) is a Baire space. Then X is a Baire space.

Proof. Let A C X be residual, A = (),,~; On, where cl(O,) = X . Then if U is an open set for which
cl(U) is a Baire space, from the equality AN cl(U) =(),,>;(0On Ncl(U)) and the density of O, Ncl(U) in
cl(U) (if u € cl(U) and v € O, O open in X, then ONU # @, and therefore O NU N O,, # @), it follows
that ANcl(U) is residual in cl(U) hence dense in cl(U), that is, cl(A) Ncl(U) = cl(U) so that cl(U) C cl(A).
Therefore X = cl(A). [ ]

1.7.3 Theorem (Baire Category Theorem). Complete pseudometric and locally compact spaces are Baire
spaces.

Proof. Let X be a complete pseudometric space. Let U C X be open and

A:ﬂOn

n>1
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be residual. We must show U N A # @. Since cl(0,,) = X,
UNno, #9

for all n > 1, and so we can choose a disk of diameter less than one, say Vi, such that cl(Vy) € U N O;.
Proceed inductively to obtain
cd(V,) cUNO,NV,_1,

where V,, has diameter < 1/n. Let z,, € cl(V},). Clearly {z,} is a Cauchy sequence, and by completeness
has a convergent subsequence with limit point . Then

€ () (V)

n>1

and so
Uunf()0n]| #e;
n>1

that is, A is dense in X.
If X is a locally compact space the same proof works with the following modifications: V,, are chosen to

be relatively compact open sets, and {z,} has a convergent subsequence since it lies in the compact set
cl(V1). [ |

To get a feeling for this theorem, let us prove that the set of rationals Q cannot be written as a countable
intersection of open sets. For suppose Q = (1,,~; On. Then each O, is dense in R, since Q is, and so
C,, = R\O, is closed and nowhere dense. Since

RU [ |JCn

n>1

is a complete metric space (as well as a locally compact space), it is of second category, so Q or some C,
should have nonempty interior. But this is impossible.

The notion of category can lead to interesting restrictions on a set. For example in a nondiscrete Hausdorff
space, any countable set is first category since the one-point set is closed and nowhere dense. Hence in such
a space every second category set is uncountable. In particular, nonfinite complete pseudometric and locally
compact spaces are uncountable.

Exercises
1.7-1. Let X be a Baire space. Show that

(i) X is a second category set;
(ii) if U C X is open, then U is Baire.

1.7-2. Let X be a topological space. A set is called an F, if it is a countable union of closed sets, and is
called a Gg if it is a countable intersection of open sets. Prove that the following are equivalent:

(i) X is a Baire space;
(ii) any first category set in X has a dense complement;

(iii) the complement of every first category F,-set is a dense Gs-set;
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(iv) for any countable family of closed sets {C),} satisfying

X={]c,

n>1

the open set

U int(C,,)

n>1

is dense in X.

HINT: First show that (ii) is equivalent to (iv). For (ii) implies (iv), let U, = C,\int(C)) so that
U,>1 Uy is a first category set and therefore X\ | J,,~, Uy is dense and included in |J,,~ int(C),). For
the converse, assume X is not Baire so that A = (1,~, U, is not dense, even though all U,, are open
and dense. Then a
X=cdAU{X\U, |n=12,...}.
Put
Fo =cl(A), F,=X\U,,

and show that int(F;,) = int(cl(A)) which is not dense.

o 1.7-3. Show that there is a residual set E in the metric space C([0,1],R) such that each f € E is not
differentiable at any point. Do this by following the steps below.

(i) Let E. denote the set of all f € C([0,1],R) such that for every x € [0, 1],

. f@+h)— f(z)
dlam{f

€
2

<|h|<£}>1

for € > 0. Show that E. is open and dense in C([0,1],R).

HINT: For any polynomial p € C([0,1],R), show that p + 6 cos(kz) € E. for § small and dk large.
(ii) Show that E' =), E1/, is dense in C([0, 1], R).

HinT: Use the Baire category theorem.

(iii) Show that if f € E, then f has no derivative at any point.

o 1.7-4. Prove that in a complete metric space (M, d) with no isolated points, no countable dense set is a
Gs-set.
HINT: Suppose E = {x1,22,...} is dense in M and is also a G's set, that is, £ = [, V,, with V,, open,
n=1,2,.... Conclude that V,, is dense in M. Let W,, = V,,\{«1,...,x,}. Show that W,, is dense in M and
that (,,.o Wn = @. This contradicts the Baire property.
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Banach Spaces and Differential Calculus

Manifolds have enough structure to allow differentiation of maps between them. To set the stage for these
concepts requires a development of differential calculus in linear spaces from a geometric point of view. The
goal of this chapter is to provide this perspective.

Perhaps the most important technical theorem for later use is the Implicit Function Theorem. A fairly
detailed exposition of this topic will be given with examples chosen that are motivate by later needs in
manifold theory. The basic language of tangents, the derivative as a linear map, and the chain rule, while
elementary, are important for developing geometric and analytic skills needed in manifold theory.

The main goal is to develop the theory of finite-dimensional manifolds. However, it is instructive and effi-
cient to do the infinite-dimensional theory simultaneously. To avoid being sidetracked by infinite-dimensional
technicalities at this stage, some functional analysis background and other topics special to the infinite-
dimensional case are presented in supplements. With this arrangement, readers who wish to concentrate on
the finite-dimensional theory can do so with a minimum of distraction.

2.1 Banach Spaces

It is assumed the reader is familiar with the concepts of real and complex vector spaces. Banach spaces are
vector spaces with the additional structure of a norm that defines a complete metric space. While most of
this book is concerned with finite-dimensional spaces, much of the theory is really no harder in the general
case, and the infinite-dimensional case is needed for certain applications. Thus, it makes sense to work in the
setting of Banach spaces. In addition, although the primary concern is with real Banach spaces, the basic
concepts needed for complex Banach spaces are introduced with little extra effort.

Normed Spaces. We begin with the notion of a normed space; that is, a space in which one has a length
measure for vectors.

2.1.1 Definition. A norm on a real (complex) vector space E is a mapping from E into the real numbers,
|- : E—=R; e |e|, such that

N1. |le|| >0 for alle € E and |le| = 0 implies e = 0 (positive definiteness);

N2. |[Xe| = |A| |le|| for all e € E and A € R (homogeneity);
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N3. Jler +ea| < |ler|| + |le2]] for all e1,es € E (triangle inequality).

The pair (E, || - ||) is called a normed space. If there is no danger of confusion, we sometimes just say “E
is a mormed space.”
To distinguish different norms, different notations are sometimes used, for example,

-l WMl (11 ete.,
for the norm.
Note that N2 implies that the length of the zero vector is zero: ||0]| = 0.
Example. Euclidean space R™ with the standard, or Euclidean, norm
2]l = v/ ((@1)? + - + (2)?),
1

where z = (xt,...,2") € R", is a normed space. Proving that this norm satisfies the triangle inequality is
probably easiest to do using properties of the inner product, which are considered below. Another norm on
the same space is given by

n
el = I,
i=1

as may be verified directly. ¢
The triangle inequality N3 has the following important consequence:
[lexll = lleall | < llex —eaf|  for all e1, ez € E,

which is proved in the following way:

leall = llex + (e2 — ex)[| < [lex ][ + [lex — ez,
lell = llez + (ex — e2)[| < leal + [lex — eal],
so that both ||ea|| — ||e1|| and |le1]| — ||e2]] are smaller than or equal to ||e; — ea|.

Seminormed Spaces. If N1 in Definition 2.1.1 is replaced by
N1'. |le|| >0 for all e € E,

the mapping || || : E — R is called a seminorm. For example, the function defined on R? by ||(z,y)| = ||
is a seminorm.

Inner Product Spaces. These are spaces in which, roughly speaking, one can measure angles between
vectors as well as their lengths.

2.1.2 Definition. An inner product on a real vector space E is a mapping (-,-) : Ex E — R, which we
denote (e, eq) — (e, es) such that

I1. {(e,e1 +e2) = (e, e1) + (e, e2);

I2. (e,aei) = ale,e1) for all o € R;
I3. (e1,es) = (ea,€1);
I4. (

e,e) >0 and (e,e) =0 iff e =0.
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The standard inner product on R™ is

n
<l‘7 y> = Z TiYis
i=1

and I1-14 are readily checked.
For vector spaces over the complex numbers, the definition is modified slightly as follows.

2.1.2' Definition. A complex inner product or a Hermitian inner product on a complex vector
space K is a mapping

(,)V:ExE—C
such that the following conditions hold:
CI1. (e,e; +e2) ={e,e1) + (e,e2);

CI2. (ae,e1) = ale,er);

CI3. (ey,eq) = (ea,e1) (so (e, e) is real);
CI4. (e,e) >0 and (e,e) =0 iff e = 0.

These properties are to hold for all e,e;,e5 € E and a € C; Z denotes the complex conjugate of the
complex number z. Note that CI2 and CI3 imply that (e1, aes) = @ (e, ea) . Properties CI1—CI3 are also
known in the literature under the name sesquilinearity. As is customary, for a complex number z we shall
denote by

z+z Z2—Z _\1/2
— I = — =
Rez 5 lmz 57 |z| = (22)

its real and imaginary parts and its absolute value.
Let C" = C x --- x C be complex n-space whose points are denoted by z = (z!,...,2"). The standard
inner product on C" is defined by

n
(z,w) = Z ',
i=1

and CI1-CI4 are readily checked. Also C™ is a normed space with

n
BRSO
=1

In R™ or C", property N3 is a little harder to check directly. However, as we shall show in Proposition 2.1.4,
N3 follows from 11-14 or CI1-CI4.

In a (real or complex) inner product space E, two vectors eq,es € E are called orthogonal and we write
e1 L ey provided (e, es) = 0. For a subset A C E, the set A+ defined by

At ={ccE|(e,z)=0forallzc A}

is called the orthogonal complement of A. Two sets A, B C E are called orthogonal and we write A | B
if (A, B) = 0; that is, ey L ey for all e; € A and es € B.
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Cauchy—Schwartz Inequality. This inequality will be a critical way to estimate inner products in terms
of lengths.

2.1.3 Theorem (Cauchy—Schwartz Inequality). In a (real or complex) inner product space,
[(ex, e)] < {eryen) " (en,e2)2.
Equality holds iff ey, es are linearly dependent.
Proof. It suffices to prove the complex case. If o, 8 € C, then
0 < (aey + Bey, aer + Bea) = |af® (e1, 1) + 2Re(af (e1, e2)) + |8]7 (ea, €2) .

If we set o = (eq, e3), and 8 = — (e1, e2), then this becomes

0 < (ea,e2)” (e1, 1) — 2 (ea, e2) | (e, e2)|* + | (e, e2)|* (e2, e2)

and so

(e2,e2) [{e1, €2)|* < (e2,e2)” (en, e1) .

If e5 = 0, equality results in the statement of the proposition and there is nothing to prove. If es # 0, the term
(e2, €2) in the preceding inequality can be cancelled since (es, €2) > 0 by CI4. Taking square roots yields the
statement of the proposition. Finally, equality results if and only if aey 4+ fea = (ea,e3) e1 — (e1,e2) ea =0
by CI4. [ |

2.1.4 Proposition. Let (E,(-,-)) be a (real or complex) inner product space and set ||e|| = (e, e>1/2. Then
(E, || - ) is a normed space.

Proof. N1 and N2 are straightforward verifications. As for N3, the Cauchy—Schwartz inequality and the
obvious inequality

Re((e1, €2)) < [{e1, e2)|
imply

ler + e2* = flex|” + 2Re((e1, e2)) + lleall” < flexl|* + 2l{ex, e2)] + [leal|”
2 2 2
<llexll” + 2fleall le2ll + lle2lI” = Cllexll + [le2]]) -

Polarization and the Parallelogram Law. Some other useful facts about inner products are given
next.

2.1.5 Proposition. Let (E, (-,-)) be an inner product space and || - || the corresponding norm. Then
(i) (Polarization)
4{er,ez) = ller + eaf|* = [lex — ez,
for E real, while
4(erse) = ler + eal® = ller — eal|* +iller +iesl|* — ifler — ez,

if E is complex.
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(ii) (Parallelogram law)
2l[eal|* + 2[lez]|* = [ler + e2]|* + [lex — ea|*.
Proof. (i) In the complex case, we manipulate the right-hand side as follows
llex + e2]|* — llex — eal|* + iller + ies||* — iller — ies |
= [lex]|” + 2Re((e1, €2)) + fle2]”
— [lex|* + 2 Re({ex, €2)) — [lea]|”
+iller]|* + 2i Re((e1, ies)) + il[es |
— illea]|* + 2i Re((e1, ies)) — illes|”
= 4Px6(<617 62>) + 47 Re(—z <61, €2>)
= 4Re((e1,€2)) + 4iIm({e1, e2))
=4 <61, €2> .
The real case is proved in a similar way.
(ii) We manipulate the right hand side:
lex + e* + fler — eal|* = [lex|” +2Re((e1, 2)) + [leal|* + [lex
— 2Re((e1, e2)) + [leal)?
= 2ex [* + 2fea|*

Not all norms come from an inner product. For example, the norm

n
el =) |2"]
i=1
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is not induced by any inner product since this norm fails to satisfy the parallelogram law (see Exercise 2.1-1

for a discussion).

Normed Spaces are Metric Spaces. We have seen that inner product spaces are normed spaces. Now

we show that normed spaces are metric spaces.

2.1.6 Proposition. Let (E,||-||) be a normed (resp. a seminormed) space and define d(e1,e2) = ||e1 —ea||.

Then (E,d) is a metric (resp. pseudometric) space.
Proof. The only non-obvious verification is the triangle inequality for the metric. By N3, we have

d(e1,e3) = [ler —e3| = [[(e1 — e2) + (e2 — e3)[| < [ler — ezl + [le2 — es]
= d(el, 62) + d(eg, 63).

Thus we have the following hierarchy of generality:

MORE GENERAL —

inner
product  C
spaces

normed metric c topological
spaces spaces spaces

«— MORE SPECIAL
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Since inner product and normed spaces are metric spaces, we can use the concepts from Chapter 1. In
a (semi)normed space, N3 and N2 imply that the maps (ej,e2) — e1 + €2, (a,e) — ae of EX E — E
and C x E — E, respectively, are continuous. Hence for ¢y € E, and oy € C (ap # 0) fixed, the mappings
e — ep+e, e — ape are homeomorphisms. Thus, U is a neighborhood of the origin iff e+ U = {e4+z |z € U }
is a neighborhood of e € E. In other words, all the neighborhoods of e € E are sets that contain translates
of disks centered at the origin. This constitutes a complete description of the topology of a (semi)normed
vector space (E, || -]) .

Finally, note that the inequality |[|e1| — |le2]|| < |lex — ez2]| implies that the (semi)norm is uniformly
continuous on E. In inner product spaces, the Cauchy—Schwartz inequality implies the continuity of the
inner product as a function of two variables.

Banach and Hilbert Spaces. Now we are ready to add the crucial assumption of completeness.

2.1.7 Definition. Let (E,| - ||) be a normed space. If the corresponding metric d is complete, we say
(E,||1) is a Banach space. If (E, (-,-)) is an inner product space whose corresponding metric is complete,
we say (E, (-,-)) is a Hilbert space.

For example, it is proven in books on advanced calculus that R” is complete. Thus, R™ with the standard
norm is a Banach space and with the standard inner product is a Hilbert space. Not only is the standard
norm on R™ complete, but so is the nonstandard one

n

el = l").

i=1

To see this, it is enough to note that |||z,, — z||| — 0 iff ¢, — 2% in R. However, this nonstandard norm is
equivalent to the standard one in the following sense.

2.1.8 Definition. Two norms on a vector space E are equivalent if they induce the same topology on E.

2.1.9 Proposition. Two norms || - || and ||| - ||| on E are equivalent iff there is a constant M such that,
for all e € E,

1
27 elll < llell < Mlle]]].
Proof. Let
Bi(x)={yeE||ly—zl| <r}, Bix)={yecE|||ly—=l|<r}

denote the two closed disks of radius r centered at z € E in the two metrics defined by the norms || - || and
[I] - ||, respectively. Since neighborhoods of an arbitrary point are translates of neighborhoods of the origin,
the two topologies are the same iff for every R > 0, there are constants My, My > 0 such that

B3, (0) € BR(0) C B3, (0).

The first inclusion says that if |||z||| < My, then ||z|| < R, that is, if |||z]|| < 1, then ||z|| < R/M;. Thus, if
e # 0, then

IN

- )
lell[ll [llelll = My

that is, ||e]| < (R/Mj)||le||| for all e € E. Similarly, the second inclusion is equivalent to the assertion that
(R/Ms)||lell] < |le]| for all e € E. Thus the two topologies are the same iff there exist constants Ny > 0,
N5 > 0 such that

Nullelll < llell < Nalflell

for all e € E. Taking M = max(Na,1/Ny) gives the statement of the proposition. [ |
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Products of Normed Spaces. If E and F are normed vector spaces, the map
[]:ExF—R

defined by
I(es el = llell + 1€l

is a norm on E x F inducing the product topology. Equivalent norms on E x F are

9.1/2
(e,¢) > max([le], [[¢]) and (e, e’) — ([le]® +[le/[|") "

The normed vector space E x F is usually denoted by E & F and called the direct sum of E and F. Note
that E @ F is a Banach space iff both E and F are. These statements are readily checked.

Finite Dimensional Spaces. In the finite dimensional case equivalence and completeness are automatic,
according to the following result.

2.1.10 Proposition. Let E be a finite-dimensional real or complex vector space. Then
(i) there is a norm on E;
(i1) all norms on E are equivalent;

(i) all norms on E are complete.

Proof. Let eq,...,e, denote a basis of E, where n is the dimension of E.

(i) A norm on E is given, for example, by

n ) n )
|||e|||:Z|al|, Whereezz:azei.
i=1 i=1

(ii) Let || - || be any other norm on E. If

n n
e= E a'e; and f= E be;,
i—1 i=1

the inequality

n
el = AT < lle = FIl < Y la* = b [lea]
i=1
< : Loah)y = (bt
< o (e} ll@ ™) = 81,07
shows that the map
n
(..., 2") €eR" — Zx’ei € [0, 00]
i=1
is continuous with respect to the ||| - |||-norm on R™ (use C™ in the complex case). Since the unit ball in the
[I| - ||| norm, namely S = {x € R™ | |||z]|| = 1} is closed and bounded, it is compact. The restriction of this

map to S is a continuous, strictly positive function, so it attains its minimum M; and maximum M on S;
that is,

0< M, < < M,

n
g z'e;
i=1
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for all (x!,...,2") € R" such that |||(z!,...,2")||| = 1. Thus, for all (z!,...,2") € R", we have

n
E z'e;

i=1

M1|||($177$n)\|\§ §M2|||($1,71‘n)|||,

that is, Mi||le||] < |le]| < Ma||e]||, where e = Y"1 | z'e;. Taking M = max(Ms,1/M;), Proposition 2.1.9
shows that ||| - ||| and || - || are equivalent norms.

(iii) It is enough to observe that

n
(z*,...,2") € R" Hinei cE
i=1

is a norm-preserving map (i.e., an isometry) between (R™, ||| - [||) and (E, ||| -|]]). -

The unit spheres for the three common norms on R? are shown in Figure 2.1.1.

yl 3 yl

I s AN
NI
max(x,y) == Ll + Iyl

FIGURE 2.1.1. The unit spheres for various norms

The foregoing proof shows that compactness of the unit sphere in a finite-dimensional space is crucial.
This fact is exploited in the following supplement.

SUPPLEMENT 2.1A
A Characterization of Finite-Dimensional Spaces

2.1.11 Proposition. A normed vector space is finite dimensional iff it is locally compact iff the closed
unit disk is compact.

Proof. If E is finite dimensional, every neighborhood of the origin contains a compact neighborhood,
namely a closed disk (the closed disk is homeomorphic to a closed and bounded set in R™, so is compact
by the Heine-Borel theorem; see the proof of Proposition 2.1.10(ii) and (iii)). This shows that E is locally
compact.

Conversely, if the closed unit disk B1(0) C E is compact, there is a finite covering of B;(0) by open discs
of radius 1/2, say { Dy/a2(%;) | i =1,...,n}. Let F = span{z1,...,2,}. Since F is finite dimensional, it is
homeomorphic to C* (or R¥) for some k& < n, and thus complete. Being a complete subspace of the metric
space (E, || -||), it is closed. We claim that F = E.

If not, there would exist v € E, v € F. Since F = cl(F), the number d = inf{ |[v —¢|| | e € F } is strictly
positive. Let » > d > 0 be such that B,(v) N F # @. The set B,(v) N F is closed and bounded in the
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finite-dimensional space F, so is compact. Since inf{|jv —¢|| | e € F} = inf{|jv —¢| | e € B.(v) NF } and
the continuous function defined by e € B, (v) NF — |[v — e|| € |0, 00 attains its minimum, there is a point
eo € Br(v) NF such that d = ||v — eg]|. But then there is a point x; such that

v — € - 1
0 .. z
o —eol T[] T2
so that
1 d
lv—eo —lv—eollail| < Sllv—eoll =3

Since e + [|[v — egllz; € F, we necessarily have that ||v —eg — ||[v — egl|z;]] > d, which is a contradiction. W

2.1.12 Examples.

A. Let X be aset and F a normed vector space. Define the set

B(X,F):{f:X—>F

sup (0] < o0 .
reX
Then B(X,F) is easily seen to be a normed vector space with respect to the sup-norm,

[flloe = supgex [If ()]l

This is the topology of uniform convergence. We prove that if F is complete, then B(X,F) is a Banach
space. Let {f,} be a Cauchy sequence in B(X,F), that is,

|| fro — finlloo <& for m,m > N(e).

Since for each z € X, [[f(2)]] < ||f]lco, it follows that {f,(x)} is a Cauchy sequence in F, whose limit
we denote by f(x). In the inequality ||fn(z) — fm(2)|| < € for all n,m > N(e), let m — oo and get
[I[fn(x) — f(2)]| <eforalln > N(e) and all z € X, that is, ||f, — f|leoc < & for n > N(e). This shows that
fn—f € B(X,F), and hence f € B(X,F), and also that || f,, — f|lcc — 0 as n — oo.

As a particular case, one obtains the Banach space ¢, consisting of all bounded real (or complex) sequences
{a,} with the norm, also called the sup-norm, defined by

[{an}Hloo = supy, |an|.

B. If X is a topological space, the space
CB(X,F)={f:X — F| f is continuous, f € B(X,F) }

is closed in B(X,F) since the uniform limit of continuous functions is continuous. Thus, if F is Banach, so
is CB(X,F). In particular, if X is a compact topological space and F is a Banach space, then

C(X,F)={f:X — F| f continuous },
is a Banach space. For example, the vector space
C(]0,1],R) ={ f:[0,1] = R | f is continuous }

is a Banach space with the norm || f||o = sup{|f(x)| | =z € [0,1] }.
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C. (For readers with some knowledge of measure theory.) Consider the space of real valued square inte-
grable functions defined on an interval [a,b] C R, that is, functions f that satisfy

b
/ 1 (2)|2d < .

The function

b 1/2
n-n:f~»</|fun%M>

is, strictly speaking, not a norm on this space; for example, if

@) = {O for x # a,

1 forxz=a,

then || f]| = 0, but f # 0. However, || - || does become a norm if we identify functions which differ only on
a set of measure zero in [a,b], that is, which are equal almost everywhere. The resulting vector space of
equivalence classes [f] will be denoted L?[a,b]. With the norm of the equivalence class [f] defined as

b 1/2
mm=</uuﬁm),

L?[a,b] is an (infinite-dimensional) Banach space. The only nontrivial part of this assertion is the complete-
ness; this is proved in books on measure theory, such as Royden [1968]. As is customary, [f] is denoted
simply by f. In fact, L?[a, b] is a Hilbert space with

b
<f79>=/ f(z)g(x) d.

If we use square integrable complex-valued functions we get a complex Hilbert space L?([a, b],C) with

b
mm=/f@@am.

D. The space LP([a,b]) may be defined for each real number p > 1 in an analogous fashion to L>[a, b].
Functions f : [a,b] — R satisfying

b
/ |f(x)Pdz < oo

are considered equivalent if they agree almost everywhere. The space LP([a,b]) is then defined to be the
vector space of equivalence classes of functions equal almost everywhere. The map

b 1/p
[ llp: LPla,b] = R given by [f]ﬂ(/ If(w)lpdff)

defines a norm, called the L? —norm, which makes L?[a,b] into an (infinite-dimensional) Banach space.
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E. Denote by C([a, b], R) the set of continuous real valued functions on [a, b]. With the L'-norm, C([a, b], R)
is not a Banach space. For example, the sequence of continuous functions f,, shown in Figure 2.1.2 is a Cauchy
sequence in the L'-norm on C([0,1],R) but does not have a continuous limit function. On the other hand,
with the sup norm

£l = sup |f(z)l,
z€[0,1]

C([0,1]) is complete, that is, it is a Banach space, as in Example B. ¢
y
y=5®

1 777777 |
|
|
|
|
!
|

x
172 172+ 1/n

FIGURE 2.1.2. f, converges in L*, but not in C.

Quotients. As in the case of both topological spaces and vector spaces, quotient spaces of normed vector
spaces play a fundamental role.

2.1.13 Proposition. Let E be a normed vector space, F a closed subspace, E/F the quotient vector space,

and 7 : E — E/F the canonical projection defined by w(e) = [e] = e+ F € E/F.
(i) The mapping || - || : E/F — R defined by
lfe]ll = inf{[le +vf| [ v € F'}
is a norm on E/F.

(ii) 7 is continuous and the topology on E/F defined by the norm coincides with the quotient topology. In
particular, ™ is open.

(iii) If E is a Banach space, so is E/F.
Proof. (i) Clearly |/[e]]] > 0 for all [¢] € E/F and
0]l = inf{ [lvf| | v € F} = 0.

If ||[e]|l = 0, then there is a sequence {v,,} C F such that

lim |je + v,|| =0.
Thus lim,, . v, = —e and since F is closed, e € F; that is, [e] = 0. Thus N1 is verified and the

necessity of having F closed becomes apparent. N2 and N3 are straightforward verifications.

IThis quotient is the same as the quotient in the sense discussed in Chapter 1, with the equivalence relation being u ~ v iff
u —v € F, so that the equivalence class of u is the set u + F.
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(i) Since ||[e]]] < |le]|, it is obvious that lim,, . €, = e implies

nh_)rr;<> m(e,) = nler;o[en] = le]
and hence 7 is continuous. Translation by a fixed vector is a homeomorphism. Thus to show that
the topology of E/F is the quotient topology, it suffices to show that if [0] € U and 7=*(U) is a
neighborhood of zero in E, then U is a neighborhood of [0] in E/F. Since 7—!(U) is a neighborhood
of zero in E, there exists a disk D,.(0) C 7#=1(U). But then 7(D,.(0)) C U and 7(D,(0)) = {[e] | e €
D, (0)} ={le] | |l[e]ll <}, so that U is a neighborhood of [0] in E/F.

(iii) Let {[es]} be a Cauchy sequence in E/F. We may assume without loss of generality that ||[e,,] — [en+1]]] <
1/2". Inductively, we find points €], € [e,] such that |le}, — e, ;| < 1/2". Thus {e,,} is Cauchy in E
so0 it converges to, say, e € E. Continuity of 7 implies that lim,,_[e,] = [€]. [ |

The codimension of F in E is defined to be the dimension of E/F. We say F is of finite codimension if
E/F is finite dimensional.

2.1.14 Definition. The closed subspace F of the Banach space E is said to be split, or complemented,
if there is a closed subspace G C E such that E=F & G.

The relation between split subspaces and quotients is simple: the projection map of E to G induces, in
a natural way, a Banach space isomorphism of E/F with G. We leave this as a verification for the reader.
One should note, however, that the quotient E/F is defined independent of any choice of split subspace and
that, accordingly, the choice of G is not unique.

SUPPLEMENT 2.1B
Split Subspaces

Definition 2.1.14 implicitly asks that the topology of E coincide with the product topology of F & G. We
shall show in Supplement 2.2C that this topological condition can be dropped; that is, the closed subspace
F is split iff E is the algebraic direct sum of F and the closed subspace G.

As we noted above, if E = F @ G then G is isomorphic to E/F. However, F need not split for E/F to
be a Banach space, as we proved in Proposition 2.1.13. In finite-dimensional spaces, any subspace is closed
and splits; however, in infinite dimensions this is false. For example, let E = LP(S!) and let

F={fecE|f(n)=0forn<0},

where
fy == [ @) 0as
C2r )
is the nth Fourier coefficient of f. Then F is closed in E, splits in E for 1 < p < oo by a theorem of M.
Riesz (Theorem 17.26 of Rudin [1966]) but does not split in E for p = 1 (Example 5.19 of Rudin [1973]).
The same result holds if E = C°(S!,C) and F has the same definition.

Another example worth mentioning is E = £°°, the Banach space of all bounded sequences, and F = ¢, the
subspace of £>° consisting of all sequences convergent to zero. The subspace F = ¢ is closed in E = £°°, but
does not split. However, cq splits in any separable Banach space which contains it isomorphically as a closed
subspace by a theorem of Sobczyk; see Veech [1971]. If every subspace of a Banach space is complemented, the
space must be isomorphic to a Hilbert space by a result of Lindenstrauss and Tzalriri [1971]. Supplement
2.2B gives some general criteria useful in nonlinear analysis for a subspace to be split. But the simplest
situation occurs in Hilbert spaces.
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2.1.15 Proposition. IfE is a Hilbert space and F a closed subspace, then B = FOFL. Thus every closed
subspace of a Hilbert space splits.

The proof of this theorem is done in three steps, the first two being important results in their own rights.
2.1.16 Theorem (Minimal Norm Elements in Closed Convex Sets). If C is a closed convex set in E, that
is, x,y € C and 0 <t <1 implies

tr+ (1 —t)y e C,
then there exists a unique ey € C' such that

lleoll = inf{{le] [ e € C'}.

Proof. Let vd = inf{|le| | e € C'} . Then there exists a sequence {e,} satisfying the inequality d <
llenl* < d+1/n; hence ||e,||* — d. Since (e, +e,,)/2 € C, C being convex, it follows that ||(e,,+e.,)/2]|* > d.
By the parallelogram law,

2 2

2
en en +emH

2 2
<d+1+d+1 d_l 1+1 )
2 n 2 2m “2\n m)’

that is, {e,} is a Cauchy sequence in E. Let lim, . €, = eg. Continuity of the norm implies that v/d =

2
en —emH

2

[\

lim,, . |len|| = |leo]], and so the existence of an element of minimum norm in C' is proved.
Finally, if fo is such that |leg|| = || fol| = V/d, the parallelogram law implies
2 2 2
eo — Jo 60‘ Jo eo + fo d d
= 2|2 + 2| L)) - <fif_d=o
2 2| ’ 2 2 =513 ’
that is, eqg = fo. [ |

2.1.17 Lemma. LetF CE, F #£ E be a closed subspace of E. Then there exists a nonzero element eg € E
such that eg L F'.

Proof. Letec E,e¢F.Theset e—F ={e—wv|v € F}is convex and closed, so by the previous lemma
it contains a unique element ¢y = ¢ — vy € e — F (so that vg € F) of minimum norm. Since e ¢ F, it follows
that eg # 0. We shall prove that ey L F.

Since eq is of minimal norm in e — F, for any v € F and A € C (resp., R), we have

lleoll = lle — voll < lle — vo + Av|| = |leo + Ao,

that is, 2Re(X (v, e0)) + |A[*[v]|? > 0.
If A =a({ep,v), a € R, a+#0, this becomes

al(v,e0)*(2 + allv]*) > 0

for all v € F and a € R, a # 0. This forces (v, eg) = 0 for all v € F, for otherwise, if —2/||v[|?> < a < 0, the
preceding expression would be negative. ]

Proof of Proposition 2.1.15. It is easy to see that F* is closed (Exercise 2.1-3). We now show that
F @ F' is a closed subspace. If

{enten} CFOFY, {en} CF, {e,} CF,
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the relation
l(en +€7) = (em + ) II” = llen — e 1? + llem — e, 12

shows that {e, + e/} is Cauchy iff both {e,} C F and {e/,} C F+ are Cauchy. Thus if {e,, + €/, } converges,
then there exist e € F, ¢/ € F* such that lim,, . e, = e, lim,,_., €/, = €. Thus

lim (e, +¢,)=c+e € FOFL

If F @ FL # E, then by the previous lemma there exists eg € E, g ¢ FOFL, e #0, ¢9 L (F @ FL).
Hence ey € F+ and e € F so that (eg,eq) = |leg||? = 0; that is, eg = 0, a contradiction. [ |

Exercises

¢ 2.1-1. Show that a normed space is an inner product space iff the norm satisfies the parallelogram law.
Conclude that if n > 2, [||z]|| = Y |«*| on R™ does not arise from an inner product.
HiNT: Use the polarization identities over R and C to guess the corresponding inner-products.

o 2.1-2. Let ¢y be the space of real sequences {a,} such that a,, — 0 as n — oo. Show that ¢ is a closed
subspace of the space ¢, of bounded sequences (see Example 2.1.12A) and conclude that ¢ is a Banach
space.

o 2.1-3. Let E; be the set of all C! functions f : [0,1] — R with the norm
1A= sup [f(z)]+ sup |f'(z)].
z€[0,1]

z€[0,1]
(i) Prove that E; is a Banach space.

(ii) Let Eq be the space of C° maps f : [0,1] — R, as in Example 2.1.12B. Show that the inclusion map
E; — Eg is compact; that is, the unit ball in E; has compact closure in Eg.

HINT: Use the Arzela—Ascoli theorem.

o 2.1-4. Let (E,(-,-)) be an inner product space and A, B subsets of E. Define the sum of A and B by
A+B={a+b|ac A, be B}. Show that:

(i) A C B implies B+ c A+
(ii

)

) J_

(iii) A+ = (Cl(span(A)))L (A+)*+ = cl(span(4));
)
)

is a closed subspace of E;

(iv) (A+B)t = A+ N B+; and
(v) (cl(span(A)) N cl(span(B)))* = A+ + B (not necessarily a direct sum).

o 2.1-5. A sequence {e,} C E, where E is an inner product space, is said to be weakly convergent to
e € E iff all the numerical sequences (v, e,,) converge to (v, e) for all v € E. Let

2(C) = {{an} a, € C and i lan|” < oo}

{{an}, {ba}) =D aubn

and put

Show that:



(i)
(i)
(iii)
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in any inner product space, convergence implies weak convergence;
/?(C) is an inner product space;

the sequence (1,0,0,...),(0,1,0,...),(0,0,1,...),... is not convergent but is weakly convergent to 0
in ¢2(C).

NoTE: ¢?(C) is in fact complete, so it is a Hilbert space. The ambitious reader can attempt a direct proof
or consult a book on real analysis such as Royden [1968].

2.1-6. Show that a normed vector space is a Banach space iff every absolutely convergent series is conver-

gent.

(A series Y0 |z, is called absolutely convergent if > | ||z, | converges.)

2.1-7. Let E be a Banach space and F; C Fy C E be closed subspaces such that Fy splits in E. Show
that F; splits in E iff F; splits in Fs.

2.1-8. Let F be closed in E of finite codimension. Show that if G is a subspace of E containing F', then
G is closed.

2.1-9. Let E be a Hilbert space. A set {e; }ics is called orthonormal if (e;, e;) = ;;, the Kronecker delta.
An orthonormal set {e;};cr is a Hilbert basis if cl(span{e;};cr) = E.

(1)

(i)

(iii)

Let {e;}icr be an orthonormal set and {e;(1),. .., €;(,)} be any finite subset. Show that

> Keceig)|” < lell®
j=1

for any e € E.

HiNT:

¢ =e— Z <€’€z‘(j)>€z‘(j)

j=1,....,n
is orthogonal to all {e;;) [j=1,...,n}.

Deduce from (i) that for any positive integer n, the set {i € I | |(e,e;)| > 1/n} has at most ne||?
elements. Hence at most countably many i € I satisfy (e, e;) # 0, for any e € E.

Show that any Hilbert space has a Hilbert basis.
HinT: Use Zorn’s lemma and Lemma 2.1.17.

If {e; }ier is a Hilbert basis in E, e € E, and {e;(;)} is the (at most countable) set such that <e, ei(j)> #0,
show that

S Keeig)|” = llel®
j=1

HiNT: If

= > (eeip) e

J=1,...,00

show that
(ei,e—€)y=0 foralliel

and then use maximality of {e;};cs.
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(v) Show that E is separable iff any Hilbert basis is at most countable.
HiNT: For the “if” part, show that the set

{i i

k=1

o = ap + ibg, where a; and by are rational}

is dense in E. For the “only if” part, show that since ||e; — e;]|? = 2, the disks of radius 1//2 centered
at e; are all disjoint. )

(vi) If E is a separable Hilbert space, it is algebraically isomorphic either with C™ or £2(C) (R" or ¢*(R)),
and the algebraic isomorphism can be chosen to be norm preserving.

2.2 Linear and Multilinear Mappings

This section deals with various aspects of linear and multilinear maps between Banach spaces. We begin
with a study of continuity and go on to study spaces of continuous linear and multilinear maps and some
related fundamental theorems of linear analysis.

Continuity and Boundedness. We begin by showing for a linear map, the equivalence of continuity
and possessing a certain bound.

2.2.1 Proposition. Let A: E — F be a linear map of normed spaces. Then A is continuous if and only
if there is a constant M > 0 such that

[|[Aellp < M|le|lg  for all e € E.
Proof. Continuity of A at eg € E means that for any r > 0, there exists p > 0 such that

A(eo + Bp(OE)) C Aey + B, (0p)
(O denotes the zero element in E and B,(0g) denotes the closed disk of radius s centered at the origin in
E). Since A is linear, this is equivalent to: if |le||g < p, then ||Ae|lgp < 7. If M = r/p, continuity of A is thus
equivalent to the following: |le||g < 1 implies ||Ae||r < M, which in turn is the same as: there exists M > 0

such that ||Ae||r < M|le||g, which is seen by choosing the vector e/||e||g in the preceding implication. W

Because of this proposition one says that a continuous linear map is bounded.

2.2.2 Proposition. If E is finite dimensional and A : E — F is linear, then A is continuous.
Proof. Let {e1,...,e,} be a basis for E. Letting

M, = max (||4eq]],- - ., ||[Aen|])
and setting e = ale; + - - - + a™e,,, we see that

| Ae|| = ||a1Ael + -+ a"Aey||
< la'|[|[Aer] + -+ + |a"| [ Aen| < Mi(lat| + -+ [a™]).

Since E is finite dimensional, all norms on it are equivalent. Since |||e||| = 3 |a?| is a norm, it follows that
lllell] < Clle|| for a constant C. Let M = M;C and use Proposition 2.2.1 to conclude that A is continuous. W
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Operator Norm. The bound on continuous linear maps suggests a norm for such maps.

2.2.3 Definition. If E and F are normed spaces and A : E — F is a continuous linear map, let the
operator norm of A be defined by

Ae
||A||=sup{ﬁ’e€E,e7é0}

(which is finite by Proposition 2.2.1). Let L(E,F) denote the space of all continuous linear maps of E to F.
IfF =C (resp., R), then L(E,C) (resp., L(E,R)) is denoted by E* and is called the complex (resp., real)
dual space of E. (It will always be clear from the context whether L(E,F) or E* means the real or complex
linear maps or dual space; in most of the work later in this book it will mean the real case.)

A straightforward verification gives the following equivalent definitions of ||Al|:

|A|| = inf{ M > 0| |[Ae|| < M]|e|| for alle € E }
= sup{ [ Ae[| | [le| <1} = sup{|[|Ae] | [le]| =1}

In particular, | Ae|| < ||A]l |le]| -
If Ae L(E,F) and B € L(F,G), where E, F, and G are normed spaces, then

[(BoA)(e)l = IB(Ae)ll < [IBI [|Aell < [IBI[[|A]l [|ell,

and so
1(Bo Al < |IBI| | A].-

Equality does not hold in general. A simple example is obtained by choosing E = F = G = R2, A(z,y) =
(z,0), and B(z,y) = (0,y), so that Bo A =0 and [|A| =||B||=1.
2.2.4 Proposition. L(E,F) with the norm just defined is a normed space. It is a Banach space if F is.
Proof. Clearly [|A| > 0 and ||0|| = 0. If ||A|| = 0, then for any e € E, ||Ae|| < [|A] |le]| =0, so that A =10
and thus N1 (see Definition 2.1.1) is verified. N2 and N3 are also straightforward to check.

Now let F be a Banach space and {4,,} C L(E,F) be a Cauchy sequence. Because of the inequality
|Ane — Apell < ||An — An|| ||e]| for each e € E, the sequence {A,e}is Cauchy in F and hence is convergent.
Let Ae = lim,,_.oc Ane. This defines a map A : E — F, which is evidently linear. It remains to be shown
that A is continuous and ||A4,, — A|| — 0.

If ¢ > 0 is given, there exists a natural number N (g)such that for all m,n > N(g) we have || A, — A, || < e.
If |le]| < 1, this implies

|Ane — Apell < e,

and now letting m — oo, it follows that ||4,e — Ae|| < ¢ for all e with |le|| < 1. Thus 4, — A € L(E,F),
hence A € L(E,F) and |4, — A|| <e¢ for alln > N(¢); that is, ||4, — A — 0.
|

If a sequence {4, } converges to A in L(E,F) in the sense that
lA, — Al| — 0, thatis, if A, — A

in the norm topology, we say A,, — A in norm. This phrase is necessary since other topologies on L(E, F)
are possible. For example, we say that A, — A strongly if A,e — Ae for each e € E. Since ||A,e — Ae|| <
[|A, — Al |le]|, norm convergence implies strong convergence. The converse is false as the following example
shows. Let

E = ((R) = {{an}

o0
Zai<oo}
n=1
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with inner product

Hand Lon}) = 3 anba

Let
e, =1(0,...,0,1,0,...) ¢ E, F=R, and A, ={e,, )€ L(E,F),

where the 1 in e, is in the n'® slot. The sequence {4,} is not Cauchy in the operator norm since ||A,, —
Apnl = V2, but if e = {an}, An(e) = (en,e) = a, — 0, that is, A, — 0 strongly. If both E and F
are finite dimensional, strong convergence implies norm convergence. (To see this, choose a basis eq,..., e,
of E and note that strong convergence is equivalent to Age; — Ae; as k — oo for i = 1,...,n. Hence
max; ||Ae;|| = |||A]|| is a norm yielding strong convergence. But all norms are equivalent in finite dimensions.)

SUPPLEMENT 2.2A
Dual Spaces

Riesz Representation Theorem. Recall from elementary linear algebra that the dual space of a finite
dimensional vector space of dimension n also has dimension n and so the space and its dual are isomorphic.
For general Banach spaces this is no longer true. However, it is true for Hilbert space.

2.2.5 Theorem (Riesz Representation Theorem). Let E be a real (resp., complex) Hilbert space. The map
e (-, e) is a linear (resp., antilinear) norm-preserving isomorphism of E with E*; for short, E 2 E*. (A
map A : E — F between complex vector spaces is called antilinear if we have the identities A(e + €') =
Ae + A€, and A(ae) = aAe.)

Proof. Let fo = (-,e). Then ||f.|| = |le|] and thus f. € E*. The map A : E — E* defined by Ae = f. is
clearly linear (resp. antilinear), norm preserving, and thus injective. It remains to prove surjectivity.

Let f € E* and ker(f) = {e € E| f(e) = 0}. ker(f) is a closed subspace in E. If ker(f) = E, then f =0
and f = A(0) so there is nothing to prove. If ker(f) # E, then by Lemma 2.1.17 there exists e # 0 such that
e L ker(f). Then we claim that f = A(f(e)e/|e||?). Indeed, any v € E can be written as

LG (O PR () .

V=0v— e+ —=e v— e

OO fle)

Thus, in a real Hilbert space E every continuous linear function ¢ : E — R can be written
t(e) = (eo, €)

for some eg € E and ||¢|| = |leg]|.

In a general Banach space E we do not have such a concrete realization of E*. However, one should
not always attempt to identify E and E*, even in finite dimensions. In fact, distinguishing these spaces is
fundamental in tensor analysis.
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Reflexive Spaces. We have a canonical map i : E — E** defined by

i(e)(€) = L(e).
Pause and look again at this strange but natural formula: i(e) € E** = (E*)*, so i(e) is applied to the
element ¢ € E*. If E is a Banach space, it is easy to check that i is norm preserving. Thus, i(E) is a
Banach subspace of E** One calls E reflexive if ¢ is onto. Hilbert spaces are reflexive, by Theorem 2.2.5.
For example, let V = L?(R") with inner product

(f9)= [ [fz)g(z)dz,

Rn

and let o : L*(R™) — R be a continuous linear functional. Then the Riesz representation theorem guarantees
that there exists a unique g € L?(R") such that

a(f) = [ g@)f(@)do = (g.1)

for all f € L2(R").

In general, if E is not a Hilbert space and we wish to represent a linear functional « in the form of
alf) = (g, f), we must regard g as an element of the dual space E*. For example, let E = Cy(2,R), where
Q C R™. Each = € Q defines a linear functional E, : Co(Q,R) — R; f +— f(z). This linear functional cannot
be represented in the form E.(f) = (g, f) and, indeed, is not continuous in the L? norm. Nevertheless, it
is customary and useful to write such linear maps as if (, ) were the L? inner product. Thus one writes,
symbolically,

E,,(f) = / 5z — 20)f () dz,

which defines the Dirac delta function at x; that is, g(x) = 6(z — z9).

Linear Extension Theorem. Next we shall discuss integration of vector valued functions. We shall
require the following.

2.2.6 Theorem (Linear Extension Theorem). Let E, F, and G be normed vector spaces where
(i) F CE;
(ii) G is a Banach space; and

(iii) T € L(F, G).

Then the closure cl(F) of F is a normed vector subspace of E and T can be uniquely extended to a map

T € L(cl(F), G). Moreover, we have the equality | T| = ||7]|.

Proof. The fact that cl(F) is a linear subspace of E is easily checked. Note that if 7 exists it is unique by
continuity. Let us prove the existence of 7. If e € cl(F), we can write e = lim,,_,, €,,, where e,, € F, so that

[Ten = Tem| < [T llen — emll,

which shows that the sequence {T'e,} is Cauchy in the Banach space G. Let 7e = lim,,_ Te;,. This limit
is independent of the sequence {e, }, for if e = lim e/,, then

I Ten — Tepll < 1T (len — ell + lle — ey 1),

which proves that lim,, . (Te,) = lim, o (Te),). It is simple to check the linearity of 7. Since Te = Te
for e € F (because e = lim,,_. €), 7 is an extension of 7. Finally,

1 Te| = H lim (Te,)

= lim |[Tea]l < I7)| T [lenl) = T [le]

shows that 7 € L(cl(F),G) and ||7|| < ||T||. The inequality ||T|| < |7 is obvious since 7 extends 7. W
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Integration of Banach Space Valued Functions. As an application of the preceding Theorem, we
define a Banach space valued integral that will be of use later on. Fix the closed interval [a,b] C R and the
Banach space E. A map f : [a,b] — E is called a step function if there exists a partition a =ty < t; <
-+ < t, = b such that f is constant on each interval [t;,t;11[. Using the standard notion of a refinement
of a partition, it is clear that the sum of two step functions and the scalar multiples of step functions are
also step functions. Thus the set S([a, b], E) of step functions is a vector subspace of B([a, b], E), the Banach
space of all bounded functions (see Example 2.1.12A). The integral of a step function f is defined by

b n
JREED SURENANO)
a 1=0

It is easily verified that this definition is independent of the partition. Also note that

L

where || f| ., = sup,<;<p |f(t)]; that is,

b
s/ 171 < (b= ) [ Flloes

b
/ . S([a,b], E) — E
a
is continuous and linear. By the linear extension theorem, it extends to a continuous linear map
b
/ € L(cl(S([a,b],E)),E).

2.2.7 Definition. The extended linear map f(f 1s called the Cauchy—Bochner integral.

Note that
b
[

The usual properties of the integral such as

/abf=/:f+/cbf and /abf:—/baf

are easily verified since they clearly hold for step functions.
The space cl(S([a, b], E) contains enough interesting functions for our purposes, namely

C%([a,b], B) C cI(S([a,b], E)) C B([a,b],E).

b
g/ 171 < (6= a) |l

The first inclusion is proved in the following way. Since [a, b] is compact, each f € C%([a,b], E) is uniformly
continuous. For e > 0, let § > 0 be given by uniform continuity of f for /2. Then take a partition
a =ty < - <ty,="bsuch that |t;41 — t1] < § and define a step function g by g|[t;, t;+1[ = f(¢;) . Then the
e-disk D.(f) in B([a,b], E) contains g.

Finally, note that if E and F are Banach spaces, A € L(E,F), and f € cl(S([a,b],E)), we have Ao f €
cl(S([a, ], F)) since

[Ao fo— Ao fll <Al llfn = flloo,

where f,, are step functions in E. Moreover,

/abAof:A(/a"f)
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since this relation is obtained as the limit of the same (easily verified) relation for step functions. The reader
versed in Riemann integration should notice that this integral for E = R is less general than the Riemann
integral; that is, the Riemann integral exists also for functions outside of ¢l(S([a, ], R)). For purposes of this
book, however, this integral will suffice.

Multilinear Mappings. If E;,...,E; and F are linear spaces, a map

AZE1X~--XEk—>F

is called k-multilinear if A(eq, ..., ex) is linear in each argument separately. Linearity in the first argument
means that

A()\el +uf1,62,...,ek) = )\A(el,eg,...,ek) +MA(f1,€2,...,€k).

We shall study multilinear mappings in detail in our study of tensors. They also come up in the study of
differentiation, and we shall require a few facts about them for that purpose.

2.2.8 Definition. The space of all continuous k-multilinear maps from Eq x --- x E to F is denoted
L(E4,...,Ey;F). IfE; = E, 1 <i <k, this space is denoted L*(E,F).

As in Definition 2.1.1, a k-multilinear map A is continuous if and only if there is an M > 0 such that
[A(er, ... er)ll < Mlea] - - llex]|

for all e; e E;, 1 <i < k. We set

A ..
||A||=sup{” ”] .,ek#o},
Terll-—Tleel

which makes L(Eq,...,E;;F) into a normed space that is complete if F is. Again ||A|| can also be defined
as

[A} = inf{ M >0 [[Aler, ..., en)| < Mllex]]--- flen]l }
=sup{ [[A(er,..,en)| | [leall <1, flen]] <1}
=sup{ [[A(ex, ..., en)[l | leall = -+ = llenll = 1}

2.2.9 Proposition. There are (natural) norm-preserving isomorphisms

L(Ei,L(E,,...,Ey; F))

Il

L(Ela . aEkaF)
(El, .. Ek 1;L(Ek,F))
(Eipy...,E; s F)

1

L
L

Il

where (i1,...,1i) is a permutation of (1,... k).
Proof. For A € L(E, L(Es,...,Ey; F)), define A’ € L(Eq,...,Ey; F) by
Al(er,...,ex) = Aler)(ez, ..., er).
The association A — A’ is clearly linear and ||A’|| = ||AJ|. The other isomorphisms are proved similarly. B
In a similar way, we can identify L(R,F) (or L(C, F) if F is complex) with F: to A € L(R,F) we associate

A(1) € F; again ||A|| = ||A(1)]|. As a special case of Proposition 2.2.9 note that L(E,E*) = L?(E,R) (or
L?(E; C), if E is complex). This isomorphism will be useful when we consider second derivatives.
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Permutations. We shall need a few facts about the permutation group on k elements. The information
we cite is obtainable from virtually any elementary algebra book. The permutation group on k elements,
denoted Sy, consists of all bijections o : {1,...,k} — {1,...,k} together with the structure of a group under
composition. Clearly, Sy has order k!, that is, S has k! elements.

One of the more subtle but very useful properties of permutations is the notion of the sign of a permutation.
The sign is a homomorphism

sign : Sy, — {—1,1},

where {—1,1} is the two element group under standard multiplication. We will define it shortly. Being a
homomorphism means that for o, 7 € Sy,

sign(o o 7) = (sign o)(sign 7).

The kernel of “sign” consists of the subgroup of even permutations. Thus, a permutation o is even when

sign 0 = +1 and is odd when sign o = —1.
The sign of a permutation is perhaps easiest to understand and define in terms of transpositions. A
transposition is a permutation that swaps two elements of {1,...,k}, leaving the remainder fixed. It is

a basic fact proved in algebra books (but it is intuitively obvious) that any permutation can be written as
a product of transpositions. If it can be written as an even number of such transpositions, then its sign is
defined to be +1, while its sign is —1 if it can be written as the product of an odd number of transpositions.
It is mot obvious that this gives a well defined definition independent of the way one writes the permutation
as a product of transpositions, but this is proved in elementary books on group theory.

The group S, acts on the space L*(E;F); that is, each o € S, defines a map o : L*(E;F) — L*(E; F)
by

(cA)(e1,... ex) = A(ea(1), s Cak))-
Note that (r0)A = 7(cA) for all 7,0 € Si. Accordingly, A € L¥(E,F) is called symmetric (antisymmet-
ric) if for any permutation o € Sy, A = A (resp., 0 A = (signo)A.)
2.2.10 Definition. Let E and F be normed vector spaces. Let L¥(E; F) and L (E; F) denote the subspaces
of symmetric and antisymmetric elements of L*(E;F). Write S°(E,F) = F and
SME,F)={p:E > F|ple)=Ale,...,e) for some Ac L*(E;F)}.

We call S*(E,F) the space of homogeneous polynomials of degree k from E to F.

Note that L*(E;F) and L*(E; F) are closed in L*(E; F); thus if F is a Banach space, so are L*(E; F) and
LY (E;F). The antisymmetric maps LY (E; F) will be studied in detail in Chapter 7. For technical purposes
later in this chapter we will need a few facts about S*(E, F) which are given in the following supplement.

SUPPLEMENT 2.2B
Homogeneous Polynomials
2.2.11 Proposition.

(i) S*(E,F) is a normed vector space with respect to the following norm:

£l = mf{ M >0 [ f(e)ll < Mlle]*} = sup{ || f(e)l| | fle]l <1}
=sup{[[f(e)]l [ [le[l =1}

It is complete if F is.
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(i) If f € S*(E,F) and g € S™(F,G), then go f € S¥™(E,G) and ||go f|| < llgll ||l

(iii) (Polarization.) The mapping ' : L*(E,F) — S*(E,F) defined by A'(e) = Ale,...,e) restricted to
LE(E; F) has an inverse *: S¥(E,F) — LE(E, F) given by

1 9

. — trer 4 -+ ter).
ETet e AU

fler, ... ex)

(Note that f(tie1 + -+ + trex) is a polynomial in ti,... tx, so there is no problem in understanding
what the derivatives on the right hand side mean.)

(iv) For A€ LF(E,F), ||| < ||A|l < (Kk/ED||A'||, which implies the maps ' and "~ are continuous.
Proof. (i) and (ii) are proved exactly as for L(E,F) = S'(E,F).
(iii) For A € L*¥(E;F) one checks that
Al(tier + -+ + treg)

k! .

. a a

- Z mtll'"tj]A(ela---7@17-“’63"-'-’63')’
a1+'~~+aj:1€ 1 J

where each e; appears a; times, and

1 o AR A Lo if k=7,
a!---a;! Oty---0t ! I N0, ifk£
1 J 1 k t1=-=tr=0 y 1 #]

It follows that

1 ok

A(el,...,ek) = E—atl 8tk

Al(trer + -+ + trex),

and for j # k,

o7

A,t oo t X :O
dt, --- ot (res &+« + trei)

ti==t,=0

This means that(A’) = A for any A € L¥(E, F).
Conversely, if f € S¥(E,F), then

1 9

N ! :\ o - - v t o t
(f) (6) f(67 76) k' 6t1 . 8tk 0 f( 1€ + + ke)
1 ok i
=77 ar  ar t oot _ )
k! Oty --- Oty t1=~~=t,€=0( 14+ t)" fle) = f(e)
(iv) A ()|l = [[A(e, ..., e)|l < [lAllllell®, so ||A’]] < ||A]l. To prove the other inequality, note that if A €

LE(E; F), then
1
Aler, ... ex) = Tk E g1---er Allerer + -+ + eper),

where the sum is taken over all the 2¥ possibilities &1 = +1,...,¢, = £1. Put [le;|| = --- = [lex|| = 1 and
get
1A (exer + -+ + enew)| < [A|[llerer + - -~ + exel|*
< AN exlllexll + -+ lewl llexl)* = [ A"[I&*,
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whence
Kk ,
lACes - ex)ll < 2y 147,
that is,

kk
4] < 14 g

Let E=R" F =R, and ey, ...,e, be the standard basis in R". For f € S*(R",R), set

Cayay, = J(€15 0 oy€1yeiyCnyen,En),

where each e; appears a; times, a; =0,1,... k. Ilf e =t1e; + -+ + tpe,, the proof of (iii) shows that

f(@) :\f(ew'we) = Z ca1..‘ant(111"'tzn,

ar+tan=k

that is, f is a homogeneous polynomial of degree k in t1,...,t, in the usual algebraic sense.
The constant k¥ /k! in (iv) is the best possible, as the following example shows. Write elements of R¥ as

x = (z!,...,2%) and introduce the norm

@Ml = |2t + -+ 2],

Define A € LE(R* R) by

1
A(xl,...,xk) = szile’ﬁ’

where x; = (z},...,2%) € R* and the sum is taken over all permutations of {1, ..., k}. It is easily verified that

|All = 1/k! and || A’|| = 1/k*; that is, ||A| = (k¥ /k!)||A’||. Thus, except for k = 1, the isomorphism ’ is not
norm preserving. (This is a source of annoyance in the theory of formal power series and infinite-dimensional
holomorphic mappings.)

SUPPLEMENT 2.2C
The Three Pillars of Linear Analysis

The three fundamental theorems of linear analysis are the Hahn—Banach theorem, the open mapping theorem,
and the uniform boundedness principle. See, for example, Banach [1932] and Riesz and Sz.-Nagy [1952] for
further information. This supplement gives the classical proofs of these three fundamental theorems and
derives some corollaries that will be used later. In finite dimensions these corollaries are all “obvious.”
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Hahn—-Banach Theorem. This basic result guarantees a rich supply of continuous linear functionals.

2.2.12 Theorem (Hahn-Banach Theorem). Let E be a real or complex vector space, || -] : E = R a
seminorm, and F C E a subspace. If f € F* satisfies |f(e)| < |le]| for all e € F, then there exists a linear
map [ E — R (or C) such that f'|F = f and |f'(e)] < |le|| for all e € E.

Proof. Real Case. First we show that f € F* can be extended with the given property to F @ span{eg},
for a given eg € F. For e, e5 € F we have

fler) + fle2) = fler +e2) < lex +e2|| < |lex + eol| + [le2 — eoll,

so that

f(e2) = [lea — eol| < [lex +eoll — f(e1),

and hence

sup{ f(e2) — ez — eol| [ e2 € F } < inf{[les +eol| — f(e1) [e1 € F }.

Let a € R be any number between the sup and inf in the preceding expression and define f/ : F& span {eg} —
R by f'(e+teg) = f(e)+ta. It is clear that f” is linear and that f'|F = f. To show that |f'(e+teg)| < |le+teo]|,
note that by the definition of a,

fle2) = [lea —eol| < a < ler +eoll — fler),

so that by multiplying the second inequality by ¢ > 0 and the first by ¢ < 0, we get the desired result.
Second, one verifies that the set S = {(G,g) | F C G C E, G is a subspace of E, g € G*, g|F = f, and
lg(e)] < |le|| for all e € G } is inductively ordered with respect to the ordering

(G1,91) £ (G2,92) iff GiC Gz and g2|Gy = g1.

Thus by Zorn’s lemma there exists a maximal element (Fy, fo) of S.
Third, using the first step and the maximality of (Fo, fo), one concludes that Fy = E.

Complex Case. Let f = Re f + ilm f and note that complex linearity implies that (Im f)(e) =
—(Re f)(ie) for all e € F. By the real case, Re f extends to a real linear continuous map (Re f)' : E — R,
such that |(Re f)'(e)| < |le|| for all e € E. Define f': E — C by f'(e) = (Re f)'(e) —i(Re f)(ie) and note
that f is complex linear and f'|F = f.

To show that |f'(e)| < |le| for all e € E, write f'(e) = |f'(e)]| exp(if), so complex linearity of f’ implies
f'(e-exp(—if)) = |f'(e)| € R, and hence

[f'(e)] = f'(e - exp(=if)) = (Re f)'(e - exp(—if)) < [le - exp(—if)|| = [e]. —

2.2.13 Corollary. Let (E,| -|) be a normed space, F C E a subspace, and f € F* (the topological dual).
Then there exists f' € E* such that f'|F = f and ||f'|| = || f||-

Proof. We can assume f # 0. Then |||e]|| = || f]l lle]| is @ norm on E and |f(e)| < ||f|lllell = [|lel]| for
all e € F . Applying the preceding theorem we get a linear map f’ : E — R (or C) with the properties
f1IF = fand |[f'(e)| < |||e]]| for all e € E. This says that || f'|| < || f]|, and since f’ extends f, it follows that
I < [[f1l; that is, [|f"[| = [|f[| and " € E*. 0

Applying the corollary to the linear function ae — a, for ¢ € E a fixed element, we get the following.

2.2.14 Corollary. Let E be a normed vector space and e # 0. Then there exists f € E* such that f(e) # 0.
In other words if f(e) =0 for all f € E*, then e = 0; that is, E* separates points of E.
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Open Mapping Theorem. This result states that surjective linear maps are open.

2.2.15 Theorem (Open Mapping Theorem of Banach—Schauder). Let E and F be Banach spaces and
suppose A € L(E,F) is onto. Then A is an open mapping.

Proof. To show A is an open mapping, it suffices to prove that the set A(cl(D1(0))) contains a disk
centered at zero in F. Let r» > 0. Since
E =] D0

n>1

it follows that

and hence

U cA(A(D,,(0))) = F.

n>1

Completeness of F implies that at least one of the sets cl(A(D,,,(0))) has a nonempty interior by the Baire
category theorem 1.7.3. Because the mapping e € E +— ne € E is a homeomorphism, we conclude that
cl(A(D,(0))) contains some open set V' C F. We shall prove that the origin of F is in int{cl[A(D,(0))]} for
some 7 > 0. Continuity of (e1,e2) € E x E — e — es € E assures the existence of an open set U C E such
that

U—U:{€1—€2|61,€2€U}CDT(0).
Choose s > 0 such that D4(0) C U. Then

cl(A(D(0))) 5 cl(A(U) = A(U)) 2 cl(A(U)) = cl(A(U))
D cl(A(Ds(0))) — cl (A (Ds(0)))

S

)
= 2 ((A(D(0))) = L (A(D,(0)))) > = (V = V).

But

v-v=_Jw-

eeV
is open and clearly contains 0 € F. It follows that there exists a disk D;(0) C F such that D;(0) C

(A(D, (0))).

Now let e(n) = 1/2"*!, n =0,1,2,..., so that 1 = > . &(n). By the foregoing result for each n there
exists an n(n) > 0 such that D, ,y(0) C cl(A(De)(0))). Clearly n(n) — 0. We shall prove that D, ) C
A(cl(D1(0))). For v € Dy)(0) C cl(A(D.0)(0))) there exists eg € D.(y(0) such that [|v — Aeg|| < 7(1)
and thus v — Aeg € cl(A(D.(1)(0))), so there exists e; € D,(1)(0) such that [[v — Aeg — Aey|| < n(2), ete.
Inductively one constructs a sequence e, € D,,) such that [[v — Aeg —--- — Ae,|| < n(n + 1). The series
Y om0 €n is convergent because

1=n—+1 i=n+1 n=0

and E is complete. Let e = ano en € E. Thus,
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and

o'} e} 1
lell <> llenll <> STESEaEE
n=0 n=0

that is, v € D, 0)(0) implies v = Ae, |le|| < 1. Therefore,
Dyy0y(0) € A(cl(D1(0))). [ |

An important consequence is the following.

2.2.16 Theorem (Banach’s Isomorphism Theorem). A continuous linear isomorphism of Banach spaces
is a homeomorphism.

Thus, if F and G are closed subspaces of the Banach space E and E is the algebraic direct sum of F and G,
then the mapping (e,e¢’) € F x G — e+ ¢’ € E is a continuous isomorphism, and hence a homeomorphism;
that is, E = F @ G; this proves the comment at the beginning of Supplement 2.1B.

Closed Graph Theorem. This result characterizes continuity by closedness of the graph of a linear map.

2.2.17 Theorem (Closed Graph Theorem). Suppose that E and F are Banach spaces. A linear map A :
E — F is continuous iff its graph

Fa={(e,4e) e ExXF |ecE}
is a closed subspace of E @ F.

Proof. Tt is readily verified that T4 is a linear subspace of E® F. If A € L(E,F), then T'4 is closed
(see Exercise 1.4-2). Conversely, if T'4 is closed, then it is a Banach subspace of E @ F, and since the
mapping (e, Ae) € Ty — e € E is a continuous isomorphism, its inverse ¢ € E +— (e, Ae) € T'4 is also
continuous by Theorem 2.2.16. Since (e, Ae) € 'y +— Ae € F is clearly continuous, so is the composition
e (e, Ae) — Ae. [ |

The Closed graph theorem is often used in the following way. To show that a linear map A : E — F is
continuous for E and F Banach spaces, it suffices to show that if e, — 0 and Ae,, — €', then ¢/ = 0.

2.2.18 Corollary. Let E be a Banach space and F a closed subspace of E. Then F is split iff there exists
P e L(E,E) such that PoP=P and F={e € E | Pe=c¢c}.

Proof. If such a P exists, then clearly ker(P) is a closed subspace of E that is an algebraic complement
of F; any e € E is of the form e = ¢ — Pe + Pe with e — Pe € ker(P) and Pe € F.

Conversely, if E = F @ G, define P : E — E by P(e) = e, where e = e; +e2,¢1 € F, e5 € G. P is
clearly linear, P? = P, and F = {e € E | Pe = e}, so all there is to show is that P is continuous. Let
en = ein + e2, — 0 and P(e,) = ey, — €'; that is, —eq,, — €/, and since F and G are closed this implies
that ¢ € F NG = {0}. By the closed graph theorem, P € L(E,E). [ |

2.2.19 Theorem (Fundamental Isomorphism Theorem). Suppose that the linear map A € L(E,F) is sur-
jective, where E and F are Banach spaces. Then E/ker A and F are isomorphic Banach spaces.

Proof. The map [e] — Ae is bijective and continuous (since its norm is < || 4]|), so it is a homeomorphism.
|

A sequence of maps
S B A E, =3 Bl — -
of Banach spaces is said to be split exact if for all i, ker A;11 = range A; and both ker A; and range A; split.
With this terminology, Theorem 2.2.19 can be reformulated in the following way: If 0 - G - E —F — 0
is a split exact sequence of Banach spaces, then E/G is a Banach space isomorphic to F (thus F 2 GOF).
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Uniform Boundedness Principle. Next we prove the uniform boundedness principle of Banach
and Steinhaus, the third pillar of linear analysis.

2.2.20 Theorem. Let E and F be normed vector spaces, with E complete, and let {A;}ier C L(E,F). If
for each e € E the set {||Ase| }ier is bounded in F, then {||A;|}icr is a bounded set of real numbers.

Proof. Let ¢(e) =sup{ ||Aie|| | i € I} and note that

SnZ{eeElw(e)Sn}Zﬂ{e€E\IIAi€||§n}

is closed and J,,~; S» = E. Since E is a complete metric space, the Baire category theorem 1.7.3 says
that some S,, has nonempty interior; that is, there exist 7 > 0 and ey € E such that ¢(e) < M, for all
e € cl(D,(eg)), where M > 0 is come constant.

For each ¢ € I and ||e]| = 1, we have ||A;(re + ep)|| < @(re + ep) < M, so that

1 1 1
el =2l Autre + eo — o)l < LuGre + o)l + L dieol
1
S;(M + ©(eo)),

that is, ||A;|| < (M + ¢(eg))/r for all i € 1. |

2.2.21 Corollary. If {A,} C L(E,F) is a strongly convergent sequence (i.e., lim,_oAne = Ae exists
for every e € E), then A € L(E,F).

Proof. A is clearly a linear map. Since {A, e} is convergent, it is a bounded set for each e € E, so that by
Theorem 2.2.20, {||A,||} is bounded by, say, M > 0. But then

[Ae[| = lim [|Apel| < lim sup [[Aqn]|[le]| < M]le[|;
n—o0 n—oo

that is, A € L(E,F). [ |

Exercises
2.2-1. If E=R" and F = R™ with the standard norms, and A : E — F is a linear map, show that

(i) ||A]| is the square root of the absolute value of the largest eigenvalue of AA”, where AT is the transpose
of A, and

(ii) if n,m > 2, this norm does not come from an inner product.

HiNT: Use Exercise 2.1-1.

2.2-2. Let E = F = R" with the standard norms and A, B € L(E,F). Let (A, B) = trace(ABT). Show
that this is an inner product on L(E, F).

2.2-3. Show that the map
L(E,F) x L(F,E) - R; (A, B) — trace(AB)

gives a (natural) isomorphism L(E,F)* = L(F,E).
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o 2.2-4. Let E,F, G be Banach spaces and D C E a linear subspace. A linear map A : D — F is called
closed if its graph T'y = {(z,Az) e ExF |2z € D} is a closed subset of ExF.If A: D C E — F,
and B : D C E — G are two closed operators with the same domain D, show that there are constants
My, My > 0 such that

[Aell < My (|| Be|l +[lell) and |[Be| < Ma([|Ae| + |le]])

for all e € E.
HINT: Norm E@® G by ||(e, g)|| = |le]| + ||g]| and define T : 'y — G by T'(e, Be) = Ae. Use the closed graph
theorem to show that T' € L(I'p, G).

¢ 2.2-5 (Linear transversality). Let E,F be Banach spaces, Fy C F a closed subspace, and T € L(E,F). T
is said to be transversal to Fg, if T71(F) splits in E and T(E) + Fo = {Te+ f|e€E, fe F} =F.
Prove the following.

(i) T is transversal to Fy iff 7 o T' € L(E,F/Fy) is surjective with split kernel; here 7 : F — F/Fy is the
projection.

(ii) If 7o T € L(E,F/Fy) is surjective and Fy has finite codimension, then ker(mw o T') has the same
codimension and T is transversal to F.

HINT: Use the algebraic isomorphism T'(E)/(Fo N T(E)) = (T'(E) + Fy)/Fo to show E/ker(m o T) =
F/F(; now use Corollary 2.2.18.

(iii) If roT € L(E,F/Fy) is surjective and if ker T" and Fy are finite dimensional, then ker(7 o T') is finite
dimensional and 7T is transversal to Fy.

HINT: Use the exact sequence 0 — ker ' — ker(mr o T) — Fo N T(E) — 0.
¢ 2.2-6. Let E and F be Banach spaces. Prove the following.
(i) If f € cl(S([a,b], L(E,F))) and e € E, then

/ " flt)e di = ( / N0 dt) (e)

HINT: T+ Teis in L(L(E,F),F).
(ii) If f € cl(S([a,b],R) and v € F, then

/ ' feyat = ( / N0 dt) (v)

HINT: ¢ — multiplication by ¢ in F is in L(R, L(F,F)); apply (i).

(iii) Let X be a topological space and f : [a,b] X X — E be continuous. Then the mapping

b
WXHE,M@=/f@@ﬁ
is continuous.
HINT: For t € R, 2’ € X and € > 0 given,
I f(s,z) — f(t,2")|| <e if (s,2) € Up X Uypr y;

use compactness of [a,b] to find U,s as a finite intersection and such that || f(¢t,z) — f(¢t,2")| < e for
all t € [a,b], x € Uy.
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¢ 2.2-7. Show that the Banach isomorphism theorem is false for normed incomplete vector spaces in the

following way. Let E be the space of all polynomials over R normed as follows:
llap + a1z + -+« + apx”|| = max{|ag|, ..., |an|}.
(i) Show that E is not complete.

(ii) Define A : E — E by

n n
. Q;
A (Z aimz> = ap + Z 71%
i=0 i=1

and show that A € L(E, E). Prove that A~! : E — E exists.

(iii) Show that A~! is not continuous.

¢ 2.2-8. Let E and F be Banach spaces and A € L(E,F). If A(E) has finite codimension, show that it is
closed.

HiNT: If Fy is an algebraic complement to A(E) in F, show there is a continuous linear isomorphism
E/ker A = F/Fq; compose its inverse with E/ker A — A(E).

2.2-9 (Symmetrization operator). Define
Sym* : L*¥(E,F) — LF(E, F),

by

1
Sym* A = o Y o4,
aceSy

where (0A)(e1,...,ex) = Ales(1),- - €q(k)). Show that:
(i) Sym"(L*(E,F)) = L}(E,F).
(ii) (Sym"*)? = Sym".
(iif) || Sym”* || < 1.
(iv) If F is Banach, then L*(E,F) splits in L*(E,F).
HinT: Use Corollary 2.2.18.
(v) (Sym* A) = A’

2.2-10. Show that a k-multilinear map continuous in each argument separately is continuous.
HINT: For k = 2: If ||eg]| < 1, then ||A(e,e2)| < ||A(+, e2)]|, which by the uniform boundedness principle
implies the inequality ||A(e1, )| < M for [le1]| < 1.

o 2.2-11.

(i) Prove the Mazur-Ulam Theorem following the steps below (see Mazur and Ulam [1932], Banach
[1932, p. 166]): Every isometric surjective mapping ¢ : E — F such that ©(0) = 0 is a linear map.
Here E and F are normed vector spaces; ¢ being isometric means that ||p(z) — o(y)|| = ||z — y|| for
all z,y € E.
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Fix x1, 25 € E and define

le{x

Hn_{$€Hn1

1
7= o1l = llo = wall = 5 llan —2all

1
lz — 2| < 3 diam(H,—1), z € Hyp—1 } .

Show that

diam(H,,) < — diam(H;) < |z — 22|

1
< < ol
Conclude that if (-, H,, # @, then it consists of one point only.
Show by induction that if = € H,, then 1 + 2o —x € H,,.
Show that ﬂnzl H, ={(z1 + z2)/2}.
HINT: Show inductively that (z1 + x2)/2 € H,, using (b).

From (c) deduce that

o (3or+a) = 5olon) + pla))

Use ¢(0) = 0 to conclude that ¢ is linear.

(ii) (Chernoff, 1970). The goal of this exercise is to study the Mazur—Ulam theorem, dropping the assump-
tion that ¢ is onto, and replacing it with the assumption that ¢ is homogeneous: p(tx) = tp(zx) for all
tcRand z € E.

(a)

A normed vector space is called strictly convex if equality holds in the triangle inequality only
for colinear points. Show that if F is strictly convex, then ¢ is linear.

HiINT:
lo(x) — o(y)]| = H@(x) .y (ar ; y) H + Hw(y) —¢ <x ;L y) H
and
-+ () -+ (22)
Show that

¢ (%5Y) = 5060+ o)

Show that, in general, the assumption on ¢ being onto is necessary by considering the following
counterexample. Let E = R? and F = R3, both with the max norm. Define ¢ : E — F by

¢(a,b) = (a,b, Vab), a,b > 0;
o(—a,b) = (—a,b,—Vab),  a,b>0;
o(a, —b) = (a,—b,—Vab),  a,b>0;
o(—a,b) = (—a,—b,—Vab), a,b> 0.

Show that ¢ is not linear, ¢ is homogeneous, ¢ is an isometry, and (0,0) = (0,0,0).
HiNT: Prove the inequality

laB —~d| < max(|042 — 72|, |52 — (52|).
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¢ 2.2-12. Let E be a complex n-dimensional vector space.

(i) Show that the set of all operators A € L(E, E) which have n distinct eigenvalues is open and dense in
E.

HINT: Let p be the characteristic polynomial of A, that is, p(\) = det (A — AI), and let pq, ..., fin—1
be the roots of p’. Then A has multiple eigenvalues iff p(p1) -« - p(tn—1) = 0. The last expression is a
symmetric polynomial in p1, ..., y_1, and so is a polynomial in the coefficients of p’ and therefore is
a polynomial ¢ in the entries of the matrix of A in a basis. Show that ¢=!(0) is the set of complex n x n
matrices which have multiple eigenvalues; ¢~!(0) has open dense complement by Exercise 1.1-12.

(ii) Prove the Cayley—Hamilton Theorem: If p is the characteristic polynomial of A € L(E,E), then

p(4) =0.
HiNT: If the eigenvalues of A are distinct, show that the matrix of A in the basis of eigenvectors
e1,...,en is diagonal. Apply A4, A%, ..., A"~ Then show that for any polynomial ¢ the matrix of

q(A) in the same basis is diagonal with entries ¢()\;), where )\; are the eigenvalues of A. Finally, let
q = p. If A is general, apply (i).

¢ 2.2-13. Let E be a normed real (resp. complex) vector space.

(i) Show that A : E — R (resp., C) is continuous if and only if ker A is closed.

HINT: Let e € E satisfy A\(e) = 1 and choose a disk D of radius r centered at e such that DN(e+ker \) =
@. Then A(x) # 1 for all # € D. Show that if x € D then A(z) < 1. If not, let & = A(z), || > 1. Then
lz/ca|| < rand A(z/a) = 1.

(ii) Show that if F is a closed subspace of E and G is a finite dimensional subspace, then G + F is closed.

HINT: Assume G is one dimensional and generated by g. Write any x € G+ F as x = \(x)g + f and
use (i) to show A is continuous on G + F.

o 2.2-14. Let F be a Banach space.

(i) Show that if E is a finite dimensional subspace of F, then E is split.
HINT: Define P: F — F by
P(x) = Z e'(x)e;,
where {e1,...,e,} is a basis of E and {e',...,e"} is a dual basis, that is, e’(e;) = d;;. Then use
Corollary 2.2.18.
(ii) Show that if E is closed and finite codimensional, then it is split.
(iii) Show that if E is closed and contains a finite-codimensional subspace G of F, then it is split.

(iv) Let A : F — R be a linear discontinuous map and let E = ker \. Show that the codimension of E is 1
and that E is not closed. Thus finite codimensional subspaces of F are not necessarily closed. Compare
this with (i) and (ii), and with Exercise 2.2-8.

¢ 2.2-15. Let E and F be Banach spaces and T € L(E,F). Define T* : F* — E* by (T*3,¢e) = (8, Te) for
e € E, 8 € F*. Show that:

(i) T* € L(F*,E*) and T**|E = T.

(ii) kerT* =T(E)° :={f € F* | (5,Tey =0foralle c E} and kerT = (T*(F*))°:={e € E | (T*f,e) =
0 for all 8 € F* }.
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(iii) If T(E) is closed, then T*(F*) = (ker T')°.

HINT: The induced map E/kerT — T'(E) is a Banach space isomorphism; let S be its inverse. If
X € (ker T)°, define the element p € (E/ker T)* by u([e]) = A(e). Let v € F* denote the extension of
S*(u) € (T(E))* to v € F* with the same norm and show that T*(v) = A.

(iv) If T(E) is closed, then ker T* is isomorphic to (F/T'(E))* and (ker T')* is isomorphic to E*/T*(F*).

2.3 The Derivative

Definition of the Derivative. For a differentiable function f : U C R — R, the usual interpretation of
the derivative at a point ug € U is the slope of the line tangent to the graph of f at ug. To generalize this,
we interpret D f(ug) = f'(up) as a linear map acting on the vector (u — ug).

2.3.1 Definition. Let E;F be normed vector spaces, U be an open subset of E and let f : U C E — F be
a given mapping. Let ug € U. We say that f is differentiable at the point ug provided there is a bounded
linear map D f(ug) : E — F such that for every e > 0, there is a § > 0 such that whenever 0 < ||u—wug| < 9,
we have

1/ () = f(uo) = Df(uo) - (u— o)l

[l = wo|

< €,

where || - || represents the norm on the appropriate space and where the evaluation of D f(ug) on e € E is
denoted D f(ug) - e.

This definition can also be written as

lim f(u) = fug) = Df(ug) - (u—up)

u=o [l — uo|

=0.

We shall shortly show that the derivative is unique if it exists and embark on relating this notion to
ones that are perhaps more familiar to the reader in Euclidean space; we shall also develop many familiar
properties of the derivative. However, it is useful to first slightly rephrase the definition. We shall do this in
terms of the notion of tangency.

Tangency of Maps. An alternative way to think of the derivative in one variable calculus is to say that
D f(up) is the unique linear map from R into R such that the mapping g : U — R given by

u— g(u) = fuo) + D f(uo) - (u—uo)

is tangent to f at ug, as in Figure 2.3.1.

2.3.2 Definition. Let E,F be normed vector spaces, with maps f,g: U C E — F where U is open in E.
We say [ and g are tangent at the point ug € U if f(uo) = g(ug) and

fo @) — ()]

207
wia [lu— o]

where || - || represents the norm on the appropriate space.

2.3.3 Proposition. For f:U CE — F and uy € U there is at most one L € L(E,F) such that the map
g, : U CE = F given by gr(u) = f(uo) + L(u — ug) is tangent to f at ug.
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R
A g

A 4 ) v

U R

FIGURE 2.3.1. Derivative of a function of one variable

Proof. Let Ly and Lo € L(E, F) satisfy the conditions of the proposition. Suppose that e € E is a unit
vector so that ||e|| = 1. Let u = ug + Ae for A € R (or C). Then for A # 0, with |A| small enough so that
u € U, we have

[ L1(u — up) — La(u — uo)|

[L1ie — Lael| =
[|w — uo|
< 1) = flug) = Ln(u — uo)|
- llw — uoll
n I|.f(w) — f(uo) — La(u — o)
[[u — ol '

As A — 0, the right hand side approaches zero and therefore ||(L; — Lo)e|| = 0 for all e € E satisfying
e[| = 1; therefore, [[L1 — Lz = 0 and thus L; = Lo. [ ]

We can thus rephrase the definition of the derivative this way: If, in Proposition 2.3.3, there is such an
L € L(E,F), then f is differentiable at ug, and the derivative of f at ug is D f(ug) = L. Thus, the derivative,
if it exists, is unique.

2.3.4 Definition. If f is differentiable at each ug € U, the map
Df:U — L(E,F); u~— Df(u)

is called the derivative of f. Moreover, if Df is a continuous map (where L(E,F) has the norm topology),
we say f is of class C1 (or is continuously differentiable). Proceeding inductively we define

D"f:=DD"'f):UCE— L"(E,F)
if it exists, where we have identified L(E, L""1(E,F)) with L"(E,F) (see Proposition 2.2.9). If D" f exists
and is norm continuous, we say f is of class C".

Basic Properties of the Derivative. We shall reformulate the definition of the derivative with the aid
of the somewhat imprecise but very convenient Landau symbol : o(e*) will denote a continuous function
of e defined in a neighborhood of the origin of a normed vector space E, satisfying lim._o(o(e¥)/|le]|*) = 0.
The collection of these functions forms a vector space. Clearly f : U C E — F is differentiable at uy € U iff
there exists a linear map D f(uo) € L(E, F) such that

f(uo +e) = f(uo) + Df(uo) - e + ofe).

Let us use this notation to show that if D f(ug) exists, then f is continuous al ug:

lim f(uo + ) = lim(f(uo) +Df(uo) - € +o(e)) = f(uo)-
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2.3.5 Proposition (Linearity of the Derivative). Let f,g: U C E — F be r times differentiable mappings
and a a real (or complex) constant. Then af and f+g:U CE — F are r times differentiable with

D' (f+9g)=D"f+D"g and D"(af)=aD"}f.
Proof. If u € U and e € E, then
flu+e)= f(u) +Df(u)-e+o(e) and
g(u+e) = g(u) + Dy(u) - e+ ofe),
so that adding these two relations yields

(f+9)(u+te) = (f+9)(u) + (Df(u) + Dg(u)) - e + o(e).
The case r > 1 follows by induction. Similarly,
af(u+e)=af(u)+aDf(u) e+ aole) =af(u) +aDf(u)- e+ o(e).
[ |
2.3.6 Proposition (Derivative of a Cartesian Product). Let f; : U CE — F;, 1 < i <mn, be a collection
of v times differentiable mappings. Then f = fi X -+ x f, : U C E — Fy x --- x F,, defined by f(u) =
(fi(w),..., fn(u)) is v times differentiable and
D'f=D"fi x---xD"f,.
Proof. For u e U and e € E, we have

flute)=(filute), ..., falu+te))
= (fi(u) + Dfi(u)-e+o(e),..., fn(u) + Dfu(u) - e+ o(e))
= (fi(w),..., fa(w) + D fi(u),...,Dfu(u)) e
+(o(e),...,o(e))
= f(u) +Df(u) -e+ole),

the last equality follows using the sum norm in F; x --- x F,;:

(o), - - -, o(e))l| = llo(e)|| + - - + llo(e)],
so (o(e),...,o(e)) = o(e). [ |

Notice from the definition that for L € L(E,F), DL(u) = L for any v € E. It is also clear that the
derivative of a constant map is zero.

Usually all our spaces will be real and linearity will mean real-linearity. In the complex case, differentiable
mappings are the subject of analytic function theory, a subject we shall not pursue in this book (see Exercise
2.3-6 for a hint of why there is a relationship with analytic function theory).

Jacobian Matrices. In addition to the foregoing approach, there is a more traditional way to differentiate
a function f: U C R™ — R"™. We write out f in component form using the following notation:

flat, a2 = (Yt ™), (L 2™)

and compute partial derivatives, df7 /02 for j = 1,...,m and i = 1,...,n, where the symbol df7/dz"
means that we compute the usual derivative of f7 with respect to 2* while keeping the other variables

fixed.
For f:R — R, Df(x) is just the linear map “multiplication by df /dx,” that is, df /dz = D f(x) - 1. This
fact, which is obvious from the definitions, can be generalized to the following statement.
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2.3.7 Proposition.

bases in R™ and R™ is given by

Suppose that U C R™ is an open set and that f: U — R™ is differentiable. Then the
partial derivatives Of7 /0x" exist. Moreover, the matrixz of the linear map D f(x) with respect to the standard

roft oft f' 7
ozl Oz oxm
ofr  of? of?
ozt Oz? oz
afm™ ofm o
Lozt Ox? oxn -
where each partial derivative is evaluated at x = (z',...,2™). This matriz is called the Jacobian matriz
of f.
Proof. By the usual definition of the matrix of a linear mapping from linear algebra, the (j,4)th matrix

element ag of Df(z) is given by the jth component of the vector D f(x) - e;, where ey, ..., e, is the standard
basis of R™. Letting y = x + he;, we see that

1/ (y) = f(z) = Df(@)(y — 2)|
ly — |

- |_f1| £t + R = St @) — hDf(@)e

approaches zero as h — 0, so the jth component of the numerator does as well; that is,

: _ i 1 7 AN 1 ny _ Jl —
}lllir%”h'f(x,...,x +h,.o2") = fI (27, .., 2") —hal| =0,
which means that o/ = 8f7/dx". [ |

In computations one can usually compute the Jacobian matrix easily, and this proposition then gives D f.
In some books, Df is called the differential or the total derivative of f.

2.3.8 Example. Let f : R? — R? f(x,y) = (22, 2%y, 2%*y?). Then Df(x,y) is the linear map whose
matrix in the standard basis is

where f'(z,y) = 2*, f*(z,y) = 2y, f*(z,y) = 2*y*.
One should take special note when m = 1, in which case we have a real-valued function of n variables.

Then D f has the matrix

[0f1 Of']
Jdxr Oy 2 0
a_fQ 6—‘]“2 = 3x2y ;[;3
or Oy
8f3 af3 4$3y2 2x4y

of . 9f
ozt oz
and the derivative applied to a vector e = (a',...,a") is
Df(z)-e= 3%

i=1
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The Gradient and Differential. It should be emphasized that D f assigns a linear mapping to each
2 € U and the definition of D f(x) is independent of the basis used. If we change the basis from the standard
basis to another one, the matrix elements will of course change. If one examines the definition of the matrix
of a linear transformation, it can be seen that the columns of the matrix relative to the new basis will be
the derivative D f(x) applied to the new basis in R with this image vector expressed in the new basis in
R™. Of course, the linear map D f(x) itself does not change from basis to basis. In the case m = 1, D f(x)
is, in the standard basis, a 1 x n matrix. The vector whose components are the same as those of D f(z) is
called the gradient of f, and is denoted grad f or Vf. Thus for f: U C R" — R,

of 8_f}

ozl 7 am

grad f = [

(Sometimes it is said that grad f is just D f with commas inserted!) The formation of gradients makes sense
in a general inner product space as follows.

2.3.9 Definition.

(i) Let E be a normed space and f : U C E — R be differentiable. Thus, Df(u) € L(E,R) = E*. In this
case we sometimes write df(u) for Df(u) and call df the differential of f. Thus df : U — E*.

(ii) If E is a Hilbert space, the gradient of [ is the map
grad f =V f:U —E defined by (Vf(u),e) =df(u)-e,
where df (u) - e means the linear map df(u) applied to the vector e.

Note that the existence of Vf(u) requires the Riesz representation theorem (see Theorem 2.2.5). The
notation df/du instead of (grad f)(u) = Vf(u) is also in wide use, especially in the case in which E is a
space of functions. See Supplement 2.4C below.

2.3.10 Example. Let (E,(,)) be a real inner product space and let f(u) = ||ul|?. Since ||u||®> = |Juo|* +
2 (ug,u — ug) + ||u —ug||?, we obtain df(ug) - e = 2 (ug, e) and thus V f(u) = 2u. Hence f is of class C'. But
since Df(u) = 2 (u,-) € E* is a continuous linear map in u € E, it follows that D?f(u) = Df € L(E,E*)
and thus D*f = 0 for k > 3. Thus f is of class C*°. The mapping f considered here is a special case of a
polynomial mapping (see Definition 2.2.10). ¢

Fundamental Theorem. We close this section with the fundamental theorem of calculus in the context
of real Banach spaces. First a bit of notation. If ¢ : U C R — F is differentiable, then Dp(t) € L(R,F).
However, the space L(R,F) is isomorphic to F via the isomorphism A — A(1). Note that ||A|| = [|A(1)]|, so
the isomorphism preserves the norm. We denote

o =2 Do), 1em
o et ) = ()
P (t) = fimy h

and ¢ is differentiable iff ¢’ exists.
2.3.11 Theorem (Fundamental Theorem of Calculus).

(i) Ifg:la,b] — F is continuous, where F is a real normed space, then the map

fila, b = F  defined by f(t) = /tg(s) ds

1s differentiable and f' = g.
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(ii) If f : [a,b] — F is continuous, is differentiable on the open interval |a,b] and if f' extends to a
continuous map on |a,bl], then
b
:/ 1'(s)ds

Proof. We first prove part (i). Let o € ]a,b[. Since the integral is linear and continuous,

to+h
[ )~ gtto)yis| < [hlqy.

to

£ (to + R) — f(to) — hy(to)]| = ‘

where Ly, = sup{||g(s) — g(to)|| | to < s <to+ h}. However, L, — 0 as |h] — 0 by continuity of g at t.
Turning now to part (ii), let the function h(t) be defined by

(/f is) - 110

By (i), A'(t) = 0 on ]a,b[ and h is continuous on [a,b]. If for some ¢ € [a,b], h(t) # h(a), then by the
Hahn-Banach theorem there exists o € F* such that (o h)(t) # (aoh)(a). Moreover, o h is differentiable
on |a,b[ and its derivative is zero (Exercise 2.3-4). Thus by elementary calculus, a0 h is constant on [a, ],
a contradiction. Hence h(t) = h(a) for all ¢ € [a, b]. In particular, h(a) = h(b) [ |

Exercises

2.3-1. Let B:E x F — G be a continuous bilinear map of normed spaces. Show that B is C'°° and that
DB(u,v)(e, f) = B(u, f) + Ble,v).
2.3-2. Show that the derivative of a map is unaltered if the spaces are renormed with equivalent norms.
2.3-3. If f € S¥(E,F), show that for, i =1,... k,
D*f(0)(e1, ..., ex) = Lf(tlel + o 4 trer)
Oty - - - Oty

t1=---=t,=0
and
Df(0)=0 fori=1,...,k—1.

2.3-4. Let f: U C E — F be a differentiable (resp., C") map and A € L(F,G). Show that Ao f: U C
E — G is differentiable (resp., C") and D"(A o f)(u) = Ao D" f(u).
HinT: Use induction.

2.3-5. Let f:U C E — F be r times differentiable and A € L(G, E). Show that
Dl(f o A)(U) ' (gla s agz) = le(A’U) ’ (Aglv s ’Agl)

exists for all i < r, where v € A=1(U), and g1,...,9; € G. Generalize to the case where A is an affine map.

2.3-6. (i) Show that a complex linear map A € L(C,C) is necessarily of the form A(z) = Az, for some
AeC.

(i) Show that the matrix of A € L(C,C), when A is regarded as a real linear map in L(R? R?), is of the

form
a —b
b a|’

HINT: X\ = a + ib.
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(iii) Show that amap f: U Cc C — C, f = g+ ih, g,h : U C R? — R is complex differentiable iff the
Cauchy—Riemann equations

dg _ Oh dg oh

dr 9y 9y oz
are satisfied.
HINT: Use (ii) and Proposition 2.3.7.

2.3-7. Let (E,(,)) be a complez inner product space. Show that the map f(u) = ||u||? is not differentiable.
Contrast this with Example 2.3.10.
HINT: Df(u), if it exists, should equal 2 Re((u, -)).

2.3-8. Show that the matrix of D?f(x) € L?(R",R) for f: U C R"® — R, is given by

*f o*f 0% f
Oxtoxt  Oxl0x? Oxtox™
*f *f 0% f
dzndx!  Qandx? dxndx™
HINT: Apply Proposition 2.3.7. Recall that the matrix of a bilinear mapping B € L(R™,R™;R) has the
entries B(e;, f;) (first index = row index, second index = column index), where {e1,...,e,} and {f1,..., fm}

are ordered bases of R and R™, respectively.

2.4 Properties of the Derivative

In this section some of the fundamental properties of the derivative are developed. These properties are
analogues of rules familiar from elementary calculus.

Differentiability implies Lipschitz. Let us begin by strengthening the fact that differentiability implies
continuity.

2.4.1 Proposition. Suppose U C E is open and f: U — F is differentiable on U. Then f is continuous.
In fact, for each ug € U there is a constant M > 0 and a 69 > 0 with the property that ||u —ug|| < do implies
1 f(u) = f(uo)|| < M|lu—uol|. (This is called the Lipschitz property.)

Proof. Using the general inequality |||e1]] — [|ez]|| < ||exr — ez||, we get

HIf () = f(uo)l| = [IDf(uo) - (w = uo)]l|
< 1f(w) = fuo) = Df(uo) - (u — uo)|l
= [lo(u — uo)|| < [lu — uoll
for |Ju — ugl] < do, where &y is some positive constant depending on wug; this holds since
lim 2040 g
u—uo [lu—uo|
Thus,
1 (u) = fuo)|l < D f(uo) - (uw—uo)|l + [lu— uol
< (IDf (o) + 1)[lu — o

for |lu — ugl| < do. [ |
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Chain Rule. Perhaps the most important rule of differential calculus is the chain rule. To facilitate its
statement, the notion of the tangent of a map is introduced. The text will begin conceptually distinguishing
points in U from wvectors in E. At this point it is not so clear that the distinction is important, but it will
help with the transition to manifolds in Chapter 3.

2.4.2 Definition. Suppose f : U C E — F is of class C'. Define the tangent of f to be the map
Tf:UxE—FxF gwenbyTf(u,e)=(f(u),Df(u)-e),

where we recall that Df(u) - e denotes D f(u) applied to e € E as a linear map. If f is of class C", define
Trf =T(T"1f) inductively.

From a geometric point of view, T'f is a more “natural” object than D. The reasons for this will become
clearer as we proceed, but roughly speaking, the essence is this: if we think of (u,e) as a vector with base
point u and vector part e, then (f(u), Df(u) - e) is the image vector with its base point f(u), as in Figure
2.4.1. Another reason for this is the simple and elegant behavior of T" under composition, as given in the
next theorem.

Je
I
- g /\ -
B )
Dffu)-e
N\

FIGURE 2.4.1. The geometry of the tangent map

2.4.3 Theorem (C" Composite Mapping Theorem). Suppose f : U CE -V CFandg:V CF — G
are differentiable (resp., C") maps. Then the composite go f : U C E — G is also differentiable (resp., C")
and

T(gof)=TgoTf,

(resp., T"(go f) =T"goT" f). The formula T(go f) =TgoTf is equivalent to the chain rule in terms of
the usual derivative D:

D(go f)(u) = Dg(f(u)) o Df(u).
Proof. Since f is differentiable at u € U and g is differentiable at f(u) € V, we have
Fflu+e)=f(u)+Df(u)-e+ole) forecE
and for v = f(u) we have g(v +w) = g(v) + Dg(v) - w 4+ o(w). Thus,
(9o f)(u+e)=g(f(u) +Df(u)-e+ofe))

= (90 f)(u) + Dy(f(u)) - (Df(u)-e
+Dg(f(u)) - (o(e)) + o(Df(u) - e+ ofe)).

For e in a neighborhood of the origin,

DS+ o (g4 120 < o

el el
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for some constant M > 0, and

IDg(f(u)) - oe)ll < [Dg(f ()] lo(e)]l-

Therefore,
[lo(Df(u) -e+o(e)l _ [(cDf(u)-e+o(e)ll Df(u)-e+ole)l
el IDf(u) - e+ ole)]l el
2 10D f (W) -e+ofe)))|
IDf(u)-e+ole)]

Hence, we conclude that

Dg(f(u)) - (o(e)) +o(Df(u) - e+ o(e)) = o(e)
and thus

D(go f)(u) - e =Dg(f(u)) - (Df(u)-e).

Denote by ¢ : L(F,G) x L(E,F) — L(E,G) the bilinear mapping ¢(B,A) = B o A and note that
v € L(L (F,G) L(E,F); L(E,G)) since |Bo A| < ||B||||All; that is, ||¢| < 1. Let (Dgo f) x Df : U —
L(F,G) x L(E,F) be defined by

[(Dgo f) x Df](u) = (Dg(f(w)),Df(u));
notice that this map is continuous if f and g are of class C''. Therefore the composite function
o((Dgo f)xDf)=D(go f):U — L(E,G)

is continuous if f and g are C', that is, g o f is C'!. Inductively suppose f and g are C". Then Dg is C" !,
so Dgo fis C"~! and thus the map (Dgo f) x Df is C"~! (see Proposition 2.3.6). Since ¢ is C°° (Exercise
2.3-1), again the inductive hypothesis forces po ((Dgo f) x Df) = D(go f) to be C"~1; that is, go f is C".

The formula T"(g o f) = T"g o T" f is a direct verification for » = 1 using the chain rule, and the rest
follows by induction. [ ]

FE=R™ F=R", G=RP, and f = (f',...,f"), 9= (g',...,97), where f: U - Rand ¢/ : V — R,
by Proposition 2.3.7 the chain rule becomes

dgo ') Blgo ) (@)
ozt ox™
Ngo f)P(x)  O(go f)F(=z)
Ozt oxm
o9 (f@)  0gU@)] [of\w)  8f()
oy! oy™ ox! ox™m
o (@) arUE)| |orw @)
oy! oy Oxl oxm

which, when read componentwise, becomes the usual chain rule from calculus:

dgo f)(x) <~ 99 (f(x) 0f*(x)
Oxt _Z Oyk Ozt

1=1,...,m.
k=1
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Product Rule. The chain rule applied to B € L(F1,F2;G) and f; X fo : U C E — F; x Fy yields the
following.

2.4.4 Theorem (The Leibniz or Product Rule). Let f; : U C E — F;, i« = 1,2, be differentiable (resp.,
C") maps and B € L(F1,F2; G). Then the mapping B(f1, f2) = Bo(f1 X f2) : U C E — G is differentiable
(resp., C") and

D(B(f1, f2))(u) - e = B(D f1(u) - €, fa(u)) + B(f1(u), D fa(u) - €).

In the case F; = Fo = R and B is multiplication, Theorem 2.4.4 reduces to the usual product rule for
derivatives. Leibniz’ rule can easily be extended to multilinear mappings (Exercise 2.4-3).

Directional Derivatives. The first of several consequences of the chain rule involves the directional
derivative.

2.4.5 Definition. Let f: U CE — F and let u € U. We say that f has a derivative in the direction
ecE atu if

d
= f(u+te)
dt =0

exists. We call this element of F the directional derivative of f in the direction e at u.

Sometimes a function all of whose directional derivatives exist is called Gadteaux differentiable, whereas
a function differentiable in the sense we have defined is called Fréchet differentiable. The latter is stronger,
according to the following. (See also Exercise 2.4-10.)
2.4.6 Proposition. If f is differentiable at u, then the directional derivatives of f exist at u and are given
by

d

— f(u+te) =Df(u) -e.

dt 0
Proof. A path in E is a map from I into E, where I is an open interval of R. Thus, if ¢ is differentiable,
for t € I we have Dc(t) € L(R,E), by definition. Recall that we identify L(R,E) with E by associating
De(t) with De(t) -1 (1 € R). Let

de
—(t) = Dec(t) - 1.
(1) = De(t
For f: U C E — F of class C! we consider f oc, where ¢ : I — U. It follows from the chain rule that
d dc

2 f(c) =D(foc)(t) 1=Df(c(t)) - -

The proposition follows by choosing ¢(t) = u+te, where u,e € E, I = |-\, A[, and A is sufficiently small. B

For f:U C R™ — R, the directional derivative is given in terms of the standard basis {e1,...,e,} by
6f 1 af n
Df(u)-ezﬁx +-~-+%x ,

where e = x'e; + --- 4+ 2"e,. This follows from Proposition 2.3.7 and Proposition 2.4.6.

The formula in Proposition 2.4.6 is sometimes a convenient method for computing D f(u) - e. For example,
let us compute the differential of a homogeneous polynomial of degree 2 from E to F. Let f(e) = A(e,e),
where A € L?(E;F). By the chain and Leibniz rules,

Df(u)-e= %A(u—i—te,u—i—te) = A(u,e) + A(e, u).
t=0

If A is symmetric, then D f(u) - e = 2A(u, €).
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Mean Value Inequality. One of the basic tools for finding estimates is the following.

2.4.7 Proposition. Let E and F be real Banach spaces, f :U CE — F a C'-map, z,y € U, and ¢ a C*
arc in U connecting = to y; that is, ¢ is a continuous map c : [0,1] — U, which is C* on ]0,1[, ¢(0) = =,
and ¢(1) =y. Then

) fla) = / Df(e(t) - (1) dt.

If U is conver and c(t) = (1 — t)x + ty, then
1
o) = £@) = [ DI =2+ 1) - (=)

= (/OlDf((l—t)erty)dt) (y—a).

Proof. 1If g(t) = (f o ¢)(t), the chain rule implies ¢’'(¢t) = Df(c(t)) - ¢/(t) and the fundamental theorem of
calculus gives

1
o)~ 90) = [ g0t
0
which is the first equality. The second equality for U convex and ¢(t) = (1 —t)z +ty is Exercise 2.2-6(1). W
2.4.8 Proposition (Mean Value Inequality). Suppose U C E is convexr and f: U C E — F is C*. Then
forallx,y € U

15 = £l < | sup. D71 =)+ )] Iy = .

Thus, if |Df(u)]| is uniformly bounded on U by a constant M > 0, then for all x,y € U

1f(y) = f(@)] < Mlly — ]
IfF =R, then f(y) — f(z) =Df(c) - (y — x) for some ¢ on the line joining x to y.

Proof. The inequality follows directly from Proposition 2.4.7. The last assertion follows from the inter-
mediate value theorem as in elementary calculus. |

2.4.9 Corollary. Let U C E be an open set; then the following are equivalent:

(i) U is connected;

(ii) every differentiable map f:U C E — F satisfying Df =0 on U is constant.
Proof. If U =U, UU; and U; NU; = &, where U; and U, are open, then the mapping

. 0, ifueUp;
Jlu) = {e, if u € U,

where e € F, e # 0 is a fixed vector, has D f = 0, yet is not constant.

Conversely, assume that U is connected and Df = 0. Then f is in fact C*°. Let uy € U be fixed and
consider the set S = {u € U | f(u) = f(ug) }. Then S # & (since ug € S), S C U, and S is closed since f
is continuous. We shall show that S is also open. If u € S, consider v € D,.(u) C U and apply Proposition
2.4.8 to get

1f () = f(0)ll < sup{ [Df((1 = t)u+t)|| | ¢ € [0,1] } [Ju —v]| = 0;
that is, f(v) = f(u) = f(ug) and hence D,(u) C S. Connectedness of U implies S = U. [ ]
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If f is Gateaux differentiable and the Gateaux derivative is in L(E, F); that is, for each u € V' there exists
G, € L(E,F) such that

d
Ef(u + te) T Ge,

and if v — G, is continuous, we say f is C''-Gdteauxr. The mean value inequality holds, replacing C'!
everywhere by “Cl-Gateaux” and the identical proofs work. When studying differentiability the following
is often useful.

2.4.10 Corollary. If f:U C E — F is C*-Gateaux then it is C' and the two derivatives coincide.

Proof. Let u € U and work in a disk centered at u. Proposition 2.4.7 gives

1FCut€) — F(u) — Guel = ( / <Gu+te—au>dt> ;
< SUP{ Guste — Gull ‘ te [07 1] } HeH

and the sup converges to zero as, e — 0, by uniform continuity of the map ¢ € [0,1] — Gyyse € L(E, F).
This says that D f(u) - e exists and equals Ge. |

Partial Derivatives. We shall discuss only functions of two variables, the generalization to n variables
being obvious.

2.4.11 Definition. Let f : U — F be a mapping defined on the open set U C Eq ® Eg and let uy =
(uo1,up2) € U. The derivatives of the mappings vi — f(v1,up2), va — f(ug1,v2), where v1 € Ey and
vy € Eo, if they exist, are called partial derivatives of f atug € U and are denoted by D1 f(ug) € L(E1,F),
Dgf(’u,o) S L(EQ, F)

2.4.12 Proposition. Let U C E; @ Es be open and f: U — F.

(i) If f is differentiable, then the partial derivatives exist and are given by
D f(u)-er =Df(u)-(e1,0) and Daf(u) ez =Df(u)-(0,e2).
(ii) If f is differentiable, then
Df(u) - (e1,e2) =Dy f(u)-ex + Daf(u) - es.

(iii) f is of class C" iff D;f : U — L(E;,F), i = 1,2 both exist and are of class C"~*.

Proof. To prove (i), let j. : E; — E; @ Ey be defined by jl(vi) = (v1,us), where u = (uy,us) . Then j}
is C> and Djl(u;) = J; € L(E1, E; @ Eg) is given by Ji(e1) = (e1,0). By the chain rule,

Dy f(u) = D(f 0 jy)(ur) = Df(u) o Ji,

which proves the first relation in (i). One similarly defines j2, Jo, and proves the second relation.

Turning to (ii), let Pi(e1,e2) = e;, i = 1,2 be the canonical projections. Then compose the relation
J1o Py + Jo 0o P, = identity on Eq @ Eo with D f(u) on the left and use (i).

Finally we prove (iii). Let

®, € L(L(E; ® Eo, F), L(E;, F))
and

v, € L(L(El,F), L(E1 D E27F))
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be defined by ®;(A) = Ao J; and V;(B;) = B; o P;, i = 1,2. Then (i) and (ii) become
D,f:(ﬁZODf Df:\l’l OD1f+\I/20D2f

This shows that if f is differentiable, then f is C™ iff D, f and Dy f are C"~'. Thus to conclude the proof we
need to show that if Dy f and Ds f exist and are continuous, then D f exists. By Proposition 2.4.7 applied
consecutively to the two arguments, we get

flur +e1,ug +e2) — f(ur,uz) — Dy f(ur,uz) - e1 — Daf(ur, uz) - €2
= f(ur +e1,us +e2) — f(ur,uz + e2) — Dy f(ur,uz) - €1
+ f(ui,us +e2) — f(ur,uz) — Daf(ur,u2) - €2

1
= (/ (D f(ur +ter,ug + e2) — Dy fur, ug)) dt) ey
0

1
+ (/ (Dgf(ul,UQ + t€2) — Dgf(ul,’u,g)) dt) - €.
0
Taking norms and using in each term the obvious inequality |le1|| < |le1]] + ||e2]| = ||(e1, e2)]|, we see that
[ f(ur +e1,uz + e2) — fur,uz) — Dy f(ur, uz) - €1 — Daf(ur, uz) - e2|

< ( sup [|[Dyf(uy +ter,up + ez) — Dy f(ug, uz + e2)||
0<t<1

T+ s ||D2f<u1,u2+te2>—D2f<u1,u2>||) lews )l

0<t<1
Both sups in the parentheses converge to zero as (e1,e2) — (0,0) by continuity of the partial derivatives. W

Higher Derivatives. If E; = E; = R and {ej, e} is the standard basis in R? we see that

0 h,y) —
a_ﬁ(x’y):%if})ﬂﬂ y}z f=

1Y) =D, f(z,y) e €F.

Similarly, (0f/0y)(z,y) = Daf(x,y) - e2 € F. Define inductively higher derivatives

*f _ 0 (of 0*f _ 0 (of .
92 0r \dx )’ ozay oy\az) ¢

2.4.13 Example. As an application of the formalism just introduced we shall prove that for f : U C

R2 R
D2f(u) . (’U7’LU) _ vlwlg(u) + Ule%(u) + U%ﬂ%(u)
2
ot S (),
% f >’f
- @(u) Qy Ox () w!
(v, v%) o2/ 2 <w2>’

P OO

where v € U, v,w € R%, v = vle; + v2es, w = wle; + w?es, and {e1,ea} is the standard basis of R2. To
prove this, note that by definition,

D*f(u) - (v,w) = D((Df)(") - w)(u) - v.
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Applying the chain rule to Df(-)-w =T, : A € L(R?,F) — A-w € F, the preceding expression becomes

DDf(:) w)(u) v
DD, f(-)-w'e; + Daf(-) - w?es)(u) - v (by Prop. 2.4.12(ii))
D

(5 775, ) 0

= w! [Dl (%) (u) - vte; + Dy <%> (u) 'U2€2:| (2.4.1)
o (). (L))
_ 1, 10%f 0% f 0*f 02 f
= vlw! o S5 () +v wlm(u)Jrvw ayax( )+v2w28—y2(u). ¢

For computation of higher derivatives, note that by repeated application of Proposition 2.4.6,

D’"f(u)-(el,...,er):%...d;i {f <u+Ztiei>}
" i=1

In particular, for f: U C R™ — R”™ the components of D" f(u) in terms of the standard basis are

t1=--=t,=0

o'f
—— 0<iq <
axll...axir =k =
Thus, f is of class C" iff all its r-th order partial derivatives exist and are continuous.

Symmetry of Higher Derivatives. Equality of mixed partials is of course a fundamental property we
learn in calculus. Here is the general result.

2.4.14 Proposition (L. Euler). If f : U C E — F is C", then D" f(u) € LL(E,F); that is, D" f(u) is
symmetric.

Proof. First we prove the result for r = 2. Let u € U, v,w € E be fixed; we want to show that D?f(u) -
(v,w) = D2f(u) - (w,v). To this, define the linear map a : R?> — E by a(e;) = v, and a(es) = w, where e;
and ey are the standard basis vectors of R?. For (z,y) € R?, then a(z,y) = v + yw. Now define the affine
map A :R? — E by A(z,y) = u + a(z,y). Since

D*(f o A)(w,y) - (e1, e2) = D*f(u) - (v,w)
(Exercise 2.3-5), it suffices to prove this formula:
D?(fo A) - (2,) - (e1,e2) = D*(f 0 A)(w,y) - (e2, e1);
that is,

P*(fod) 0*(fod)
oxdy — Oydx

(see Example 2.4.13). Let g = fo A: V = A~1(U) Cc R? — F. Since for any A\ € F*, §*(\ o g)/0z0y =
A(0?g/0x0y), using the Hahn-Banach theorem 2.2.12, it suffices to prove that

Po D

oxdy  Oyox’
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where o = Ao g:V C R? — R, which is a standard result from calculus. For the sake of completeness we
recall the proof. Applying the mean value theorem twice, we get

Shk = [plx +h,y+ k) — o,y + k)] — [p(z + h,y) — o(z,y)]

0 0
= (a_i(ch,kay + k) — 8_i(ch7k’y>) k
_ P
-~ 0z0y

(Ch,ks dn i) Ik

for some ¢y, i, dp, i, lying between x and x + h, and y and y+ k, respectively. By interchanging the two middle
terms in Sp ; we can derive in the same way that

2

%
) hk.
Dydr ('Yh,ka h,k)

Shk =

Equating these two formulas for S}, 1., canceling h, k, and letting h — 0, k — 0, the continuity of D2 gives
the result.
For general r, proceed by induction:

D" f(u) - (vi,va,...,0,) = D*D"2f)(u) - (v1,v2) - (v3,...,05)
=D*D"2f)(u) - (va,v1) - (3, ..., 0n)
=D"f(u) - (v2,v1,0V3,...,0,).

Let o be any permutation of {2,...,n}, so by the inductive hypothesis
D" f(u)(va, ..., v0) = D’"_lf(u)(v(,(g)7 oy Vg (n))-

Take the derivative of this relation with respect to u € U keeping vs, ..., v, fixed and get (Exercise 2.4-6):
D" f(u)(vi,...,vn) = D" f(u)(v1, Vo2 - - Vo(n))-

Since any permutation can be written as a product of the transposition {1,2,3,...,n} — {2,1,3,... ,n} (if
necessary) and a permutation of the set {2,...,n}, the result follows.

Taylor’s Theorem. Suppose U C E is an open convex set. Since + : E x E — E is continuous, there
exists an open set U C E x E with these three properties:

(i) Ux{0}cU,
(i) w+Eh e U for all (u,h) € U and 0 < & < 1, and
(iif) (u,h) € U implies u € U.
For example let
U={+)""U)}NUXE)={(u,h) eUXE|u+heU?}.

Let us call such a set U a thickening of U. See Figure 2.4.2.

2.4.15 Theorem (Taylor’s Theorem). Let U be an open convex subset of E. A map f:U CE — F is of
class C" iff there are continuous mappings

¢p:UCE = IP(E,F), p=1,....r, and R:U — L’(E,F),
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FIGURE 2.4.2. A thickened neighborhood

where U is some thickening of U such that for all (u,h) € U,

e ) = 1)+ 2 P P R b

where h? = (h,...,h) (p times) and R(u,0) = 0. If f is C" then necessarily ¢, = DPf for allp=1,... ,r
and, in addition,

R(u,h):/o %(D’"f(u—i—th)—D"f(u))dt.

Proof. We shall prove the “only if” part. The converse is proved in Supplement 2.4B. Leibniz’ rule gives
the following integration by parts formula. If [a,b) C U C R and ¢; : U C R — E;, i = 1,2 are C!
mappings and B € L(E;, Eo; F) is a bilinear map of E; x Es to F, then

b
| BOAO a0) dt = BL0), 12(0) — Ber(@). (@)
b
- [ B, vh(0) .
Assume f is a C" mapping. If » = 1, then by Proposition 2.4.7
flu+h) = f(u) + </0 Df(u+th)dt> -h
= f(u)+Df(u)-h+ </0 (Df(u+th) —Df(u))dt) -h

and the formula is proved. For general k£ < r proceed by induction choosing in the integration by parts
formula E; = R, E; = E, B(s,e) = se, 12(t) = D¥ f(u+th) - h*, and 1 (t) = —(1 — t)¥ /k!, and taking into

account that
1 k
1—
/ A= L
0 k! (k4 1)!

Since D* f(u) € L¥(E, F) by Proposition 2.4.14, Taylor’s formula follows. [ |
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Note that R(u,h)-h" = o(h") since R(u,h) — 0 as h — 0. If f is C"*! then the mean value inequality and
a bound on D" ! f gives R(u,h)-h" = o(h"™1). See Exercise 2.4-13 for the differentiability of R. The proof
also shows that Taylor’s formula holds if f is (r — 1) times differentiable on U and r times differentiable
at u. The estimate R(u,h)-h" = o(h") is proved directly by induction; for » = 1 it is the definition of the
Fréchet derivative.

If fis C* (i.e., is C" for all ) then we may be able to extend Taylor’s formula into a convergent power
series. If we can, we say f is of class C¥, or analytic. A standard example of a C'°° function that is not
analytic is the following function from R to R (Figure 2.4.3)

0, |z| > 1.

yA

Y=

FIGURE 2.4.3. A bump function

This function is C*°, and all derivatives are 0 at © = £1. To see this note that for |z| < 1,

Fe) = Qula)(1 =) > exp (1205 )

1— 22
where @, (x) are polynomials given recursively by
Qo(x) =1, Quii(z) = (1-2°)Q) () + 22(2n — 1 — 2n2®)Qn(x).

Hence all coefficients of the Taylor series around these points vanish. Since the function is not identically 0
in any neighborhood of £1, it cannot be analytic there.

2.4.16 Example (Differentiating Under the Integral). Let U C E be open and f : [a,b] x U — F. For
t € [a,b], define g(t) : U — F by g(t)(u) = f(t,u). If, for each ¢, g(t) is of class C" and if the maps

(t,u) € [a,8] x U — D (g(t))(u) € LI(E,F)
are continuous, then h : U — F, defined by
b b
) = [ feude= [ g
is C" and

b
Djh(u):/ D/ f(t,u)dt, j=1,...,r
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where D,, means the partial derivative in u. For » = 1, write
b
h(u+e) — h(u) — / D(g(t))(u) - edt

=|Lb(A?D@@»w+sa~e—nwu»wyad§dt

< (b—a)lle] . ID(g(1))(u+ se) = D(g(t))(u)]| = ofe)-

For r > 1 one can also use an argument like this, but the converse to Taylor’s theorem also yields the result
rather easily. Indeed, if R(t,u,e) denotes the remainder for the C" Taylor expansion of ¢(t), then with

op=Dh = [ Drlgle)at

the remainder for h is clearly R(u,e) = f; R(t,u,e)dt. But R(t,u,e) — 0 as e — 0 uniformly in ¢, so R(u,e)
is continuous and R(u,0) = 0. Thus h is C". ¢

Extrema for Real Valued Functions on Banach Spaces. Much of this theory proceeds in a manner
parallel to calculus.

2.4.17 Definition. Let f : U C E — R be a continuous function, U open in E. We say f has a local
minimum (resp., maximum) at ug € U, if there is a neighborhood V' of ug, V- C U such that f(uo) < f(u)
(resp., f(ug) > f(w)) for allu € V. If the inequality is strict, ug is called a strict local minimum (resp.,
mazximum). The point ug is called a global minimum (resp., global maximum) if f(ug) < f(u) (resp.,
f(ug) = f(u)) for all w € U. Local mazima and minima are called local extrema.

2.4.18 Proposition. Let f: U C E — R be a continuous function differentiable at ug € U. If f has a
local extremum at ug, then D f(ug) = 0.

Proof. If ug is a local minimum, then there is a neighborhood V of U such that f(ug + th) — f(ug) > 0
for all h € V. Therefore, the limit of [f(ug +th) — f(ug)]/t ast — 0,¢>0is > 0and ast — 0, ¢ < 0is < 0.
Since both limits equal D f(ug), it must vanish. [ |

This criterion is not sufficient as the elementary calculus example f : R — R, f(x) = 2 shows. Also, if U
is not open, the values of f on the boundary of U must be examined separately.

2.4.19 Proposition. Let f: U CE — R be twice differentiable at ug € U.
(i) If ug is a local minimum (mazimum), then D?f(ug) - (e,€) >0 (< 0) for all e € E.
(i) If up is a non-degenerate critical point f, that is, D f(ug) = 0 and D?f(ug) defines an isomorphism
of E with E*, and if D?f(ug) - (e,€) > 0 (< 0) for all e # 0, e € E, then ug is a strict local minimum

(mazximum) of f.

Proof. To prove (i), we note that by Taylor’s formula, in a neighborhood V' of ug, we have
1
0 < f(uo +h) — fluo) = §Df(u0)(h, h) + o(h?)
for all h € V. If e € E is arbitrary, for small ¢t € R, te € V, so that

0< %sz(uo)(te,te) + o(t%e?)
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implies
2
D% f(uo)(e,e) + t—20(t262) > 0.

Now let t — 0 to get the result.
To prove (ii), denote by T': E — E* the isomorphism defined by e +— D2 f(ug) - (e, ), so that there exists
a > 0 such that

allel| < |Tell = sup |(Te,e)] = sup [D*f(uo) - (e,¢)].

flell=1 llell=1
By hypothesis and symmetry of the second derivative,
0 < D?f(ug) - (e + se’, e + s€’)

= s’Df(ug) - (¢, €') + 25D f(ug) - (e,€') + D f(up) - (e, ),

which is a quadratic form in s. Therefore, its discriminant must be negative, that is,
ID?f(uo) - (e,¢")[* < D?f(ug) - (¢/,¢')D? f(u) - (e, ¢)
< |D?f(uo)[ID* f (uo) - (e, ),

and thus, we get

alle]| < e D (uo) - (e, ¢)] < ID2f (uo)||/*[D?f (o) - (¢, €)]'/2.

Therefore, letting m = a?/||D?f(up)||, the following inequality holds for any e € E:
D? f(uo) - (e, €) = mel|.
Thus, by Taylor’s theorem we have

m|h|®

1
f(uo +h) = fug) = §D2f(uo) - (h,h) + o(h?) > 5 T o(h?).
Let € > 0 be such that if ||h]| < &, then |o(h?)| < m]|h||?/4, which implies f(ug+h) — f(ug) > m|h||*/4 >0
for h # 0, and thus ug is a strict local minimum of f. [ |

The condition in (i) is not sufficient for f to have a local minimum at uy. For example, f : R? — R,
f(x,y) = 22 — y* has £(0,0) = 0, Df(0,0) = 0, D2£(0,0) - (z,y)?> = 22% > 0 and in any neighborhood of
the origin, f changes sign. The conditions in (ii) are not necessary for f to have a strict local minimum at
ug. For example f: R — R, f(x) = z* has f(0) = f/(0) = f"(0) = f”(0) = 0, f*(0) > 0 and 0 is a strict
global minimum for f.

On the other hand, if the conditions in (ii) hold and ug is the only critical point of a differentiable function
f:U — R, one might think that ug is a strict global minimum of f. While true in one dimension by Rolle’s
theorem, this is not true in general, as the function f : R? — R defined by

Fay) =y +e +22Ver e’

shows.

Also, care has to be taken with the statement in (ii): non-degeneracy holds in the topology of E. If E is
continuously embedded in another Banach space F and D?f(ug) is non-degenerate in F only, uo need not
even be a minimum. For example, consider the smooth map

IO =R ) =5 [ (@ —u(@)) de
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and note f(0) =0, Df(0) =0, and

D?f(0)(v,v) = /1 v(x)?dx >0 forv#0,
0

and that D2 £(0) defines an isomorphism of L*([0, 1]) with L*/3([0, 1]). Alternatively, D?f(0) is non-degenerate
on L%([0,1]) not on L*([0,1]). Also note that in any neighborhood of 0 in L*([0,1]), f changes sign:
f(1/n) = (n? —1)/2n* > 0 for n > 2, but f(u,) = —6/n <0 for n > 1 if

w {2, on [0,1/n];

0, elsewhere

and both 1/n,u,, converge to 0 in L*([0,1]). Thus, even though D?f(0) is positive, 0 is not a minimum of
f. (See Ball and Marsden [1984] for more sophisticated examples of this sort.)

SUPPLEMENT 2.4A
The Leibniz and Chain Rules

Here the explicit formulas are given for the kth order derivatives of products and compositions. The proofs
are straightforward but quite messy induction arguments, which will be left to the interested reader.

The Higher Order Leibniz Rule. Let E, F;, F5, and G be Banach spaces, U C E an open set,
f:U—=Fiandg:U — Fy of class C% and B € L(F{,F3; G). Let f x g: U — F; x F5 denote the mapping
(f x g)(e) = (f(e),g(e)) and let B(f,g) = Bo (f x g). Thus B(f,g) is of class C* and by Leibniz’ rule,

DB(f,9)(p) - e = BIDf(p) - ¢,9(p)) + B(f(p), Dy(p) - €).
Higher derivatives of f and g are maps
Dif:U — L'(E;F,), D' ig:U — L*(E;Fy),

where

D°f=f, D%=g, LYE;F)=F;, L°E;Fy)=F,.
Denote by

N e L(LY(E; Fy), LB, Fa); LM (E; G)),
the bilinear mapping defined by
NF=U(AL, Ay)](eq, ... ex) = B(Ai(er, ... e), Ag(eiy, ..., ex))
for Ay € LY(E;F,), Ay € LF"Y(E; F3), and ey, ..., e € E. Then
Aok=i(Dif, D*ig) . U — LF(E; G)

is defined by

APETHD, DR ) (p) = XY TH(D £ (p), D* g (p))
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for p € U. Leibniz’ rule for kth derivatives is
(K
k _ k ik—i(Tyi £ Tyk—i
where Sym"* : L*(E; G) — L*(E; G) is the symmetrization operator, given by (see Exercise 2.2-9):
1
(Sym* A)(ey, ... ep) = o > Aleorys- - ew),

" oESE

where Sy, is the group of permutations of {1,..., k}. Explicitly, taking advantage of the symmetry of higher
order derivatives, this formula is

D*B(f,9)(p) - (e1, ... ex)

k
k i i
= ZZ (2) B f(p) - (ex(1)s-- o)) D g0 (€n(it1)s - - €oik)))s
o i=0
where the outer sum is over all permutations o € Sy such that

o)< ---<o(i) and o(i+1)<- - <o(k).

The Higher Order Chain Rule. Let E, F, and G be Banach spaces and U C F and V C F be open
sets. Let f: U — V and g: V — G be maps of class C*. By the usual chain rule, go f : U — G is of class
C* and

D(go f)(p) = Dg(f(p)) e Df(p)

for p € U. For every tuple (¢, j1,...,J:), where ¢ > 1, and j; + - - -+ j; = k, define the continuous multilinear
map

Nodtedis [HF; G) x LI (E; F) x -+ - x L7(E; F) — L*(E; G)
by

)\i7j17---7j1:(A7B1, .. ,Bz) . (el, .. .,ek)

= A(Bl(ei, ey ejl), ey Bi(eji+...+]~1_1+1, ey ek))

for
Ac L (F;G), BycL'(E;F), (=1,...,iande;,..., e, € E.

Since DJ¢f : U — L’*(E; F), we can define
Abdtdio (Digo f x DIV x -+ x DY) : U — L*(E; G)
by
p = AT (DY (f(p), D7 f(p), - - DY f(p)).
With these notations, the kth order chain rule is

k
Dk(gof):SymkoZ Z

i=1 ji+tji=k
o(Digofx DI fx...xDIif),

k!

NisdLseensdi
il il

Ji
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where Sym* : L¥(E; G) — L*(E; G) is the symmetrization operator. Taking into account the symmetry of
higher order derivatives, the explicit formula at p € U and eq,...,e; € E, is

Dk(gof)(p) (e, ex)

= Y D)D) - (e, )

=1 jrbe A=
Djif(p) : (eej1+---+ji71+1 Yo e@k))

where the third sum is taken over indices satisfying ¢1 < --- < €, - {j g, 141 < -+ < Ly.

SUPPLEMENT 2.4B
The Converse to Taylor’s Theorem

This theorem goes back to Marcinkiewicz and Zygmund [1936], Whitney [1943a], and Glaeser [1958]. The
proof of the converse that we shall follow is due to Nelson [1969]. Assume the formula in the theorem holds
where ¢, = DPf, 1 < p < r, and that R(u,h) has the desired expression. If » = 1, the formula reduces
to the definition of the derivative. Hence o1 = Df, f is C!, and thus R(u, h) has the desired form, using
Proposition 2.4.7. Inductively assume the theorem is true for r = p — 1. Thus ¢; =D’ f, for 1 < j <p— 1.
Let h,k € E be small in norm such that u + h + k € U. Write the formula in the theorem for f(u + h + k)
in two different ways:

fu+h+k)=f(u+h)+Df(u+h) k+---
1

(p—1)!
1
ool ) K o R+ b k) R

+ D1 f(u+ h) - kP

flu+h+k)=f(u)+Df(u) - (h+k)+---
1 p—1 . p—1
+MD f(u)- (h+k)

+ %@p(u) ~(h+ k)P + Ro(u, h + k) - (h + k)P.

Subtracting them and collecting terms homogeneous in k’/ we get:

go(h) +gi(h) k4 -+ gy_1(h) - kP~' + g, (h) - kP
= Ry(u—+ h, k) - k? — Ry(u, h + k) - (h+ k)P,

where g;(h) € L7(E;F) is given by

p—1-j

gj(h):ﬁ D/ f(u+h) — DI f(u) — Z il'Dj“f(u)-hi
! — il

1 .
— ) W

(p—3)!



2.4 Properties of the Derivative 89

for0<j<p-2 .
o1 () = =57 D77t ) = DL () — gyl - 1]

and
ap(h) = % ot + h) — gp(us)]

Note that ¢;(0) = 0 and that the maps g; are continuous. Let ||k|| satisfy (1/4)|h] < ||k]| < (1/2)||R]|. Since

|Ri(u+ h,k)- kP — Ra(u,h + k) - (h+ k)P — gp(h) - kP
< (1B + b B) =+ Nlgp (WD RN + | R2(w, b+ B[R] + (&)
< Al[Ry(u + h, B + [lgp (W)l + [[R2(u, ko + k)|[} (1 + 37)[[Al]P /2

and the quantity in braces {} — 0 as h — 0, it follows that
Ri(u+h,k)- kP — Ro(u,h + k) - (h+ k)P — gp(h) - kP = o(hP).
Hence
go(h) + gi(h) -k + -+ gp_1(h) - K'~1 = o(hP).

We claim that subject to the condition (1/4)||h] < [|k|| < (1/2)||h]], each term of this sum is o(h?). If
AL, ..., Ap are distinct numbers, replace k by A;jk in the foregoing, and get a p x p linear system in the
unknowns go(h), ..., gp—1(h) - kP! with Vandermonde determinant II,;(A; — \;) # 0 and right-hand side
a column vector all of whose entries are o(h?). Solving this system we get the result claimed. In particular,

(DPf(u+h) —DPf(u) — pp(u) - h) - kP~ = g,_1(h) - kP~! = o(hP).
Using polarization (see Supplement 2.2B) we get

P~ f(u+ h) = DP= f(u) — pp(u) -

_ 1\p—1
< % (D"~ f(u+ h) = DP 1 f(u) = gy (u) - h)’
fw su p—1gc, _prt U
B I (D =D
_‘Pp(u)'h)'ep_l
(p—1)p!

(DP~1f (u + ) — DP~ L f (u)

oyl B) (QTkn)

(DP~ f(u+h) = DPLf(u)

=——"——  sup
(=D yry<ing/z

2(p—1))!
(> = DUAIPE ki< a2

— op(u) - ) - k!

_ee-pt
= -y
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Since o(h?)/||h||P — 0 as h — 0, this relation proves that D?~! f is differentiable and D? f(u) = ¢, (u). Thus
f is of class C?, ¢, being continuous, and the formula for R follows by subtracting the given formula for
f(u+ h) from Taylor’s expansion. W

The converse of Taylor’s theorem provides an alternative proof that D" f(u) € L7(E;F). Observe first
that in the proof of Taylor’s expansion for a C” map f the symmetry of D’ f(u) was never used, so if one
symmetrizes the D7 f(u) and calls them ¢;, the same expansion holds. But then the converse of Proposition
2.4.12 says that ¢; = DI f.

We shall consider here simple versions of two theorems from global analysis, which shall be used in
Supplement 4.1C, namely the smoothness of the evaluation mapping and the “omega lemma.”

The Evaluation Map. Let I = [0,1] and E be a Banach space. The vector space C"(I; E) of C"-maps
(r > 0) of I into E is a Banach space with respect to the norm

— 7
171 = max sup [D'£(1)|

(see Exercise 2.4-8). If U is open in E, then the set
C(LU)={feC(LE)| fI)CU}

is checked to be open in C"(I; E).
2.4.20 Proposition. The evaluation map defined by:

ev:C"(L;U) x]0,1[—=U
defined by
ev(f,t) = f(t)
is C" and its kth derivative, k= 0,1,... ,r is given by

D* ev(f, t) ' ((g17 51)? SR (gkv Sk))

k
=DFf(t) - (s1,...o56) + > DFgit) - (1., 8im1,Siv1, .-, 5k)
i=1

where
(9iy8:) ECT(LE)XR, i=1,...,k.

Proof. For (g,s) € C"(I;E) x R, define the norm ||(g,s)|| = max(||g]+,|s|). Note that the right-hand
side of the formula in the statement is symmetric in the arguments (g;, s;), ¢ = 1,..., k. We shall let this
right-hand side be denoted

or:CT(LU) x10,1[ = L*(C"(LE)x R;E), k=1,...,7,
and we set ¢o(f,t) = f(t). The proposition holds for » = 0 by uniform continuity of f on I since
1£(&) = g(s)II < L&) = fFI+[1f = gllo-
Since

Drg(t) - s"

im — L =
(9.9—(0,0) [[(g,8)[I"



2.4 Properties of the Derivative 91

for all ¢ € ]0, 1], by Taylor’s theorem for f and g we get

where
R((f:1),(g:5)) - ((91,81),- -, (gr,8r)) = R(¢,8) - (s1, ., 8r)

1 ey
+m2D 9i(t) - (81, 8r),

which is symmetric in its arguments and R((f,t),(0,0)) = 0. By the converse to Taylor’s theorem, the
proposition is proved if we show that every ¢;, 1 < ¢ < r, is continuous. Since

D gi(t) = D*gi(s)|| < [t — s sup ID*gi(u) || < [t = s| llgill
ue

by the mean value theorem, the inequality

[(pr(ft) — wr(g,s)) - ((91,81)5 -, (s sk)l
< |IDFf(t) = DFg(s)|| [s1] - |sil

k
+ ) IDFgi(t) = DR gi(s) || Isal - [sical Isiga] - [l
=1

implies
len(f,t) = @rlg, s)ll < ID*F(t) = DFg(s)[| + kft — s
< |D*f(t) = D*f(s)|| + D" f(s) = D*g(s)]|
+ k|t — s
< |DEf(t) = D*f(s)ll + 2K (f.1) = (9, 9)]-
Thus the uniform continuity of D* f on I implies the continuity of ¢, at (f,t). |

Omega Lemma. We use the expression “omega Lemma” following terminology of Abraham [1963]. Var-
ious results of this type can be traced back to earlier works of Sobolev [1939] and Fells [1958].
Let M be a compact topological space and E, F be Banach spaces. With respect to the norm

If[I' = sup [If(m)]],
meM

the vector space C°(M, E) of continuous E-valued maps on M, is a Banach space. If U is open in E, it is
easy to see that

COM,U) = {feC'ME)| f(M)c U}

is open.
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2.4.21 Proposition (Omega Lemma). Let g:U — F be a C"map, r > 0. The map
Q,: C'(M,U) — C°(M,F) defined by Q,(f)=gof
is also of class C". The derivative of Qg is
DQy(f)-h=[(Dg)o f]-h
that is,
[DQy (f) - h(z) = Dg(f(x)) - h(z).

The formula for D, is quite plausible. Indeed, we have

d d
D) ) = (S +em@)| = galf) +eh@)|

By the chain rule this is Dg(f(z)) - h(x). This shows that if Qg is differentiable, then D, must be as stated
in the proposition.

Proof. Let f € C°(M,U). By continuity of g and compactness of M,

120 (f) = Qg (£l = sup, lg(f(m)) = g(f'(m))]|

is small as soon as || f — f’|| is small; that is, Q, is continuous at each point f. Let
Ay 5 CO(M, LL(E; F)) — LL(CO(M, E); C°(M, F)

be given by
A;(H)(h1,...,h;)(m) = H(m)(hi(m),..., h;(m))

for H € C°(M, LY (E;F)), hi,...,h; € CO(M,E) and m € M. The maps A; are clearly linear and are
continuous with ||A;|| < 1. Since D’g : U — L:(E;F) is continuous, the preceding argument shows that the
maps

Qpiy : C°(M,U) — LL(C°(M,E); C°(M,F))
are continuous and hence
A?', o QDig : OO(Mv U) - Li(CO(Mv E)7 CO(Ma F))

is continuous. The Taylor theorem applied to g yields

g(f(m) + h(m)) = g(f(m)) + > 3 Dig(f(m) - hm)’
i=1
+ B(f(m), hm) - hm)’
so that defining

[(D'go f)-n')(m) = D'g(f(m)) - h(m)',

and

[R(f,h) - (ha, ... he)[(m) = R(f(m), h(m)) - (h1(m), ..., hr(m))
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we see that R is continuous, R(f,0) = 0, and

0, (f +h) =go(f+ ) =gof+ > (Digof) b +R(fH) N
i=1
= 0 (f) + 3 2 (A0 O, )() B+ RO D) -0

i=1
Thus, by the converse of Taylor’s theorem, DQ, = A4; o Qpig and Q is of class C". |

This proposition can be generalized to the Banach space C"(I,E), I = [a,b], equipped with the norm
I || given by the maximum of the norms of the first r derivatives; that is,

- (@)
171 = guas sup |79 (0],

If g is C"*9, then Q, : C"(I,E) — C"*(I,F) is C9*. Readers are invited to convince themselves that the
foregoing proof works with only trivial modifications in this case. This version of the omega lemma will be
used in Supplement 4.1C.

For applications to partial differential equations, the most important generalizations of the two previous
propositions is to the case of Sobolev maps of class H?; see for example Palais [1968], Ebin and Marsden
[1970], and Marsden and Hughes [1983] for proofs and applications.

SUPPLEMENT 2.4C
The Functional Derivative and the Calculus of Variations

Differential calculus in infinite dimensions has many applications, one of which is to the calculus of variations.
We give some of the elementary aspects here to introduce the reader to the subject. We shall begin with
some notation and a generalization of the notion of the dual space.

Duality and Pairings. Let E and F be Banach spaces. A continuous bilinear functional (,) : ExF — R
is called E-non-degenerate or E-weakly non-degenerate if (x,y) = 0 for all y € F implies 2z = 0.
Similarly, it is F-non-degenerate or F-weakly non-degenerate if (x,y) = 0 for all z € E implies y = 0.
If it is both, we just say (,) is (weakly) non-degenerate. Equivalently, the two linear maps of E to F* and
F to E* defined by z +— (z,-) and y — (-, y), respectively, are one to one. If they are isomorphisms, (,) is
called E- or F-strongly non-degenerate. A non-degenerate bilinear form (,) thus represents certain linear
functionals on F in terms of elements in E. We say E and F are in duality if there is a non-degenerate
bilinear functional (,) : E x F — R, also called a pairing of E with F. If the functional is strongly
non-degenerate, we say the duality is strong.

2.4.22 Examples.

A. Let E=F* Let (,) : F* xF — R be given by (¢,y) = ¢(y) so the map E — F* is the identity.
Thus, (,) is E-strongly non-degenerate. It is easily checked that (,) is F-non-degenerate by making use of
the Hahn—Banach theorem. (If it is F* strongly non-degenerate, F is called reflexive.)

B. Let E=F and (,) : ExE — R be an inner product on E. Then (,) is non-degenerate since (,)
is positive definite. If E is a Hilbert space, then (,) is a strongly non-degenerate pairing by the Riesz
representation theorem. ¢
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Functional Derivatives. We now define the functional derivative which uses the pairing similar to how
one defines the gradient.

2.4.23 Definition. Let E and F be normed spaces and (,) be an E-weakly non-degenerate pairing. Let
f:F — R be differentiable at the point o € F. The functional derivative §f/da of [ with respect to « is
the unique element in E, if it exists, such that

Df(a)-8= <%,6> for all B € F. (2.4.2)

Likewise, if g : E — R and (,) is F-weakly degenerate, we define the functional derivative ég/év € F, if
it exists, by

Dg(v) - v = <U’, —> for all v’ € E.

Weak non-degeneracy ensures the uniqueness of the functional derivatives, if they exist.
In some interesting examples, E and F are spaces of mappings, as in the following example.

2.4.24 Example. Let Q € R™ be an open bounded set and consider the space E = C%(D), of continuous
real valued functions on D where D = cl({2). Take F = C°(D) = E. The L2-pairing on E x F is the bilinear
map given by

(,):COD) x C°(D) = R, (f,g) = / f(@)g(x) d.

Let r be a positive integer and define f: E — R by

o) =1 /Q lp(a)]" d".

Then using the calculus rules from this section, we find
Do) = [ rle@l vla)

0
Thus, —f =rp L ¢
o
Suppose, more generally, that f is defined on a Banach space E of functions ¢ on a region 2 in R™. The
functional derivative (6f/dp) of f with respect to ¢ is the unique element (0f/dp) € E, if it exists, such
that
of

Df(p) ¢ = <@’w> = /Q (%) (x)¢(x)d™  for all ¥ € E.

The functional derivative may be determined in examples by

flo +e). (2.4.3)
e=0

of n d
| @ = 4

Criterion for Extrema. A basic result in the calculus of variations is the following.

2.4.25 Proposition. Let E be a space of functions, as above. A necessary condition for a differentiable
function f:E — R to have an extremum at o is that

of _

5@_0'
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Proof. If f has an extremum at ¢, then for each ¢, the function h(e) = f(¢ + €) has an extremum
at ¢ = 0. Thus, by elementary calculus, h’'(0) = 0. Since 1 is arbitrary, the result follows from equation
(2.4.3). |

Sufficient conditions for extrema in the calculus of variations are more delicate. See, for example, Bolza
[1904] and Morrey [1966].

2.4.26 Examples.

A. Suppose that Q C R is an interval and that f, as a functional of ¢ € C*(Q), k > 1, is of the form

fle) Z/QF (%w(w)?Z—i) dzx (2.4.4)

for some smooth function F : @ x R x R — R, so that the right hand side of equation (2.4.4) is defined.
We call F' the density associated with f. It can be shown by using the results of the preceding supplement

that f is smooth. Using the chain rule,
of d d(e + &)
—()Y(z)dz = — /F(x, +ep, ——— | dx
RACEE (e -

de
- /QD2F <x,cp(x),fl—i> Y(x) dx

do\ dy
D3 F — | —
+/Q 3 (1‘7@(33), d{l?) dz de,

where
oF or

DyF == and D3F=—
T 0p M TN T B0 )0a)

denote the partial derivatives of F' with respect to its second and third arguments. Integrating by parts, this

becomes
/QDQF <x,<p(x), Z-‘i) (@) da — /Q (%D;),F (x,ga(ac), j-i)) W(z) do
+ /m DyF (x,go(x), fTi) () da.

Let us now restrict our attention to the space of ¥’s which vanish on the boundary 02 of 2 . In that case
we get

of d
— =DyF — —DgF.
%) 2 dz°

Rewriting this according to the designation of the second and third arguments of F as ¢ and dp/dx,
respectively, we obtain

5f OF d OF

= - 2.4.5
do  OJp  dxO(dp/dx) ( )
By a similar argument, if @ C R™, equation (2.4.5) generalizes to
) oF d or
of _ (2.4.6)

So Oy  dab d(dp/da*)



96 2. Banach Spaces and Differential Calculus

(Here, a sum on repeated indices is assumed.) Thus, f has an extremum at ¢ only if

oF 4 oF
dp  dak 9(0¢/0xk)

This is called the Euler—Lagrange equation in the calculus of variations.

B. Assume that in Example A, the density F' associated with f depends also on higher derivatives, that
is, F = F(2,0(2), ¢z, Puz, - - - ), Where o, = dp/dx, pr. = d%p/dx?, etc. Therefore

f(sO)=/QF(x,w(x),gax,wm,...)dz.

By an analogous argument, formula (2.4.5) generalizes to

of OF d [ OF d? OF
o _F_° Ay (RCC 2.4.
dp Oy dx (5‘50,3) + dz? (6‘gam> (247)

C. Consider a closed curve v in R? such that « lies above the boundary 90 of a region ) in the zy-plane,
as in Figure 2.4.4.

zZA

.

FIGURE 2.4.4. A curve 7 lying over 02

Consider differentiable surfaces in R? (i.e., two-dimensional manifolds of R?) that are graphs of C* func-
tions ¢ : @ € R? — R, so that (z,y,¢(z,y)) are coordinates on the surface. What is the surface of least
area whose boundary is 77 From elementary calculus we know that the area as a function of ¢ is given by

A(gp):/ \/ 1+ @2 + 2 dv dy.
Q

From equation (2.4.6), a necessary condition for ¢ to minimize A is that

% . _prz(l + QPZ) - 25090%01190:703/ + (Pyy(l + (Pi)
= T+ A+ APP

=0, (2.4.8)

for (z,y) € © . We relate this to the classical theory of surfaces as follows. A surface has two principal
curvatures k1 and kg; the mean curvature k is defined to be their average: that is, k = (k1 + k2)/2. An
elementary theorem of geometry asserts that  is given by the formula

o= 909393(1 + 505) - 23090901/90:01/ + Qoyy(l + ﬁpi)

. (2.4.9)
(1+ @2 +¢3)'?
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If the surface represents a sheet of rubber, the mean curvature represents the net force due to internal
stretching. Comparing equations (2.4.8) and (2.4.9) we find the well-known result that a minimal surface,
that is, a surface with minimal area, has zero mean curvature. ¢

Total Functional Derivative. Now consider the case in which f is a differentiable function of n variables,
that is f is defined on a product of n function spaces F;, i =1,...,n; f: F; x--- x F,, — R and we have
pairings (,), : E; x F; — R,

2.4.27 Definition. The i-th partial functional derivative § f /dp; of [ with respect to p; € F; is defined by
f(<P17---7<Pi+5¢i7~-~780n)

5f 4
<5§017w1>z a de e=0

:D'Lf(wl?agon)wZ:Df(@h7Q0n)(077w1770)

(2.4.10)

The total functional derivative is given by
<L W ¢>>—Df< ) - (i)
5(<)01?"'ag07l)’ Do LRRRRRR 21 1y %n

:Zsz(@177@n)(0771/)7,770)
i=1

N/,
=3 (55w

A. Suppose that f is a function of n functions ¢; € C*¥(Q), where Q C R", and their first partial derivatives,
and is of the form

2.4.28 Examples.

_ 9¢i\
f((Pla---ﬂpn)—/QF(-T,W“%) d"z.

It follows that

of OF 0 OF
o(52)

B. Classical Field Theory. As discussed in Goldstein [1980], Section 12 and in Marsden and Ratiu
[1999], Chapter 3, Lagrange’s equations for a field n = n(x,t) with components n* follow from Hamilton’s
variational principle. When the Lagrangian L is given by a Lagrangian density £, that is, L is of the form

. 8770, 87711
= J a n,

the variational principle states that n should be a critical point of L. Assuming appropriate boundary
conditions, this results in the equations of motion

SL_d_9f of 9 of oy
Cénr dt9(One/ot)  onr  Oxk 9(One/Ox*) o
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(a sum on k is understood). Regarding L as a function of 7% and n® = 9n®/dt (rather than as a function of
the pointwise values), the equations of motion take the form:

d 6L 6L

doL oL 2.4.14
dt ém>  In® ( )

C. Let Q C R" and let C%(Q) stand for the C* functions vanishing on 9Q. Let f : C5(2) — R be given
by the Dirichlet integral

flp) = %/Q<VSD7V<P> d™x,

where () is the standard inner product on R™. Differentiating with respect to ¢:

d
de

3 | (Vo420 V(e + 0 o
Q

e=0 2

- / (Ve Vi) d'
Q

Df(e) -4 =

= —/ V2p(z) - () d™x (integrating by parts).
Q

Thus §f/5p = —V?¢p, the Laplacian of .

D. The Stretched String. Consider a string of length ¢ and mass density o, stretched horizontally under
a tension 7, with ends fastened at x = 0 and x = £. Let u(x,t) denote the vertical displacement of the string
at x, at time ¢. We have u(0,¢) = u(¢,t) = 0. The potential energy V due to small vertical displacements is
shown in elementary mechanics texts to be

1 fouY
V:A 57’(%) dI,

and the kinetic energy T is

From the definitions, we get

wv_ w0
su | ox2 MY sp T ™

Then with the Lagrangian L = T — V, the equations of motion (2.4.14) become the wave equation

R 0%u
B "o ¢

Next we formulate a chain rule for functional derivatives. Let (,) : Ex F — R be a weakly nondegenerate
pairing between E and F. If A € L(F,F), its adjoint A* € L(E,E), if it exists, is defined by (A*v,a) =
(v, Aar) for all v € E and a € F.

Let ¢ : F — F be a differentiable map and f : F — R be differentiable at a € F. From the chain rule,

D(fop)(a) B =Df(p(@)) - (Dp(a)-f), for feF.
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Hence assuming that all functional derivatives and adjoints exist, the preceding relation implies

<W,ﬁ> = <%,Ds@(a) -6> = <Ds0(a)* : %,B>

where 7 = p(«), that is,

o(fo 0
(J;a@ ~ Dy(a) - %, (2.4.15)
Similarly if ¢ : R — R is differentiable then for a, 5 € F,
D(¢o f)(a) B =Dy(f(a))- (Df(a)-5)
where the first dot on the right hand side is ordinary multiplication by D (f(a)) € R. Hence
S(of) \ _ of 2\ _ /. of
(2D 5} =utsan e (3.6) = (wistengl o)
that is,
5(1# o f) Y. of
P U (f(a))g. (2.4.16)
Exercises

2.4-1. Show that if g : U C E — L(F,G) is C", then f : U x F — G, defined by f(u,v) = (g(u))(v),
ueU,veFisalso C".
HINT: Apply the Leibniz rule with L(F, G) x F — G the evaluation map.

2.4-2. Show that if f: U C E — L(F,G), g: U C E — L(G,H) are C" mappings then so is h : U C
E — L(F,H), defined by h(u) = g(u) o f(u).

2.4-3. Extend Leibniz’ rule to multilinear mappings and find a formula for the derivative.

2.4-4. Define amap f: U C E — F to be of class T" if it is differentiable, its tangent map T'f : U x E —
F x F is continuous and ||D f(z)]| is locally bounded.

(i) For E and F finite dimensional, show that this is equivalent to C*.
(ii) (Project.) Investigate the validity of the chain rule and Taylor’s theorem for 7" maps .
(iii) (Project.) Show that the function developed in Smale [1964] is T2 but is not C2.

2.4-5. Suppose that f: E — F (where E, F are real Banach spaces) is homogeneous of degree k (where
k is a nonnegative integer); that is, f(te) = t*f(e) for all t € R, and e € E.

(i) Show that if f is differentiable, then D f(u) - u = kf(u).
HINT: Let g(t) = f(tu) and compute dg/dt.

(ii) If E=R" and F =R, show that this relation is equivalent to

Show that maps multilinear in k variables are homogeneous of degree k. Give other examples.
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(iii) If f is C* show that f(e) = (1/k!)D*£(0) - ¥, that is, f may be regarded as an element of S*(E, F)
and thus it is C*°.

HiNT: f(0) = 0; inductively applying Taylor’s theorem and replacing at each step h by th, show that

f(h) = %D’“f(O) “hF 4 tiko(tkhk).

2.4-6. Let ey,...,e,-1 € E be fixed and f: U C E — F be n times differentiable. Show that the map
g:U C E — F defined by g(u) = D" f(u) - (e1,...,en_1) is differentiable and
Dg(u) te= an(u) : (67617 cee 7en—1)'

2.4-7. (i) Prove the following refinement of Proposition 2.4.14. If f is C* and DD f(u) exists and is
continuous in u, then DoD1 f(u) exists and these are equal.

(ii) The hypothesis in (i) cannot be weakened: show that the function

is C1, has 0% f/0x0y, 9% f /Oydz continuous on R?\{(0,0)}, but that 92 £(0,0)/dx0y # 9*£(0,0)/0ydx.
2.4-8. For f:U C E — F, show that the second tangent map is given as follows:

T?f: (U xE)x (ExE) = (FxF) x (FxF)(u,ei, ea, e3)
= (f(u)an(u) ! 613Df(u) + €2,
D?f(u) - (e1,e2) + Df(u) - e3).

2.4-9. Let f: R? — R be defined by f(x,y) = 22%y/(2* + y?) if (z,y) # (0,0) and 0 if (z,y) = (0,0).
Show that

(i) f is discontinuous at (0,0), hence is not differentiable at (0, 0);
(ii) all directional derivatives exist at (0,0); that is, f is Gateaux differentiable.

2.4-10 (Differentiating sequences). Let f,, : U C E — F be a sequence of C" maps, where E and F are
Banach spaces. If {f,} converges pointwise to f : U — F and if {D’f,}, 0 < j < r, converges locally
uniformly to a map ¢/ : U — LI(E,F), then show that f is C", D/f = ¢/ and {f,} converges locally
uniformly to f.

HINT: For r = 1 use the mean value inequality and continuity of g* to conclude that

1f(w+h) = flu)—g"(u) - bl <|[f(u+h) = falu+h) = [f(u) = fa(u)]]
+ [ fn(u+h) = fa(u) =D folu) - bl
+ D fu(u) - h—g"(u) - Al
<ellh].

For general r use the converse to Taylor’s theorem.

2.4-11 (o Lemma). In the context of Lemma 2.4.21 let a(g) = go f. Show that « is continuous linear and
hence is C'*°.

2.4-12. Consider the map ® : C1([0,1]) — C°([0,1]) given by ®(f)(z) = exp[f’(z)]. Show that ® is C>
and compute D®.
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o 2.4-13 ( Whitney [1943a]). Let f: U C E — F be of class C**P with Taylor expansion
1
f(b) = f(a) + Df(a) - (b—a)+---+ D" f(a) - (b - a)*

1% k i D a .
+{/o G- P (1= ta+tb) - DU >]dt} (b— a)*.

(i) Show that the remainder Ry(a,b) is C**? for b # a and CP for a,b € E. If E=F = R, Ry(a,a) =0,
and

;im(|b —a'D"PRy(a,b) =0, 1<i<k.
—a

(For generalizations to Banach spaces, see Tuan and Ang [1979].)
(ii) Show that the conclusion in (i) cannot be improved by considering f(z) = |z|F+P+1/2,

o 2.4-14 ( Whitney [1943b]).  Let f: R — R be an even (resp., odd) function; that is, f(z) = f(—=x) (resp.,
f(a) == f(-2)).

(i) Show that f(x) = g(2?) (resp., f(x) = zg(x?)) for some g.
(i) Show that if f is C?* (resp., C?**1) then g is C*
HinT: Use the converse to Taylor’s theorem.
(iii) Show that (ii) is still true if k = oo.
(iv) Let f(z) = |z|?*T1*1/2 to show that the conclusion in (ii) cannot be sharpened.

o 2.4-15 (Buchner, Marsden, and Schecter [1983b]).  Let E = L*([0,1]) and let ¢ : R — R be a C* function
such that ¢’(A) = 1,if =1 < A < 1and ¢'(\) =0, if |A\| > 2. Assume ¢ is monotone increasing with p = —M
for A < —2 and p = M for A > 2. Define the map h: E — R by

(i) Show that h is C® using the converse to Taylor’s theorem.

HINT: Let () = o(A\3), write out Taylor’s theorem for r = 3 for 1)(\), and plug in u(x) for \.

(ii) The formal L? gradient of h (i.e., the functional derivative 6h/du) is given by

Vh(u) = 19/ (u),

where ¥(A\) = p(A3). Show that VA : E — E is C° but is not C?.

HINT: Its derivative would be v — 9" (u)v/3. Let a € [0, 1] be such that ¢”(a)/3 # 0 and let u,, = a
on [0,1/n], u, = 0 elsewhere; v,, = n'/* on [0,1/n], v, = 0 elsewhere. Show that in L*([0,1]), u,, — 0,
lonll = 1, ¥"(up) - v, does not converge to 0, but ¢”(0) = 0. Using the same method, show h is not
C* on L*([0,1]).

(ili) Show that if ¢ is a positive integer and E = L4([0, 1]), then h is C?~! but is not C.
(iv) Let

flw) = 5 [ (@) dz+ h
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Show that on L*([0,1]), f has a formally non-degenerate critical point at 0 (i.e., D% f(0) defines an
isomorphism of L2([0,1])), yet this critical point is not isolated.

HinT: Consider the function w, = —1 on [0,1/n]; 0 on ]1/n, 1]. This exercise is continued in Exer-
cise 5.4-8.

2.4-16. Let E be the space of maps A : R® — R? with A(z) — 0 as # — 0 sufficiently rapidly. Let
f:E — R and show

) B 5f
5—Af(cur1A) = curl SA"

HINT: Specify whatever smoothness and fall-off hypotheses you need; use A-curl B—B-curl A = div(Bx A),
the divergence theorem, and the chain rule.

2.4-17. (i) Let E = {B | B is a vector field on R? vanishing at oo and such that divB = 0} and pair E
with itself via (B, B’) = [ B(z)-B/(x) dz. Compute §F'//6B, where F is defined by F = (1/2) [ ||B||?d%.

(i) Let E = {B | B is a vector field on R? vanishing at oo such that B =V x A for some A } and let
F={A’"|Ais a vector field on R?® divA’ =0}

with the pairing (B, A’) = [ A-A’d?z. Show that this pairing is well defined. Compute §F/dB, where
F is as in (i) . Why is your answer different?

2.5 The Inverse and Implicit Function Theorems

The inverse and implicit function theorems are pillars of nonlinear analysis and geometry, so we give them
special attention in this section. Throughout, E,F, ..., are assumed to be Banach spaces. In the finite-
dimensional case these theorems have a long and complex history; the infinite-dimensional version is appar-
ently due to Hildebrandt and Graves [1927].

The Inverse Function Theorem. This theorem states that if the linearization of the equation f(z) =y
is uniquely invertible, then locally so is f; that is, we can uniquely solve f(x) = y for = as a function of y.
To formulate the theorem, the following terminology is useful.

2.5.1 Definition. A map f: U CE — V CF, where U and V are open subsets of E and F respectively,
is a C" diffeomorphism if f is of class C", is a bijection (i.e., f is one-to-one and onto from U to V),
and f~1 is also of class C".

The example f(x) = 2% shows that a map can be smooth and bijective, but its inverse need not be smooth.
A theorem guaranteeing a smooth inverse is the following.

2.5.2 Theorem (Inverse Mapping Theorem). Let f : U C E — F be of class C", r > 1, g € U, and
suppose that D f(xo) is a linear isomorphism. Then f is a C" diffeomorphism of some neighborhood of xg
onto some neighborhood of f(xo) and, moreover, the derivative of the inverse function is given by

Df ™' (y) =[Df(f )]
for y in this neighborhood of f(xo).

Although our immediate interest is the finite-dimensional case, for Banach spaces it is good to keep in
mind the Banach isomorphism theorem: If T : E — F is linear, bijective, and continuous, then 7' is
continuous. (See Theorem 2.2.19.)
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Proof of the Inverse Function Theorem. To prove the theorem, we assemble a few lemmas. First
recall the contraction mapping principle from §1.2.

2.5.3 Lemma. Let M be a complete metric space with distance function d : M x M — R. Let F': M — M
and assume there is a constant A\, 0 < A < 1, such that for all x,y € M,

d(F(z), F(y)) < Ad(z,y).

Then F has a unique fixed point xog € M; that is, F(xg) = xo.

This result is the basis of many important existence theorems in analysis. The other fundamental fixed
point theorem in analysis is the Schauder fixed point theorem, which states that a continuous map of a
compact convex set (in a Banach space, say) to itself, has a fixed point—mnot necessarily unique, however.

2.5.4 Lemma. The set GL(E,F) of linear isomorphisms from E to F is open in L(E,F).

Proof. We can assume E = F. Indeed, if p9 € GL(E,F), the linear isomorphism v +— gpal o1 from
L(E,F) to L(E,E) is continuous and GL(E, F) is the inverse image of GL(E, E). Let

le]l = sup [la(e)]
ecE
llel]=1

be the operator norm on L(E, F) relative to given norms on E and F. For ¢ € GL(E, E), we need to prove
that 1 sufficiently near ¢ is also invertible. We will show that

v =l < lle™H )7

implies ¢ € GL(E, E). The key is that || - || is an algebra norm. That is,
1Boall <8l
for « € L(E,E) and 5 € L(E,E) (see §2.2). Since
v=po(l—¢ " o(p—1)),
© is invertible, and our norm assumption shows that
le~ o (p—¥)l <1,

it is sufficient to show that I — ¢ is invertible whenever ||€|| < 1. (I is the identity operator.) Consider the
following sequence called the Neumann series:

50217
€1:I+§7
So=1+E+E0E,

En=T+E+E0E+ +(§ogo w08),

Using the triangle inequality and ||| < 1, we can compare this sequence to the sequence of real numbers,
L1+ €], 14 [|€]| + [|€]J%, . . ., which is a Cauchy sequence since the geometric series Y [|£]|™ converges.
Because L(E, E) is complete, &, is a convergent sequence. The limit, say p, is the inverse of I — & because
(I-8¢, =1—(£ofo---0¢), s0 letting n — oo, we get (I —&)p = 1. [ |
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2.5.5 Lemma. LetJ: GL(E,F) — GL(F,E) be given by o — o~ t. Then J is of class C> and
D3(p) - =—¢ logop .
(For D3, see Supplement 2.5E.)

Proof. We may assume GL(E,F) # @. We claim that J is differentiable and that DJ(p) -9 = —p toto
o~ If we can show this, then it will follow from Leibniz’ rule that J is of class C*°. Indeed DJ = B(J,7)
where B € L?(L(F,E); L(L(E,F), L(F,E))) is defined by B(11,%2)(A) = —11 0 A 0 4y, where 11,19 €
L(F,E) and A € L(E,F), which shows inductively that if J is C* then it is C¥*1.

We first prove our claim that J is differentiable. Since the map ¢ — —¢@~totop 1 is linear (¢ € L(E,F)),
we must show that

lim o=t — (et —p togpop t+ptopop™ !

=0.
I ¥ — ol

Note that
P (e —pT oo T oot
=9t =207 ot oghopT
=y o(Y—p)opTlo(W—p)opTh.
Again, using ||Bo | < || ||3]] for o € L(E,F) and g € L(F, G), we get
[~ o —p)op o —p)op | <7 lv —l?le™ %
With this inequality, the limit is clearly zero. [ ]

Proof of the Inverse Mapping Theorem. We claim that it is enough to prove it under the simplifying
assumptions zo = 0, f(xzo) =0, E=F, and Df(0) is the identity. Indeed, replace f by

h(z) = Df(xo) " o [f(x +x0) — f(20)].

Let g(z) = x — f(x) so Dg(0) = 0. Choose r > 0 so that ||z|| < r implies ||[Dg(x)|| < 1/2, which is possible
by continuity of Dg. Thus, by the mean value inequality, ||z|| < r implies ||g(z)|| < r/2. Let

B.(0)={z € E| 2| <<},
For y € B, 5(0), let g,(x) =y + g(x). It y € By 5(0) and « € B,(0), then y|| < /2 and [[g(@)|| < r/2, so

gy @)l < llyll + llg()[| < 7. (i)
For 1,25 € B,(0) the mean value inequality gives

|21 — 22|

lgy(z1) = gy(@2)l| < = (i)
This shows that for y in the ball of radius /2, g, maps the closed ball (a complete metric space) of radius
r to itself and is a contraction. Thus by the contraction mapping theorem (Lemma 2.5.3), g, has a unique

fixed point  in B,.(0). This point z is the unique solution of f(z) = y. Thus f has an inverse
f71 Vo = Dy ya(0) — Up = (D, 2(0)) C D,(0).
From (ii) with y = 0, we have ||(z1 — f(z1)) — (22 — f(x2))| < ||x1 — 22]|/2, and so

|21 — x|

lz1 — 2ol = [[f(21) — fz2)]| < 5
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that is,

ey — ol < 2[[f(x1) — f(a2)]-

Thus we have

1~ 1) — )l < 2llyn — el (iif)

so f~1 is Lipschitz and hence continuous on Up.

From Lemma 2.5.4 we can choose r small enough so that D f(z)~! exists for x € D,.(0). Moreover, by
continuity, [|[Df(z)~!|| < M for some M and all 2 € D,(0) can be assumed as well. If y1,y2 € D, /5(0),
x1 = f~'(y1), and wg = f~'(y2), then

1F7 (yn) = 71 (y2) = Df(z2) ™" (y1 — o)
= Hfﬂl — T2 — Df(%‘z)_1 [f(@1) = f(332)]H
= |Df(x2)~" - {Df(x2) - (21 — w2) — fla1) + fl22)}|
< M| f(z1) = f22) = Df(x2) - (x1 — 22
This, together with (iii), shows that f~ is differentiable with derivative D f(z)~! at f(x); that is, D(f~1)

ZoDfo f~! on Vo = D,/5(0). This formula, the chain rule, and Lemma 2.5.5 show inductively that if f~
is C*=1 then f~lis C* for 1 < k <r. [ ]

—

This argument also proves the following: if f: U — V is a C" homeomorphism where U C E and V C F
are open sets, and D f(u) € GL(E,F) for uw € U, then [ is a C" diffeomorphism.
For a Lipschitz inverse function theorem see Exercise 2.5-11.

SUPPLEMENT 2.5A

The Size of the Neighborhoods
in the Inverse Mapping Theorem

An analysis of the preceding proof also gives explicit estimates on the size of the ball on which f(x) =y is
solvable. Such estimates are sometimes useful in applications. The easiest one to use in examples involves
estimates on the second derivative.?

2.5.6 Proposition. Suppose f : U CE — Fisof class C", r > 2, xg € U, and D f(xq) is an isomorphism.
Let

L=|Df(zo)ll and M = |Df(xo)""|.
Assume
ID?f(2)|| < K for |z —ax0] <R and Bgr(xo) CU.
Let N, P,Q and S be defined by

1
N =8M3K P=min| ——
8 , m1n<2KM,R>,
. 1 P _ 1 Q
Qmm(m’ﬁp)v S—m‘“(m’ﬁ@)

Then f maps an open set G C Dp(xo) diffeomorphically onto Dp/2M(y0) and f~' maps an open set
H C Dq(yo) diffeomorphically onto Dgjar (o). Moreover, Dgjar(x0) C G C Dp(xo) and Dgjan(yo) C
H C Dqg(yo) C Dpjan(yo). See Figure 2.5.1.
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Dp(z0)

Dg /a1 (x0)

F1GURE 2.5.1. Regions for the proof of the inverse mapping theorem

Proof. We can assume zg = 0 and f(z¢) = 0. From
1
Df(z) = Df(0) +/ D(Df(tz)) -z dt
0

=DF(0) - {I+[Df /Dth:z: mdt}

and the fact that

1

I+ AT <1+ [A+ AP+ = =
1—[lA]

for ||A]| < 1 (see the proof of Lemma 2.5.4), we get

1
D)) < 2Mif ol < R and 2] < o,

that is, if [|z]] < P.
As in the proof of the inverse function theorem, let g,(z) = [Df(0)]~! - (y + Df(0)z — f(x)). Write

p(x) =Df(0) -z - f(z)
/ Dy(sx) - xds-/ (Df(0) -z —Df(sx)-x) ds

// D?f(tsx) - (sx, ) dtds
0Jo

to obtain gy (x) = [Df(0)7'] - (y + ¢(2)), le(@)|| < K||* if |z]| < P, and
lgy (@)l < M(llyll + K|z]?).

Hence for |ly|| < P/2M, g, maps Bp(0) to Bp(0). Similarly we get ||g,(z1) — gy(x2)|| < |21 — 22]|/2 from
the mean value inequality and the estimate

1D, = 1070 (| [ 92 ste0) -] ) < arcacteny <

2We thank M. Buchner for his suggestions concerning this supplement.
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if ||| < P. Thus, as in the previous proof, f~' : Bp/srr(0) — Bp(0) is defined and there exists an open set
G C Bp(0) diffeomorphic via f to the open ball Dp/zp,(0).
Taking the second derivative of the relation f~! o f = identity on G, we get
D71 (f(2))(Df(x) - ur, Df(x) - uz) + DT (f(x)) - D*f(@)(ur, uz) = 0

for any uj,us € E. Let v; = Df(2) - u;, i = 1,2, so that
D?f7H(f(x)) - (v1,v2) = =Df 7 (f(2)) - D*f()(Df(z) " w1, Df(z) 7" - v2)

and hence

D21 (f @) (e, w)|| < DA FD] D2 @) ol [lea]
< 8M3K ||Jv1| ||vz]|

since z € G C Dp(0) and on Bp(0) we have the inequality |[Df(x)"!|| < 2M. Thus on Bp/p(0) the
following estimate holds:

ID*f " (y)|| < 8MPK.

By the previous argument with f replaced by f~!, R by P/2M, L by M, and K by N = 8M3K, it follows
that there is an open set H C Dg(0), Q@ = min{1/2KM,Q/2L,Q} such that f~ : H — Dg/s(0) is a
diffeomorphism. Since f~! is a diffeomorphism on Dg(0) and H is one of its open subsets, it follows that
DQ/QL (0) C G.

Finally, replacing R by /2L, we conclude the existence of an open ball Dg/,(0), where S = min{1/2KM,Q /2L, Q},
on which f~! is a diffeomorphism. Therefore Dg/o(0) C H. [ |

Implicit Function Theorem. In the study of manifolds and submanifolds, the argument used in the
following is of central importance.

2.5.7 Theorem (Implicit Function Theorem). Let U C E, V C F be open and f : U xV — G be C",
r > 1. For some xg € U,yp € V assume the partial derivative in the second argument Do f(zo,y0) : F — G,
is an isomorphism. Then there are neighborhoods Uy of xo and Wy of f(xo,y0) and a unique C" map
g: Uy x Wy — V such that for all (x,w) € Uy x W,

f(z, 9(z,w)) = w.

Proof. Define the map
. UxV —-ExG

by (z,y) — (z, f(x,y)). Then D®(z,yo) is given by

D®(z0,y0) - (z1,91) = (le(ig,yo) D2f(207y0)) (21)

which is an isomorphism of E x F with E x G. Thus, ® has a unique C” local inverse, say ® 1 : Uy x Wy —
UxV, (z,w)— (z,9(z,w)). The g so defined is the desired map. [ |

Applying the chain rule to the relation f(x,g(z,w)) = w, one can compute the derivatives of g:
Dlg($7w) = _[DQf(xvg(x7w))]_1 o le(x,g(x,w))7
DQQ(‘T?U}) - [D2f(x,g(xv w))]il'

2.5.8 Corollary. Let U C E be open and f : U — F be C", r > 1. Suppose D f(x) is surjective and
ker D f(xg) has a closed complement. Then f(U) contains a neighborhood of f(xo).

Proof. Let E; = kerDf(x¢) and E = E; @ E5. Then Dsyf(2g) : E; — F is an isomorphism, so the
hypotheses of Theorem 2.5.7 are satisfied and thus f(U) contains Wy provided by that theorem. |
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Local Surjectivity Theorem. Since in finite-dimensional spaces every subspace splits, the foregoing
corollary implies that if f: U C R™ — R™, n > m, and the Jacobian of f at every point of U has rank m,
then f is an open mapping. This statement generalizes directly to Banach spaces, but it is not a consequence
of the implicit function theorem anymore, since not every subspace is split. This result goes back to Graves
[1950]. The proof given in Supplement 2.5B follows Luenberger [1969].

2.5.9 Theorem (Local Surjectivity Theorem). If f : U C E — F is C* and Df(ug) is onto for some
ug € U, then f is locally onto; that is, there exist open neighborhoods Uy of ug and Vi of f(ug) such that
flUL : Uy — Vi is onto. In particular, if D f(u) is onto for all uw € U, then f is an open mapping.

SUPPLEMENT 2.5B
Proof of the Local Surjectivity Theorem

Proof. Recall from §2.1 that E/ker D f(ug) = Eq is a Banach space with norm ||[z]|| = inf{ ||z + u| | v €
kerD f(ug) }, where [z] is the equivalence class of z. To solve f(z) =y we set up an iteration scheme in Eg
and E simultaneously. Since D f(ug) induces an isomorphism 7' : Eg — F, it follows that T~! € L(F,Ey)
exists by the Banach isomorphism theorem. Let = ug 4+ h and write f(z) =y as

T~y — f(uo +h)) = 0.

To solve this equation, define a sequence L,, € E/ker D f(ug) (so the element L,, is a coset of ker D f(ug))
and h,, € L,, C E inductively by Lo = ker D f(ug), ho € Lo small, and

Ly=1Ln 1 +T Yy~ fluo+hn_1)), (2.5.1)

and selecting h,, € L,, such that
Vo = bl < 20 Lo = L. (2:5.2)
The latter is possible since
1L = Ll = it 1h = bl | B € Lo }.
Since hy—1 € L1, Ln_1 =T Y(Df(ug) - hp_1), 50
Ly =Ty~ f(uo + hyp—1) + Df(ug) - hn-1).
Subtracting this from the expression for L, 1 gives
Ly — L1 ==T""(f(uo + hn-1) — f(uo + hn—2) = Df(ug) - (hn—1 — hn_2))
=71 </01 (Df (ug + thp—1+ (1 — t)h,—2) — Df(up)) dt) (hp1 = hp_2).
Using Proposition (2.4.7), for € > 0 given, there is a convex neighborhood U of wg such that
IDf(u) = Df(uo)ll <e

for uw € U, since f is C'. Assume inductively that ug + hp,—1 € U and ug + hyn—2 € U. Then

ug + thy,—1 + (]. — t)hn,Q = (]. — t)(u() + hn,Q) + t(’LL() + hnfl) eU
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for t € [0,1] and hence
I = Ll < T s — Bl (2.5.3)
By equation (2.5.2),
1hn = hn—all < 2Ly = L—a ] < 26|77 | hn—1 = hn—z].
Thus, if € is small,
I = o]} < Sl = ol
Starting with ho small and ||h1 — hol| < (1/2)]|hol|, uo + hy,, remain inductively in U since
[Bnll < NTholl + [[Pr = holl + lhe = hall + -+ + [|hn = hn |
< (1454 gmr ) Mol < 2l
In addition,

1
||hn - hn—1|| < 2_n||h0||

so that
1
Vs = hall < g liol
for all £ = 1,2,3,.... It follows that h, is a Cauchy sequence, so it converges to some point, say h.
Correspondingly, L,, converges to L and h € L. Thus from equation (2.5.1), 0 = T~ 1(y — f(uo + h)) and so
y = f(uog+ h). [ |

The local surjectivity theorem shows that for y near yo = f(uo), f(x) = y has a solution. If there is a
solution g(y) = x which is C!, then D f(z¢) o Dg(yo) = I and so range Dg(yo) is an algebraic complement
to ker D f(x¢). It follows that if range Dg(yp) is closed, then ker D f(z) is split.

In many applications to nonlinear partial differential equations, methods of functional analysis and elliptic
operators can be used to show that ker D f(xz() does split, even in Banach spaces. Such a splitting theorem
is called the Fredholm alternative. For illustrations of this idea in geometry and relativity, see Fischer and
Marsden [1975, 1979], and in elasticity, see Chapter 6 of Marsden and Hughes [1983]. For such applications,
Corollary 2.5.8 often suffices.

Local Injectivity Theorem. The locally injective counterpart of this theorem is the following.

2.5.10 Theorem (Local Injectivity Theorem). Let f: U C E — F be a C* map, Df(uo)(E) be closed
in F, and Df(up) € GL(E,Df(uo)(E)). Then there exists a neighborhood V' of ug, V.C U, on which f is
injective. The inverse f~1: f(V) — U is Lipschitz continuous.

Proof. Since (Df(ug))~! € L(Df(uo)(E), E), there is a constant M > 0 such that ||Df(ug) - e|| > M]||e]|
for all e € E. By continuity of Df, there exists » > 0 such that |Df(u) — Df(ug)|| < M/2 whenever
|l — uo|| < 3r. For e1,ea € Dy(up), the identity

1
Fler) — Flea) — Df(ug) - (e1 — e2) = ( /0 (D (€2 + t(e1 — e2)) — D(uy)) dt) (er — e2)
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(see Proposition (2.4.7) implies

[[f(ex) = fle2) = Df(uo)(ex — e2)]|

< sup [[Df(e2+t(e1 —e2)) — Df(uo)ll[ler — ez
te[0,1]
< M| €1 — 62”

- 2

since [Jug — e1 — t(e2 — e1)|| < 3r. Thus

M
Mller — eaf| < |IDf(uo) - (ex —e2)|| < [|f(ex) — fle2)|| + 7”61 — ealf;

that is,

M
M e — eall < fter) - fleall
which proves that f is injective on D,.(ug) and that f=1 : f(D,(ug)) — U is Lipschitz continuous. [ ]

Notice that this proof is done by direct estimates, and not by invoking the inverse or implicit function
theorem. If, however, the range space D f(ug)(E) splits, one could alternatively prove results like this by
composing f with the projection onto this range and applying the inverse function theorem to the compo-
sition. In the following paragraphs on local immersions and submersions, we examine this point of view in
detail.

Application to Differential Equations. We now give an example of the use of the implicit function
theorem to prove an existence theorem for differential equations. For this and related examples, we choose
the spaces to be infinite dimensional. In fact, E, F, G, - will be suitable spaces of functions. The map f
will often be a nonlinear differential operator. The linear map D f(x¢) is called the linearization of f about
xo. (Phrases like “first variation,” “first-order deformation,” and so forth are also used.)

2.5.11 Example. Let E be the space of all C'-functions f : [0,1] — R with the norm

df ()
dx

[fllh= sup [f(z)[+ sup
z€[0,1] z€[0,1]

and F the space of all C%-functions with the norm || f|lo = SUP,co,1) |/ (2)]- These are Banach spaces (see
Exercise 2.1-3). Let ® : E — F be defined by ®(f) = df/dx + f3. It is easy to check that ® is C*° and
D®(0) = d/dx : E — F. Clearly D®(0) is surjective (fundamental theorem of calculus). Also ker D®(0)
consists of E; = all constant functions. This is complemented because it is finite dimensional; explicitly, a
closed complement consists of functions with zero integral. Thus, Corollary 2.5.8 yields the following:

There is an € > 0 such that if g : [0,1] — R is a continuous function with |g(z)| < €, then there is a C*
function f:[0,1] — R such that

et ) = g(a) o

SUPPLEMENT 2.5C
An Application of the Inverse Function Theorem
to a Nonlinear Partial Differential Equation

Let 2 C R™ be a bounded open set with smooth boundary. Consider the problem
Vip+pP=f inQ, ¢+¢ =g ondQ
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for given f and g. (The powers of 3 and 7 have nothing special about them and are just for illustrative
purposes).

We claim that for f and g small, this problem has a unique small solution. For partial differential equations
of this sort one can use the Sobolev spaces H*(Q2, R) consisting of maps ¢ : 2 — R whose first s distributional
derivatives lie in L2. (One uses Fourier transforms to define this space if s is not an integer.) In the Sobolev
spaces E = H*(Q,R), F = H*2(Q,R) x H*~Y/2(0Q,R), if s > n/2 the map

©:E—F, ¢ (Vo+¢’ (p+¢))00Q)
is C*° (use Supplement 2.4B) and the linear operator
D®(0) - ¢ = (Vp, 9[09)

is an isomorphism. The fact that D®(0) is an isomorphism is a result on the solvability of the Dirichlet
problem from the theory of elliptic linear partial differential equations. See, for example, Friedman [1969].
(In the C* spaces, D®(0) is not an isomorphism.) The result claimed above now follows from the inverse
function theorem.

Local Immersions and Submersions. The following series of consequences of the inverse function
theorem are important technical tools in the study of manifolds. The first two results give, roughly speaking,
sufficient conditions to “straighten out” the range (respectively, the domain) of f in a neighborhood of a
point, thus making f look like an inclusion (respectively, a projection).

2.5.12 Theorem (Local Immersion Theorem). Let f : U C E — F be of class C", r > 1, ug € U and
suppose that D f(ug) is one-to-one and has closed split image F1 with closed complement Fo. (If E = R™
and F = R", assume only that D f(ug) has trivial kernel.) Then there are two open sets U’ C F and
V Cc E®Fs and a C" diffeomorphism ¢ : U — V satisfying f(ug) € U, ug € VN (E x {0}) C U,
and (g o f)(e) = (e,0) for alle € VN (E x {0}) c U C E. In addition, the Banach space isomorphism
Dy(u) : F =F, @ Fy — E @ Fy is the identity on Fa for any v’ € U and Do(f(ug)) is a block diagonal
operator.

The intuition for E = F; = R?, Fo =R (i.e. m = 2, n = 3) is given in Figure 2.5.2.

The function ¢ flattens out the image of f. Notice that this is intuitively correct; we expect the range of f
to be an m-dimensional “surface” so it should be possible to flatten it to a piece of R". Note that the range
of a linear map of rank m is a linear subspace of dimension exactly m, so this result expresses, in a sense, a
generalization of the linear case. Also note that Theorem 2.5.10, the local injectivity theorem, follows from
the more restrictive hypotheses of Theorem 2.5.12.

Proof. Defineg:UxFy CE®Fy; —F =F;®F5 by g(u,v) = f(u)+ (0,v) and note that g(u,0) = f(u).
Now

Dg(ug,0) = (Df(ug), Ir,) € GL(E® F4,F)

by the Banach isomorphism theorem. Here, Iw, denotes the identity mapping of Fo and for A € L(E, F)
and B € L(E',F’), the element (A,B) € L(E @& E',F @ F’) is defined by (4, B)(e,¢’) := (Ae, Be'). By
the inverse function theorem there exist open sets U’ and V and a C" diffeomorphism ¢ : U" — V such
that (ug,0) € V. C U x Fy C E® Fa, g(ug,0) = f(up) € U C F, and o~ ! = g|V. Hence for (e,0) € V,
(v f)le) = (9o g)(e, 0) = (e,0).

Writing f(u) = (f1(u), fo(u)) € F1 @ Fa, it follows that g(u,v) = (f1(u), f2(u) + v) and hence that

Dfi(u) 0

Dg(u,v) = [ Dfo(u) I, ] EoF; - FioF,
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FIGURE 2.5.2. The local immersion theorem

for all (u,v) € V. Thus Dg(ug,0), regarded as a linear continuous isomorphism from E & Fs to F1 @ Fy,
is a block diagonal operator because D f(ug)(E) = F; and hence Dfi(ug) = Df(up) and D fa(ug) = 0.
Therefore its inverse, Do(f(ug)), will be also block diagonal. In addition, Dg(u,v)[{0} x F3 is the identity
on Fy for all (u,v) € V, whence Dp(u')|{0} x F3 is also the identity for all v’ € U. [ |

2.5.13 Theorem (Local Submersion Theorem). Let f : U C E — F be of class C", r > 1, up € U and
suppose that D f(ug) is surjective and has split kernel Eq with closed complement Eq. (If E = R™ and
F = R", assume only that rank(D f(ug)) = n.) Then there are two open sets U' C U C E = E; & Ey and
V CF@®Ey and a C" diffeomorphism 1 : V. — U’ satisfying ug = (uo1,uo2) € U', (f(ug),up2) € V, and
(f o) (u,v) = u, Y(u,v) = (P1(u,v),v) for all (u,v) € V, where 1y : V.— Eq is a C" map. In addition,
the Banach space isomorphism Dy(f(ug),up2) : F @ Ey — E = Ey @ Ey is a block diagonal operator and
Di(u,v)|F x {0} : F x {0} — E; x {0} is a Banach space isomorphism for all (u,v) € V.

The intuition for the special case E; = E; = F = R is given in Figure 2.5.3, which should be compared to
Figure 2.5.2. Note also that this theorem implies the results of Theorem 2.5.9, the local surjectivity theorem,
but the hypotheses are more stringent.

E, f° 1 = constant E,

FIGURE 2.5.3. The local submersion theorem
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Proof. By the Banach isomorphism theorem (§2.2), Dy f(ug) = Df(ug)|E; € GL(E;, F). Define the map
g:UCE  ®E; - FaE,

by g(u,u2) = (f(u1,u2),uz). Therefore
Dg(u) - (e1,€2) = D1f(u) Daf(u) ] [ el }

0 IE2 €9

for all u = (uj,u2) € U, e; € Eq, es € Es. By hypothesis E; = ker D f(up) and hence Dsf(ug) =
Df(ug)|E2 = 0. Therefore Dg(ug) is a block diagonal operator. Thus Dg(ug) € GL(E,F ¢ Es).

By the inverse function theorem, there are open sets U’ and V and a C" diffeomorphism v : V' — U’
such that up € U' € U C E, g(ug) € V C F @ Eg, and ¢! = g|U’. Hence if (u,v) € V, then (u,v) =
(go)(u,v) = (f(¢(u,v)), 2 (u,v)), where 1) = 1h1 x 1)9. This shows that s (u,v) = v and (fo))(u,v) = u.
Since Dg(ug) is block diagonal, so is its inverse D (f(ug), uo2), where ug = (ug1,uo2). Moreover, since
Dyg(u') is a Banach space isomorphism for all ' € U’, its expression as a matrix operator above shows that
D, f(v) : E; — F is also a Banach space isomorphism, that is, Dg(u')|E; x {0} : E; x {0} — F x {0}
is a Banach space isomorphism. Consequently, Dt (u, v)|F x {0} : F x {0} — E; x {0} is a Banach space
isomorphism for all (u,v) € V. |

Local Representation and Rank Theorems. We now give two results that extend the above theorems
on the local structure of maps.

2.5.14 Theorem. (Local Representation Theorem) Let f : U CE — F be of class C", r > 1, up € U and
suppose that D f(ug) has closed split image F1 with closed complement Fo and split kernel Eo with closed
complement Ei. (If E = R™ and F = R", assume only that rank(D f(ug)) = k, k < n, k < m, so that
F, =R" % F, =RF E; =R*, E, = Rm_k.) Then there are two open sets U' C U C E = E; ® Eo and
V C F1 ® Es and a C" diffeomorphism ¢ : V. — U’ satisfying uop = (uo1, uo2) € U, (f(ug),up2) € V, and
(f o) (u,v) = (u,n(u,v)) for all (u,v) €V, where n:V — Fy is a CT map satisfying Dn(y~(ug)) = 0.

Let f = f1 X fa, where f; : U — F;, © = 1,2. Using this notation, the Banach space isomorphism
Dy(f1(uo), up2) : F1 @ Eq — E = E; @ Ey is a block diagonal operator and Dy (u,v)|F1 x {0} : F1 x {0} —
E; x {0} is a Banach space isomorphism for all (u,v) € V.

Proof. Note that f; satisfies the conditions of Theorem 2.5.13 and thus there exists a C" diffeomorphism
Y :V CFi@®E;, — U C U C E such that the composition f; o1 is given by (f1 o ¢¥)(u,v) = u
and all the other conclusions of the theorem about ¢ and its derivatives hold. Define n = f5 o 1; then
(f o) (u,v) = (u,n(u,v)). Since D fa(ug) = 0, the chain rule gives Dn(¢)~*(ug)) = 0. [ |

To use Theorem 2.5.12 (or Theorem 2.5.13) in finite dimensions, we must have the rank of D f(ug) equal
to the dimension of its domain space (or the range space). However, we can also use the inverse function
theorem to tell us that if D f(u) has constant rank k for « in a neighborhood of wg, then we can straighten
out the domain of f with some invertible function 1 such that f o1 depends only on k variables. Then we
can apply the local immersion theorem (Theorem 2.5.12) to straighten out the range. This is the essence of
the following theorem.

Roughly speaking, in finite dimensions, the rank theorem says that if D f has constant rank k on an open
set in R™, then m — k variables are redundant and can be eliminated. As a simple example, if f : R? — R?
is defined by setting f(z,y) = (z — y, —2z + 2y), then Df has everywhere rank 1, and indeed, we can
express [ using just one variable, namely, let ¥ (x,y) = (x + y,y) so that (f o ¢)(x,y) = (x, —2x), which
depends only on z. But we can do even better by letting ¢(z,y) = (—x — y,2z + y) and observing that
(po fot)(x,y) = (x,0). Note that both ¢ and ¢ are in this case linear isomorphisms.

2.5.15 Theorem (Rank Theorem). Let f:U C E — F be of class C", r > 1, ug € U and suppose that
D f(ug) has closed split image F1 with closed complement Fo and split kernel Eo with closed complement
E;. In addition, assume that for all u in a neighborhood of uy € U, D f(u)(E) is a closed subspace of F and
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Df(u)|E; : E; — Df(u)(E) is a Banach space isomorphism. (If E = R™ and F = R"™, assume only that
rank(Df(u)) = k, k < n, k < m, for all u in a neighborhood of ug. In this case, Fo = R"7% F; = R¥,
E, =R* E, = Rm_k.) Then there are open sets Uy C F1 @ Es, Uy C U CE, V; CF, and Vo C F and
two C" diffeomorphism ¢ : Vi — Vo and ¢ : Uy — Us satisfying ug = (uo1,up2) € Uz C U C E; @ Ey,
f(up) € Vi, and (po fo)(x,e) = (x,0) for all (x,e) € Uy.

Let f = fi1 X fa, where f; : U — F¥;, i = 1,2. Using this notation, the Banach space isomorphism
Dy(f1(up), up2) : F1 @ Eg — E = E1 @ Ey is a block diagonal operator and Dy(z,y)|F1 x {0} : F1 x {0} —
E; x {0} is a Banach space isomorphism for all (z,y) € Uy. The Banach space isomorphism Dp(v) :
F1 @ Fy — Fy @ Fy is the identity on Fy for any v € Vi and Do(f(up)) is a block diagonal operator.

The intuition is given by Figure 2.5.4 for E=R?, F =R? and k = 1.

f(uo)

\range of f

| o
>

F,

\
T

FIGURE 2.5.4. The rank theorem

Proof. By the local representation theorem there is a C” diffeomorphism ¢ : Uy C F1®Es; — Us C U C E,
Uy, Us open, ug € Uy, such that f(x,y) = (f o) (x,y) = (x,n(x,y)), where  : Uy — Fy is of class C" and
satisfies Dn() " (ug)) = 0. The other conclusions about 9 also hold.

Shrink U; (and hence also Us), if necessary, in order to insure that for all (z,y) € U; the space
Df(x,y)(F; ®Ey) is closed in F and the linear map D f(z, y)|F; x {0} : F; x {0} — Df(x,y)(F; ®Ey) is a
Banach space isomorphism; this is guaranteed by the hypotheses of the theorem as we shall prove now. Since
Dy(z,y) : F; ®Ey; — E; ® Ey = E is a Banach space isomorphism and D f(z,y) = Df(¢(x,y)) o Di(x,y),
it follows that D f(z,y)(F1 © Ez) = Df(¢(z,y))(E). Since the restriction D1 (x,y)|F; @ {0} : F1 @ {0} —
E; @ {0} is also a Banach space isomorphism, the hypothesis of the theorem, namely that for all u is a
neighborhood of ug the range D f(u)(E) is a closed subspace of F and Df(u)|E; : E;y — Df(u)(E) is a
Banach space isomorphism, implies that D f(x,y)|F; @ {0} : F1 @ {0} — Df(z,y)(F; ® E3) is a Banach
space isomorphism for all (z,y) in the inverse image by v of this neighborhood of up in U. Note that this
implies that D f(z,y)(F1©{0}) = Df(z,y)(F1 ®E2). (In the finite dimensional case this proof is simpler: the
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expression f(z,y) = (z,7(z,y)) immediately implies that D f(z,y)|F1 & {0} is injective and, by hypothesis,
dimF; = dim(Df(z,y)(F1 & E2)).
If P, :F=F; ®Fy — Fy is the projection, then

PIDf(z,y)(F1 & Ep) : Df(z,y)(F1 ® Ey) — Fy

is the inverse of D f(z,y)|F1 x {0} : Fy x {0} — Df(z,y)(F1 x {0}) = Df(z,y)(F1 x E2) CF =F; & F,.
Indeed, since D f(x,y)-(w, e) = (w, Dn(z, y)-(w,e)), for w € Fy, e € Ey, it follows that (PyoD f(x,y))(w,0) =
(w, 0). Therefore, we will also have

Df(z,y) o Pi[Df(z,y)(F1 ® Ey) = identity on Df(z,y)(F1 @ Es).
Let (w, Dn(z,y) - (w,e)) € Df(x,y)(F1 @ Ey). Since

(Df(2,y) o P1)(w, Di(z,y) - (w,e)) = Df(z,y) - (w,0)
- (w7Dn(I7y) ’ (’LU,O))
= (w7D177(937?J) : w)7

it follows that Dayn(z,y) - e = 0 for all e € Es, that is, Don(x,y) = 0. However, since Do f(z,y) - e =
(0, Dan(z,y) - €), this in turn implies that Dof(z,y) = 0 € F, that is, f(x,y) does not depend on the
variable y € Es. )

Let P| : Fy @ Eo — F; be the projection. Define the map f : P/ (U;) C F; — F by

f(z) = fla,y) = (f o)) (x,y).

This function f satisfies the conditions of Theorem 2.5.12 at Pj(¢~"(ug)). Indeed, for any x € P{(U), the
map Df(z) = Df(z,y)|F1 x {0} : F1 — Df(z,y)(F1 ¢ E2) = Df(x)(F1) is a Banach space isomorphism
and

Df(P{(¢"}(u0)))(F1) = Df (" (u0))(F1 & E2) = Df (" (u0)) (D" (uo) (E))
D(f o ~")(uo)(E) = D (uo)(E)

is closed and has closed split image in F. Thus, by Theorem 2.5.12, there is a C" diffeomorphism ¢ : V1 — V3,
where V1, V2 C F are open and f(ug) € Vi, ug € VanN(Fy1 x{0}) C P{(U1) such that (po f)(z) = (z,0) for all
x € Von(F1 x{0}). This shows that (o fot)(x,y) = (z,0) for all (z,y) € UtNy~1(f~1(V1)) C Uy C F1OE,,
so shrinking U; further if necessary gives the result. ]

2.5.16 Example (Functional Dependence). Let U C R™ be an open set and let the functions f1,..., f, :
U — R be smooth. The functions fi,..., f, are said to be functionally dependent at xy € U if there
is a neighborhood V of the point (fi(zg),..., fa(2o)) € R™ and a smooth function F : V' — R such that
DF # 0 on a neighborhood of (fi(xo), ..., fn(z0)), and

for all x in some neighborhood of x(y. Show:

i) If f = (f1,---,fn) and f1,..., fn are functionally dependent at xo, then the determinant of Df,
denoted

_ O(frre s fa)

a(xla"wxl)’

Jf

vanishes at xg.
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8(f17~~-afn—1)#0 and 8(f173fn) =0

8(951,...,:1:”,1 8(951,...,:1:”)
on a neighborhood of x, then fi,..., fn are functionally dependent, and f, = G(f1,..., fn-1) for

some G.

Solution. (i) We have F'o f =0, so

DF(f(x)) o Df(z) = 0.
Now if Jf(xzp) # 0, Df(x) would be invertible in a neighborhood of z, implying DF(f(x)) = 0. By the
inverse function theorem, this implies DF'(y) = 0 on a whole neighborhood of f(zg).

(ii) The conditions of (ii) imply that D f has rank n — 1. Hence by the rank theorem, there are mappings ¢
and v such that

(¢°f°1/’)($1a-~-7$n) = (5017...,17"_1,0).

Let F be the last component of ¢ . Then F(f1,..., f,) = 0. Since ¢ is invertible, DF # 0.

It follows from the implicit function theorem that we can locally solve F(fi,...,f,) = 0 for f, =
G(f1,-.-, fn-1), provided we can show A = JF/Jy, # 0. As we saw before, DF(f(z)) o Df(z) = 0,
or, in components with y = f(z),

o on
oF  or\ |70 Oz
St )| : | =(0,0,...,0).
axl 8a:n
If OF/0y,, = 0, we would have
on o
OF OF o O
8—7,8— :(0,07,())
s Y=t 6fnfl . afnfl
8561 arn—l
ie.,
OF oF
) —(0,0,...,0
(3y1 ayn—l) ( )

since the square matrix is invertible by the assumption that

O(f1ye s fre
(fl f 1) ?é 0.
8(.’171, ey mn,;[)
This implies DF = 0, which is not true. Hence 0F/0y,, # 0, and we have the desired result. ¢

Note the analogy between linear dependence and functional dependence, where rank or determinant
conditions are replaced by the analogous conditions on the Jacobian matrix.
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SUPPLEMENT 2.5D
The Hadamard—Levy Theorem

This supplement gives sufficient conditions which together with the hypotheses of the inverse function
theorem guarantee that a C* map f between Banach spaces is a global diffeomorphism. To get a feel for
these supplementary conditions, consider a C* function f : R — R, k > 1, satisfying 1/|f'(x)] < M for
all z € R. Then f is a local diffeomorphism at every point of R and thus is an open map. In particular,
f(R) is an open interval ]a,b[. The condition |f/(z)] > 1/M implies that f is either strictly increasing or
strictly decreasing. Let us assume that f is strictly increasing. If b < +o0, then the line y = b is a horizontal
asymptote of the graph of f and therefore we should have lim,_,~, f'(x) = 0 contradicting |f'(z)| > 1/M.
One similarly shows that a = —oo and the same proof works if f/(z) < —1/M. The theorem below generalizes
this result to the case of Banach spaces.

2.5.17 Theorem (The Hadamard-Levy Theorem). Let f:E — F be a C* map of Banach spaces, k > 1.
If Df(x) is an isomorphism of E with F for every x € E and if there is a constant M > 0 such that
IDf(z)~t|| < M for all z € E, then f is a diffeomorphism.

The key to the proof of the theorem consists of a homotopy lifting argument. If X is a topological space,
a continuous map ¢ : X — F is said to lift to E through f, if there is a continuous map ¢ : X — E

satisfying f oy = .

2.5.18 Lemma. Let X be a connected topological space, p : X — F a continuous map and let f : E — F
be a C' map with Df(e) an isomorphism for every e € E. Fiz ug € E, vog € F, and 29 € X satisfying
fluo) = vo and o(xg) = vo. Then if a lift b of @ through f with ¥ (x¢) = ug exists, it is unique.

Proof. Let ¢’ be another lift with ¢)'(z¢) = ug and define the sets
Xi={zeX|¢(@)=¢(x)} and Xp={zeX|y(x)#'(z)},

so that X = X; U X5 and X; N Xy = @. We shall prove that both X, Xs are open. Since zy € Xj,
connectedness of X implies Xo = @ and the lemma will be proved.

If « € X;, let U be an open neighborhood of ¢ (z) = ¢'(x) on which f is a diffeomorphism. Then
Y=Y U) Ny'~1(U) is an open neighborhood of x contained in Xj.

If z € X, let U (resp., U’) be an open neighborhood of the point ¢ (z) (resp. of ¢'(x)) on which f is a
diffeomorphism and such that U N U’ = @. Then the set ¢»~1(U) Ny/~1(U’) is an open neighborhood of x
contained in Xs. [ |

A path v : [0,1] — G, where G is a Banach space, is called C? if 4[]0, 1] is uniformly C* (that is, it is C*
and its first derivative is uniformly continuous on ]0,1[ ) and the extension by continuity of 4 to [0, 1] has
the values 7/(0),~/(1) equal to

7'(0) = lim 2h) = 7(0) - 0 = lim W

2.5.19 Lemma (Homotopy Lifting Lemma). Under the hypotheses of Theorem 2.5.17, let H(t,s) be a
continuous map of [0,1] x [0,1] into F such that for each fized s € [0,1] the path t — H(t,s) is Ct. In
addition, assume that H(0,s) = yo, for all s € [0,1]. If yo = f(xo) for some xg € E, there exists a unique
lift K of H through f which is C* in t for every s and K(0,s) = xq for every s € [0,1]. See Figure 2.5.5.

Proof. Uniqueness follows by Lemma 2.5.18. By the inverse function theorem, there are open neighbor-
hoods U of zg and V of yg such that f|U : U — V is a diffeomorphism. Since the open set H~*(U) contains
the closed set {0} x [0, 1], there exists e > 0 such that [0,¢[ x [0,1] € H=}(U). Let K : [0,¢[ x [0,1] — E be
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given by K = f~! o H. Consider the set A = {6 € [0,1] | H : [0,8] x [0,1] — F can be lifted through f to
E and the lift K satisfies K(0,s) = 29 and K is C! in ¢ for every s € [0,1] }, which contains the interval
[0,e[. If @ = sup A we shall show first that o € A and second that o = 1. This will prove the existence of
the lifting K.

/

[0,1] x [0, 1]

F

H

FIGURE 2.5.5. The homotopy lifting lemma

To show that a € A, note that for 0 <t < a we have f o K = H and thus

Df(K(l,s))o%—I;(l,s) 85};[(1 s).

Since Df(K (1, s)) is invertible and f is C!, the function s € [0,1] — ||Df(K(1,s))~!|| €]0, oc[ is continuous.
Let

M = sup |Df(K(1,s))""] >0.
s€[0,1]

Hence we get

H H <M sup
t,s€[0,1]

oOH
EH_N‘

Thus by the mean value inequality, if {¢,} is an increasing sequence in A converging to a,
K (tn,8) — K(tm, s)|| < Nty —tml,
for every s € [0, 1], which shows that {K(t,,s)} is a Cauchy sequence in E, uniformly in s € [0,1]. Let

K(a,s) = lim K(t,,s).

tnTa

By continuity of f and H we have

f(K(a,s)) = thLITI(ll f(K(tn,s)) = lim H(t,,s) = H(a,s),

tnTa
which proves that o € A.
Next we show that o = 1. If & < 1 consider the curves s — K(a,s) and s — H(a,s) = f(K(a,s)). For
each s € [0, 1] choose open neighborhoods Uy of K(«,s) and Vi of H(«,s) such that f|Us : Us — V; is a
diffeomorphism. By compactness of the path K(«, s) in s, that is, of the set { K(«,s) | s € [0,1] }, finitely

many of the Ug, say Uy, ..., U,, cover it. Therefore the corresponding V1, ..., V,, cover { H(«, s) | s € [0,1] }.
Since H~1(V;) contains the point (a, s;), there exists € > 0 such that

Jao—ei,a+e;[ X ]s; — 65,8+ 6;[ C H_l(Vi),
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where |s; — 5,5, + 0;[ € H(a,-)"'(Vi) and in particular |s; — d;,8; + &;[, ¢ = 1,...,n cover [0,1]. Let
¢ =min{ey,...,e,} and define K [0, + €] x [0,1] — E by
R(t,s) = K(t,s), if (¢,8) € [0,a] x {(0,1)};
e (f|Ui)_1(H(t,S)), if (t,S) € [(Jé,(X—FE[X}Si—CSi,Si—f—&i[,

wherei = 1,...,n. Thus, K is a lifting of H, contradicting the definition of a.. Since f(K(0,s)) = H(0,s) = yo
for all s € [0,1], the local injectivity of f, the continuity of s — K(0,s), the compactness of [0,1] and
K(0,0) = z( imply that K(0,s) = xo.
Finally, K is C' in t for each s by the chain rule:
0K
ot

0H

= DJ(K(t,s) o S U

2.5.20 Corollary (Path Lifting Lemma).  Under the hypotheses of Theorem 2.5.17, let v : [0,1] = F be a
C! path. If v(0) = yo = f(z0) for some x¢ € E, there is a unique C* path § : [0,1] — E such that fod =~
and §(0) = xo.

Proof. If H(t,s) =~(t) for all (¢, s) € [0,1] x [0, 1], then by the Homotopy Lifting Lemma there is a unique
lift K of H through f. Thus, for each fixed ¢ € [0,1], f(K(t,s)) = H(t,s) = y(t) for all s € [0,1]. Local
injectivity of f, the continuity of s — K (¢, s) for ¢ fixed, and the compactness of [0, 1], imply that K (¢, s) is
constant in s. Since this argument is valid for each fixed ¢t € [0, 1], it follows that K(t,s) does not depend
on s, that is, K(t,s) = 0(t) is a path satisfying fod =+ and §(0) = K(0, s) = xp. [ |

Proof of Theorem 2.5.17. Let y9,y € F and consider the path y(t) = (1 — t)yo + ty. The Path Lifting
Lemma guarantees the existence of a C* path § : [0,1] — E lifting v, that is, f o § = 7. In particular,
f(6(1)) =~(1) = y and thus f is surjective.

Next we prove that f is injective. Let x1, zo € E be such that f(x1) = f(x2) = y. Define H : [0,1]x[0,1] —
F by

H(t,s) = (1—s)f(tx1) + sf(txs).

This map is C* in both variables and H(0,s) = f(0) for all s € [0,1]. By the Homotopy Lifting Lemma,
there is a unique continuous lift K : [0,1] x [0, 1] — E such that fo K = H and K(0,s) = 0 for all s € [0, 1].
Since f is a local C'' diffeomorphism and H is a C' map, it follows that K is a C'' map in both variables.
The s derivative of the identity H(1,s) = (1 — s)f(x1) + sf(z2) = y yields

0= diH(l,s) = if(K(Ls)) =Df(K(1,s))- %K(l,s).

Since D f(K (1, s)) is an isomorphism, this implies that dK (1, s)/ds = 0 and thus, by integration, K(1,0) =
K(1,1). Thus, since f is a local diffeomorphism, we have z; = f~1(f(x1)) = f~1(H(1,0)) = K(1,0) =
K(1,1) = f’l(H(l, 1)) = f~Y(f(x2)) = w2, which proves that f is injective.

Therefore f is a bijective map which is a local diffeomorphism around every point, that is, f is a diffeo-
morphism of E with F. [ |

Remarks. (i) The uniform bound on ||Df(x)~}|| can be replaced by properness of the map (see Exercise

5-10). Indeed, the only place where the uniform bound on ||Df(x)~!| was used is in the homotopy

lifting lemma in the argument that o = sup A € A. If f is proper, this is shown in the following

way. Let {t(n)} be an increasing sequence in A converging to a. Then H(t(n),s) — H(a,s) and from

foK = H on [0,a] x [0,1], it follows that f(K(t(n),s)) — H(«,s) uniformly in s € [0, 1]. Thus, by

properness of f, there is a subsequence {t(m)} such that K(t(m),s) is convergent for every s. Put
K(a, s) = limy(,,)10 K (t(n), s) and proceed as before.
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(ii) Conditions on f such as properness, or the conditions in the theorem are necessary as the following
counterexample shows. Let f : R? — R? be given by (e®,ye~?) so that f(R?) is the right open half
plane and in particular f is not onto. However

D = | oo ]

—ye e
is clearly an isomorphism for every (z,y) € R2. But f is neither proper nor does the norm ||D f(z,y)~!||
have a uniform bound on R?. For example, the inverse image of the compact set [0, 1] x {0} is |—o0, 0] x
{0} and |Df(x,y)" Y| = Cle™2® + €2® + y2e~2%]1/2 which is unbounded x — +oc.

(iv) See Wu and Desoer [1972] and Ichiraku [1985] for useful references to the theorem and applications. ¢

Lax—Milgram Theorem. If E =F = H is a Hilbert space, then the Hadamard-Levy theorem has an
important consequence. We have seen that in the case of f : R — R with a uniform bound on 1/|f’(x)|, the
strong monotonicity of f played a key role in the proof that f is a diffeomorphism.

2.5.21 Definition. Let H be a Hilbert space. A map f : H — H 1is strongly monotone if there exists a > 0
such that

(f(z) = f(y),x —y) > allz — y|*,
As in calculus, for differentiable maps strong monotonicity takes on a familiar form.

2.5.22 Lemma. Let f : H — H be a differentiable map of the Hilbert space H onto itself. Then f is
strongly monotone if and only if

(Df() - u,u) = allul®
for some a > 0.

Proof. If f is strongly monotone, (f(z + tu) — f(z),tu) > at®||ul|* for any z,u € H, ¢t € R. Dividing by
t? and taking the limit as ¢ — 0 yields the result.

Conversely, integrating both sides of (D f(x + tu) - u,u) > allul|? from 0 to 1 gives the strong monotonicity
condition. [ ]

2.5.23 Theorem (Lax-Milgram Theorem). Let H be a real Hilbert space and A € L(H,H) satisfy the
estimate (Ae,e) > alle||? for all e € H. Then A is an isomorphism and ||[A7]| < 1/a.

Proof. The condition clearly implies injectivity of A. To prove A is surjective, we show first that A(H)
is closed and then that the orthogonal complement A(H)* is {0}. Let f,, = A(e,) be a sequence which
converges to f € H. Since ||Ae|| > ale]| by the Schwarz inequality, we have

Il frn — fmll = [ Alen — em)|l > allen — enl],

and thus {e,} is a Cauchy sequence in H. If e is its limit we have Ae = f and thus f € A(H).

To prove A(H)* = {0}, let u € A(H)= so that 0 = (Au, u) > allul|? whence u = 0.

By Banach’s isomorphism theorem 2.2.16, A is a Banach space isomorphism of H with itself. Finally,
replacing e by A=Lf in || Ae|| > a|le| yields [|[A=f]| < || f|l/a, that is, || A7 < 1/a. [ |

Lemma 2.5.22, the Lax-Milgram Theorem, and the Hadamard-Levy theorem imply the following global
inverse function theorem on the real Hilbert space.

2.5.24 Theorem. Let H be a real Hilbert space and f : H — H be a strongly monotone C* mapping
k> 1. Then f is a C* diffeomorphism.
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SUPPLEMENT 2.5E
Higher-Order Derivatives of the Inversion Map

Let E and F be isomorphic Banach spaces and consider the inversion map J : GL(E,F) — GL(F,E);
J(p) = 1. We have shown that J is C*° and

DI(p) - =—¢ logpop™!

for p € GL(E,F) and ¢ € L(E,F). We shall give below the formula for D*J. The proof is straightforward
and done by a simple induction argument that will be left to the reader. Define the map

" L(FE) x --- x L(F,E) {there are k + 1 factors}
— L*(L(E,F); L(F,E))

o (xa, Xe) - (U1, )

= (=1)"x1 091 0X20%3 00Xk Ok O Xpt1,

where x; € L(F,E), i =1,...,k+1and ¢; € L(E,F), j =1,...,k. Let 3 x --- x J {with k + 1 factors} be
the mapping of GL(E,F) to GL(F,E) x --- x GL(F, E) with {k + 1 factors} defined by (J x --- x J)(¢) =
(71, ..., p71). Then

D3 = k! Sym* o ot o (T x -+ x ),
where Sym” denotes the symmetrization operator. Explicitly, for
v € GL(E,E) and 1,...,¢, € L(E,F),
this formula becomes

ij((p) ' (djlv .- 7¢k) = (_l)k Z 90_1 Owa(l) o 90_1 *r- 0 90_1 o wo(k’) o 90_17

oESk

where Sj; is the group of permutations of {1,...,k} (see Supplements 2.2B and 2.4A).

Exercises
o 2.5-1. Let f:R* — R? be defined by
f(z,y,u,v) = (u® + vz + y,uy +v° — z).
At what points can we solve f(z,y,u,v) = (0,0) for (u,v) in terms of (z,y)? Compute du/0x.

o 2.5-2. (i) Let E be a Banach space. Using the inverse function theorem, show that each A in a neigh-
borhood of the identity map in GL(E, E) has a unique square root.

(ii) Show that for A € L(E, E) the series

1 1 )
B=1 2([ A) 222!([ A)
1-3-5--(2n—3) .
B ALY (I—4)

is absolutely convergent for ||[I — A|| < 1. Check directly that B = A.
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o 2.5-3. (i) Let A€ L(E,E) and let
o0 An
A _
e = Z F
n=0
Show this series is absolutely convergent and find an estimate for ||e?|, A € L(E,E).

(ii) Show that if AB = BA, then e4*8 = e4ef = eBe. Conclude that (e?)~! = e~4; that is, e? €
GL(E, E).

(iii) Show that e() : L(E, E) — GL(E, E) is analytic (you may regard the exponential map as taking values
in the linear space L(E, E); recall that GL(E,E) C L(E,E) is an open subset.

(iv) Use the inverse function theorem to conclude that A + e has a unique inverse around the origin.
Call this inverse A — log A and note that log I = 0.

(v) Show that if ||[I — Al| < 1, the function log A is given by the absolutely convergent power series

S (_1)n—1 n
log A= —(4-1"
n=1

(vi) If|[I—A| <1, |I-BJ| <1,and AB = BA, conclude that log (AB) = log A+ log B. In particular,
log A=t = — log A.

¢ 2.5-4. Show that the implicit function theorem implies the inverse function theorem.
HINT: Apply the implicit function theorem to g : U x F — F, g(u,v) = f(u) —v, for f : U CE — F.

o 2.5-5. Let f:R? — R? be C* and satisfy the Cauchy-Riemann equations (see Exercise 2.3-6):

Of _ 0 O0h _ Of

oz oy’ Oy oz’

Show that D f(x,y) = 0 iff det(D f(z,y)) = 0. Show that the local inverse (where it exists) also satisfies the
Cauchy—Riemann equations. Give a counterexample for the first statement, if f does not satisfy Cauchy—
Riemann.

o 2.5-6. Let f:R — R be given by
flz) = x—i—chosi ifx#0, and f(0)=0.
Show that
(i) f is continuous;
(ii) f is differentiable at all points;
(iii) the derivative is discontinuous at xz = 0;

(iv) f'(0) # 0;

(v) f has no inverse in any neighborhood of 2 = 0. (This shows that in the inverse function theorem the
continuity hypothesis on the derivative cannot be dropped.)
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o 2.5-7. It is essential to have Banach spaces in the inverse function theorem rather than more general
spaces such as topological vector spaces or Fréchet spaces. (The following example of the failure of Theorem
2.5.2 in Fréchet spaces is due to M. McCracken.)

Let H(A) denote the set of all analytic functions on the open unit disk in C, with the topology of uniform
convergence on compact subsets. Let F': H(A) — H(A) be defined by

(o) o0
g anz" — E azz".
n=0 n=0

Show that F'is C* and that

o0 o0 o0
DF <Z anz”> . (Z bnz”> = Z 2a,b,2".
n=0 n=1 n=1

(Define the Fréchet derivative in H(A) as part of your answer.) If ag = 1 and a,, = 1/n, n # 1, then

(5

n=1

is a bounded linear isomorphism. However, since

22 Zkrfl Zk: Zk+1 Oozn
F 4y 242 L) =F c
(Z+2+ TR TE Thea T ) 2.5

n=1

conclude that F' is not locally injective. (Consult Schwartz [1967], Sternberg [1969], and Hamilton [1982] for
more sophisticated versions of the inverse function theorem valid in Fréchet spaces.)

o 2.5-8 (Generalized Lagrange Multiplier Theorem; Luenberger [1969]).
Let f: UCE — Fandg:U C E — G be C! and suppose Dg(ug) is surjective. Suppose f has a
local extremum (maximum or minimum) at ug subject to the constraint g(u) = 0. Then prove

(i)
(i)

D f(ug) - h =0 for all h € ker Dg(uy), and
there is a A € G* such that D f(ug) = ADg(uo).

(See Supplement 3.5A for the geometry behind this result).
o 2.5-9. Let f:U CR™ — R” be a C! map.

(i)

(iii)

Show that the set G, = {x € U | rank D f(z) > r } is open in U.

HINT: If 29 € G, let M (x0) be a square block of the matrix of D f(xz¢) in given bases of R™ and R"
of size > r such that det M (z() # 0. Using continuity of the determinant function, what can you say
about det M (x) for x near z(?

We say that R is the maximal rank of D f(x) on U if
R = sup(rank D f(z)).
zelU
Show that Vg = {z € U | rankDf(z) = R} is open in U. Conclude that if rank D f(z¢) is maximal
then rank D f(x) stays maximal in a neighborhood of zg.
Define O; = int{z € U | rank D f(z) = ¢ } and let R be the maximal rank of Df(x), z € U. Show that
OpU---UOg is dense in U.

HINT: Let © € U and let V be an arbitrary neighborhood of z. If ) denotes the maximal rank of
Df(x) on z € V, use (ii) to argue that VN Og = {z € V | rankDf(z) = @ } is open and nonempty
in V.
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Show that if a C! map f : U C R™ — R" is injective (surjective onto an open set), then m < n
(m >n).
HINT: Use the rank theorem and (ii).

¢ 2.5-10 (Uniform Contraction Principle; Hale [1969], Chow and Hale [1982]).

(i)

(i)

Let T : cl(U) x V — E be a C* map, where U C E and V C F are open sets. Suppose that for fixed
y € V, T(x,y) is a contraction in z, uniformly in y. If g(y) denotes the unique fixed point of T'(x,y),
show that ¢ is C*.

HiNT: Proceed directly as in the proof of the inverse mapping theorem.

Use (i) to prove the inverse mapping theorem.

o 2.5-11 (Lipschitz Inverse Function Theorem; Hirsch and Pugh [1970]).

(i)

(iii)

Let (X, d;) be metric spaces and f : X; — Xo. The map f is called Lipschitz if there exists a constant
L such that da(f(x), f(y)) < Ldi(x,y) for all z,y € X;. The smallest such L is the Lipschitz constant
L(f). Thus, if X1 = X5 and L(f) < 1, then f is a contraction. If f is not Lipschitz, set L(f) = oc.
Show that if g : (X2,d2) — (X3,ds3), then L(go f) < L(g)L(f). Show that if X, X5 are normed vector
spaces and f,g: X; — X5, then

L(f+9) < L(f) + L(g), L(f) = L(g) < L(f — 9).

Let E be a Banach space, U an open set in E such that the closed ball B,.(0) C U. Let f: U — E be
given by f(r) = x+¢(x), where p(0) = 0 and ¢ is a contraction. Show that f(D,.(0)) D Dy1—r(,))(0),
that f is invertible on f~'(D,(1-1(4))(0)), and that f~' is Lipschitz with constant L(f~*) < 1/(1 —
L(p))-

HINT: If ||ly|| < 7(1 — L(p)), define F' : U — E by F(z) = y — ¢(z). Apply the contraction mapping
principle in B,.(0) and show that the fixed point is in D,.(0). Finally, note that

(1= L(p))ller = w2l < [lz1 — 2all = [p(z1) — p(22)]]
< f (1) = fa2)ll-

Let U be an open set in the Banach space E, V be an open set in the Banach space F, 2o € U, B,.(zg) C
U. Let o : U — V be a homeomorphism. Assume that a~' : V — U is Lipschitz and let ) : U — F be
another Lipschitz map. Assume L(v)L(a~!) < 1 and define f = a+ 1 : U — F. Denote yg = f(x).
Show that f(Otil(Dr(xo))) D Dr(lfL(w)L(oﬁl))(yO)a that f is invertible on fﬁl(Dr(lfL(dz)L(orl))(yo);
and that f~! is Lipschitz with constant

1
= T )1 L()

L(f7)

HINT: Replacing v by the map x +— () —(xg) and V by V+{u(xg)}, we can assume that ¢(xg) =0
and f(xg) = a(zg) = yo. Next, replace this new f by  — f(x + z¢) — f(z0), U by U — {x¢}, and the
new V by V + {yo}; thus we can assume that

20=0, yo=0, (0)=0, and «(0)=0.
Then
foa ™t =T+¢oa,

(¥ oa™)(0) =0,
L(yoa™) < L($)L(a™") <1,

so (ii) is applicable.
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(iv) Show that |L(f~!) — L(a™!)| — 0 as L(x)) — 0. Let @« : R — R be the homeomorphism defined
by a(x) = z if # < 0 and a(z) = 2z if > 0. Show that both a and a~! are Lipschitz. Let
Y(z) = ¢ = constant. Show that L(¢)) = 0 and if ¢ # 0, then L(f~! — a~!) > 1/2. Prove, however,
that if o, f are diffeomorphisms, then L(f~! —a~1) — 0 as L(¢)) — 0.

2.5-12. Use the inverse function theorem to show that simple roots of polynomials are smooth functions of
their coefficients. Conclude that simple eigenvalues of operators of R™ are smooth functions of the operator.
HINT: If p(t) = ant™ + ap_1t""1 + - -+ + ap, define a smooth map F : R"™2 — R by F(ap,...,a0,\) = p(\)
and note that if ¢ is a simple eigenvalue, dF(A\g)/I\ # 0.

2.5-13. Let E,F be Banach spaces, f : U — V a C" bijective map, r > 1, between two open sets U C E,
V C F. Assume that for each z € U, D f(x) has closed split image and is one-to-one.

(i) Use the local immersion theorem to show that f is a C” diffeomorphism.
(i) What fails for the function y = 237

2.5-14. Let E be a Banach space, U C E open and f : U — R a C" map, r > 2. We say that u € U is
a critical point of f, if Df(u) = 0. The critical point u is called strongly non-degenerate if D?f(u)
induces a Banach space isomorphism of E with its dual E*. Use the Inverse Function Theorem on D f to
show that strongly non-degenerate points are isolated, that is, each strongly non-degenerate point is unique
in one of its neighborhoods. (A counter-example, if D?f is only injective, is given in Exercise 2.4-15.)

2.5-15. For u: S' — R, consider the equation

d 1 27\'
d_z—'_UQ_ﬁ/o u?df = esinf

where 6 is a 27-periodic angular variable and ¢ is a constant. Show that if ¢ is sufficiently small, this equation
has a solution.

2.5-16. Use the implicit function theorem to study solvability of
2 3 : d¢
Vip+¢’=f in Q and o =Y on 0§,
n

where Q is a region in R" with smooth boundary, as in Supplement 2.5C.
2.5-17. Let E be a finite dimensional vector space.
(i) Show that det(exp A) = etrace4,
HINT: Show it for A diagonalizable and then use Exercise 2.2-12(i).

(ii) If E is real, show that exp(L(E,E))N{ A € GL(E) | det A < 0} = @. This shows that the exponential
map is not onto.

(iii) If E is complex, show that the exponential map is onto. For this you will need to recall the following facts
from linear algebra. Let p be the characteristic polynomial of A € L(E, E), that is, p(A) = det(A—\I).
Assume that p has m distinct roots Ay, ..., A\, such that the multiplicity of \; is k;. Then

E =@ ker(A—\I)* and dim(ker(A — X\ 1)*) = k;
i=1

Thus, to prove the exponential is onto, it suffices to prove it for operators S € GL(E) for which the
characteristic polynomial is (A — o).
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HINT: Since S is invertible, A\g # 0, so write \g = e?, z € C. Let N = /\alS — I and

z Nz
A=

i=1

By the Cayley—Hamilton theorem (see Exercise 2.2-12(ii)), N* = 0, and from the fact that exp(log(1+

w)) =1+ w for all w € C, it follows that exp(A + zI) = Agexp A = N(I + N) = S.



3
Manifolds and Vector Bundles

We are now ready to study manifolds and the differential calculus of maps between manifolds. Manifolds
are an abstraction of the idea of a smooth surface in Euclidean space. This abstraction has proved useful
because many sets that are smooth in some sense are not presented to us as subsets of Euclidean space. The
abstraction strips away the containing space and makes constructions intrinsic to the manifold itself. This
point of view is well worth the geometric insight it provides.

3.1 Manifolds

Charts and Atlases. The basic idea of a manifold is to introduce a local object that will support
differentiation processes and then to patch these local objects together smoothly. Before giving the formal
definitions it is good to have an example in mind. In R”*! consider the n-sphere S™: that is, the set of
x € R such that ||z|| = 1 (]| - || denotes the usual Euclidean norm). We can construct bijections from
subsets of S™ to R™ in several ways. One way is to project stereographically from the south pole onto a
hyperplane tangent to the north pole. This is a bijection from S™, with the south pole removed, onto R".
Similarly, we can interchange the roles of the poles to obtain another bijection. (See Figure 3.1.1.)

With the usual relative topology on S™ as a subset of R**!, these maps are homeomorphisms from their
domain to R™. Each map takes the sphere minus the two poles to an open subset of R™. If we go from R"
to the sphere by one map, then back to R™ by the other, we get a smooth map from an open subset of R™
to R™. Each map assigns a coordinate system to S™ minus a pole. The union of the two domains is S™, but
no single homeomorphism can be used between S™ and R"™; however, we can cover S™ using two of them.
In this case they are compatible; that is, in the region covered by both coordinate systems, the change of
coordinates is smooth. For some studies of the sphere, and for other manifolds, two coordinate systems will
not suffice. We thus allow all other coordinate systems compatible with these. For example, on S? we want
to allow spherical coordinates (6, ¢) since they are convenient for many computations.

3.1.1 Definition. Let S be a set. A chart on S is a bijection ¢ from a subset U of S to an open subset
of a Banach space. We sometimes denote ¢ by (U, ), to indicate the domain U of . A C* atlas on S is
a family of charts A= { (Ui, ;) | i € I} such that

MAL. S={U;|icl}.
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N . O(P)

RZ

FIGURE 3.1.1. The two-sphere S2.

MAZ2. Any two charts in A are compatible in the sense that the overlap maps between members of A
are C* diffeomorphisms: for two charts (Us, ;) and (Uj, ;) with U; N U; # @, we form the
overlap map: ¢;; = pjop; pi(U;NU;), where o] |¢;(U;NU;) means the restriction of p; !
to the set goi(UiﬂUj). We require that wi(UiﬂUj) 15 open and that @;; be a Cck diffeomorphism.
(See Figure 3.1.2.)

FIGURE 3.1.2. Charts ¢; and ¢; on a manifold

3.1.2 Examples.
A. Any Banach space F admits an atlas formed by the single chart (F, identity).

B. A less trivial example is the atlas formed by the two charts of S™ discussed previously. More explicitly,
if N =(1,0,...,0) and S = (—1,...,0,0) are the north and south poles of S™, the stereographic projections
from N and S are

2 n+1
..Qn n 1 n+1ly _ T xT
()015\{N}—>R7 (pl(x""vx )_(1_$17"'a1_m1>a
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and

xr X

2 n+1
:S™M\{S R" Lo et =
P2 \{ }H ’ @2(33’ » L ) 1—‘1—1’17 71+£L'1

and the overlap map @ 0 o7 @ R"\{0} — R"\{0} is given by the mapping (w2 o ©7*)(2) = 2/|2|?,
z € R™\{0}, which is clearly a C*° diffeomorphism of R™\{0} to itself. ¢

Definition of a Manifold. We are now ready for the formal definition of a manifold.

3.1.3 Definition. Two C* atlases A1 and Ay are equivalent if A1 U Ay is a CF atlas. A C* differen-
tiable structure D on S is an equivalence class of atlases on S. The union of the atlases in D,

Ap = J{A| AeD}

is the maximal atlas of D, and a chart (U, ) € Ap is an admissible local chart. If A is a C* atlas on
S, the union of all atlases equivalent to A is called the C* differentiable structure generated by A.

A differentiable manifold M is a pair (S,D), where S is a set and D is a C* differentiable structure
on S. We shall often identify M with the underlying set S for motational convenience. If a covering by
charts takes their values in a Banach space E, then E is called the model space and we say that M is a
C* Banach manifold modeled on E. If no differentiability class is explicitly given, a manifold will be
assumed to be C* (also referred to as “smooth”).

If we make a choice of a C* atlas A on S then we obtain a maximal atlas by including all charts whose
overlap maps with those in A are C*. In practice it is sufficient to specify a particular atlas on S to determine
a manifold structure for S.

3.1.4 Example. An alternative atlas for S™ has the following 2(n + 1) charts: (Uii, wii), 1=1,...,n+1,
where UX = {z € §" | £2° > 0} and ¢ : U — {y € R" | ||y|| < 1} is defined by

YE@, . et = (2. 2 gt L e,

1/)? projects the hemisphere containing the pole (0,...,+1,...,0) onto the open unit ball in the tangent
space to the sphere at that pole. It is verified that this atlas and the one in Example 3.1.2B with two charts
are equivalent. The overlap maps of this atlas are given by

-1
(v o () ") W' w?)
= (y15'7y‘]717yj+17'7y1717:|: 1 - Hy||25y27'7yn) )

where j > 1. ¢

Topology of a Manifold. We now define the open subsets in a manifold, which will give us a topology.

3.1.5 Definition. Let M be a differentiable manifold. A subset A C M is called open if for each a € A
there is an admissible local chart (U, @) such that a € U and U C A.

3.1.6 Proposition. The open sets in M define a topology.
Proof. Take as basis of the topology the family of finite intersections of chart domains. [ ]

3.1.7 Definition. A differentiable manifold M is an n-manifold when every chart has values in an n-
dimensional vector space. Thus for every point a € M there is an admissible local chart (U, @) with a € U
and o(U) C R™. We write n = dim M. An n-manifold will mean a Hausdorff, differentiable n-manifold in
this book. A differentiable manifold is called a finite-dimensional manifold if its connected components
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are all n-manifolds (n can vary with the component). A differentiable manifold is called o Hilbert manifold
if the model space is a Hilbert space.*

No assumption on the connectedness of a manifold has been made. In fact, in some applications the manifolds
are disconnected (see Exercise 3.1-3). Since manifolds are locally arcwise connected, their components are
both open and closed.

3.1.8 Examples.

A. Every discrete topological space S is a O-manifold, the charts being given by the pairs ({s}, ¢s), where
ps:s—0and s € S.

B. Every Banach space is a manifold; its differentiable structure is given by the atlas with the single
identity chart.

C. The n-sphere S™ with a maximal atlas generated by the atlas with two charts described in Examples
3.1.2B or 3.1.4 makes S™ into an n-manifold. The reader can verify that the resulting topology is the same
as that induced on S™ as a subset of R"*1.

D. A set can have more than one differentiable structure. For example, R has the following incompatible
charts:

(U17<P1) :Ur =R, tp1(7“) =rdc R; and
(Uayp2) : Uy =R, @a(r)=reR.

They are not compatible since ¢, 07 " is not differentiable at the origin. Nevertheless, these two structures
are “diffeomorphic” (Exercise 3.2-8), but structures can be “essentially different” on more complicated sets
(e.g., S7). That S7 has two nondiffeomorphic differentiable structures is a famous result of Milnor [1956].
Similar phenomena have been found on R* by Donaldson [1983]; see also Freed and Uhlenbeck [1984].

E. Essentially the only one-dimensional paracompact connected manifolds are R and S'. This means that
all others are diffeomorphic to R or S! (diffeomorphic will be precisely defined later). For example, the circle
with a knot is diffeomorphic to S*. (See Figure 3.1.3.) See Milnor [1965] or Guillemin and Pollack [1974] for
proofs.

F1GURE 3.1.3. The knot and circle are diffeomorphic

F. A general two-dimensional compact connected manifold is the sphere with “handles” (see Figure 3.1.4).
This includes, for example, the torus, whose precise definition will be given in the next section. This classi-
fication of two-manifolds is described in Massey [1991] and Hirsch [1976].

10ne can similarly form a manifold modeled on any linear space in which one has a theory of differential calculus. For
example mathematicians often speak of a “Fréchet manifold,” a “LCTVS manifold,” etc. We have chosen to stick with Banach
manifolds here primarily to avail ourselves of the inverse function theorem. See Exercise 2.5-7.
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2
S -+ handles

FI1GURE 3.1.4. The sphere with handles

G. Grassmann Manifolds. Let G, (R™), where m > n denote the space of all n-dimensional subspaces
of R™. For example, G;(R?), also called projective 2-space, is the space of all lines in Euclidean three space.
The goal of this example is to show that G, (R™) is a smooth compact manifold. In fact, we shall develop,
with little extra effort, an infinite dimensional version of this example.

Let E be a Banach space and consider the set G(E) of all split subspaces of E. For F € G(E), let G
denote one of its complements, that is, E=F & G, let

Uc={HeGE) E=HaG},
and define
¢or.g:Ug — L(F,G) by ¢rgH)=7mr(H G)org(H,F)™ !,

where 7r(G) : E — G, 7g(F) : E — F denote the projections induced by the direct sum decomposition
E=F &G, and

WF(H,G) = 7TF(G)|H,7TG(H,F) = 7Tc;(F>|H.

The inverse appearing in the definition of g ¢ exists as the following argument shows. If H € Ug, that
is, if E=F® G = H® G, then the maps 7¢(H,F) € L(H,F) and n¢(F,H) € L(F,H) are invertible
and one is the inverse of the other, for if h = f + g, then f = h—g, for f € F, g € G, and h € H, so
that (e (F, H) o mg (H, F))(h) = ma(F, H)(f) = h, and (e (H, F) o 7 (F, H))(f) = 7 (H, F)(h) = . In
particular, o g has the alternative expression

QOF7G = FF(H,G) o FG(F,H).

Note that we have shown that H € Ug implies ng(H,F) € L(H, F) is an isomorphism. The converse is also
true, that is, if 7q(H,F) is an isomorphism for some split subspace H of E then E = H & G. Indeed, if
x € HN G, then 7g(H,F)(z) =0 and so = 0, that is, HNG = {0}. If e € E, then we can write

e=(ra (H, F))_1 ong(Fle+ [e — (rq (H,F) o g (F)) (e)]

with the first summand an element of H. Since g (F)o (r (H, F)) ™" is the identity on F, we have 7 (F)[e—
(ra(F,H)org(F))(e)] = 0, that is, the second summand is an element of G, and thus E = H+G. Therefore
E = H® G and we have the alternative definition of Ug as

Uc ={H € G(E) | nc(H,F) is an isomorphism of H with F }.

Let us next show that prp.g : Ug — L(F,G) is bijective. For a € L(F,G) define the graph of a by
I'ra(a) ={f+alf)]| f € F} which is a closed subspace of E=F @ G. Then E = I'r ¢ (o) ® G, that is,
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I'r.c(e) € Ug, since any e € E can be written as e = f+¢g = (f + a(f))+ (g —a(f)) for f e Fand g € G,
and also I'r ¢ (o) N G = {0} since f +a(f) € G for f e Fiff f € FN G = {0}. We have

vr.c(l'rc(a) =mr(Irc(a),G)org(F,I'ra(a))

where
f=+a(f) —alf) = mr(lrc(a), G)(f +a(f)) — a(f)
that is, ¢r.c o I'r ¢ = identity on L(F,G), and

I'rc(mr(H,G) o g (F,H))'r ()
={f+(mr(H,G)onc(F,H))(f) | feF}
={f+mr(H,G)(h) | f€F, f=h+g,heH, andge G}
={f—-g|f€F, f=h+g, heH, andge G} =H,

that is, I'r,¢ © ¢r,g = identity on Ug. Thus, ¢F ¢ is a bijective map which sends H € Ug to an element of
L(F, G) whose graph in F & G is H. We have thus shown that (Ug, ¢r,c) is a chart on G(E).
To show that { (Ug, ¢r,c) | E=F & G} is an atlas on G(E), note that

U UUe =G®),

FeG(E) G
where the second union is taken over all G € G(E) such that
E=HoG=FaG

for some H € G(E). Thus, MA1 is satisfied. To prove MA2, let (Ug’, r/.@’) be another chart on G(E)
with Ug NUg' # @. We need to show that ¢r.g(Ug NUg ) is open in L(F, G) and that g g o (pE,{G, is
a C* diffeomorphism of L(F',G’) to L(F, G).

Step 1. Proof of the openness of

SOF,G(UG n UG/).

Let o € 9p,g(Ug NUg/) C L(F,G) and let H = T'r g(a). Then E=H & G = H® G’. Assume for the
moment that we can show the existence of an & > 0 such that if 8 € L(H, G) and ||| < ¢, then 'y, (8) ®
G’ = E. Then if o' € L(F, G) is such that ||/| < ¢/||rac(H,F)||, we get 'y c(¢/ one(H,F)) &G’ = E. We
shall prove that I'r g (o + @') = T'm,g (o o e (H, F)). Indeed, since the inverse of ¢ (H,F) € GL(H,F) is
I 4+ o, where [ is the identity mapping on F, for any h € H,

ma(H,F)(h) + ((a + o) o ma(H, F))(h)
=[(I +a)ong(H,F)|(h)+ (¢ org(H,F))(h)
=h+ (o' omg(H,F))(h),

whence the desired equality between the graphs of o + ¢ in F® G and o o rg(H,F) in H® G. Thus we
have shown that I'p g (a+ ') @ G’ = E. Since we always have I'r g(a+ ') ® G = E (since I'r ¢ is bijective
with range Ug), we conclude that oo+ o € pr,c(Ug NUg/) thereby proving openness of vr ¢(Ug NUg').

To complete the proof of Step 1 we therefore have to show that if E = H® G = H & G’ then there
is an € > 0 such that for all § € L(H,G) satisfying ||3|| < e, we have 'y g(B) & G’ = E. This in turn
is a consequence of the following statement: if E = H$® G = H ¢ G’ then there is an € > 0 such for all
8 € L(H, G) satisfying ||3]] < ¢, we have 7a'(Tu,c(6), H) € GL(I'u,c(5), H). Indeed, granted this last
statement, write e € E as e = h + ¢/, for some h € H and ¢’ € G’, use the bijectivity of 7/ (I'm,c(5), H)
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FIGURE 3.1.5. Grassmannian charts

to find an © € 'y g(B) such that h = 7g (T'u,c(8), H)(z), and note that mg/ (H)(h — ) = 0, that is,
h —xz = ¢gi € G’; see Figure 3.1.5. Therefore e = = + (¢} + ¢') € Tu,c(8) + G'. In addition, we also have
Tu,c(f) NG = {0}, for if z € Ty,c(8) NG/, then mq' (T'u,c(8), H)(z) = 0, whence z = 0 by injectivity of
the mapping 7a’ (I'u,c(8), H); thus we have shown E =T'y ¢ (5) & G'.

Finally, assume that E=H& G = H® G'. Let us prove that there is an € > 0 such that if 5 € L(H,G),
satisfies || 8| < e, then e/ (T'r,c(8), H) € GL(I'y,c(0), H). Because of the identity ¢ (H, T'u,c(8)) = I+,
where [ is the identity mapping on H, we have

T — 7 (H) o 7 (H, T (8))]) = |1 — me (H) o (I + B)]
= |lra(H') o (I — (I + )|
< [lre ) 18] <1
provided that ||8|| < ¢ = 1/||rg/(H)||. Therefore, we get
I - (I -ne(H)ore(H,I'n,c(f))) = rer(H) o 7e(H,I'n,c(8)) € GL(H, H).
Since 7q(H,Tu,e(8)) € GL(H, 'y, (08)) has inverse g (I'u,c(8), H), we obtain

e (T'a,c(B),H) = 7 (H)[Ta,c(3)
= [ra/(H) o ma(H, (T'u,c(8))]
ormg(l'm,c(B),H) € GL(T'n,c(8), H).

Step 2. Proof that the overlap maps are C'*°. Let

(Ug,vr.c), Uc ¥ )

be two charts at the points F,F’ € G(E) such that Ug NUqg # @. If a € vyr.c(Ug NUq/), then I + o €
GL(F,I'r,g(a)), where I is the identity mapping on F, and 7g/(I'r,c(),F’) € GL(I'r,g(a),F’) since
I'r.c(a) € Ug NUg. Therefore ng/ (F') o (I + ) € GL(F,F’) and we get

(¢r.ar ° vp.a)(@) = or e (Trc(a)
=7p (I'rc(a),G)ong (F,I'r.c(a))
=7 (Tr,c(a),G)ong (F,I'rg(a)) o ma (F)
o(I4+a)org (F)o(I+a)™*
=71p(G) o (I +a)o[rg (F)o ([ +a) !
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which is a C*° map from ¢r ¢(Uc NUq’) C L(F,G) to
¢r.c'(Uc NUg’) C L(F',G).
Since its inverse is
B eLF,G)mp(G)o(I'+5)ora(F)o(I'+ f)]~" € L(F,G),

where I’ is the identity mapping on F’, it follows that the maps g/ g/ © <p1;71G are diffeomorphisms.

Thus, G(E) is a C* Banach manifold, locally modeled on L(F,G).

Let G,(E) (resp., G"(E)) denote the space of n-dimensional (resp. n-codimensional) subspaces of E.
From the preceding proof we see that G, (E) and G"(E) are connected components of G(E) and so are
also manifolds. The classical Grassmann manifolds are G, (R™), where m > n (n-planes in m space).
They are connected n(m — n)-manifolds. Furthermore, G,,(R™) is compact. To see this, consider the set
F, ,, of orthogonal sets of n unit vectors in R™. Since F), ,, is closed and bounded in R x --- x R™ (n
times), F), n, is compact. Thus G, (R™) is compact, since it is the continuous image of F), ,, by the map
{e1,...,en} —span{ey,...,e,}.

H. Projective spaces Let RP" = G;(R"!) = the set of lines in R"!. Thus from the previous example,
RP" is a compact connected real n-manifold. Similarly CP", the set of complex lines in C**!, is a compact
connected (complex) n-manifold. There is a projection 7 : S™ — RP" defined by 7(x) = span(z), which is a
diffeomorphism restricted to an open hemisphere. Thus, any chart for S™ produces one for RP™ as well. ¢

Exercises

3.1-1. Let S = {(x,y) € R? | xy = 0}. Construct two “charts” by mapping each axis to the real line by
(2,0) — z and (0,y) — y. What fails in the definition of a manifold?

3.1-2. Let S=1]0,1[x]0,1[ C R? and for each 5,0 < s < 1let Vs = {s} x]0,1[ and ¢ : Vs — R, (s,t) — t.
Does this make S into a one-manifold?

3.1-3. Let S = {(z,y) € R? | 22 — y?> = 1}. Show that the two charts ¢; : { (z,y) € S| £z >0} — R,
v+ (z,y) =y define a manifold structure on the disconnected set S.

3.1-4. On the topological space M obtained from [0, 27] X R by identifying the point (0, z) with (27, —z),
x € R, consider the following two charts:

(i) (]0,27[ x R, identity), and

(i) (([0,7[U]m, 27]) x R, p), where ¢ is defined by ¢(6,z) = (0,2) if 0 < 0 < 7w and ¢(#,x) = (0 — 27, —x)
if 7 < 6 < 2m. Show that these two charts define a manifold structure on M. This manifold is called
the Mobius band (see Figure 3.4.3 and Example 3.4.10C for an alternative description). Note that

the chart (ii) joins 27 to 0 and twists the second factor R, as required by the topological structure of
M.

(ili) Repeat a construction like (ii) for K, the Klein bottle.

3.1-5 (Compactification of R™). Let {oo} be a one point set and let R? = R™ U {oo}. Define the charts
(U, ) and (U, poo) by U = R", ¢ = identity on R", Uy, = R?\{0}, puo(z) = z/||z|?, if 2 # oo, and
VYool(z) =0, if z = o0.

(i) Show that the atlas A, = {(U, ¢), (Uso, o)} defines a smooth manifold structure on RZ.

(ii) Show that with the topology induced by A., R? becomes a compact topological space. It is called the
one-point compactification of R".
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(ili) Show that if n = 2, the differentiable structure of R? = C. can be alternatively given by the chart
(U, ¢) and the chart (U, o0 ), Where 1o (2) = 271, if 2 # 00 and ¢oo(2) = 0, if 2 = oo.

(iv) Show that stereographic projection induces a homeomorphism of R? with S™.

3.1-6. (i) Define an equivalence relation ~ on S™ by x ~ y if & = £y. Show that S™/~ is homeomorphic
with RP™.

(ii) Show that

(a) e e S e? ¢ S and
(b) (z,y) € S' — (wy~ 1, if y # 0 and oo, if y = 0) € R, = S? (see Exercise 3.1-5) induce homeomor-
phisms of S! with RP!.

(iii) Show that neither S™ nor RP" can be covered by a single chart.

3.1-7. (i) Define an equivalence relation on $2"+1  C2("+1) by x ~ y if y = ¢z for some 0 € R. Show
§2n+1 /~ is homeomorphic to CP".

(ii) Show that

(a) (u,v) € 83 CC?— 4(—uw, |v]?> — |ul?) € S§?, and

(b) (u,v) € S C C? — (uwv™ !, if v # 0, and oo, if v = 0) € R2 = §% (see Exercise 3.1-5) induce
homeomorphisms of $? with CP!. The map in (a) is called the classical Hopf fibration; it will
be studied further in §3.4.

3.1-8 (Flag manifolds). Let F™ denote the set of sequences of nested linear subspaces V7 C Vo C -+ C
Vi1 in R™ (or C"), where dimV; = 4. Show that F™ is a compact manifold and compute its dimension.
(Flag manifolds are typified by F" and come up in the study of symplectic geometry and representations of
Lie groups.)

HiNT: Show that F™ is in bijective correspondence with the quotient space GL(n)/upper triangular matrices.

3.2 Submanifolds, Products, and Mappings

A submanifold is the nonlinear analogue of a subspace in linear algebra. Likewise, the product of two
manifolds, producing a new manifold, is the analogue of a product vector space. The analogue of linear
transformations are the C” maps between manifolds, also introduced in this section. We are not yet ready
to differentiate these mappings; this will be possible after we introduce the tangent bundle in §3.3.

Submanifolds. If M is a manifold and A C M is an open subset of M, the differentiable structure of M
naturally induces one on A. We call A an open submanifold of M. For example, G, (E), G"(E) are open
submanifolds of G(E) (see Example 3.1.8G). We would also like to say that S™ is a submanifold of R+,
although it is a closed subset. To motivate the general definition we notice that there are charts in R**! in
which a neighborhood of S™ becomes part of the subspace R™. Figure 3.2.1 illustrates this for n = 1.

3.2.1 Definition. A submanifold of a manifold M is a subset B C M with the property that for each
b € B there is an admissible chart (U, ) in M with b € U which has the submanifold property, namely,
that ¢ has the form

SM. ¢:U—ExF, and @UNB)=eU)NEx{0}).

An open subset V of M is a submanifold in this sense. Here we merely take F = {0}, and for € V use
any chart (U, ¢) of M for which z € U.
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FIGURE 3.2.1. Submanifold charts for S!

3.2.2 Proposition. Let B be a submanifold of a manifold M. Then B itself is a manifold with differen-
tiable structure generated by the atlas:

{({UNB,olUNDB) | (U,p) is an admissible chart in M
having property SM for B }.

Furthermore, the topology on B is the relative topology.
Proof. If U;NU; N B # @, and (U;, ¢;) and (Uj, ;) both have the submanifold property, and if we write
i = (v, 3;) and ¢; = (aj, ), where o; : U; = E, a; : U; - E, 3, : U; — F, and §; : U; — F, then the
maps

a;|UiNB:U; N B — ¢;(U;) N (E x {0})
and

a;|U; N B :U; N B — ¢;(U;) N (B x {0})

are bijective. The overlap map (¢;|U; N B) o (¢;|U; N B)~! is given by (e, 0) = ((aj 0 a; ') (e),0) = pj;(e, 0)
and is C*°, being the restriction of a C'>° map. The last statement is a direct consequence of the definition
of relative topology and Definition 3.2.1. |

If M is an n-manifold and B a submanifold of M, the codimension of B in M is defined by codim B =
dim M — dim B. Note that open submanifolds are characterized by having codimension zero.

In §3.5 methods are developed for proving that various subsets are actually submanifolds, based on the
implicit function theorem. For now we do a case “by hand.”

3.2.3 Example. To show that S® C R"*! is a submanifold, it is enough to observe that the charts in
the atlas {(Uii, LZJZ-jE)}7 i=1,...,n+1 of S™ come from charts of R"™! with the submanifold property (see
Example 3.1.4): the 2(n + 1) maps

XF o {xeR"™ | +27 >0}
—{y eR"™ [ (" +1)*> (") +--+ (")}

given by

XE(xt ety = (2t T et x| - 1)
are C™ diffeomorphisms, and charts in an atlas of R**!. Since

(XEUE) (2, .. ™) = (2.2t T et o),

they have the submanifold property for S™. ¢
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Products of Manifolds. Now we show how to make the product of two manifolds into a manifold.

3.2.4 Definition. Let (S1,D;) and (S2,Ds) be two manifolds. The product manifold (S; x So, D1 x D3)
consists of the set Sy x Sy together with the differentiable structure Dy X Do generated by the atlas { (Uy x
Us, o1 % ¢2) | (Ussi) s a chart of (S;,D;), i = 1,2}.

That the set in this definition is an atlas follows from the fact that if ¢y : U3 € E; — Vi3 C Fy
and ¢ : Uy C Eg — Vo C Fy, then 11 X 15 is a diffeomorphism iff ¢; and 1 are, and in this case
(1 x ahg) ™1 = w;l X w;l. It is clear that the topology on the product manifold is the product topology.
Also, if S, S5 are finite dimensional, dim(S; x S3) = dim S; + dim S5. Inductively one defines the product
of a finite number of manifolds. A simple example of a product manifold is the n-torus T = S* x .- x S*
(n times).

Mappings between Manifolds. The following definition introduces two important ideas: the local rep-
resentative of a map and the concept of a C" map between manifolds.

3.2.5 Definition. Suppose f: M — N is a mapping, where M and N are manifolds. We say f is of class
C", (where 1 is a nonnegative integer), if for each x in M and admissible chart (V,¢) of N with f(x) € V,
there is a chart (U, ) of M satisfying x € U, and f(U) C V, and such that the local representative of f,
fow =1o fopt is of class C". (See Figure 3.2.2.)

M N

\f/r

<

FIGURE 3.2.2. A local representative of a map

For r = 0, this is consistent with the definition of continuity of f, regarded as a map between topological
spaces (with the manifold topologies).

3.2.6 Proposition. Let f: M — N be a continuous map of manifolds. Then f is C" iff the local repre-
sentatives of f relative to a collection of charts which cover M and N are CT.

Proof. Assume that the local representatives of f relative to a collection of charts covering M and N are
C". If (U,p) and (U,¢’) are charts in M and (V,¢), (V,¢’) are charts in N such that f,, is C", then the
composite mapping theorem and condition MA2 of Definition 3.1.1 show that fy = (¢ 0p™1) o foy 0
(¢’ op~1)~1is also C". Moreover, if " and v” are restrictions of ¢ and 9 to open subsets of U and V, then
forryr is also C". Finally, note that if f is C" on open submanifolds of M, then it is C" on their union. That
f is C" now follows from the fact that any chart of M can be obtained from the given collection by change
of diffeomorphism, restrictions, and/or unions of domains, all three operations preserving the C" character
of f. This argument also demonstrates the converse. |
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Any map from (open subsets of) E to F which is C" in the Banach space sense is C” in the sense of
Definition 3.2.5. Other examples of C'* maps are the antipodal map x — —x of S™ and the translation map
by (01,...,0,) on T" given by

(exp(ir), -, exp(ita)) = (exp(i(ry + 1), .., exp(i(ra + 0)):
From the previous proposition and the composite mapping theorem, we get the following.
3.2.7 Proposition. If f: M — N and g: N — P are C" maps, then so is go f.

3.2.8 Definition. A map f: M — N, where M and N are manifolds, is called a C" diffeomorphism
if f is of class O™, is a bijection, and f~': N — M is of class C". If a diffeomorphism exists between two
manifolds, they are called diffeomorphic.

It follows from Proposition 3.2.7 that the set Diff” (M) of C" diffeomorphisms of M forms a group under
composition. This large and intricate group will be encountered again several times in the book.

Exercises
3.2-1. Show that

(i) if (U,) is a chart of M and ¢ : p(U) — V C F is a diffeomorphism, then (U, o ¢) is an admissible
chart of M, and

(ii) admissible local charts are diffeomorphisms.

3.2-2. A C! diffeomorphism that is also a C” map is a C" diffeomorphism.
HiINT: Use the comments after the proof of Theorem 2.5.2.

3.2-3. Show that if N; C M; are submanifolds, ¢ = 1,...,n, then N; X --- X N,, is a submanifold of
My x -+ x M,.

3.2-4. Show that every submanifold N of a manifold M is locally closed in M that is, every point n € N
has a neighborhood U in M such that N N U is closed in U.

3.2-5. Show that f; : M; — N;,i=1,...,n are all C" iff
fixeoox fui My x--- XM, — Ny xX--- XN,
is C7.

3.2-6. Let M be a set and {M; };cr a covering of M, each M; being a manifold. Assume that for every pair
of indices (4, j), M; N M; is an open submanifold in both M; and M. Show that there is a unique manifold
structure on M for which the M; are open submanifolds. The differentiable structure on M is said to be
obtained by the collation of the differentiable structures of M;.

3.2-7. Show that the map F — F? = {u € F* | u|F = 0} of G(E) into G(E*) is a C*° map. If E = E**
(i.e., E is reflexive) it restricts to a C*° diffeomorphism of G™(E) onto G,,(E*) for all n = 1,2,.... Conclude
that RP" is diffeomorphic to G™(R"*+1).

3.2-8. Show that the two differentiable structures of R defined in Example 3.1.8D are diffeomorphic.
HiNT: Consider the map x — /3.

3.2-9.

(i) Show that S! and RP! are diffeomorphic manifolds (see Exercise 3.1-6(b)).
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(i) Show that CP! is diffeomorphic to S? (see Exercise 3.1-7(b)).
o 3.2-10. Let My = {(z,|z|*) | z € R}, where A € R. Show that

(i) if A <0, M, is a C* submanifold of R?;

(i) if A > 0 is an even integer, M) is a C°° submanifold of R?;

(iii) if A > 0 is an odd integer or not an integer, then M) is a C* submanifold of R? which is not C+1,
where [)\] denotes the smallest integer > A, that is, [A\] <\ < [A\] + 1;

(iv) in case (iii), show that M) is the union of three disjoint C*° submanifolds of R?.

¢ 3.2-11. Let M be a C* submanifold. Show that the diagonal A = {(m,m) | m € M} is a closed C*
submanifold of M x M.

o 3.2-12. Let E be a Banach space. Show that the map = — Ra(R?> — ||z||?)~'/? is a diffeomorphism of
the open ball of radius R with E. Conclude that any manifold M modeled on E has an atlas {(U;, ¢;)} for

o 3.2-13. If f: M — N is of class C* and S is a submanifold of M, show that f|S is of class C*.

o 3.2-14. Let M and N be C" manifolds and f : M — N be a continuous map. Show that f is of class C*,
1 < k < r if and only if for any open set U in N and any C* map g : U — E, E a Banach space, the map
gof:f Y U)— Eis CF.

¢ 3.2-15. Let m : S — RP” denote the projection. Show that f : RP®™ — M is smooth iff the map
fom: 8™ — M is smooth; here M denotes another smooth manifold.

o 3.2-16 (Covering Manifolds). Let M and N be smooth manifolds and let p : M — N be a smooth map.
The map p is called a covering, or equivalently, M is said to cover N, if p is surjective and each point
n € N admits an open neighborhood V' such that p=*(V) is a union of disjoint open sets, each diffeomorphic
via p to V.

(i) Path lifting property. Suppose p: M — N is a covering and p(mg) = ng, where ng € N and
mo € M. Let ¢ : [0,1] — N be a C* path, k > 0, starting at ng = ¢(0). Show that there is a unique
C* path d : [0,1] — M, such that d(0) = mg and pod = c.

HINT: Partition [0,1] into a finite set of closed intervals [t;,t;+1], ¢ = 0,...,n — 1, where t5 = 0
and t, = 1, such that each of the sets c([t;,t;11]) lies entirely in a neighborhood V; guaranteed
by the covering property of p. Let Uy be the open set in the union p~!(Vp) containing mg. Define
do : [0,t1] — Uy by do = p~to¢|[0,#1]. Let Vi be the open set containing ¢([t1,t2]) and Uy be the open
set in the union p~1(V}) containing d(¢;). Define the map d; : [t1,ta] — Uy by dy = p~toc|[t1,t2]. Now
proceed inductively. Show that d so obtained is C* if ¢ is and prove the construction is independent
of the partition of [0, 1].

(ii) Homotopy lifting property. In the hypotheses and notations of (i), let H : [0,1] x [0,1] — N be a
C* map, k > 0 and assume that H(0,0) = ng. Show that there is a unique C*-map K : [0,1] x [0, 1] —
M such that K(0,0) =mg and po K = H.

HINT: Apply the reasoning in (i) to the square [0, 1] x [0, 1].

(iii) Show that if two curves in N are homotopic via a homotopy keeping the endpoints fixed, then the
lifted curves are also homotopic via a homotopy keeping the endpoints fixed.

(iv) Assume that p; : M; — N are coverings of N with M; connected, i = 1,2. Show that if M; is simply
connected, then M is also a covering of M.
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HINT: Choose points ng € N, my € My, mg € My such that p;(m;) = ng, i = 1,2. Let « € M; and let
c1(t) be a C*F-curve (k is the differentiability class of My, Ma, and N) in M; such that ¢;(0) = my,
c1(1) = z. Then ¢(t) = (poc1)(t) is a curve in N connecting ng to pi(z). Lift this curve to a curve
co(t) in My connecting ms to y = c2(1) and define ¢ : My — My by g(z) = y. Show by (iii) that ¢ is
well defined and C*. Then show that ¢ is a covering.

Show that if p; : M; — N, ¢ = 1,2 are coverings with M; and Ms simply connected, then M; and M,
are C*-diffeomorphic. This is why a simply connected covering of N is called the universal covering
manifold of N.

o 3.2-17 (Construction of the universal covering manifold). Let N be a connected (hence arcwise connected)
manifold and fix ng € N. Let M denote the set of homotopy classes of paths ¢ : [0,1] — N, ¢(0) = no,
keeping the endpoints fixed. Define p : M — N by p([c]) = ¢(1), where [¢] is the homotopy class of c.

(i)
(i)

(iii)

(vii)

Show that p is onto since N is arcwise connected.

For an open set U in N define Uy = {[c*d] | d is a path in U starting at c(1) }. (See Exercise 1.6-6
for the definition of ¢ * d.) Show that B = { @,U}q | ¢ is a path in N starting at ng and U is open in
N } is a basis for a topology on M. Show that if N is Hausdorff, so is M. Show that p is continuous.

Show that M is arcwise connected.

HINT: A continuous path
¢ :[0,1] = M, ¢(0) =[c] and ¢(1) = [d]

is given by ¢(s) = [cs], for s € [0,1/2], and @(s) = [d], for s € [1/2, 1], where
cs(t) = c((1=2s)t), ds(t) = d((25 — 1))

Show that p is an open map.

Hint: If n € p(Ug) then the set of points in U that can be joined to n by paths in U is open in N
and included in p(Upy).

Use (iv) to show that p: M — N is a covering.

HINT: Let U be a contractible chart domain of N and show that

p H(U) = UU[c]7
where the union is over all paths ¢ with p([c]) = n, n a fixed point in U.

Show that M is simply connected.
HiNT: If ¢ : [0,1] — M is a loop based at [c], that is, ¥ is continuous and (0) = (1) = [c], then
H :1[0,1] x [0,1] — M given by H(-,s) = [cs], cs(t) = ¢(ts) is a homotopy of [¢] with the constant path

[c(0)]-

If (U, ¢) is a chart on N whose domain is such that p~!(U) is a disjoint union of open sets in M each
diffeomorphic to U (see (v)), define ¢ : V' — E by ¢ = @ o p|V. Show that the atlas defined in this
way defines a manifold structure on M. Show that M is locally diffeomorphic to N.
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3.3 The Tangent Bundle

Recall that for f : U C E — V C F of class C"*! we define the tangent of f, Tf : TU — TV by setting
TU =U X E, TV =V x F, and

Tf(u,e) = (f(u),Df(u)-e)

and that the chain rule reads
T(gof)y=TgoT}/.

If for each open set U in some vector space E, 7y : TU — U denotes the projection, the diagram

T
TU / TV
TU A%
U v
f

is commutative, that is, f o1y =1y o T'f.

The tangent operation T can now be extended from this local context to the context of differentiable
manifolds and mappings. During the definitions it may be helpful to keep in mind the example of the family
of tangent spaces to the sphere S™ C R"*1,

A major advance in differential geometry occurred when it was realized how to define the tangent space
to an abstract manifold independent of any embedding in R™.? Several alternative ways to do this can be
used according to taste as we shall now list; see Spivak [1979] for further information.

Coordinates. Using transformation properties of vectors under coordinate changes, one defines a tangent
vector at m € M to be an equivalence class of triples (U, ¢, ), where ¢ : U — E is a chart and e € E, with
two triples identified if they are related by the tangent of the corresponding overlap map evaluated at the
point corresponding to m € M.

Derivations. This approach characterizes a vector by specifying a map that gives the derivative of a
general function in the direction of that vector.

Ideals. This is a variation of alternative 2. Here T,, M is defined to be the dual of 157?)/[7(,}), where L(,Z) is
the ideal of functions on M vanishing up to order j at m.

Curves. This is the method followed here. We abstract the idea that a tangent vector to a surface is the
velocity vector of a curve in the surface.

If [a, b] is a closed interval, a continuous map ¢ : [a,b] — M is said to be differentiable at the endpoint
a if there is a chart (U, ¢) at ¢(a) such that

i (P2 0)(0) — (po0)(a)
tla t—a

exists and is finite; this limit is denoted by (¢ o ¢)'(a). If (V1)) is another chart at ¢(a) and we let v =
(poc)(t)— (poc)(a), then in U NV we have

Wop ™ )((poc)(t) = (Wor )((poc)(a)
=D(¥op " )((poc)(a) v +o(v]),

2The history is not completely clear to us, but this idea seems to be primarily due to Riemann, Weyl, and Levi-Civita and
was “well known” by 1920.
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whence
(Woc)(t) —(Woc)(a) _ Doy t)(poc)(a) v n o([lv]})
t—a t—a t—a
Since
v , _o(llvll)
ltllrlet—a =(poc)(a) and ltlfilm =0

it follows that
i (290 — (¥ o) (@)

tla t—a

=D(@oyp " )((poc)(a)) (voc)(a)

and therefore the map ¢ : [a,b] — M is differentiable at a in the chart (U,¢) iff it is differentiable at a
in the chart (V,¢). In summary, it makes sense to speak of differentiability of curves at an endpoint of a
closed interval. The map ¢ : [a,b] — M is said to be differentiable if c||a,b[ is differentiable and if ¢ is
differentiable at the endpoints a and b. The map c : [a,b] — M is said to be of class C* if it is differentiable
and if (¢ o¢) : [a,b] — E is continuous for any chart (U, ) satisfying U N ¢([a,b]) # &, where E is the
model space of M.

3.3.1 Definition. Let M be a manifold and m € M. A curve at m is a C* map ¢ : I — M from an
interval I C R into M with 0 € T and ¢(0) = m. Let ¢; and co be curves at m and (U, @) an admissible
chart with m € U. Then we say ¢1 and ¢y are tangent at m with respect to ¢ if and only if (pocy) (0) =

(¢ 0¢2)'(0).

Thus, two curves are tangent with respect to ¢ if they have identical tangent vectors (same direction and
speed) in the chart ¢; see Figure 3.3.1.

AR

—_—
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C
-0 U’
¥
>

-~

F1GURE 3.3.1. Tangent curves

The reader can safely assume in what follows that I is an open interval; the use of closed intervals
becomes essential when defining tangent vectors to a manifold with boundary at a boundary point; this will
be discussed in Chapter 7.

3.3.2 Proposition. Let ¢; and co be two curves at m € M. Suppose (U, pg) are admissible charts with
m € Ug, B=1,2. Then c; and ca are tangent at m with respect to 1 if and only if they are tangent at m
with respect to @s.

Proof. By taking restrictions if necessary we may suppose that U; = Us. Since we have the identity
po0c; = (o007 1) o(pr0¢;), the C composite mapping theorem in Banach spaces implies that (p0¢;)’(0) =
(02 0¢2)'(0) iff (1 0 €1)"(0) = (1 © €2)'(0). b
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This proposition guarantees that the tangency of curves at m € M is a notion that is independent of the
chart used. Thus we say c¢1,co are tangent at m € M if ¢q, co are tangent at m with respect to ¢, for any
local chart ¢ at m. It is evident that tangency at m € M is an equivalence relation among curves at m. An
equivalence class of such curves is denoted [c],, where ¢ is a representative of the class.

3.3.3 Definition. For a manifold M and m € M the tangent space to M at m is the set of equivalence
classes of curves at m:

TnM = {[¢|m | ¢ is a curve at m }.

For a subset A C M, let

TM[A= | T,M (disjoint union).
meA

We callTM = TM|M the tangent bundle of M. The mapping 7oy : TM — M defined by 71 ([c]m) = m
is the tangent bundle projection of M.

Let us show that if M = U, an open set in a Banach space E, TU as defined here can be identified with
U x E. This will establish consistency with our usage of T" in §2.3.

3.3.4 Lemma. Let U be an open subset of E, and ¢ be a curve at w € U. Then there is a unique e € E
such that the curve ¢, . defined by ¢, (t) = u+ te (with t belonging to an interval I such that ¢, (1) C U)
is tangent to ¢ at u.

Proof. By definition, De¢(0) is the unique linear map in L(R, E) such that the curve g : R — E given by
g(t) = u+Dc(0) - t is tangent to c at t = 0. If e = D¢(0) - 1, then g = ¢y e. [ |

Define amap i : U x E — T(U) by i(u,e) = [cy,e)u. The preceding lemma says that ¢ is a bijection and
thus we can define a manifold structure on TU by means of i.

The tangent space T,,M at a point m € M has an intrinsic vector space structure. This vector space
structure can be defined directly by showing that addition and scalar multiplication can be defined by the
corresponding operations in charts and that this definition is independent of the chart. This idea is very
important in the general study of vector bundles and we shall return to this point below.

Tangents of Mappings. It will be convenient to define the tangent of a mapping before showing that
TM is a manifold. The idea is simply that the derivative of a map can be characterized by its effect on
tangents to curves.

3.3.5 Lemma. Suppose c¢1 and co are curves at m € M and are tangent at m. Let f: M — N be of class
Cl. Then focy and f ocy are tangent at f(m) € N.

Proof. From the C! composite mapping theorem and the remarks prior to Definition 3.3.1, it follows that
foec and focy are of class Ct. For tangency, let (V,%) be a chart on N with f(m) € V. We must show
that (o focy)(0) = (o foe)(0). But o focy = (o fop t)o(pocy), where (U, ) is a chart on M
with f(U) C V. Hence the result follows from the C! composite mapping theorem. |

Now we are ready to consider the intrinsic way to look at the derivative.

3.3.6 Definition. If f: M — N is of class C*', we define Tf : TM — TN by

Tf([clm) =[fo C]f(m)-

We call Tf the tangent of f.
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The map T'f is well defined, for if we choose any other representative from [c],,, say ¢, then ¢ and ¢;
are tangent at m and hence foc and foc; are tangent at f(m), that is, [f o c[fum) = [f o c1]pom). By
construction the following diagram commutes.

T
TM f

TN

™ TN

M N

f

The basic properties of T" are summarized in the following.
3.3.7 Theorem (Composite Mapping Theorem).

(i) Suppose f: M — N and g : N — K are C" maps of manifolds. Then go f : M — K is of class C"

and
T(gof)=TgoTf.

(ii) Ifh: M — M is the identity map, then Th : TM — TM is the identity map.
(iii) If f: M — N is a diffeomorphism, then Tf : TM — TN s a bijection and (Tf)~' =T(f~1).
Proof. (i) Let (U, ¢),(V,v), (W, p) be charts of M, N, K, with f(U) CV and g(V) C W. Then the local
representatives are

(goflep=pogofop ™t =pogoyp oo fop™ =gy,0 foy
By the composite mapping theorem in Banach spaces, this, and hence g o f, is of class C". Moreover,
T(go flcm = lg o f o cigor)m)

and

(TgoTf)clm =Tyg([f o C]f(m)) =[gofo C](gOf)(m)'

Hence T'(go f) =TgoT}f.

Part (ii) follows from the definition of 7'. For (iii), f and f~! are diffeomorphisms with fo f~! the identity
of N, while f~!o f is the identity on M. Using (i) and (ii), TfoT'f ~! is the identity on TN while Tf~1oTf
is the identity on T'M. Thus (iii) follows. [ |

Next, let us show that in the case of local manifolds, T'f as defined in §2.4, which we temporarily denote
/', coincides with T'f as defined here.

3.3.8 Lemma. Let U C E and V C F be local manifolds (open subsets) and f : U — V be of class C*.
Leti:U x E — TU be the map defined following Lemma 3.3.4. Then the diagram

!

UxE / V xF
1 2
TU. TV

Tf

commutes; that is, Tfoi =10 f.
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Proof. For (u,e) € UxE, we have (T'foi)(u,e) = Tf-[cuclu = [f©cCuelf) Also, we have the identities
(io f')(u,e) = i(f(u),Df(u)-e) = [cfw),D f(u)-elf(u)- These will be equal provided the curves ¢ — f(u + te)
and t — f(u) +t(Df(u)-e) are tangent at ¢ = 0. But this is clear from the definition of the derivative and
the composite mapping theorem. [ |

This lemma states that if we identify U x E and TU by means of ¢ then we should correspondingly identify
S and T'f. Thus we will just write T'f and suppress the identification. Theorem 3.3.7 implies the following.

339Lemma. Iff:UCE —V CFisaC" difftomorphism, then Tf : U XxE — V xF is a O™}
diffeomorphism.

The Manifold Structure on TM. For a chart (U, ) on a manifold M, we define T'p : TU — T(p(U))
by To([c]lw) = (p(u), (o) (0)). Then T is a bijection, since ¢ is a diffeomorphism. Hence, on TM we can
regard (TU, Tp) as a local chart.

3.3.10 Theorem. Let M be a C"! manifold and A an atlas of admissible charts. Then TA = { (TU,Ty) |
(U,p) € A} is a C" atlas of TM called the natural atlas.

Proof. Since the union of chart domains of A is M, the union of the corresponding T'U is T M. To verify
MAZ2, suppose we have TU; NTU; # &. Then U; NU; # @ and therefore the overlap map ¢; o go;l can be
formed by restriction of ¢; o 90;1 to ¢;(U; N U;). The chart overlap map Tp; o (T'p;) ™' = T(gp; 0 go]l) is a
C" diffeomorphism by Lemma 3.3.9. |

Hence T'M has a natural C" manifold structure induced by the differentiable structure of M. If M is n-
dimensional, Hausdorff, and second countable, T'"M will be 2n-dimensional, Hausdorff, and second countable.
Since the local representative of 7 is (po7ar 0T~ 1) (u, e) = u, the tangent bundle projection is a C” map.

Let us next develop some of the simplest properties of tangent maps. First of all, let us check that tangent
maps are smooth.

3.3.11 Proposition. Let M and N be C"*' manifolds, and let f : M — N be a map of class C"+1. Then
Tf:TM — TN is a map of class C".

Proof. It is enough to check that T'f is a C” map using the natural atlas. For m € M choose charts (U, p)
and (V,9) on M and N so that m € U, f(m) € V and fuy =1 o fo ! is of class C""1. Using (TU, Tp)
for TM and (TV,T) for TN, the local representative (T f)ry 1y = T oTf o Tyt = Tf,y is given by
T fou(u,e) = (u, D foy(u) - €), which is a C™ map. [ |

Higher Order Tangents. Now that TM has a manifold structure we can form higher tangents. For
mappings f : M — N of class O", define T"f : T"M — T"N inductively to be the tangent of 7"~ 1f :
T 'M — T"~'N. Induction shows: If f : M — N and g : N — K are C" mappings of manifolds, then
go fis of class C" and T"(go f)=T"goT"f.

Let us apply the tangent construction to the manifold 7'M and its projection. This gives the tangent
bundle of TM, namely 7ry : T(TM) — TM. In coordinates, if (U, ¢) is a chart in M, then (TU,Typ) is a
chart of TM, (T(TU),T(Ty)) is a chart of T(T'M), and thus the local representative of 7rps is (T o Tpps 0
T(Tp™1)): (u,e,e1,es) — (u,e). On the other hand, taking the tangent of the map 7p; : TM — M, we get
T1y : T(TM) — TM. The local representative of Ty is

(TooTry o T(T(pil))(u, e,e1,e9) =T(porp o T(pfl)(u, e, e1,€2)

= (u,eq).

Applying the commutative diagram for 7'f following Definition 3.3.6 to the case f = 7, we get what is
commonly known as the dual tangent rhombic:
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T(TM)
TM TM
M

Tangent Bundles of Product Manifolds. Here and in what follows, tangent vectors will often be
denoted by single letters such as v € T,,, M.

3.3.12 Proposition. Let My and Ms be manifolds and p; : My x My — M;, i = 1,2, the two canonical
projections. The map

(Tpl,TPQ) : T(Ml X Mg) — TMl X TM2

defined by (Tp1, Tp2)(v) = (Tp1(v), Tp2(v)) is a diffeomorphism of the tangent bundle T'(M;y x Ms) with the
product manifold T My x T M.

Proof. The local representative of this map is

(u1,u2,e1,e2) € Uy x Uy x Ey x Ey
= ((ulﬂel) ) (u2762)) S (Ul X El) X (UQ X EQ),

which clearly is a local diffeomorphism. [ |

Partial Tangents. Since the tangent is just a global version of the derivative, statements concerning
partial derivatives might be expected to have analogues on manifolds. To effect these analogies, we globalize
the definition of partial derivatives.

Let My, M5, and N be manifolds, and f : My x My — N be a C" map. For (p,q) € M; x Ms, let
ip2M2—>M1 XMQ andiq:M1—>M1><M2 begivenby

Zp(y) = (pay)v Zq(x) = (xaq)a
and define Ty f(p, q) : TyM1 — T,y N and T f(p oy : TyMo — Ty oy N by

Tif(p,q) = Tp(f © iq)v Tof(p,q) = Tq(f © ip)-

With these notations the following proposition giving the behavior of T' under products is a straightforward
verification using the definition and local differential calculus.

In the following proposition we will use the important fact that each tangent space T, M to a manifold
at m € M, has a natural vector space structure consistent with the vector space structure in local charts.
We will return to this point in detail in §3.4.

3.3.13 Proposition. Let My, My, N, and P be manifolds, g; : P — M;, i=1,2, and f: M1 x My — N
be C™ maps, r > 1. Identify T(My x Ms) with TMy x TMs. Then the following statements hold.

(i) T(g1 % g2) =Tg1 x Tga.
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(i) Tf(up,vg) = Tof (P, @) (up) + Tof (P, @) (vg), for up € T,My and vy € TyMa.

(iii) (Implicit Function Theorem.) IfT5 f(p, q) is an isomorphism, then there exist open neighborhoods U
of pin My, W of f(p,q) in N, and a unique C™ map g : UxW — My such that for all (x,w) € Ux W,

f(xag(wi» =w.
In addition,
Tlg(x’w) = 7(T2f(xvg(z7w)))il o (Tlf(‘r?g(wi)))
and

Trg(w,w) = (Taf (z, g(z,w))) "

3.3.14 Examples.

A. The tangent bundle T'S* of the circle. Consider the atlas with the four charts { (UF,¢F) | i =
1,2} of

St={(z,y) eR?*|2* +y* =1}
from Example 3.1.4. Let us construct the natural atlas for
78" ={((z,9), (u,v)) € R* xR | 2* + 3 = 1, ((z,y), (u,v)) =0 }.
Since the map
o U ={(z,y) €8 |2>0} = ]-11]
is given by 1] (x,y) = y, by definition of the tangent we have
Tia ¥t (w,v) = (y,v), Ty : TUF —]-1,1[xR.

Proceed in the same way with the other three charts. Thus, for example, T(, )y Y(u,v) = (x,u) and hence
for x € ]-1,0],

(T’l/]; ° T(wi)il)(yav) = (\/ 1- y2’ _LyQ> .

This gives a complete description of the tangent bundle. But more can be said. Thinking of S! as the
multiplicative group of complex numbers with modulus 1, we shall show that the group operations are
C°°: the inversion I : s — s~! has local representative (¢F o I o (¢)5)71)(z) = —z and the composition
C' : (s1,82) — $152 has local representative

(10C o (6 x 9) 1) (1,22) = 21y/1 — 73 + 220/ — 23

(here 4+ can be taken in any order). Thus for each s € S!, the map L, : S' — S! defined by L,(s') = ss’,
is a diffeomorphism. This enables us to define a map A : T'ST — S* x R by A(vs) = (s, TsL; ' (vs)), which is
easily seen to be a diffeomorphism. Thus, T'S' is diffeomorphic to S* x R. See Figure 3.3.2.

B. The tangent bundle TT" to the n-torus. Since T" = S! x --- x S (n times) and T'S' = S! x R,
it follows that TT" = T" x R".
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2 TS5t

SN w R

Y

Sl

Trivial tangent bundle

Non trivial tangent bundle

FIGURE 3.3.2. Trivial and nontrivial tangent bundles

C. The tangent bundle 7'S? to the sphere. The previous examples yielded trivial tangent bundles.
In general this is not the case, the tangent bundle to the two-sphere being a case in point, which we now
describe. Choose the atlas with six charts { (Uii, wzi) | i=1,2,3} of S? that were given in Example 3.1.4.
Since

Ui U ={(2',2%,2%) € §% |21 > 0}
— D1(0) = {(z,y) eR? |22 + ¢y < 1},

wi‘_(xlaxzvlﬁ) = (xQ’zS)a
we have
T(x17x2,w3)wr(vlvv2,v3) = ($2’x37v2,v3)’

where z'v! + 220? 4+ 230 = 0. Similarly, construct the other five charts. For example, one of the twelve
overlap maps for 22 + 32 < 1, and y < 0, is

(Twpg o (T1) ™) (@, y, u,v)

= (s/l — a2 — 2, x, \/1 U it u> .

22 — 42 \/17x27y27

One way to see that T'S? is not trivial is to use the topological fact that any vector field on $? must
vanish somewhere. We shall prove this fact in §7.5. ¢

Exercises

¢ 3.3-1. Let M and N be manifolds and f: M — N.
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(i) Show that

(a) if fis C°°, then graph (f) ={(m, f(m)) € M x N | m e M} is a C* submanifold of M x N
and

(b) T, f(m))(M x N) = Ty, r(my)(graph(f)) @ Ty N for all m € M.

(¢) Show that the converse of (a) is false.
HiNT: 2 € R — 2!/3 € R.

(d) Show that if (a) and (b) hold, then f is C*°.
(ii) If f is C°° show that the canonical projection of graph(f) onto M is a diffeomorphism.
(iii) Show that T(y,, (m))(graph(f)) = graph(To. f) = { (Vm, Ton f(vm)) | vm € TinM } C Ty M X T N.

¢ 3.3-2. (i) Show that there is a map sp; : T(TM) — T(TM) such that sy o spy = identity and the

diagram
SM
T(TM) T(TM)
SM
TTM Ty
TM
comimutes.

HINT: In a chart, sy/(u, e, er,e2) = (u,e1,e,ez).)

One calls sy the canonical involution on M and says that T(T'M) is a symmetric Thombic.
(ii) Verify that for f: M — N of class C?, T?f o spy = sy o T?f.

(ili) If X is a vector field on M, that is, a section of 73y : TM — M, show that TX is a section of
Tty : T?M — TM and X! = sp; 0 TX is a section of 7rpr : T?M — TM. (A section o of a map
f:A— Bisamap o: B — A such that f oo = identity on B.)

o 3.3-3. (i) Let S(S?) = {(v) € TS? | | (v)|| = 1} be the circle bundle of S?. Prove that S(5?) is a
submanifold of T'S? of dimension three.

(i) Define f : S(S?) — RP? by f(z,y,(v)) = the line through the origin in R* determined by the vector
with components (x,y,v!,v?). Show that f is a diffeomorphism.

¢ 3.3-4. Let M be an n-dimensional submanifold of RY. Define the Gauss map I' : M — Gn,N—n by
I'(m) = T,,M — m, that is, ['(m) is the n-dimensional subspace of R" through the origin, which, when
translated by m, equals T, M. Show that I" is a smooth map.

o 3.3-5. Let f:T? — R be a smooth map. Show that f has at least four critical points (points where 7' f
vanishes).
HINT: Parametrize T? using angles 6, ¢ and locate the maximum and minimum points of f(, ¢) for ¢ fixed,

say (Omax (@), ¢) and (Omin(©), ©); now maximize and minimize f as ¢ varies. How many critical points must
f: 5% = R have?
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3.4 Vector Bundles

Roughly speaking, a vector bundle is a manifold with a vector space attached to each point. During the
formal definitions we may keep in mind the example of the tangent bundle to a manifold, such as the n-sphere
S™. Similarly, the collection of normal lines to S™ form a vector bundle.

Definition of a Vector Bundle. The definitions will follow the pattern of those for a manifold. Namely,
we obtain a vector bundle by smoothly patching together local vector bundles. The following terminology
for vector space products and maps will be useful.

3.4.1 Definition. Let E and F be Banach spaces with U an open subset of E. We call the Cartesian
product U X F a local vector bundle. We call U the base space, which can be identified with U x {0}, the
zero section. For u € U, {u} x F is called the fiber of u, which we endow with the vector space structure
of F. The map 7w : U X F — U given by w(u, f) = u is called the projection of U x F. (Thus, the fiber over
w e U ism1(u). Also note that U x F is an open subset of E x F and so is a local manifold.)

Next, we introduce the idea of a local vector bundle map. The main idea is that such a map must map a
fiber linearly to a fiber.

3.4.2 Definition. Let U X F and U’ x ¥’ be local vector bundles. A map ¢ : U x F — U’ x F' is called
a C" local vector bundle map if it has the form p(u, f) = (p1(u), p2(w) - f) where 1 : U — U’ and
w2 : U — L(F,F') are C". A local vector bundle map that has an inverse which is also a local vector bundle
map is called a local vector bundle isomorphism. (See Figure 3.4.1.)

F F

}Lﬂ ~
T ™~ D1
g //’-\m T

A

FIGURE 3.4.1. A vector bundle

A local vector bundle map ¢ : U x F — U’ x F/ maps the fiber {u} x F into the fiber {¢1(u)} x F/ and
so restricted is linear. By Banach’s isomorphism theorem it follows that a local vector bundle map ¢ with
1 a local diffeomorphism is a local vector bundle isomorphism iff ¢o(u) is a Banach space isomorphism for
every u € U.

SUPPLEMENT 3.4A
Smoothness of Local Vector Bundle Maps

In some examples, to check whether a map ¢ is a C* local vector bundle map, one is faced with the rather
unpleasant task of verifying that ¢ : U — L(F,F’) is C*°. It would be nice to know that the smoothness
of ¢ as a function of two variables suffices. This is the context of the next proposition. We state the result
for C*°, but the proof contains a C" result (with an interesting derivative loss) which is discussed in the
ensuing Remark A.
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3.4.3 Proposition. A map ¢ : U X F — U’ X F' is a C local vector bundle map iff ¢ is C* and is of
the form p(u, f) = (v1(u), p2(u) - f), where o1 : U — U’ and @2 : U — L(F,F’).

Proof (Craioveanu and Ratiu [1976]). The evaluation map ev : L(F,F') x F — F’; ev(T, f) = T(f) is
clearly bilinear and continuous. First assume ¢ is a C" local vector map, so ¢ : U — L(F,F’) is C". Now
write

pa(u) - f = (evo(pa x I))(u, f).

By the composite mapping theorem, it follows that ¢9 is C” as a function of two variables. Thus ¢ is C" by
Proposition 2.4.12(iii).

Conversely, assume (u, f) = (¢1(u), p2(u) - f) is C°°. Then again by Proposition 2.4.12(iii), ¢1(u) and
po(u) - f are C*° as functions of two variables. To show that o : U — L(E,F’) is C, it suffices to prove
the following: if h : U x F — ¥ is C", r > 1, and such that h(u,-) € L(F,F’) for all u € U, then the map
h':U — L(F,F’), defined by h'(u) = h(u,-) is C"~1. This will be shown by induction on r.

If r = 1 we prove continuity of A’ in a disk around ug € U in the following way. By continuity of Dh,
there exists € > 0 such that for all u € D,(ug) and v € D(0), |[D1h(u,v)|] < N for some N > 0. The mean
value inequality yields

1w, ) — B, )| < Nlju — o]
for all u,u’ € D.(up) and v € D.(0). Thus

N
1A (u) = 1 (u)]] = Sup, 1w, v) = k', o) < —llu =,

proving that A’ is continuous.
Let » > 1 and inductively assume that the statement is true for r — 1. Let S : L(F,L(E,F")) —
L(E, L(F,F’)) be the canonical isometry: S(T)(e) - f = T(f) - e. We shall prove that

DI’ = S o (Dyh), (3.4.1)

where (D1h) (u) - v = Dyh(u,v). Thus, if h is C", D1h is C"~1, by induction (D1h)" is C"~2, and hence by
equation (3.4.1), DA’ will be C"~2. This will show that h’ is C"~L.
For equation (3.4.1) to make sense, we first show that

Dih(u,-) € L(F, L(E,F’)).

Since

lim[A'(u + tw) — A (u)] - v

Dy h(u,v) - w = =2 = lim A,v,
t n— o0

for all v € F, where
1
A, =n (h’ (u + EUJ) — h'(u)) € L(F,F),

it follows by the uniform boundedness principle (or rather its Corollary 2.2.21) that Dih(u, ) -w € L(F,F’).
Thus (v, w) — D1h(u,v)-w is linear continuous in each argument and hence is bilinear continuous (Exercise
2.2-10), and consequently v — Dih(u,v) € L(E,F’) is linear and continuous.

Relation (3.4.1) is proved in the following way. Fix ug € U and let ¢ and N be positive constants such
that

[D1h(u,v) — Dih(u,v)|| < N|u— /| (3.4.2)
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for all u,u’ € Dac(ug) and v € D.(0). Apply the mean value inequality to the C"~! map
g(u) = h(u,v) — Dih(u',v) - u
for fixed u' € Dac(up) and v € D.(0) to get

1A (u+ w,v) = h(u,v) = Dih(u',v) - w|

= llg(u +w) — g(u)]|
< |lw| sup [[Dg(u+ tw)]
tefo,1]

= [Jw|| sup [|Dih(u + tw,v) — Dih(d,v)]|
te[0,1]

for w € D.(ug). Letting v — u and taking into account equation (3.4.2) we get
|lh(u 4w, v) — h(u,v) — Dih(u,v) - w|| < N|wl|?;
that is,
17 (w + w) -0 = B (u) - v = [(S o (D1h)')(u) - w](v) ]| < Nwlf?

for all v € D.(0), and hence
/ / ’ N 2
17 (u+w) = B (u) = (S o (D1h)) - wl| < —|lw]|

thus proving equation (3.4.1). [ |

Remarks

A. IfF is finite dimensional and if h: U x F — ¥’ is C", r > 1, and is such that h(u,-) € L(F,F’) for all
w € U, then b’ : U — L(F,F’) given by h/(u) = h(u,-) is also C". In other words, Proposition 3.4.3 holds
for C"-maps. Indeed, since F = R" for some n, L(F,F') 2 F' x --- x F/ (n times) so it suffices to prove the
statement for F = R. Thus we want to show that if h: U x R — F’ is C" and h(u,1) = g(u) € F’, then
g: U — F is also C". Since h(u,x) = zg(u) for all (u,z) € U x R by linearity of h in the second argument,
it follows that h’ = g is a C" map.

B. If F is infinite dimensional the result in the proof of Proposition 3.4.3 cannot be improved even if = 0.
The following counterexample is due to A.J. Tromba. Let h : [0,1] x L?[0,1] — L?[0,1] be given by

h(z,p) = /01 sin (?) o(t) dt

if x # 0, and h(0,¢) = 0. Continuity at each x # 0 is obvious and at z = 0 it follows by the Riemann—
Lebesgue lemma (the Fourier coefficients of a uniformly bounded sequence in L? relative to an orthonormal
set converge to zero). Thus h is C°. However, since

L . 2rt _1 T 47
T, sin . =5 1 sin ot

we have h(1/n,sin2mnt) = 1/2 and therefore its L?-norm is 1//2; this says that ||h/(1/n)| > 1/v/2 and
thus A/ is not continuous. ¢
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Any linear map A € L(E,F) defines a local vector bundle map
va:EXE—-EXxF by p(ue)=(u,Ae).

Another example of a local vector bundle map was encountered in §2.4: if the map f: U CE —-V C F is
Cl then Tf : U xE — V x F is a C" local vector bundle map and

Using these local notions, we are now ready to define a vector bundle.

3.4.4 Definition. Let S be a set. A local bundle chart of S is a pair (W, ) where W C S and o : W C
S — U x F is a bijection onto a local bundle U X F; U and F may depend on p. A vector bundle atlas
on S is a family B = {(W;,¢;)} of local bundle charts satisfying:

VB1. = MAL1 of Definition 3.1.1: B covers S; and

VB2. for any two local bundle charts (W;, ;) and (W;, ;) in B with W; N W, # &, @;(W; " W;) is
a local vector bundle, and the overlap map Vj; = p; 0 p; * restricted to wi(W; N W;) is a C™
local vector bundle isomorphism.

If By and By are two vector bundle atlases on S, we say that they are VB-equivalent if B1 U Bs is a
vector bundle atlas. A vector bundle structure on S is an equivalence class of vector bundle atlases. A
vector bundle E is a pair (S,V), where S is a set and V is a vector bundle structure on S. A chart in an
atlas of V is called an admissible vector bundle chart of E. As with manifolds, we often identify E with
the underlying set S.

The intuition behind this definition is depicted in Figure 3.4.2.

E

B

SOI / W @2

F/ Eb,g& /
1A ) FQA N
P12
P
>E/ | Y,
1 E2
U U,

FIGURE 3.4.2. Vector bundle charts

As in the case of manifolds, if we make a choice of vector bundle atlas B on S then we obtain a maximal
vector bundle atlas by including all charts whose overlap maps with those in B are C'*° local vector bundle
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isomorphisms. Hence a particular vector bundle atlas suffices to specify a vector bundle structure on S.
Vector bundles are special types of manifolds. Indeed VB1 and VB2 give M A1 and MA2 in particular,
so V induces a differentiable structure on S.

3.4.5 Definition. For a vector bundle E = (S,V) we define the zero section (or base) by
B ={e€ E | there exists (W, ) €V and u € U with e = ¢~ "(u,0) },

that is, B 1is the union of all the zero sections of the local vector bundles (identifying W with a local vector
bundle via ¢ : W — U x F).

If (U, ) €V is a vector bundle chart, and b € U with ¢(b) = (u,0), let By, denote the subset o~ ({u}x F)
of S together with the structure of a vector space induced by the bijection .

The next few propositions derive basic properties of vector bundles that are sometimes included in the
definition.

3.4.6 Proposition. (i) Ifb lies in the domain of two local bundle charts p1 and 2, then
By, = Ep gy,
where the equality means equality as topological spaces and as vector spaces.
(ii) Forwv € E, there is a unique b € B such that v € Ey, ,, for some (and so all) (U, ).
(iii) B is a submanifold of E.
(iv) The map w, defined by m: E — B, m(e) = b [in (ii)] is surjective and C*.

Proof. (i) Suppose ¢1(b) = (u1,0) and p2(b) = (uz2,0). We may assume that the domains of ¢ and @2
are identical, for E , is unchanged if we restrict ¢ to any local bundle chart containing b. Then oo = 105 !
is a local vector bundle isomorphism. But we have

By =01 ({u1} x F1) = (93 oo™ )({us} x Fy)
=5 ' ({uz} X F2) = Ep .

Hence Ey, ,, = Ey ,, as sets, and it is easily seen that addition and scalar multiplication in Ej ,, and Ej ,,
are identical as are the topologies.
For (ii) note that if v € E,

©1(v) = (u1, f1), p2(v) = (ua, f2), b1 = @7 (u1,0), and by = @5 ' (us, 0),

then o (us, fo) = (u1, f1), 8o 191 gives a linear isomorphism {us} x Fo — {u;} x Fy, and therefore
@1(b2) = 21 (u2,0) = (u1,0) = 1 (b1), or by = by.

To prove (iii) we verify that for b € B there is an admissible chart with the submanifold property. To
get such a manifold chart, we choose an admissible vector bundle chart (W, ¢), b € W. Then (W N B) =
U x {0} =p(W)N(E x {0}).

Finally, for (iv), it is enough to check that 7 is C*° using local bundle charts. But this is clear, for such a
representative is of the form (u, f) — (u,0). That 7 is onto is clear. [ ]

The fibers of a vector bundle inherit an intrinsic vector space structure and a topology independent of the
charts, but there is no norm that is chart independent. Putting particular norms on fibers is extra structure
to be considered later in the book. Sometimes the phrase Banachable space is used to indicate that the
topology comes from a complete norm but we are not nailing down a particular one.

The following summarizes the basic properties of a vector bundle.
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3.4.7 Theorem. Let E be a vector bundle. The zero section (or base) B of E is a submanifold of E
and there is a map w : E — B (sometimes denoted ngp : E — B) called the projection that is of class
C™, and is surjective (onto). Moreover, for each b € B, 7=1(b), called the fiber over b, has a Banachable
vector space structure induced by any admissible vector bundle chart, with b the zero element.

Because of these properties we sometimes write “the vector bundle 7w : F — B” instead of “the vector
bundle (E,V).” Fibers are often denoted by Ej, = 7~ !(b). If the base B and the map 7 are understood, we
just say “the vector bundle E.”

Tangent Bundle as a Vector Bundle. A commonly encountered vector bundle is the tangent bundle
Ty 2 TM — M of a manifold M. To see that the tangent bundle, as we defined it in the previous section,
is a vector bundle in the sense of this section, we use the following lemma.

3.48 Lemma. If f:U C E -V CF is a diffeomorphism of open sets in Banach spaces, then Tf :
UxE —V xF is a local vector bundle isomorphism.

Proof. Since T'f(u,e) = (f(u),Df(u)-e), Tf is a local vector bundle mapping. But as f is a diffeo-
morphism, (Tf)~! = T(f~!) is also a local vector bundle mapping, and hence T'f is a vector bundle
isomorphism. ]

Let A = {(U,¢)} be an atlas of admissible charts on a manifold M that is modeled on a Banach space
E. In the previous section we constructed the atlas T'A = {(TU,Tp)} of the manifold TM. If U; NU; # @,
then the overlap map

TpioTe; ' =T(piop; ') 0;(UiNU;) x E— @i(U;NU;) x E
has the expression
(u,€) = ((0i o @; ") (u), D(piop; ) (u)-e).

By Lemma 3.4.8, T'(¢; 090;1) is a local vector bundle isomorphism. This proves the first part of the following
theorem.

3.4.9 Theorem. Let M be a manifold and A= {(U,p)} be an atlas of admissible charts.
(i) Then TA={(TU,T¢)} is a vector bundle atlas of TM, called the natural atlas.

(ii) If m € M, then Tﬂ}l (m) =T, M is a fiber of TM and its base B is diffeomorphic to M by the map
Tm|B: B — M.

Proof. (ii) Let (U,¢) be a local chart at m € M, with ¢ : U — ¢(U) C E and ¢(m) = u. Then
To:TM|U — ¢(u) x E is a natural chart of TM, so that

T~ ({u} x B) =T~ {[cuelu | e € B}

by definition of T'p, and this is exactly T,, M. For the second assertion, Tas|B is obviously a bijection, and its
local representative with respect to Ty and ¢ is the natural identification determined by o(U) x {0} — ¢(U),
a diffeomorphism. [ |

Thus, T),,M is isomorphic to the Banach space E, the model space of M, M is identified with the zero
section of TM, and 7j, is identified with the bundle projection onto the zero section. It is also worth recalling
that the local representative 73 is (¢ o Tar 0 Tp~1)(u, e) = u, that is, just the projection of ¢(U) x E to

e(U).
3.4.10 Examples.

A. Any manifold M is a vector bundle with zero-dimensional fiber, namely M x {0}.
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B. The cylinder E = S' x R is a vector bundle with 7 : E — B = S! the projection on the first

factor (Figure 3.4.3). This is a trivial vector bundle in the sense that it is a product. The cylinder is
diffeomorphic to T'S' by Example 3.3.14A.

/ Fiber = R

7T = projection

T base = §!

Ep =7l /

F1GURE 3.4.3. The cylinder as a vector bundle

C. The Mébius band is a vector bundle 7 : M — S with one-dimensional fiber obtained in the following
way (see Figure 3.4.4). On the product manifold R x R, consider the equivalence relation defined by (u,v) ~
(u',v") iff ' = u+k,v' = (—1)*v for some k € Z and denote by p : R xR — M the quotient topological space.
Since the graph of this relation is closed and p is an open map, M is a Hausdorff space. Let [u, v] = p(u, v)
and define the projection 7 : Ml — ST by 7[u,v] = e®™. Let

Vi=]0,1[ xR, Vo =](-1/2),(1/2)[ x R, U; = S"\{1}, and Uy = S*\{—1}

and then note that p|V; : Vi — 7= 1(U;) and p|Va : Vo — 7~ 1(Uz) are homeomorphisms and that M =
7Y U) Un=Y(Uy). Let {(Ur,¢1), (U2, p2)} be an atlas with two charts for S (see Example 3.1.2). Define

(I W_I(Uj) — R xR by; =x;o0 (p‘Vj)_l
and
Xj - ‘/J — R xR by Xj(’u,, 1}) = (()0].(827”271)7 (_l)jJrlv)7 j _ 1’2

and observe that x; and 1; are homeomorphisms. Since the composition 13 017! : (R x R)\({0} x R) —
(R x R)\({0} x R) is given by the formula

(W2 097 ) (2,) = ((p20 91 ') (@), ),

we see that {(7=1(Uy), 1), (m=1(Us),12)} forms a vector bundle atlas of M.
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FIGURE 3.4.4. The M6bius band

D. The Grassmann bundles (universal bundles). We now define vector bundles
(E) = Gu(E), 7"(E) - G"(E), and ~(E)— G(E),

which play an important role in the classification of isomorphism classes of vector bundles (see for example
Hirsch [1976]). The definition of the projection p : v,(E) — G, (E) is the following (see Example 3.1.8G for
notations): we let v, (E) = { (F,v) | F is an n-dimensional subspace of E and v € F }, we set p(F,v) = F.
Our claim is that this defines a vector bundle over G, (E).

The intuition for the case of lines in R? is very simple: here v (R?) is just the space of pairs (£, z), where
¢ is a line through the origin and x is a point on £. That is, roughly speaking, 1 (R?) is the set of “marked
lines” in R?; the map p is just the map that sends the marked lines into unmarked lines regarded as points
in G1(R?), or what is the same thing, RP?. Note that the fiber of this map p over a line £ is the set of marks
on that line, which is a copy of the real line R3.

Now we turn to the technical proof of the vector bundle structure. We claim that the charts (p~*(Ug), ¥ra),
where E =F @ G,

Yra(H,v) = (¢pra(H), e (H,F)(v)),
and
Yrg i p~'(Ug) — L(F,G) x F,
define a vector bundle structure on v, (E). This is because the overlap maps are

(Yra otps) (T, f) = ((bra o ppe)(T)
(wa (graph(T), F') o mq(graph(T), F)~1)(f)) .

where T € L(F,G), f € F, and graph(T) denotes the graph of T in E x F; smoothness in T is shown as in
Example 3.1.8G. The fiber dimension of this bundle is n. A similar construction holds for G"(E) yielding
~"™(E); the fiber codimension in this case is also n. Similarly v(E) — G(E) is obtained with not necessarily
isomorphic fibers at different points of G(E). ¢

Vector Bundle Maps. Now we are ready to look at maps between vector bundles.

3.4.11 Definition. Let E and E’ be two vector bundles. A map f: E — E’ is called a C" vector bundle
mapping (local isomorphism) when for each v € E and each admissible local bundle chart (V 1) of E’
for which f(v) € V, there is an admissible local bundle chart (W, ) with f(W) C W' such that the local
representative foy =1 o fo o~ is a C" local vector bundle mapping (local isomorphism). A bijective local
vector bundle isomorphism is called a vector bundle isomorphism.

This definition makes sense only for local vector bundle charts and not for all manifold charts. Also,
such a W is not guaranteed by the continuity of f, nor does it imply it. However, if we first check that f
is fiber preserving (which it must be) and is continuous, then such an open set W is guaranteed. This
fiber—preserving character is made more explicit in the following.

3.4.12 Proposition. Suppose f : E — E’ is a C" vector bundle map, v > 0. Then:
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(i) f preserves the zero section: f(B) C B’;

(ii) f induces a unique mapping fp : B — B’ such that the following diagram commutes:

E / E’
T !
B B’
IB

that is, ™ o fp = fp ow. (Here, m and 7' are the projection maps.) Such a map f is called a vector
bundle map over fgp.

(iii) A C*® map g : E — E’ is a vector bundle map iff there is a C*° map g : B — B’ such that
7w’ og=ggom and g restricted to each fiber is a linear continuous map into a fiber.

Proof. (i) Suppose b € B. We must show f(b) € B’. That is, for a vector bundle chart (V) with
f(b) € V we must show (f(b)) = (v,0). Since we have a chart (W, ) such that b € W, f(W) C V, and
©(b) = (u,0), it follows that ¢¥(f(b)) = (o f o 1) (u,0) which is of the form (v,0) by linearity of f,, on
each fiber.

For (ii), let fg = f|B: B — B’. With the notations above,

Y|B oo fop Tt =7l o foy
and

Y|B' o fgomop ™ = (fB)ulBulB © TowlB

which are equal by (i) and because the local representatives of 7 and n’ are projections onto the first factor.
Also, if fop = (o1, ), then (fB)py = au, so fp is C7.

One half of (iii) is clear from (i) and (ii). For the converse we see that in local representation, g has the
form

o (u, f) = (o goe ) (u, f) = (ar(u), az(u) - f),

which defines a; and as. Since g is linear on fibers, s (u) is linear. Thus, the local representatives of g with
respect to admissible local bundle charts are local bundle mappings by Proposition 3.4.3. [ |

We also note that the composition of two vector bundle mappings is again a vector bundle mapping.

3.4.13 Examples.

A. Let M and N be C"! manifolds and f: M — N a C"*! map. Then T'f : TM — TN is a C" vector
bundle map of class C". Indeed the local representative of T'f, (T f)7, 7y = T(fyy) is a local vector bundle
map, so the result follows from Proposition 3.3.11.

B. The proof of Proposition 3.3.13 shows that T'(M; x Ms) and TM; x TMs are isomorphic as vector
bundles over the identity of M; x Ms. They are usually identified.

C. To get an impression of how vector bundle maps work, let us show that the cylinder S x R and the
Mobius band M are not vector bundle isomorphic. If ¢ : Ml — S* x R were such an isomorphism, then the
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image of the curve ¢ : [0,1] — M, ¢(t) = [t, 1] by ¢ would never cross the zero section in S x R, since [s, 1]
is never zero in all fibers of M; that is, the second component of (¢ o ¢)(t) # 0 for all ¢ € [0,1]. But

c(1) =[1,1] = [0,-1] = —[0,1] = —¢(0)

so that the second components of ¢ oc at t =0 and ¢t = 1 are in absolute value equal and of opposite sign,
which, by the intermediate value theorem, implies that the second component of ¢ o ¢ vanishes somewhere.

D. It is shown in differential topology that for any vector bundle E with an n-dimensional base B and
k-dimensional fiber there exists a vector bundle map ¢ : E — B x RP, where p > k + n, with ¢p = Ip and
which, when restricted to each fiber, is injective (Hirsch [1976]). Write ¢(v) = (7(v), F\(v)) so F' : E — RP
is linear on fibers. With the aid of this theorem, analogous in spirit to the Whitney embedding theorem,
we can construct a vector bundle map ® : E — v, (RP) by ®(v) = (F(E), F(v)) where v € Ej. Note
that @ : B — G (RP) maps b € B to the k-plane F(FE}) in RP. Furthermore, note that E is vector bundle
isomorphic to the pull-back bundles ®*(~;(RP)) (see Exercise 3.4-15 for the definition of pull-back bundles).
It is easy to check that ¢ — ® is a bijection. Mappings f : B — G (RP) such that f*(v;(RP)) is isomorphic
to E are called classifying maps for E; they play a central role in differential topology since they convert
the study of vector bundles to homotopy theory (see Hirsch [1976] and Husemoller [1966]). ¢

Sections of Vector Bundles. A second generalization of a local C" mapping, f : U C E — F, globalizes
not f but rather its graph mapping Ay : U — U x F; u > (u, f(u)).

3.4.14 Definition. Let w: E — B be a vector bundle. A C" local section of m is a C" map £ : U — F,
where U is open in B, such that for each b € U, w(£(b)) =b. If U = B, £ is called a C" global section, or
simply a C" section of w. Let T"(m) denote the set of all C" sections of 7, together with the obvious real
(infinite-dimensional) vector space structure.

The condition on ¢ says that £(b) lies in the fiber over b. The C" sections form a linear function space
suitable for global linear analysis. As will be shown in later chapters, this general construction includes
spaces of vector and tensor fields on manifolds. The space of sections of a vector bundle differs from the
more general class of global C" maps from one manifold to another, which is a nonlinear function space.
(See, for example, Fells [1958], Palais [1968], Elliasson [1967], or Ebin and Marsden [1970] for further details.)

Subbundles. Submanifolds were defined in the preceding section. There are two analogies for vector
bundles.

3.4.15 Definition. If 7 : E — B is a vector bundle and M C B a submanifold, the restricted bundle
7wy s Eyp = E|M — M is defined by

Ey = U E,, mv=m7|Ey.
meM

The restriction 7y : EFyy — M is a vector bundle whose charts are induced by the charts of E in the
following way. Let (V, 1), ¢1 : V — V' C E’ x {0}, be a chart of M induced by the chart (U, ¢;1) of B with
the submanifold property, where (7=1(U),¢) (with p(e) = (p1(m(e)), ¢2(e)), ¢ : 71 (U) — U’ x F, and
U’ C E' x E” = FE) is a vector bundle chart of E. Then

by (V) = VX (e) = (¢i(m(e)), pa(e))

defines a vector bundle chart of Ej;. It can be easily verified that the overlap maps satisfy VB2.
For example, any vector bundle, when restricted to a vector bundle chart domain of the base, defines a
vector bundle that is isomorphic to a local vector bundle.

3.4.16 Definition. Let w: E — B be a vector bundle. A subset F' C E is called a subbundle if for each
b € B there is a vector bundle chart (=Y(U), ) of E where b € U C B and ¢ : 7 *(U) - U’ x F, and a
split subspace G of F such that o(x~ 1 (U)NF) = U’ x (G x {0}).
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These induced charts are verified to form a vector bundle atlas for 7|F : F' — B. Note that subbundles
have the same base as the original vector bundle. Intuitively, the restriction cuts the base keeping the fibers
intact, while a subbundle has the same base but smaller fiber, namely F}, = F'N E}. Note that a subbundle
F is a closed submanifold of E.

For example v;(R™) is a subbundle of both v, (R™*1) and 7441 (R™™!), the canonical inclusions being
given by (F,x) — (F x {0}, (x,0)) and (F,z) — (F x R, (x,0)), respectively.

Quotients, Kernels, and Ranges. We now consider some additional basic operations with vector bun-
dles and maps.

3.4.17 Proposition. Let 7w : E — B be a vector bundle and F C E a subbundle. Consider the following
equivalence relation on E : v ~ v’ if there is a b € B such that v,v' € Ey, and v —v' € Fy,. The quotient set
E/~ has a unique vector bundle structure for which the canonical projection p : E — E/~ is a vector bundle
map over the identity. This vector bundle is called the quotient E/F and has fibers (E/F), = Ey/ Fy,.

Proof. Since F' C E is a subbundle there is a vector bundle chart ¢ : 771 (U) — U’ x F and split subspaces
Fl, FQ, F1 D F2 = F7 such that

plr = (U) N=F « (n|F)7H(U) — U x (Fy x {0})

is a vector bundle chart for F'. The map 7 induces a unique map I : E/~— B such that ITop = &. Similarly
¢ induces a unique map ® : II~1(U) — U’ x ({0} x Fg) by the condition ® o p = ¢~} (U’ x ({0} x F3)),
which is seen to be a homeomorphism. One verifies that the overlap map of two such ® is a local vector
bundle isomorphism, thus giving a vector bundle structure to E/~, with fiber E;/Fy, for whichp: E — E/~
is a vector bundle map. From the definition of ® it follows that the structure is unique if p is to be a vector
bundle map over the identity. [ |

3.4.18 Proposition. Letw: E — B and p : F — B be vector bundles over the same manifold B and
f: E — F a vector bundle map over the identity. Let fy, : By — Fy be the restriction of f to the fiber over
b € B and define the kernel of f by

ker(f) = | ker(fy)

beB

and the range of f by
vange(f) = _J range(Jy).

beB

(i) ker(f) and range(f) are subbundles of E and F respectively iff for every b € B there are vector bundle
charts (m=2(U),¢) of E and (p~1(U),v) of F such that the local representative of f has the form

foup : U x (Fy x F5) = U' x (Gy x G3),
where
fov(u, (f1, f2)) = (u, (x(u) - f2,0)),
and x(u) : Fy — Gy is a continuous linear isomorphism.

(ii) If E has finite-dimensional fiber, the condition in (1) is equivalent to the local constancy of the rank of
the linear map fp : Ey — Fy.

Proof. (i) It is enough to prove the result for local vector bundles. But there it is trivial since ker(fyy ). =
Fy and range(fyy)u = G1.
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(ii) Fix v € U’ and put (fyy)u(F) = G1. Then since Gy is closed and finite dimensional in G, it splits; let
G = G1 8 Gy. Let Fi = ker(fyy)u; F is finite dimensional and hence F = F1 @ F». Then (fop)y : Fo — G

is an isomorphism. Write
e [0 ) 7]~ G

for «' € U’ and note that b(u') is an isomorphism. Therefore b(u’) is an isomorphism for all v’ in a neigh-
borhood of v by Lemma 2.5.4. We can assume that this neighborhood is U’, by shrinking U’ if necessary.
Note also that a(u) = 0, ¢(u) = 0, d(u) = 0. The rank of (f,y)w is constant in a neighborhood of u, so
shrink U’ further, if necessary, so that (f,y).s has constant rank for all ' € U’. Since b(u’) is an isomor-
phism, a(u)(F1) 4+ b(u")(F2) = Gy and since the rank of (f,y )., equals the dimension of Gy, it follows that
c¢(u') =0 and d(u') =0 for all u’ € U’. Then

1 0
Ay = —b(u’)_la(u’) [:| c GL(Fl S Fy,F1 F2)
and
0 b
(ftpw)u’ o >\u’ = |:0 (O )]
which yields the form of the local representative in (i) after fiberwise composing ., with )\;,1. [ |

3.4.19 Definition. A sequence of vector bundle maps over the identity F L P % G is called exact at F
if range(f) = ker(g). It is split fiber exact if ker(f), range(g), and range(f) = ker(g) split in each fiber.
1t is bundle exact if it is split fiber exact and ker(f), range(g), and range(f) = ker(g) are subbundles.

3.4.20 Proposition. Let E, F, and G be vector bundles over a manifold B and let

pLrta
be a split fiber exact sequence of smooth bundle maps. Then the sequence is bundle exact; that is, ker(f),
range(f) = ker(g), and range(g) are subbundles of E, F, and G respectively.

Proof. Fixingb € B, set A = ker(f,), B = ker(gy) = range(fy), C = range(gs), and let D be a complement
for Cin Gy, s0 By = A xB, F;, =B x C,and G, = C x D. Let ¢ : U — U’ be a chart on B at b, p(b) =0,
defining vector bundle charts on E, F', and G. Then the local representatives

fliUxAxB—-U xBxC, ¢g:UxBxC—=U xCxD

of f and g respectively are the identity mappings on U’ and can be written as matrices of operators

f,__z w-_-A_>B_
v e oyl |B C

and

. _[8 4] .[B] _ [C]
w=la s |c] T D]

depending smoothly on v’ € U’. Now since wy and ~ are isomorphisms by Banach’s isomorphism theorem,
shrink U and U’ such that w, s and 7, are isomorphisms for all ' € U’. By exactness, g/, o f!, = 0, which
in terms of the matrix representations becomes

1 1 1

ofow, a=-doyouw,

r=-y"ofoz y=-7"
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that is,

r=yow loz and a=doy lop.

Extend f], to the map h, : A x B x C — A x B x C depending smoothly on v’ € U’ by

I 0 0
he |z w 0
x oy I
We find maps a, b, ¢, d, k, m,n, p such that
I 0 0 kEk p O
0 a blhy |m n 0f=1I,
0 ¢ d 0 0 I

which can be accomplished by choosing

k=I, d=1I, p=0, b=0, a=w!

n=1I m=-wloz c¢=-yow !

)

1

and taking into account that x = y o w™" o z. This procedure gives isomorphisms

“e =Lt el e
Ol R R

depending smoothly on v’ € U such that

/\ofﬁ’o":{g é][{;‘%{g}

Proposition 3.4.18(ii) shows that ker(f) and range(f) are subbundles. The same procedure applied to g/,
proves that ker(g) and range(g) are subbundles and thus the fiber split exact sequence

ELFSa
is bundle exact. [ |

As a special case note that 0 — F % @G is split fiber exact when gp is injective and has split range.
Here 0 is the trivial bundle over B with zero-dimensional fiber and the first arrow is injection to the zero

section. Similarly, taking G = 0 and ¢ the zero map, the sequence F ER (BN 0 is split fiber exact when
f» is surjective with split kernel. In both cases range(g) and ker(f) are subbundles by Proposition 3.4.20.
In Proposition 3.4.20, and these cases in particular, we note that if the sequences are split fiber exact at b,
then they are also split fiber exact in a neighborhood of b by the openness of GL(E,E) in L(E,E).

A split fiber exact sequence of the form

0—>EL>F£>G—>0

is called a short exact sequence. By Proposition 3.4.20 and Proposition 3.4.17, any split fiber exact
sequence

E-LF % ¢
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induces a short exact sequence

0 — E/ker(f) W, g, range(g) — 0

where [f]([e]) = f(e) for e € E.
3.4.21 Definition. A short exact sequence

0—E-LF 9 ag—0

is said to be split exact if there is a split fiber exact sequence 0 — G o F such that goh is the identity on

G.

Products and Tensorial Constructions. The geometric meaning of this concept will become clear after
we introduce a few additional constructions with vector bundles.

3.4.22 Definition. If7:FE — B and ' : E' — B’ are two vector bundles, the product bundle © x 7’ :
E x E' — B x B’ is defined by the vector bundle atlas consisting of the sets 7=Y(U) x ©'~Y(U’), and the
maps @ x ¥ where (n=Y(U), ), U C B and (7'~1(U"),v), U’ C B’ are vector bundle charts of E and E',
respectively.

It is straightforward to check that the product atlas verifies conditions VB1 and VB2 of Definition 3.4.4.

Below we present a general construction, special cases of which are used repeatedly in the rest of the book.
It allows the transfer of vector space constructions into vector bundle constructions. The abstract procedure
will become natural in the context of examples given below in 3.4.25 and later in the book.

3.4.23 Definition. Let I and J be finite sets and consider two families € = (Eg)kerugs, and & =
(E})kerus of Banachable spaces. Let

L(gagl) = HL(E“E;) X H L(E;7 Ej)
icl jed
and let
(Ar) € L(E,€);
that is, A; € L(E;, E;), i € I, and A; € L(E},E;), j € J. An assignment Q taking any family € to a Banach
space QE and any sequence of linear maps (Ay) to a linear continuous map Q(Ay) € L(QE,QE’) satisfying
QIg,) = Iae, Q(Br) o (Ax)) = Q((Br)) o Q((Ar))

(composition is taken componentwise) and is such that the induced map Q : L(E,E") — L(QE,QE’) is C°,
will be called a tensorial construction of type (I,J).

3.4.24 Proposition. Let Q be a tensorial construction of type (I,.J) and €& = (E¥)rerus be a family of
vector bundles with the same base B. Let

Q& = U ng, where gb = (E{f)ke[u].
beB

Then Q& has a unique vector bundle structure over B with (), = Q& and w : Q€ — B sending Q&
to b € B, whose atlas is given by the charts (x=1(U), 1), where ¢ : 7= Y(U) — U’ x Q((F¥)) is defined as
follows. Let

(m 1 (U), "), " im (U) = U FP, @b (eF) = (pr(mi(eh)), 5 ("))
be vector bundle charts on E* inducing the same manifold chart on B. Define

, . , -1
where ¥ ) = (ph) forieI and w;(w) = (4,0;) forj e J.
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Proof. We need to show that the overlap maps are local vector bundle isomorphisms. We have

(W o) (u,e) = (¢ 097 ) (w), (3" o (¥5) "} (w) - €)),

the first component of which is trivially C*°. The second component is also C* since each ¢* is a vector
bundle chart by the composite mapping theorem, and by the fact that €2 is smooth. [ |

3.4.25 Examples.

A. Whitney sum. Choose for the tensorial construction the following: J = @, I = {1,...,n}, and Q€ is
the single Banach space Eq x - -- X E,,. Let Q((A4;)) = A1 x - -+ x A,,. The resulting vector bundle is denoted
by E1 & --- @ E, and is called the Whitney sum. The fiber over b € B is just the sum of the component
fibers.

B. Vector bundles of bundle maps. Let EFy, E5 be two vector bundles. Choose for the tensorial con-
struction the following: I, .J are one—point sets I = {1}, J = {2},

Q(El, EQ) = L(EQ, El), Q(Al,AQ) - S = A1 oSo A2

for S € L(E4, Eq). The resulting bundle is denoted by L(Es, Eq). The fiber over b € B consists of the linear
maps of (E2)p to (Eq)p.

C. Dual bundle. This is a particular case of Example B for which F = F5 and F; = B xR. The resulting
bundle is denoted E*; the fiber over b € B is the dual Ej. If ' = T'M, then E* is called the cotangent
bundle of M and is denoted by T* M.

D. Vector bundle of multilinear maps. Let Ey, E1,..., E, be vector bundles over the same base. The
space of n-multilinear maps (in each fiber) L(FE1, ..., E,; Ey) is a vector bundle over B by the choice of the
following tensorial construction: I = {0}, J ={1,...,n},

Q(Eo, .. ,En) = Ln(El, .. .,En;Eo),

Q(Ao,Al,...,An)'S:A()OSO(AlX"'XAn)

for S € L"(Ey, ..., E,; Ey). One may similarly construct L¥(E; Eqg) and L¥(E; Ep), the vector bundle of
symmetric and antisymmetric k-linear vector bundle maps of E X E X --- X E to Ejy. ¢

3.4.26 Proposition. A short exact sequence of vector bundles

0—>ELF£>G—>O

is split if and only if there is a vector bundle isomorphism ¢ : F — E & G such that oo f =i andpop =g,
where i : E — E ® G is the inclusion u — (u,0) and p: E® G — G is the projection (u,w) — w.

Proof. Note that
0-EL5EaG2G—0

is a split exact sequence; the splitting is given by w € G — (0,w) € E @ G. If there is an isomorphism
¢: F — E®G as in the statement of the proposition, define h : G — F by h(w) = ¢~1(0,w). Since ¢ is an

isomorphism and G is a subbundle of £ & G, it follows that 0 — G roFis split fiber exact. Moreover

(goh)(w) = (g0~ ")(0,w) = p(0,w) = w.
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Conversely, assume that

0—G-=F is a splitting of 0—>Ei>Fi>G—>O7

that is, g o h = identity on G. Then range(h) is a subbundle of F' (by Definition 3.4.19) which is isomorphic
to G by h. Since g o h = identity, it follows that range(h) Nker(g) = 0. Moreover, since any v € F can be
written in the form v = (v — h(g(v))) + h(g(v)), with h(g(v)) € range(h) and v — h(g(v)) € ker(g), it follows
that F' = ker(g) @ range(h). Since the inverse of ¢ is given by (u,v) — (f(u), h(v)), it follows that the map
© is a smooth vector bundle isomorphism and that the identities ¢ o f =14, po ¢ = g hold. ]

Fiber Bundles. We next give a brief account of a useful generalization of vector bundles, the locally
trivial fiber bundles.

3.4.27 Definition. A C* fiber bundle, where k > 0, with typical fiber I (a given manifold) is a C*
surjective map of C* manifolds m : E — B which is locally a product, that is, the C* manifold B has an
open atlas {(Uy, 0a)taca such that for each o € A there is a C* diffeomorphism Xo : 7 (Uy) — Uy X F
such that pa © Xo = T, where po : Uy x F — Uy is the projection. The C* manifolds E and B are called the
total space and base of the fiber bundle, respectively. For each b € B, 7=1(b) = Ey is called the fiber over
b. The C* diffeomorphisms xo are called fiber bundle charts. If k = 0, E, B, F are required to be only
topological spaces and {U,} an open covering of B.

Each fiber B, = n~1(b), for b € B, is a closed C* submanifold of E, which is C* diffeomorphic to F via
Xa|Ep. The total space E is the disjoint union of all of its fibers. By the local product property, the C*
manifold structure of E is given by an atlas whose charts are products, that is, any chart on E contains a
chart of the form

Pap = (Pa X ¥p) 0 Xa Xz;l(Ua x V) = 9a(Ua) X ¥5(V3),

where (U,, @) is a chart on B satisfying the property of the definition and thus giving rise to x,, and
(V3,13) is any chart on F. Note that the maps xop = XaolEp : By — F are C* diffeomorphisms. If (Uy/, ¢ar)
and Y, are as in Definition 3.4.27 with U, N U, # &, then the diffeomorphism

Xor 0 Xa' : (UaNUqy) X F— (Uy MUy ) x F
is given by

(Xar 0 Xa ), f) = (1, (Xaru © Xau) (f)

and therefore xqry 0 X5 : ' — F is a C* diffeomorphism. This proves the uniqueness part in the following
proposition.

3.4.28 Proposition. Let E be a set, B and F be C* manifolds, and let m : E — B be a surjective map.
Assume that

(i) there is a C* atlas {(Uy, o)} of B and a family of bijective maps X : 7 1 (Us) — Uy x F satisfying
Pa © Xa = T, where py, : Uy X F'— U, is the projection, and that

(ii) the maps xor 0 X5' : Uq X F — Uy x F are OF diffeomorphisms whenever Uy MU, # @.

Then there is a unique C* manifold structure on E for which m : E — B is a C* locally trivial fiber bundle
with typical fiber F.

Proof. Define the atlas of E by (x5 (Ua % V3), pas), where (Uy, @) is a chart in the atlas of B given in (i),
Xa : T 1(Uy) — U, x F is the bijective map given in (i), (Vj,13) is any chart on F, and pag = (o X¥3)0 Xa-
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If (Uyr, por) is another chart of the atlas of Bin (i) and (Vp/, ¢g/) is another chart on F' such that U,NU, # &
and Vg N Vg # @, then the overlap map

Pars © Pag = (Par X V) 0 Xar 0 Xa ' 0 (05! X U5

is C* by (i). Thus {(x5'(Ua X V), pap)} is a C* atlas on E relative to which 7 : E — B is a C* locally trivial
fiber bundle by (i). The differentiable structure on F is unique by the remarks preceding this proposition. W

Many of the concepts introduced for vector bundles have generalizations to fiber bundles. For instance,
local and global sections are defined as in Definition 3.4.14. Given a fiber bundle 7 : E — B, the restricted
bundle 7ps : Epy = E|M — M, for M a submanifold of B is defined as in Definition 3.4.15. A locally trivial
subbundle of 7 : E — F with typical fiber G, a submanifold of F, is a submanifold E’ of E such that
the map 7’ = 7|E’ : E' — B is onto and satisfies the following property: if xo : 771 (Uy) — Uy x F is
a local trivialization of E, then x, = Xa|®' ' (Us) — U, x G are local trivializations. Thus 7’ : E/ — B
is a locally trivial fiber bundle in its own right. Finally, locally trivial fiber bundle maps, or fiber
bundle morphisms are defined in the following way. If 7’ : E/ — B’ is another locally trivial fiber bundle
with typical fiber F’, then a smooth map f : E — E’ is called fiber preserving if w(e1) = m(e2) implies
(r'of)(e1) = (n'of)(ea), for e1,eq € E. Thus f determines a map fp : B — B’ satisfying 7’0o f = mwo fg. The
map fp is smooth since for any chart (U, ¢, ) of B inducing a local trivialization x, : 771 (Uy) — Uy X F,
the map fp can be written as fg(b) = (7o f o x;')(b,n), for any fixed n € F. The pair (f, fg) is called
a locally trivial fiber bundle map or fiber bundle morphism. An invertible fiber bundle morphism is
called a fiber bundle isomorphism.

3.4.29 Examples.
A. Any manifold is a locally trivial fiber bundle with typical fiber a point.

B. Any vector bundle 7 : E — B is a locally trivial fiber bundle whose typical fiber is the model of the
fiber Ej. Indeed, if ¢ : W — U’ x F, where U’ open in E, is a local vector bundle chart, by Proposition
3.4.6, ol (U x{0}): U - U' CE, U =WNB,is a chart on the base B and x : 7~ 1(U) — U x F defined
by x(e) = (7(e), (p2 o ¢)(e)), where py : U’ x F — F is the projection, is a local trivialization of E. In fact,
any locally trivial fiber bundle 7 : E — B whose typical fiber F is a Banach space is a vector bundle, iff the
maps Xab : By — F induced by the local trivializations xa : 7T_1(Ua) — U,y X F, are linear and continuous.
Indeed, under these hypotheses, the vector bundle charts are given by (¢, X idp) o xa : 7 1(Uy) — Uy X F,
where idg is the identity mapping on F.

C. Many of the topological properties of a vector bundle are determined by its fiber bundle structure. For
example, a vector bundle m : E — B is trivial if and only if it is trivial as a fiber bundle. Clearly, if F is a
trivial vector bundle, then it is also a trivial fiber bundle. The converse is also true, but requires topological
ideas beyond the scope of this book. (See, for instance, Steenrod [1957].)

D. The Kliein bottle K (see Figure 1.4.2) is a locally trivial fiber bundle 7 : K — S! with typical fiber S?.
The space K is defined as the quotient topological space of R? by the relation (a,b) ~ (a + k, (—1)*b +n)
for all k,n € Z. Let p : R? — K be the projection p(a,b) = [a,b] and define the surjective map 7 : K — S*
by 7([a,b]) = e*™. Let { (Uj,¢;) | 7 = 1,2} be the atlas of S given in Example 3.1.2, that is,

gl )i+t . - Y
¢SO =R o) = =

which satisfy (g2 0 97 1)(2) = 1/2, for z € R\{0}. Define
Xim  (U;) = Ui x ST by x;([a,b]) = (€27, e*™)

and note that p; o x; = m, where p; : U; x S* — Uj is the projection. Since

xzoxit: (ST\{(0,1)}) x 8T — (ST\{(0,~1)}) x §*
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is the identity, Proposition 3.4.28 implies that K is a locally trivial fiber bundle with typical fiber S'. Further
topological results show that this bundle is nontrivial; see Exercise 3.4-16. (Later we will prove that K is
non-orientable—see Chapter 7.)

E. Consider the smooth map 7, : S — RP"™ which associates to each point of S™ the line through the
origin it determines. Then 7, : S™ — RP" is a locally trivial fiber bundle whose typical fiber is a two-point
set. This is easily seen by taking for each pair of antipodal points two small antipodal disks and projecting
them to an open set U in RP"; thus 7, 1 (U) consists of the disjoint union of these disks and the fiber bundle
charts simply send this disjoint union to itself. This bundle is not trivial since S™ is connected and two
disjoint copies of RP" are disconnected. These fiber bundles are also called the real Hopf fibrations.

F. This example introduces the classical Hopf fibration h : S* — S? which is the fibration with the
lowest dimensional total space and base among the series of complex Hopf fibrations k,, : S*"+!1 — CP"
with typical fiber S (see Exercise 3.4-21). To describe h : S3 — 52 it is convenient to introduce the division
algebra of quaternions H.

For z € R* write z = (2%, x) € R x R? and introduce the product

(2%, %) (1", y) = (2%° —x -y, 2% +1'x + x x ).

Relative to this product and the usual vector space structure, R* becomes a non-commutative field denoted
by H and whose elements are called quaternions. The identity element in H is (1,0), the inverse of (zg, x)
is (10,x) 7! = (20, —x)/||z||?, where ||z]|? = (20)? + (z)? + (22)? + (23)2. Associativity of the product comes
down to the vector identity a x (b x ¢) = b(a-c¢) — c(a-b). Alternatively, the quaternions written as linear
combinations of the form z° + iz! + ja? 4+ ka3, where

Z:(Oai)v ]:(O,j)7 k:(ovk)
obey the multiplication rules
=k, jk=1i, ki=j, iy=7jo=ke=—1

Quaternions with zo = 0 are called pure quaternions and the conjugation r — z* given by i* = —i,
j* = —j, k* = —k is an automorphism of the R-algebra H. Then ||z||> = zz* and ||xzy|| = ||z|| ||y|| for all
x,y € H. Finally, the dot product in R* and the product of H are connected by the relation zz-yz = (x-y)||z|?,
for all z,y, 2z € H.

Fix y € H. The conjugation map ¢, : H — H defined by ¢,(«) = yxy~' is norm preserving and hence
orthogonal. Since it leaves the vector (z°,0) invariant, it defines an orthogonal transformation of R3. A
simple computation shows that this orthogonal transformation of R? is given by

1

XHer”iyu[(x-y)y—yo(xxy)—(y-Y)X]

from which one can verify that its determinant equals one, that is, it is an element of SO(3). Let 7 :
S$3 — SO(3) denote its restriction to the unit sphere in R*. Choosing x € R?, define p, : SO(3) — S? by
pz(A) = Ax so that by composition we get hy = p,om : % — S2. It is easily verified that the inverse
image of any point under hy is a circle. Taking for x = —k, minus the third standard basis vector in R?, hy
becomes the standard Hopf fibration h: S3 — S?,

hy’ytyty’) = (20" — 20%9°, 20%y" — 2%°,
)+ ") = (") = (°)%)
which, by substituting w! = y° + iy3, w? = y? + iy' € C takes the classical form

H(wl,wz) = (—2wlm2, |u)2|2 — |w1|2).
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Interestingly enough, the Hopf fibration enters into a number of problems in classical mechanics from rigid
body dynamics to the dynamics of coupled oscillators (see Marsden and Ratiu [1999], for instance—in fact,
the map h above is an example of the important notion of what is called a momentum map).

G. The Hopf fibration is nontrivial. A rigorous proof of this fact is not so elementary and historically
was what led to the introduction of the Hopf invariant, a precursor of characteristic classes (Hopf [1931] and
Hilton and Wylie [1960]). We shall limit ourselves to a geometric description of this bundle which exhibits its
non-triviality. In fact we shall describe how each pair of fibers are linked. Cut S? along an equator to obtain
the closed northern and southern hemispheres, each of which is diffeomorphic to two closed disks Dy and Dg.
Their inverse images in S® are two solid tori S' x Dy and S* x Dg. We think of S as the compactification
of R3 and as the union of two solid tori glued along their common boundary by a diffeomorphism which
identifies the parallels of one with meridians of the other and vice-versa. The Hopf fibration on S is then
obtained in the following way. Cut each of these two solid tori along a meridian, twist them by 27 and glue
each one back together. The result is still two solid tori but whose embedding in R? is changed: they have
the same parallels but twisted meridians; each two meridians are now linked (see Figure 3.4.5). Now glue
the two twisted solid tori back together along their common boundary by the diffeomorphism identifying
the twisted meridians of one with the parallels of the other and vice-versa, thereby obtaining the total space
53 of the Hopf fibration. ¢

FIGURE 3.4.5. Linked circles in the Hopf fibration

Topological properties of the total space F of a locally trivial fiber bundle are to a great extent determined
by the topological properties of the base B and the typical fibers F'. We present here only some elementary
connectivity properties; other results can be found in Supplement 5.5C and §7.5.

3.4.30 Theorem (Path Lifting Theorem). Let 7 : E — B be a locally trivial C° fiber bundle and let
¢ :[0,1] — B be a continuous path starting at c(0) = b. Then for each ¢y € 7w 1(by), there is a unique
continuous path ¢ : [0,1] — E such that ¢(0) = ¢y and mo ¢ =c.

Proof. Cover the compact set ¢([0,1]) by a finite number of open sets U;, ¢ = 0,1,...,n — 1 such that
each y; : 7 1(U;) — U; x F is a fiber bundle chart. Let 0 =t < t; < --- < t, = 1 be a partition of [0,1]
such that ¢([t;,t;11]) CU;, i =0,...,n — 1. Let xo(eo) = (bo, fo) and define

co(t) = xg (c(t), fo) for t € [0,to].

Then ¢ is continuous and 7 o &y = ¢|[0, ¢o]. Let x1(éo(t1)) = (¢(t1), f1) and define
&) =x1'(c(t), f1) forte [ti,ta].

Then ¢, is continuous and 7 o & = ¢[[t, o). In addition, if e; = xg ' (c(t1), fo) then

limé(t) =e; and limé (t) = x7 e(tr), fi) = éo(t1) = e1,
tTty tlty
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that is, the map [0,¢2] — E which equals & on [0, ¢1] and ¢ on [t1, 2] is continuous. Now proceed similarly
on UQ,...,Un_l. [ |

Note that if 7 : E — B is a C* locally trivial fiber bundle and ¢ : [0,1] — B is a piecewise C*-map, the
above construction yields a C* piecewise lift ¢ : [0,1] — E.

3.4.31 Corollary. Let 7 : E — B be a C* locally trivial fiber bundle k > 0, with base B and typical
fiber F' pathwise connected. Then E is pathwise connected. If k > 1, only connectivity of B and F' must be
assumed.

Proof. Let eg,e1 € E, by = m(ep), by = w(e1) € B. Since B is pathwise connected, there is a continuous
path ¢: [0,1] — B, ¢(0) = b, ¢(1) = by. By Theorem 3.4.30, there is a continuous path ¢ : [0,1] — E with
¢(0) = eq. Let &(1) = €. Since the fiber 7=1(b1) is connected there is a continuous path d : [1,2] — 7~ 1(b;)
with d(1) = €] and d(2) = e;. Thus v defined by

~v(t) =¢(t), if t € [0,1] and ~(t) =d(t), if t € [1,2],
is a continuous path with v(0) = eq, v(2) = e1. Thus E is pathwise connected. [ |

In Supplement 5.5C we shall prove that if 7 : E — B is a C? locally trivial fiber bundle over a paracompact
simply connected base with simply connected typical fiber F', then E is simply connected.

SUPPLEMENT 3.4B
Fiber Bundles over Contractible Spaces

This supplement proves that any C° fiber bundle 7 : E — B over a contractible base B is trivial.

3.4.32 Lemma. Let7:E — B x[0,1] be a C° fiber bundle. If {V; | i = 1,...,n} is a finite cover of
[0,1] by open intervals such that E|B x V; is a trivial C° fiber bundle, then E is trivial.

Proof. By induction it suffices to prove the result for n = 2, that is, prove that if E|Bx|0,t] and E|B x [t, 1]
are trivial, then E is trivial. If F denotes the typical fiber of E, by hypothesis there are C° trivializations
over the identity ¢ : E|B x [0,t] — B x [0,t] x F and @2 : E|B x [t,1] — B X [t,1] x F. The map

woop ' i Bx{t}xF - Bx{t}xF

is a homeomorphism of the form (b, ¢, f) — (b, ¢, ap(f)), where oy : F — F' is a homeomorphism depending
continuously on b. Define the homeomorphism x : (b, s, f) € B x [t, 1] x F + (b, s,ab_l(f)) € Bx[t,1] x F.
Then the trivialization y oo : E|B x [t,1] — B x [t,1] x F sends any e € 7~ }(B x {t}) to ¢1(e). Therefore,
the map that sends e to the element of B x [0,1] x F given by ¢4 (e), if m(e) € B x [0,t] and (x o p2)(e), if
m(e) € B x [t,1] is a continuous trivialization of E. [ ]

3.4.33 Lemma. Letw: E — B x[0,1] be a C° fiber bundle. Then there is an open covering {U;} of B
such that E|U; x [0, 1] is trivial.

Proof. There is a covering of B x [0, 1] by sets of the form W x V where W is open in B and V is open in
[0, 1], such that E|W x V is trivial. For each b € B consider the family ®; of sets W x V' for which b € W. By
compactness of [0, 1], there is a finite subcollection Vi,...,V,, of the V’s which cover [0, 1]. Let Wy,..., W,
be the corresponding W’s in the family ®, and let U, = Wy N---NW,. But then E|U, x W;,i = 1,...,n are
all trivial and thus by Lemma 3.4.32, E|U} x [0,1] is trivial. Then { Uy | b € B} is the desired open covering
of B. |
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3.4.34 Lemma. Let7:FE — B x[0,1] be a C° fiber bundle such that E|B x {0} is trivial. Then E is
trivial.

Proof. By Lemma 3.4.33, there is an open cover {U;} of B such that E|U; x [0,1] is trivial; let ¢; be
the corresponding trivializations. Denote by ¢ : E|B x {0} — B x {0} x F the trivialization guaranteed
in the hypothesis of the lemma, where F' is the typical fiber of E. We modify all ¢; in such a way that
wi : E|U; x {0} — U; x {0} x F coincides with ¢ : E|U; x {0} — U; x {0} x F in the following way.

The homeomorphism

piop LU x {0} x F - U; x {0} x F

is of the form (b,0, f) — (b,0,a}(f)) for o} : F — F a homeomorphism depending continuously on b € B.
Define

Xi Ui x [0,1] x F = Up x [0,1] x F by xi(b, s, f) = (b, s, ()~ (/).

Then 1; = x; 0 p; : E|U; x [0,1] — U; x [0,1] x F maps any e € 7~ (B x {0}) to ¢(e).
Assume each @; on E|U; x {0} equals ¢ on E|U; x {0}. Define

)\iiE|UiX[O,1]—>UiX{O}XF

to be the composition of the map (b, s, f) € U; x [0,1] x F +— (b,0,f) € U; x {0} x F with ;. Since
each ¢, coincides with ¢ on E|U; x {0}, it follows that whenever U; N U; # @, A\; and A; coincide on
E|(U; nU;) % [0,1], so that the collection of all {\;} define a fiber bundle map A : E — B x {0} x F over
the map x : (b,s) € B x [0,1] — (b,0) € B x {0}. By the fiber bundle version 3.4-23 of Exercise 3.4-15(i)
and (iii), E equals the pull-back x*(B x {0} x F'). Since the bundle B x {0} x F — B x {0} is trivial, so is
its pull-back E. ]

3.4.35 Theorem. Let7:E — B be any C° fiber bundle over a contractible space B. Then E is trivial.

Proof. By hypothesis, there is a homotopy h : B x [0,1] — B such that h(b,0) = by and h(b,1) = b for
any b € B, where by € B is a fixed element of B. Then the pull-back bundle A*E is a fiber bundle over
B x [0,1] whose restrictions to B x {0} and B x {1} equals the trivial fiber bundle over {by} and E over
B x {1}, respectively. By Lemma 3.4.34, h*F is trivial over B x [0,1] and thus F, which is isomorphic to
E|B x {1}, is also trivial. [ |

All previous proofs go through without any modifications to the C*-case, once manifolds with boundary
are defined (see §7.1).

Exercises

3.4-1. Let N C M be a submanifold. Show that TN is a subbundle of TM|N and thus is a submanifold
of TM.

3.4-2. Find an explicit example of a fiber-preserving diffeomorphism between vector bundles that is not a
vector bundle isomorphism.

3.4-3. Let p:Rx S™ — 8" and o : R"*! x §" — S™ be trivial vector bundles. Show that
TS" @ (R x S™) = (R x S™).

HINT : Realize p as the vector bundle whose one-dimensional fiber is the normal to the sphere.



<&

<&

3.4 Vector Bundles 171

3.4-4. (i) Let m:FE — B be a vector bundle. Show that TE|B is vector bundle isomorphic to £ & T B.
Conclude that F is isomorphic to a subbundle of T'E.

HiNT: The short exact sequence 0 — F — TE|B B >0 splits via T, where i : B — F is the
inclusion of B as the zero section of F; apply Proposition 3.4.26.

(ii) Show that the isomorphism ¢ found in (i) is natural, that is, if 7’ : E/ — B’ is another vector bundle,
f: E — FE’isavector bundle map over fp : B— B’, and ¢p/ : TE'|B — E'&T B’ is the isomorphism
in (i) for 7’ : B/ — B’, then

opoTf=(f®TfB)ovE.

3.4-5. Show that the mapping s : E® E — FE, s(e,e’) = e + ¢’ (fiberwise addition) is a vector bundle
mapping over the identity.

3.4-6. Write down explicitly the charts in Examples 3.4.25 given by Proposition 3.4.24.

3.4-7. (i) A vector bundle 7 : E — B is called stable if its Whitney sum with a trivial bundle over B
is trivial. Show that T'S™ is stable, but the Mdébius band M is not.

(i) Two vector bundles 7 : E — B, p : E — B are called stably isomorphic if the Whitney sum of
E with some trivial bundle over B is isomorphic with the Whitney sum of F' with (possibly another)
trivial vector bundle over B. Let KB be the set of stable isomorphism classes of vector bundles with
finite dimensional fiber over B. Show that the operations of Whitney sum and of tensor product induce
on K B a ring structure. Find a surjective ring homomorphism of KB onto Z.

3.4-8. A vector bundle with one-dimensional fibers is called a line bundle. Show that any line bundle
which admits a global nowhere vanishing section is trivial.

3.4-9. Generalize Example 3.4.25B to vector bundles with different bases. If 7: E — M and p: F — N
are vector bundles, show that the set U, ,)crrxn L(Em, F) is a vector bundle with base M x N. Describe
the fiber and compute the relevant dimensions in the finite dimensional case.

3.4-10. Let N be a submanifold of M. The normal bundle v(N) of N is defined to be v(N) =
(TM|N)/TN. Assume that N has finite codimension k. Show that v(N) is trivial iff there are smooth
maps X; : N - TM, ¢ =1,...,k such that X;(n) € T,,M and { X;(n) | ¢ = 1,...,k} span a subspace V,
satisfying T,,M = T,,N ® V,, for all n € N. Show that v(S™) is trivial.

3.4-11. Let N be a submanifold of M. Prove that the conormal bundle defined by pu(N) = {a €
T*M | (a,u) = 0 for all w € T,N and all n € N} in a subbundle of T*M|N which is isomorphic to the
normal bundle v(N) defined in Exercise 3.4-10. Generalize the constructions and statements of 3.4-10 and
the current exercise to an arbitrary vector subbundle F' of a vector bundle E.

3.4-12. (i) Use the fact that S? is the unit sphere in the associative division algebra H to show that
TS3 is trivial.

(ii) Cayley numbers. Consider on R® = H @ H the usual Euclidean inner product (, ) and define a
multiplication in R® by (a1,b1)(ag,b2) = (a1as — biby, baay + biaj) where a;,b; € H, i = 1,2, and the
multiplication on the right hand side is in H. Prove the relation

(11, aafa) + (2P, 01 02) = 2 (a1, a2) (B1, B2)

where (o, 3) denotes the dot product in R®. Show that if one defines the conjugate of (a,b) by (a,b)* =
(a*,—b), then [|(a,b)||* = (a,b)[(a,b)*]. Prove that ||| = ||a| ||3|| for all a, 3 € R. Use this relation
to show that R® is a nonassociative division algebra over R, C, and H. R® with this algebraic structure
is called the algebra of Cayley numbers or algebra of octaves; it is denoted by Q.
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(iii) Show that O is generated by 1 and seven symbols eq, ..., e; satisfying the relations
2_ 4 s _ _
€, = —1, e€,e;=—€;€e, €162 =¢€3, €164 = €5,
€16 = —€7, €265 = €7, €264 =€, €364 = €7, €365 = —€g,

together with 14 additional relations obtained by cyclic permutations of the indices in the last 7
relations.

HINT: The isomorphism is given by associating 1 to the element (1,0,...,0) € R® and to e; the vector
in R® having all entries zero with the exception of the (i + 1)st which is 1.
(iv) Show that any two elements of O generate an associative algebra isomorphic to a subalgebra of H.

HINT: Show that any element of O is of the form a + bey for a,b € H.

(v) Since S7 is the unit sphere in @, show that T'S” is trivial.

© 3.4-13. (i) Letw:E — B be alocally trivial fiber bundle. Show that V' = ker(T'r) is a vector subbundle
of TE, called the wertical bundle. A vector subbundle H of TE such that V & H = TFE is called
a horizontal subbundle. Show that T'r induces a vector bundle map H — TFE over 7 which is an
isomorphism on each fiber.

(ii) If 7 : F — M is a vector bundle, show that each fiber V,, of V, v € E is naturally identified with Ej,
where b = 7(v). Show that there is a natural isomorphism of ToE with T, B © Ej, where 0 is the zero
vector in Fj. Argue that there is in general no such natural isomorphism of T, E for v # 0.

o 3.4-14. Let E,, be the trivial vector bundle RP" x R**1,

(i) Show that F,, = {([z],A\z) | * € R*™1 X € R} is a line subbundle of E,.
HINT: Define

eI

and show that f is a vector bundle map having the restriction to each fiber a linear map of rank n.
Apply Proposition 3.4.18.

FiB, —RPXR™ by f(l],y) = ([x],y— <x-y>i)

(ii) Show that F), is isomorphic to v1 (R"*1).
(iii) Show that Fj is isomorphic to the M&bius band M.

(iv) Show that F,, is the quotient bundle of the normal bundle v(S™) to S™ by the equivalence relation
which identifies antipodal points and takes the outward normal to the inward normal. Show that the
projection map v(S™) — F, is a 2 to 1 covering map.

(v) Show that F, is nontrivial for all n > 1.

HINT: Use (iv) to show that any section o of F,, vanishes somewhere; do this by considering the
associated section ¢* of the trivial normal bundle to S™ and using the intermediate value theorem.

(vi) Show that any line bundle over S is either isomorphic to the cylinder S* x R or the Mébius band M.

¢ 3.4-15. (i) Let 7 : E — B be a vector bundle and f : B’ — B a smooth map. Define the pull-back
bundle f*n: f*E — B’ by

[TE= {(U’ b/) | 7T('U) = f(b/) }7 f*ﬂ'(v, b/) =0

and show that it is a vector bundle over B’, whose fibers over b’ equal E¢y. Show that h: f*E — E,
h(e,b) = e, is a vector bundle map which is the identity on every fiber. Show that the pull-back bundle
of a trivial bundle is trivial.
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(ii) Ifg: B” — B’ show that (fog)*m: (fog)*E — B” is isomorphic to the bundles ¢* f*m : ¢* f*FE — B".
Show that isomorphic vector bundles have isomorphic pull-backs.

(iii) If p: B — B’ is a vector bundle and g : E/ — E is a vector bundle map inducing the map f: B’ — B
on the zero sections, then prove there exists a unique vector bundle map ¢* : £/ — f*F inducing the
identity on B’ and is such that ho g* = g.

(iv) Let o : F — B be a vector bundle and v : FF — E be a vector bundle map inducing the identity on
B. Show that there exists a unique vector bundle map f*u : f*F — f*F inducing the identity on B’
and making the diagram

*u
F f

R
&

&

(v) If 7 : E — B, «’ : E' — B are vector bundles and if A : B — B x B is the diagonal map b — (b, b),
show that E@® E' = A*(E x E').

(vi) Let 7 : E — B and 7’ : E' — B be vector bundles and denote by 7 : B x B — B, i = 1,2 the
projections. Show that E x E' 2 pi(FE) @ p5(E’) and that the following sequences are split exact:

0—-F—-FE®E —E —0.
0—-F —-E®E —FE—0.
0= pi(E) — E x E' — p3(E') = 0.
0— ps(E') — Ex E' — pi(E) — 0.

¢ 3.4-16. (i) Show that G, (R") is a submanifold of Gy (R""1). Denote by i : Gi(R") — Gpi1(R™H1),
i(F) = F x R the canonical inclusion map.

(i) If p: R x Gx(R") — Gg(R™) is the trivial bundle, show that the pull-back bundle i*(y;11(R"™1)) is
isomorphic to v, (R™) @ (R x Gg(R™)).

¢ 3.4-17. Show that
T (M x M) = pi(T'M1) @ p3(TM>)

where p; : My x My — M;, i = 1,2 are the canonical projections and p;(TM;) denotes the pull-back bundle
defined in Exercise 3.4-15.

© 3.4-18. (i) Let m: E — B be a vector bundle. Show that there is a short exact sequence
0—>7T*E—>TL>EL>7T*(TB)—>O

where

d
flv,0) = 7 (v+t') and  g(v,) = (Tpm(uy),n(v))
t=0
(ii) Show that ker(7'w) is a subbundle of TE, called the vertical subbundle of TE. Any subbundle
H C TE such that TE = ker(Tw) @ H, is called a horizontal subbundle of TE. Show that T'r
induces an isomorphism of H with #*(T'B).
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(iii) Show that if TE admits a horizontal subbundle then the sequence in (i) splits.

3.4-19. Letm: F — B, p: F — C be vector bundles and let f : B — C' be a smooth map. Define
Ly(E,F) =T} L(E, F), where 'y : b € B+ (b, f(b)) € B x C is the graph map defined by f. Show that
sections of Ly(E, F) coincide vector bundle maps E — F over f.

3.4-20. Let M be an n-manifold. A frame at m € M is an isomorphism « : T,,, M — R™. Let
F(M) ={(m,«) | ais a frame at m }.
Define 7 : F(M) — M by w(m,«) =m.

(i) Let (U,¢) be a chart on M. Show that (m,a) € 7= Y(U) — (m,Tpoa™t) € U x GL(R") is a
diffeomorphism. Prove that these diffeomorphisms as (U, ¢) vary over a maximal atlas of M define by
collation a manifold structure on F(M). Prove that = : F(M) — M is a locally trivial fiber bundle
with typical fiber GL(n).

(ii) Prove that the sequence
0 — ker(T'm) —— TF(M) =5 7*(TM) — 0

is short exact, where i is the inclusion and 7*7 is the vector bundle projection 7*(TM) — F(M)
induced by the tangent bundle projection 7 : TM — M.

(iii) Show that ker(Tw) and 7*(T'M) are trivial vector bundles.

(iv) A splitting 0 — 7*(T'M) 2, TF (M) of the short sequence in (ii) is called a connection on M. Show
that if M has a connection, then TF(M) = ker(Tw) @ H, where H is a subbundle of TF(M) whose
fibers are isomorphic by T to the fiber of T M.

3.4-21. (i) Generalize the Hopf fibration to the complex Hopf fibrations k, : S*"*1 — CP" with
fiber S*.

(ii) Replace in (i) C by the division algebra of quaternions H. Generalize (i) to the quaternionic Hopf
fibrations x,, : S4"*t3 — HP" with fiber S. HP" is the quaternionic space defined as the set of one
dimensional vector subspaces over H in H"*!. Is anything special happening when n = 1? Describe.

3.4-22. (i) Try to define OP", where O are the Cayley numbers. Show that the proof of transitivity of
the equivalence relation in Q™! requires associativity.

(i) Define p/(a,b) = ab~! if b # 0 and p'(a,b) = oo if b = 0, where S® is thought of as the one-point
compactification of R® = O (see Exercise 3.1-5). Show p’ is smooth and prove that p = p’|S1® is onto.
Proceed as in Example 3.4.29D and show that p : S — S8 is a fiber bundle with typical fiber S”
whose bundle structure is given by an atlas with two fiber bundle charts.

3.4-23. Define the pull-back of fiber bundles and prove properties analogous to those in Exercise 3.4-15.

3.5 Submersions, Immersions, and Transversality

The notions of submersion, immersion, and transversality are geometric ways of stating various hypotheses
needed for the inverse function theorem, and are central to large portions of calculus on manifolds. One
immediate benefit is easy proofs that various subsets of manifolds are actually submanifolds.

3.5.1 Theorem (Local Diffeomorphisms Theorem). Suppose that M and N are manifolds, f : M — N
is of class C", r > 1 and m € M. Suppose T f restricted to the fiber over m € M is an isomorphism. Then
f is a C" diffeomorphism from some neighborhood of m onto some neighborhood of f(m).
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Proof. In local charts, the hypothesis reads: (D f,y)(u) is an isomorphism, where ¢(m) = w. Then the
inverse function theorem guarantees that f,, restricted to a neighborhood of u is a C" diffeomorphism.
Composing with chart maps gives the result. |

The local results of Theorems 2.5.9 and 2.5.13 give the following;:

3.5.2 Theorem (Local Onto Theorem). Let M and N be manifolds and f : M — N be of class C", where
r > 1. Suppose T f restricted to the fiber T, M is surjective to T, N. Then

(i) f is locally onto at m; that is, there are neighborhoods U of m and V of f(m) such that flU : U — V
s onto; in particular, if T f is surjective on each tangent space, then [ is an open mapping;

(ii) if, in addition, the kernel ker(T,,f) is split in T,,M there are charts (U, ) and (V,1) with m € U,
fU)CV,p:U—=UxV', p(m)=1(0,0), Y : V=V, and foy : U xV — V' is the projection onto
the second factor.

Proof. It suffices to prove the results locally, and these follow from Theorems 2.5.9 and 2.5.13. [ ]

Submersions. The notions of submersion and immersion correspond to the local surjectivity and injec-
tivity theorems from §2.5. Let us first examine submersions, building on the preceding theorem.

3.5.3 Definition. Suppose M and N are manifolds with f : M — N of class C", r > 1. A pointn € N s
called a regular value of f if for eachm € f~1({n}), T, f is surjective with split kernel. Let Ry denote the
set of regular values of f : M — N; note N\f(M) C Ry C N. If, for each m in a set S, T, [ is surjective
with split kernel, we say f is a submersion on S. Thus n € Ry iff f is a submersion on f~*({n}). If T, f
is not surjective, m € M is called a critical point and n = f(m) € N a critical value of f.

3.5.4 Theorem (Submersion Theorem). Let f: M — N be of class C* and n € Ry. Then the level set
f7Hn)={m|meM, f(m)=n}
is a closed submanifold of M with tangent space given by Ty, f~1(n) = ker T, f.

Proof. First, if B is a submanifold of M, and b € B, we need to clarify in what sense T, B is a subspace of
TyM. Letting ¢ : B — M be the inclusion, Tyt : T, B — T, M is injective with closed split range. Hence T, B
can be identified with a closed split subspace of Ty M. If f~1(n) = & the theorem is clearly valid. Otherwise,
for m € f~1(n) we find charts (U, ¢), (V1) as described in Theorem 3.5.2. Because

pUNfHn)) = f,,(0)=U" x {0},

we get the submanifold property. (See Figure 3.5.1.) Since f,y : U’ x V! — V' is the projection onto the
second factor, where U’ C E and V' C F, we have

Tu(f,,(0)) = TWU' = E = ker(Tyufpy) foruelU’,

which is the local version of the second statement. [ |

If N is finite dimensional and n € Ry, observe that codim(f~'(n)) = dim N, from the second statement of
Theorem 3.5.4. (This makes sense even if M is infinite dimensional.) Sard’s theorem, discussed in the next
section, implies that Ry is dense in V.

3.5.5 Examples.

A. We shall use the preceding theorem to show that S™ C R"*! is a submanifold. Indeed, let f : R**1 — R
be defined by f(x) = ||x||?, so S = f~1(1). To show that S™ is a submanifold, it suffices to show that 1
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U x Vv’

Ly

FiGURE 3.5.1. Submersion theorem

is a regular value of f. Suppose f(x) = 1. Identifying TR**! = R"*1 x R"*1 and the fiber over x with
elements of the second factor, we get

(T /)(v) =Df(x) - v =2(x,v).

Since x # 0, this linear map is not zero, so as the range is one-dimensional, it is surjective. The same
argument shows that the unit sphere in Hilbert space is a submanifold.

B. Stiefel Manifolds. Define
St(m,n; k) ={A e L(R™,R") |[rank A=k}, where k< min(m,n).

Using the preceding theorem we shall prove that St(m,n; k) is a submanifold of L(R™,R™) of codimension
(m—Fk)(n—k); this manifold is called the Stiefel manifold and plays an important role in the study of prin-
cipal fiber bundles. To show that St(m,n; k) is a submanifold, we will prove that every point A € St(m, n; k)
has an open neighborhood U in L(R™,R™) such that St(m,n; k) N U is a submanifold in L(R™ R™) of the
right codimension; since the differentiable structures on intersections given by two such U coincide (being
induced from the manifold structure of L(R™,R™)), the submanifold structure of St(m,n; k) is obtained by
collation (Exercise 3.2-6). Let A € St(m, n; k) and choose bases of R™, R™ such that

A=l

with a an invertible £ x k matrix. The set

o- {3

is open in L(R"™,R"). An element of U has rank k iff v — zx 'y = 0. Indeed

I 0
—zx 1 1

X is an invertible k£ X k matrix}
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is invertible and

SO

rank {X y} = rank [X Y ]
zZ Vv

0 v—zxly

equals k iff v — zx~ty = 0. Define f : U — L(R™ % R"~F) by

() =v-o

The preceding remark shows that f=1(0) = St(m,n;k) N U and thus if f is a submersion, f~1(0) is a
submanifold of L(R™, R™) of codimension equal to

dim L(R™* R"™%) = (m — k)(n — k).

To see that f is a submersion, note that for x,y,z fixed, the map v — v — zx "'y is a diffeomorphism of
L(R™k R"=F) to itself.

C. Orthogonal Group. Let O(n) be the set of elements Q of L(R™,R™) that are orthogonal, that is,
QQ" = Identity. We shall prove that O(n) is a compact submanifold of dimension n(n—1)/2. This manifold
is called the orthogonal group of R™; the group operations (composition of linear operators and inversion)
being smooth in L(R™,R™) are therefore smooth in O(n), that is, O(n) is an example of a Lie group. To
show that O(n) is a submanifold, let sym(n) denote the vector space of symmetric linear operators S of
R™, that is, ST = S; its dimension equals n(n + 1)/2. The map f : L(R",R") — sym(n), f(Q) = QQT is
smooth and has derivative
Tof(A) = AQ" + QAT = AQ ' + QAT

at Q € O(n). This linear map from L(R™ R™) to sym(n) is onto since for any S € sym(n),

Tqf(SQ/2) =S.
Therefore, by Theorem 3.5.4, f~! (Identity) = O(n) is a closed submanifold of L(R™, R") of dimension equal
to n? —n(n+1)/2 = n(n — 1)/2. Finally, O(n) is compact since it lies on the unit sphere of L(R" R").
D. Orthogonal Stiefel Manifold. Let kK <n and
Fi., = OSt(n,n; k) = { orthonormal k-tuples of vectors in R" }.

We shall prove that OSt(n, n; k) is a compact submanifold of O(n) of dimension nk —k(k+1)/2; it is called
the orthogonal Stiefel manifold. Any n-tuple of orthonormal vectors in R™ is obtained from the standard
basis eq,...,e, of R™ by an orthogonal transformation. Since any k-tuple of orthonormal vectors can be
completed via the Gram-Schmidt procedure to an orthonormal basis, the set OSt(n,n; k) equals f~1(0),
where f: O(n) — O(n — k) is given by letting f(Q) = Q’, where

Q' = the (n — k) x (n — k) matrix obtained from Q by removing its
first k rows and columns.

Since T f(A) = A’ is onto, it follows that f is a submersion. Therefore, f~1(0) is a closed submanifold of
O(n) of dimension equal to

nn—1) (m—k)(n—-k-1) i k(k+1)

2 2 - 2
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Immersions. Now we look at maps whose derivatives are one-to-one.

3.5.6 Definition. A C" map f: M — N, r > 1, is called an immersion at m if T,,f is injective with
closed split range in Ty, yN. If f is an immersion at each m, we just say f is an tmmersion.

3.5.7 Theorem (Immersion Theorem). For a C" map [ : M — N, where r > 1, the following are
equivalent:

(i) f is an immersion at m;

(ii) there are charts (U, ) and (V,¢) withm e U, f(U)CV,p:U —-U",¢:V - U" xV" and p(m) =0
such that foy : U — U' x V' is the inclusion u — (u,0);

(iil) there is a neighborhood U of m such that f(U) is a submanifold in N and f restricted to U is a
diffeomorphism of U onto f(U).

Proof. The equivalence of (i) and (ii) is guaranteed by the local immersion theorem 2.5.12. Assuming (ii),
choose U and V given by that theorem to conclude that f(U) is a submanifold in V. But V is open in N
and hence f(U) is a submanifold in N proving (iii). The converse is a direct application of the definition of
a submanifold. |

It should be noted that the theorem does not imply that f(M) is a submanifold in N. For example
f:SY — R?, given in polar coordinates by r = cos 20, is easily seen to be an immersion (by computing T f
using the curve ¢(f) = cos(20) on S but f(S!) is not a submanifold of R?: any neighborhood of 0 in R?
intersects f(S!) in a set with corners” which is not diffeomorphic to an open interval. In such cases we say
f is an immersion with self-intersections. See Figure 3.5.2.

f

FIGURE 3.5.2. Images of immersions need not be submanifolds

In the preceding example f is not injective. But even if f is an injective immersion, f(M) need not be
a submanifold of N, as the following example shows. Let f be a curve whose image is as shown in Figure
3.5.3. Again the problem is at the origin: any neighborhood of zero does not have the relative topology given
by N.

Embeddings. If f: M — N is an injective immersion, f(M) is called an tmmersed submanifold of
N.

3.5.8 Definition. An immersion f : M — N that is a homeomorphism onto f(M) with the relative
topology induced from N is called an embedding.

Thus, if f: M — N is an embedding, then f(M) is a submanifold of N.
The following is an important situation in which an immersion is guaranteed to be an embedding; the
proof is a straightforward application of the definition of relative topology.
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f YA
/_\ R?

/4 T/ x

r=-cos 20

FI1GURE 3.5.3. Images of injective immersions need not be submanifolds

3.5.9 Theorem (Embedding Theorem). An injective immersion which is an open or closed map onto its
image is an embedding.

The condition “f : M — N is closed” is implied by “f is proper,” that is, each sequence x,, € M with f(x,,)
convergent to y N has a convergent subsequence x,, (i) in M such that f(x,(i)) converges to y. Indeed, if this
hypothesis holds, and A is a closed subset of M, then f(A) is shown to be closed in N in the following way.
Let a,, € A, and suppose f(x,) = y, converges to y € N. Then there is a subsequence {z,,} of {z,}, such
that z,, — x. Since A = cl(A), x € A and by continuity of f, y = f(z) € f(A); that is, f(A) is closed. If N is
infinite dimensional, this hypothesis is assured by the condition “the inverse image of every compact set in
N is compact in M.” This is clear since in the preceding hypothesis one can choose a compact neighborhood
V of the limit of f(z,) in N so that for n large enough, all z,, belong to the compact neighborhood f~1(V)
in M. The reader should note that while both hypotheses in the proposition are necessary, properness of f
is only sufficient. An injective nonproper immersion whose image is a submanifold is, for example, the map
f:]0,00[ — R? given by

1 1
t)=(tcos>, tsin- ).
f(t) < cos smt)
This is an open map onto its image so Theorem 3.5.9 applies; the submanifold f(]0, oo[) is a spiral around
the origin.
Transversality. This is an important notion that applies to both maps and submanifolds.

3.5.10 Definition. A C" map f: M — N, r > 1, is said to be transversal to the submanifold P of N
(denoted f th P) if either f~1(P) = @, or if for every m € f~1(P),

T1. (Tmf)(TmM) + Tf(m)P = Tf(m)N and
T2. the inverse image (T f) ™ (Tpm)P) of T(m)P splits in T,,, M.

The first condition T1 is purely algebraic; no splitting assumptions are made on (T, f)(T,, M), nor need
the sum be direct. If M is a Hilbert manifold, or if M is finite dimensional, then the splitting condition T2
in the definition is automatically satisfied.

3.5.11 Examples.
A. If each point of P is a regular value of f, then f h P since, in this case, (Tp, f)(T:nM) = T N.

B. Assume that M and N are finite-dimensional manifolds with dim(P)+dim(M) < dim(N). Then f th P
implies f(M) N P = @. This is seen by a dimension count: if there were a point m € f~1(P) N M, then

dim(N) = dim((T f)(Tn M) + Ty P) < dim(M) + dim(P) < dim(N),

which is absurd.
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C. Let M = R?, N = R3 P = the (z,y) plane in R?, a € R and define f, : M — N, by fu(2,y) =
(z,y,2% + 3%+ a). Then f i P if a # 0; see Figure 3.5.4. This example also shows intuitively that if a map
is not transversal to a submanifold it can be perturbed very slightly to a transversal map; for a discussion

of this phenomenon we refer to the Supplement 3.6B. ¢
image of f;,
0,0,0) y y
X (0,0,0) x x
0.0,0)
a>0 a=0 a<0

FIGURE 3.5.4. These manifolds are nontransverse to the zy plane at a = 0.

3.5.12 Theorem (Transversal Mapping Theorem). Let f : M — N be a C* map and P a submanifold
of N. If f th P, then f=1(P) is a submanifold of M and

Ton(fHP)) = (T )™ (Tym) P)
for allm € f=1(P). If P has finite codimension in N, then codim(f~1(P)) = codim(P).
Proof. Let (V%) be a chart at f(mg) € P in N with the submanifold property for P; let
W(V)=Vix Vo C R @ Fs, $(VNP)=Vix {0}, (f(mo))=(0,0)

and denote by ps : Vi x Vo — V4 the canonical projection. Let (U, ¢) be a chart at mg in M, such that
o(mo) =0, 9:U — oU)CEand f(U)CV.FormeUn f~1(P),

Tm(pQ Ow o f‘U) =Pp2° Tf(m)z/] OTmf

and
Ton(@o fI(TmM)+F,=F, ©F,

(by transversality of f on P). Hence T,,(ps o ¥ o flU) : T, U = T,,M — Fs is onto. Its kernel is
(Tmf)’l(Tf(m)P) since ker p; = F; and
(Tmy) ™ (F1) = Trm) P,

and thus it is split in T}, M. In other words, 0 is a regular value of ps o ¢ o f|U : U — Fy and thus
(p2ovo fIU)TH0) = fTH(PNV)

is a submanifold of U, and hence of M whose tangent space at m € U equals ker(T,,(p2 o ¢ o fIU)) =
(T /) (T't(my P) by the submersion theorem 3.5.4. Thus f~!(P N V) is a submanifold of M for any chart
domain V with the submanifold property; that is, f~!(P) is a submanifold of M. If P has finite codimension
then Fs is finite dimensional and thus again by the submersion theorem,

codim(f~!(P)) = codim f~(PNV) = dim(Fs) = codim(P). |
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Notice that this theorem reduces to the submersion theorem if P is a point.

3.5.13 Corollary. Suppose that My and My are submanifolds of M, m € My N\ My, Ty, My + Ty Mo =
T,,M, and that T, M,NT,, M splits in T,, M for allm € M1NMs; this condition is denoted My t My and we
say My and My are transversal. Then MyN M, is a submanifold of M and T,,(MyNMsy) = Ty, MyNT,, Ms.
My and Ms are said to intersect cleanly when this conclusion holds. (Transversality thus implies clean
intersection.) If both My and Ms have finite codimension in M, then codim(M; N Ms) = codim(M;) +
codim(Ms).

Proof. The inclusion ¢; : My — M, satisfies i1 M M>, and il_l(Mg) = M; N Ms. Now apply the previous
theorem. | |

3.5.14 Examples.

A. In R3, the unit sphere My = {(z,y,2) | 22 + y? + 2% = 1} intersects the cylinder My = {(z,v, 2) |
22 +y? = a} transversally if 0 < a # 1; My N My = @ if a > 1 and M; N M, is the union of two circles if
0 < a <1 (Figure 3.5.5).

O<ax<l1 a=1 a>1

FIGURE 3.5.5. A sphere intersects a cylinder transversally except at the critical value a = 1

B. The twisted ribbon M; in Figure 3.5.6 does not meet Ms, the zy plane, in a manifold, so M; is not
transversal to Ms.

C. Let M be the xy-plane in R and N be the graph of f(z,y) = (2y)?. Even though TN N TM has
constant dimension (equal to 2), N N M is not a manifold (Figure 3.5.7). ¢

Subimmersions. There is one more notion connected with geometric ways to state the implicit function
theorem that generalizes submersions in a different way than transversality. Roughly speaking, instead of
requiring that a map f: M — N have onto tangent map at each point, one asks that its rank be constant.

3.5.15 Definition. A C" map f: M — N, r > 1 is called a subimmersion if for each point m € M
there is an open neighborhood U of m, a manifold P, a submersion s : U — P, and an immersion j: P — N
such that flU = jos.

Note that submersions and immersions are subimmersions. The order submersion followed by immersion
in this definition is important, because the opposite order would yield nothing. Indeed, if f : M — N is
any C'°° mapping, then we can write f = pg o j, where j : M — M x N, is given by j(m) = (m, f(m)) and
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FIGURE 3.5.6. The twisted ribbon

F1GURE 3.5.7. Constancy of dimension of TM NTN does not imply smoothness of M N N

p2 : M x N — N the canonical projection. Clearly j is an immersion and p, a submersion, so any mapping
can be written as an immersion followed by a submersion.
The following will connect the notion of subimmersion to that of “constant rank.”

3.5.16 Proposition.
(i) AC*® map f: M — N is a subimmersion iff for every m € M there is a chart (U,¢) at m, where
0: U=V xUy CFLBEs, ¢(m)=(0,0),
and a chart (V,) at f(m) where
fU)CV, ¢:V-VixVh CFiaF,, ¢(f(m)) = (0,0)
such that foy(x,y) = (x,0).

(i) If M or N are finite dimensional, f is a subimmersion iff the rank of the linear map T, f : T, M —
TmyN is constant for m in each connected component of M.

Proof. (i) follows from Theorem 3.5.2, Theorem 3.5.7(ii) and the composite mapping theorem; alterna-
tively, one can use Theorem 2.5.15. If M or N are finite dimensional, then necessarily rank(7,, f) is finite
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and thus by (i) the local representative T, f has constant rank in a chart at m; that is, the rank of T, f
is constant on connected components of M, thus proving (ii). The converse follows by Theorem 2.5.15 and
(1). |

3.5.17 Theorem (Subimmersion Theorem). Suppose f : M — N is C*°, ng € N and [ is a subim-
mersion in an open neighborhood of f~1(ng). (If M or N are finite dimensional this is equivalent to T, f
having constant rank in a neighborhood of each m € f~Y(ng).) Then f~1(ng) is a submanifold of M with
T f(no) = ker(T,. f).

Proof. 1If f~!(ng) = @ there is nothing to prove. If m € f~!(ng) find charts (U, ) at m and (V,v) at
f(m) = ng given by Proposition 3.5.16(i). Since (U N f~1(ng)) = fjj (0) = {0} x Uy we see that (U, ¢) has
the submanifold property for f~!(ng). In addition, if u € Us, then

T(0,u)(f(0)) = TuUs = Eg = ker(T(o.u) fous),
which is the local version of the second statement. [ |

Notice that
codim(f Y (ng)) = rank(T,, f) for m € f~1(ng)

if rank (75, f) is finite. The subimmersion theorem reduces to Theorem 3.5.4 when f is a submersion. The
immersion part of the subimmersion f implies a version of Theorem 3.5.7(iii).

3.5.18 Theorem (Fibration Theorem). The following are equivalent for a C*° map f: M — N:

(i) the map f is a subimmersion (if M or N are finite dimensional, this is equivalent to the rank of Ty, f
being locally constant);

(ii) for each m € M there is a neighborhood U of m, a neighborhood V' of f(m), and a submanifold Z of M
with m € Z such that f(U) is a submanifold of N and f induces a diffeomorphism of f~*(V)NZNU
onto f(U)NV;

(iii) kerTf is a subbundle of TM (called the tangent bundle to the fibers) and for each m € M, the
image of T f is closed and splits in Tg(,,)N.

If one of these hold and if f is open (or closed) onto its image, then f(M) is a submanifold of N.

Proof. To show that (i) implies (ii), choose for U and V the chart domains given by Proposition 3.5.16(i)
and let Z = ¢~ 1(V4 x {0}). Then

PFU)NOV) = fop(Vi x Us) = Vi x {0},

that is, f(U) is a submanifold of N. In addition, the local expression of f: f~Y(V)NZNU — f(U)NV
is (z,0) — (z,0), thus proving that so restricted, f is a diffeomorphism. Reading this argument backward
shows that (ii) implies (i).
We have
Topker Ty NTy) = Vi x Uz x {0} x Eq,

since foy(z,y) = (z,0), thus showing that (T'U, T'¢) has the subbundle property for ker T'f. The same local
expression shows that (T, f)(T5, M) is closed and splits in T'¢(,,,) M and thus (i) implies (iii). The reverse is
proved along the same lines.

If f is open (closed) onto its image, then f(U) NV [resp., int(f(cl(U))) N V] can serve as a chart domain
for f(M) with the relative topology induced from N. Thus f(M) is a submanifold of N. [ |

The relationship between transversality and subimmersivity is given by the following.
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3.5.19 Proposition. Let f: M — N be smooth, P a submanifold of N, and assume that f m P. Then
there is an open neighborhood W of P in N such that f|f~Y(W): f~Y(W) — W is a subimmersion.

Proof. Let m € f~1(P) and write T,,,(f~1(P)) = ker(T,,f) ® Cy, so that Ty, f : Cp, — T,P is an
isomorphism, where n = f(m). As in the proof of Theorem 3.5.12, this situation can be locally straightened
out, so we can assume that M C E; x Es, where P is open in E; and E; = kerT,,, f & C for a complementary
space C'. The map f restricted to C' is a local immersion, so projection to C' followed by the restriction of
f to C writes f as the composition of a submersion followed by an immersion. We leave it to the reader to
expand the details of this argument. |

In some applications, the closedness of f follows from properness of f; see the discussion following Theorem
3.5.9.

If M or N is finite dimensional, then f being a subimmersion is equivalent to ker T'f being a subbundle
of TM. Indeed, range(T,, f) = T, M/ ker(T,, f) and thus dim(range(7,, f)) = codim(ker(T,, f)) = constant
and f is hence a subimmersion by Proposition 3.5.16(ii). Proposition 3.5.19 is an infinite dimensional version
of this.

We have already encountered subimmersions in the study of vector bundles. Namely, the condition in
Proposition 3.4.18(i) (which insures that for a vector bundle map f over the identity ker f and range f are
subbundles) is nothing other than f being a subimmersion.

Quotients. We conclude this section with a study of quotient manifolds.

3.5.20 Definition. An equivalence relation R on a manifold M is called regular if the quotient space
M/R carries a manifold structure such that the canonical projection m : M — M/R is a submersion. If R
is a reqular equivalence relation, then M /R is called the quotient manifold of M by R.

Since submersions are open mappings, 7w and hence the regular equivalence relations R are open.
Quotient manifolds are characterized by their effect on mappings.

3.5.21 Proposition. Let R be a regular equivalent relation on M.
(i) Amap f: M/R— N isC",r>1iff forn: M — N is C".

(i) Any C" map g : M — N compatible with R, that is, xRy implies g(x) = g(y), defines a unique C”
map §: M/R — N such that gom = g.

(iii) The manifold structure of M/R is unique.

Proof. (i) If fis C", then so is f o7 by the composite mapping theorem. Conversely, let f o m be C".
Since 7 is a submersion it can be locally expressed as a projection and thus there exist charts (U, p) at
m € M and (V,4) at w(m) € M/R such that

(p(U) =U; x U C E1 ¢ Es, ’g[J(V) =U; C Ey, and W@w(l‘,y) =.

Hence if (W, x) is a chart at (f om)(m) in N satisfying (f on)(U) C W, then fy, = (f 0m)ey|{0} X Uz and
thus fy, is C".

(i) The mapping § is uniquely determined by gom = g. It is C" by (i) .

(iii) Let (M/R); and (M/R)2 be two manifold structures on M/R having 7 as a submersion. Apply (ii) for
(M/R); with N = (M/R)3 and g = 7 to get a unique C* map h: (M/R); — (M/R)3 such that hor = 7.

Since 7 is surjective, h = identity. Interchanging the roles of the indices 1 and 2, shows that the identity
mapping induces a C* map of (M/R)s to (M/R);. Thus, the identity induces a diffeomorphism. [ |

3.5.22 Corollary. Let M and N be manifolds, R and @ regular equivalence relations on M and N,
respectively, and f : M — N a C" map, r > 1, compatible with R and Q; that is, if xRy then f(x)Qf(y).
Then f induces a unique C™ map ¢ : M/R — N/Q and the diagram
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TM ) TN
T Trn
T(M/R) T(N/Q)

commutes.

Proof. The map ¢ is uniquely determined by 7 o f = pomy. Since my o f is C, ¢ is C” by Proposition
3.5.21. The diagram is obtained by applying the chain rule to my o f = @ o mpy. |

The manifold M/R might not be Hausdorff. By Proposition 1.4.10 it is Hausdorff iff the graph of R is
closed in M x M; R is open since it is regular. For an example of a non-Hausdorff quotient manifold see
Exercise 3.5-8.

There is, in fact, a bijective correspondence between surjective submersions and quotient manifolds. More
precisely, we have the following.

3.5.23 Proposition. Let f: M — N be a submersion and let R be the equivalence relation defined by f;
that is, xRy iff f(x) = f(y). Then R is regular, M/R is diffeomorphic to f(M), and f(M) is open in N.

Proof. As f is a submersion, it is an open mapping, so f(M) is open in N. Moreover, since f is open,
so is the equivalence R and thus f induces a homeomorphism of M/R onto f(M) (see the comments
following Definition 1.4.9). Put the differentiable structure on M /R that makes the homeomorphism into a
diffeomorphism. Then M/R is a manifold and the projection is clearly a submersion, since f is. [ ]

This construction provides a number of examples of quotient manifolds.
3.5.24 Examples.
A. The base space of any vector bundle is a quotient manifold. Take the submersion to be the vector
bundle projection.
B. The circle S' is a quotient manifold of R defined by the submersion 6 — ¢?; we can then write
St = R/27Z, including the differentiable structure.

C. The Grassmannian Gg(E) is a quotient manifold in the following way. Define the set D by D =
{(2z1,...,2x) | z; € E,x1,..., 2 are linearly dependent }. Since D is open in the product Ex --- x E
(k times), one can define the map 7 : D — G (E) by 7(z1,...,25) = span{z1,...,z;}. Using the
charts described in Example 3.1.8G, one finds that 7 is a submersion. In particular, the projective
spaces RP"™ and CP™ are quotient manifolds.

D. The Mobius band as explained in Example 3.4.10C is a quotient manifold.

E. Quotient bundles are quotient manifolds (see Proposition 3.4.17). ¢

We close with an important characterization of regular equivalence relations due to Godement, as presented
by Serre [1965].

3.5.25 Theorem. An equivalence relation R on a manifold M is reqular iff
(i) graph(R) is a submanifold of M x M, and

(ii) p1:graph(R) — M, p1(z,y) = x is a submersion.
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Proof. First assume that R is regular. Since 7 : M — M/R is a submersion, so is the product 7 x 7 :
M x M — (M/R) x (M/R) so that graph(R) = (m x ) "' (Ap/r), where the set

Anyr={([z],[2]) | [z] € M/R}

is the diagonal of M/R x M/R, is a submanifold of M x M (Theorem 3.5.4). This proves (i). To verify (ii), let
(x,y) € graph(R) and v, € T, M. Since 7 is a submersion and 7 (z) = 7 (y), there exists v, € T, M such that
Tym(vy) = Tym(vy); that is, (vg,vy) € T(z, y)(graph(R)) by Theorem 3.5.4. But then T'(z,y)p1 (v, vy) = Uy,
showing that p; is a submersion.

To prove the converse, we note that the equivalence relation is open, that is, that 7=!(w(U)) is an open
subset of M whenever U is open in M. Indeed

7 N (7(U)) = pr (M x U) N graph(R))

which is open since p; is an open map being a submersion by (ii). Second, the diffeomorphism s : (x,y) —
(y, x) of graph(R) shows that p; is a submersion iff ps : graph(R) — M, p2(x,y) = y is a submersion since
p2 = p1os. The rest of the proof consists of two major steps: a reduction to a local problem and the solution
of the local problem. [ |

Step 1. If M =, U;, where U; are open subsets of M such that R; = RN(U; x U;) is a regular equivalence
relation in U;, then R is regular.

Openness of R implies openness of R; and of U} = n~!(w(U;)). Let us first show that R = RN (U; x U})
is regular on U. Let m; : U; — U;/R; and 7} : U — U;/R; denote the canonical projections. We prove
that the existence of a manifold structure on U;/R; and submersivity of m; imply that U;"/R} has a manifold
structure and that 7} is a submersion. For this purpose let \; : U;/R; — U} /R be the bijective map induced
by the inclusion j; : U; — U;* and endow U;*/ R} with the manifold structure making A; into a diffeomorphism.
Thus 7 is a submersion iff p; = A Lo 7f : U — U;/R; is a submersion. Since \; o m; = 7 o j;, it follows
that p;|U; = m; is a submersion and therefore the composition (p;|U;) ops : (U x U;) Ngraph(R) — U;/R; is
a submersion. The relations (p;|U;) opa = p; o p1 show that p; op; is a submersion and since p; is a surjective
submersion this implies that p; is a submersion (see Exercise 3.5-6(iv)).

Thus, in the statement of Step 1, we can assume that all open sets U; are such that U; = 7~ (7 (U;)).
Let R;; be the equivalence relation induced by R on U; N U;. Since U; N U, /R;; is open in both U;/R; and
U;/Rj, it follows that it has two manifold structures. Since m; and 7; are submersions, they will remain
submersions when restricted to U; N U;. Therefore R;; is regular and by Proposition 3.5.21(iii) the manifold
structures on U; NU;/R;; induced by the equivalence relations U; /R; and U;/R; coincide. Therefore there
is a unique manifold structure on M /R such that U;/R; are open submanifolds; this structure is obtained
by collation (see Exercise 3.2-6). The projection 7 is a submersion since m; = 7|U; is a submersion for all i.

Step 2. For each m € M there is an open neighborhood U of m such that RN (U x U) = Ry is regular.
The main technical work is contained in the following.

3.5.26 Lemma. For each m € M there is an open neighborhood U of M, a submanifold S of U and a
smooth map s : U — S such that [u] NS = {s(u)}; S is called a local slice of R.

Let us assume the lemma and use it to prove Step 2. The inclusion of S into U is a right inverse of s and
thus s is a submersion. Now define ¢ : S — U/Ry by ¢(u) = [u]. By the lemma, ¢ is a bijective map. Put
the manifold structure on U/Ry making ¢ into a diffeomorphism. The relation ¢ o s = 7|U shows that 7|U
is submersive and thus Ry is regular.

Proof of Lemma 3.5.26. In the entire proof, m € M is fixed. Define the space F' by F = {v € T,, M |
(0,v) € T, m)(graph(R)) }, then {0} x F' = ker T(,, mmyp1 and thus by hypothesis (ii) in the theorem, {0} x F°
splits in T(,, m)(graph(R)). The latter splits in T, M x T,,, M by hypothesis (i) and thus {0} x F splits in
T M xT,, M. Since {0} x F' is a closed subspace of {0} x T}, M, it follows that F splits in T,, M (see Exercise
2.1-7). Let G be a closed complement of F' in T, M and choose locally a submanifold P of M, m € P, such
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that T,, P = G. Define the set Q by Q = (M x P) N graph(R). Since Q = p, ' (P) and p, : graph(R) — M
is a submersion, @ is a submanifold of graph(R).

We claim that T{,, myp1 @ Tim,m)@ — TinM is an isomorphism. Since T{,, )@ = (T(m,m)pg)_l(TmPL it
follows that

ker(T(m,m)p1|T(m,m)Q) = ker T(m,m)pl N (T(m,m)p2)_1<TmP)
— ({0} x F) N (T M x G)
={0} x (FNG) ={(0,0)},

that is, T(m,m)P1|T(m,m)@ is injective. Now let v € T, M and choose v € T,,M such that (u,v) €
Tm,m)(graph(R)). If v =wv; + v, v1 € F, v3 € G, then

(u,v2) = (u,v) = (0,v1) € T(sn,m)(graph(R))

and T, myp2(u,v2) = vo € T),, P, that is, (u,v2) € (Tim,m)P2) (T P) = Tim,m)@- Then Ty, 1nyp1(u,v2) =
u and hence T{, 1) P1|T(m,m) @ is onto.

Thus p; : @ — M is a local diffeomorphism at (m,m), that is, there are open neighborhoods U; and U,
of m, Uy C Uy such that p; : QN (Uy x Uz) — U; is a diffeomorphism. Let ¢ be the inverse of p; on Uj.
Since o is of the form o(z) = (z, s(x)), this defines a smooth map s : U; — P. Note that if € U; N P, then
(x,2) and (x,s(x)) are two points in @ N (Uy x Us) with the same image in U; and hence are equal. This
shows that s(z) = « for x € U; N P.

Set U ={2xe€U |s(x) e UyNP}andlet S =UnNP. Since s is smooth and U; N P is open in P it
follows that U is open in Uy hence in M. Also, m € U since m € Uy N P and so m = s(m). Let us show
that s(U) C S, that is, that if z € U, then s(x) € U and s(xz) € P. The last relation is obvious from the
definition of U. To show that s(z) € U is equivalent to proving that s(z) € Uy, which is clear, and that
s(s(x)) € Uy N P. However, since s(s(z)) = s(x), because s(x) € P, it follows from « € U that s(x) € U NP.
Thus we have found an open neighborhood U of m, a submanifold S of U, and a smooth map s: U — S
which is the identity in U N S.

Finally, we show that s(x) is the only element of S equivalent to € U. But this is clear since there is
exactly one point in (U x S) Ngraph(R), namely (z, s(x)) mapped by p; into x, since p; |(U x S) Ngraph(R)
is a diffeomorphism m. [ |

The above proof shows that in condition (ii) of the theorem, p; can be replaced by ps. Also recall that
M/R is Hausdorfl iff R is closed.

SUPPLEMENT 3.5A
Lagrange Multipliers

Let M be a smooth manifold and ¢ : N — M a submanifold of M, i denoting the inclusion mapping. If
f:+ M — R, we want to determine necessary and sufficient conditions for n € N to be a critical point of
fIN, the restriction of f to N. Since f|N = f o4, the chain rule gives T,,(f|N) = T,,f o Tp,i; thus n € N is
a critical point of f|N iff T,, f|T;,N = 0. This condition takes a simple form if N happens to be the inverse
image of a point under submersion.

3.5.27 Theorem (Lagrange Multiplier Theorem). Let g : M — P be a smooth map and let p € P be a
reqular value of g. Let N = g=(p) and let f : M — R be C", r > 1. A point n € N is a critical point of
FIN if there exists X € T, P, called a Lagrange multiplier, such that T, f = Ao T,g.
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Proof. First assume such a A exists. Since T,,N = ker T, g,
(Ao ThgoTpni)(vn) = AN(Thg(v,)) =0 for all v, € T,,N;

that is, 0 = (A o T,,9)| TN = T, f|T,N.

Conversely, assume T, f|T,,N = 0. By the local normal form for submersions, there is a chart (U, ¢) at n,
¢:U — Uy x Vi CE x F such that (U N N) = {0} x V; satisfying ¢(n) = (0,0), and a chart (V, 1) at p,
YV — Uy C E where g(U) CV, 9¥(p) =0, and such that

Jou(z,y) = Wogop ) (z,y) =
for all (z,y) € Uy x V1. If f, = fop™!t: U x Vi — R, we have for all v € F, Daf,(0,0) - v = 0 since
T, f|T,N = 0. Thus, letting u =D, f,(0,0) € E*, u € E and v € F, we get

thp(ov 0) : (uv U) = ,LL(U) = (N © Dgwﬁ)(ov 0) ' (’U,, ’U);

that is,

D f(0,0) = (10 Dgpy)(0,0).

To pull this local calculation back to M and P, let A = po T,y € TP, so composing the foregoing relation
with 7T}, on the right we get 1), f = Ao T),g. [ |

3.5.28 Corollary. Let g : M — P be transversal to the submanifold W of P, N = g~ (W), and let
JiM—RbeC", r>1. Let By, be a closed complement to ToyW in Ty P 50 Ty P = Ty W @ Eg(y,)
and let T : Tym) P — By, be the projection. A point n € N is a critical point of f|N iff there exists X €

g(n)
called a Lagrange multiplier such that T,,f = AomoT,g.

Proof. By Theorem 3.5.12, there is a chart (U, ¢) at n, with o(U) = U; xUs C E; X Ea, o(UNN) = {0} x
Us, and ¢(n) = (0,0), and a chart (V,4) at g(n) satisfying (V) = Uy x V3 C F1 xF, (VNW) = {0} x V7,
¥(g(n)) = (0,0), and g(U) C V, such that the local representative satisfies

ou(@,y) = (Yo go ™) (z,y) = (z,n(z,y))

for all (z,y) € Uy x Vi. Let p : E; XxF — E; be the canonical projection. By the Lagrange multiplier theorem
applied to the composition po g,y : Uy x Uy — Uy, (0,0) € Uy x Us is a critical point of f[{0} x Us iff there
is a point € E} such that Df,(0,0) = po poDgyy(0,0). Composing this relation on the right with T,
and letting A = p o Tg(,y9 and

= (Tym¥) ™ By © 00 Tymy¥ : Tym)P = Bg(nys
we get the required identity T,,f = AomwoT,g. ]

If P is a Banach space F, then Theorem 3.5.27 can be formulated in the following way.

3.5.29 Corollary. Let F be a Banach space, g : M — F a smooth submersion, N = g=*(0), and f : M —
R be C", r > 1. The point n € N is a critical point of f|N iff there exists X € F*, called a Lagrange
multiplier, such that n is a critical point of f — Ao g.

Remarks.

1. X\ depends not just on f|N but also on how f is extended off N.

2. This form of the Lagrange multiplier theorem is extensively used in the calculus of variations to study
critical points of functions with constraints; cf. Caratheodory [1965].
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3. We leave it to the reader to generalize Corollary 3.5.28 in the same spirit.
4. There are generalizations to f : M — RF, which we invite the reader to formulate.

The name Lagrange multiplier is commonly used in conjunction with the previous corollary in Euclidean
spaces. Let U be an open set in R, F = RP, g = (g',...,g?) : U — RP a submersion and f : U — R smooth.
Then x € N = g~1(0) is a critical point of f|N, iff there exists

P
)= Z Aie' € (RP)*,
=1

1

where e, ..., eP is the standard dual basis in R?, such that n is a critical point of

P
f=Xog=f=> Xg"
i=1

In calculus, the real numbers \; are referred to as Lagrange multipliers. Thus, to find a critical point

x=(zt,...,2™) € N C R™ of f|N one solves the system of m + p equations

P i
8—f(x)—2)\8i(x)=0, j=1...,m

Oz’ “Oai

=1

for the m + p unknowns x', ..., 2™ Aj,..., A,

For example, let N = S? C R? and f : R® — R; f(x,y,2) = 2. Then f|S? is the height function on the
sphere and we would expect (0,0, 41) to be the only critical points of £|5?; note that f itself has no critical
points. The method of Lagrange multipliers, with g(x,y,2) = 22 + y? + 2% — 1, gives

0—22A=0, 0—2yA=0, 1—22A=0, and z°+¢y*+2°>=1

The only solutions are A = £1/2, x =0, y = 0, z = £1, and indeed these correspond to the maximum and
minimum points for f on S2. See an elementary text such as Marsden and Tromba [1996] for additional
examples. For more advanced applications, see Luenberger [1969].

The reader will recall from advanced calculus that maximum and minimum tests for a critical point can be
given in terms of the Hessian, that is, matrix of second derivatives. For constrained problems there is a similar
test involving bordered Hessians. Bordered Hessians are simply the Hessians of h = f — Ag + ¢(A — \g)?
in (x, \)-space. Then the Hessian test for maxima and minima apply; a maximum or minimum of h clearly
implies the same for f on a level set of g. See Marsden and Tromba [1996] (pp. 224-30) for an elementary
treatment and applications.

Exercises

3.5-1. (i) Show that the set SL(n,R) of elements of L(R™,R™) with determinant 1 is a closed submanifold
of dimension n? — 1; SL(n, R) is called the special linear group. Generalize to the complex case.

(ii) Show that O(n) has two connected components. The component of the identity SO(n) is called the
special orthogonal group.

(ili) LetU(n) ={U € L(C",C") | UU* = Identity } be the unitary group. Show that U(n) is a non-compact
submanifold of dimension n? of L(C",C") and O(2n).
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(iv) Show that the special unitary group SU(n) = U(n)NSL(n, C) is a compact n? —1 dimensional manifold.
(v) Define

_ 0 I 2n 2n

J= [_[ O} € L(R™", R*"),

where [ is the identity of R™. Show that the space Sp(2n,R) defined by
Sp(2n,R) = {Q € L(R*",R*") | QIQ" = J }

is a compact submanifold of dimension 2n? + n; it is called the symplectic group.

o 3.5-2. Define USt(n,n;k) and Sp St(2n,2n;2k) analogous to the definition of OSt(n,n;k) in Example
3.5.5D. Show that they are compact manifolds and compute their dimensions.

3.5-3. (i) Let P C O(3) be defined by

P={Qe0(3)|detQ = +1, Q = Q" \{I}.

<&

Show that P is a two-dimensional compact submanifold of O(3).

(i) Define f : RP? — O(3), f(£) = the rotation through 7 about the line £. Show that f is a diffeomorphism
of RP? onto P.

¢ 3.5-4. (i) If N is a submanifold of dimension n in an m-manifold M, show that for each x € N there
is an open neighborhood U C M with « € U and a submersion f : U C M — R™™™ such that
NNU = f~10).

(ii) Show that RP! is a submanifold of RP?, which is not the level set of any submersion of RP? into RP!;
in fact, there are no such submersions.

HINT: RP! is one-sided in RP2.

<

3.5-5. (i) Show that if f : M — N is a subimmersion, g : N — P an immersion and h : Z — M a
submersion, then g o f o h is a subimmersion.

(ii) Show that if f; : M; — N;,i = 1,2 are immersions (submersions, subimmersions), then so is f1 x f3 :
M1 XM2—>N1 XNQ.

(iii) Show that the composition of two immersions (submersions) is again an immersion (submersion). Show
that this fails for subimmersions.

(iv) Let f: M —- Nandg: N — PbeC", r>1.1If go f is an immersion, show that f is an immersion.
If go f is a submersion and if f is onto, show that g is a submersion.

(v) Show that if f is an immersion (resp., embedding, submersion, subimmersion) then so is T'f.

o 3.5-6. (i) Let M be a manifold, R a regular equivalence relation and S another equivalence relation
implied by R; that is, graph R C graph S. Denote by S/R the equivalence relation induced by S on
M/R. Show that S is regular iff S/R is and in this case establish a diffeomorphism (M/R)/(S/R) —
M/S.

(ii) Let M;, ¢ = 1,2 be manifolds and R; be regular equivalences on M;. Denote by R the equivalence on

My x M; defined by Ry x Rs. Show that M/R is diffeomorphic to (M;/R1) x (Ma/R3).

¢ 3.5-7 (The line with two origins). Let M be the quotient topological space obtained by starting with
(R x {0}) U (R x {1}) and identifying (¢,0) with (¢,1) for ¢ # 0. Show that this is a one-dimensional
non-Hausdorff manifold. Find an immersion R — M.
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¢ 3.5-8. Let f: M — N be C* and denote by h: TM — f*(TN) the vector bundle map over the identity
uniquely defined by the pull-back. Prove the following:

(i) f is an immersion iff 0 — TM 2, f*(T'N) is fiber split exact;

(ii) f is a submersion iff TM LR f*(T'N) — 0 is fiber split exact;
(iii) f is a subimmersion iff ker(h) and range(h) are subbundles.

© 3.5-9. Let A be a real nonsingular symmetric n x n matrix and ¢ a nonzero real number. Show that the
quadratic surface { x € R" | (Az,x) = ¢} is an (n — 1)-submanifold of R™.

o 3.5-10 (Steiner’s Roman Surface). Let f: 5% — R* be defined by
f(z,y,2) = (yz, 2, 2y, 2% + 2y* + 327).
(i) Show that f(p) = f(q) if and only if p = +q.
(ii) Show that f induces an immersion f’: RP? — R*.

(iii) Let g : RP? — R3 be the first three components of f’. Show that g is a “topological” immersion and
try to draw the surface g(RP?) (see Spivak [1979] for the solution).

o 3.5-11 (Covering maps). Let f: M — N be smooth and M compact, dim(M) = dim(N) < oo. If n is a
regular value of f, show that f~!(n) is a finite set {m1,...,my} and that there exists an open neighborhood
V of n in N and disjoint open neighborhoods Uy, ..., Uy of my,...,my such that f=3(V) = Uy U--- U Uy,
and f|Ug : U; — V,i=1,... k are all diffeomorphisms. Show k is constant if M is connected and f is a
submersion.

© 3.5-12. Let f: M — N and g : N — P be smooth maps, such that g h V' where V is a submanifold of P.
Show that f g t(V)iff go fh V.

¢ 3.5-13. Show that an injective immersion f : M — N is an embedding iff f(M) is a closed submanifold
of an open submanifold of N. Show that if f: M — N is an embedding, f is a diffeomorphism of M onto

f(M).

HINT: See Exercise 2.5-12.
¢ 3.5-14. Show that the map p : St(n,n; k) = G (R"™) defined by p(A) = range A is a surjective submersion.
¢ 3.5-15. Show that f : RP" x RP™ — RP™"* Tt given by

(@,9) = [Z0Y0, oY1, - -, Tiljs - - s TnYm]

is an embedding. (This embedding is used in algebraic geometry to define the product of quasiprojective
varieties; it is called the Segre embedding.)

¢ 3.5-16. Show that

{(e,y) €RP" xRP" [n<m, Y ays =0}

1=0,...,n

is an (m + n — 1)-manifold. It is usually called a Milnor manifold.

¢ 3.5-17 (Fiber product of manifolds). Let f: M — P and g : N — P be C° mappings such that (f,g) :
M x N — P x P is transversal to the diagonal of P x P. Show that the set defined by M xp N =
{(m,n) € M x N | f(m)=g(n)}is a submanifold of M x N.If M and N are finite dimensional, show that
codim(M xp N) = dim P.
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o 3.5-18. (i) Let H be a Hilbert space and GL(H) the group of all isomorphisms A : H — H that are

(i)

continuous. As we saw earlier, GL(H) is open in L(H,H) and multiplication and inversion are C'*°
maps, so GL(H) is a Lie group. Show that O(H) ¢ GL(H) defined by O(H) = {4 € GL(H) |
(Az, Ay) = (z,y) for all ,y € H} is a smooth submanifold and hence also a Lie group.

Show that the tangent space at the identity of GL(H) (the Lie algebra) consists of all bounded skew
adjoint operators, as follows. Let S(H) = {A € L(H,H) | A* = A}, where A* is the adjoint of A.
Define f : GL(H) — S(H), by f(A) = A*A. Show f is C*, f~'(I) = O(H), and

Df(A)-B=B"A+ A*B.
Show that f is a submersion, and
kerDf(A)={B e L(H,H) | BFA+ A*B=0},
which splits; a complement is the space {T € L(H,H) | T*A = A*T } since any U splits as

1 1
U=5(U- AU A) + S+ AU A).

¢ 3.5-19. (i) If f: M — N is a smooth map of finite-dimensional manifolds and m € M, show that there

(i)

is an open neighborhood U of m such that rank(T, f) > rank(T,,f) for all z € U.

HiNT: Use the local expression of T}, f as a Jacobian matrix.

Let M be a finite-dimensional connected manifold and f : M — M a smooth map satisfying fo f = f.
Show that f(M) is a closed connected submanifold of M. What is its dimension?

HINT: Show f is a closed map. For m € f(M) show that
range(T,, f) = ker(Identity —T,, f)
and thus
rank (7T, f) + rank(Identity —T,, f) = dim M.

Both ranks can only increase in a neighborhood of m by (i), so rank(7,, f) is locally constant on f(M).
Thus there is a neighborhood U of f(M) such that the rank of f on U is bigger than or equal to the
rank of f on f(M). Use rank(AB) < rank A and the fact that f o f = f to show that the rank of f
on U is smaller than or equal to the rank of f in f(M). Therefore rank of f on U is constant. Apply
Theorem 3.5.18(iii).

¢ 3.5-20. (i) Let o, : E — R be continuous linear maps on a Banach space E such that ker o« = ker 3.

(i)

Show that o and 3 are proportional.
HinT: Split E = kera @ R.

Let f,g: M — R be smooth functions with 0 a regular value of both f and g and N = f~(0) = g=1(0).
Show that for all z € N, df(x) = A(z) dg(x) for a smooth function A : N — R.

¢ 3.5-21. Let f: M — N be a smooth map, P C N a submanifold, and assume f h P. Use Definition
3.5.10 and Exercise 3.4-10 to show the vector bundle isomorphism v(f~1(P)) = f*(v(P)).
HINT: Look at Tf|f~(P) and compute the kernel of the induced map TM|f~!(P) — v(P). Obtain a
vector bundle map v(f~1(P)) — v(P) which is an isomorphism on each fiber. Then invoke the universal
property of the pull-back of vector bundles; see Exercise 3.4-13.

© 3.5-22. (i) Recall (Exercise 3.2-1) that S™ with antipodal points identified is diffeomorphic to RP".

Conclude that any closed hemisphere of S™ with antipodal points on the great circle identified is also
diffeomorphic to RP™.
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(ii) Let B™ be the closed unit ball in R™. Map B"™ to the upper hemisphere of S™ by mapping z +—
(z, (1 — [|=]>)*/?). Show that this map is a diffeomorphism of an open neighborhood of B™ to an open
neighborhood of the upper hemisphere S7 = {x € S" | "*! > 0}, mapping B™ homeomorphically
to S7 and homeomorphically to the great circle {x € S™ | z"™! = 0}. Use (i) to show that B" with
antipodal points on the boundary identified is diffeomorphic to RP™.

(iii) Show that SO(3) is diffeomorphic to RP3; the diffeomorphism is induced by the map sending the closed
unit ball B? in R? to SO(3) via (z,y,2) — (the rotation about (z,y, z) by the right hand rule in the
plane perpendicular to (x,y, z) through the angle 7(z? + y? + 22)1/?).

o 3.5-23. (i) Show that S™ x R embeds in R**!.  HINT: The image is a “fat” sphere.
(ii) Describe explicitly in terms of trigonometric functions the embedding of T? into R3.
(iii) Show that S*M) x ... x §%*) where a(1) + ---a(k) = n embeds in R+,
HiNT: Show that its product with R embeds in R™"*! by (i).

© 3.5-24. Let f: M — M be an involution without fixed points, that is, f o f = identity and f(m) # m for
all m. Let R be the equivalence relation determined by f, that is, mqRmg iff f(mq) = f(me).

(i) Show R is a regular equivalence relation.

(ii) Show that the differentiable structure of M /R is uniquely determined by the property: the projection
m: M — M/R is a local diffeomorphism.

o 3.5-25 (Connected sum of manifolds). Let M and N to be two Hausdorff manifolds modeled on the same
Banach space E. Let m € M, n € N and let (Up, ¢o) be a chart at m and let (Vp, o) be a chart at n such
that ¢o(m) = 1g(n) = 0 and @ (U), (V) contain the closed unit ball in E. Thus, if B denotes the open
unit ball in E, ¢(U)\B and o(V)\B are nonempty. If A and B are atlases of M and N respectively, let
A, By, be the induced atlases on M\{m} and N\{n} respectively. Define

72 B\0} = B0} by o (el 5 ) = (1= 1el )

[l [l

and observe that o2 = identity. Let W be the disjoint union of M\{m} with N\{n} and define an equivalence
relation R in W by

vy Rvg iff (w1 = wy) or
(w1 € M\{m}, po(w1) € B\{0} and we € N\{n},

o(w2) € B\{0} and po(w1) = (0 0 ¢)(w2)) or
(same condition with w; and wy interchanged).

(i) Show that R is an equivalence relation on W.
(ii) Show R is regular.

(iii) If 7 : W — W/R denotes the projection, show that for any open set O in the atlas of W, 7 : O — 7(O)
is a diffeomorphism.

(iv) Show that

{(@(U), o (xlU)™1), (x(V), o (x[V)"1) | (U ) € Am, (V.9h) € Bn }
is an atlas defining the differentiable structure of W/R.

(v) W/R is denoted by M#N. Draw T?#T? and identify T?#RP? and RP2#RP2.
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(vi)

(vii)
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Prove that
M#A(N#P) =~ (M#N)#P, M#N ~ N#M, M+#Sg~ M,
where M, N, and P are all modeled on E, Sg is the unit sphere in E; and ~ denotes “diffeomorphic.”

Compute R*#R"# - - - #R"™ (k times) for all positive integers n and k and show that it embeds in R™.

© 3.5-26. (i) Let @ > 0 and define

(iii)

2
Xa :R—= R by xq(z) = exp <m> :

if x € |—a,a] and x,(x) = 0 if x € R\]—a,a]. Show that this is a C'*° function and satisfies the

inequalities 0 < xq(z) < 1, |x,(2)] <1 for all x € R, and x,4(0) = 1.

Fix a > 0 and A € E*, where E is a Banach space whose norm is of class C" away from the origin and
r > 1. Write E = ker A @ R; this is always possible since any closed finite codimensional space splits
(see §2.2). Define, for any t € R, fa o E— E by fae(u,z) = (u,z +tx.(||ul]|)) where u € ker A and
x € R. Show that fy ¢ satisfies f 4,¢(0,0) = (0,1) and fx 4. (E\ cl(B,(0))) = identity.

HiNT: Show that f) . is a bijective local diffeomorphism.

Let M be a C" Hausdorff manifold modeled on a Banach space E whose norm is C" on E\{0}, » > 1.
Assume dim M > 2. Let C be a closed set in M and assume that M\C' is connected. Let {p1,...,pr},
{q1,.-.,qx} be two finite subsets of M\C. Show that there exists a C" diffecomorphism ¢ : M — M
such that ¢(p;) = ¢;, @ = 1,...,k and ¢|C = identity. Show that if & = 1, the result holds even if
dim M = 1.

HINT: For k = 1, define an equivalence relation on M\C' : m ~ n iff there is a diffeomorphism
¥ : M — M homotopic to the identity such that ¢(m) = n and ¥|C' = identity. Show that the
equivalence classes are open in M\C' in the following way. Let ¢ : U — E be a chart at m, ¢(m) =0,
U C M\C, and let n € U, n # m. Use the Hahn—Banach theorem to show that there is A € E* such
that ¢ can be modified to satisfy ¢(m) = (0,0), ¢(n) = (0,1), where E = ker A ® R. Use (ii) to find
a diffeomorphism h : U — U homotopic to the identity on U, satisfying h(m) = n and h|(U\A) =
identity, where A is a closed neighborhood of n. Then f : M — M which equals h on U and the
identity on M\U establishes m ~ n. For general k proceed by induction, using the connectedness of
M\C\{q1,...,qx—1} and finding by the case k = 1 a diffeomorphism g homotopic to the identity on
M sending h(py) to g and keeping C'U{qu,...,qx} fixed; h : M — M is the diffecomorphism given by
induction which keeps C' fixed and sends p; to ¢; for r = 1,...,k — 1. Then f = g o h is the desired
diffeomorphism.

3.6 The Sard and Smale Theorems

This section is devoted to the classical Sard theorem and its infinite-dimensional generalization due to Smale
[1965]. We first develop a few properties of sets of measure zero in R™.

Sets of Measure Zero. A subset A C R™ is said to have measure zero if, for every £ > 0, there is a
countable covering of A by open sets U;, such that the sum of the volumes of U; is less than e. Clearly a
countable union of sets of measure zero has measure zero.

3.6.1 Lemma. Let U C R™ be open and A C U be of measure zero. If f : U — R™ is a C' map, then
f(A) has measure zero.
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Proof. Let A be contained in a countable union of relatively compact sets C,,. If we show that f(ANC,,)
has measure zero, then f(A) has measure zero since it will be a countable union of sets of measure zero. But
C,, is relatively compact and thus there exists M > 0 such that |Df(z)|| < M for all x € C,,. By the mean
value theorem, the image of a cube of edge length e is contained in a cube of edge length e\/mM. ]

3.6.2 Lemma (Fubini Lemma). Let A be a countable union of compact sets in R™, fix an integer r satis-
fying 1 <r <n—1 and assume that A, = AN ({c} x R"™") has measure zero in R"~" for all c € R". Then
A has measure zero.

Proof. By induction we reduce to the case r = n — 1. It is enough to work with one element of the union,
so we may assume A itself is compact and hence there exists and interval [a, b] such that A C [a,b] x R"~1.
Since A. is compact and has measure zero for each ¢ € [a,b], there is a finite number of closed cubes
K, .., Ken(e in R"™! the sum of whose volumes is less than £ and such that {c} x K.,; cover A,
i=1,...,N(c). Find a closed interval I. with ¢ in its interior such that I, x K.; C A, X R™=1. Thus the
family

{I.xK.;|i=1,....,N(c), c€la,b] }

covers AN ([a,b] x R"~1) = A. Since {int(I.) | ¢ € [a,b] } covers [a,b], we can choose a finite subcovering
L1y, -+ Ieary- Now find another covering J(1y, ..., Jo(x) such that each J.(; is contained in some I,
and such that the sum of the lengths of all J.(;) is less than 2(b — a). Consequently { Jo(;y x Ky, | J =
L,...,K, i=1,...,Ngy) } cover A and the sum of their volumes is less than 2(b — a)e. [ |

Sard Theorem. Let us recall the following notations from §3.5. If M and N are C!' manifolds and
f:M — NisaC! map, apoint z € M is a regular point of f if T, f is surjective, otherwise x is a critical
point of f. If C C M is the set of critical points of f, then f(C) C N is the set of critical values of f
and N\ f(C) is the set of regular values of f, which is denoted by Ry or R(f). In addition, for A C M
we define Ry|A by Ry|A = N\f(ANC). In particular, if U C M is open, R;|U = R(f|U).

3.6.3 Theorem (Sard’s Theorem in R"). Let U C R™ be open and f : U — R™ be of class C*, where
k > max(0,m —n). Then the set of critical values of f has measure zero in R™.

Note that if m < n, then f is only required to be at least C*.
Proof. (Complete only for & = c0) Denote by
C={zeU|rankDf(z) <n}

the set of critical points of f. We shall show that f(C) has measure zero in R™. If m = 0, then R™ is one
point and the theorem is trivially true. Suppose inductively the theorem holds for m — 1.
Let

Ci={xcU|Dif(x)=0forj=1,...,i},
and write C' as the following union of disjoint sets:
C = (C\Cy)U(C1\C2) U+ U (Cr—1\Ck) U C.
The proof that f(C) has measure zero is divided in three steps.
1. f(C%) has measure zero.
2. f(C\Ch) has measure zero.

3. f(Cs\Cs41) has measure zero, where 1 < s < k — 1.
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Proof of Step 1. Since k> 1, kn>n+k—1. But Kk > m —n+ 1, so that kn > m.

Let K C U be a closed cube with edges parallel to the coordinate axes. We will show that f(Cy N K)
has measure zero. Since Cj can be covered by countably many such cubes, this will prove that f(Cy) has
measure zero. By Taylor’s theorem, the compactness of K, and the definition of Cf, we have

f(y) = f(z) + R(z,y) where ||R(z,y)l| < Mlly — «|*** (3.6.1)

for x € Cx N K and y € K. Here M is a constant depending only on D¥f and K. Let e be the edge
length of K. Choose an integer ¢, subdivide K into £ cubes with edge e/¢, and choose any cube K’ of this
subdivision which intersects Cy. For z € C, N K’ and y € K’, we have ||z — y|| < v/m(e/{). By equation
(3.6.1), f(K') C L where L is the cube of edge N/*~1 with center f(z); N = 2M ((m)'/2¢)¥*+*. The volume
of L is N™¢~"(k+1) There are at most £™ such cubes; hence, f(Cx N K) is contained in a union of cubes
whose total volume V satisfies

V< Nnem—n(k-&-l) )

Since m < kn, m —n(k+1) <0,s0 V — 0 as £ — oo, and thus f(Cj N K) has measure zero.
Proof of Step 2. Write

C\C; ={zeU|1<rankDf(z) <n}=K, U---UK,_1,
where
K,={xzeU|rankDf(z) =q}

and it suffices to show that f(K,) has measure zero for ¢ = 1,...,n — 1. Since K, is empty for ¢ > m, we
may assume g < m. As before it will suffice to show that each point K, has a neighborhood V' such that
f(V N K,) has measure zero.

Choose xy € K,. By the local representation theorem 2.5.14, we may assume that x( has a neighborhood
V = Vi x Va, where V3 C R? and Vo C R™ 7 are open balls, such that for ¢t € V5 and € V3, f(t,x) =
(t,n(t,x)). Hence i : Vi x Vo — R"~ 9 is a C* map. For t € V; define n; : Vo — R"~% by n;(z) = n(t, z) for
x € V5. Then for every t € V7,

K,n({th x Vo) ={t} x{x e Vo | Dn(z) =0}
This is because, for (t,z) € Vi x Vo, Df(t,x) is given by the matrix

Df(tz) = F Dn?(fﬁ)] '

Hence rank D f (¢, z) = ¢ iff Dn:(z) = 0.

Now 7; is C¥ and k > m —n = (m —q) — (n — q). Since ¢ > 1, by induction we find that the critical values
of n, and in particular m:({ z € Vo | Dn(z) = 0}), has measure zero for each ¢ € V2. By Fubini’s lemma,
f(KyNV) has measure zero. Since K is covered by countably many such V, this shows that f(K,) has
measure zero.

Proof of Step 3. To show f(Cs\Cs4+1) has measure zero, it suffices to show that every x € Cs\Cs41 has
a neighborhood V such that f(Cs N V) has measure zero; then since Cs\Csy1 is covered by countably many
such neighborhoods V, it follows that f(Cs\Csy1) has measure zero.

Choose xg € Cs\Cs11. All the partial derivatives of f at xg of order less than or equal to s are zero, but
some partial derivative of order s + 1 is not zero. Hence we may assume that Dyw(zg) # 0 and w(xg) = 0,
where D is the partial derivative with respect to x1 and that w has the form
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Define h : U — R™ by

h(z) = (w(z), 22, .., Tm),

where = (z1,22,...,7,) € U C R™. Clearly h is C*~* and Dh(xg) is nonsingular; hence there is an
open neighborhood V of 2y and an open set W C R™ such that h: V — W is a C*~* diffeomorphism. Let
A=C,NV, A" =h(A) and g = h~1. We would like to consider the function f o g and then arrange things
such that we can apply the inductive hypothesis to it. If £ = oo, there is no trouble. But if & < oo, then fog
is only C*~* and the inductive hypothesis would not apply anymore. However, all we are really interested in
is that some C* function F : W — R™ exists such that F(z) = (f o g)(z) for all z € A’ and DF(x) = 0 for
all z € A’. The existence of such a function is guaranteed by the Kneser—Glaeser rough composition theorem
(Abraham and Robbin [1967]). For k = oo, we take F' = f o g. In any case, define the open set W, C R™~!
by

Wo = {(x2,...,20) €ER™ | (0,29,...,2,) EW}
and Fy : Wy — R™ by
Fo(za,...,xm) = F(0,29,...,2y)

Let S = {(56'2,...7.%‘m) e Wy | DFo(l‘g,...,LL'm) ZO}
By the induction hypothesis, Fy(S) has measure zero. But A’ = h(CsNV) C 0 x S since for x € A/,
DF(z) =0 and since for z € Cs NV,

h(z) = (w(x),zo,...,xm) = (0,22,...,Tm)
because w is an sth derivative of f. Hence
f(CsnNV)=F(h(CsnV)) C F(0xS)=Fy(S),

and so f(CsNV) has measure zero. As C;\Cs11 is covered by countably many such V', the sets f(Cs\Cs11)
have measure zero (s =1,...,k —1). [ |

The smoothness assumption k > 1+ max(0,m — n) cannot be weakened as the following counterexample
shows.

3.6.4 Example (Devil’s Staircase Phenomenon). The Cantor set C is defined by the following construc-
tion. Remove the open interval |]—1/3,2/3[ from the closed interval [0,1]. Then remove the middle thirds
11/9,2/9] and ]7/9,8/9[ from the closed intervals [0,1/3] and [2/3, 1] respectively and continue this process
of removing the middle third of each remaining closed interval indefinitely. The set C' is the remaining set.
Since we have removed a (countable) union of open intervals, C' is closed. The total length of the removed
intervals equals (1/3) > -,(2/3)" = 1 and thus C has measure zero in [0, 1]. On the other hand each point
of C' is approached arbitrarily closely by a sequence of endpoints of the intervals removed, that is, each
point of C' is an accumulation point of [0, 1]\C. Each open subinterval of [0, 1] has points in common with at
least one of the deleted intervals which means that the union of all these deleted intervals is dense in [0, 1].
Therefore C' is nowhere dense. Expand each number x in [0,1] in a ternary expansion 0.ajas ... that is,
r =73 503 "an, where a, =0, 1, or 2. Then it is easy to see that C consists of all numbers whose ternary
expansion involves only 0 and 2. (The number 1 equals 0.222....) Thus C' is in bijective correspondence
with all sequences valued in a two-point set, that is, the cardinality of C' is that of the continuum; that is,
C' is uncountable.

We shall construct a C! function f : R? — R which is not C? and which contains [0,2] among its
critical values. Since the measure of this set equals 2, this contradicts the conclusion of Sard’s theorem.
Note, however, that there is no contradiction with the statement of Sard’s theorem since f is only C*. We
start the construction by noting that the set C + C = {x +y | z,y € C} equals [0,2]. The reader can
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easily be convinced of this fact by expanding every number in [0,2] in a ternary expansion and solving
the resulting undetermined system of infinitely many equations. (The number 2 equals 1.222....) Assume
that we have constructed a C'-function g : R — R which contains C' among its critical values. The function
f(x,y) = g(x)+g(y) is C1, and if ¢1, c2 € C, then there are critical points @1, x5 € [0, 1] such that g(x;) = ¢,
i =1,2; that is, (z1,22) is a critical point of f and its critical value is ¢; + ¢3. Since C' + C' = [0, 2], the set
of critical values of f contains [0, 2].

We proceed to the construction of a function g : R — R containing C' in its set of critical points. At the
kth step in the construction of C, we delete 25~ open intervals, each of length 37%. On these 2~ intervals,
construct (smooth) congruent bump functions of height 27% and area = (const.) 27*3=% (Figure 3.6.1).

A A
k=2 1/4 1/4
& N]/ 1/9\‘[«Y ) [ »«}/ 1/9\‘[«Y Jl

F1GURE 3.6.1. The construction of congruent bump functions

These define a smooth function hy; let gi(x) be the integral from —oo to x of hy, so g, = hy and gy is
smooth. At each endpoint of the intervals, h; vanishes, that is, the finite set of endpoints occurring in the
k-th step of the construction of C' is among the critical points of gi. It is easy to see that h = Y, hy is
a uniformly convergent Cauchy series and that g = Y, -, gx is pointwise Cauchy; note that g;, is monotone
and

gr(1) — gx(0) = (const.) 37",

Therefore, g defines a C! function with ¢’ = h. The reader can convince themselves that h has arbitrarily
steep slopes so that g is not C?. The above example was given by Grinberg [1985]. Other examples of this
sort are due to Whitney [1935] and Kaufman [1979].

We proceed to the global version of Sard’s theorem on finite-dimensional manifolds. Recall that a subset of
a topological space is residual if it is the intersection of countably many open dense sets. The Baire category
theorem 1.7.4 asserts that a residual subset of a a locally compact space or of a complete pseudometric
space is dense. A topological space is called Lindeldf if every open covering has a countable subcovering.
In particular, second countable topological spaces are Lindel6f. (See Lemma 1.1.6.)

3.6.5 Theorem (Sard’s Theorem for Manifolds). Let M and N be finite-dimensional C* manifolds, dim(
m, dim(N) =n, and f : M — N a C* mapping, k > 1. Assume M is Lindeldf and k > max(0,m — n).
Then Ry is residual and hence dense in N.

Proof. Denote by C the set of critical points of f. We will show that every = € M has a neighborhood Z
such that R¢|cl(Z) is open and dense. Then, since M is Lindel6f we can find a countable cover {Z;} of X
with Ry|cl(Z;) open and dense. Since Ry = (), Ry|cl(Z;), it will follow that R is residual.

Choose € M. We want a neighborhood Z of = with R¢|cl(Z) open and dense. By taking local charts
we may assume that M is an open subset of R™ and N = R". Choose an open neighborhood Z of x such
that c1(Z) is compact. Then

C={zeM|rankDf(z) <n}

is closed, so cl(Z) N C' is compact, and hence f(cl(Z) N C) is compact. But f(cl(Z) N C) is a subset of the
set of critical values of f and hence, by Sard’s theorem in R™, has measure zero. A closed set of measure
zero is nowhere dense; hence Ry|cl(Z) =R\ f(cl(Z) N C) is open and dense.

|

M) =
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We leave it to the reader to show that the concept of measure zero makes sense on an n-manifold and to
deduce that the set of critical values of f has measure zero in .

Infinite Dimensional Case. To consider the infinite-dimensional version of Sard’s theorem, we first
analyze the regular points of a map.

3.6.6 Lemma. The set SL(E,F) of linear continuous split surjective maps is open in L(E,F).

Proof. Choose A € SL(E,F), write E = F @ K where K is the kernel of A, and define A’ : E - F x K
by A’(e) = (A(e),p(e)) where p : E = F & K — K is the projection. By the closed graph theorem, p is
continuous; hence A’ € GL(E, F x K). Consider the map T : L(E,F x K) — L(E, F) given by

T(B) =m0 B € L(E,F x K),

where 7 : F x K — F is the projection. Then T is linear, continuous (|7 o B|| < ||7|| || B]|), and surjective;
hence, by the open mapping theorem, 7' is an open mapping. Since GL(E, F x K) is open in L(E, F x K), it
follows that T(GL(E,F x K)) is open in L(E,F). But A = T(A’) and T(GL(E,F x K)) C SL(E,F). This
shows that SL(E, F) is open. [ |

3.6.7 Proposition. Let f: M — N be a C' mapping of manifolds. Then the set of reqular points is open
in M. Consequently the set of critical points of f is closed in M.

Proof. It suffices to prove the proposition locally. Thus, if E,F are the model spaces for M and N,
respectively, and « € U C E is a regular point of f, then Df(x) € SL(E,F). Since Df : U — L(E,F) is
continuous, (Df)~}(SL(E,F)) is open in U by Lemma 3.6.6. [ |

3.6.8 Corollary. Let f: M — N be C' and P a submanifold of N. The set {m € M | f is transversal to
P at m} is open in M.

Proof. Assume f is transversal to P at m € M. Choose a submanifold chart (V,¢) at f(m) € P,
p:V = F1 xFy, p(VNP)=F; x{0}. Hence if 7 : F; X F3 — F5 is the canonical projection, VNP =
o Y Fy x {0}) = (7o)~ t{0}. Clearly, Top : VN P — Fy is a submersion so that by Theorem 3.5.4,
ker Ty (7 0 ) = Ty(mmy P. Thus f is transversal to P at the point f(m) iff

Typ)N = ker T () (7 0 @) + Ty P
and
(T f) (T§(m)P) = ker Ty, (0 p o f)

splits in T,,, M. Since ¢ o 7 is a submersion this is equivalent to 7 o ¢ o f being submersive at m € M (see
Exercise 2.2-5). From Proposition 3.6.7, the set where 7 o ¢ o f is submersive is open in U, hence in M,
where U is a chart domain such that f(U) C V. [ |

3.6.9 Example. If M and N are Banach manifolds, the Sard theorem is false without further assumptions.
The following counterexample is, so far as we know, due to Bonic, Douady, and Kupka. Let

2
2
E={z=(v1,22,...) | 7; €R, |x||22<7j> <0},

j=>1
which is a Hilbert space with respect to the usual algebraic operations on components and the inner product

(T,y) =251 z;y;/j%. Consider the map f: E — R given by

—23:3?? + 31:?

fla) =D =

J=1
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which is defined since x € F implies |z;| < ¢ for some ¢ > 0 and thus

3.3 2.2 /3
S203 f3cy <&_

27 27’

—255? + 33:?
9

that is, the series f(z) is majorized by the convergent series ¢’ .-, 33/27. We have

6(—F +a;)v;

Df(f)'U:ZT7

Jj=1

that is, f is C'. In fact f is C°°. Moreover, D f(z) = 0 iff all coefficients of v; are zero, that is, iff 2; = 0 or
xj = 1. Hence the set of critical points is {z € E'| ; = 0 or 1} so that the set of critical values is

{f(@)]z;=00raz; =1} = Zj zj=0o0rz;=1p=10,1].

8

V)

j=1

But clearly [0, 1] has measure one. ¢

Sard’s theorem holds, however, if enough restrictions are imposed on f. The generalization we consider is
due to Smale [1965]. The class of linear maps allowed are Fredholm operators which have splitting properties
similar to those in the Fredholm alternative theorem.

3.6.10 Definition. Let E and F be Banach spaces and A € L(E,F)