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Preface

Since the publication of the previous books in this series more than
twenty years ago,! the subject of harmonic analysis has undergone a
vast development. A succession of new departures has in many ways
transformed the whole field. It has brought with it additional insights,
extending significantly the range of previous ideas. With all of this has
come a further clarification of the essential unity linking several of the
main areas of analysis.

What has been achieved includes: the broadening of the scope of
real-variable methods to encompass, among other matters, the theory
of Hardy spaces; the further study of the Fourier transform leading to
summability and restriction theorems; the analysis of L? methods, ex-
ploiting notions of orthogonality and oscillatory integrals; the application
of these ideas to situations where geometric properties related to curva-
ture play a role; and other ramifications of some of these concepts in
the context of the Heisenberg group. These ideas and their consequences
have not only had a profound effect on the domain of Fourier analysis
per se but have also had a major influence in such areas as partial differ-
ential equations, several complex variables, and analysis on symmetric
spaces.

It is the objective of this book to try to give an account of the main
lines of these developments. Given the sweep of the subject, I think of
the task involved as being in some ways akin to the telling of a long and
complicated story: an epic tale stretching over several decades, involv-
ing various principal characters that appear and reappear (sometimes in
disguised form), and following a complex plot with a number of intri-
cate subplots. To pursue this analogy further, I cannot deny that this
book is in part autobiographical: as the narrator of the story, I have cho-
sen to recount those matters I know best by virtue of having first-hand
knowledge of their unravelling.

A few words about the organization of this book. It is divided into
three parts, in accordance with the subject matter. The first five chapters
take up real-variable theory; the next six chapters emphasize L? methods
and oscillatory integrals; the last two chapters introduce analysis on the
Heisenberg group and also provide a retrospective view of some of the

T See Stein and Weiss (1971] and Stein [1970c¢], cited in the bibliography.
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xii PREFACFE

preceding material. The exposition is guided by the desire that, in each
chapter, the material should be developed in the service of the proofs
of a few central theorems. In doing this, I have often not formulated
the final results in maximal generality, nor have I always chosen the
shortest proofs. It is hoped, however, that the reader will ultimately see

the advantage of this approach.

It is my pleasure to acknowledge my deep indebtedness to Timothy
Murphy for indispensable help in writing this book. He joined me in this
effort about three years ago; up to that time only rudimentary progress
had been made. From then on, our constant conversations and his many
incisive suggestions spurred the work and helped refine the material into
its present form. He also took complete charge of the copy editing and
typesetting of the manuscript, which he carried out with consummate

skill.

I also wish to express my thanks to those others who have aided me:
Daryl Geller, Fulvio Ricci, Cora Sadosky, and Christopher Sogge, who
made valuable suggestions that have been incorporated in the text; also
D. H. Phong, Robert Fefferman, David Jerison, Andrew Bennett, Peter
Heller, Andrew Neff, and Der-Chen Chang, who prepared lecture notes
of graduate courses I gave at Princeton University during the period
1972 to 1987, on which parts of this book are based.

Lastly, I wish to express my gratitude to all my students and collab-
orators whose ideas enlighten these pages. This book is in large measure
a record of their achievement. |

Elias M. Stein
December 1992

(Guide to the Reader

T.he core of the book, which appears in standard type, consists of
the thirteen chapters, excluding the appendices and sections titled “Fur-
ther Results”. Written to be as self-contained as possible, its object is

to present the main ideas without undue adornment. In addition, the
following features should be noted.

.Appendices are intended as elaborations of previously treated core
subjects and are given with substantial sketches of proofs.

Further Results are meant to survey the vast number of additional
extensions and cognate topics; these are often presented as mere refor-

mulations of theorems in the cited literature, sometimes also with some
indication of proof.

Previous monographs in this series! are cited from time to time for
helpful background material. A number of interesting related topics, not
pursued in this book, can also be found there, as well as earlier, more

elemental (and possibly more transparent) approaches to some of the
matters treated here.

T Stein and Weiss [1971] and Stein {1970c}]; in the sequel, these books will be

referred to simply as Fourier Analysis and Singular Integrals.
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Prologue

Given the complexity of the matters treated here, it may be helpful
to begin by giving an overview of our subject. In sketching its broad
outlines, we point first to the principal analytic constructs whose study
will be our chief concern. These concepts can be loosely grouped into
three categories: maximal averages, singular integrals, and oscillatory
integrals.

Like all deep ideas in mathematics, these have each taken several
forms, displaying their versatility by adapting to the changing contexts
in which they occurred. Let us briefly recall how each appeared in an
early version. |

Mazximal averages. The simplest instance arises when we consider

1
the family of averages of a function f on R! given by — / flz — y) dy,

t > 0, as well as the more sophisticated variant — / f(:z: g) dy,
TJoo Y2 +1

t > 0, which is the Poisson integral of f. For these, the limiting behavior
as t — 0 is the main interest, and its deeper study is subsumed in the

properties of the corresponding maximal functions.
Singular integrals. A basic object in the classical theory is the Hilbert
o0

1 d .
transform f +~ p.v.— / flx — y)?y Its indispensable role there is
iy

— 00
partly explained by the fact that it stands squarely at the crossroads
linking real variables and complex function theory.

Oscillatory mtegmls Here the primordial example is the Fourier
transform f +— / e 2™=€ £(z) dz. Of course, when thinking of it, we

should also have in mmd its n-dimensional form, as well as the oscillatory
integrals arising from this by symmetry considerations, such as Bessel
functions.

Now it was already understood early that these three concepts were,
to a substantial degree, intertwined. Thus the fundamental L? estimate
for the Hilbert transform was seen as a simple consequence of the use of
the Fourier transform, and the weak-type (1,1) estimate was originally
proved by using properties of the Poisson integral mentioned above.

3



4 PROLOGUE

What could not be guessed then, and could only be revealed with
the passage of time, were the wider and deeper interconnections inherent
in these examples and their successive generalizations and refinements.
The insights that this yielded provide the foundations of a theory of vast
scope and utility that has developed over the last thirty years, spurred by
its application to such parts of analysis as partial differential equations,
several complex variables, and harmonic analysis related to semisimple
Lie groups and symmetric spaces.

While the theory encompassing these ideas does not admit a brief
summary, we do wish to touch on some of its main themes.

(i) The underlying real-variable structure. A central role in the anal-
ysis of maximal functions and singular integrals is played by the covering
lemmas of Vitali and Whitney types. While this was first understood in
the context of R™ (with its usual translation and dilation structure),
significant parts of these results can be extended to much more general
settings, where the analogues of these lemmas continue to hold. More-
over, as it turned out, more refined versions of the older results could
be proved by examining further the techniques based on these covering

arguments.

(ii) Hardy space theory. We comment first on the ubiquitous nature
of the LP spaces, 1 < p < oo. First, the pervasiveness of L? estimates
is a basic fact of analysis, given the essential part played by the Fourier
transform and other devices involving orthogonality. Second, while it
might have been simpler to limit considerations to L' and L estimates,
long experience has shown that deep and interesting assertions of this
kind rarely hold. Thus the function of L? is twofold: as a compromise
of the possible; but more importantly, that the analysis it requires often
reveals fundamental properties of the operators in question.

Now it is exactly with the failure of L! and L that Hardy space
theory may be thought to begin. Originally developed in the context of
one complex variable with a different emphasis in mind, in its modern in-
carnation this topic represents a happy culmination of the study of max-
imal functions and singular integrals by real variable methods. Not only
does it yield a rich H! theory, making up for many of the shortcomings
of L1, but it also gives us a fruitful HP theory in the case p < 1, where
L? was entirely barren. That HP would seem destined to be of further
interest in the future can be guessed from the fact that the most com-
mon “singularities” in analysis, such as those given by rational functions,
or carried on analytic subvarieties, or representable by Fourier integral
(“Lagrangian”) distributions, are all locally in H?, for some p < 1.

(iii) More extended singular integrals. The singular integrals alluded
to so far have all been of the form

(Tf)(z) = / K(z,y) f(y) dy,

PROLOGUE 3]

where the singularity of the kernel K(z,y) is concentrated in y near z. A
significant departure of the current theory is that it can begin to come to
grips with the situation that arises when the singularity is now “spread
out”, say for y in some variety 2,. When an analysis in this context is
possible, orthogonality again plays a key role, sometimes via the Fourier
transform, but more often using other oscillatory integrals. An important
observation is that, at bottom, what makes this possible is some sort of
“curvature” property of the family {¥3.}. In this setting, analogues of
maximal functions arise by taking averages over (proper) submanifolds
of R". Again, curvature properties play a decisive role in their study.

(iv) Oscillatory integrals. As indicated above, oscillatory integrals
provide a necessary tool in exploiting the geometric properties related
to curvature and orthogonality in the more extended maximal opera-
tors and singular integrals that have arisen. However, these oscillatory
integrals, and others of interest, are not easily classified and come in a
multiplicity of forms: variants of the Fourier transform, convolution op-
erators (such as Bochner-Riesz means), and Fourier integral operators
are among these forms. What is clear is that this part of the theory is
in its infancy, and much more remains to be understood.

(v) Heisenberg group. The study of the Heisenberg group illustrates
a number of essential ideas treated in this book. In particular, it gives an
excellent example of the real-variable structure mentioned above; con-
nected with this is the Cauchy-Szego projection operator, which is a nat-
urally occurring instance of a singular integral in this general context. In
addition, we might point out that inherent in its structure is the notion
of “twisted convolution”; it accounts for the composition formula for
pseudo-differential operators (in their symmetric form) and also yields
important examples of oscillatory singular integrals. But beyond these
didactic uses the significance of the Heisenberg group resides in what
it has allowed us to do, namely, to explore the way into the broader
applications of our subject to such interesting areas as several complex
variables and (subelliptic) partial differential equations.



CHAPTER 1

Real-Variable Theory

We begin by setting down some of the fundamental real-variable
ideas behind the theory of the maximal operator and the boundedness
of singular integrals. To proceed here requires that our underlying space
be endowed with a certain kind of metric structure. The model for this
is R", equipped with its usual family of Euclidean balls, which is the set-
ting appropriate for the standard translation-invariant theory.! In fact,
by abstracting some simple and basic features of this case (connected
with the covering lemmas of Vitali and Whitney), a number of key points
of the earlier development can be carried out in a much broader context.
The following additional comments may be helpful in placing the subject
of this chapter in its proper perspective.

(i) We prove here the weak-type (1,1) and L? inequalities for the
maximal operator in the generality alluded to above. We also deal with
the corresponding facts for singular integrals. However, for the latter
our results are of a conditional nature, since they depend on an addi-
tional assertion (essentially the L? boundedness) that must be treated
separately. In the translation-invariant case, this is exactly where the
Fourier transform is decisive. In our general context, other notions must
also come into play, but consideration of these aspects is postponed until
they are systematically taken up in chapters 6 and 7.

(i) What will be even clearer (in later chapters) is that maximal
operators and singular integrals can be thought of as part of a threefold
unity, in that these two operators are intimately tied to another con-
struct, namely that of square functions. One way to realize this unity
is to consider all three as singular integrals, but now as vector-valued
versions taking their values in differing Banach spaces.

(iii) When we continue beyond this chapter we shall not feel con-
strained by the requirement to present matters in the generality used
here. Instead, for simplicity of exposition, we shall usually content our-
selves with the standard setting of R™, and invoke the general theory
only when needed in particular circumstances. Instances where the gen-
eral point of view plays an important role are the weighted inequali-

T As developed in, e.g., Singular Integrals, chapters 1 and 2.
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8 I: REAL-VARIABLE THEORY

ties arising in Chapter 5, the maximal functions and singular integrals
associated with lower dimensional varieties treated in Chapter 11, the
extension of the theory to the Heisenberg group and other nilpotent
groups dealt with in chapters 12 and 13, and several further applications
sketched in §8 below.

1. Basic assumptions

The basic metric notions we shall be interested in have to do with the
possibility of measuring the order of magnitude of “size” (or distance),
and the order of magnitude of “volume”. The situations we envisage will
be general enough so that these two quantities will have to be taken,
to a degree, independent of each other. As a reflection of this, we shall
quantify these notions in terms of different objects: size in terms of a
family of “balls”, and volume in terms of a Borel measure.

1.1 Owur considerations will always take place in the coordinate
space R™.} We shall assume we are given, for each x € R", a collec-
tion {B(z,6)}s of nonempty open, bounded subsets of R", parameter-
ized by 8, 0 < 6§ < o0; that is, B = B(x, ) is the “ball”, “centered” at x
of “radius” 6. We shall suppose that the balls are monotonic in 6 in the
sense that B(z,6;) C B(x,d;) whenever §; < 8. We shall also assume
that we are given a nonnegative Borel measure y with the property that
1(R™) > 0.

The basic properties concerning the family of balls and the measure
that we postulate are as follows: We assume there exist constants c;
and cy, both greater than 1, so that, for all x, y, and 4,

(i) B(z,6)N B(y,0) # @ implies B(y,6) C B(z,c,6).
(i) p(B(z,c10)) < cop(B(z, 6)).

Statement (i) guarantees the engulfing property crucial in Vitali-type
covering lemmas, while assumption (ii) represents the fact that u is a
“doubling” measure, which allows one to exploit the first statement.?

1.2 In some circumstances it is convenient to substitute for the

assumptions (i) and (ii) a weaker one, which we describe as follows. For
each B = B(x,§), let B* = | /B, where B; ranges over all balls of
radius é6 meeting B. The assumption that replaces (i) and (ii) is then:

(L,i)* w(B*(z,6)) < cou(B(z,90)).
It is obvious that (i) and (ii) imply (i,ii)*.

P This is mostly a matter of notational convenience. By making slight changes,
we can replace R™ by manifolds or more general spaces. See §8.1 below.

T Note that (ii) is equivalent with the inequality p(B(z, 28)) < c,u(B{z, 8)), from
which the terminology “doubling” originates.

§2. EXAMPLES - 9

1.3 Further assumptions. In addition to the above basic prop-
erties, it will be convenient to postulate two other properties about the
balls B(x,6) and the measure u. These further assumptions, while not
always essential, allow us to avoid certain technical complications. The
first will always be assumed in what follows and is in any case easily
verifiable in each particular example.

(iii) QF(:{:, 8) = {z} and L(_SJB(:v,é) = R".

(iv) For each open set U and each 6 > 0, the function z —
u({B(z,8) NU}) is continuous.

1.4 Let us remark that these additional properties easily lead to
the following conclusions, among others. First note that u(B) > 0, for
any ball B, which is a consequence of the doubling property, (iii), and
the fact that u(R™) > 0. It then follows from (iv) that for any locally
integrable f, and any § > 0, the mean value

1
AsH)@) = By fos s TW B

is a continuous function of .

The analysis of the averages As(f), and in particular the question
whether As(f) — f almost everywhere as § — 0, is intimately connected
with the properties of the mazimal function, defined by

(M f)(z) = sup As(| f])(2)-
6>0

This basic real-variable construct (in the standard setting of R™) was
introduced by Hardy and Littlewood for n = 1, and by Wiener for gen-

eral n.

Before proceeding further with the study of maximal functions and
covering lemmas, we will illustrate the nature of our postulates by de-
tailing several examples that will give us a better idea of the scope of

our assumptions.

2. Examples

2.1 We begin by remarking that the standard Euclidean balls,
defined by B(z,6) = {y : |y — x| < 6}, satisfy all of the above properties.
Here we take du to be the Euclidean measure dz. The same is true of
the following (equivalent) variant. Let B; be a fixed open subset of R™
that is bounded and is star-shaped with respect to the origin (so that
dilates are increasing). Define

B(z,8) =z+ 6B, ={y: (y—x)/6 € B1}.
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Then the family {B(z,6)} also satisfies all the above properties.
The idea of equivalence we have just used can be defined more gen-
erally. We will say that two different families {B(:L' §)} and {B(z,6)}

are equivalent if there exists a ¢ > 1 so that
B(z,c™'6) c B(z,68) C B(x,c6) for all  and 6.

2.2 The next construction leads to a general class of examples.
Suppose for each 6 > 0 we are given Bs, an open, convex, symmetric
(x € Bs & —x € Bs), and bounded subset of R™ with Bs, C Bs, when
o1 < b9, n¢5>0 Bs = {LE} and U5>0 Bs = R™. Set B(Q’: (5) =+ Bs =
{y : y — x € Bs} and take du to be Euclidean measure. Let us observe
that while the assumptions (i) and (ii) may not be satisfied in general,
the substitute property (i,ii)* does hold in all cases. In fact, if we take
into account the convexity and symmetry of the B, then it follows easily

that B*(z,6) C 3B(z, 6), giving u(B*(z,8)) < 3"u(B(z, §)).

2.3 An important class of examples, actually subsumed under §2.2,
arises if we consider nonisotropic dilations of R™. That is, we fix a se-
quence aj, ..., a, of strictly positive exponents, and consider the dila-

tions
6:(T1,...,Zn) — (6% x1,...,0%x,).

Here we take Bs = {y : maxy |yx|/% < 6}, with B(z,8) = z + By,
and du = dz; equivalent situations would be obtained by replacing the
rectangular boxes Bs by the tilted boxes By = {y: >, § % |yx| < 1} or
the ellipsoids = {y : >, 67%%|yx|? < 1}. It is not difficult to verify
that (i), (ii) of §1 1 and (iii), (iv) of §1.3 hold for these balls. For us,
the main application of this structure will occur in Chapter 11 when we
study maximal averages taken over k-dimensional submanifolds.

2.4 A general method of constructing families { B(z, §)} is in terms
of a quasi-distance defined on R™. By this we mean a nonnegative func-
tion p on R™ x R™ for which there exists a positive constant ¢ so that

plz,y)=0 & z=y
p(z,y) < cp(y, x) (1)
p(z,y) < c(p(z, 2) + p(y, 2))

where z, y, and z are arbitrary points in R™; we also assume that p is

upper semicontinuous in the first variable.
Given such a p, we can define the B(z, §) by

B(z,8) = {y : p(y,x) < 6}. (2)

To show (i), assume that B(z,6) N B(y,§) # 0. By the quasi-triangle
inequality, p(y,z) < 2¢6. f w € B(y, §) (i.e., p(w,y) < &), applying (1)

§2. EXAMPLES | 11

again gives p(w, ) < ¢(2¢6 + ¢b) = 3¢*8, which proves (i) with ¢; = 3¢2.
Conversely, we may define

p(y,z) = inf{é : y € B(z,6)};

similar arguments show that (i) and (iii) imply (1).

By repla.cmg the quasi-distance p(z,y) by the equivalent quasi-
distance 3(p(z,y) + p(y,z)), we can assume p(y, z) = p(z,y). We shall
always do this in the future.

Observe that the B(x, ) given in §2.3 are defined by

plz,y) = max |zx — yr|t/ ",

while the B’(z, §) are determined by

P(@,y) = low — yw| /.

k

2.5 The examples given in §2.1-§2.3 are invariant with respect to
the usual translations of the Euclidean space R™. An interesting exten-
sion of this is to replace the Euclidean translations z — y by the more
general (noncommutative) group translations y—! - . Here we assume
that R"™ is the underlying manifold of a group; the dot denotes multipli-
cation and y~1! is the inverse of y. We then set B(z,6) = x - Bs, with B
as in §2.3. If we make the key assumption that the dilations

o : (l’l,. . ,:Il’n) > ((50'1331, e ,(50“‘1}”)

are automorphisms of the group, then all of our postulates (i)—(iv) hold
when dp is Lebesgue measure. This is the notion of a homogeneous group
of which the key example is the Heisenberg group. These matters are
taken up in chapters 12 and 13.

2.6 Finally we describe an example that has a simple geometric
interpretation, but for which the underlying space has no features of
translation invariance or homogeneity In R? we consider the two vector
fields Xy = 0/0x; and X, = z%¥ 8/0x2, where k is a nonnegative integer.
A natural family of balls B(z, §) associated with these vector fields may
be defined as follows:

y € B(x,6) if |z1 —y1| <6 and { T2 — Y2| < when |z,

To — Yo <§lx1|k when |z, > 6

where z = (z1,22),y = (y1,¥2). If we take du = dz, this family verifies
all our assumptions above. We can interpret this example in the following
(equivalent) way. One has y € B(z, §) if one can join y to z in elapsed
time < cd along a path whose velocity vector at any point is of the form
a1 X1 + axXo, with |a1| < 1 and |as| < 1. For a general formulation of
this, and for further details, see §8.4.
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2.7 In all of our examples we have taken du = dzx; of course, many
other choices could have been made for the measure du. In particular,
when {B(z, )} are the standard Euclidean balls discussed in §2.1, then,
in order to satisfy the postulates in §1.1 and §1.3, the only restriction
on dy is the doubling condition u(B(z,26)) < cu(B(x,6)). Note that
(iv) in §1.3 is automatically satisfied (see §8.6 below). We remark that
du(z) = |z|®dx is a doubling measure when a > —n, but du(z) =
el®l dz, ¢ # 0, is not. Other less trivial examples are in §8.7-§8.9 below.

3. Covering lemmas and the maximal function

Having familiarized ourselves with several families of balls { B(z, 6)}
and their associated measures du, we come to one of the main points
justifying the above conditions: certain covering lemmas of Vitali and
Whitney types, and the consequences that can be deduced from them.

3.1 We consider first the simplest of these covering lemmas, a finite
version of the Vitali lemma. For it, we need only the postulates in the
weaker form (i,ii)*, instead of (i), (ii).

LEMMA 1. Let E be a measurable subset of R™ that is the union of
a finite collection of balls {B;}. Then one can select a disjoint subcollec-
tion By,..., By, of the {B,;} so that

3 u(By) 2 cu(E).

Here ¢ is a positive constant, which we can take to be ¢ = c;* (with c;
as in §1.1 or §1.2).

Proof. Let B; be a ball of the collection {B;} of maximal radius.
Next choose B3 to have maximal radius among the subcollection of balls
disjoint with B;. We continue this process until we can go no further.
From this it is clear that the chosen subcollection By, Bs, .. ., B,, consists
of disjoint balls. Recalling the definition of the ball B} (see §1.2), we ob-
serve that By contains all balls of the original collection that intersect B,
and whose radii are at most as large as that of B;. Similarly B contains
all the remaining balls that intersect By and whose radii are at most as

large as that of By. From this it follows that |J B} contains the union
k=1
of the initial collection of balls. Thus ) u(By) > u(|J B;) > u(E). Since
k k

p(By) < cou(By), the lemma. follows.
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The lemma we have just proved allows us to obtain the fundamental
results about the averages As(f) and the maximal function M(f) =
sups~o As(|f]), which we defined in §1.4. Here we use the notation L? to
stand for the space LP(R",dpu), taken with respect to our measure du,
| - [l will designate the norm in this space, and “almost everywhere”
means except for a set of p-measure zero.

THEOREM 1. Let f be a function defined on R™.
(a) If f € LP, 1 < p < oo, then M(f) is finite almost everywhere.
(b) If f € L, then for every o > 0,

ullz: (MA@ >a) <2 [ 17wl du)
(c)IffeL?,1<p<oo, then M(f) € L? and

IM(Hllp < Apll £l

where the bound A, depends only on cy and p.

Remark. It is easy to see that the maximal operator is not bounded
as a mapping from L' to itself; i.e., the p = 1 analogue of conclusion (c)
is false. Connected with this is the estimate A, = O(1/(p—1)), as p — 1,
for the bound in (c). The situation is similar for the singular integrals
taken up below. Further deétails are in §8.13 and §8.14.

COROLLARY. If f is locally integrable with respect to du, then
lim (45 f)(z) = f()

for almost every zx.

Proof. We shall prove the inequalities stated for M by showing that
they hold for the larger “uncentered” maximal function M f defined by

(M1 5)(@) = sup == [ 17(0)]dusu),

where the supremum is taken over all balls B containing . Note of course
that (M f)(z) < (M f)(z). The maximal operator M will also have a use-
ful role below. Incidentally, (M f) is automatically lower semicontinuous
and, because of this, axiom (iv) in §1.3 is obviated in most of what fol-
lows. Finally we remark that, by axiom (i,ii)*, (M f)(z) < co(Mf)(z),
since B(y, 8) C B*(z,6) if z € B(y, ).
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We first prove conclusion (b). Let E, = {z : M f(z) > a} and let
E C E, be any compact subset. By definition of E,, for each z € FE,
there exists a ball B, so that x € B, and

u(Bz) < -}; /B |f ()] du(y). (3)

Since z € B,, by the compactness of I/ we can select a finite collec-
tion of these balls that cover E. The lemma allows us to select a disjoint
subcollection B,...,B,, of this covering with u(F) < c kzl 1(Bg).
Since each ball B satisfies (3), adding these inequalities shows that
W(E) < (ca/a) [ |f(y)|du(y). If one takes the supremum over all such
E C E,, the conclusion (b) is proved.

Conclusions (a) and (c) of the theorem and the corollary follow
from (b) in a well known manner. Indeed, note that M(f) < M(f1)+a/2,
where f(x) = f(z) if [f(z)| > a/2, and fi(z) =0 if |f(z)| < a/2. Thus
{M(f) >a} C{M(f1) > a/2}, and we get

a

~ c
M < — dit.
w({z: Mf(z) > o) /{ o £ dus
However, | m' |
[@syau=p [ utits > a}orda,

which, by the above, is majorized by

2| |
p—2 — cp 215'—1/ Pd ’
cpf(fo o da)lfldu —) [P du

proving inequality (c). |
To prove the corollary it is useful to remark that since by our as-

sumptions we have that () B(z,8) = {z}, and the B(z, §) are compact,
6>0

then for each = the (Euclidean) diameters of B(z,6) tend to zero as

8 — 0; which implies that (Asf)(x) — f(x), whenever f is continuous
at x. |

3.2 We now turn from the study of maximal functions to the closely
related theory of singular integrals. This requires that we change our
point of view slightly, and from now on we shall assume the stronger ver-
sions of our postulates (namely those of §1.1 rather than those of §1.2).
This is needed for our next main step: an extension of the basic covering

idea of Whitney, which has the following formulation.
Suppose F' is a nonempty closed set and O = °F' is its complement.
We can “cover” O by a collection of balls that are essentially disjoint,
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and whose sizes are comparable to their distances from the set F'. In the
standard setting of R™, the actual covering of O that can be achieved is
by closed cubes whose interiors are disjoint and whose side lengths are
comparable to their distances from the set F.} |

In the general setting we consider here, things are not quite as el-
egant and we need to begin by fixing a pair of positive constants c*
and ¢** (with 1 < ¢* < ¢**), which will depend only on the structural
constant involved in our basic postulates (i.e., the quantity c; appearing
in assumption (i)), and not on the particular set F under consideration.
The values of c* and ¢** will be made precise below. Using them, for any
ball B we define the balls B* and B** that have the same “centers” as B
but whose “radii” are expanded by the factors ¢* and c** respectively.
That is, if B = B(z,6) then B* = B(z,c*$§) and B** = B(z,c**6).

Clearly, B C B* ¢ B**.1

LEMMA 2. Given F, a closed nonempty set, there exists a collection
of balls By,...,By,... so that

(a) The By are pairwise disjoint.
(b) Uy By =0 = °F.
(c) Bi*NF #0, for each k.

Remarks. (i) It is easy to construct from the above collection {B}
a collection of sets {Qx} so that the Qi are disjoint, By C Qi C B;,
and J Qx = O. Take, for example,

k

Q=Bn(°JQi)n(°lJBy), k=1.2,..

j<k i>k

These Qk can be taken as substitutes for the standard cubes that appear
in the usual Whitney lemma.

(ii) One can also show that, while the B are not necessarily disjoint,
they do have the bounded intersection property. See §7.1 below.

Proof of Lemma 2. We begin by choosing ¢ to be sufficiently small;
later we will see that € = 1/8¢# will do. With ¢ fixed, we consider the cov-
ering {B(z,e6(z))}zco of O, where 6(z) is the “distance” of z from F,
that is, 8(z) = sup{6 : B(z,6) C O}. That for each z € O the func-
tion §(z) is strictly positive and finite follows from axiom (iii) in §1.3.

1 See, for instance, the lemma on p. 16 of Singular Integrals.
T Note that the B* defined here are different from those occurring in §1.2.
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We now select a maximal disjoint subcollection of { B(z,£6(x)) }zco0;
for this subcollection By,...,Bg,... with By = B(zxg,e6(xy)), we shall
prove the assertions (a), (b), and (c) above. We define

By = B(xx,6(xx)/2),  Bg" = B(xk, 26(xx)),

(so we have set ¢* = 1/2¢, ¢** = 2/¢). Note that (a) and (c) hold
automatically by our choice of Bg. It is also clear that B C O; what
remains to be shown is that { J, B D O.

Now let z € O; then, by the maximality of the collection {B;},

B(xzk,eb(zx)) N B(z,e6(z)) # 0, for some k.
We claim that 6(z) > 6(x)/4c;. If not, taking ¢ < 1/2¢;(< 1), we have

é(x)

B(zk, 8(zx)) N B(a:, -E) % 0.

Since 26(xx) < 6(x)/2¢1, by the engulfing property

B(zk, 26(zi)) C B(a:, é(;—)),

which gives a contradiction since B(zj,26(x)) meets FF = €O, while
B(z,6(x)/2) C O.
Using 4c;e6{x) > €6(x) and the engulfing property again gives

T E B(:ck,cl - 40156(3:k)).

We take B(zg,c; - 4c1€8(xx)) = Bi = B(xk,6(xx)/2); ie., ¢t = 4¢3,
e =1/2c* = 1/8¢%, c** = 4c* = 16¢?, finishing the proof.

4. Generalization of the Calderén-Zygmund decomposition

The Calderén-Zygmund decomposition is a key step in the real-
variable analysis of singular integrals. The idea behind this decompo-
sition is that it is often useful to split an arbitrary integrable function
into its “small” and “large” parts, and then use different techniques to
analyze each part. |

The scheme is roughly as follows. Given a function f and an alti-
tude a, we write f = g+ b, where |g] is pointwise bounded by a constant
multiple of a. While b is large, it does enjoy two redeeming features: it
1s supported in a set of reasonably small measure, and its mean value is
zero on each of the balls that constitute its support. To obtain the de-
composition f = g+ b, one might be tempted to “cut” f at the height «;
however, this is not what works. Instead, one bases the decomposition
on the set where the mazimal function of f has height a.

In the general context we are concerned with, the decomposition
can be formulated as follows:
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THEOREM 2.% Suppi;;se.we are given a function f € L' and a positive

wR") Jrn
tion of f, f = g+ b, withb = > by, and a sequence of balls {B;}, so
k

that

number a, with a > |fldp.t Then there erists a decomposi-

(i) |g(x)| < ca, for a.e. z.

(ii) Each by is supported in By,

/ b (z)| du(z) < cop(B}), and / be(z) dys(z) = 0.

(iii) Y u(By) < < / ()] du(=).
Lk O

4.1 Proof. Let E, = {x : M f(z) > a}, where M is the uncentered
maximal function defined in §3. E, is an open set, and we consider first
the case when its complement is nonempty.

We can apply the lemma of §3.2 (and the remarks that follow
it) to O = E,. Thus we obtain collections of balls {B;}, {B;}, and
“cubes” {Qx}, so that

By C Qv C B}, with | JQx = E,, (4)
k

and where the ) are mutually disjoint. It follows immediately that

Zk:ﬂ'(Bk) < P(Ecx-)- (5)

Now define g(z) = f(x) for z ¢ E,, and

1 .
g(x) = 00 Qkf(y)du(y), if x € Q.

Hence f = g+ Y by, where

1
w(Qx) Jo,

with Xq, denoting the characteristic function of Q.

br(z) = Xgq, - -f ()

() du(y)] | (6)

f Compare with the classical version on pp. 17-20 and p- 31 of Singular Integrals.
See also §2.1 of Chapter 3 and §3.1 of Chapter 4 below.

T of course, this assumption is vacuous if u(R™) = co.
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- Because of the corollary in §1.5 (the differentiation theorem), we

have |f(z)| < o for a.e. € YQx = {2 : Mf(z) < a}. So |g(z)| < a
for z € ¢|JQk. Next, we observe that

1

B ), @) dulz) < a (7)

because the ball B;* intersects °E,. |

So from (7), and the fact that By C Qx C Br*, it follows that
lg(x)| < éa, whenever x € Q. Thus (i) is proved. That by is supported
in B} is a consequence of the inclusion @ C Bj. Also

/ b ()] dua(z) < 2 / £(2)| du(z) < cau(BY)

by (7) and the doubling property. Moreover the assertion [ bg(z) du(z) =
0 is obvious from (6); thus conclusion (ii) is proved. Again by the dou-
bling property, 3 u(B}) < cu({M f > a}) because of (5), and the quan-
tity on the right is majorized by (c¢/«) [ | f| du, as we see if we invoke the
maximal theorem of §3.1. With this the proof of Theorem 2 is concluded,
under the assumption {z : M f(z) < a} # 0.

If we now consider the special situation where {z : M f(z) > a} =
R" (which can happen only when u(R") < o0), then we see by the
maximal theorem that

uR) << [ ifldu

We then obtain the decomposition f = g + b1, with

1
g p—
w(R™) Jr

fdu,

b1 = f — g; here b, is supported in the “ball” B = R"™. Our assumption

1
>
#(R") Jrn

| fldp

«

guarantees that |g| < a.

5. Singular integrals

The main result for singular integrals we shall prove in this chapter
is a conditional one, guaranteeing the boundedness in LP, for p in the
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range 1 < p < q, on the assumption that the boundedness in L9 is al-
ready known. The singular integrals one is interested in are operators T,
expressible in the form

(Tf)z)= [ K(z,y)f(y)du(y), (8)

Rﬂ
where the kernel K is singular near z = y, and so the expression (8)
is meaningful only if K is treated as a distribution or in some limiting
sense. Now the particular regularization of (8) that may be appropriate
depends much on the context, and a complete treatment of the issues
thereby raised could take us quite far afield.

Here we shall limit ourselves to two closely related ways of dealing
with the questions concerning the definability of the operator. One is to
prove estimates for the (dense) subspace where the operator is initially
defined. The other is to regularize the given operator by replacing it
with a suitable family, and to prove uniform estimates for this family.
The most common method of regularizing these operators is by trun-
cation, and ideas relevant to this are detailed in §7. Common to both
methods is the a prior: approach: We assume some additional proper-
ties of the kernel, but then prove estimates that are independent of these
“regularity” properties.

We now carry out the first approach in detail. There will be two
kinds of assumptions made about the operator. The first is quantitative:
we assume that we are given a bound A, so that the operator T is defined
and bounded on L? with norm A; that is,

IT(H)llq < Allfllg, for all f e L7 (9)

Moreover, we assume that there is associated to T a measurable func-
tion K (that plays the role of its kernel), so that for the same constant A
and some constant ¢ > 1,

/ |K(z,y) — K(z, )| du(z) < A, whenever §j € B(y,5), (10)
°B(y,cd)

for all y € R™, 6 > 0.

The further (regularity) assumption on the kernel K is that for each
f in L7 that has compact support, the integral (8) converges absolutely
for almost all z in the complement of the support of f, and that equal-

ity (8) holds for these z.

THEOREM 3. Under the assumptions (9) and (10) made above on K,
the operator T is bounded in LP norm on LPNLY, when 1 < p < q. More
precisely,

ITC)llp < Apll 1l (1)

for f € LP N LY with 1 < p < q, where the bound A, depends only on the
constant A appearing in (9) and (10) and on p, but not on the assumed
regularity of K, or on f.
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5.1 Proof. The key point is to prove that the mapping f — T'(f)
is of weak-type (1,1); that is

ple: [Tf(z)] > a} < = [ 1514 (12)

for f € L' N L2 and a > 0, where again the constant A’ is to depend
on A, but not on the other properties of K.

We take the precaution of replacing the left side of (12) by u({z :
T f(x)| > ca}), where ¢’ is a (large) constant to be chosen momentarily.
With a fixed we invoke the decomposition of f as g + b given by the
theorem of §4,% and (12) will be established once we show

wlz: [Tg(@) > (/Da}tale : IT0(@) > (/Da} < 2 [ 1f@)] dutz).

(13)
First we claim that g € L9; once we have established this we shall
be able to use the assumption (9). We begin with the case ¢ < 0o. Now

/Ig\qduﬂ/ \glqdu+/ 9]¢ dps.
cUB; UB:

On | By, 9(z) = f(z), s0 [ ps
of Theorem 2. Moreover,

g|?dp < ca?™t||fll1, by conclusion (i)

/ 191 di < ca®u(UBY) < ca® | f]ls.
UB; |

if we also use conclusion (iii). Therefore
lgllg < ca® (| fll1, when g < oco. (14)

Chebycheft’s inequality, (9) (with f replaced by g¢), and (14) then
give -

p{z : |Tg(z)| > (¢'/2)a} < [(/2)a] T Tg[] < A'a™||g||§ < Agllf I1-

Therefore that part of (13) that involves T'g is proved, when g < oc.

- When g = oo, observe that ||g||lcc < ca (again by conclusion (i) of
Theorem 2). Thus, by (9) (here ¢ = o), the set {z : |Tg(x)| > (¢'/2)a}
is empty if we choose ¢’ > 2Ac; once this choice is made, the required
estimate for T'g is proved in all cases.

¥ We need only consider o > h(l‘%l-_“) f | f| du; otherwise (12) follows trivially, be-
cause the left side is always bounded by u(R™).
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We come now to T'(b). We know that b = ) bg, where each b, is
supported in the ball B;. Observe that by the definition of the by (see (6)
above), we have by € L, if f € L9. Let B}* denote the ball with the
same center as By, but whose radius is expanded by the factor c; here ¢
is the same constant as is used in hypothesis (10) regarding our kernel.t
This hypothesis then immediately implies that

[ K(z,y) — K(z,5%)|du(z) < A, ifye B,  (15)
CB;* |

where §* denotes the common center of Bf and B}*. .
However, when = ¢ B;* we can use the representation (8) for
T'(bx)(x), since by is supported in B}. So

/ Th()| du(z) < 3 / Ty (z)] du(z),
it’5UB;"‘ k CB:*

which is dominated by

2. / (IK(w,y)—K(w,ﬂ"’)l- Ibk(y)ldu(y)) du(z).
k JeBr B;

k

Here we have used that
Thk(z) = / [K(z,y) — K(x,7°)|be (y) du(y),
since [ bx(y) du(y) = 0. Therefore, by (15) and conclusions (ii) and (iii)

of Theorem 2, the last sum is majorized by Aca ), p(B}), which in turn
is bounded by A’ [ |f(z)|du(x). As a result

[ m@idu@) <4 [ 1@ duta),
cUB:* |
which shows that

u({z : |Tb(z)| > da/2} N ‘U B*) < %/lfldp.

However,

WUBY) < Su(BE) < X uB) < = [ If1d

i Note that the B** are not the same as those that occur in the Whitney lemma
of §3.2, since in the present context they play a different role. Here the passage from
B* to B** is given by the factor c, suited to the hypothesis (10). For the Whitney
lemma. the corresponding factor was 4, large enough to guarantee the intersection of
the B** with O.
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Together then, the last two estimates complete the proof of (13), and
with it (12), showing that the mapping f — T'(f) is of weak-type (1,1).
The Marcinkiewicz interpolation theorem then gives (11), as a combi-
nation of (9) and (12).} If we examine the argument above, we see that
the bound A’ in (12), and therefore the bounds A, in (11), do not de-
pend on the regularity of K, but are a function of only the bound A
in (9) and (10), the exponent p, and the constant ¢ appearing in the
decomposition theorem of §4. This concludes the proof of Theorem 3.

5.2 Since LPN LY is a dense linear subspace of L? {(when p < 00), we
can use Theorem 3 to extend T to all of LP(R"™), 1 < p < ¢; this extension
also satisfies the inequality (11), but now for all of L?. Similarly we can
extend T to L', and there it satisfies the weak-type inequality (12). In
fact for p > 1, whenever {f,} is a sequence in L? N L9 that converges in
LP norm, then by (11) the sequence {T'(f,)} is Cauchy in the L? norm.
Likewise, when p = 1, T'(f,) converges in measure by (12). Observe that
the extension of T' so obtained is unique. We summarize our discussion
as a corollary:

COROLLARY. The operator T in Theorem 3 has a unique extension
to all of L?, 1 < p < q, that satisfies the inequalities (11) and (12).

In what follows we shall also use the symbol T to denote the exten-
sion given by the corollary.

9.3 It is worthwhile to point out where the key assumption (10) is
used in the proof of Theorem 3. It enters only via the inequality

[ mwhaws<af isidp
<B(y,cé) B(%,8)

which holds whenever f is a function supported in the ball B(y,6) and
satisfies the cancellation property

/ £(z) du(z) = 0.
B(y,6)

This inequality will be a crucial fact in the extension of results of this
kind to Hardy spaces, as we will see Chapter 3, §3.1.

5.4 We return to the interpolation theorem used in §5.1 above.
The case for ¢ = oo is already subsumed in the proof of Theorem 1

P We prove this particular case of the interpolation theorem in §5.4 below. See
Fourier Analysis, Chapter 5, §2, and Singular Integrals, Chapter 1, §4 (and Ap-
pendix B of Singular Integrals) for more complete versions.
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(in §3.1), so we may assume that ¢ < oo. The main point is to observe
that, whenever f € L' N L9 and o > 0, we have

flde+as [ |fras),

|fIfa

ple: (TH@)| > ap < 47(a™t [

| fI>a

where A" depends only on the constants A and A’ appearing in (9)
and (12). This results by splitting f = f*+ f., where f*(z) = f(z) when
|f(z)| > a, and fa(z) = f(z) when |f(z)]| < a. If we then apply (9) to
Tf., and apply (12) to T f*, we get the desired distribution inequality
forTf=Tf*+Tf,. Now we can complete the argument by noting that

/I(Tf)(-'ﬂ)\p dz =p/0w p{z : |(Tf)(z)| > a} o~ da.

6. Examples of the general theory

Having presented the basic ideas concerning maximal functions and
singular integrals in their general abstract setting, we intend now to
illustrate the theory by briefly indicating several examples that will be
the subject of later study. Our aim in this section will be only to state
in simplest form their salient facts; we postpone the actual proofs of
most of the asserted properties to later chapters where these matters are
taken up in detail. In keeping with our wish to quickly get to the point,
we have chosen most of our examples from the context of the “classical”
setting of the theory: here R" is given its usual Euclidean structure; i.e.,
the balls B(z, ) are {y : |[y—x| < 6}, where |-| is the standard Euclidean
norm,; also du(x) is the usual Lebesgue measure dz.

6.1 Approximations of the identity. Suppose ® is a fixed func-
tion on R"™ that is appropriately small at infinity; for example, take
|®(x)] < A(1 + |z|)~™"¢. We also assume here that ® is normalized by
the condition [®dz = 1. From such a ®, we fashion an “approxima-

tion to the identity” via convolutions as follows. For each t > 0, we set
®,(z) =t "®(x/t). The relevant point here is that

}E%(f x D) (z) = fz), for a.e. x (16)

whenever f € LP(R™) for some p, 1 < p < 0.
Indeed, this result (like the corollary in §3.1 above) is a consequence
of the following pointwise estimate.
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PROPOSITION.

sup |f + B4(z)| < coM f(z).

t>0

The proof of this majorization (and its variants) can be found in
Chapter 2, §2.1. For a more precise form of (16), see §8.16 below.
We give two of the original and most important examples. First, if

() = cu(1 + |z|?)~ /2,
where ,
G Y
71-(n+1)/2’

then ®,(x) is the Poisson kernel, and
u(@,t) = (f * @.)(2)
gives the solution of the Dirichlet problem for the upper half space
Ri"‘l = {(z,t) : x € Rt > 0}, .
namely

32 n 62
8t2 | ng 633?

Au = ( )u(:r,t) =0, u(z,0) = f(x).

The second example is the Gaussian kernel
d(x) = (4n) " 2e~1el*/4,

This time, if u(z,t) = (f * ®,1/2)(x), then u is the solution of the heat
equation

(% N i 3_:532)“(-’5, t) =0, u(z,0) = f(z).

6.2 Singular Integrals. The main result proved in Theorem 3
for singular integrals is a conditional one, guaranteeing the boundedness
on LP for a range 1 < p < ¢, on the assumption that the bounded-
ness on LY is already known; the most important instance of this occurs
when g = 2. In keeping with this, we consider bounded linear transfor-
mations T from L?(R™) to itself that commute with translations. As
is well known, such operators are characterized by the existence of a
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bounded function m on R™ (the “multiplier”), so that T' can be realized
as

Tf(€) = m(€) f(€),

where ~— denotes the Fourier transform. Alternatively, at least on test
functions f € S, T' can be realized in terms of convolution with a ker-

nel K,
Tf=f+K, (17)

where K is the distribution given by K = m.

We shall now examine how Theorem 3 (for ¢ = 2) applies to this
class of operators. To proceed further, we assume that the distribution X
agrees away from the origin with a function that is locally integrable away
from the origin; we denote this function by K(x). Then (17) implies that

Tf(z) = ] K(z—y) f(y)dy, for a.e. z ¢ suppf

whenever f is in L? and f has compact support. This is the represen-
tation (8) in the present context. Next, the basic condition (10) is then
equivalent with |

[I BLCERCIEERS (18)

for all y # 0, where ¢ > 1.

6.2.1 Let us consider the condition (18) further. First, as is easily
seen, it is a consequence of the diflerential inequalities

(55) K@)| < Aalzl ™1 foralla, (18,)

or its weaker form, (here v > 0 is fixed)

~y

K(z —y) — K(z)] < A

i whenever |z| > cly|. (18,)

How do K, satisfying such conditions, come about? It turns out that,
roughly speaking, such conditions on K have equivalent versions when
stated in terms of the Fourier transform of K, namely the multiplier m.
In Chapter 6, we shall prove the following proposition:

T For these two realizations of translation-invariant operators on L?(R™), see
Fourier Analysis, Chapter 1, §3; here S denotes the Schwartz class of testing functions
(see, e.g., Chapter 3, §1.1 for a definition).
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PROPOSITION. (a) If we assume that

(32) @] < Al

holds for all a, then K satisfies (18,) for all c.

(b) If we assume that m satisfies the above inequality for all 0 <
la| < £, where { is the smallest integer > n/2, then K satisfies (18).

We make two remarks about the above singular integrals.

1. If m is homogeneous of degree 0 and C°° away from the origin,
then it satisfies (a) of the proposition. It can then be shown that, in
addition, the function K(z) is homogeneous of degree —n and (besides
being smooth away from the origin) satisfies the cancellation condition

K(z)do(z) = 0.
|z|=1

The distribution K can be realized in terms of a principal value sin-
gular integral involving the function K(z) (see §8.18 and §8.19 below).
The simplest and most basic instances of such operators are the Riesz

transforms R;, 3 = 1,...,n. These are given by
= £ CnL;
Ri(f)=f*K;, where K;(£)= el K;(z) = |:c\”+1;

here c,, is the constant appearing in the definition of the Poisson kernel
(see §6.1 above).

Of course, the classical example is the one that arises when the
dimension n = 1. Then R; = H is the Hilbert transform and is given by
convolution with K(z) = 1/mz; here K(£) = —isign(§).

2. The multipliers m satisfying condition (b) of the proposition are

essentially those that arise as Marcinkiewicz multipliers; see Chapter 6,
84.4 and §7.6.

6.3 Maximal functions, singular integrals, and square func-
tions. There are three interrelated concepts arising in a fundamental
way in harmonic analysis that may be thought of as three different mani-
festations of the same essential idea; they are maximal functions, singular
integrals, and square functions. The first two we have already considered,
and the third (defined below) will play an important role later. Here we
want to illustrate this threefold unity in terms of some of its common
roots, again in the standard setting for R™.
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We begin with a fixed function ® that is sufficiently small at infinity
(e.g., ® € S, but weaker assumptions will do) with (say) [ ® = 1. First,
recall that the operator

= sup |f x Oy
t>0

is closely related to the maximal operator M, as was mentioned in §6.1.
Second, if we make the alternate assumption that [ ®dz = 0, then the

operator ;
> S at

when appropriately defined, will be a singular integral of the kind dis-

cussed in §6.2. Indeed,
dt

lim @t —
N =00 t
e — €

converges in the sense of distributions to K, where K (€) is bounded,
and K satisfies (a) of the proposition in §6.2; in fact, K = m is ho-
mogeneous of degree 0.} For sketches of the proofs of these statements

concerning (19), see §8.19 below.
Third, coming to square functions, each ® with [® = 0 leads to
the square function sg, which is the operator f — sg(f) given by

@ = ([ I(fwt)(:cwdt)l/z- (20)

Also occurring often in practice is the “nontangential” version of sg. It

1s given by
sen@=([ [1reae-vrt®) ", e

where I is the cone I' = {(y,t) : |y| < t}.

6.3.1 Square functions, as their name suggests, have a very direct
connection with L? estimates. It is easily seen that

|Se ()2 = cllsa(f)llzz < Allf|l Lz

Indeed, observe that, by Plancherel’s theorem,

oIt = [ [ 1R@PIBRIPT at
< (Sup [ @(ts)ﬁ%) [\ de < 417z

£

A converse 1s also true and, for certain ®, leads to the representation f =

fom(f ¥ (I’t) dt/t.
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since

o it
sup / B(16) S < 42
£ 0

The last fact follows easily because
[®(u)| < Alu| and  [®(u)| < Alu|™".
In addition, Fubini’s theorem shows that

|Se ()2 = vnllse(HIL:,

where v,, is the volume of the unit ball in R"™; for this point see also
Chapter 3, §4.4.3.

One of the keys to a better understanding of square functions is to
view them as ordinary singular integrals, but now as taking their values
in a Hilbert space. For this reason we now turn to the extension of the
theory of this chapter for functions whose values lie in a Banach space.

6.4 Banach space valued functions. The results for singular
integrals in Theorem 3 go through for functions that take their values in
Banach spaces. Thus if By, Bs are a pair of Banach spaces, and B(B;, Bs)
is the Banach space of bounded operators from B; to B;, we may assume
that in the definition of T given by (8), f takes its values in B;, K takes
its values in B(B, Bz2), and T f takes its values in B,. Throughout, the
absolute value |- | must be replaced by the norm in By, B(B;, B3), or By,
respectively. |

Instead of trying to formulate here a precise theorem to this effect,
we mention two particular results. The first deals with the square func-
tion sg discussed in §6.3 above. Here we take B; = R!, and B; to be the
Hilbert space L?[(0, 00); dt/t]. With ® fixed (say ® € S and [ & dx = 0),
we define K(z) to be the Bs-valued function given by

K(z) =t""®(x/t) = ®:(x).

k@i ([ ewrd) ",

and hence |K(zx)| < A|z|™™, since

Now

|Pi(x)| < At™™ for |z] <t, and |Pi(x)] < f-1t|a:.|‘“""'_1 for |x| > t.

In the same way,

() K@) < Aale =,
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so that K satisfies the vector-valued version of condition (18,). Since we
have already verified the L? boundedness of Tf = f * K, we see that T
is bounded on LP for 1 < p < 2 (by duality, T is also bounded on L
for 2 < p < o0; see §7.4). Similar considerations hold if we consider
the nontangential version of s, namely Sg. In this case we take By =
L*(T;dydt/t"!), with K(z) = ®4(z — y), (y,t) € T.

A second example of the Banach space version of singular integrals
is taken up in Chapter 2, §4.2, where it is seen that the maximal theorem
can be viewed as a result on singular integrals that take their values in
an appropriate Banach space. These two examples are further evidence
why the threesome—singular integrals, maximal operators, and square
functions—are manifestations of the same unity. In terms of singular in-
tegrals, the usual theory arises when the kernel is scalar valued, maximal
operators arise when the kernel is L°-valued, and square functions arise
when the kernel takes its values in a Hilbert space. |

6.5 We return to the general structure described in §1 and §2,
and ask what are the conditions analogous to (18,) or (18,), which we
had in the translation-invariant case, that would play a similar role in
guaranteeing the crucial condition (10). To deal with this requires the
following construct. We set

V(z,y) = inf{u(B(y,6)) : € B(y,6)}

That is, V(x,y) is the volume of the “smallest” ball B(y, ) that con-
tains z. In view of the remark in §2.4, the volume function V is essen-
tially symmetric; i.e., V(z, y) and V (y, ) are comparable. The extension
of (18,) (at least when o = 0) is then the condition

A
Viz,y)

|K(z,y)| <

To formulate its differential analogue, we recall the distance func-
tion p(z,y) (see §2.4), for which B(y, ) is given by {z : p(z,y) < é}. Let
n(s), 0 < s < 1, be a Dini modulus of continuity, i.e., a nondecreasing

1
function with n(0) = 0 and / n(s)? < 00. The variant of (18,) we

shall need is that, for some Dini modulus 7 and some constant c,

K@y -Kep (22D vem ™ 0s)

whenever p(z,9) > cp(y, ).
PROPOSITION. If K satisfies (18'), then it also satisfies (10).
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To prove this, write the integral in (10) as

/ K(z,y) - K(z, )| du(o)
¢ B(§,cb)

=) |K(z,y) — K(z, 7)| du(z).
k=0 J B(§,2*+1c6)\ B(§,2%c6)

If z ¢ B(g,2%ch), then p(z, ) > 2¥cé and V(z, §) > u(B(7, 2%¢6)), while
p(y,9) < 6, if y € B(y,6). Taking into account the monotonicity of 7
and (18') we see that the above sum is bounded by

o0

kz_:o }L(B(ﬁ, 2k+lc‘5)) ' n(z_kc—l) ' N(B(g: 2kc‘5))_1

which, by the doubling condition in §1.1, is bounded by

o0 1
cY (2% < c’f n(s)%E = A < 0.
0

k=0

The proposition is therefore proved.

The reader might note how the two independent elements of our
metric structure-——distance and volume—combine neatly in (18') and its
consequences; as in other arguments, each plays its role, but it is in their
interplay that the interest lies.

6.6 We must emphasize that the theory developed so far for singular
integrals tells only part of the story: the conditional nature of Theorem 3
makes everything depend on an additional L? result. Sometimes (e.g.,
when ¢ = oo, as in the case of maximal functions), this result is imme-
diate; however, the more general situation (and in particular the case
g = 2) requires further analysis. Here the translation-invariant case has
served as our guide and brought us to the province of the Fourier trans-

form; from there we will be led to oscillatory integrals, pseudo-differential

operators, and almost orthogonality. These are matters that we will take
up in chapters 6 and 7 below.

7. Appendiz: Truncation of singular integrals

We shall now discuss the procedure of regularizing singular integrals by
“truncation” — the method applicable to the classical Hilbert transform and
its generalizations.'

T See also Singular Integrals, Chapter 2, §4.
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7.1 We assume that we are given an operator 7' bounded from L?(du)
to itself for some q, 1 < ¢ < o0; i.e.,k

IT()llq < Allfllo- (21)

In addition we suppose that T has associated with it a kernel K(z,y)
that satisfies the estimate

K@yl < 5o (22)
so that
Tf) = f K (z,v) () du(y) (23)

for a.e.  outside the support of f.
We define the truncated kernels K. by

Ke(x,y) = K(z,y), if p(zx,y) > ¢,

and K.(z,y) = 0 otherwise; T is then given by

(T0)@) = [ Kelon)fG) duts).

PROPOSITION 1. Under the assumptions (21), (22), and (23), the T: sat-
1sfy the estimate

IT=(Hlle < A'lifllq,
with A" independent of €.

Proof. Let € > 0 be fixed throughout.
To begin with, let us observe that if A(a) is the distribution function

of V(y,z)~! as a function of y (with z fixed), then
_ 1
Aa) = p{y : y € B(z, §) for some 6§ with p(B(x,6)) < a '} < =~ (24)

It follows therefore by (22) that K.(z,v), as a function of y, is in L™ for
1 < r < oo; and therefore by Holder’s inequality, 7. is well defined on LY.

Set T = T — T.; T. is the “near” part of 7. Fix # € R™ and f € LY
all of our estimates will be independent of ¢, Z, and f. Let Xs denote the
characteristic function of B(Z, §). We first show that

(XaeTe flla < CliXee fllq (25)
for some small a and a somewhat larger b; this is the crux of the proof.
Notice that T f(z) = 0 if supp(f) C °B(zx,¢) and that T, f(x) = T f(x) if
supp(f) C B(z,¢). Taking c as in the triangle inequality (1), we have

XaETEf — Xa.s’f‘sxbef: if b 2 C(]- + a)*
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Next, we split XaeTeXpe f into two parts:
XoeTeXoe f = XaeTeXae f + XaeTe(Xoe — Xae) f.
We assume c(a + d) < 1, so that
B(z,de) C B(x,e) whenever z € B(Z, a¢).
This gives XaeTeXge = XaeTX4e and
IXaeTeXae flla = 1XaeTXae fllq < AllXaefllg < AliXeef g

provided d < b. )
Now we handle X,.T.(Xpe — Xge) f(z), which equals

f K(z,y)f(y)duly) for ae. € B ac), (26)
B(x,e)NB(&,be)\B(Z,de)

if we assume that a < d and apply (23). For y in the above range of integration
we have that

de < p(Z,y) < clp(z, %) + p(z, )] < clae + p(z, y)].
Choosing a so that ca < d/2, we have
p(z,y) > e > "be > ' p(z, y);
the doubling condition then shows that V(z,y) > CV(Z,y). Thus

C & C’
Kz, Y)| < 57— < - < - :
R O RN (=TEX ) RTER =)
By Holder’s inequality, ||Xse fll1 < || Xoefllq - u{B(Z, be))*~1/9. Combining this
with (26) gives

Cu(B(E, ae))' /|| Xee fl1
p(B(z, be))

”XMTE(XI)E — de)f”q < < C“szf”q

and, with it, (25).

It is now only a question of adding these inequalities for a suitable col-
lection of balls covering R". To do this, let ¢; be an engulfing constant (as
in §1.1) and choose a maximal disjoint collection of balls {B(Z*,as/c1)}. So
|U B(z*, ac) = R™ by construction. Also, {B(Z*, bc)} have the bounded over-
lapping property: for some N, no point in R™ belongs to more than N of
the B(z", be); N is of course independent of €. To see this, assume z €

N

(| B(z",be). Then B(z*,ac/c1) C B(z, ke), for k sufficiently large. By the
k=1

doubling property, u(B(z, ke)) < Cu(B(£*,ac/c1)), and by the disjointness of
the B(z*,ae/c1), we get N < C, verifying the bounded overlapping property.
Finally then, by (25),

/ Tefl9dp <Y T f|? du
Rn

k J B(zk,ae)

<A fl%dp < A'N [ |f|%dp,
k JB(z*,be) R"

and the proposition is proved.
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COROLLARY 1. Suppose T' has a kernel K that satisfies

/ (K (z,y) — K(z,§)|du(z) < A whenever y € B(3, 6), (10)
°B(7,cb) | |
in addition to (21), (22), and (23). Then ||T:fllp, < ALl|fll, for 1 <p < q and

plz: [Tef@)| > a} < 2| flh, for all a >0,

with A, and A independent of €.

Proof. We use Theorem 3 of §5. We have just shown that | T f|l; < C|Ifll4
uniformly in €. It suffices to show

f |Ke(2,5) — Ke(2,5)| du(z) < A whenever y € B(§,8)  (10,)
<B(#,cd)

uniformly in 6, §, y, and ¢, for some possibly larger choice of constant c. Since
we have such an estimate for K, we need only bound

[ ..., K@wldu )

c6<p(z,§)<s

and

/ p(z,y)<e | K (z,5)| dp(zx). (%)

p(x,§)2max{cé,e}

For (*) to be nonzero, we must have ¢ < &. We have (x) < u(B(7,¢)) -
A/u(B(y,€)). Using the doubling property and p(y, %) < 6§ < £/c shows that
u(B(y,€)) and u(B(y,€)) are comparable, giving a uniform bound for ().

Similarly, for (%) to be nonzero, we must have c§ < ¢'(¢ + §), where ¢
is the “quasimetric constant” of p. Taking ¢ > ¢ gives ¢’§ < ¢ and shows
that u(B(y,€)) and u(B(y,€)) are comparable. Therefore (xx) < u(B(y,¢)) -
A/u(B(y,€)) is uniformly bounded and the proof is complete.

Note. It should be observed that Proposition 1, its corollary, and the
further results derived from them also hold if we replace the assumption (22)
by the weaker assumption |

/ (|K(z,y)| +|K(y,z)|)du(z) < A, forall0<e<oo. (22
e<p(z,y)<2¢

7.2 We keep to our assumptions above. Then, in view of the uniform
boundedness of the T, there exists a sequence £; — 0 so that the operators T ;
tend weakly (in L?) to a limit Tp. We claim that there exists a bounded
measurable function a(z),* so that

(Tf)(a:) = (To f)(x) + a(z) - f(zx), forevery f € LY. (27)

t Taking T to be the identity operator shows that a(z) need not be zero. Moreover,
the full family of truncations {7} does not necessarily tend to a limit, as can be seen
by considering fractional integration of imaginary order and other examples. See §8.22
below.
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We set A = T — Ty. The key observation to be made is that A is “local”,
in the sense that A(g)(z) = 0 if g vanishes in a neighborhood of z. In fact,
with g given, (T — T:)(g)(z) = 0 as soon as € < p(z,supp g), which makes
clear the local character of A. This implies that, for every cube (),

A(Xqg) = Xq(Ag) a.e, (28)

because A(Xqgg) vanishes outside Q, and A(Xgg) = A(g) — A(X<«g), while
A(X «gg) vanishes in Q°. (Observe also that x(bQ) = 0 for “most” Q.)

Using linear combinations of characteristic functions of cubes, the iden-
tity (28), the regularity of u, and the L?-boundedness of A =T — T, we get
by a passage to the limit that

A(fg) = fA(g)

whenever f € L? and g is bounded with compact support. Let {On} be
an increasing sequence of bounded open sets that exhaust R" and let X,
be the characteristic function of O,,. Thus if f, is supported in O,, then
A(fm) = fmA(Xpm), whenever m’ > m. Therefore, A(X,,) forms a coherent

set of functions; that is,
A(Xpmy) = A(Xmy) in Omn,, if m < ma.

Hence there exists a function a(x), so that a = A(X,,) in O,, and, as a resuit,
A(fm) = a- fm, whenever f,, is supported in Oy,. Finally, A(f) = a - f for all
f € L?, and a(x) is bounded since A is, proving (27).

7.3 So far we have seen how L? and weak-type L' results for the oper-
ator T are related to corresponding estimates for the truncated operators 7.
For some purposes—e.g., when one tries to make more precise the sense in
which T'f = iin%) T. f +a- f for certain T—it is essential to consider the associ-

ated maximal operator. We therefore define T, f = sup |7 f|, and our intention
e>0

is to prove for T, the same kind of estimates that hold for T". Experience shows
that it 1s possible to do this only when the kernel K satisfies an additional
hypothesis: estimates of the type (10) or (18), but with the roles of x and y
reversed. More precisely, we assume there exists a Dini modulus 7 with

K@) - K@) <n( 22 ) V@) (29)

whenever p(Z,y) > cp(z, I).

PROPOSITION 2. Suppose T' and its associated kernel K satisfy (21), (22),
(23), (10), and (29). Then

T.f < A{M(Tf) + M(f)}, (30)
and, more generally, for any r > 0,
T.f < A{M(TFIN)"" + M(f)}. (30)

Here M 1is the maximal operator of §3.
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Proof. As a preliminary matter we remark that for each € > 0, 7. f(x) is
actually continuous in z, and hence 7. f(x) is semicontinuous and measurable.!
Let us now fix an Z € R" and an € > 0. Write f = f, + f2, where f; = f

on B(Z,¢), and fo = f on °B(Z,¢e). Thus T, f(Z) = T f>(Z), by the definition
of K. The first point to keep in mind is that

[T f2(Z) — Tf2(z)| < A'Mf(Z) whenever p(z,Z) < €/c. (31)
In fact, the difference in (31) is bounded by

[ e - K@l il

> K (z,y) — K(Z,9)| - | f(v)| du(y)

k=0 J2k+1le>p(z,y)>2k¢
If we invoke (29), then the right side is majorized by
> 1 R W e Iy _
So(gg)ueaen™ [ wl) << $ o) Mie),
B(#,e2Fk+1) B
verifying (31). Therefore
T-f(@)| < |Tf (@) + T fr(z)| + A(Mf)(Z) whenever z € B(Z,¢/c). (32)

Inequality (32) provides us with a substantial set of z to exploit; it is just

a matter of choosing x € B(Z,e/c) so that neither Tf(x) nor T fi(z) is too
large. Now

u{z € B(Z,¢/0) : ITf(x)| > a} < @~ / T ()" dp(z)

B(Z,e/c)
< a7 u(B(E,e/c))M(|Tf|")(Z)
for any r > 0. Thus if a > 4Y"[M(|Tf|")(Z)]*/", then

p{z € B(%,¢/0) : ITf(2)| > a} < 7u(B(&,</0)).
Also, by Theorem 3,
ule € B(z,¢/0) : ITH(@)| > o} < 2 / frl dp

A
_A f fldu < £ u(B(@, ) Mf(3)
B(&,e)

8

so if a > 4A'M f(z), then

uiz € B(&,¢/c) : [ThH(@)] > a} < (B, /<)),

Therefore if a > max{41/r[M(|Tf|r)(:i':)]1/r,4AMf(:f:)}, then there exists an
T el B(Z,e/c) so that |Tf(z)| < @ and |Tfi(z)| < a. Substituting this in (32)
yields

T.f(z) < A{IM(ITF")@)]V" + Mf(@)},

which gives (30’) and, in particular, (30).

T This follows from (29) and the LP control of V! given by §8.12 below.
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COROLLARY 2. Under the assumptions of Proposition 2,

1T« fllp < Apllfllp, 1<P<g

and A
pl{zr : T f(x) > a} < -&-||f||1, for all a > 0.

The first conclusion follows directly from (30), the corollary in §5.2, and
the L? boundedness of the maximal function (Theorem 1 in §3). The proof of
the second conclusion is in the same spirit but is a little more complicated.
We need two observations. First, F' satisfies a weak-type L' inequality,

p{x € R" : |F(z)| > a} < g for all a > 0, (33)
exactly when |F|" belongs to the Lorentz space LY™> if 0 < r < 1. Moreover,
if we choose the smallest A occurring in (33), then A" is equivalent to the
LY/™° norm of |F|". We then apply this observation successively to F = T.(f)
and F = T(f), once we note that, by the general form of the Marcinkiewicz
interpolation theorem, the mapping f — M(f) is bounded from L™ to

itself, if 0 < r < 1.}

7.4 Three concluding remarks.

(i) One has T'f(x) = lin{g T f(z) + a(x) f(x) for almost every x, whenever

f e L?P, 1< p<q, if one can prove the convergence for f lying in a dense
subspace of LP. This follows the usual pattern of proving the existence of limits
almost everywhere as a consequence of the corresponding maximal inequality.

(ii) An immediate consequence of (27) and the definition of T, is the
inequality

Tf(z)| < |Tuf(x)| + | f(z)]- (34)

(iii) Under all the assumptions we have made (namely, (21), (22), (23),
(10), and (29)), we can also conclude that T' and 7. are bounded on L? for
every p, 1 < p < oo, and not just for 1 < p <q.

To see this, let T* be the dual of T, which is the bounded operator from
LY to itself (1/¢' +1/q = 1) determined by the identity

/ (" f)g du = / (Tg)f du, (35)

holding whenever f € LY and g € L. T" is represented (in the sense of (23))
by a kernel K*(z,y), where K*(z,y) = K(y,x). Now the assumption (29)
and the proposition in §6.1 show that the corollary in §5.2 is applicable to T,
proving its boundedness for 1 < p < ¢/, and so {35) gives the desired conclusion
for T in the range ¢ < p < 0o. The result for T, then follows by appealing to
Corollary 2 in §7.3.

} For the properties of the Lorentz spaces and the general form of the Mar-
cinkiewicz theorem, consult Fourier Analysis, Chapter 5.
I See, for instance, Singular Integrals, p. 45.
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8. Further results
A. Real-variable structures

8.1 In §1, we can replace the underlying space R™ by a locally compact
space; it is of course assumed that a family of balls (or, alternatively, a quasi-
distance p) and a measure du are given that satisfy the assumptions required
there. Three illustrations of this are as follows.

(i) The first occurs when the underlying space is discrete. A particular
instance Is a finitely generated discrete group G of polynomial growth. By this,
we mean that there is a finite set U C G so that, if U° = {id}, Ut = U . U*,
then G = | U * while the cardinality of U* is bounded by a constant multiple
of a fixed power of k. In this case, we can take

B(z,8) ={yeG:y~' 2 € U*, for some k < 6}

and dp to be the counting measure; all the requirements in §1 are then sat-

isfied. For the facts about groups of polynomial growth, see Gromov [1981],
Tits [1981].

(ii) Here we take our underlying space to be a smooth compact Rieman-
nian manifold M, with the quasi-distance p given by the Riemannian metric;
dp is the induced measure. Again, all the requirements in §1 are satisfied.

(iii) If M is a noncompact Riemannian manifold, our basic assumptions
may not hold because of the behavior of the metric at infinity. A simple ex-
ample is furnished by the hyperbolic unit disc {z € C : |z] < 1}, with the
holomorphically invariant metric ds? = |dz|?/(1 — |z|?)2. The volume of a ball
of radius 6 grows exponentially as § — o0o; hence the doubling condition in §1.1
fails for large 6.

8.2 Suppose M is a smooth compact manifold of dimension n. We shall
describe a construction of a family of “nonisotropic” balls on M. To do this,
assume we have a smooth mapping © : M x M — R" so that O(z,z) = 0 for
all z € M and, for each fixed x € M, the mapping y — ©(z,y) is a diffeo-
morphism of a neighborhood of £ € M to a neighborhood of 0 € R™. Suppose
also that we are given an n-tuple ai,...,a, of strictly positive numbers. We
define a norm function p on R™ in terms of these numbers by

p(z) = p(za, ... ,Tp) = max |t/ 2k,

With ©, p as above, we define

B(z,8) = {y : p(B(z,y)) < 6}

and take du to be any measure on M with a smooth strictly positive density.
One can then assert the following.

(a) If the exponeuts ax are all equal (more strictly, if ax = 1) then the
balls defined above are equivalent to those described in §8.1, part (ii).
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(b) If maxar < 2minag, all the requirements in §1 are satisfied. For
closely related results that are relevant to complex analysis, see §8.3 below.
Other instances arise in Folland and Stein [1974}, Nagel and Stein [1979].

(c) When maxaj; > 2minag, it is not necessarily true that the resulting
balls satisfy the crucial engulfing property (1) in §1.1. An example is given in
Nagel and Stein [1979].

8.3 Suppose M arises as the boundary of a smooth bounded domain 2
in C¥:i.e., M = bQ and n = 2N —1. For each boundary point z, let v, denote
the unit (outward) normal to M at z. The directions orthogonal to C - v, are
the “complex tangential” directions at z. Define the “polydisc” P(z,8) c CV
to be the product of: (1) A one-dimensional complex disc in the direction
of v, with radius 6%, and (2) An (N — 1)-dimensional complex ball lying in
the orthogonal complement of C - v, having radius 4. Set

B(z,8) = M N P(x, 6), for x € M.

Then this family of balls, together with a fixed measure du given by a strictly
positive smooth density, satisfies all our assumptions in §1.

This construction is equivalent to a special case of §8.2(b), in which ax =1
for 1 < k < n, and a, = 2. See Stein [1972]; for the case of the unit ball in C",

see Koranyi {1969].

8.4 Let X;,...,Xx be a collection of real smooth vector fields on a
compact manifold M of dimension n; we suppose that these vector fields and
their commutators of order at most m span the tangent space at each point

of M.
For each z,y € M, define p(z,y) to be the least time taken to move

from z to y along a path pointing in the directions of the X;’s. More precisely,
p(z,y) is the infimum of the T for which there exists a piecewise smooth
path v : [0,T| — M, with v(0) = z, v(T') = y, and

k

Y(t) = ) a;j(H)X;(v(f)),  with ij[aj(t)]z <1

i=1 J=1
Set B(x,8) = {y : p(x,y) < 8}. Then these balls, together with a mea-
sure dy given by a strictly positive smooth density, satisfy all the assumptions
in §1.
In fact, let {Y,—}f,—il be an enumeration of the vector fields X;,..., X,
and all their commutators of order < m, and let degree(Y;) be the order
of the corresponding commutator. Let I denote any n-tuple of integers I =

(F15.+.+Jn), with 1 < jx < N, and let degree(I) = ) degree(Y;,). Write also
£=1

A(x,8) =Y |det(Ys,, ..., Y;,)| - 695D,
I

Then for each x € M, the function é — A(z, d) is a polynomial in § of degree
at most nm. The significant fact is that

w(B(x,6)) = Az, §) for small 6,

and hence du satisfies the crucial doubling property. For further details, see
Nagel, Stein, and Wainger [1981], [1985].
Several further comments are in order.
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() The balls described here are equivalent with those arising in §8.3 in
the special case in which Xi,..., X are the real and imaginary parts of a
basis of the tangential Cauchy-Riemann operators; in addition we require that
{1 be strongly pseudoconvex or, more generally, that its Levi form has, at each
point, at least one nonzero eigenvalue.

(ii) These balls are also of interest when the domain € is in C? and is of
“finite type”; see Christ [1988], C. Fefferman and Kohn [1988], McNeal [1989],
Nagel, Rosay, Stein, and Wainger [1989].

(iii) These balls play a crucial role in the study of hypoelliptic operators
k |
such as ) X7. See Rothschild and Stein [1976], also §8.5 below.

j=1

8.5 Here are two extensions of the structure described in §8.4..

(a) For each z € M, let T;; denote the cotangent space of M at z. Suppose
we are given, for each z, a nonnegative quadratic form Q, defined on T that
depends smoothly on z. Define p(x,y) to be the least 7 for which there exists
a piecewise smooth curve v : [0,7] — M with 4(0) = z, v(r) = y, and for
which [(}(t),£)] < 1 for all t € [0,7] and ¢ € T2, with Q,,)(£) < 1. We
make the key assumption that for some € > 0, we have p(z,y) < cd(z,y)®,
where d is a Riemannian distance. With du as above, all the properties in §1
are then satisfied. See C. Fefferman and Phong [1983], Sanchez-Calle [1984],
C. Fefferman and Sanchez-Calle [1986]. This extends the results alluded to
in §8.4(iii) to more general second-order operators; here Q, is not necessarily
the sum of squares of linear forms. |

(b) For the treatment of other hypoelliptic operators that are polynomials
in vector fields, the following extension is needed. We now assume that we are
given a double-indexed family of vector fields {X}}, with 1 < i < r, where
X; will be thought of as having degree i. We suppose that these vector fields
and their commutators span the tangent space at each point. Let us define
B(z,6) to consist of all y that can be joined to z by a piecewise smooth
path v:{0,1] - M, v(0) = z, v(1) = y, with

F(t) = Za;- () X;(t), and Z¢‘5"?""7'[aff,-(t)]2 < 1.

‘Then these balls, tbgether with du as above, satisfy all the properties in §1.
There is also a formula for the volume u(B(z,8)) analogous to that in §8.4;
see Nagel, Stein, and Wainger {1985].

8.6 In the next four sections we shall consider R™ with its usual balls
B(z,6) = {y € R" : [z — y| < §}. In this section, du is any measure that is
doubling with respect to these balls, and we note two elementary facts.

(a) u(R™) = oo, unless u(R™) = 0. To see this, observe that there is
a c > 1 so that u(B(0,26)) > cu(B(0,6)) for all § > 0; iterating this inequality
shows that u(R"™) = co.
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(b) If S ¢ R™ is a smooth submanifold of dimension k < n, then u(S) = 0.
In particular, u({x}) = 0 for all z € R™. Indeed, let x € S, and let v be a unit
normal to S at z. Then for small §, B(z + (6v/2),6/4) NS = 0, and therefore

u(S N Bz, 6)) < cu(B(z, )

for a fixed ¢ < 1 that does not depend on & (provided 6 is small). Now apply
the corollary in §3 to f = Xs.

8.7 (a) Let P be a polynomial on R"™ of degree d. If dz is Lebesgue mea-
sure, then du(z) = |P(z)|* dz is a doubling measure (with respect to the stan-
dard balls) whenever a > —1/d. This is essentially in Ricci and Stein [1987];
related results are in Chapter 5, §6.5.

(b) A variant of this result is as follows. Suppose M is a smooth compact
manifold, and f is a smooth function on M that does not vanish to infinite
order at any point. Let du = |f|* do, where do is the measure on M induced
by some Riemannian metric. Then there is a positive € so that du is a doubling
measure when a > —e. More precisely, let k be the smallest integer so that,
for each € M, there is an a with |a| < k so that, in some coordinate system,

0% f(x) # 0; then we can take e = 1/k.

8.8 (a) There exist doubling measures (with resPeét to the usual balls
in R™) that are totally singular. Indeed, on R', the Riesz product

du = H[l + acos(3" - 27x)] dx, where -1 < a < 1,
k=1

is such a measure.
For the proof that du is totally singular, see Zygmund {1959], Chapter 5.

To verify the doubling property, it_sufﬁces to check that du(I) ~ du(J), where
I = [(¢—-1)/3,¢/3%], J = [¢/37,(£ + 1)/3°] are two adjacent intervals of
length 377. Now |

du = Pj(x) H[l + acos(3* - 2rrz)] dz,
k=7 |
and it is easily seen that P;(z) = P;(Z), if |z — Z| < c377.

(b) There exist doubling measures di = f dx that are absolutely contin-

uous, but where f vanishes on a set of positive measure.
To see this, partition R' using the measure du above, so that R' = AUB

with pu(A4) =0, |A| > 0, and u(B) > 0, |B| = 0. Now let
F:R! - R, F(:::):/ (du + dz).
0

Since p has no atoms, F is an increasing homeomorphism of the line, mapping
intervals to intervals, and converts du + dx to dz. Then E; = F(A) and
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E; = F(B) are disjoint sets of positive Lebesgue measure whose union is R',
while both Xg, dr and Xg, dz are doubling measures. Indeed, let I and J be
adjacent intervals of the same length. Since du is doubling,

INE| =|F'(I)| =~ [F~'(J)| = |[J N Eil,
from which it follows that
1IN Ey| = w(F~H (1)) = p(F~Y(J)) = |J N Eay.
Journé [1989].

8.9 Doubling measures arise in a natural way in various problems in
analysis. "

(a) Suppose that du is a doubling measure on R, and let F(x) = f:} dys.

Then F : R' — R' extends to a quasi-conformal homeomorphism of the
closed upper half-plane R2 to itself. Conversely, every such mapping, provided
that 1t preserves orientation, gives rise to a doubling measure as above when
restricted to the boundary. See Beurling and Ahlfors [1956]; this paper also
contains further examples of singular doubling measures.

(b) Suppose 2 is a bounded domain in R™ with smooth boundary M = b
and that {a;;(x)} is bounded, measurable, symmetric, and strictly positive
definite on (2. We consider the equation

o Ou
2 dz; (%‘5}";) =0 on,  with ujpa = f.

-

1,7

Fix a point Z € 2 and consider the “harmonic measure” dy associated to 7,
defined by

u(Z) = /M f(z) du(z).

In general, du is a doubling measure (with respect to the usual balls
defined on M), but it may be singular. See Caffarelli, Fabes, Mortola, and
Salsa {1981], Caffarelli, Fabes, and Kenig [1981], and §6.20 of Chapter 5.

?.10 The quasi-distance p in §2.4 can always be replaced by an equiva-
lfnt p that satisfies a “Holder condition”. More precisely, we can find a p with
p = p, so that p(z,y) = p(y, ) and

(2, 2) - B(y, 2)| < Chlz, )" [B(z, 2) + by, 2)]*

for some fixed constants C and v, 0 < v < 1. The exponent v can be chosen

to depend only on the structural constant c; appearing in §1.1. Macias and
Segovia [1979a].

8.11 Suppose that for each 6§, Bs is an open, bounded, convex, and
symmetric subset of R™ so that Bjs increases with §. As remarked in §2.2, if
dp is the Lebesgue measure dz, then the family of balls B(z,6) = = + Bs
satisfies §1.2. As a result, the maximal theorem (Theorem 1) holds in this
setting also. Examples where this situation occurs are in Marcinkiewicz and
Zygmund [1939b], Carbery, Christ, Vance, Wainger, and D. Watson (1989].
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B. Maximal functions and singular integrals

8.12 Suppose V(z,y) is the volume function appearing in §6.5. Set
f(z) = 1/V(x,y), with y fixed, and let A(a) be the distribution function

of f; that is, Ma) = |{z : f(z) > a}|.
(i) We have A(a) < o™ %, for all a > 0.

(ii) If we make the additional assumption that u(B(z,6)) is continuous
in 6§, 0 < § < 0o, then we have the more precise assertion:

AMa) = min(a™ ", u(R™)), alla>0.

(iil) When the assumption in (ii) is satisfied, we also have that

[ V(z,5)~P du(z) = (p — 1) [u(B)*® — u(R™)' 7],
|

whenever B is a ball centered at y, and p > 1. When p = 1 the integral
diverges, unless u(R"™) < oo, in which case it equals log(u(R")/u(B))

To prove (i) and (ii), observe that {z : V(z,y) < e '} =J B(y, 6), where
the union is taken over all balls B(y, §) with u(B(y, 6)) < al.

8.13 (a) The proof of ||MfliLr < Ap||f|lr given in §2.1 shows that
A, = O(f[p — 1), as p — 1. To see that this bound is best possible, let
B:1 = B(y, 6), B = B(y, c6), where cis a large constant. Set f = w(B1)"Y?PXp,,
then ||f||l» = 1. However,

(Mf)(z) > (B ?[V(z,y)] !, ifz€ °B.

Thus if we apply §8.12, and let § — 0, we get that A, > ¢(p — 1)~ asp — 1.
One can prove similarly that M is not bounded on L'. Note that this argument
uses the assumption that u(B(z,§)) is continuous in §; this premise can be
dropped (see §8.14 below).

(b) The proof that ||Tfllzr < Ap|f|lz» for the singular integral oper-
~ ators T given in §5.1 shows that 4, = O([p — 1]7"), as p — 1. In general,
this bound is best possible. Indeed, assume that the kernel K of T satis-
fies |K{(x,y)| > c[V(z,y)]~!, as well as the regularity property (18’). Then
for £ ¢ B, we have that

(TF)(z) = u(B1) " "/PK (z,y) + / (K (z,y) — K(z,9)] f(§) du(D),

B4

where f and B; are as above.

The estimate (from below) of the first term is again a consequence of §8.12,
while the second term provides an inessential contribution, as the argument
in §6.5 shows. A similar proof shows that T is not bounded on L. If we
make the further regularity assumption (29) (so that duality applies), then we
can see that the estimate A, = O(p) as p — oo holds, is best possible, and
moreover that T does not extend to a bounded operator from L™ to itself.
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8.14 The crucial weak-type inequality for the maximal function may be
reversed. In fact, for appropriate constants ¢, ¢, we have

ule: (Mf)() >} > f | da.

| f1>a

To prove this, let E = {z : (M f)(z) > o}, and decompose E as L Qx,
according to 8§4.1. Since B;” intersects the complement of E, we have

/ fldz < au(BL),
B}

and thus f O |[fldz < copu(Qr). Adding these inequalities and using the fact
that |f] < M(f) < ciM(f) gives the asserted inequality with ¢ = 1/¢;. As a
consequence, it i1s not difficult to show the following. |

(a) Suppose f is supported in a set of finite measure; then M f is integrable
on sets of finite measure if and only if | f|log(1 + |f]) is integrable.

(b) There is a constant c,, p > 1, with ¢, > ¢/(p—1), so that if f € L?(R")
then ||M f |Lp_ > cpl||fllz». Moreover, M is not bounded on L®.

See also Chapter 1, §5.2 of Singular Integrals.

8.15 (a)If f € L*(R™,du) then Mf € LY(E), whenever 0 < q < 1 and
E C R™ has finite y-measure. In fact, for f € L' we have

L (MA@ du(e) < cau(B) I ]|%.

(b) The weak-type inequality for the maximal function goes through when
the L' function f, more precisely the measure f(z)du(z), is replaced by a
measure dm (possibly singular with respect to du), if dm is supposed to have
finite total mass. Indeed, with such a measure dm, let

M (dm)'(:r:) = Sup = |dm|.

s>0 u(B(z,)) B(z,5)
Then p{z : M(dm)(z) > a} < ca™ fRn |dm|. Also, the L? inequality in (a)
holds, with || f{|1 replaced by [, |[dm].
To prove (a), let A(a) = u({z : Mf(z) > a} N E). Then

]E(Mf)qdu=q/ﬁma"‘l)\(a)dazfoA+/4m.

.NQW choose A = ||f||1/p(E) and use the fact that A(a) < u(E) in the first
integral, while A(a) < ca™!||f||,1 in the second.

That the maximal inequalities for L! functions extend to finite measures
as asserted is evident from the proofs given in §3.
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8.16 The corollary in §3.1 has the following extension. Whenever f is
locally integrable, then

1
p(B(z, 5)) B(z,5)

for almost every z. The set of x for which this holds is called the “Lebesgue

set” of f.
In the case of R™ with its usual Euclidean structure, if {®.} is an ap-

proximation of the identity (as in §6.1), then 3111[1] (fx®:)(z) = f(x) for every z

in the Lebesgue set of f, whenever f € LP(R"), for some p, 1 < p < oo.

|f(y) — f(z)ldu(z) — 0, asd—0,

8.17 The Besicovitch covering lemma gives a more refined version of the
lemma in §3.1, in the setting of R™ with the standard Euclidean balls. It has
the advantage of being applicable when the underlying measure is not assumed
to be doubling.

The lemma states that there is a constant ¢, so that the following holds.
Suppose {Bz«} is a collection of balls, with Bza centered at z; assume also
that the set E = {z®} is a bounded subset of R™. Then there is a subcol-
lection {B’} that covers E, and so that no point belongs to more than ¢, of
the B’.

This has the following consequences. Let i and v be positive measures
on R" so that, for all balls B, v(B) = 0 implies u(B) = 0. Define

1
(M, f)(z) = SUP Bz, 8)) . |f ()| dp(y),

where B(z,6) = {y : |x — y| < 6}. Then

vz (M, f)z)>a} < & / F@)| du(y).

In particular, if we take v = u we see that the maximal theorem in §3.1
holds, for the standard Euclidean balls, without requiring that du be a doubling
measure. Note however that the assertion is made for the centered maximal

operator M, and not for the uncentered version M.
Similar conclusions also hold for certain families besides the centered

Euclidean balls. See Besicovitch [1945], Morse [1947], de Guzmaén [1981]; the
case of rectangles is described in Fourier Analysis, Chapter 2.

8.18 We summarize briefly the theory of singular integrals as presented
in Calderén and Zygmund [1952]. Suppose we are given a function Ko(x)
that is homogeneous of degree —n on R", with |Ko(z)| < Alz|™, so that
|Ko(z — y) — Ko(z)| < An(|y|) when {z}] = 1, as y — 0; here (as in §6.5) 7
is a Dini modulus of continuity. We assume also the cancellation condition
flm|=1 Ko(z)do(z) = 0. Let us define the principal-value distribution K =

pP.V. Ko by
K(f) = lim f(z) Ko(z) dz,

€=0 Jiz| e

for f € S. The following assertions then hold.
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(a) K is a bounded function on R™, and hence the convolution operator
Tf = f * K extends to a bounded operator on L*(R").

(b) The operator T satisfies the assumptions (10), (21)-(23), and (29) (in
the setting of R™ with the usual balls, with du = dz and ¢ = 2). Thus all the
conclusions stated in Theorem 3 and the Appendix §7 apply to T.

The proof of the boundedness of K can be given by adapting the argument
in §4.5 of Chapter 6, where somewhat more regularity of K is required.

8.19 The distributions K that arise in §8.18 are homogeneous distribu-
tions (having degree —n). If we assume further regularity, such distributions
can be characterized by the following four equivalent properties.

(1) The distribution K is of the form ¢é + p.v.Kp, where § is the Dirac
delta function, and Kp is a Calderén-Zygmund kernel (of the type specified
in §8.18) with the additional property that Ky is C* away from the origin.

(2) K is homogeneous of degree —n and, away from the origin, agrees
with a C* function. The first statement means that K(¢:) = t " K(¢) for
all t > 0 and ¢ € S; here we write ¢:(x) =t~ "¢(x/t).

(3) Kisa function that is homogeneous of degree 0 and is C* away from
the origin.

(4) K can be written as (}igl fEN ®. dt/t for some ® € S with
f ddr = 0.

':I‘he equivalence of (1), (2), and (3) may be proved by using arguments of
the kind that appear in Chapter 6, §4.4; see also §7.5 of that chapter, as well as
Singular Integrals, Chapter 3. The assertion (3) follows directly from (4), via

the formula K (£) = [y B(t£) dt/t Conversely, if K is given, one may obtain
a representa.tlon (4) by taking <I>(§) = n(|§|)K (&), where n € Cg°([1,2]) and
f n(t) dt/t = 1.

Some related results for homogeneous distributions of degree d # —n can
be found in Chapter 6, §7.5.

8.20 The results in §8.18 and §8.19 refer to homogeneity in the setting
of isotropic dilations. There are closely parallel analogues that hold in the
context of the nonisotropic dilations described in §2.3. Some further details
may be found in B. Jones [1964], Fabes and Riviere [1966], Kree [1965].

8.21 The Hardy-Littlewood-Sobolev inequality for fractional integration
extends to the general context treated in §1. Indeed, if

(I f)(z) = / Vi) 1) duty),

then |[I.fllq < Apq||fllp whenever 1 < p<g<ooand g~ !=p"!—a.
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The proof can be given by adapting the argument in §4.2 of Chapter 8
or, alternatively, by using the reasoning of Singular Integrals, Chapter 5. In

applications, the relevant operator is more often

(Jpf)(@) = f 1o(e, 9)]° [V (@ 9)] " £(y) dus(y).

Similar conclusions then hold with a = 87, if p(z,y) < c[V(z,y)]”. In par-

ticular, the operator J2 gives a majorant for the fundamental solution of the
n

sub-Laplacian Y X7 arising in §8.4.

=1

8.22 Let T be the fractional integration operator, having imaginary
order, that is defined (via the Fourier transform) by

Tf(€) = |€]7% - f(£);

here t # 0 is a fixed real number. Then T f = f * K, and the distribution K,
away from the origin, agrees with the function

K(z) = |a| ",

where v; is an appropriate constant.
The operator T is of a kind described in §6.2: it is bounded on L*(R™) and

the differential inequalities (18,) hold. As a result, it also enjoys the properties
stated in (10), (21)-(23), and (29), and all the conclusions of the appendix §7
apply to it. However, if 7T, is the corresponding truncated operator, it is not
true that T.(f) converges as € — 0. Indeed, if f is (say) smooth with compact

support, then
(TEI - ng)f(ﬂ.'?) - Ct(Eit - Eiét)f(a:) — 0, as €1,&€2 — 0.

See Muckenhoupt [1960]; also Singular Integrals, Chapter 2, §6.12.

C. Vector-valued singular integrals

8.23 Whenever ® € S, and fR“ ® dx = 0, we have defined in §6.3 the
square functions s¢ and Ss. One has:

(a) llsa(f)ller < Apllfller, 1 < p < o0, with a similar inequality for Ss.

(b) Suppose ® is nondegenerate, in the sense that there exists a ¥ € S
with fRn ¥ dz = 0 so that

/ B(t£) ft(tg)d?t- = 1.

0

Then we have the converse inequality || f||lz» < A,|se(f)||z», for f € LP(R"),
1 < p < o0; again the analogous result holds for Ss.
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(c) Similar results are valid under weaker assumptions on ® and ¥. For
instance, it suffices to have |®(z)| < A(1+|z|) ™™, [V®(z)| < A(1+|z|) ™1,
with the same conditions on ¥; we must assume, of course, that the integrals
of ® and ¥ vanish. An important example occurs when these functions arise
as the first derivatives of the Poisson kernel; then the corresponding s¢ gives
the n-dimensional version of the Littlewood-Paley g-function, and Sz is the
area integral of Lusin.

Indeed, the inequalities (a) for 1 < p < 2 are treated in §6.3. The
case p > 2 follows by duality: As in §6.4, think of sg(z) as the norm of the
vector (sa f)(z) in the Hilbert space H = L?[(0,c0);dt/t]; s is then a linear
operator that is given b}: convolution with an H-valued kernel. Now observe
that [L?(R",H)]* = L (R",H*) = L? (R™, H) and use the inequality for
1 < p < 2. The same argument works for Ss.

To prove (b), one notes that if U(z) = ¥(—xz), then

(f %D, g % ‘i’t) = ([ * P x ¥y, g),
and so (f,g) = [[7(f * ®¢, g+ ¥;) dt/t. Thus

(s )] = (se(f),85(9)) < (sa(f),54(9));

and our assertion follows from the direct inequality (a). The corresponding
result for S is proved in the same way, if one uses the integral identities
found in Chapter 3, §4.4.3.

For the condition of nondegeneracy imposed on ®, see also §6.19 of Chap-
ter 4. Further information about the g-function and area integral can be found
in Singular Integrals, Chapter 4.

8.24 Let T': LP(R™) — L?(R") be a bounded linear mapping of scalar-
valued functions, for some p, 1 < p < oc. Let B be a Banach space and consider
(as in §6.4) the space L%, of strongly measurable! B-valued functions f, for
which |f|p € LP(R™). We define the extension Ts of T to B-valued functions
by

Te(f®v) = (Tf)®v,

when v € B, and f is scalar valued. The question we address is: Given T, for
what B is T bounded from L%, to itself?

If B is a Hilbert space and T : L? — LP is an arbitrary bounded linear
transformation, then Tg : L% — L% is also bounded, with the same norm.
This is essentially proved in Chapter 10, §2.5.1, and goes back to Marcinkiewicz
and Zygmund [1939a).

8.25 (a) Continuing the discussion in §8.24, we suppose that T is a
singular integral operator that satisfies conditions (10), (21)-(23), and (29),
M is a general measure space, and B = L™ (M), where 1 < r < oo. Then
Tg : L — L% is bounded for 1 < p < co.

In fact, when p = r, the result for Tz is immediate from that for T'; one
then uses Theorem 3 (in the vector-valued form indicated in §6.4) with ¢ = r.
See Benedek, Calderén, and Panzone [1962].

A definition of strong measurability may be found in, e.g., Journé [1983].
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(b) Let B be a “noncommutative” analogue of an L" space. An example
is the trace-class space C,: it consists of all bounded operators A on a fixed
Hilbert space for which

|Alle, = (tr(A"4)"*)M" < 0.

In this setting, results like those in (a) are valid when B = C;, 1 < r < o0.
See J. A. Guitérrez [1982], Bourgain [1986b]; also Gohberg and Krein [1970],
E. Davies [1988].

8.26 In connection with §8.24, the following condition (“(-convexity”)
on a Banach space B is decisive: There exists a function ( : B x B — R that is
convex in each variable separately, so that {(z,vy) < |z + y| whenever z,y € B
with |z| = |y| = 1, and with {(0,0) > 0.

(i) If T is one of the singular integral operators considered in §8.25 and
Tg : L% — L% is bounded for some p, then B is {-convex.

(ii) Conversely, when B is {-convex, then T : L; — L% is bounded for
all p, 1 < p < 00, for a large class of such operators T

The proofs require consideration of probabilistic analogues of the opera-
tors T', given as multipliers involving martingale differences. Burkholder [1981]
and [1983], McConnell [1984], Bourgain [1983].

‘Notes

The model for the real variable methods described in §1-§5 is the the-
ory of maximal functions and singular integrals in the standard translation-
invariant setting of R", as may be found in the first two chapters of Singular
Integrals. The key source of that theory is the paper of Calderén and Zyg-
mund [1952], together with some earlier work in R' by Besicovitch, Titch-
marsh, and Marcinkiewicz.

The general point of view set out here has many roots in past work.
Among these are: an ergodic theorem in Calderén [1953]; a paper of Smith
[1956] on maximal functions for Poisson integrals in domains in R"”; the devel-
opment of the nonisotropic (translation-invariant) theory of singular integrals
of B. Jones [1964], Fabes and Riviere [1966], Sadosky [1966]; the maximal func-
tions on homogeneous groups in Stein [1968]; its application to Fatou’s theorem
for the complex ball in Koranyi [1969}; generalizations to boundary behavior of
holomorphic functions on domains in C™ by Stein [1972]; and the singular inte-
grals that appear as intertwining operators in Knapp and Stein [1971]. Several
more systematic approaches were then developed in Koranyi and Viagi [1971],
Coifman and G. Weiss [1971]. It is the latter we have followed more closely in
this chapter.

Further details concerning the examples and topics mentioned in §6—such
as the Riesz transforms, translation-invariant singular integrals, their vector
valued versions and square functions, and multiplier theorems—may be found
in Singular Integrals, chapters 2—4.

CHAPTER II
More about Maximal Functions

The basic properties of the maximal function, which were the sub-
ject of Theorem 1 in the previous chapter, were obtained as a direct
consequence of the real-variable structure described there. It turns out
that significant extensions and refinements of these properties can be de-
rived from the same circle of ideas. These deeper results are interesting
in their own right, but they also foreshadow some later developments of
importance. Qur presentation of this material will be organized along
three main lines.

(1) Vector-valued inequalities. The passage to a Hilbert space val-
ued version of a (scalar valued) operator is a useful device that arises in
many situations. When the operator in question is linear, this technical
step is subsumed under a general theorem of Marcinkiewicz and Zyg-
mund (see Chapter 1, §8.24) However, the maximal operator M cannot
be treated by this method; this is because it is not linear or, put an-
other way, although it can be reformulated as a linear operator, it then
takes its values in L*° (and not in a Hilbert space). Thus, the maximal
operator requires its own further analysis. This analysis is based in part
on a weighted inequality that anticipates some of the ideas treated in
Chapter 5, and particularly the role of the class A;.

(2) The tent space N'. The importance of nontangential behavior is
highlighted by the definition of a certain function space N. A key point
here is that the dual of this space consists of the Carleson measures or,
equivalently, that functions in A have an atomic decomposition of a sim-
ple nature. These facts anticipate fundamental theorems taken up later,
fsuch as the duality between H! and BMO and the atomic decomposition
In H?. In addition, the space N is useful in a variety of applications. One
that we describe allows us to characterize those collections B of (stan-
dard) balls in R™ for which maximal operators fashioned from B satisfy
analogues of the usual LP and weak-type (1,1) inequalities.

| (3) Singular approzimations to the identity. These do not admit a
bomtwise majorization by the standard maximal function but neverthe-
?ess do arise in a variety of situations, most interestingly for Poisson
I{Itegrals on symmetric spaces. The relevant weak-type and LP inequali-
ties still hold, but the proof requires that we use the Calderén-Zygmund

49
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decomposition (Chapter 1, §4) and, in effect, that we think of the corre-
sponding maximal operator as being made up of vector valued singular

integrals.

Two remarks about our exposition here are in order. First, on a
minor note, and as was mentioned above, our presentation is limited to
the classical real variable setting of R™ with the usual Euclidean balls.
However, given the ideas presented in Chapter 1, the extension of this
material to the general situation treated there is a routine exercise for
many of the results in question. Second, and more importantly, the re-
sults of the present chapter (together with the weighted inequalities of
Chapter 5) may well represent the limit of what can be understood by
using only the real-variable theory centered around covering lemmas. Im-
portant further developments in the theory of maximal functions, which
involve the use of orthogonality (via the Fourier transform and oscilla-
tory integrals), are treated in chapters 10 and 11.

1. Vector-valued maximal functions

1.1 As we have said above, we shall present the theory in this
chapter in the usual setting of R™. In the present context, the maximal
function discussed in the previous chapter becomes

M f(x) = sup — |f(z — y)| dy.
r>0 T Jjy|<r

(The set {|y| < r} is the standard Euclidean ball of radius r, and 7" /c,

is its volume.) N
Our first aim is to extend the basic LP and weak-type inequalities

for the maximal function (Theorem 1 of Chapter 1) to vector-valued
functions. The most natural generalization of this type occurs when our
functions take their values in a Hilbert space.

It will be convenient to fix the Hilbert space as the usual sequence
space [2. Thus we envisage the following situation. We write

f(z) ={f;(®)}5215

where each f; is a complex-valued function, and we set

1@ = (S 15@R) " = 1@

=1

With this definition in mind, we say that f = {f;} belongs to L? if

each f; is measurable and |f(z)| € LP. We write || f|[, = || | f] iz~

§1. VECTOR-VALUED MAXIMAL FUNCTIONS 51

We next define the vector-valued maximal operator M by

i) = (5 (Mp@)7) " (1)

j=1
The generalization of the maximal theorem of the previous chapter
can then be stated as follows.

THEOREM 1. (a) If f € L?, 1 < p < 00, then Mf is finite almost
everywhere. |

(b) If f € L' then, for every o > 0,1

(o Mi@) >l <2 [ 17w)dy ©

o
(c)IffeL?P, 1 <p<oo, then Mf € LP and

1M £llp < Apll £l (3)

Betfore we come to the proof, three clarifying comments may be in order.

(i) As opposed to the case when one deals with a linear operator, the
vector-valued inequalities are not necessarily consequences of the scalar-
valued case. (For the case of a linear operator, see §8.24 in Chapter 1.)

(ii) The untoward effect of the nonlinearity of M is highlighted
when we consider the L™ case. For this purpose take R!, and set f; =
X(zjuljzj), ] = 1, 2,.... Then If‘ = X(l,m) = Lm, but since ij(fb') > 1/8
if |z| < 27, we get that (M f)?(z) > Y 1/64; hence M f(x) = oo ev-

27 2> |x | |
erywhere. -~

The unboundedness of M on L™ is also reflected in the fact that
the bound A, appearing in (3) is of the order p!/2 as p — o0o. For further
discussion and a substitute result for bounded functions with compact
support, see §5.2 below.

(iii) While the “trivial” case p = oo fails, and so cannot be used in
proving the inequalities for M, the starting point in the present situation
is the case p = 2 of the inequality (3), which follows from Theorem 1 of
Chapter 1 because

IMFlI3 = IMf;1l5 < A Nf5113 = AllFII3- (4)
J J

1.2 Weak-type inequality. In this section, we prove the weak-
type inequality (2). We will use a variant of the Calderén-Zygmund de-
composition (§4 of Chapter 1). Here it is important to observe that the

T Here and in the sequel, |E| denotes the Lebesgue measure of the set E.
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decomposition is valid for functions that take their values in a Banach
space.

It suffices to prove (2) when f is nonnegative, in the sense that
fi(x) > 0, for all j and z. For any fixed a > 0, the aforementioned
construction gives us a collection {Qx} of disjoint “cubes”* so that

f(z)| < aon {JQk and

1
Qx| Jo,

Now take f = g+b, where g = f on | JQx and b = f on | J@Q%. Thus
lg(z)| < min{e, |f(z)|} and [|g|* < o []|fl. Combining this with (4)
gives

|f(z)|dx < Ac, for all k.

- 4 — A A
{Mg > a/2}| < —[|Mgll; < —llgllz < =1I71l- (5)

Since M f < Mg + Mb, it suffices to prove that
— A
{(Mb>a/2l < Sl 6)

We prove (6) by deducing it from a simpler variant, to wit, the one
obtained by replacing the function b (supported on the cubes Q%) by its
average value on each cube. Thus we set b°(z) = [Q«|™" [, f(y)dy if

T € Qr, and b°(x) =0if ¢ ¢ | Q«-
Now [b°(z)| < |Qk|™" fo, |f(y)ldy < Aa on each Q. Recalling that

So1Qk| < Allfll1/a, we get ||°||3 < A%a” Y |Qk| < Ac||f|l:. Using again
the case p = 2 gives

. 4 — . Ao A
{B16° > a/2}| < — P63 < S 16°)3 < £l

So we have proved (6) with b replaced by b°, and finally it suffices

to see that o |
Mb(z) < cMb°(z), whenever z ¢ | Qx. (7)

Here @} denotes the cube with the same center as () and with twice
the diameter. Notice that

A
2 1Q%| =) Qx| < E”f”l:-

so the set where Mb is not controlled by (7) has acceptable size.

I In the present case of R™ with the standard structure, the Qx can be taken to

be genuine cubes.
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Write b; = bXq,, b7 = B°Xq;, so b = }_b; and b° = } b%. To
show (7), it is enough to observe that

Mbj;(z) < cMbj(x), whenever z ¢ Q5.

Let B = B(z,r), then |B|™" [5b; = |B|™* 3, [5n0, bj» where the sum
ranges over those k with B N Qy # 0.

The key observation is that if x ¢ U Qx and B(z,r) N Qx # 0, then
B(z,3r) D Q. Therefore the above sum is bounded by

Bl Y i > i b2 < |B(z,r)|"! /B( B < ME)
k k z,3r

This proves (7) and, with it, the weak-type inequality (2). Also,
the LP inequality (3) for 1 < p < 2 follows from this and the case
p = 2 discussed first, by the Marcinkiewicz interpolation theorem (§5.4

in Chapter 1).

1.3 The case p > 2; weighted maximal inequality. To deal
with the case p > 2, we shall need to examine the behavior of maximal
inequalities when weights are introduced. This will be our first result of
its kind, and here the class A; already makes its appearance. The general
theory of weighted inequalities will be taken up in Chapter 5.

We take w(x) to be a nonnegative, locally integrable function (a
“weight” ), and are interested in inequalities for the maximal function
when Lebesgue measure dx is replaced by w(x)dzx. We write w(E) =
[ w(z) dz. The proposition below is the weighted version of the scalar-
valued maximal inequality appropriate to this context.

PROPOSITION. For w as above and M the usual mazimal operator,
we have

o(Mf@)>a} < % [ [f@IMu(z)do ®)

and

| (Mi@) e do <4, [ |f@Mu)ds, 1<g<oo, (©)

with A and A, independent of f and w.T

T of course, for (8) and (9) to be non-vacuous, Mw needs to be finite somewhere.

Since w is locally integrable, this happens exactly when f w(z) dx < Ar™ for all

lz|<r
large r.
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- Our proposition is a direct generalization of the boundedness of the
classical maximal operator (which corresponds here to the case w = 1).
Although its statement does not follow from the classical counterpart,
the proof is nearly identical.

Proof. The inequality (9) says that f — Mf is bounded from
Li((Mw)dzx) to Li(wdzx). By the Marcinkiewicz interpolation theorem,
(9) is a consequence of the trivial fact that M is bounded on L™ together
with the weak-type inequality (8), to which we now turn.

The proof of (8) is a reprise of the argument given for conclusion (b)
of Theorem 1 in the first chapter. Let E, = {z : M f(z) > a}, and let
E be any compact subset of E,. For each £ € E,, there is a ball B,

centered at z with .

Bal < [ 1fw)dy.
84 B.,
We can then select a disjoint collection B, ..., B,, of such balls so that

UB; D FE;
k

here Bj, is the ball with the same center as By and three times the radius.
The key observation is that

[ wis<Z [ 15@I0Mw)w) dy (10)
B By

Indeed,
] wdzr < A|Bi|Mw(y) for any y € Bk,
B

;
because |By| ™! [ 5, wdr < Mw(y), where By is the smallest ball centered
at y that contains B}. Note that the radius of By is at most four times

that of By; thus |Bx| < A|Bxl. The positions of y, By, B}, and B; are
schematized in Figure 1.

Figure 1. Situation in the proof of the proposition.
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If we integrate the above over y By, and use the fact that

| B | Sa“lf | f(y)| dy,
By

we get (10). Having established this, we can then sum both sides of (10)
over k, using the disjointness of the B;., to obtain

w(B) < & / (@) (Mw)(z) da,
which implies (8).

With the aid of the proposition we can now easily finish the proof
of Theorem 1.

Returning to the casé when f = {f,} is vector valued, we recall that
@) = (21f5(2)|)/? and Mf(z) = (3 |Mf;(2)|?)"/2. Then by (9),

when g = 2, we have

g wds < 4 [ i5,P00) da

and summing over j gives us

/(—M_f)zwd:c < A/lfF(Mw) dz. (11)

Suppose now that 2 < p < oo, and let r denote the exponent dual
to p/2 (thus 1 < r < 00). If we take the supremum of (11) over w € L7

ﬁ:’ith lwl|lr < 1, the left side is IMf|2 (since L™ = (LP/2)*), while the
right side is majorized by

1115 - IMwlly < N1£17 - crllwllr < el £2,

in view of the maximal theorem in §3 of Chapter 1. Therefore

1M fllp < /21| £l (12)
and (3) is proved for 2 < p < oo, concluding the proof of Theorem 1.

1.3.1 A few additional remarks may be in order.

(i) The theorem just proved also holds when the sequence space [?
1s replaced by 19, for some ¢, 1 < ¢ < oo: here f(x)| = |f(=)|, =

(CU5@)I/ when 1< g < oo, |(@)] = |f(@)]eo = sup|f; ()] when
7

¢ = 00. One then sets M, f(z) = (2_ 1M £;]19(x))!/? when 1 < ¢ < oo,
?
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and M f(z) = sup|M f;j(z)|. Then, in analogy with the case ¢ = 2
J |
handled by Theorem 1, one can show that

{Mqf(z) > a}| < % / |fl;dxr and
”M—qf"p <Ayl 1flgllpy 1 <p<o0.

(13)

The proof for 1 < g < oo is nearly identical to that for ¢ = 2, except
one begins with the easy case p = g, instead of p = 2. Observe also that
g = oo reduces to the scalar-valued case, because then Moo f < M(|f|oo)-
Finally, it should be observed that analogues of (13) fail when g =1 (see
§5.1 below).

(ii) The weighted inequalities (8) and (9) naturally raise the question
as to what happens when the weights on both sides of the inequality are
the same. In view of the proposition, an obvious sufficient condition
is that Mw < cw. This is the A; condition; its variants, which give
necessary and sufficient conditions for ¢ > 1, are the subject of Chapter 5.
One can also observe that (8) is sharp in the sense that, if w{M f > a} <
A/a [ |flwdz, for all f and a, then w > cMw; this follows by choosing
for f a sequence converging weakly to a point mass at an arbitrary
x € R™.

2. Nontangential behavior and Carleson measures

In many situations, the study of a function f defined on R" can
be closely connected with related properties of a corresponding function
F defined on the (open) upper half-space R’j‘_“'l , with F constructed
from f by some averaging process. The simplest example arises when
the average is carried out by a suitable “approximation of the identity”
as follows.

Fix an integrable function ® on R™ with [, ®dr = 1. For ¢t > 0,
set ®,(z) = t~"®(z/t), so that [ &, =1 for all . Now let

F(z,t) = (f * ®¢)(). (14)

Then, as is well known, for appropriate f and ®, F(z,t) — f(z) as
t — 0 in a variety of senses. Some are quite easy to see, such as con-
vergence in the LP norm for f € LP, 1 < p < oo. Others, such as the
one we shall consider here, are deeper and have to do with the possibil-
ity of pointwise convergence in the nontangential sense; this involves a

corresponding maximal function

F*(z) = sup |F(y,t)l: (15)

|lz—yl<t
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For the systematic study of such functions F', it will be important
to free ourselves from the restriction that F' be given as an average of
the form (14), and we will therefore turn our attention to a general class
of functions 1n Rf_"'l for which we have nontangential control. However,
before proceeding in this more general setting, it will be helpful to re-
view briefly some of the properties of functions F' that do arise in the

form (14).

2.1 Nontangential maximal functions and averages. To be-
gin with, we recall the relation of the averages (14) with the maximal
function M f given by

(Mf)(&) =swpear™ [ |f(z—y)ldy
r>0 |y'<:-r-
Whenever ® is a nonnegative function on R"™ that is radial and
(radially) decreasing, then

sup|f « ®y(z)] < Mf(z)- [ @dy. (16)
t>0 n»

To see this, it suffices to verify that the inequality

|f x @(z)| < M f(x) (17)

holds for functions ® of the above type that are normalized by the con-
dition that [® = 1.

. N
First take ® to be of the form ) a;Xp., where each a; is a positive

j=1
constant and each Xp, is the characteristic function of a ball B; that
1S centered at the origin. Then, since ) a;|B;| = 1 and (f * Xp,)(x) <
|Bj|M f (:1:), the inequality (17) follows immediately. In general, any non-
negative, integrable, radial, and radially decreasing ® can be approxi-

mated by such finite sums; so the inequalities (17) and (16) hold as
claimed.

| The implication of the above for nontangential control is then a
simple consequence.

PROPOSITION. Assume that ® has a radial majorant that is non-

chrea,sing, bounded, and integrable. Then, with F(z,t) = f * ®:(x), we
ave

F*(z) = sup |F(y,t)| <cMf(z).
| ly—z|<t

Proof. If the radial nonincreasing majorant of ®(z) is ®(|z|), then
Sup |®(z — u)| has a radial majorant ¥(|z|), where ¥(r) = ®(0) for

lu|<1

Shs r < 1, and ¥(r) = &(r — 1) for r > 1. The integrability of ¥
en follows from that of ® and the finiteness of ®(0). We can therefore
apply (16) to obtain our conclusion.
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2.2 The main theorem. As mentioned at the beginning of §2,
we now free ourselves from the restriction that our functions F', defined
on Rj’_“, arise in a particular way from a given f on R"™. For such a
general F', we define as above its nontangential maximal function F* by
using cones of aperture 1; that is, |

F*(z) = sup |F(y,t)|, whereI'(z)={(y,t):|y—z| <t} (18)
(y,t)el(x)

We let N be the linear space of all (everywhere-defined) Borel mea-
surable functions I on R’i"’l having the property that F* € L'(R™).
With the norm ||F||» = ||F*||z1(mn), N becomes a Banach space.

Several remarks may be helpful at this point:

(i) No matter what F is, {x € R™ : F*(x) > o} is always open. In
particular, F'* is always measurable.

(ii) If F*(z) = 0 for almost every x (or, more generally, for a dense
set of ), then F' vanishes identically on R:‘_"‘l.

(iii) Instead of the cones with unit aperture used in the definition
of F'*, we could have used any fixed aperture a, and defined

Fg(z) = sup{|F(y,?)| : [y — | < at}.

The new norm thus obtained, namely || F; || 11 (rn), turns out to be equiv-
alent to the one above (the case a = 1); see §2.5 below.

The study of the space N is intimately connected with the study

of another space C, whose elements are measures on Riﬂ. Roughly

speaking, these two spaces are in duality; the “tents” that occur in the
definition of C may be thought of as dual to the cones that occur in
the definition of . To make these ideas precise we need the following
notation: If B = B(zg,r) is any open ball in R™, then its “tent” T'(B)
is the closed set in R:‘;“ given by

T(B) = {{(z,t) : |z — zo| < r —t}.

More generally, if O is any open set in R", let F' be its complement
and define T'(O) = “R(F’), where R(F’) is the union of the cones based

in F, ie., R(F) = |J I'(z). One should observe that the tent 7'(O) is
z€EF

the set in R} "' lying on or below the graph {(z,t) : t = dist(z, F)}; put
another way,
T(O) = U T(B(z,dist(z, O))).

z€Q

We remark that tents are quite easily visualized when n = 1; see Figure 1.
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Figure 2. A tent over a simple open set in R!.

Next, given a Borel measure du on R:‘_“, we define the function

C(dp) by 1
C(du)(z) = sup — dj|, 19
zeB |B| J1(B) s (19)

where the supremum is over all balls containing z. We then define C to

be the space of measures du for which C(du) is a bounded function and

set ||dpl|lc = seufgn |C(dp)(z)]. Each such dyu is called a Carleson measure

and ||dul|c is the Carleson norm of du.

The duality alluded to above is essentially contained in the following
theorem. |

THEOREM 2. If F € N and du € C, then

[ o F@0) dusa,0)] < ellFlly - [dle )

A more precise version of the above is the inequality

f/RnH F(z,t)du(z,t)| < C/ ) F*(x) C(dp)(x) dz. (b)

B'efore we come to the proof, let us remark that while, heuristically
speaking, part (a) is the asserted duality, the spaces A and C are not,

s1.:rictl?r speaking, duals of each other. An exact version of the duality is
given 1n §2.5 below.

2:3 The proof of the theorem is based on two simple but key ob-
Servations. The first is that

U2,1) : |[F(z,t)] > a} C T(0), where O = {z: F*(z) > a}.  (20)

The second observation is as follows: If we assume that du is positive

and '”duHc S l-—.e, that u(T(B)) < |B] for all balls B—then this
Implies that

N(T(O)) < CIOI, for any open set O C R™. -(21)
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Assuming (20) and (21) for the moment, we can immediately prove
part (a) of the theorem. We may assume that ¥ > 0, dp 2> 0. Let
O ={z € R": F*(z) > a}; then

u{(z,t) € RYH : F(z,t) > a} < w(T(0)) < clldpfic - O}
Integrating both sides with respect to « yields

/ 1 F(:L',t) dﬂ’(iv-,-t) < C”dﬂ”c/ F* (.’L’) dz,
R+

as required.

2.8.1 We next verify (20). If (z,t) is such that |F(z,t)| > «, then
for any y € B(z,t) one has F*(y) > a. Thus B = B(x,t) C O, and
clearly (z,t) € T(B) C T(O):

2.3.2 The second observation (21) is obvious in the one-dimensional
case. Indeed, writing O as the disjoint union |J I of its maximal open
subintervals I, we have that T(0O) = |JT(Ix). This simple decompo-
sition does not work in the higher-dimensional case, and to prove (21)
here we need to invoke the Whitney decomposition.* This allows us to ex-
press O as a disjoint union of cubes Qy with diam(Qy) > ¢1-dist(Qk, O).
It follows that if z € Qi, diam(Qx) > co - dist(z, €O).

Now for each cube Qi, we let By denote the ball with the same
center as Qp, with diam(Bx) = c3 - diam(Qy); ¢z will be chosen to be
much larger than 1/co. We claim that

T(0) c | JT(Bw). (22)

To see this pick (z,t) € T(O); thatis,z € O and t < dist(z, O). Let
Q;. be the cube that contains x. It suffices to show that (z,t) € T(Bx);
this occurs exactly when B(x,t) C Bg. Now

dist(z, °Bx) > ¢ - diam(Qx),
since € Qg, and ¢ can be made large with c3. Finally,
diam(Qyg) > ¢3 - dist(z, “O) > c2,

which (upon taking ¢ large) gives dist(z, “Bx) = ¢; that is (z,t) € T(Bk),
proving (22).
Now by (22),

w(T(0)) < %:N(T(Bk)) < Ezk: |Bi| = Cc3 % Qr| = |0},

which establishes the observation (21).

! One can use either the standard cubes in R™ (see the lemma on p. 9 of Singu-

lar Integrals) or the “cubes” that arise in remark (i) following Lemma 2 in §3.2 of
Chapter 1.
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2.8.3 To prove part (b) of the theorem, we merely retrace our steps

in the proof of part (a), and note that, by the maximal definition (19)
of the functional C, one has (if dy > 0)

W(T(By)) = /T o WS CA@IB, itz € Qi

Thus, w(T'(Bk)) < ¢ Jo, C(du)(z) dz. By (21) and (22) we have
p{|F(z,t)] > a} < iju(T(Bk))

< Zk:c o Cldu)(z)dzx =c / Cldp)(z) dz.
{F*(z)>a}

Integrating this inequality in o produces the second conclusion of the
theorem.

2.4 The theorem implies the following corollary.

COEEII,LARY. Assume that du is a fized positive measure in C. Let
Fon RY™ be such that F* € LP(R™) for some p, 0 < p < 0o. Then

/R L F@ )P du(z,t) < c f [ ()P de. (23)

5

én particular, *z'f F(z,t) = f * ®;, where ® has a radial, nonincreasing
ounded, and integrable majorant, then |

o FEOP e <6 [ 15@P (24)

-+

for 1 < p < .

by ,;Tpfa;t, (23) follf)ws from part (a) of the theorem by replacing [F]
- Next, (24) is a consequence if we use the proposition in §2.1

above, together with i '

. : the LP inequality f ] .

In §3 of Chapter 1. ety or e maximal operator M given
~ Notice, incidentally,
IS necessary

f:XB;

that (when dy is positive) the condition d

for (24) to hold for some : s positive ;
p. Indeed, if ®

then F(a. £ > 0 0 o oy 1S positive and

2.5
Remarks about the space N. We now clarify two points

COncernj
Ing the space N, elaborating some earlier comments.
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2.5.1 First, we make precise the sense in which matters do not really
depend on the aperture of the cones used to define N. For any a > 0, we
have the maximal function associated with cones of aperture a, given by
F*(z)= sup |F(y,t)|- We claim that, if a > b,

| ly—z|<at

{z : F*(x) > a}| < copl{z: Fy(x) > a}|, foralla>0. (25)

Here cop = ¢y (a : b) where ¢, depends only on the dimension n.

Integrating (25) with respect to « gives

/ F*(z)de < cas | Fp(a)dz.
n R'n.

One can establish an assertion of the type (25) by a point-of-density
argument, and here we need a quantitative version that can be formu-
lated as follows. Suppose A is a closed set and 7y is a fixed parameter,
0 < v < 1. We say that a point x € R™ has global y-density with respect
to A, if |A N B|/|B| > ~, for all balls B centered at z. Let A* be the
points of global y-density of A; then A* is closed, A* C A, and, most

importantly,

[°A™| < ey| “Al.
In fact, if O = ¢4 and O* = “A*, then
O* ={x: M(Xo)(z) > 1—~},

and the assertion follows from the maximal theorem (Theorem 1(b) in
Chapter 1), with ¢, = c2/(1 — 7).

Returning to (25), we let O = {z : F;(z) > a}, and claim that

{z : F*(z) > a} is contained in the complement of the set of points of

global y-density of A = 9O, provided we take ~y sufficiently close to 1.

Indeed, suppose F*(z) > o for a given z. Then there exists (Z,t) with
F(z,t) > o, |z — Z| < at. Now B(Z,bt) C O, therefore ON B D B(Z, bt),

and

O N B > ( b )ﬂj
| B] a+b
where B is the ball of radius a + b centered at x. Thus

|A|;|B‘ =1- (a—bl—b)n’

and z ¢ A* if v > 1 —[b/(a+0b)]". Therefore {z : F;(x) > a} C “A* and

(25) is proved.!

T The fact that the space N does not depend on the size of the aperture can also

be established using Theorem 3 below.
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2.5.2 Next, we shall give a more precise formulation of the duality
between nontangential control and Carleson measures (whose essence is
contained in in Theorem 2). To this end, we define first the space Ny to
be the closure in N of the continuous functions with compact support in
R’}"'. We note that Aj consists exactly of the F € A that are continuons
in R"*" and have nontangential limits a.e. in R™ (for this equivalence
see §5.6 below). |

Together with Ay, we consider a corresponding variant of C namely
the space C of Carleson measures in the extended sense, 1.e., tile space
of all Borel measures du on the closure R of R%H, satisfying

up B~ | Jau] = ] < oo.
B T(B)

The duality can be expressed as follows. Fix a measure dy € C. For

every function F' that is continuous and has compact support in R™*!
consider the functional T

F F(z,t)du(x,t). (26)

Then (26) extends to a bounded linear functional on A, and conversely
every bounded linear functional on A} arises in this way; in (;ther words’
C is identified with the dual of N, via (26). | |

Indeed, (26) extends to all of Ay by the inequality (a) of Theo-
rem 2 applied to the definition of Ay, which also shows its boundedness
Con?ersely, given a bounded linear functional ¢ on Ny, restrict it to thé
continuous functions with compact support in Ny. By the Riesz repre-

sentation theorem, there exists a Borel measur .
’ e du so that ¢
by (26); also we have H 15 given

fye PO 0] < [ P@)

for all such F. Taking the supremum over F with |F| <1 on T(B), we
get f,ja( B) [du(z,t)| < ¢|B] for all balls B, showing that du € C.

2.6 Atomic decomposition. The last general fact we want to
explore anut t}'le space N is the possibility of expressing elements of N
using an atomic decomposition”. This will be the simplest example of
ana!ogous decompositions, variants of which will be important in other
settings below (see Chapter 3, §2).

f 1:S"upp{)se B C R" is a ball. An atom associated to B is a measurable

unction a supported in the tent 7(B Wi -1

that ar(a) < Bt o (B) C R with |la]|e < |B|™1. Note
< [B|™" when z € B and that a*(z) = 0 when z ¢ B. Thus
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a € N and |la||x = |la*]l1 < 1. Atoms will be the basic building blocks

for functions in N.
Observe first that if ax are atoms, k = 1,2,..., and Ag are positive

constants with 3> Ax < 00, then 3" Agax € N and || 3 Aaklla < 22 Ak
The converse also holds.

THEOREM 3. Any F € N can be written

F = E /\kaka (27)
where the ax are atoms, A\, > 0, and
> Ak < cllFla (28)

so that the sum (27) converges in N.

Before proceeding to the proof we make two remarks about the
atomic decomposition. We first point out its utility: One can often prove

statements about N by verifying them in the special case of atoms.
Examples of this appear in the next section. Second, the decomposition

is equivalent (heuristically, at least) with the duality given by part (a)
of Theorem 2 (see §5.7 below).

Turning to the proof, we define O7 = {x : F*(z) > 2’}; thus O’
is an open set. If T(O7) is the tent over O7, then clearly --- D O’ D

03+l 5 ... and --- D T(0%) D T(OIt1) > --+; also |J T(O?) contains
JEZ

the support of F' in R’i“ (see Figure 3).

_T(0))

V4

/

Figure 3. Nested tents.

As we have seen in the proof of Theorem 2 (see §2.3.1 and (22)), O?

can be decomposed as a disjoint union of cubes @}, with corresponding

balls B D @1, so that?

T(0%) c | J(T(B]) N [Q;, x (0,00)])- (29)
k

I Recall that, if (z,t) € T(O?), then for some k, z € Q‘_,"c and (z,t) € T(Bf;).
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Next, set
AL =T(B}) N[@} x (0,00)] N [T(OIN\T(O1)];

it is obvious from (29) that suppF C |J A} and that the A{; are mutually
| ik
disjoint. Let F] = F - X INE clearly F = " Fg.
| o Gk
~ Now set Fj = Aray, Where al = 2=7-1B]|=* . FJ, and X =
29+By|. Each ay is an atom supported on Bj because |F/| < 2i+1
on A] C “T(0711).
Finally, it 1s easy to see that ' = Z;c Ar.a@; is an atomic decomposition

7
(that is, (27) and (28) are satisfied), because

SN =T YTB < e 2 MQ]
7,k k i,k

=c3 2O < ¢||F*||pr = cl|Fllw,
7

7

and the proof of Theorem 3 is complete.

3. Two applications

| In the previous section we explored the properties of functions for
which we had suitable nontangential control. We shall be rewarded here
!)y the fact, paradoxical as it seems, that this study leads us to surpris-
Ing conclusions about properties of approaches that are either wider or
narrower than the nontangential one.
In Fhe first subsection, we return to one of the basic problems of
real-}ra,rlable theory, namely the behavior of averages of functions. The
particular problem we shall deal with here concerns the averagés |

1

as B ranges over a suitable collection of balls.

3.1 Differentiation with respect to a general family of balls,

Let B = {B} be any fixed collection of balls in R”. We want to know

Whether, for suitable f,

_ 1
f(z)= lim ——I /; flz—y)dy ae, (30)
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where B ranges over the family B. In particular, we are interested in the
properties of the corresponding maximal function

Msf(@) = sup o [ 1f(z —v)ldv. (31
Bes | Bl JB

The question as to whether (30) holds for all f in an L” space 1s
closely connected with the behavior of the maximal function (31) on this
space (see Chapter 1, §3.1 and Chapter 10, §2). The theory of the usual
maximal operator M corresponds to the case where B is the collection
of all balls centered at the origin, or a slight generalization, in which
the centers of the balls are allowed to be displaced from the origin by a
distance comparable to their diameters. We now concern ourselves with

the study of general B, whose members may be very far from the origin

compared to their diameters.
It turns out that the behavior of Mg is closely related to that of Mj;

here B is the family of balls each of which contains some member of B,
that is, B = {B : B D By for some By € B}. B is called the completion

of B. We also consider the set.
B(r) = U{B € B: radius(B) = r}. (32)
The main result is then as follows:

THEOREM 4. (a) If there is a 1 < py < oo so that ||Mpfllp, <
A\ flpo, for all f € LPo(R™), then

1B(r)| < er™®, for 0 <r < oo and some fized c > 0. (33)

(b) Conversely, suppose (33) holds. Then Mg 1is of weak-type (1, 1)
and is bounded on all L?(R™), 1 < p < 00.

Observe that (33) is equivalent to the following: There exists a fixed
N so that all the balls in B of at most a given radius r lie in a union of
N balls of radius r. Before proceeding with the proof, we give two quick
examples.

(i) In R, let I(s) denote the interval of length s, situated in the
positive half-line, given by (h(s),s + h(s)). Let h(0) = 0, and assume
that h is continuous and increasing with s. If we set B = {I(s)}s>0, then
it is easily seen that |B(r)| = 2r + h(r). This gives a positive result in
Theorem 4 exactly when h(s) < cs.

(ii) Surprisingly, if we replace the continuous family above by a
suitable subfamily, we can obtain denumerable collections of intervals,
with centers far from the origin, for which a positive result holds. We need
only choose a sequence {s,} tending to 0 rapidly enough so that (among
other things) h(snyk) < Sp, for some fixed k (s, = 2-7° R, = 9-n+n jg
a good example), and take B = {I(sp)}n. A further example is in §5.10
below.
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After consideration of these examples, the following amplification of
our observation may become clear. We first remark that (33) is equivalent
to the existence of a fixed IV so that B(r) has at most N connected com-
ponents, each of diameter essentially r. Take r < r’. Then B(r) C B(r’)
and each component of B(r) is contained in some component of B(r’).
Now if each of our components shrinks to a point as » — 0 (as in (i)),
then statement (b) is an easy consequence of the usual maximal theo-
rem. Consequently, part (b) of the theorem gives us something new only
when (infinitely often) components “vanish” and others “bifurcate” as

the radius varies (as in (ii)).

3.1.1 We turn to the proot of Theorem 4, and dispose first of the

necessity of condition (33). Here the argument is elementary and we
begin by showing that if the inequality ||Mgfllp, < Al f|lp, holds for
some pg, 1 < po < 00, then a similar inequality holds when B is replaced

by B.

To see this, let mp = |B|~'Xp, where X g is the characteristic func-
tion of the ball B. Then if B is another ball so that B D B, and B,
denotes the ball of radius r centered at the origin, we have

mp,, *mp > 2 "mg, where r = radius(B). (34)
Indeed, any ball of radius 2r about some point z € B contains B and
[mp =1;so
mp,, * mp(z) = |Bor| ™" =27"|B|™ =27"mp(x), forz € B.
Outside B, mg vanishes, so (34) holds.

Now convolve both sides of (34) with |f|, letting B range over B, B
range over 3. The result is

Mg(f) < 2"M(Mg(f)),

where M is the standard maximal operator, and hence by Theorem 1 in
Chapter 1, we get

(Mg fllpo < AlMBfllps < Allfllpos (35)
as claimed.

Next, we test the conclusion just obtained against f = X B.,., the

characteristic function of the ball of radius 2r about the origin. We assert
for this f, that |

B(r) C{x: Mgf(z) > 1}. (36)

To prove (36) note that if z € B(r), there is a ball B(xg,r) € B with
T € B(xzg,r). Since B(xo,r) € B, we have

Maf(x) 2 Beor)| ™ [ X, (e-w)dy=1
B(:Bo,r‘)
because |z — y| < 2r, if 2,y € B(zo,r). With (36) proved, then, by (35),
B(r)| < [[Mgfike < A'||flB = A'|Bay| = cr™,
and the necessity of condition (33) is established.
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3.1.2 To prove the sufficiency of the condition (33), we begin by
associating to the collection of balls B a corresponding set B’ C R’”Jrl By
definition, (z,t) € B’ if B(z,t) € B; in this way the point (x,t) € R
represents the ball in R™ of center z and radius ¢{. With this deﬁnition,
note that if (y,t) € B’, then (y + 1/, t +t') € B whenever |y/| < |t'|; the
result is that the cone of aperture 1, with vertex at any point of B’, lies
in B'.

We shall now assume, as we may, that B = B in the proof of the
sufficiency of (33). For each F' defined on Rj‘_“ , we have its nontan-

gential maximal function F*(x) = sup |F(z — y,t)|. We also consider
lyl<t

the maximal function corresponding to the wider approach region B’,
namely Fg(z) = sup |F(x—y,t)|.
(y,t)eB’
Our claim is that in this general setting, under condition (33), one

has

/ﬂ Fg(z)dz < c/ ) F*(x)dz. (37)

In fact, if we assume that the right side of (37) is finite, then F € N,
and we may apply the atomic decomposition given by Theorem 3. So
it suffices to verify (37) when F is an atom. After translation, we may
assume that F is supported in T(B), where B is the ball of radius r
centered at the origin.

Now Fy < |B|~1. Next, if Fj5(x) # 0, then there is a (y,%) € B’ with
(x —y,t) € T(B); thatis, |t —y|<r—t. Ifwesety =z —y, ' =r—1t,
we have that
(y+y,t+t)=(zx,r)eB =85

or, in other words, that x € B(r) (see Figure 4). Thus we have shown
that Fj is supported in B(r).

Figure 4. The proof of (37).
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Therefore, [pn Fg(z)dz < |B|™* [5.,dz < ¢, and (37) holds for
atoms, and so it also holds generally.

Next, (37) immediately leads to a generalization of itself:

f (Fg(x))Pdx <c - (F*(z))?dz, whenever 0 <p<oo, (38)

which is obtained by replacing F by {F'|? in (37).

From (37) it is also easy to prove the distribution function inequal-

ity:
{z: Fg(z) > a}| <c{z: F'(z) >a}|, foralla>0. (39)

In fact, in (37) we need only replace F' by the characteristic function of
the set where |F'| > a and (39) is obtained.

We now return to the maximal operator Mg. For any f € LP(R"),
we define

F(z,t) = |B(z, )| / 1l

B(zx,t)

Now for any (y,t), we have

F(z—y,t) = |B(y,t)]~* / £ (@ — u)| du,

B(y,t)

thus

Fg(x) = (ystl)lgw |[F(z — Y t)| = sup 1B~ f |f(z —u)|du = Msf(-fr:)-

Also note that F*(z) < 2"M f(x), so the results for the standard maxi-
mal operator, together with (38) and (39), show that

{z: Maf(z) > a}| < -‘2-/ f|, for all &> 0, and

R (40)

/ (Mpf)? < cp/ |f|?, whenever 1 < p < 00,
g Rﬂ-

which proves the theorem.

3.2 Multipliers for the normal approach. We keep to the

above setting and recall that M f(z) = sup F(z,t) when F(z,t) =
O<i<oo

|1B(z,t)|~! B(z,¢) If|- A question that occurs naturally is to find the un-

bounded positive functions u(z,t) on Rt (if any exist), for which we

can also control . Silp u(zx,t) F(z,t), or more precisely, those for which
<t<oo

[ 5w [z, ) P, )P do < A / f(z)P da. (41)

0<t<<oo
Rn
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If we test (41) with f = X, where B is an arbitrary ball, and use
the fact that F(z,t) > ¢! when z € B, and t < radius(B), we get the
following necessary condition for the multiplier u:

/ sup u(z,t)? dr < c|B|, (42)

O<t<r
B

where r is the radius of B. The condition is also sufficient.

PROPOSITION. Suppose p 1s continuous and positive in RT‘I. If
(42) holds for some p, 1 < p < oo, then (41) holds for the same p.

A natural class of multipliers 1 of the above kind is given in §5.13
below. Let us also note that the normal approach has here an advantage
over the nontangential approach: For the latter there are no unbounded
multipliers (as is easily verified), making the positive result for the nor-
mal approach a little surprising.

The proof of the proposition is an almost 1mmediate consequence
of the atomic decomposition given in §2.6. In fact, disregarding momen-
tarily the technical question of measurability, a more general inequality
holds, namely,

f sup [u(z,t) |F(z, [P dz < / F* ()P da, (43)

0<t<<oo
nR» R»

whenever F' is given on RT,“_"'l and p satisfies (42). The proof of (43) for
general p reduces to that for p = 1, upon replacing |F'|P by F.

- Now, in the case p = 1, the finiteness of the right side of (43) means
that F' € N, and it suffices to check (43) for atoms when p = 1. Suppose
then that F is an atom supported in T(B), so supp F' C B x(0,r), where
r is the radius of the given ball B. Since |F| < |B|™1, the left side of (43)

i1s majorized by

|B|'1/ sup u(z,t)dzr <c,

0<t<r
B

verifying (43) for p = 1, and hence for all p. However in our case

F*(z) < 2"M f(x), so combining the above with the L? boundedness

of the maximal operator gives (41) for all p > 1, save for the matter of

measurability postponed until now. o
The question alluded to above relates to the measurability of

Ff(x) = sup u(z, )| F(z,1)|.
t>0

The situation is as follows. Since we took F' to be Borel-measurable, it
turns out that FF is Lebesgue-measurable in x (although not necessarily
Borel-measurable!). Further details are in §5.8 below.
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4. Singular approximations of the itdentity

We return to the study of approximations of the identity begun in
§2.1 above. Starting with a fixed integrable ® with f ® =1, and taking

P, =t "®(z/t), we again ask: In what sense does f x P, — f ast — 07

This is connected with the behavior of the maximal operator Mg, defined
by
Mef(z) = sup |[f*Pi(z)l. (44)

D<t<<o0

Several remarks may help clarify the issues we want to address.

(i) With only the assumption that @ is integrable, we can conclude
that f x®; — f in L?, whenever f € L?, 1 < p < 0co. However,

may fail to exist for almost every x, and Mg f may by infinite almost
everywhere when f € LP, for any p < oo (see §5.16 below). In fact,
for the L' theory of Mg to hold, it is necessary that sup,.q [®:(z)| be
integrable on the unit sphere.! '

(ii) When ® is “regular”, in that it decreases at a sufficient uniform
rate at infinity, then by the majorization in §2.1, we have Ms < cM,
taking care of matters in that case.

(iii) However, there are interesting situations occurring in practice
that cannot be covered by (ii), because the ® in question has a “singular”
(i-e., slow) decrease in certain directions. A simple example of this arises
in R?, with ®(z;,25) = 772(1 4+ 22)"}(1 4 22)~!, which corresponds to
the “Poisson integral” for bi-harmonic functions on the product of two
half-planes; here the directions along the coordinate axes are the most
singular. This is a very special case of other naturally occurring examples,

such as Poisson integrals for symmetric spaces. (For more details about
these, see §5.17 and §5.18.)

In view of the above, we need a further condition on ® besides

i{ltegrability. What is suggested by these considerations, and put in its
simplest form, is the assumption we shall make:

For each z, ®(rz) is decreasing in r, 0 < r < oo. (45)

PROPOSITION 1. Suppose ® is nonnegative, integrable, and satis-

fies (45). Then Mg is bounded from LP(R™) to itself, for 1 < p < 0.

f This can be proved by using the maximal principle in §2 of Chapter 10 and,

more particularly, the variant in §3.4 of that chapter.
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It is not known whether the weak-type L! result holds in this gener-
ality. However, if we strengthen the integrability assumption on ¢ some-
what (adding a Dini-type condition), then one can obtain the desired
result in this case also. Recall that a positive function 7 defined on [0, 1]
is a Dini modulus of continuity (see §6.5 in Chapter 1) if n(0) =0, 5 is

nondecreasing, and fol n(s)slds < 0.

PROPOSITION 2. Suppose that, in addition to (45), ® satisfies

[ 12@-y) - @)lde <n(u).- (5

L

Suppose also that ® has compact support or, more generally, that

f d(z)dr < n(R™'), whenever R> 1, (i7)
|z| 2R

for some Dini modulus . Then Mg is of weak-type (1,1).

An immediate corollary of these propositions will help elucidate
their thrust. Let Q(z) be a fixed positive function of z that depends
only on the direction of z; i.e., Q(rx) = Q(x), r > 0. Define

(Maf)(z) =sup— [ |f(z — )| Q) dy;

r>0 7" Jiy|<r

Mg, is essentially the Mg defined above, when ®(z) = Q(x) - X{jz<1}-
The directions in which €2 is relatively large are the singular directions
controlled by Mq.

COROLLARY. (a) If Q € L', then Mq is bounded from LP to itself,
1 <p< o0

(b) If Q satisfies an L' Dini condition, then Mq is of weak type
(1,1).

For a more refined result in this direction, see §5.19 below.

4.1 Here we shall prove Proposition 1 by the “method of rotations”,
which reduces matters to the one-dimensional theory.?

For any unit vector £ € R™, [¢] = 1, we denote by M (€)f the stan-
dard maximal function in the direction &:

(MOf)(@) =sup 5. - w)a (46)

I For an introduction to this method, and for further motivation, see Fourier

Analysis, Chapter 6, and Singular Integrals, Chapter 2, §6.5.
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Notice that

IMEf | Lormy < AplifllLemny, for 1 <p < oo, (47)

where A, is the bound for the one-dimensional maximal function M.
Indeed, (47) is rotation-invariant, so we may assume that £ is in the di-
rection of the x; axis. We apply the one-dimensional maximal inequality

to f(z) = f(x1,x9,...,%,) as a function of x1, keeping x,...,z, fixed.
Raising the inequality to the p* power and integrating with respect to
Toyeo.y Iy giVGS (47) |

Next we claim, under the additional hypothesis that ® is even, that

Mef)@) <n [ (MON)(a) [ @) drdo(e).  (48)
€]=1 0
To prove this inequality, it suffices to show that (f x ®;)(z) is majorized

by the right side of (48) for each ¢ > 0. Hence, by a change of variables,
it suffices to show it for (f * ®)(x). Changing to polar coordinates gives

fre@=z [ [ f@-rooe) | drdoe)

[§]=1 —oo

For fixed &, the even function r — ®(r&)|r|*~! has — [ s" 1 d,P(sf) =
7|

We(r) as a decreasing even majorant. Then by the argument in §2.1

(see (17)), for fixed &

/ fx —r&) d(ré) |r|" tdr < MOFf(x) - / We(r)dr.

However,
f We(r)dr = 2/7’”’ dP(ré) = 2n/r“'1 d(ré) dr,
— 00 0 0

and an integration in £ then gives (48).

If & is not even, we replace it by ®(x) + ®(—zx), obtaining (48)
with the constant doubled. In any case, if we insert (47) in (48) and use
Minkowski’s inequality for integrals, we obtain the boundedness of Mg
on LP, p > 1, proving Proposition 1.

We note that this argument cannot be used to prove a weak-type
L' inequality, because such inequalities are not subadditive.!

I See Chapter 5, §5.12 of Fourier Analysis.
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4.2 We turn to the proof of Proposition 2. Taking f > 0 (as we
may) and using the decreasing character of ® given by (45), we need

only consider a lacunary subsequence of ¢:

sup [ * Py(x) < 2" sup f * Py; (x).
O<t<co J

Next we claim that, under our assumptions,

/ sup |®qi (x — y) — @9 (z)|dz < A, whenever y #0.  (49)

j
|z|>2|y]

In fact, sup |®2i(z — y) — ®2i(2)| < 3| P25 (2 — y) — P2s(z)], s0 fixing
J J
y # 0, the integral in (49) can be majorized by two terms: the first where

the sum is taken over those j where |y| < 27, and the second where the
sum is taken over those j7 where |y| > 2. Thus the integral in the first

sum is majorized by

) / @i (z — y) — Pos(z)|dz = ) / ®(x — 27 7y) — ®(x)| dz.
27 2|yl /R 2i >|y| JR"
By assumption (i), this sum is dominated by

: L ds
Yo (27 7y|) < 2/ 77(8)—8-— = A < 0.
27 >yl 0

The integral in the second sum is dominated by

2 > Poi(x)dx =2 D - O(z)dx
2i <|y| /|z| >yl 21 <[y| /|=|2277 |yl
. ! ds A
<2 ¥ n@yl7) <4 ns)— =A<oo,
27 <y 0

proving (49). |
We now consider the mapping T from L? to L?(l°°) given by

T(f) ={f *Pas }j2 oo = [ * K,

where K = {®5;}52_,. Here we are dealing with f that take their
values in the Banach space B; = R!, and T f that take their values In

By = £°(Z); thus K takes its values in B(B;, Bz). We have

[ Ke-p-K@ld= [ swl@y(e-y) - 2y (@)|do
|=| =2}y lz|22]y| I

because of (49), we can now invoke Theorem 3 of Chapter 1 (in its Ban.‘in.ch
space version) and deduce that T is of weak-type (1,1). Thus the mapping

f > sup | f * ®,;| also has this property, and the proposition is proved.
J
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4.2.1 For later purposes it is useful to restate the essence of the
above conclusion for ® that are not necessarily decreasing in the sense

of (45).

COROLLARY. Suppose ® is an integrable function with the property
that

[ 18~ y) - 2@ o < n(iy),

and .
[ @l <ar), R21,
[z|2R

for some Dint modulus 1. Then the mazimal operator

[ SUp |(f * B2 )(z)]

1s of weak-type (1,1), and is bounded on LP if 1 < p < 0.

Note first that if  satisfies our assumptions, then so does |®|. The
weak-type estimate and the L? boundedness also follow from Theorem 3
of Chapter 1.

5. FPurther results

A. Vector-valued inequalities

5.1 We indicate why no analogue of (13) holds for the vector-valued maxi-
mal operator when our sequences take values in £'. Simply divide [0,1] into N

equal intervals I,...,In, take f; = Xr;, and f = (f1,...,fn,0,...,0,...).

Then (M, f)(x) is essentially log N for all z & 10, 1], while ||f|l, = 1 is inde-
pendent of N, for all p, 1 < p < 0. ~'

9.2 Another example of the unboundedness of M on L™ (see §1.1) may
be given as follows. Take f = {f;}, a vector-valued function, where f; =
X(2-i,21-3y, J = 1,2,.... Then |f| = X(0,1) 18 in L™ with compact support.
Now M f;(x) > 1/8 whenever 0 < z < 2'~7: hence (Mf)?*(z) > >  1/64

1>21-3>4
for 0 <z < 1, and M f(x) > c(log1/|z|)Y/? for these .

Note that the proof of Theorem 1 (in particular (12)) leads to the estimate
Ap = O(p'/?), as p — oo, for M = M. The example just given shows that
this bound is best possible. More generally, for M, (see §1.3.1), we have the
(best possible) bound A, = O(p'/ 7), if g > 1.

There is also the following substitute conclusion for L® | which follows
directly from the above estimates on Ap as p — oo: There is a ¢; > 0 so

that, whenever f = {f;} has compact support and |f] < 1, then e®9(Mah)? g
Integrable on every compact set (see the argument in Chapter 4, §1.3).
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5.3 Let O be an open subset of R™ whose complement is nonempty, and
write d(x) for the distance of z from 0. Then the Marcinkiewicz integral

d(y)]"D
o e—yl Fd)m ¥

Iy(z) =

is comparable to [(Myf)(z)]? when f = {f;} = {Xq,} and {Q;} is a Whitney
decomposition of O. See C. Fefferman and Stein [1971]. The Marcinkiewicz
integral has a long history; see, e.g., Zygmund [1959], Calderén and Zyg-

mund [1961], Carleson [1966], Zygmund [1969].

5.4 There is a analogue of Theorem 1 for vector-valued singular integrals.
For simplicity, we state it in the context described in §6.2 of Chapter 1. Suppose

K = {K;}, with ||K;||z~ < A and
f K, (z— ) — Ky ()| dz < A,
|z| > cly|

uniformly in j. If we define T'(f) = {T5(f;)} = {f; * K;}, then we have

” ITﬂq HL‘P(R‘“) < Ap,q” |f|q “LP(R“)=

whenever 1 < p<oocand 1 < g < 0.
When p = g, the result is a direct consequence of the scalar-valued case.

If 1 < p <gq, it follows from §6.4 of Chapter 1, and for p > ¢ a duality argu-
ment applies. See Garcia-Cuerva and Rubio de Francia [1985]; an alternative
approach uses the result in §6.15 of Chapter 5 below. The case when the K;

are all the same is treated in Chapter 1, §8.25(a).

5.5 The weighted maximal inequality (9) raises the issue of the validity
of the more general version

/ MI@P (@) do < A / £(2) Pws(z) da.

L

for nonnegative wy and ws. There are two questions that can be asked in this

connection. First, what is the condition on w2 so that there exists an wj that
is strictly positive a.e. for which the above inequality holds? Second, what is
the condition on w; so that there exists an ws that is finite a.e. for which the
inequality is valid? The conditions are, respectively,

]Rl"”pf/ wa(z)] P Ndzr < A for all R > 1,
x| <R

fﬂ wi(z) (1 + |z|)” ™ dx < .

See Rubio de Francia [1981], Young [1982], Gatto and C. Guitérrez [1983].
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B. The space N and Carleson measures

5.6 Let Ay be the closure in A of the continuous functions with compact
support in R}*'. We observe that A} is exactly the set of all ' € A that: (i)
are continuous on Ri“, and (ii) have nontangential limits a.e. in R™.

First note that

: * 1
Fletls min 1F O < 5o

/ F*(y) dy < ct=" | Fx-
B(x,t)

Therefore convergence in A implies uniform convergence in RT‘I away from
the boundary; hence every member of A is continuous on R}, The existence
of nontangential limits follows by the usual arguments since, by definition, such
limits exist on a dense subspace of Aj.

For the converse, let F' € N satisfy (i) and (ii) and set F.(z,t) =
F(z,t+e¢). F; is continuous on R}™" and can be approximated (in \) by con-
tinuous functions with compact support in R}™". Now (F; — F)*(z) < 2F*(z)
for all z, while (F; — F)*(z) — 0, as ¢ — 0, for any £ € R™ at which F
has a nontangential limit. Applying the dominated convergence theorem gives
fRﬂ (Fe — F)*(x)dx — 0. Therefore F. — F in N

0.7 That “duality” between N and the Carleson measures is, broadly
speaking, equivalent to the atomic decomposition in A may be seen as follows.

First, if we have the atomic decomposition, then the duaiity inequality (a)
of Theorem 2 is an immediate consequence. Conversely, one may argue heuris-
tically as follows. Consider the space N arising in §5.6, and let N C Ap denote
the subspace of elements that have atomic decompositions (of the form (27)
and (28)) whose atoms ay are continuous on R%*'. Then Ap and N have the

same dual space (namely C, as defined in §2.5.2), and thus Ay = N. Similar
heuristics show that the duality of H' and BMO (in Chapter 4) is equivalent
to the atomic decomposition of H' given in Chapter 3.

5.8 Suppose F(z,t) is given on RY*! and F*(z) = sup, |F(z, t)].

(a) Note that {x : F"(z) > a} is the projection 7 of the set {(z,t) :
F(z,t)] > a).

(b) If E C R™™! is Lebesgue-measurable, then n(E) C R” is not, in
general, Lebesgue-measurable.

| R(C) If EC R™" is a Borel set, then m(E) is not necessarily a Borel set
in R™,

- (d) However, if E is a Borel set in R™, then n(E) is a Souslin (analytic)
set In R™, and hence is Lebesgue-measurable.

These results illustrate that, at least as far as measurability is concerned,
the nontangential function F* is better behaved than the vertical function F.
For (c) and (d) see Hausdorff [1937] and Saks [1937].
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5.9 Let du be a nonnegative measure on Ri‘” so that
uw(T(B)) < c|B|",  for somey > 1,
and all balls B C R™. Then:

1/
(a) (/ \F(x,t)|" du(z, t)) < c||F||w, for F € N.
R";‘“

1/q
(b) (/ |F(x,t)|? du(z, t)) < ¢||F*||Le(rn), when 0 < p < oo and
Rt _.

_l_
q = YD-

(c) If F(z,t) = (f * ®)(x) is as in §2.4, then

1/q
(/ IF(wat)l“'du(m,t)) < || fllLe®n)
Ri"‘l

when 1 < p < o0 and g = yp.

Conclusion (c¢) is in Duren [1969]|. To prove (a), one uses the atomic
decomposition; (b) and (c) then follow.

C. Applications

5.10 An illustrative example of Theorem 4 is as follows. In R', let

(M £)(z) = sup |I;] / f(z— )| d,
1

JEN
where I; is the interval of length 277 displaced by v2~7, 4 > 1; that is,
I =[y277, (v+1)277].

Then M) has a weak-type (1,1) bound that is O(log~) as v — oo; also, the

L? bound of M is O(log~)'/?, for p > 1.
However, if M7 is replaced by its continuous analogue,

. (v+1)6
sup & f (@ — )| dy,
Y

SeRT F)

then the best weak-type bound is O(y) as v — oo and the best L” bound is

O(v'/?).
Incidentally, another proof for the estimates on M (") can be obtained

from the arguments in §4.2 by showing that

f sup |x;(z — y) — x;(z)|dz = O(log7), v —o00,
|z 22{y]

J

if x;(z) = 27x(2’x — ) and x is the characteristic function of the unit in-
terval [0,1]. An application of these estimates to Poisson integrals on sym-
metric spaces can be found in Sjogren [1986}; see also Carlsson, Sjogren, and
Stromberg [1985].
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5.11 When the basic condition |B(r)| < cr™ of §3.1 fails, the appropriate
modification is as follows. Let

. p"
n(r) = inf ,
e >r |B(p)]

and define

(7]} s B
(4, )(@) = sup TR [ 110~ )l ay

One then has that M, is bounded from LP(R"™) to itself, if p > 1. For results
of this kind, see Nagel and Stein [1984].

An example in R' is given by

546
(Mapf)(z) = sup 8°=° fg f(z —y)| dy,

0<6<1

o

| o | G+1
but not if p < I = to see the second assertion, note that if f > 0 and

f(z) = |z|™7 near 0, then (M, sf)(z) > cz’~*" when 0 < z < 1. Note that

My,sf < C[M(|f{p)]1/” if p = ﬁ?— T so the usual theory shows that M, s

is of Weak—type (p, p); however, this is not the case for the L? boundedness
of Mﬂ,} 3.

with o > 1. Then M, g is bounded from L? to itself if p >

and p > 1,

9.12 An application of §5.11 deals with the “tangential approach” for
f * ®; when f belongs to the Sobolev space L2.T The result is as follows.

Let f € LY and let ® be a function on R™ with
[@(x)] < AQ +[2)) "
Then, with F(z,t) = (f * ®;)(z) and

F*P(z) = sup |F(y,t),

ly—z|<tP

we have
IF*P || Lo (rny < Apa||fllL2 (mn)

whenever 3 =1 ap,ﬂ>0,1<p,andaf_«‘>_0.

T
| See Nagel, Rudin, and Shapiro [1982] for the original proof, which involved
Ideas from capacity theory.

: Here M is the standard maximal operator.
See Chapter 6, §5.21 for the definition of L?.
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5.13 Suppose Tf = f x K is a translation-invariant singular integral
on R", whose kernel K satisfies || K|{|lco < A and

E
K(z—y) - Kz)| < A=Y whenever |z| > 2Jy|,

for some fixed € > 0. Let K'(z) = K(z) - X|z|<:(z) be the truncated kernel.
Then, whenever a is a bounded function, we have for p < oo

/ sup |(a x K')(z)|" dz < ¢p|B| - ||a]|} e,

O0<t<Lr

for all balls B having radius r, and all # > 0. Thus u(z,t) = |(a x K*)(x)| is a
multiplier that satisfies the hypotheses of the proposition in §3.2.
See Coifman, Y. Meyer, and Stein [1985], where more involved examples of

this kind are also given. Notice that, by §7.3 in Chapter 1, sup |(axK*)(z)| < oo
>0

a.e.; but this function may be unbounded near every x € R".

5.14 The results in §1 and §2 of this chapter extend with little change to
the general real-variable setting described in Chapter 1, §1. For this purpose,
we recall the family of balls {B(z,6)} and the fixed measure du postulated

there. If
1

MHE = Gy . F@Idw

is the maximal function, then the vector-valued analogues M(f) (and M,(f)) |

are defined as in (1).

For the tent spaces, we write F*(x) = sup |F(y,t)|, whenever F' is
yeB(x,t)

given on Ri“; tents are defined by
T(B(z,6)) = {(y,t) e R?" : y € B(z,6) and 0 < t < 6}.

With these definitions, the results of theorems 1 and 2 continue to hold; the
proofs require only minor modifications. These observations are applied in

Sueiro [1986).

D. Singular maximal functions

5.15 Let {®1)} be a sequence of functions that satisfy the hypotheses
of §4.2.1 uniformly in 7, namely,

/ 29z~ y) ~ 9(2)] do < (),

and
/ 89 (2)] dz < n(R),
lz|> R

for some Dini modulus 7.
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(a) The maximal operator

f > sup|(f x @) ()

is of weak-type (1,1) and is bounded on L?, if 1 < p < oo. Here @;{? (x) =
2-'?13".;1)(3‘) (2“‘3‘ ) 3;)

(b) One may also formulate a singular integral analogue. Suppose &)
satisfy the above properties, and additionally the cancellation condition

/ ®9(z)dz =0, allj.

Then the series » | ¢>g) converges to a distribution K. Moreover, the operator

7
Tf = f* K is of weak-type (1,1) and is bounded on L?, 1 < p < oo.
In fact, one can show first that

S 1200 (27€)] < A,
7

which proves the convergence of the series defining K and the L? boundedness
of T'. Moreover, the reasoning of §4.2 shows that

/H} K@) K@)l de < A

and so the theory of Chapter 1 is applicable.

2.16 The weak conditions imposed on ® in §4.2.1 are enough to guarantee
control of the maximal operator

f— sup (f * @o5 ) (),

but are far from sufficient to allow similar conclusions for the continuous ana-
logue '

f = sup |(f * ®:)(x)|.

tecR+T

To see this, fix £ > 0, and let ® be defined on R! by
®(z) = (1 — |:;‘~:|2)E“1 for |z| < 1,

and ®(x) = 0 for |z] > 1. Then P satisfies the aforementioned hypotheses with
N(w) = cu®. However, one can easily find an f € L?P, with p < 1/¢, so that

sup |(f * ®¢)(x)| = o0 for all z € R*.

t>0

Indeed, let 6§ > ¢ with ép < 1, and take f(z) = |z|~° for |z| < 1, f(z) = 0 for
|z| > 1. Then f € LP(R"Y), while (f * ®;)(z) = oo when ¢t = |z|.
Some positive results may be found in Chapter 11, §4.10.
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5.17 Suppose P is a polynomial on R"™ so that

| 1P@I <o

for some a > 0. Then ®(z) = |P(x)|™* satisfies the hypotheses of §4.2.1; as a
result, we can assert that |

f = sup [(f * @q5) ()]
jEN

is of weak-type (1,1) and is bounded on LP(R"), 1 < p < oo. If, in addition,
r — P(rz) is increasing in 7, 0 < r < 00, for each z € R", then the same
conclusions hold for

f = sup |(f * ®:)(z)].

tcRT

To prove these assertions, let
2 (z) = |P(x)|*" 77 (1 + |al) ™,

where c is a (large) positive constant. When Re(s) = 1, it follows that

/ 1) (z)|dx < 00 and / V. ®® (z)| dz < oo,
R” n

as long as ¢ > n + degree(P). It can also be shown that

f 18 (z)| dz < 00 when Re(s) < 0

and Re(s) is sufficiently small. By complex convexity, ®© = ® then satisfies
the hypotheses in §4.2.1, with n(u) = cu®, for some € > 0.
For reasoning of this type, see Stein [1976c], [1983b].

5.18 The result sketched in §5.17 represents the key idea in proving

“restricted” convergence, together with L' and LP maximal inequalities, for
Poisson integrals in general Riemannian symmetric spaces.

The simplest examples to describe arise for tube domains over cones.
Three particular instances are:

(i) The cone {y € R™ : y; > 0,all j}; the tube domain corresponds to an
n-fold product of R3. Here ®(z) = c J] (1 +z%)~".

j=1

(ii) The circular cone {y € R™ : yn > (¥2 + - + y2_1)*/?}; then

P(x) = ‘C[(Lﬁ2 + iﬂg + -+ 33?21-1 — a?i + 1)2 + 49:.,21]_”/2_
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(iii) When there is an integer m with n = m(m + 1)/2, we can represent
points € R”™ by real, symmetric m X m matrices, and the cone consists of

the positive-definite matrices. In this case
®(z) = c|det(xz +iI)| """

The general result requires a formulation of §5.17 in which R™ (with
its isotropic dilations) is replaced by a homogeneous group (see Chapter 13,
§7.11(b)). Further details are in Stein [1983]. The examples described above
were originally treated by different methods; see Marcinkiewicz and Zygmund
[1939b], Stein and N. J. Weiss {1969]. For background about Poisson integrals
on tube domains, see Chapter 3 of Fourier Analysis and N. J. Weiss [1972]; in
the more general setting of symmetric spaces, see Kordnyi [1972].

5.19 We consider the maximal operator

(1\/Is::f)(ﬂfr)ISHIH“_""/’| | f(z — )| Qy) dy,

>0

where () is a nonnegative function that is homogeneous of degree 0. When {2
satisfies an L' Dini condition, we saw in §4 that Mg is of weak-type (1,1) (and
thus is bounded on L?, p > 1). Here are two extensions of this result.

(a) The conclusion still holds if €2, considered as a function on the unit
sphere S™ !, has finite L' entropy in the sense that

Y é Z CjIBj‘_IXBj,
where B; C S™ ' are geodesic balls, | B;| are their induced volumes, and

> il + log+(1/cj)] < 00.

One can also prove that if Q satisfies an L' Dini condition, then it has finite
L' entropy. R. Fefferman [1978].

(b) The conclusion also holds if Qlog®™ Q@ € L'(S™ '), in particular if
2 € LP(S™ "), p > 1. See Christ and Rubio de Francia [1988]. Again, one can
show that if {2 enjoys an L' Dini condition, then Qlog* Q € L'(S8"!). The
question left unanswered by these results is whether Mgq is weak (1,1) bounded
when €2 is merely in L'(S™™1).

E. Multi-parameter maximal functions

9.20 The “product theory” of R™, which involves multi-parameter scal-
ings, leads one to consider the strong mazimal operator

(Msf)(x) = sup | B~ f F(z — y)| dy,
R R

1'ﬁ'ifrhere the supremum is taken over all rectangles R centered at the origin, with
sides parallel to the axes.
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(a) Let (M, f)(z) = (M) f)(z) be the standard maximal function in the
direction e; (here ey,..., ey, is the usual basis of R"), as in §4.1. Then

Ms(f) < Mi(Ma(:-- (Mn(f))---)),

and as a result

| Ms(f)llLemny < ApllfllLe@mn), 1 <p< oo

(b) There is no L' theory for Ms (when n > 2); see Chapter 10, §2.3.

(c) The substitute result for L” with p near 1 can be stated in terms of
the class L(log L)"~'; in particular, if f is locally in this class, then

diam(R)—0

lim lR[_I/ f(x —y)dy = f(x) a.e. .
R
Conclusions (a) and (c) go back to Jessen, Marcinkiewicz, and Zygmund

[1935]. Negative results stronger than (b) are in Saks [1935]. Further discussion
of Mg (called Mz, there) can be found in Chapter 10, §2.3.

5.21 The standard maximal operator of Chapter 1 is closely connected
with the Vitali covering lemmma in §3.1 of that chapter. The following covering
lemma plays the same role for Mg.

Let {Ra} be a collection of rectangles in R™, contained in the unit ball B,
with sides parallel to the axes. Then there is a finite subcollection {R,;};_; so

that
ldlﬁh ;fcnlhjlﬁx:

and
N
/ exp(z XRj) dz < c,,.
B =1

See Cérdoba and R. Fefferman [1975].

5.22 If ® is a function on R", then for each n-tuple J = (ji,...,Jn) € 4",
we define

O, s(x) =217 P(27 gy, ..., 27 ,).

One may ask, in analogy with §6.1 of Chapter 1 and §4.2.1 of the present
chapter, for suflicient conditions on ¢ so that the mapping

f = sup |(f * ®ys)(z)]
JeZ™

is bounded on L*, 1 < p < oo.
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(a) One notes first that if
@) < Al + e
k=1

for some € > (0, then

sup, |(f * @07 (a)| < e(Ms ) (z).

It should be observed that here a similar conclusion holds in the non-dyadic
case, that is, for

sup |(f * ®¢)(z)],
te(Rt)"

where t = (t1,...,tn) and
(I’t(."l:) — (tl "t tﬂ)_lq)(xl/tla T amn/tn)'

(b) Another, less evident, condition for the L” boundedness of

f = sup |(f * ®,5)(z)]
JeZm

when p > 1, is that ® has compact support and satisfies

f 2@~ 4) - ¥(a)|dz < Al

for some € > 0. See Ricci and Stein [1992], in which multi-parameter ana-
logues of §5.15 may also be found. For some related results, see Nagel and

Wainger [1977], Duoandikoetxea [1986], Carbery and Seeger [1993].

(¢) A further sufficient condition on ® is that ®(z) = [P(x)]™%, where P
1s a strictly positive polynomial and a is such that

[P(z)]™® dz < 0.
i

To prove this, one may use the idea sketched in §5.17 together with the
arguments in Sjogren [1986]. This paper should also be consulted for applica-
tions of such results to prove “unrestricted” convergence of Poisson integrals
on syminetric spaces.

9.23 For the product theory of singular integrals one should consult
R. Fefferman and Stein [1982], Journé [1985], R. Fefferman [1986] and [1987],
Pipher {1986], as well as the references in §5.22(b).



86 II: MORE ABOUT MAXIMAL FUNCTIONS

Notes

§1. The vector-valued maximal theorem can be found in C. Fefferman
and Stein [1971]; an earlier partial result is in Stein [1970a).

§2. The definition of Carleson measures, and the inequality (24), go back
to Carleson {1962]. The tent space N and its atomic decomposition appear in
Coifman, Y. Meyer, and Stein [1985], but the duality inequality (Theorem 2)
1s implicit in C. Fefferman and Stein [1971].

§3. The general version of the maximal theorem for arbitrary collections
of balls (stated in terms of “approach regions”) is in Nagel and Stein 11984)].

The multipliers in §3.2 were characterized by Coifman, Y. Meyer, and Stein
11985].

§4. The L” maximal theorem in Proposition 1 is an unpublished observa-
tion of Coifman and G. Weiss. The reasoning proving Proposition 2 originates
with Z6 [1976] and has since been developed to fit various circumstances.

CHAPTER III
Hardy Spaces

The study of Hardy spaces, which originated during the 1910’s and
1920’s in the setting of Fourier series and complex analysis in one vari-
able, has over time been transformed into a rich and multifaceted theory,
providing basic insights into such topics as maximal functions, singular
integrals, and L? spaces. Here we want +c emphasize four aspects of this

theory.

1. Extension of LP. To put the matter simply but somewhat im-
precisely, the elements of H? are (tempered) distributions for which an
appropriate meaning can be given to their pointwise values almost ev-
erywhere and that, in a suitably refined sense, belong to LP(R"™). When
p > 1, the actual definition of HP makes it equivalent to L?, but when
p < 1, these spaces are much better suited to a host of questions in
harmonic analysis than are the L? spaces.

2. Equivalence of definitions. The main thrust of what is proved in
this chapter is that a variety of distinct approaches, based on diflering
definitions, all lead to the same notion of HP?. Among these are: the
several mazimal definitions, of which the simplest is that a distribution f
belongs to H? if, for some ® € S with [ & = 1, the maximal function

(Mo f)(z) = sup |(f * ®¢)(z)|

t>0

1s in L?; the atomic decomposition, which allows one to express H?
distributions f as sums of very simple constituents (conversely, such
sums are obviously in HP?); and the fact that, broadly speaking, H?
consists of that part of L? that is stable under the action of singular
Integrals.

3. Nature of HP. In contrast with the case p > 1, the question as
to whether a distribution f belongs to H?, p < 1, is not only a matter
of the size of f but also involves some delicate cancellation properties.
Thus in the maximal definition given above, the operator Mg cannot be
replaced by the standard maximal operator M (appearing in chapters
1 and 2), because the latter involves only the absolute value of f; nor
can ® be replaced by a function that is not sufficiently smooth. The
cancellation properties also enter (in a very direct way) into the definition
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of H? atoms given below. It is these subtleties that are responsible for the
arduous nature of some of the arguments in this chapter, but the rewards
for the patient reader are the elegant and far-reaching assertions that one
1s able to prove.

4. Applicability. Among the necessary properties that determine
whether a distribution belongs to some H? are that it be “bounded” in a
suitably weak (average) sense, and that it be (at worst) singular of finite
order in an appropriate pointwise sense. In the converse direction is the
fact that large classes of generalized functions appearing in diverse parts
of analysis are (locally) equal to H? distributions. Examples of this are:
singularities represented by meromorphic functions, arbitrary distribu-
tions carried on smooth submanifolds, and the Lagrangian distributions
that occur in the theory of Fourier integral operators. These assertions

may be found in §5.18-§5.20.

T'wo more remarks about H? theory may be in order. After its initial
Howering in the setting of one complex variable, the requirements of
analysis,on R"™ led (in the 1960’s) to an extension of the theory in which
the main stress was placed on harmonic and subharmonic functions; it
was then that the stability under singular integrals (Theorem 4) was
proved in its first form." However, the point of view that developed later
(which we adopt here) does not depend in any essential way on analytic
or harmonic functions. Its more flexible approach allows for substantial
further generalizations.

Finally, we point to the only H? space, p < 1, that is also a Banach
space—namely H!. Its special role and rich properties form much of the
subject matter treated in the next chapter.

1. Maximal characterization of HP

As we said above, it is our intention to define HP as a space of

distributions on R™ in such a way as to give a natural real-variable
generalization of the space L? when p > 1. We first make some comments
about tempered distributions on R™.

1.1 One begins with the space S of testing functions: the set of
all  on R™ that are infinitely differentiable and, together with all their
derivatives, are rapidly decreasing (i.e., remain bounded when multiplied

T For an account of the theory at that stage of development, see Fourier Analysis,
chapters 2 and 6 and Singular Integrals, Chapter 7, as well as the appendix to this
chapter.
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by arbitrary polynomials). On & one has a denumerable collection of
seminorms || - ||a,s given by

|#]la,s = sup |z*82¢(z)|.
reR"

Here we use conventional notation:

8)61 6}811
xﬂ:a:ﬂl___mﬂn 85_: .
: " et axhn
a = (ai,...,a,) and 8 = (B1,...,B3,) are n-tuples of natural numbers.

A tempered distribution is a linear functional on S that is continuous in
the topology on S induced by this family of seminorms. We shall refer to
tempered distributions simply as distributions; the set of all distributions
(with the weak topology) is denoted by S'.}

Whenever f is a distribution and ® € S, the convolution f * ® is a
well-defined C® function (possibly slowly increasing at co). Of course,
the same thing is true for f x ®;, where ®;(z) =t "®(z/t), t > 0.

The families ®; (with ® € S) will serve as basic approximate identi-
ties in our characterization of H?. However, the fundamental connection

with harmonic functions makes it useful to consider also f * F;, where
P, is the Poisson kernel!

P@)=P(e) = rpmemm  h@ =tPE/)

Since f * P, is not meaningful for a general tempered distribution f,
HP theory carries with it a natural restriction on the class of distributions
considered: We say that a distribution f is bounded if f x ® € L=(R")
whenever ® € S. It is not difficult to see that a distribution is bounded
exactly when its translates form a bounded set in &’.

Let us point out some useful properties of bounded distributions.
First, if f is a bounded distribution and h € L!(R"), then the con-
volution f x h can be defined as a distribution. Indeed, let ¢ € S and
write

(Fehd)=(F+dh) = [ (F+H@ h@)da,

where ¢(z) = ¢(—x). Second, it is easily verified that f xh is a bounded
distribution and that f x (h; *hy) = (f * hy) * ho whenever h; € L*(R").

A review of some basic points in the theory of tempered distributions may be
tound in Fourier Analysis, Chapter 1, §3.
T As defined in Chapter 1, §6.1.
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Since P is in L1, it follows that f * P; is a well-defined distribution
whenever f is bounded. Moreover we claim that, for any fixed ¢, f * P; is
a, bounded C°° function. In fact, we can write P = ¢xh+9¢ with ¢,y €S
and h € L. To see this, notice that ﬁ(!;“) = e—271¢| is rapidly decreasing
and fails to be smooth only at the origin.} Taking h = P and ¢ € S
with ¢(£) = 1 for € near 0, we need only set ¥(¢) = (1 — $(€))e 2 él,
Therefore

P; = ¢ x hy + ¢ and f*Pt=f*’¢’t+(f*¢5t)*ht:

from which our assertion follows. Since [(8;)* + .51(63; )] P(z) =0, we
J:

also obtain that the function u(z,t) = (f * P;)(z) is C* in (z,t) and is
itself harmonic.

1.2 The maximal characterization. We come now to the for-
mulation of the maximal characterization of HP.

For any ® € S and any distribution f, we define Mg f(x) by

Mg f(z) = sup |(f * ®:)(z)]. (1)

t>0

Next, instead of considering a maximal function based only on a
single approximation of the identity, we shall also consider “grand max-
imal functions” based on collections of such ®. For this purpose, let
la; .5, } e any finite collection of seminorms on S. We denote
by Sz the subset of S controlled by this collection of seminorms; more

F={-

precisely, we set

Sr={®cS:|®|a s <1foral|-llaseF}

We then write

Mzrf(z) = sup Msf(z). (2)

PecSr

F<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>