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FOREWORD

These lecture notes are based on a course I gave first at University of Texas, Austin
during the academic year 1983 - 1984 and at University of Goéteborg in the fall of 1984.
My purpose in those lectures was to present some of the required background in order
to present the recent results on the solvability of boundary value problems in domains
with “bad” boundaries. These notes concentrate on the boundary value problems for the
Laplace operator; for a complete survey of results, we refer to the survey article by Carlos
Kenig; I am very grateful for this kind permission to include it here. Tt is also my pleasure
to acknowledge my gratitude to Peter Kumlin for excellent work in preparing these notes
for publication.

January 1985
Bjorn E. J. Dahlberg



1



Contents

0 Introduction 1
1 Dirichlet Problem for Lipschitz Domain. The Setup 11
2 Proofs of Theorem 1.1 and Theorem 1.2 19
3 Proof of Theorem 1.6 25
4 Proof of Theorem 1.3 37
5 Proof of Theorem 1.4 47

6 Dirichlet Problem for Lipschitz domains. The final arguments for the
[*-theory 51

7 Existence of solutions to Dirichlet and Neumann problems for Lipschitz
domains. The optimal /.”-results 57

Index . . 64

Appendix 1 C. E. Kenig: Recent Progress on Boundary Value Problems on
Lipschitz Domains . . . . . . . . oL 67

Appendix 2 B. E. Dahlberg/C. E. Kenig: Hardy spaces and the Neumann

Problem in L? for Laplace’s equation in Lipschitz domains . . . . . . . .. 107

111



v



Chapter 0

Introduction

In this course we will study boundary value problems (BVP:s) for linear elliptic PDFE:s
with constant coefficients in Lipschitz-domains €, i.e., domains where the boundary 9}
locally is given by the graph of Lipschitz function. We recall that a function ¢ is Lipschitz
if there exists a constant M < oo such that

lp(x) = p(2)] < Mz — z|

/\ //\ -
=

\/V\/vvv ,(

To solve the BVP:s we will reformulate the problems in terms of integral equations. Tt
therefore becomes necessary to study singular integral operators of Calderén-7Zygmund
type, which we prove to be I.”-bounded for 1 < p < oo and invertible. The .?-boundedness
is a consequence of the L”-boundedness of the Cauchy integral (Coifman, McIntosh and
Meyer)

for all 2z and z.

where " is a Lipschitz-curve (method of rotation). The invertability will be proved by a
new set of ideas recently developed by Dahlberg, Kenig and Verchota. Among the BVP:s
which can be solved by this technique are the



Dirichlet problem

Au=0 in
u=f on 00

Neumann problem

Au=0 in
@:f on 0N

the clamped plate problem

AAu=0 in

u=f

%:g on 0f)

and BVP’s for systems e.g. the elasticity problem

Au+Vdivu=0 in
(Vu+YVuTn =g on 00

and Stoke’s equation

Au=Vp in €
divu=10
u=f on 00

where u = (uy,ug,u3) in R>.

Fredholm theory for Dirichlet problem for domain Q with ¢* boundary

We start with an example.

Fzample (Dirichlet problem for a halfspace). 1f the function f € LP(R"), 1 < p < oo, it is
well known that

u(z,y) =py* f(z), (v,y) € RTFT =R x Ry,

where
p oy T y
U(T) — 1 ) 9 NN
(et

denotes the Poisson kernel, is a solution of

Au=0 in R}
w=f on ORI =R"
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and that

(%) sup ()l < I1f1l,-
y>0

Thus with X = I2(R") and ¥ = {u : v harmonic in R}"" and wu satisfies (x)} we have the
implication

feX=uey.

However, we can also reverse the implication since a harmonic function u which satisfies
(*) has non-tangential limits a.e. on JRT', the limit-function ug = u(-,0) € LP(R") and

u(x,y) = py * ug().

Sketch of a proof. Assume u harmonic function in IR,T'] that satisfies (*). The semigroup
properties of {p, },>0 implies

w(x,y+p) =py *uy(r), p>0,y>0

where u,(x) = u(x, p).

(%) = u,, —vin LP(R") as p, 40
= p, *u, () = p, xv(x) as pn 10,y >0.

But p, * u,, (v) = u(z,y + p,) and thus
u(x,y) = p, *v(x) where v e LP(R").

For the proof of the existence of non-tangential limits of p, *ug we refer to e.g. Stein/Weiss

2. 0

The notion of “solution of the Dirichlet problem” and any other problem, is sound only
if we have such a matching between the boundary value f of u and the solution u itself,
i.e., we should not accept concepts of solution which are so weak such that the reversed
implication is “impossible”.

Now assume that  is a bounded (connected) domain in R”, n > 3 with C'? boundary. (To
avoid technicalities, we have assumed n # 2). Consider the Dirichlet problem

() {Au—() in Q

7l,|f)Q: f € C((?Q)
Let r denote (—1) - (the fundamental solution) of the Laplace operator in R”, that is,

1 1 1 (/2
n—2" Cn = = =

(2 —n)w, 9 _n 27/

r(z) = ¢, 7]



and set

R(x,y)=r(z —y).
For f € C(9Q) we define

0
Jaq 3”@

SF(P) = / R(P.Q)QUir(Q) P ¢ 00

Df(P) = R(P,Q)f(Q)do(Q) b ¢ 00

Thus Df and S f denote the double layer potential and single layer potential resp. Here do
is the surface measure on 9 and % is the directional derivative along the unit outward

normal for 9 at (). Tt is immediate that
ADf(P)=0, PeR"\dN

and Df will be our candidate for solution of (D). It remains to study the behaviour of Df

at 0f).
Part of that story is

Lemma 1. [f f € C(99), then

1) Df € C(Q)

2) Df € C(CQ).

More precisely: Df can be extended as a continuous function from inside € to ) and from
outside Q to Q. Let Dy f and D_f denote the restrictions of these functions to 9 resp.

Set K(P,Q) = %R(RQ) for P £ Q, P,Q € 99. We note that

1) K e C(OQx IQ\{(P,P): Pea})
i) [K(P,Q)] < W for P,.Q € 99 and some C < oo.

i1) is a consequence of the regularity of the boundary and can be seen as follows:
Assume 0€ given by the graph of the C*-function . Set P = (x,p(z) and Q = (y, p(y)).

1 <P B QvnQ>

Then [\7(P7Q) = W_W

where (,) is the inner product in /*(R"”) and

(vg‘o(y)v 7])

VIVe)P+1
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Since ¢ is a C'? function, we have that

p(r) = o(y)+ (r —y,Voly)) + e(x,y) where |e(z,y)| = O(|lxr —y*).

Hence

(P = Qu (Ve D) leey)l
P=Qr CUIPeQr T TPoQrT

This estimate is uniform in P and @ since 9§} compact.

[K(P.Q) <C

For f € C(99Q) define

1) = [ K(RQu@yin(@). P e

We can now formulate

Lemma 2 (jJump relation for D).

1Dy =11 47T
2)D = LI4T

and

Lemma 3. T : C(9Q) — C(9Q) is compact.

Sketch of proof of Lemma 3. Define the operators T,, by

T, f(P) = / K(PQ(Qr(Q). P e

for f € C(09Q), where

Ko (P,Q) = sign (K(P,Q)) - min(n, [K(P,Q)]), n € 7Zy.

Thus K, is continuous on 9 x J and Arzela-Ascoli’s theorem implies that 7T, is a compact
operator on C' (). Furthermore since ||T,|| < SUPQeng I (-, Q)|1 < C < oo, where ' is
independent of n we see that

T, =T

in the space B = {bounded linear operators on C'(9Q)}. But the compact operators in B
form a closed subspace in B, and hence T' is compact. O



Proof of Lemma 1 and 2. Some basic facts:

0
1) R(P,Q)do(Q)=1, ifPef
Jog Ong
Proof: Apply Green’s formula to the harmonic function R(T',Q) in Q\ Bs(P) for
d > 0 small, where Bs(P)={x € R": |P — 2| <{§}.
0 .
2) R(P,Q)do(Q) =10, if P¢&.
Jag dng

Proof: Exercise.

3) /99 K(P,Q)do(Q) = ]5 if P ean

Proof: Exercise.

Let P € 9Q. We want to show that
1
DI(Q) = Sf(P)+Tf(P) as 035Q—=P

A: Assume P ¢ supp f: Easy.
B: Assume f(P) = 0: We need.

4) 30>0:/ ‘ 0 R(PjQ)‘dJ(Q)<Cf0r all P ¢ 0Q
Jaa ' dng

Proof: Exercise.

4) implies the estimate
IDf][ e mmvany < ClLf[n=(a0)-
Choose {fr} C C(9Q) with P ¢ supp fi such that
||f - kaLOO(;)Q) —0 as k — .

T bounded operator implies T'fi.(P) — T f(P) as k — oo. Hence

IDAQ) —THP) <CI(f — f)llnemmoa) + [Df(Q) — T fi(P)| +
+|Tf(P)—Tf(P) =>0ask —=o00and 230 — P.

C: Enough to check f =1.

The result follows from basic facts 1) and 3). Hence we have proved Lemma 1 and 2 part
1). Part 2) follows analogously. O



We now return to the single layer potential and observe that Sf is harmonic in R" \ 99
and continuous in R if f € C(99). Next we want to compare the normal derivative of

Sf with Df at Q. Since 9 is C'* we have following result:

For ¢ > 0 small enough
| —e,e[x02> (t,P) = P+tn, eV

is a diffeomorphism, where n, is the outward unit normal of 9Q at P, and V is a neigh-

borhood of Q. For P € Q2 and t €] — e, ¢ set

PSP +tny) = [ SR(P+ 10, Q)(QUo(@Q)

Jaq Oy

The close relations between Df and DS f is formulated in
Lemma 4. [f f € C(IN) then
1) DSfeCc(VnQ)

2) DSf e C(VNlQ)

(Compare Lemma 1).

Let DLSf be the restriction to 99 of the function DS [ extended to V N Q from inside

and D_Sf the restriction to 9Q of the function DS f extended to V N LQ from outside.
But R(P,Q) = R(Q, P) so with R"(P,Q) = K(Q, P), which is the real-valued kernel in

T F(P) = / W(PQU@Q)n(Q) P e,

we have that T™ is the adjoint operator of T.

Lemma 5 (jump relations for DS). 1) DS =114+ T~
2) D_S=114+T
Proof of Lemma 4 and 5. Tet [ € C(9) and define

py_ | DIP)+DSf(P) PeV\dQ
il ){ T(P)+T*f(P) P €.

Claim: w; € C(V).

Proof: w; continuous on V'\ 90 and on 9. Hence it is enough to show taht

wi(P+in,) — ws(P) uniformly for P € 99 as t — 0.

7



Assume vo € C(99) such that 0 < yo <1, xo = 1 in a neighborhood of P and
supp Yo C Bs(P).
Decompose [ as
f=hH+f=xof +(—xo)f.

A wp, (P +1n,) = wg(P)as t — 0. Fasy
B: Assume t # (

p
S
O

v
-
7

N

P

<Q — vanQ> — <Q * vanp>

wy (P)=0C /HQ 0 P FH1(Q)do(Q).
Hence
— Pi,ng —n,
(Pl <l et = tellin@) <
@ — PO — Pl
C o0 ,O' ~
< Ul ./E)QOB,;(P) Q — P (@<

10(Q)
C oo — " — 0O
<l / R =

independently of ¢, since |ng — n,| = O(|Q — P|).

But wy = wy, + wy, and thus w; continuous on V. This proves the claim.
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Therefore
THP)+ T f(P) =Dy f(P)+ DySf(P)=D_f(P)+ D_Sf(P), P e

The jumprelations for DS follow. O

We now give the final argument for the existence of a solution of the Dirichlet problem in
Q and that is

Dy : C(OQ) — C(00)
1s onto.

Since Dy = 15[ + T, where T is compact, Fredholm’s Alternative theorem can be applied.
Hence,

1
§I+T:D+ onto

%I—I—T*— D_S 1-—1.
To prove D_S is 1 — 1 is easy:
Assume D_Sf = 0 for some f € C(Q). Set v = Sf. Then
i) v harmonic in 0O
i) o(P) = O(|P* ") as |P| = oo
., Ov

iﬂ) _|f)Q: 0.

on

Green’s formula implies

%,
/ |Vol* = / vAv + v do = 0.
JEQ JEQ Joa On

Thus v = 0 in (9. But v € C(R™) and Av = 0 in €.
Maximumprinciple = v =0 in R” = f = 0.

Remark: The proof above is valid for domains Q with '™ boundaries where o > 0, but
not for domains with boundaries with less regularity.

Remark: We observe that the method is non-constructive as a consequence of the soft
arguments (i.e., compactness arguments) we have used. Hence it is not possible to solve
the Dirichlet problem for, say Lipschitz-domains Q by approximating Q with C? domains
Q. solve some Dirichlet problems for these and obtain an approximation of a solution for
2, since we do not have any estimates of the inverses of the D :s.
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Chapter 1

Dirichlet Problem for Lipschitz
Domain. The Setup

A function ¢ : R” — R such that
o(r) — o) < Mlz —y] forall 2.y R"

is called Lipschitz function. A bounded domain © C R™*' is called Lipschitz domain if 99
can be covered by finitely many right circular cylinders I. whose bases are at a positive
distance from 9€) such that to each cylider I, there is a Lipschitz function ¢ : R” — R and
a coordinate system (z,y), # € R", y € R such that the y-axis is parallel to the axis of
symmetry of Land LN =L Nn{(z,y):y> (@)} and LNIN=LN{(x,y):y =¢(x)}.
A domain D C R™' is called special Lipschitz domain if there is a ILipschitz function
¢: R" = R such that D ={(x,y):y > ¢(x)} and 9D = {(x,y) : y = p(x)}. In this and
all proceeding chapters we reserve the notation 0 for bounded Lipschitz domains and D
for special Lipschitz domains respectively. With a cone I' we mean a circular cone which
is open. A cone I' with vertex at a point P € 9C, where C' C R is a domain, is called
a nontangential cone if there is a cone IV and a § > 0 such that

04 (TN Bs(P)\ {P} C T"n Bs(P)C C.

B.(Q) is our standard notation for the ball {x € R” : | — Q| < r}. We say that a function
u defined in a domain C has nontangential limit I. at a point P € 9C if

w@) =1L as Q—P Q€T

for all nontangential cones I' with vertices at P. Finally we define the nontangential
mazimal function Mzu for 8 > 1 and function u defined in Lipschitz domain Q by

Mau(P) = sup{|u(Q)] : |P — Q] < Bdist (Q,00),Q € Q}, P € IN.

11



One of the main results in this course will be the existence of a solution to the Dirichlet
problem

Au=0in Q Cc R"*!
ula= [ € 17(09)

where € is a bounded lipschitz domain. By this we mean that there exists a harmonic
function v in © which converges nontangentially to f almost everywhere with respect to
the surface measure do(99) and that the maximal function Mgu € L?(9Q) for 3 > 1. The
starting point for our enterprise of proving the existence of a solution to Dirichlet problem
for the Lipschitz domain € is the double layer potential

%,

Dg(P) = o Ina

R(P,Q)g(Q)do(Q) P e,

where R(P,Q) is the fundamental solution for Laplace equation in R"*" (multiplied with
—1) and g € L*(09). Since Dg is harmonic in 2, we are done if we can show that
for some choice of g we have the right behaviour of Dg at 9. However, this is not

easy since for K (P, Q) = %R(P,Q) P,Q € 090 P # @, we only have the estimate

|K(P,Q)| < # which cannot be improved in general. Thus we have to rely on the
cancellation properties of K (P,Q), and the operator T" which appeared in Chapter 0 can
only be defined as a principal value operator. Before we study the case with a general
bounded Lipschitz domain ) we treat the case with a special Lipschitz domain D. From
this we obtain the result for © using standard patching techniques (see Appendix 2).

Consider

Dmm—_walRWQm@wd@ Pen

where D = {(z,y) : y > @(x)} for a Lipschitz function ¢ : R™ — R. We remark that
@ Lipschitz function implies that ¢ exists a.e. so the definition of Dg makes sense and

(ng,.P—Q) . (Ve(z), —1) -
, =, , with ng = for Q = (x,0(x)), exists a.e.
(()nQR(PjQ) C |P*Q|n+1 t Q /—|VQO(.”17)|2—|—] Q ( 99( )) t

do(0D). To state the first proposition, we need some more notation: For every measure
p and each g-measurable function g and measurable set A with u(A) # 0 we let fA gdy,

denote the mean value / gdu. Furthermore for g € ] (D) we define the maximal
A

1
1(A)

function Mg by

Mmm—mmf 9(Q)do(Q). P e aD.
JannB.(P)

r>0

The following result is crucial.

12



Proposition 1.1. Let D = {(x,y) : y > ¢(x)} where p : R™ — R is a Lipschitz function
with |||l = A. Let P = (x,y) € D and P* € (x,0(x)) € D and set p = y — p(x).
Assume g € LP(AD) for some p where 1 < p < oo. Then

[ Dg(P) = Tog(P)| < CMg(P7)

where
'&«Pw—-/ K(P*,Q)g(Q)da(Q).
JaD\B,(P*)

The constant C' depends only on the dimension a. Before we prove this proposition, we
make some remarks on the maximal function M.

function M is M* defined by

Mg(P) = sup f QAo (@), P € DD
JannB.(Q)

B-(Q)>P

for g € L] (OD). We immediately observe that Mg < M*g < (Mg for some
dimensional constant (', i.e., M and M* are equivalent.

2) Let m denote the projection
7:0D = R" where (z,p(2))— 2

and define the maximal function M by

Vgr)=sipf Jgor iy, e R,
. Br(m)

r>0
forg € L} (AD). Since ¢ is a Lipschitz function, we see that. M and M are equivalent.
3) M is bounded in 1> with norm 1, i.e.,

Mgl < llglle forall g e L™

4) M is a weak (1,1) operator, i.e., there exists a ' > 0 such that

{2z : Mg(z) > M} < CH(;\H1 forall ge L'

5) M is bounded in I, 1 < p < oo, i.e., there exists a C, > 0 such that

||M.q||p < C’PHQH’P forall ge I

Here 3) is trivial, 4) can be proven by a covering lemma argument and 5) follows from 3),
4) and Marcinkiewicz’ interpolation theorem (see Stein [1]). For later reference we state

13



Marcinkiewicz’ interpolation theorem. Tet | < p < g < oo and let T be a subad-
ditive operator defined on I? + 9. Assume T is a weak (p,p) operator and a weak (q, q)

operator. Then T is bunded on " where p < r < g. An operator T is a weak (p,p)
operator if there exists a constant ' > 0 such that

{x:Tg(x)] > A} < C(H'(;\pr for all g€ LP and A > 0.

Hence, if T is bounded on L”, then T is a weak (p, p) operator, but the converse is not true
in general.

y

Proof of Proposition 1.1.

0. P — 0. P* —
|Dg(P) — T,g(P*)| < C / o, ? - Wi’ ?
Jopagipe—gsp | [P — Q" [P — Q"
e /
Jap\{1P=-qI>s}

<nQ7 P — Q>
P g+ 9(@)|do(Q) <
¢ a do

e / L y@)ldo (@)

JaD\{|P*-Q|>p} P"

~19(Q)ldo

where we have applied the mean value theorem to the first integral. The second integral is

< CMg(P*) and the first integral can also be estimated from above with the same hound
according to

Lemma 1.1. Letv > 0 be a radial decreasing function defined in R". Assume f € L'+ 1>
and set m f(x) = sup,so {5 (=) |f(2)|dx forx € R". Then x*f(x) < Bmf(x) forallz € R”
where B = [(x)dx. O

14



If we take this lemma for granted for a moment and set

_ P
Y= e

the first integral above is bounded from above by C'Mg(P*) and we are done. 0

Proof of Lemma 1.1. Tt is enough to prove the lemma for 0 < f € C°,¢ € C5° and z = 0.
Set 5" = dB1(0) and A(r) = .fBT(O) f(a)dx.

We obtain
P f(0) = ./IRW V() f(a)de = /0 L/)(T)rn*1 ./qn flrw)do(w)dr =
— /000 Y(r)A'(r)dr = — /000 '(r)A(r)dr < — /OOO ' (r)| B (0)|dr m f(0).

Set f =1 in the calculations above and we get — [ ¢'(r)B.(0)dr = B. The lemma is
proven. ]

If we define the operator T, by
Teg(P?) = sup [T,g(P™)| P"€ 8D

p>0
for g € L7(0D), then
Dg(P)| < C(Tug(P") + Mg(P7))

for all P = (z,y) € D and P* = (a,¢(x)) € dD. Thus if we can prove that T, is bounded
on LP(OD), then |Dg(P*)| < oo for a.e. P* € dD. We remark that with some additional

considerations one can prove that
Dg(Q)] < C(Teg(P™) + Mg(P™))

for all @ in a nontangential cone ' with vertex at P* € 9D, and thus supger|g(@Q)] in
non-tangential cones I' with vertices at P* € gD for almost every P* € dD. Tt then follows
that Dg has finite nontangential limit a.e. do(9D) (see Dahlberg [2]).

The limitfunction belongs to LP(AD). If we also can prove that the limitfunction is equal
to f for some choice of g, we are done. To be successful in our approach, we have to study
the operators T, for p > 0 and T.. This calls for some definitions. Let S(IR") denote
the Schwartz class (i.e., the space of all C*-functions in R"™ which together with all their
derivatives die out faster than any power of x at infinity) with the usual topology.

T is called a singular integral operator (S1Q) if T : S(R™) — S(R™)* is linear and
continuous and there exists a kernel K such that for all ¢, ¢ € C§°(R") with supp ¢ N

supp ¢ = ¢
(o) = [ [ Wlepotyyitordyas,
15



where (,) is the usual & — &* paring. We observe that K does not determine T' uniquely.
Consider for instance T'f = f’ for which K = 0 is a kernel.

We say that a kernel K is of Calderén-Zygmund type (C7-type) if

C
|z —y|"

1) [K(w,y)| <

C

2) VoK (2, )| + |V, K (2,y)] < ——
|z — y|"*

3) K(v.y)=—K(y,z).

The operator-kernels, we will study, will be of the form

i oy = (o)) — (o))
Ki(z,y) o) e 1,2

where (a); denotes the i-th component of a € R"*'.

N

We observe that these kernels are of ('7-type and adopt the convention that whenever
we discuss kernels K, they are assumed to be of C'Z-type unless we explicitly state the
converse. Starting with a kernel K, we can form a well-defined STO with K as the kernel
namely the principal value operator (PVO) T. Note that for ¢, ¥ € S(R"))

//|T y|>5 (2, y)e(y)(x)dydr = = //lT y|>5 (2, y)(o(y)eb () — ()0 (y))dyde

since K(z,y) = —K(y, ) and thus

]T‘]’//h o (7, y)e(y)e(w)dydx

exists since |p(y)(x) — o(x) O(lx — y|) and ¢, € S(R™) decay fast enough at
infinity.

Hence T': S(R") 3 ¢ — T € S(R™)* where

(Pov) =timy [ /| L Rlesyely) (s

e—0
is a STO.

We leave the proof of continuity of 7" as an exercise. From now on we assume that all
operators T are PVQ with kernels K of C'Z-type.

To achieve our goal to establish the existence of a solution to the Dirichlet problem for
Lipschitz domains, we will prove the following sequence of theorems

Theorem 1.1. If T bounded on L?, then T is a weak (1,1) operator.
This implies

16



Theorem 1.1°. If T bounded on L?, then T bounded on [P for 1 < p < co.
and

Theorem 1.2. [fT bounded on L?, then T bounded on I” for1 < p < oo where T*g(x) =
51P50 | [ y1se K (2, 9)9(y)dyl.

Thus it is crucial for us to be able to prove L?*-houndedness of 7. This is done in two steps.

Theorem 1.3. If ¢ : R — R Lipschitz function and K(x,y) = , then the

1
r—y+i(o(z)—e(y))

corresponding operator T is L? bounded.

Theorem 1.4. If ¢ : R” — R Lipschitz function and

((ro0() — (yoly))i . )
[ e 1

then the corresponding operators T; are L? bounded.

Ki(z,y) =

=3

Finally we prove

Theorem 1.5. D|sp is invertible.

To prove Theorem 1.3, we will characterize those kernels K of C'Z-type which correspond
to L? hounded operators T'. This is done by a theorem of Daivd and Journé [3].

Theorem 1.6. T bounded on L? iff T1 € BMO.

The definition of BMO and the theorem and its proof will be discussed in Chapter 3.
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Chapter 2

Proofs of Theorem 1.1 and Theorem
1.2

We recall that T is a PVO with kernel K of C7Z-type. In this chapter we give a proof of
the following result of Calderén-Zygmund [1].

Theorem 1.1: If 7" bounded on 2 then T is a weak (1, 1) operator.

The following bound on T, is due to Cotlar [3].

Theorem 1.2: If 7" bounded on %, then T, is bounded on I” for 1 < p < oo where
TLf(2) = sbeso | [ pon K(a,y)f(y)dyl,

Proof of Theorem 1.1. The idea of the proof is the same as when T is a translation-
invariant L?-bounded operator (See Stein [2]). Thus we show that there exists €' > 0
such that

1/l

{r € R Tf()] > M} < O

forall f e L' and A >0

by splitting f in a good part g, which is a L?-function and a bad part b. This is done with
the following lemma

Lemma (Calderén-Zygmund decomposition). Tet f € L'(R”) and A > 0. Then
there exist cubes @);, 7 =1,2,... such that

1) 1Q;N Qx| =0 for j # &k
2) |f(2)] < Xae. forz e R"\UZ,Q;

j=1
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3) A <A, [f(a)ldr < 27\,

The proof is based on a recursive stop-time argument and can be found e.g. Stein [2]. O

Now set,

gla) = {ﬂ” v € R\ UZQ;
fo |f(@)|dz =€ Q; i=1,2,...

and b(z) = f(z) — g(x). We immediately observe that
1) supp b C U2, Q;

2) fo bla)dz =0 j=1,2,...
and

3) llglla < 27A[f]5-

Furthermore,

{z e R": [Tf(x )|>A}|<|{T€IR” Tg(x)| > }|+|{TEIR” | Tb(x )|> }I

<z e R": [Tg(x)| > }|+|U 120 + Hz e R"\ UiZ,2Q;  [Th(x)| > }I

where 2Q); is the cube with the same center as );, which we denote y;, with sides parallel
with (); and with doubled sidelengths compared with ();. Here

{z e R": [Tg(z)| > }I ~ITgls < A2||q||z <1 AL

S\

and

[o@) ke C 2771
U3, 20,1 <27 ) Q4] < ~ I
=1

so it remains to estimate [{z € R" \ UZ,2Q); : [Tb(x)| > }| and this is the point where

we use the properties of the kernel K. Set

bi(x) = { blx) =€ Q;

0 otherwise

For, x ¢ 2Q); we have

Twﬂ—/(M%wm%mWMMy

g
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and thus
ly — y,]
W%<n<ﬂ/———4—mwww

o, |7 —y["*!

where we used / b;(y)dy = 0. Integrating these inequalities gives

g

()| da < / b, (2)|de <
/IR”\U"O 2Q; Z "\2Qj
<ﬂ§j/ Wy = Ol < CILFIL

and consequently

mn o0 ; f
{r € R"\UZ,2Qj : [Th(x)| > H<—wwﬂmwaw»<ﬂk“

The proof is done. |

Corollary: TIf 7 is bounded on .2, then T is bounded on L7 for 1 < p < oo.

Proof. Marcinkiewicz interpolation theorem and Theorem 1.1 implies that 7" is bounded
on L? for 1 < p < 2. But the adjoint operator 7™ of T'is a PVO with CZ-kernel K*(x,y) =
K (y,z) and T* is bounded on L2. An application of Marcinkiewicz’ interpolation theorem

and Theorem 1.1 to 7™ gives T* bounded on L? for 1 < p < 2. Hence T' = (T*)* is bounded
on LP for 2 < p < oo by duality and we are done. O

Proof of Theorem 1.2. The proof is an easy consequence of Cotlar’s inequality, i.e., if T
bounded on L? then

(2.1) Tf < C(T)(Mf+ MTF)

where M is the Harcy-littlewood maximal function; since M is bounded on L? and T is
bounded on 1.7 according to the corollary above.

Remains to show Cotlar’s inequality: Tt is enough to prove (2.1) for # = 0. Fix an ¢ > 0.
We will show that

(2.2) T.f£(0) < C(Mf(0) + MTF(0))

where (U is independent of . Set



and fo(x) = f(x)— fi(x). Thus T.f(0) = T f2(0). The strategy is to prove that for |z| < %

we have
(2.3) T fa(z) — T f2(0)] < CM f(0)

where the constant (' is independent of 2 and . Assume (2.3) to be true for a moment
and argue as follows.

T FO] = T F0)] < T fala)| + CMFO) < [TF(x)|+ [T filx)] + CMf(0).
Consider the two cases
1 N
0 o) < s
1 -
2) L1.1(0)] > CM £,
For case 1) inequality (2.2) is trivial. For case 2) set A = [T_f(0)|, B = Bz(0) and define
A
Fiy=A{x e B:|Tf(x) > §}
A

Here B = F, U Fy and thus

1< Py + P
Bl B
We see that
3 3B
F, <—/|Tf(r1:)|dr1:< M/\/[Tf(())
AJg A
and
C C|B
s SXHﬁH] < |)\ |Mf(0)

where we have used that T is a weak (1, 1) operator. Thus A < C(M f(0)+ MT f(0)) and

it only remains to show (2.3), which is a straightforward calculation:

T h(r) — TH(O)] < /| )= KOSl <

—|f(y)ldy < C / min (= )y < V(0

o

€
for |z| < = where we have applied Lemma 1.2. This completes the proof. O
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Chapter 3

Proof of Theorem 1.6

We begin this section by introducing some of the tools we need to prove the L?-houndedness

of T.
BMO,(R™): For f e L] (R") we set

Q cube

e = o (f 1)~ faPdn)f. 1< <o

where fo = JFQ f(2)dx and define the space BMO, to consist of those functions f such that
lfllpe < oo. Thus (BMO,,|||l,«) becomes a semi-normed vectorspace with semi-norm
vanishing on the constant functions. The letters BMO stand for bounded mean oscillation.

Examples of BMO-functions: 1) log |x| € BMO,(R") 2) L>*(R") C BMO,(R")
3) /]og |2 — y|du(y) € BMO,(R") for finite measures p.

To be able to work with this space, we only need to know three basic facts.

Fact 1: Tet f € I} .. Tf for all cubes @Q, there exist constants Cp such that (fQ |f(x) —
ColPdz)'/? < ¢, then f € BMO, and ||f]|,. < 2/.

Proof. Exercise. O

This fact can be used to prove following proposition.

Proposition 3.1. IfT bounded on L2, then T : L= — BMO.

Proof. The first step in the proof is to give a definition of the function T'f where f € ™.
We therefore introduce {@;} = the set of all cubes @) with centers with rational coordinates
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and with rational sidelengths. Set £/ = U;0Q);. For each pair (21, 2) € (R"\ F) x (R"\ F)
choose a cube @ € {@;} such that 21,29 € Q. Set f1 = [ - x20 and fo = f — fi. Define

Floria) = The) = Thiea) + [ (Kl = K fldy

We note that F'is defined a.e. and that F' is independent of () (as long as xy,29 € Q).
Check it! Furthermore, for a.e. 2y € R” and 29 € R”, F(a,21) — F(x,2,) is a constant
(regarded as a function of ). We now define T'f as the class ¥ — F(x,21) for a.e. 2y € R".

It remains to show that 7' : . — BMO is bounded. Tt is enough to show that
f 1F(r.r0) = Th(ro)lds < Cllfli= f € L(R")
Jg

for all cubes @ € {Q;}.

But
11 < (f [P < O 1P < ]
JQ JQ JQ
since
|| (K(z,y) — K(7q,y)) fo(y)dy| < | |K(x,y) — K(zg,y)llf(y)ldy <
JRr JR™M\20
v —7ql ’
cof el g <l tor s e 0.
R”\2Q ly — '”’7Q|
The proposition follows. O

Fact 2: John-Nirenberg inequality

Theorem: TLet o € BMO (R"). Then there exists constants, ¢’ > 0, > 0, depending
only on n, such that

a
{r € Q:lo(r) —wq| > A < ClQlexp (— )
]|

for all A > 0 and cubes Q).

Sketch of a proof. Tt is enough to show that

sup 7[9Xp<
Q cube ]«

(7) = ¢ql)dr < C < .
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Assume |[p|l« = 1 and ¢ € L. Since the constants €' and «a will be independent of |||,
the result follows for a general p. Fix a cube (). Consider all cubes ; in the dyadic mesh
of () and choose at > 1. let Qj denote those dyadic cubes which are maximal with respect
to inclusion satisfying

7[_ p() — poldr >t

g

and

lo(x) — ol <t ae. for 2 € Q\UZ,Q;

Clearly Q; C @ and

Q-

=~ —

N
[V @il < 2 lle = wellne <

The maximality of Qj implies that

7[ p(2) — poldr <t

g

where (); is the minimal cube in the dyadic mesh of () with respect to inclusion for which

Qj Z @);. Furthermore

Qj
2, lpa, — val <lvg, — o, +lvg, — val <
< 7[ [p(2) — g, ldr +1 <
Jo,
< 2”‘7[ [p(2) — g, ldr +1 <
0 <@ ay

Set X(a,Q) = SUPQ, edyadicmesh ofQ JFQ‘, exp(alp(x) — @g,|)dz which is < oo since ¢ € L™,
From the properties of ); it follows that

1

F explalote) ol < o [ et
JQ JO\UL, Q;

Ly |@,7|7[_ explolp(x) — pg. [Jdr exp(at(2” +1)) <

Q;

< e exp(f(27 4 1) X(0,Q)
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Take supremum over all cubes Q). Thus

1
sup X(a, Q)[1 — n exp(at(27 +1))] < e
Q cube 4

which implies supg pe X (o, Q) < C'if o > 0 small enough. The proof is done. O

Remark: It is an easy consequence of John-Nirenberg’s inequality that the norms || ||, .
and |||« = || |l « are equivalent for 1 < p < co.

Proof. For every 1 < p < oo and 3 > 0 there exists a C' > 0 such that 2 < Cexp(fa) for
x> 0. Choose 3 = 5 and apply the inequality above. Hence

-2, <C sup 7[9Xp (XMW —

e || Q cube 2 lell

= sup / exp (=t)d(|{z € Q : M>f}|) <
Q cube |Q| ||g0||*

< C sup / exp (Y|Q| exp(—at) - (—a)dt =C
Q cube |Q|

and ||@]lpx < Cllell«- The inequality [|¢]l« < |||y« follows from Holder’s inequality. O

Fact 3: Connection between BMQO and Carleson measures.

Carleson measures originally appeared as answers to the following question.

Question: Which positive measures  on R} have the property

/ /IR”“ |ny(r17)|2d/,c(r1:7y) < C(M)Hf”% forall f € LQ([R,”)

where P, f(x) = p, * f(2) with the Poisson kernel p,(2) = CWIW?

To obtain a necessary condition on p consider [ = yq, i.e., [ is the characteristic function

for a cube @ C R”. We immediately observe that P, f(z) > C' > 0for {(z,y) 1z € 3Q, 0 <
y < 1(Q)} where £(Q) = side length of Q. Set Q = {(£,7) e RIT' 1€ €Q, 0 <n < ((Q)}.

Hence
() w(Q) < C|Q| for all cubes Q C R”

is a necessary condition on . We call a positive measure y a Carleson measure if 1 satisfies

(C) and inf{C : x(Q) < C|Q| for all cubes Q} is called the Carleson norm for .
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Lemma 3.1. Let o be a continuous function in RYT" and set

w () = sup{lu(€on)| s lr — €] <}, @ e R

Let 1 be a Carleson measure. Then
pl{(r,y) € REF  Julr, )] > M) < Ol € R () > A
for all X > 0, where C' only depends on n and the Carleson norm of .

Proof. The lemma is a consequence of following geometric fact: For every covergin {Q;} of
countably many cubes there is a subcovering {Q’} such that UQ; = UQ" and each = € UQ);
belongs to at most 2" of the Q’’s. We leave the proof of this fact as an exercise. For A > ()
sef,

Fy = {(T,U) € ]R’i_l—] : |7l’(‘777y>| > )‘}
and for each (2,y) € K, define

Qz,y) ={(&m) e R 1|6 — 2| <y, 0 <n <y}
Qr,y) ={{ € R" || — 2| <y}

where ||z|] = max;=1__, |#i]. Select a covering of F\ consisting of countably many cubes
Q(r,y) by a compactness argument. It is obvious that

w(€) > X for all € € Q(z,y)

and hence

p(EN) < p(U Q( )) p(UQ(w,y)') <
< Z (Qr.y)) <O 1Q(x
<2 HSEIR” *(;)>/\}|-
O
We can now answer the question posed above by
Theorem 3.1. If y is a Carleson measure on IR,T'], then
[ [ 1Pt@Pdutes) < Clopnl e 1< < o
Jo SR
Proof. Let p,(x) denote the Poisson kernel. If |z — 2| < y, then
py(x —1) < Cp,(x—1) forall t € R”
where (U is independent of =, 2 and y. Furthermore
PI(r) = py = f(r) < CMf(r)
and thus
spd[Pf()] - | ] <y} < CMf(a).
LLemma 3.1 implies Theorem 3.1 since M is bounded on L? for 1 < p < oo. O
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Remark: Theorem 3.1 is also valid for all operators of the form

Ptf('"”) = 1 * f("")

where ¢ is a smooth function which decays at infinity and such that |p(2)| < ¢ () for some
1 =z
radial function ¢ € L'(IR"™). ¢(x) denotes f—wcp<7> We leave the proof of this remark as

an exercise.

We now introduce two families of operators denoted P, and ); of which the first is an
approximation of the identity and the second is an “approximation of the zero opera-
tor”. Let ¢,® be smooth functions that decay at infinity such that fIR’n e(x)dr =1 and
Jn (x)dz = 0. Define P, and @, by

—

Pf(€) = (1) f(€)

— ~ N

Qi f(&) = (1) f(E)

for nice functions f in R”. We immediately observe

Lemma 3.2. If f € L*(R"), then

o dt
[ 1QuES < conre

J0

Proof. Apply Plancherel’s formula. O
Theorem 3.2. If f € BMO (R"), then

o dxdt

du(r,t) = |Qf(x)] /

is a Carleson measure with Carleson norm < C ()| f||%.

To carry through the argument in the proof of this theorem, we need a lemma.

Lemma 3.3. If f € BMO (R") and Qq is the unit cube (centered at 0), then

1f(x) — fo.l
/IR Trppn = Cl

where C' only depends on n.

Proof. For a > 0 let a() denote the cube with sides parallel with the sides of ) and of
lengths a times the sidelengths of ) and with the same center as (). We observe that for
every cube () C R”

277,
2Q] .

1
— foo| < — ) — faoldr < ) — fooldr <27 i
fo .f@|<|Q|/Q|f() Faoldr < /2Q|f<> Faoldz < 27| £]
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Set (); = 27()g for 7 € N and assume | fll« = 1. Here
|fQ,7+1 - fQ‘,| < 2" for ] N
which implies

[fa — ool < (G +1)2" for jeN.

Hence
[ |f<m>fQo|dm_z/ )~ fail,
Jrn 1 + |m|n+1 — Q,01\0, 1 _|_| |77+1
|f(T>7fQo| - / |f()7fQ+1|
+ / ———dx < —— dx +
J Qo I+ |;1;|n+1 72—; < Qj41 2/(n+1)
|fQ7 1 7.fQ0| - n—j . n—7
- / T ) TS 2 G2 41 =0
Qj+1 =0
which completes the proof. 0

Proof of Theorem 3.2. Qf(x) is a well-defined function in R} since Q;1 = 0. We want
to prove that for each cube Q C R”

(+) / / QP < el

It is enough to consider () = unit cube Qg since BMO 1is scale- and translation invariant,

e || fll« = £« where ff(x) = f(t(x—s)) and # is scale invariant. Furthermore we may

assume fog, = 0 since ;1 = 0. Thus we have to prove (*) for Q = Qg and all f € BMO
with fag, = 0. Set fi = fxaq, and foa = f — fi.

Then Q:f = Q:f1 + Q+f2 and we obtain

//0|fo1 o dxdt // O] d"r/df

DAL < (*( DI

from lemma 3.2 and for (rt:,t) € Qo we obtain

Quols >|/ (™

R”\2Q0 i
t
< 2)|dz <
N (d)) Re\2Q, 1! A+ o — 2 72(z)ld= <

<o [ 'f|< |1'+1d < C Il

.

—)1fal2)]d= <

according to lemma 3.3. This completes the proof. O
We have now prepared the tools we need to prove the theorem of David and Journé.
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Theorem 1.6: If T"is a PVO with C'Z type kernel K, then
T is bounded on L*iff T1 € BMO.

Here the “only if”-part follows from Proposition 3.1. The “if”-part is the hard part. The
proof we present is due to Coifman/Meyer [1]. Choose ¢ € C§°(IR") such that ¢ radial
with support in the unit ball B;(0) and such that

at

Define P, as above by Pff( ): 95(7‘|E|) ( ). Analogously define ¢); by Qf (&) = (H|€D) > (t|E]) f(E)
and R; by Rf F&) = (&) "' (tEN f ( ). Hence P,, @, and R; commutes and

) =1+ 0(¢") as [ = 0.

d

2
%PE - ;Rf@f

This implies

1d

2 (] P TP2 = (RtQtTPtQ ‘I‘ PtQTRtQt)-

The idea is as follows: We want, to show

101, Tn2)| < Cllmlellnzlle for all mi,n, € S(R™).

We note that (g, P2T Pn3) — 0 as 1 — oo and hence it is enough to prove

| / L, PPT PPt < Climllallmalle for all gy, € S(R™)

since Py is the identity operator.

Furthermore, it is enough to prove

| / <7717RtQ7‘TP2772>_| < Cllmllellnzllz for all my,my € S(R™)
JO

since Py, )y, Ry are selfadjoint operators and T* = —T. We need the following estimate.

Lemma 3.4. Let o, € CS°(R™) with support in the unit ball By(0) and assume

() =
IR’n
Then

(&7, Tel)| < Cpi(x —y)

where Y] (z) = l;b(Z 2), 0l (z) = %,cp(%) and p; is the Poisson kernel.

4
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Proof. The argument consists of a straightforward calculation where we use the C'7 type
properties of the kernel K.

27, Tt) —hm/ L REm €t~ e e

10

T—y r—

i / / Kt +ytn +9) (7 (E)p(n) — by (n)(€))dnde.
|E—n|>e

Hence, it is enough to prove the lemma for y = 0.

Assume || < 10¢: Then we obtain

(&7, To)| <

Assume || > 10¢: Then we obtain

|¢f,Tso|—|//f« (Em) — K (o)) (€ pr (m)dnde <

//w« 1E.tn) — K (oot 05 (€)n)dndé <

2 2
<C <C — = Cpy(x
||+ & 1| |) i(7)

which concludes the proof of the lemma. O

Now set 1; = Q,T P, where

L) = / () o)y

with |1:(z,y)| < Cpi(x — y) according to Lemma 3.4. We recall that it is enough to show
that

|/ <7717RtQ7‘TP2772>_| < Cllmllzlinallz for all my,my € S(R™).
JO

Hence it is enough to show

o dt
| / <7717R75Q75TP7€2772>7| < Cllmllz + lln2ll2) for all mi,n: € S(R).
J0 ’

But

o dt o dt
[ memQrr < [ R @ ri) T <
J0 ‘ J0 ’

o dt o dt
< / ||7“t771||37 + / ||QfTPt2772||37 =T+11I
J0 g J0 ’
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Here

=[5 OBT < s

To cope with TI, we rewirte Q;T Py = L; Py as

(L Po)me)(x) = L[ Py — Pina(2))(2) + Pma(2) Ll (2) =
= Ly[Pin2 — Pima(2)](%) + Pup(2) QT ()

But 71 € BMO implies |Q,T'1 |2d“;dt is a Carleson measure according to Theorem 3.2 and
hence

I5-

Hdt ydxdt
/ || Perpa (0 )QfTHIz // | Poa ()| TT|? < Clnallz
J0

where we have used the remark to Theorem 3.1. Furthermore using Jensen’s inequality
Alx,t) = | Li( Py — Pia()) () ]” =
| [ Ve(Pons) ~ Pl < € [ e = g) Ponay) — P iy
JRn .

.

and thus
~ dt (]7‘(]7‘
[ etpon = Pty = [ [ A
‘ i
<w”/ L[ pte = itpaete) — Potoyas -
(]7‘
[ [ ] Pt )~ P Py
w0 —— dt
—ﬂ/ L[ nl Pt 0 P -
R JR™
[ [ /pf>ﬂmmm4WWm@W&m¢.
R JR™ A
But
/ pe(2)|1 — ™92y = 2 — 2e7 Kl
Thus
& it
[ 1t = P <
‘ di
<c [ [ - e et e P
Tl dr [ dr. ..
<c [ ([To-e Wu+ SN P (o) e <
JR?  JO g |1_| 4
<l
This completes the proof. |
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Chapter 4

Proof of Theorem 1.3

In this section we prove

1

v —y+i(e(r) —p(y))
then the corresponding operator T, is bounded on L? and ||T,|| < C(]|¢'||~)-

Theorem 1.3: 1If o : R — R Lipschitz function and K, (z,y) =

We immediately observe that the kernel K, is of C'7 type and thus the > boundedness
of the PVO T, can be proved using Theorem 1.6, i.e., it is enough to prove 7,1 € BMO.
However, this is not easy.

We give the proof in two steps.
A: There exists an g > 0 such that if ||¢'||o < o then ||T,]] < C(||¢]]o)-
B: Removal of the constraint ||¢||. < eo.

Part A was proved by Calderén [1]. Part B was proved by Coifman/MclIntosh /Meyer [2].
The proof we present is due to David [3].

Proof of A: Assume ¢ € C7°(R"™) and define

(p(2) — oy

(7 — y)N+!
Tn corresponding PVO with kernel K.

Kn(z,y) = N=0,12,....

We remark that the T\’s are called commutators and arise naturally when one tries to
construct a calculus of singular integral operators to handle differential equations with non-

smooth coefficients. We refer to Calderon [4] for an extensive discussion of commutators
and PDE’s. Since T'= S"%_,(—1)¥ T, it is enough to prove that

[Tl <OV N =0,1,2,....

37



We also note that it is enough to prove that there exists an &1 > 0 such that if ||¢'||e < &1,
then

ITv]| <CN N=1,2,....

since Ty is the Hilbert transform and this operator is L? bounded. There are many proofs
of this fact and one proof is supplied by Theorem 1.6. To prove that Ty N =1,2,... are
> bounded we make the following observation.

Lemma 4.1. [f o € C°, then

TN+1(]):TN(QOI)7 N:07]7

Proof. The lemma is a consequence of the identity

)"

(e(x) — o)V

e (y)

gl = oWy gy lete) = ely

dy*  x—y (2 —y)N+2 - (N4)

and

A recursion argument using Proposition 3.1, Lemma 4.1 and the fact that ¢ Lipschitz
function implies ¢’ € L™ shows that Tw, N = 0,1,2,... are > bounded. What remains
to be done is to show that

ITnll<CN N=1,2,...,

for some choice of €' > 0. Here, of course, || || denotes the norm || ||72-72. To conclude the
proof of A we note that

1: If K is a kernel of C'7 type such that

4
|z —y|"

[K (e )|+ (Ve K (2, y)| + [V K (2, y) e —y| <

and if ||T1]|. < Oy, then
7] < Du(Cr + )

for some constant D, which only depends on dimension n.
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2: Under the same assumptions as in 1

T \rosBro < Do (| T+ Cy)

This follows from the proofs of Proposition 3.1 and Theorem 1.6. Hence

Tt < Cyv+ Col|Tw|| N=0,1,2,...

for some constants (7, (5 independent of N and

|Tn||<CN N=1,2,...
for some constant ' > 0 follows. The proof of A is completed.
Proof of B: We start with three lemmas.
Lemma 4.2. There exists an g > 0 such that if

o(r) =Ar+¢(x), z€eR
where A € R and ¢ : R — R Lipschitz function with ||¢'||~ < & then

I.]l < Co

for some constant Cy > O which is independent of A.

Proof. Repeating the argument above, we see that if A : R — (' Lipschitz function with
IIM]| < & < 1 then ||Th]] < Cs where the constant Cs is independent of h. Furthermore
consider T, with kernel

1 1 1
K, (r,y)= - = o :
A = T A T o) Ay ) THIA Ty i) )
where h(z) = ﬂ:ﬁ)\ Then the first observation gives the desired result. O

Lemma 4.3 (David [3]). Assume ¢ : R — R Lipschitz function and I € R such that

lp(x) + Lo — (p(y) + Ly)| < M|z —y| 2,y € R.
Let T C R be an interval.

Then there exists a Lipschtz function ¢ : R — R and a I € R such that
i) Ho € ipla) = gyl > 21)
(ii) |@(e) + Lo — (Gly) + Ly)| < FMlz —y| =,y € R,

39



Remark: I € [l.— M, L+ M].

Proof. Without loss of generality we can assume that I = [0,1],M =1, = —% U =
{z e T:¢'(x)+ L >0} has measure > 1. Check this!

<

IN
o oo

Hence —

| —

Define ¢ : R — R by

©(0) r <0

P(x) = ¢ Supgey<, @(y) 0 <2 <1
sPye,<r P(y) 1<

Then ¢ is an increasing function and

Plr+h)= sup p(y) < sup p(y)+
0<y<z+h 0<y<z

for each b > 0 such that =, 24+ h € [0,1]. Thus 0 < &' < £ and ¢ satisfies (ii) with I = =2
Remains to check that (i) is satisfied. Set

B={rel: () =)
Then 0 € K and F closed implies that
[\ F=Q= Uk[k

where the components [, are of the form Jag, by[ or Jas, 1] where 0 < aj, < b, < 1. But ¢
is constant on each interval I, and thus

olar) = @(br) = p(br) if Ty =Jag, by
Glar) = o(1) > (1) it Ty =lag, 1].

o(ag)
o(ag)

Hence / @'(x)dx < 0 for each k and we obtain
Ty

/Q o (x)dr < 0.

Finally
/ / 12 4 ]
0>/<p(.7:)d.7:—/ c,o(rt:)drt:—l—/ O(x)de > =|QNU|— =20 (1T\U)]
Ja Jonu Jan(nw) H 5
implies
1
QNU| < Z|Qﬂ([\U)|
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and this gives us

H
2 = 12N U]+ 20 (I )] < Zlen(1\ )] <

0| Ot

Hence

K

v
00| W

and the proof is done. O

Lemma 4.4 (John [6]). Assume f: R — R measurable. Assume there exists an o > 0
and a continuous function C' : Y — R, where ¥ = {(a,b) € R? : a < b}, such that
Hz e I:|f(x)—C(I] < a}| > || for each interval I = (a,b). Then f € BMO (R) and
Ifll« < Ca where C is independent of o, f and the function C.

Proof. 1t is enough to prove the lemma for a = 1. The arguments are similar to those one
uses to prove John-Nirenberg’s inequality once we have proved the following

Claim: If I C J C R are intervals such that [J| = 2|7|, then |C(]) — C(J)| < 15.

Proof of claim: Let A denote the interval with endpoints C'(7) and C'(J) and assume to
obtain a contradiction that |A| > 15. Then there exists points zp € A, k=1,2,...,6 such
that z; € A and mingy |z, — 21| > 2. Set My = {x € J 1 |f(x) — zi| < 1}. The sets My, are
mutually disjoint. Furthermore the points z;p can be chosen such that [J| > 22:1 | M|
Since (' : ¥ — R is continuous, there exist intervals I,k =1,2,... .6 suchthat I C I, C .J
and C(1) = z. Hence

6 6
1
[T > (M =) My 1 > 6 5l =2/1].

k=1 k=1

This contradicts |.J| = 2|7| and claim is proven. O

We now show that under the hypothesis in the lemma with o =1

/,|f(.7:) —C(Dldx < O]

for each interval I C R. Observe that we do not know whether f € L] or not. Since the
assumptions on f are scale- and translationinvariant we can assume I = [0, 1]. We can also

assume C' (1) = 0.

Now, set Ay, = 100k k = 1,2,... and let Q;, = Uﬂf be the union of those intervals
in the dyadic mesh of T which are maximal with respect to inclusion with the property

|C([f)| > A, Wesee that [ ¢ Q; and Q D Qy D Q3 D ... . Foreach If in O there exists
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an interval ff in the dyadic mesh of I which is minimal with respect to inclusion and with
the property If ¢ ff Hence |C(ff)| < A, and the claim above implies

A < [C(IT)] < Ay + 15.
We claim that if we can prove that
1
|Qpte] < §|Qk|

we are done.

Proof. Consider Ay = {x € I :|f(x)| > Ap 4+ 2} which is a measurable set and take a point
of density xq € Ap. Then there exists a sufficiently small interval .J in the dyadic mesh of
[ such that x4 € .J and

99
{r € J 2 f(@)] > Mo +2} > ]

This implies C(J) > Ay and thus 29 € J C Q4. Hence Ap C Q. except for a set of measure
0 and

| Ak < [S2%].
But |Q446] < 1[€Q] implies that there exist constants B, €' > 0 such that
|Ayl < Be @t =1 2 .
Choosing a slightly larger constant ' we get
o € T+ 1f() > N} < Be

The remaining argument is the same as in the proof of the remark on page 29. O
Finally we give the argument for [ 46 < 2[4

Proof. Set By ={x e T :|f(x) — M| <16} k=1,2,.... Hence F; are mutually disjoint

and

1
Ey NI = Ho e 172 | f(a) = CUDE< 13 = 21T
Furthermore, for & > kg we obtain

o,

|
> 2175y N
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by taking the union overall I¥ C I7° and using [F, N TF] > L[TF]. Hence

1
L = SR LA A S S U R e
> 2|1 N Q4]

which implies [Q446] < 3|4 O

We have now prepared all the machinery we need to prove part B. The idea is to make an
induction argument where part A is the base and the inductionstep is the following: Tet
M > 0. If there exists a constant

9

such that ||T;|| < € for all Lipschitz functions ¢ with oscg < 2M then there exists a
constant C' = C' (M) such that ||T,]| < C for all Lipschitz functions ¢ with osce < M.
Here we let osce denote inf{M :|o(x) + Lo — (¢(y) + Ly)| < M|z — y| for all 2 # y and

some [, € R}.

We remark that Lemma 4.2 implies that || T,,|| only depends on osc e and not on ||¢’|[~.. We
observe that it is enough to prove the inductionstep for Lipschitz-funtions ¢ with ¢ € O™
and it is enough to prove that there exists a constant C' = /(M) such that

Tl 7o sBmo < C

for all Lipschitz-functions ¢ € C™ with osc ¢ < M. Take f € L[> with ||f||l.. = 1. Let
I be an interval and let a; denote the center of 1. Set z(x) = 2 + ip(x). Decompose
fin fi and fy where fi = fx;and fo = f — fi. Finally set Cy(1) = T, fo(xr). We
see that (' is a continuous function with respect to the endpoints of 7. Without loss of
generality we assume [ = [0,1]. From Lemma 4.3 we obtain a Lipschitz function 1 such
that osc o < IM and E = {x € I : p(z) = ¥(x)} has measure > 2. Set 2*(x) = x+i(x).
Our purpose is to use the characterization of BMO functions which is given in Lemma 4.4
by showing that

{a € 1+ |Tuf(a) — Cs(1)] < C(M)}| > ]%

for constant C' = C' (M) chosen large enough and which is independent of f. If this is done,
Theorem 1.3 follows. We start with

Tof(x) = Co(D)| = |Tof () = Ty faar)] <
<|Tofalw) = Tofolwr) + T fi(w) = Ty fr(x)| + [Ty fr ()]

where x belongs to a subset of I which we will define later.
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For x € I,

2(x) — 2(3)
|Tw.f2(m)*Tw.fz($r)| <,/IR,\,‘(z(m)z(y))(z(%) “f |dU<
<oy [ —

JR\T |z — l/||§ —
which implies
[17pio) = Tofaloplds < )
Forx ¢ IV C I,

2(y) — Z*(u)

o) TR < [ ey gy

But I'\ ¥ = U, where the components [ are intervals and

|2(y) — 2" (y)| < C'"(M)|Ix| for y € Iy

Hence
|’k
|Tofi(x) — Ty fi(x |<Z/ x € F.
k

Set, J, = Y97 and F* = Fn [:(Uk I1)

1000
F/‘*
\ .7]4,1 Jk M
L - : ‘
— =
ﬁ/—/ T Ty \
I
Then < 1000 and

‘/F/*|wa1(') mwlr <y [

Finally, from the hypothesis in the induction step

[l < ([ 11npan < e

dady < C'(M )Z/dy<(]’(/\/l)

I, |”"*U|2 P

But
C'"(M |
{o € T[T, f2(x) = Ty f2(2r)| > (3 )H = ]000
C’
{o e B AT fi(x) = Ty fi=)] = ( )H = 1000
_ C'(M) ]
o € T Ty fila)] 2 ——} < 1555
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4

it C’(M) large enough. Hence [{x € K= : [T f(x) = T fo(z)] < C'(M)} > |E| — 50 > 3
if C'(M) large enough and where C’'(M) is independent of f. (Note that we have assumed
I fllco = 1.) Lemma 4.4 concludes that

17,0l < CO'(M) = (M)

and the induction step is proved. |

References

1: A. P. Calderén: Commutators of singular integral operators. Proc. Nat. Acad. Sci.

U.S.A.; 53 (1965) pp. 1092-1099

2: R. R. Coifman/A. Mclntosh/Y. Meyer: I’intégrale de Cauchy définit un operateur
borné sur ? pour les courbes Lipschitziennes. Ann. of Math. 116 (1982) pp. 361-
388.

3: G. David: An alternate proof of Coifman-McIntosh-Meyer’s theorem on the Cauchy
integral. Preprint.

4: A. P. Calderén: Commutators, singular integral on Lipschitz curves and applications.

Proc. of the I. C. M. Helsinki (1978).

5: F.John: Quasi-Tsometric Mappings. Semineri 1962-1963 di Analisi Algebra,(Geometeria
E Topologia Vol. TI.

45



46



Chapter 5

Proof of Theorem 1.4

In this chapter our aim is to prove that the double layer potential D defined in a special
Lipschitz domain D and restricted to @D is bounded on L?*(9D) which corresponds to

proving

Theorem 1.4: If ¢ : R” — R Lipschitz function and

((r,p(2) — (o)) .

(7, 0(2)) — (y, 0(y)) [+ v=1,2,...,n+1

Ki(z,y) =
then the corresponding operators T; are bounded on 2.

The proof of this runs in two steps.

A: Assume ¢ : R — R Lipschitz function with ||¢||.c < M and F holomorphic function

1 x) —
in a neighborhood of [-M, M] x {0} C €. Set K(z,y) = ) F(‘P(T) ‘P(?/))_
Then K is a C7 type kernel and the corresponding PVO 7' is bounded on .2 where

the bound only depend on ||¢'||. and F.

B: Theorem 1.4

Proof of Step A. Choose € > 0 so small that the curve I' defined in the figure below
belongs to the domain of F.
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Tm

domain of F

Set '=T,UTyUTl'sUTI4. We obtain

1) = [ ) iy, -

RT—Y Ty
1 f(y)

=— [ F(w) /
2 _ _ wlr)-e)
T 1 R (2 — y)(w g )

= w f(y) w
QWZ/ ) e e e

It remains to estimate

dydw =

f(y)
-4wwy><ww¢@»@

uniformly in w € 'y for £ =1,2,3 and 4.

Case 1: w e I'y. Thus w = ¢ +1e where £ € [-M — e, M + ¢] and

wlz —y) — (e(x) — p(y)) = ic [7’ g4 7:(99(.”17);- {r 99(1/);- 51/)]

p(r) + &

Hence, if we set ¢ in Theorem 1.3 equal to we get that

f(y)
-Awwy><ww¢@»@

is bounded on L% uniformly in w € T,

Case 2: w € 1l'y. Thusw = —M — £ 4 in where n € [—¢,¢] and
wiz —y) —(elr) —¢y)) = (M —e)z —p(a) — ((-M —e)y — ¢ly)) +in(z —y)
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Set (x) = (—M — &)z — @(x). Then —2M — e < ’'(x) < —e. Thus 1p " exists and
P! Lipschitz function. After a change of variables it follows that

fy) _ () () _
/IR wz —y) — (p() ~ dy / h(r) — f + “7(@0 () — @/f‘(f))dt N
= (T (fodb™ " - (071))) o ()

using obvious notation and hence

I dyllz < O[Ty (fov (7))l <

Jo w0l — 1) — (2(0) — 2
<Ofod (Y]l < CIf .

The curves I's and 'y are treated similarily and part A is proved. O

Proof of step B. To lift the result form R to R™ we apply the method of rotation. To
simplify the notation, we only consider the kernel

Ko o) —olz)
(I — =2 + (() — p(2)))

x,z € R". Assume f € C§°.

Tf(e) = / K (x,2)f(z)dz =
— %/yn(f\”(m,m +2)f(e+z2)+ K(z,2—z)f(x — 2))d=.

Introduce polar coordinates. Then

o0

Tf(x) = /qn 1T Lf(x)dw where T, f(x) = / K (2,2 + rw) f(a + rw)|r|” " dr

of — OO0

and it is enough to prove that |7, f||2 < C|f]lz2 where C independent of w. Let F,
denote the ortogonal complement of the 1 dimension space {fw : ¢t € R} C R". Any
x € R” can uniquely be written as tw + y, y € K, and

Tof (e +y) = / K(tw 4+ g, (4 o+ 9)F((t 4+ P + )] dr =

8

88

e(twty) —w(swty)

t—s
(1 — s)(1 + eletmleleoty) y2) 255 J(sw +y)ds

[ K+ gt syl — o s

— 00
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Finally, we apply Part A with F(z) = which is holomorphic in a neigh-

n+1

(1+22)

borhood of the real axis. Hence

1T 2 < OO, F) /

JRr—1

/R (w0 + o) Pdidy = O P

Since C5°(IR™) is dense in L*(IR™) the result in Part B follows. O
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Chapter 6

Dirichlet Problem for Lipschitz
domains. The final arguments for the
L -theory

We are now able to complete the proof of the following theorems where, as usual, ¢ : R” —
R Tipschitz function and D = {(x,y) € B"*" : () < y}.

Theorem 6.1. If f € L2(9D), then there exists a u such that

Au=0 i D
ulap=f on 0D

where the boundary values are taken non-tangentially a.e. D and Mgu € L*(OD) with
IMsu|la < Clfllz where C only depends on 3> 1 and ||¢’||~-

Theorem 6.2. [f f € L2(0D), then there exists a u such that

{ Au=0 m D

%bnz [ on 9D

where the boundary values are taken in the sense n, - Vu(Q) — f(P) as Q — P non-
tangentialy a.e. 0D and Mg(Vu) € L*(0D) with ||Mg(Vu)|la < CO||f|l2 where C only
depends on 3> 1 and ||¢']| -

We recall that
Mpu(P) =sup{|u(Q)] : |P — Q| < 8 dist (Q,0D)}, P e€aD
and that n, denotes the outward unit normal at P € 9D which is defined a.e. on 9D.

Corollary 6.1. Theorem 6.1 is valid if .2 replaced by L? for 2 < p < oc.
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This is a straightforward consequence of the maximum principle and interpolation between
I? and 1>, but apart from this result we discuss the LP-theory for the Dirichlet problem
and Neumann problem in Chapter 7. The proofs of Theorems 6.1 and 6.2 involves the
layer potentials

D) = [ SR Q)Qun(@. P D
SHP) = [ HPQU(Qa(Q) e D

where r(P,Q) = ¢,|P — Q' ". With Q = (x,¢(x)) € D and P = (z,y) € D
Do y) = e, y*@(?’?)*(zfﬂf)'vﬂf’f) N
e = [ )

T+ [Ve(r)?
Sflz,y) = ¢, — f(x)dx.
few) A¥um4%+wmﬂm%v—”>

From Proposition 1.1, the remark on page 17 and Theorems 1.2 and 1.4 it follows that

IMa(DNly < CB e o), S L

for 1 < p < oco. Thus D]gnf(P) =lim  psosp  Df(Q) exists and it remains to show

non—tangentially

that D|ap is invertible on I.”?. We now observe that D_ = {(x,y) € R"*' : o(x) > y} is
also a special Lipschitz domain and we have the following jump relations at the interface

between D and D_.

Lemma 6.1. Let f € L*(0D) and let

TﬂP)—WﬂA) O (P.Q(Qdo(Q). PedD

=10 —Ql|>e anQ
Then
Dlsnf(p) = 3 f(P) + TI(P) we. 9D
Dlon_f(P) = %f(P) +Tf(P) a.e. 0D
3%8|9Df(P) = %f(P) + T f(P) a.e. 0D
(r)iSbDf(P) = %f(P) + T f(P) a.e. 0D
np

where T™ is the adjoint operator of T'.
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We observe that it is equivalent to solve the Dirichlet problem in D and the Neumann
problem in D_. The jumprelations are similar to those in the case of regular boundary in
chapter 0 with the difference that here the operator T' has to be interpreted as a PVO.
The main ingredient in the proof is Proposition 1.1. The idea is to approximate @D by a
C? boundary and use the result from Chapter 0. We leave the proof as an exercise.

The final step in the proof of Theorem 6.1 and 6.2 is to prove that i%f—l— T and i%f—l— T
are invertible on 2. The proof of this is due to Verchota [1]|, who used an indentity due

to Rellich [2]. See also Jerison/Kenig [3].
Lemma 6.2. Let f € 12(0D) and u= Sf|p. Then there exists Cy,Cy > 0 such that

O\ 2 O\ 2
C —Vdo < V,ul?de < C —\)d
1./917(3”) 0./9D| wfdo < 2./917(3”) 7

where YV, denotes the “tangential derivative”.

Remark: Tet 7 : 9D — R” denote the projection mapping (x,¢(x)) — . Then V,u is
V(uom ') lifted with 7! to 9D.

Proof. Assume f has compact support. Set e = (0,1). Since Au=01in D we get
du
div (|Vu|’e — 2lV7/,) =0
Ay

called Rellich identity. Apply the divergence theorem.

Hence
(%) / |Vul*(e,n)do =2 — ——do.
Jan . /

Since 0 < ¢ < (e,n) <1 for Lipschitz domain, we obtain

du
co/ |Vul*do < 2/ |Vu|‘l‘d(r
Jan Jan an

and Schwartz inequality implies

O o
2do < O —\)d
./8D|Vu| J(Y./9D<(f)n> o

Remains to prove the reversed inequality.

ou
8_y:<

Vu,e)
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where e = (e,n)n + e¢; on dD. Hence

ou  Ou

I 3, e + (Vi e

which we introduce in formula (%) above together with |[Vul* = (—)2 + |Vl and
(N, e)| < |Viul.

Then we obtain

/ |V,gu|2<ejn>d(r—/ <@>2<e,n>d(r—|—2/ @<Vujet>d(r.
Jap Jan n Jan an,
Thus
O 2 9 IR i . i
/ (2 do<(](/ Vol d(r+(/ (2 d(f)?(/ Vuldo)?)
Jan ~On Jan Jan ~On Jap
and

/ <@>2d0<0/ |V u|*do
Jon "0 Jan

n a

O

To prove that i%f + T and i%f + T are invertible on L2, it is enough to prove that
i%f + T* are invertible. We first claim that there exists a (¢ > 0 such that

(57 + Tl > Cllfl f € 12(0D)

Proof. Assume |[(31+ T%)f|l2 = €| f]|2 for some f € L*(9D). But
1 5 0
I+ T flla =ll5=Slan_fll2 = [[ViSlan_fll2 =
2 on

0 1
= [ViSlanfll2 ~ ||—a Slonflle =l — =f + T fll2
n 2

since V,;S f is continuous across the boundary.

Now
=G T (5 f T
and

] ES ] ES
||§f+T fll2 = — §.f+T fll2

implies that e above cannot be too small. The proof is completed. O
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The final step for proving the invertability of i%f—l— T* is done with a method of continuity
argument. Let U* donote the operator +17 4+ T* where ¢ is replaced by sp. We note that
U : .2 = L? bounded such that for 0 < s <1

(6.1) WU:fll2 = C|lflla, € independent of s

(6.2) U f — U flla < Clt—s]||flla, € independent of s and ¢
1

(6.3) U° = 5[ invertible

The invertability follows easily.

Proof. Set S = {s € [0,1] : U* invertible}. Then that S # ¢ follows from (6.3), that S is
open which follows from (6.2) and that S is closed is a consequence of (6.1) and (6.2). We
only indicate the closedness of S. Assume s; — s and U(s;) invertible. Take g € L? and
f; € L? such that U(s;)f; = g. (6.1) implies f; — f in L? for a subsequence. We can also
assume U(s)f;, = U(s)f.

Claim: U(s)f = g.
Take an h € L2 Then
(U(s)f — g b)Yl < U (s)f = U(s) [y, )|+ [{(U(s) — Uls;)) fi. b)) =0

as j — oo. Hence U(s)f = g. O

Remark on uniqueness of solutions in Theorem 6.1 and 6.2: The u appearing in Theorem
6.1 is unique while the u appearing in Theorem 6.2 is uniquely defined up to an additive
constant.
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Chapter 7

Existence of solutions to Dirichlet
and Neumann problems for Lipschitz
domains. The optimal LP-results

In this chapter we give parts of the proofs of

Theorem 7.1. For every Lipschitz domain D = {(x,y) € R""" : p(z) < y} for o : R" —
R Lipschitz function there exists an e = &(D) > 0 such that for all 2 — e < p < oo and all
[ € LP(AD) there exists an w such that

Au=0 i D
ulap = f on dD

where the boundary values are taken non-tangentially a.e. D and such that Mgu € LP(9D)
with ||Mgul|, < C||f|l, where C only depends on 8> 1 and ||¢’||oo-

Theorem 7.2. For every Lipschiatz domain D as above there exists ane = (D) > 0 such
that for all 1 < p < 2+¢e and all f € LP(OD) there exists an u such that

Au=0m D
ou

%bD:f on 9D

where the boundary values are taken in the sense n, - Vu(Q) — f(P) as Q — P non-
tangentialy a.e. AD and such that MgNwu € LP(OD) with ||MgNul|l, < C||fll, where C

only depends on 5> 1 and ||¢’||oo-

Remark: The ranges 2 — ¢ < p < oo for the Dirichlet problem and 1 < p < 2 + ¢
for the Neumann problem are optimal. The estimate |MsVul|; < C||f||1 fails even for
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smooth regions and for each p > 2 it is possible to construct a Lipschitz domain such
that || MsVull, < C|f||, fails. The situation is analogous for the Dirichlet problem. See
Dahlberg [1]. The extension 2 —& < p < 2 for the Dirichlet problem and 2 < p < 2+ ¢ for
the Neumann problem is done by a real variable argument using the result for p = 2 an
a “good X inequality”. The extension to 1 < p < 2 in the Neumann problem is shown by
establishing that for f € H! . the atomic H' on 9D, the solution of the Neumann problem
with data f satisfies |[MsVull; < C|f|lp,. This is done by estimating the maximal
function of gradient of the L2 solutions of atoms using the regularity theory for uniformly
elliptic equations in self-adjoint form. The full result then follows by interpolation. The
extension to 2 < p < oo in the Dirichlet problem is a consequence of the maximum principle

and interpolation.

We begin to discuss the regularity theory for uniformly elliptic equations in self-adjoint
form. Let A(2) = (a;;(2)) be a n x n dimensional symmetric matrix valued function in D
where the entries a;;(2) are bounded real-valued measurable functions. We assume that
A(x) is uniformly elliptic on D, i.e., there exists a A > 1 such that

T

1
Tl < Y ()6t < MEP forall £ € R

i,j=1

"0 0
Let I. denote the operator Z —a;;(v)=—. We call u a (weak) solution of Lu = 0 in
o O 0y
D ifu e L7,,.(D) and /(AV?/,7V<,9>(J.7: = 0 for all ¢ € C(D). Here L7 . denotes
D

the space of functions in ‘LIQOC(D) with distributional derivatives of first order in Ly (D).
We say that u is a subsolution (supersolution) of Lu = 0 in D if uw € L7 (D) and

/(AV?/,7V<,9>(J.7: <0 (/ (AVu,V)dr > 0) for all 0 < ¢ € Cg°(D). The main result is
Jn JD

Theorem 7.3 (DeGiorgi [2], Nash [3]). If u is a solution of Lu = 0 in D, then u is

Holder continuous.

This follows from

Theorem 7.4 (Harnack’s inequality). Ifu >0 and Lu =0 in D and if K C D is a
compact sel, then

ess supreu < O ess infru

where C'= C(n, A, K, D).

Remark: Harnack’s inequality is a quantitative version of the maximum principle.

Remark: For notational convenience we let min and max denote ess inf and ess sup, resp.
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Proof of Theorem 7.3. This is done using Harnack’s inequality. Assume Lu =0 in D =
{z e R": |z| < 2}. Set

M(r) = maXy|<, U r el
m(r) = minj, <, u

Then M(r) — w and u — m(r) are solutions and > 0 in {x € R : |z| < r}. Hence

D) < CM(r) - M(3))
M(5) —m(r) < C(m(3) = m(r))

Add these inequalities and set n(r) = M(r) — m(r). We obtain

M(r)—m(5) <C
<

and hence
n(r) <r“n(1) for some « > 0.

Note that we have used the same constant (' in the repeated uses of Harnack’s inequality.
This is justified by the scale invariance properties of (. We leave it as an exercise to check

this. O

Proof of Theorem 7./. (The proof is due to Moser [4]). Set Q(h) = {x € R" : |z;| < g}

By a covering argument it is enough to prove the theorem for K = Q(1) and D = Q(4).
Thus we assume u > 0 and Lu =0 in Q(4). Set

1 1/p 1/p
h)=(——— uPdr = uPdr
#lp.h) <|Q(h)| ./Q(h) ) <7{2(h) )

for 0 < h <4 and —0o < p < co. For —0o < p < 0 we study u + ¢ for ¢ > 0 small and
then let € tend to zero in the estimates. Since

xu = li h
P lim o (p, h)

minu = lim Jh),
minu = lim, e(p.h)
the theorem is equivalent to show that for some C' = C'(A;n) we have

99(007 ]) < C@(*Oov ])'

The proof is based on three general inequalties relating integrals of functions v = v(a) to
integrals of the gradient of v. We assume n > 3.

59



Inequality A (Poincare’s inequality)

7[ v — oo Pdr < (Yh27[ |Vo|*dx
JQ(h) Q(h)

where VQ(h fQ vdx.

Inequality B (Sobolev’s inequality). Set K =

n—2
(7[ |7)|2Kd.7:>% < C(h27[ |Vo|*d> —|—7[ v|*dx)
Jaw Jaw) Jaw

Inequality C (John-Nirenberg’s inequality). If ||[v]]. < 1, then there exists & > 0 and C
only depeding on n such that

/ edx / e dr < (.
JQ(2) JQ(2)

The proof will be given in two parts viz. O

Proposition 7.1. [fu > 0, subsolution in Q(4), then

rggb)(u < (j(pp ] >2<7{2(2) updm>1/p for p>1

Proposition 7.2. Ifu > 0, supersolution in Q(4), then

1 2
wuPdx)'P < ¢ minu  for 0 <p<K.
<.7{9(3) ) <’C*P> Q1) 4 ’

Since K > 1, the theorem follows from the propositions. The proof of the propositions
will be done by estimating o(p, h)/p(p’,h’') for p > p’ and derive the desired estimates by
iteration. We need the following lemma.

Lemma 7.1. Ifu > 0 is a subsolution in D and v = u®, then for any function n € C5(D)
one has

p ) 1
/D |V7)| (]7'<(Y< 25— ) /|V77| 2 if 5>§

The same assertion is true for supersolutions if 3 < 15
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Proof. u subsolution in 1) implies that [ (AVu,V)dr < 0 for all 0 < ¢ € C52(D).
Choose n € C3°(D) and a > 0 and set ¢ = u”n?. (This ¢ does not belong to C5°(D), but

we have the approximation business as an exercise to the reader). This implies
/(AV71,7V7/,>M/,”1772(J?1: + /(AV?/,7V77>2777/,”(J."1: < 0.
Jn JD
The uniform ellipticity of A implies
]X/n IVulPau®"'n*dx + ‘/D<AV7/,,V77>2777/,”(J.7: < 0.

o+ 1

. Then we obtain

Introduce v = u” where 3 =

[ opar < [ (T T e <
6 JD JD

1
C— Vo) (V- dx
< ﬁ‘/nu 2 (190 o))

Thus

3
28 — 1

The argument for u supersolution and § < 15 is similar. 0

1
/ [Vol*n*dz < ¢ )2 / |V |*v?dz, B> .
Jp Jp 2

Now let 0 < b/ < h < 2k’ < 4 and choose n € C§(Q(h)) such that 0 <n <1,np =1 on
1
Q) and [V <

T Since u solution to Lu = 0 in Q(h), u is both a subsolution

and a supersolution and Lemma 7.1 implies that for 3 15

23 1
IVul|de < C - / wPdz.
.7{9(/7/) <(25 - ])> (b —h")? Jom

Set p = 2[3. Inequality B gives us

i 1
ukde)x < ¢ Py 7[ uPdx,
%(h/) <P*]> (& 1) Jam

2 h 2 .
@(’Cnh')<0(pp )”(y”) Po(p,h) ifp>1
and

e(Kp,h') > C( —1) 7o(p,h) ifp<0.



Now for p > 1 let

p, = K"p
h,=14+2"" vr=20,1,2,...
h;*hy—l—1
v ICz
We find sinceH(lC. p )<Ctha‘r
zpi

=1
O(Posts hogr) < C%o(py b)) for v=1,2,...

and iteration yields

P
p—1

Ppotrshuen) < C(—L=) p(p,h) = C( ) (p,2).

p—1
But limsup¢(p,, h,) > @(+00,1) and the proof of Proposition 7.1 is completed.
V—00

To prove Proposition 7.2, we first note that
p(—00,1) > Cep(—¢,2) ¢>0

follows if we apply the same iteration technique as above to p < 0 and especially to —g < 0
close to 0. What remains to be shown is that

©(—q,2) > Ce(q,2)

and

©(q,2) > Co(p,3)

where () < p < K is the parameter that appears in the proposition. The first inequality
follows from Inequality (' if ¢ < o

Proof. Tt is enough to show that v =logu € BMO (Q(2)). Take any cube @ C Q(2) and
choose n € Co(Q(3)) such that n =1 on Q. Since u is a supersolution

/(AV?/,7V<,9>(J.7: >0 forall 0<¢eC(D).
JD
Choose ¢ = 772%. We get,
L1 |
(AVu, Vuyn®—dr < C (AVu, Vn)—ndz
7 Q(3) “’ JQ(3) K
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and with Schwarz’ inequality and the uniform ellipticity

1 1
/ \Vul*n?—=dz < C / IVl |Vul—ndz.
Jae “ Jae u

Hence

/ |VolPdr < C/ |Vn|dx
4 Q 7 Q(3)

and Inequality A implies

/ v — vg|?dx < C
JQ

where ' independent of Q C Q(2). The inequality

P(=0,2) > ¢(q,2)
follows from Inequality C'. O

Finally, for 0 < p < K choose a ¢ > 0 such that ¢K” = p for some v € N and ¢ < o in
Ineauality C'. Finitely many applicaitons of Lemma 7.1 and Inequality B regarding u as a
positive supersolution gives

v(q,2) = Co(p,3).
This concludes the proof of Proposition 7.2. O]
The rest of the proof the Theorem 7.1 and Theorem 7.2 can be found in Dahlberg/Kenig
[5]. See Appendix. There can also be found the corresponding results for bounded Tipschitz
domains using a patching technique. We finally remark that the solution of the Dirichlet

problem is unique and the solution of the Neumann problem is unique to an additive
constant. 0]
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Introduction

In this note we will describe, and sketch the proofs of some recent developments on bound-
ary value problems on Lipschitz domains.

In 1977, B. E. J. Dahlberg was able to show the solvability of the Dirichlet problem
for Laplace’s equation on a Lipschitz domain D, and with L?(dD,do) data and optimal
estimates. In fact, he proved that given a Lipschitz domain D, there exists e = (D) such
that this can be done for data in LP(0D,do), 2 — e < p < co. (See [6], |7] and [8]). Also,
simple examples show that given p < 2, there exists a Lipschitz domain D) where this fails
in LP(0D,do). Dahlberg’s method consisted of a careful analysis of the harmonic measure.
His techniques relied on positivity, Harnack’s inequality and the maximum principle, and
thus, they were not applicable to the Neumann problem. to systems of equations, or to
higher order equations. In 1978, E. Fabes, M. Jodeit, Jr. and N.Riviere ([15]) were able
to utilize A. P. Calderon’s theorem (|1]) on the boundedness of the Cauchy integral on
C' curves, to extend the classical method of layer potentials to ' domains. They were
thus able to resolve the Dirichlet and Neumann problem for Laplace’s equation, with
LP(OD,do) data, and optimal estimates, for C'' domains. They relied on the Fredholm
theory, exploiting the compactness of the layer potentials in the C' case. In 1979, D.
Jerison and C. Kenig [20], [21] were able to give a simplified proof of Dahlberg’s results,
using an integral identity that goes back to Rellich ([33]). However, the method still
relied on positivity. Shortly afterwards, 1. Jerison and C. Kenig, ([22]) were also able
to treat the Neumann problem on Lipschitz domains, with 1>(dD,do) data and optimal
estimates. To do so, they combined the Rellich type formulas with Dahlberg’s results on
the Dirichlet problem. This still relied on positivity, and dealt only with the L? case,
leaving the corresponding I” theory open.

In 1981, R. Coifman, A. McIntosh and Y. Meyer [3] established the boundedness of the
Cauchy integral on any Lipschitz curve, opening the door to the applicability of the method
of layer potentials to Lipschitz domains. This method is very flexible, does not rely on
positivity, and does not in principle differentiate between a single equation or a system
of equations. The difficulty then becomes the solvability of the integral equations, since
unlike in the C'' case, the Fredholm theory is not applicable, because on a Lipschitz domain
operators like the double layer potential are not compact.

For the case of the Laplace equation, with L2(9D,do) data, this difficulty was overcome
by G. C. Verchota ([36]) in 1982, in his doctoral dissertation. He made the key ohservation
that the Rellich identities mentioned before are the appropriate substitutes to compactness,
in the case of Lipschitz domains. Thus, Verchota was able to recover the L? results of
Dahlberg [7] and of Jerison and Kenig [22], for Laplace’s equation on a Lipschitz domain,
but using the method of layer potentials.

This paper is divided into two sections. The first section which consists of two parts, deals
with Laplace’s equation on Lipschitz domains. The first part explains the L? results of
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Verchota mentioned above. The second part deals with a sketch of recent joint work of B.
Dahlberg and C. Kenig (1984) (]9]). We were able to show that given a Lipschitz domain
D C R", there exists e = £(D) such that one can solve the Neumann problem for Laplace’s
equation with data in I?(0D,00),1 < p < 24 &. Fasy examples show that this range
of p’s is optimal. Moreover, we showed that the solution can be obtained by the method
of layer potentials, and that Dahlbergs solution of the I” Dirichlet problem can also be
obtained by the method of layer potentials. We also obtained endpoint estimates for the
Hardy space H'(9D,dc), which generalize the results for n = 2 in [25] and [26], and for
C'" domains in [16]. The key idea in this work is that one can estimate the regularity of
the so-called Neumann function for D, by using the De Giorgi-Nash regularity theory for
elliptic equations with bounded measurable coefficients. This, combined with the use of
the so-called "atoms’ yields the desired results.

The second section, which consists of three parts, deals with higher order problems. In parts
1 and 2, we treat L? boundary value problems for systems of equations. Part 1 deals with
the systems of elastostatics, whicle part 2 deals with the Stokes system of hydrostatics. The
results in part 1 are joint work of B. Dahlberg, C. Kenig and G. Verchota (see [12]), while
the results in part 2 are joint work of E. Fabes, C. Kenig and G. Verchota (see [17]). The
results obtained had not been previously available for general Lipschitz domains, although
a lot of work has been devoted to the case of piecewise linear domains. (See [27], [28] and
their bibliographies). For the case of C'' domains, our results for the systems of elastostatics
had been previously obtained by A. Gutierrez ([19]), using compactness and the Fredholm
theory. This is, of course, not available for the case of Lipschitz domains. We are able to
use once more the method of layer potentials. Invertability is shown again by means of
Rellich type formulas. This works very well in the Dirichlet problem for the Stokes system
(see part 2), but serious difficulties occur for the systems of elastostatics (see part 1). These
difficulties are overcome by proving a Korn type inequality at the boundary. The proof of
this inequality proceeds in three steps. One first establishes it for the case of small Lipschitz
constant. One then proves an analogous inequality for non-tangential maximal functions
on any Lipschitz domain, by using the ideas of G. David ([13]), on icreasing the Lipschitz
constant. Finally, one can remove the non-tangential maximal function, using the results
on the Dirichlet problem for the Stokes system, which are established in part 2. See parts
1 and 2 for the details. Some partial results in this direction were previously announced
in [26]. The third part of Section 2 deals with the Dirichlet problem for the biharmonic
equation A? (‘a fourth order elliptic equation), on an arbitrary Lipschitz domain in R".
This sketches joint work of B. Dahlberg, C. Kenig and G. Verchota ([11]). The case of '
domains in the plane was previsouly treated by J. Cohen and J. Gosselin [2], using layer
potentials and compactness. We are able to reduce the problem, for an arbitrary Lipschitz
domain in R”, to a bilinear estimate for harmonic functions. This is a Lipschitz domain
version of the paraproduct of J. M. Bony. See part 3 of Section 2 for further details.

Compete proofs of the results explained in Section 1, part 2, and Section 2, will appear in
future publicaitons.

71



Acknowledgements: As was mentioned before, the results in Section 1, part 2 are joint
work with B. Dahlberg, the results in Section 2, part 1, joint work with B. Dahlberg and
G. Verchota, the results in Section 2, part 2, joint work with E. Fabes and G. Verchota,
and the results in Seciton 2, part 3, joint work with B. Dahlberg and . Verchota. It is
a great pleasure to express my gratitutde to B. Dahlberg, E. Fabes and . Verchota, for
their contributions to our joint work. I would also like to thank A. McIntosh for pointing
out the applicability of the continuity method in Seciton 1, part 1, and for pointing out to
us the work of Necas ([30]). T also would like to thank G. David for making his unpublished

result (Lemma 2.1.10 in Section 2, part 1) available to us.

Part of this research was carried out while T was visiting the Center for Mathematical
Analysis at the Australian National University, Princeton University and the University of
Paris, Orsay. I would like to thank these institutions for their kind hospitality.

72



Section 1: Laplace’s equation

Part 1: The theory on a Lipschitz domain, for Laplace’s equation,
by the method of layer potentials

A bounded Lipschitz domain ) C R”™ is one which is locally given by the domain above the
graph of a Lipschitz function. For such a domain D, the non-tangential region of opening
aat apoint Q € D is T, (Q) ={X € D :|X — Q| < (1 +a)dist (X,0D)}. All the
results in this paer are valid, when suitably interpreted for all bounded Lipschitz domains
in R”, n > 2, with the non-tangential approach regions defined above. For simplicity, in
this exposition we will restrict ourselves to the case n > 3 (and sometimes even to the
case n = 3), and to domains D C R", D = {(z,y) : y > ¢(2)}, where p : R"' — R is
a Lipschitz function, with Lipschitz constant M, i.e., |p(2) — @(2')| < M|z — 2. D™ =
{(z,y) :y < o(x)}. For fixed M' < M. T.(2) ={(z,y): (y —p(x)) > —M'|z— 2|} C D,
and T;(2) = {(z,y) : (y — ¢(x)) > M'|z — x|} C D. Points in D will usually be denoted
by X, while points on dD by Q = (z,¢(2)) or simply by =. N, or Ng will denote the
unit normal to 3D = A at Q = (v,¢(x)). If uis a function defined on R™ \ A, and

Q € D, ut(Q) will denote lim x_g u(X) or lim x_g wu(X), respectively. If u is a
Xeri(Q) X eTe(Q)
function defined on D, N(u)(Q) = supxer,g) [u(X)].

We wish to solve the problems

Au=0 i D Au=0 mn D
“)){ ulap=f € 13(OD, do) m{ Bl f € 17(0D, do)

The results here are

Theorem 1.1.1: There exists a unique u such that N(u) € L*dD,ds), solving (D),
where the boundary values are taken non-tangentially a.e. Moreover, the solution u has
the form

o) = - [ L 0n@)

for some g € L2(0D,do).

Theorem 1.1.2. There exists a unique u tending to 0 at oo, such that N(Vu) €
L2(9D,dc), solving (N) in the sense that Ng - Vu(X) — f(Q) as X — @Q non-tantentially

a.e. Moreover, the solution u has the form

—1 1
o¥) = s | @ (@)
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for some g € L2(0D,do).

In order to prove the above theorems, we introduce

Kot - [ Bt @)
and
$00¥) = 5 | gl ()

If Q= (X,p(x)), X =(z,y), then

U ) () Vel
Katen) = o | o e

N T+ V(o)
Sg(z,y) = ——— —g(x)dx.
o= L%WQWAWWWZP o) o7

Theorem 1.1.3. a) If g € L?(dD,do),1 < p < oo, then N(VSqg), N(Kg) also belong to
LP(AD,ds) and their norms are bounded by C||g||r»p,40)-

L [ ) ) Vel
" o S T ol T e — oo 9 = Fate)

exists a.e. and

| Kgllrr@n.aey < Cllgllir@n.asy, 1T < p < oo,

g(x)dr

Hm_1/ (2 — 2,0(2) — (@)1 4+ [Ve(r)]”
e 2= 2P+ le(2) = ()]

e—0 Wy,
exists a.e. and in LP(0D,do), and its L norm is bounded by C||g||rr@p.d0), 1 < p < 0.

() (Kl*(Q) = +50(Q) + Ko(Q)

1 1
(VS9)*(=) = +59(:)N. +—liy [
|z 7’|>6

Wy, €0 .

(= = . 9l2) — o) T F IV
[|z — 2|? + [e(z) — e(x)]?]"/? !

Corollary 1.1.4. (N.VSg)*(2)* = 1g(z) — K*¢(z), where K* is the L?(0D, do) adjoint
of K.

The proof of Theorem 1.1.3 is an easy consequence of the deep results of Coifman-McIntosh-

Meyer (]3]).
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It is easy to see that (at least the existence part) of Theorems 1.1. and 1.1.2 will follow

1 1
immediately if we can show that (57 + K') and 5[ + K™) are invertible on LQ((K)D?(JJ).
This is the result of G. Verchota (|36]).

1 1
Theorem 1.1.5. (i§[ + K), (i§f+ K™) are invertible on L*(9D,do).

1 1
In order to do so, we show that if [ € L2(3D7d0)7||(§f + K fllr20n.d0) = ||(§f —

K*)f
M. TLet us take this for granted, and show, for example, that 15[ + K™ is invertible. To

1
do this, note first that if T' = 5[ + K |[Tfllr2 = C|fllr2, where C' depends only on the

Lipschitz constant M. For 0 < ¢ < 1, consider the operator T}, = 15[ + K/, where K7

is the operator corresponding to the domain defined by tp. Then, Ty = %I,ﬂ =T, and

0
57} PR — IP(R™'), 1 < p < oo with bound independent of £, by the theorem of

Coifman-McIntosh-Meyer. Moreover, for each , T fllre > Clfllr2, € independent of 1.
The invertibility of 7' now follows from the continuity mehtod:

|,12(9D7d,,)7 where the constants of equivalence depend only on the Lipschitz constant

Lemma 1.1.6. Suppose that T : L*(R" ") — L*(R™ ") satisfy

(a)  NTufllre = Cill flr

(B)  WTf = Tofllre < Calt = sl fllre, 0 <#,5 <1
(¢) To:L2A(R™") = L*(R™") is invertible.
Then, T is invertible.

The proof of 1.1.6 is very simple. We are thus reduced to proving

1

1 ke ke
(1.1.7) ||(§’+ K*) 120,40y = ||(§[* K*) fllr250,do) -

In order to prove (1.1.7), we will use the following formula, which goes back to Rellich [33]
(see also [31], [30], [22]).

Lemma 1.1.8. Assume that v € Lip (D),Au = 0in D, and u and its derivatives are
suitablly small at oo. Then if e, is the unit vector in the direction of the y-axis,

ou  Ou

No, e | Vul*do = 2 — - ——do.
/8D< N >| | Jan Oy ON
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%, %,
Proof. Observe that div (e,|Vu|?) = (f)—|Vu|2 = 2—Vu - Vu, while div (—
Y

dy
ou

0 0
—Vu-Vu+4+ —- div Vu = —VuVu. Stokes” theorem now gives the lemma.
dy dy dy

ou

3y V?/) =

We will now deduce a few consequences of the Re”wh identity. Recall that

— (_ 2
N, = D/v/1+ V()] so that +M2)1/27<NT,PW>§1.

Corollary 1.1.9. Let u be asin 1.1.8, and let Ty (=), Ty(x), . ,Tﬂ 1(#) be an orthogonal

basis for the tangent plane to 9D at (z, o()). Let |[Vu(z)]* = Z (Vu(z), Ti(2))|]>. Then,

ou
(](r<(y/ Vultdo.
/ v !

Proof. Leta=e¢,—(N,, e,)N,,sothat aisalinear combination of Ty(x), To(x), ..., T, (x).
Then

b

ou ou

7 <NT7€”>(()N + (o, V)
Also,
d
|Vul|* = <3—7/<f> + |Voul?,
and so,
/ (N, e ><au>2(](r / (N, e,V |Vul?do =
. xry Cn aNa . xre Cn, 7‘({)
u u
=2 N, e, + 2 o, Vuy(—=)do
[ ey 42 [ o502
Hence,
ou / ou
N., e, do = N, e VulPdo — 2 / o, Vu do.
/8D< ><3N> .8D< Vel .8D< >3N
So,

ou w2, \1/2
(](r<(*/ Voul|ldo + C / Vul?de)'/? / — ) do ,
./8D <3N> 8D| ol ( 8D| wldo) ( an <3N> )

and the corollary follows.
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Corollary 1.1.10. TLet u be as in 1.1.8. Then,

ou
./917 |Vu|?do < c./an (a—X[)Qd(r.

0
Proof. / Vul*do < 2( / |Vu|2d(r>1/2< / | — v | do )1/2, and the corollary follows.
Jap Jap Jan

Corollary 1.1.11. TLet u be as in 1.1.8. Then

%,
/ |Vul?do ~ / | — U | do.
Jon Jap

In order to prove 1.1.7, let u = S¢g. Because of 1.1.3¢, V,u is continuous across the

boundary, while by 1.1.4,

ou 1
(D) = 1 Kk

2
We now apply 1.1.11 in D and D™, to obtain 1.1.7. This finishes the proof of 1.1.1 and
1.1.2.

We now turn our attention to .2 regularity in the Dirichlet problem.

Definition 1.1.12. f € L7(A),1 < p < oo, if f(x,¢(x)) has a distributional gradient in
LP(R™"). Tt is easy to check that if F'is any extension to R” of f, then V,.F(x,¢(x))
is well defined, and belongs to L?(A). We call this V,f. The norm in L}(A) will be

INEYAITZES

Theorem 1.1.13. The single layer potential .S maps L*(A) into L?(A) boundedly, and
has a bounded inverse.

Proof. The boundedness fo”owq from 1.1.3 a). Because of the I.2-Neumann theory, and
L1 VSN 28 ( P2y = Cllfll72(a)- The argument used in the proof of
1.1.5 now proves 1.1. ]‘3

Theorem 1.1.14. Given f € L}(\), there exists a harmonic function wu, with
IN(Vu)llrzay < ClIVifllr2ea), and such that Viu = V, f (a.e.) non-tangentially on A.

is unique (modu]o Conq‘ran‘rq)7 and we can choose u = S(g), where g € L?(A).

The existence part of 1.1.14 follows directly from 1.1.13.
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Part 2: The I? theory for Laplace’s equation on a Lipschitz domain

The main results in this section are:

Theorem 1.2.1. There exists ¢ = (M) > 0 such that, given f € [?(0D,do), 2 — ¢ <
p < oo, there exists a unique u harmonic in D, with N(u) € LP(dD,ds), such that u
converges non-tangentially almost everywhere to f. Moreover, the solution u has the form

! / (X —Q,Ng)

= L W ar

9(Q)do(Q),

for some g € LP(0D, do).

Theorem 1.2.2. The exists e = ¢(M) > 0, such that, given f € LP(dD,do), 1 < p <
2+, there exists a unique v harmonicin D, tending to 0 at oo, with N(Vu) € LP(dD,do),
such that Ng - Vu(X) covnergens non-tangentially a.e. to f(Q). Moreover, u has the form

—1 1
o¥) = s | (@@

for some g € LP(0D, do).

Theorem 1.2.3. There exists ¢ = (M) > 0 such that given f € L7(A), 1 <p<2+4e,
there exists a harmonic funciton u, with

INCVa)reay < ClINV I,

and such that Vyu = V,f a.e. non-tangentially on A, u is unique (modulo constants).
Moreover, u has the form

—1 1
u(x) = ol =) ./917 N QV’?QQ(QM”(Q%

for some g € LP(0D, do).

The case p = 2 of the above theorems was discussed in Part 1. The first part of 1.2.1 (i.e.,
without the representation formula), is due to B. Dahlberg (1977) (|7]). Theorem 1.2.3 was
first proved by G. Verchota (1982) ([36]). The representation formula in 1.2.1, Theorem
1.2.2, and the proof that we are going to present of 1.2.3 are due to B. Dahlberg and C.
Kenig (1984) ([9]). Just like in Seciton 1, 1.2.1, 1.2.2, and 1.2.3 follow from:
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1
Theorem 1.2.4. There exists ¢ = ¢(M) > 0 such taht (i§f — K™) is invertible in
IP(0D,do),1 < p < 2+¢e,(£31 4+ K) is invertible in LP(9D,ds),2 —e < p < oo, and
S LP(AD,dc) — L{(AD,da) is invertible, 1 < p < 2+ &.

In order to prove Theorem 1.2.4, just as in Part 1, it is enough to show that it u = Sf, f
since, then, for 1 < p <24 ¢,

du
IV sll om0 ) = HaNHrv oD, do)’

This will be done by proving the following two theorems:

Theorem 1.2.5. Let Au=0in D. Then [|[N(Vu)|rr40,40) 9“

24+ €.

Ir@Ddey | <SPS

Theorem 1.2.6. Tlet Au=01in . Then

IN(Vu)llrron.aey < Cl\Veullne@nde, 1 <p < 2+e.

We first turn our attention to the case 1 < p < 2 of Theorem 1.2.5. In order to do so, we
introduce some definitions. A surface ball B in A is a set of the form (z,p(x)), where z

belongs to a ball in R™'.

Definition 1.2.7. An atom a on A is a function supported in a surface ball B, with

lla]|r.~ < 1/c(B), and with f/\ ado = 0.

Notice that atoms are in particular L? functions. The following interpolation theorem will
be of importance to us.

Theorem 1.2.8. Let T be a linear operator such that ||7f[[12a) < C|| f]l12(r), and such
that for all atoms a, ||Ta|r1ny < C. Then, for 1 < p < 2, ||Tf||fp ) < Ol Fllreeay

For a proof of this theorem, see [5]. Thus, in order to establish the case 1 < p < 1 of 1.2.5,

Ju
2 s an atom, then [[N(Vu)||;1a) < C. By dilation and

translation invariance we can assume that ©(0) = 0, supp a C By = {(2,¢(x)) : |2| < 1}.
Let B* be a large ball centred at (0,0) in R”, which contains (a,¢(x)),|z| < 2. The

diameter of B* depends only on M. Since |a|[;>(a) < W = (7, by the L2>-Neuman
ol M

it suffices to show that if a =

theory,

/ N(Vu) < C / N(Vu)’do < c.
aDNB*

JaDnB*
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Jogensp(Vu)do. We will do so by appealing to the regu-
larity theory for divergence form elliptic equations. Consider the bi-Lipschitzian mapping
G : D — D™ given by ®(x,y) = (v,0(x) — [y — ¢(x)]). Define u* on D~ by the formula
u* = uo® ' A simple calculation shows that, in D, u* verifies (in the weak sense)
1

the equation div (A(z,y)Vu*) = 0, where A(x,y) = 750X (D) (X) - (®)(X), where
X =& '(z,y). Tt is easy to see that A € L>(D7), and (A(x,y)¢, &) > CIE|*. Notice also
that supp g—;\‘, C By C B*NadD. Define now

Thus, we only have to estimate

T for (z,y)€e D
Blr,y) = { A(z,y) for (z,y)€ D™,
and
. J u(x,y) for (x,y)e D
iz, y) = { u*(x,y) for (x,y)€ D.
du . . .. L
Because — = 0in 9D\ B*, it is very easy to see that @ is a (weak) solution in R” \

B* of the divergence form elliptic equation with bounded measurable coefficients, Lu =
div B(z,y)Va = 0. In order to estimate u, (and hence Vu) at oo, we use the following

theorem of J. Serrin and H. Weinberger ([34]).

Theorem 1.2.9. Let 4 solve Lu = 0 in R™\ B*, and suppose that |||~ mm 5+ < 0.
Let g(X) solve Lg = 0in | X| > 1, with ¢g(X) = | X[* . Then, 4(X) = @i +ag(X)+v(X),
where Ly = 0 in R”\ B*, and |[o(X)| < C|la||reommps - [X]P7"77, where v > 0,0 > 0
depend only on the ellipticity constants of L., Moreover, a = ¢ [ B(X)Vu(X) - Vi (X),
where ¢b € C*(R"),¢» =0 for X in 2B*, and ¢» = 1 for large X.

et us assume for the time being that u is bounded, and let us show that if o is as in 1.2.9,

then o = 0. Pick a ¢ asin 1.2.9. In D, B(X) =1, and so

/ BV uNViy = / Vu -V =1lim Vu -V,
JD JD £

=0 /e
where

Ds = {(z,y) : |[(z,y)| < p, y > p(z) + ¢},

and p is large. The right-hand side equals

lim ;z;-—’—nm/a w2

s—)O‘ F)DZ aN s—)O‘ DZ (f)/\/v7

since, by the harmonicity of u,



Let,
aDS = {(x,y) € 0D} 1 y = o(x) + ¢},

and 9D% , = 9D\ D5 . Then,

ou ou ou
li —1l=—==1 — 1=+ — | = —1la =
Egg‘/w;w s Egg/mw ]aNi‘L‘?)_/w;QW e ML

= ;/)(1/ a = Ya =0,
Jan Jan Jan

since ¢ = 0 on supp a. Moreover fD, BVuVy = fD Vu - Vi, where ¢, = tp o &, by
our construction of B. The last term is also 0 by the same argument, and so a = 0. We
now show that u (and hence @) is bounded. We will assume that n > 4 for simplicity.

Since ||al|r2ay < O, we know that u(X) = O, / %d(r(@)7 with || fllr2¢ay) < C.
Jan - '

Now, for X € Dy = {(x,y) 1 y > o(x) + 1}, < _ € L*(A) and so
1 {( U) ) Q‘Q( ) } |X*Q|n72 ]_|_|Q|n,2 ( )

u € L>(Dy). Let now B be any ball in R” so that 2B C R” \ B*, B is of unit size,
and such that a fixed fraction of B is contained in Dy. Since N(Vu) € L*(A), with norm
less than C, [ .~ |Vul?> < C, and moreover on BN Dy, Ju(z)] < C. Therefore, by the
Poincare inequality [ 4” < C. But, since @ solves Lii = 0, maxp 11 < C(.sz [u|?)'? < C,
(129]). Therefore, i € L>(R™ \ B*), |[i||remm\py < C. Hence, since a = 0,Vu = Vo,
and |v(z,y)| < C/(|x|+|y])" >, v > 0. For R > Ry = diam B*, set b(R) = pr N(Vu)?,
where Ap = {(z,0(2)): R < |z| < 2R}. '

For each fixed R, let

N1 (Vu)(x) = sup{|Vu(z,y)| : (z,y) € I';(2),dis ((z,y),0D) < R},
Ny (Vu)(x) = sup{|Vu(z,y)| : (z,y) € T';(x),dist ((z,y),0D) > dR}.

In the set where the sup in N, is taken, u is harmonic, and the distance of any point
X to the boundary is comparable to |X|. Thus, using our bound on v, we see that

No(Vu)(z) < C/|X|" " = C/R™ ' and so '/‘AR No(Vu)? < CR'"™" . Tet now

11
QT = {(T,U) : @(T) <y < 99(7?) +0R77—R < |X| < T71R}7 TE <17§>

By the L?-Neumann theory in Q.. '/‘AR Ni(Vu)’do < C [, [Vu|*do. Integrating in 7 from
1/4 to 1/2 gives '

C / 7/2
3 T

C
N1(Vu)2d(r < — / VulPdX <
Q172\ 21 /2

JAg -
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C 1

since Lu = 0 (see [29] for example). The right-hand side is bounded hy o R

Then,

N(Vu)y<C( [ N(Vu)?)?R= <CR™.

.. AR .. AR

Choosing now R =27, and adding in j, we obtain the desired estimate.

We now turn to the case 1 < p < 2 of 1.2.6. We need a further definition.

Definition 1.2.10. A function a is an H| atom if A = V,a satisfies (a) supp A C B, a
surface ball, (b) [[Al|r~ < 1/a(B), (c) f Ado = 0.

We will use the following interpolation result:

Theorem 1.2.11. lLet T be a linear operator such that

||Tf||f?(A) < CHJCHL?(/\)
and
||T(],||[11(/\) < C

for all H! atoms a. Then, for 1 < p < 2,

1T Fllzry < ClLAAEz -

Hence, all we need to show is that if Au = 0, Viu = V,a, and a is a unit size H| atom,

N(Vu) € L'(A). But note that if we let

- _ Jouley) (my)eD
w(x,y) = { (x

—u*(x,y)

then @ is a weak solution of La = 01in R"\ B*, since u|sp\p== 0. Then, i =t + ag+ v,
but a = 0 since u — 7, must change sign at co. The argument is then identical to the one
given before.

Before we pass to the case 2 < p < 2+ &, we would like to point out that using the
techniques described above, one can develop the Stein-Weiss Hardy space theory on an

arbitrary Lipschitz domain in R™. This generalizes the results for n = 2 obtained in [24]
and [25], and the results for C'' domains in [16].

Some of the results one can obtain are the following: Tet

H,(OD) = {SXa; : X\ < 00, a; is an atom},
H{ (D) = {XXa; : B|\i] < 400,a; is an H{ atom}.
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Theorem 1.2.12. a) Given f € H!,(9D), there exists a unique harmonic function u,
which tends to 0 at oo, such that N(Vu) € L'(dD), and such that Ng - Vu(X) — f(Q)
non-tangentially a.e. Moreover, u(X) = S(g)(X),g € H,,. Also, ulspe H| ,(dD). b)
Given f € Hf’mf, there exists a unique (modulo constants) harmonic function w, such that

N(Vu) € LY(9D), and such that Viulsp= V,f a.e. Moreover, u = S(g),g € H

at”
Ju u
a—;(f € H),(AD). ¢) If u is harmonic, and N(Vu) € L'(dD), then a—;(f € H) (D), u|spe

1
H{,,(OD). d) f € HL(9D) if and only if N(VSf) € L'(OD), if and only if (51 ~K")f €
H!(9D).

and

We turn now to the P theory, 2 < p < 2+ &. In this case, the results are obtained as
automatic real variable consequences of the fact that the L? results hold for all Lipschitz

ou
domains. We will now show that [[N(Vu)||1ea) < C||a—;<f||pp(/\) for2<p<2+4e.

T

The geometry will be clearer if we do it in RY,

and then we transfer it to ) by the
bi-Tipschitzian mapping

S:RY = D, (. y) = (z,y+ ¢(x)).

We will systematically ignore the distinction between sets in R, and their images under

d. Tet

v=A{(z,y) € RY : || <y}, 7" ={(r,y) € R} : aofz| <y},

where « is a small constant to be chosen. let

m(x) = sup |Vu(z,y),
(z,y)Ex+y

and

m*(x) = sup |Vu(z,y)l|
(z,y)Ex+r*

Our aim is to show that there is a small g5 > 0 such that

/m”sdm < c/|f|2+5d.7:

u
for all 0 < & < &g, where [ = a—;(f Let h = M(f*)'/2, where M denotes the Hardy-

littlewood maximal operator. let
Ey={z e R" " :m*(z) > \}.

We claim that

Fi

/ % + Co / m2.
JIm* > ah<)] J{mEs
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et us assume the claim, and prove the desired estimate. First, note that

/ m? < / mQ—I—/ m? < C)\? —I—C(y/ mQ—I—/ mz7
JEy J{m* > h<A} J{h>A} J{m*>A} J{R>A}

by the claim. Choose now and fix a so that C'-a < 1/2. Then,

/ m? < C\? +C / m2.
Jr, NETSSN!

/m2+6 —5/ At / m>d\ < 5/ At / m2d\ <
. Jo J{m>A} J0 J

< Ce/ A > A}|d)\+(]5/ )\5‘(/ m?)dA,
Jo J0O Jh>A

Fi

Fi

For e > 0,

Fi

< Cul{m > A}|. Thus,

By a well-knwon inequality (see [18] for example),
/m2+5 < Ce / M m > AHdA + Ce / A / m?)d\ <
. Jo Jo Jh>

< (e /m”s—l—(] /mzns.

If we now choose ¢y so that
Ceog < 1/2, for e < e, /m”6 <(C /mzns.

24

If we now use Holder’s inequality with exponents 2= and 2=

2 e

[y Sy

and the desired inequality follows from the Hardy-littlewood maximal theorem.

we see that

It remains to establish the claim. Tet {Qr} be a Whitney decomposition of the set I/, =
{m* > A}, such that 3Q; C F\, and {3Q;} has bounded overlap. Fix k, we can assume
that there exists @ € Qg such that h(x) < A, and hence, '/‘QQk FE<ON|Q)]. For1 <7 <2,

let Qr. = 7@k, and

le ={(z,y): 2 €7Q), 0 <y <7 length (Q1)}.

le (and ¢(Qk,7)) is a Lipschitz domain, uniformly in &, 7. Also, by construction of @y,
there exists 2, with dist (z1, Qr) = length (Q%) and such that m*(z;) < A. Let

Ak,ﬂ' - an,’T N TE + P}/*
Bk,ﬂ' - an,’T N IRZ_ \ Ak,ﬂ'a
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so that

an,’T - Qk,ﬂ' U Ak,ﬂ' U Bk,ﬂ'-

Note that the height of By, is dominated by Ca length (@), and tha,‘E |[Vu| < Xon A ..
Let my be the maximal function of Vu, corresponding to the domain @y, (i.e., where the
cones are truncated at height & /(Q)). Then, for x € Qr, m(x) < my(x) + A. Also,

/ m; < /~ m; < (using the I>-theory on le) <
JQy JOQy -~

C / |Vu|2d(r—|—c/ |Vul*do + ¢ F<c / |Vul*do 4+ CX*|Q4).
J By » JAL - J2Qy J By, r

Integrating in 7 between 1 and 2, we see that

/ m; < / / IVul® + CN?| Q4 <C(y/ m® 4+ CN|Qyl.
JQy K(Qk) Jo J2Qy J2Q

Thus,

/ m2<0(y/ m® + CN|Q4l.
S Qu J/2Qk

Adding in £k, we see that

/ m? < CN\? + Co / mz7
J{m*>X\ h<A} JL{m*>A}

which is the claim. Note also that the same argument gives the estimate |[N(Vu)||, <
C||Viul|p,2 < p <24 e, and the LP theory is thus completed.

Fi

Section 2. Higher order boundary value problems

Part 1: The systems of elastostatics

In this part we will sketch the extension of the L? results for the Laplace equation to
the systems of linear elastostatics on Lipschitz domains. These results are joint work of B.
Dahlberg, C. Kenig and . Verchota, and will be discussed in detail in a forthcoming paper
([12]). Here we will describe some of the main ideas in that work. For simplicity, here we
restrict our attention to domains D above the graph of a Lipschitz function ¢ : R* — R.
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Let A > 0, > 0 be constants (LLame moduli). We will seek to solve the following boundary
value problems, where 4 = (u',u?, u?)

pAid 4+ (A +p)Vdivi =0 in D

(2.1.1) )
ilap=f € L*(0D,do)

pAid 4+ (A +p)Vdivi =0 in D

2.1.2 -
( ) Mdiv @)N + p{Vi + (Vi)' }N|sp= f € L*(0D, do).

(2.1.1) corresponds to knowing the displacement vector @ on the boundary of D, while
(2.1.2) corresponds to knowing the surface stresses on the boundary of D. We seek to
solve (2.1.1) and (2.1.2) by the method of layer potentials. In order to do so, we introduce
the Kelvin matrix of fundamental solutions (see [27] for example),

where

A 57;,74 C XiX7‘

(X)) = —
i(X) Ar | X | 4Ax | X)?

and

1 1 11 1

1
A=l gl 0=l gl

We will also introduce the stress operator T', where

T = Xdiv )N + p{Vi+ Vﬁt}N.
The double layer potential of a density ¢(Q) is then given by

W(X)=Kg(X)= [ {T(@QT(X —Q)}§Q)ds(Q),

Jan
where the operator T is applied to each column of the matrix I'.

The single layer potential of a denisty g(Q)) is

7YY = 308 = [ TN - Q)-d(Q)n(@)
Jan
Our main results here parallel those of Section 1, Part 1. They are
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Theorem 2.1.3. (a) There exists a unique solution of problem 2.1.1 in D, with N(u) €
L2(0D,dc). Moreover, the solution u has the form w(x) = Kg(x), g € L*(9D,do).

(b) There exists a unique solution of (2.1.2) in D, which is 0 at infinity, with N(Vu) €
L2(0D,do). Moreover, the solution i has the form «(X) = Sg(X), g € L*(dD,do).

(c) Tf the data .]Fin 2.1.1 belongs to L}(AD,do), then we can solve (2.1.1), with N(V#) €
L2(0D,do).

The proof of Theorem 2.1.3 starts out following the pattern we used to prove 1.1.1, 1.1.2
and 1.1.14. We first show, as in Theorem 1.1.3, that the following lemma holds:

Lemma 2.1.4. TlLet Kg,S5g be defined as above, so that they both solve pAw 4+ (A +
)V div i =01in R*\ dD. Then,

(a) IN(K G 1r@0.00) < CllGll 10,0,
||N(VS,C7)HLP(E)DAU) < C||.J||L”(5)D,r](r)7 for 1 <p < oo.

(b) (Kq)*(P) = +5d(P) + K§(P)
(5 (5975 (P) = (P (P) (P (PN P} 4

s [ SETPQUQU(Q)),

where Kg(P) = po. [, {T(Q)N(P —Q)}§(Q)do(Q), and A, are the constants in the

definition of the fundamental solution.

Thus, just as in Section 1, part 1 reduces to proving the invertibility on L*(9D,do) of
+1T+ K, £17+ K*, and the invertibility from L?(0D, do) onto L3(dD, do) of S. Just as
before, using the jump relations, it suffices to show that if w(X) = Sg(X), then

||T77||L2(9D,da) R ||vt77||f/2(917,d0)'

Before explaining the difficulties in doing so, it is very useful to explain the stress operator
T (and thus the boundary value problem 2.1.2), from the point of view of the theory of
constant coefficient second order elliptic systems. We go back to working on R”, and use
the summation convention.

Let ai2,1 <r,s <m, 1 <1,7 <n be constants satisfying the ellipticity condition

77
al?&Em " > CEPn|?

and the symmetry condition a;? = a%. Consider vector valued functions @ = (u'y o u™)
on R” satisfying the divergence form system

0 0

ax; X

=0 1n D.
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From variational considerations, the most natural boundary conditions are Dirichlet con-

= il ou’®
ditions (1|sp= f) or Neumann type conditions, 5, = 77/7;(1,:;37 = f.. The interpreta-
174 ’ ;

tion of problem 2.1.2 in this context is that we can find constants ai? 1 <a,5 < 3,1 <
r,s < 3, which satisty the ellipticity condition and the symmetry condition, and such that

ou’® 0
pAU+(A+p)Vdiv i =01in D if and only if rs U

a =0in D, and with T4 = —. In

oX; ToX, v

order to obtain the equivalence between the tangential derivatives and the stress operator,

we need an identity of the Rellich type. Such identities are available for general constant
coefficient systems (see [32], [30]).

Lemma 2.1.5 (The Rellich, Payne-Weinberger, Neéas identities). Suppose that
0 0

L i#=01in D, aif = a’, his a constant vector in R", and « and its derivatives

ax; "X, i

are suitably small at co. Then,

o du’ oL o
/ hengat? o Sy =2 / hie .
Jan TOX; 0X; Jon OX; TOX;

Proof. Apply the divergence theorem to the formula

d e e ooy QU Ou®
({)—)(Z [(hﬂ]’i]‘ — hi(]’(]‘ — h'jai/‘)(f)—)(i - ({)—)(7] —
Remark 1: Note that if we are dealing with the case m = 1,a;; = I, and we choose

h = e,, we recover the identity we used before for Laplace’s equation.

Remark 2: Note that if we had the stronger ellipticity assumption that a[77¢2 > O, €112,
we would have, it 9D = {(z,0(2)) : ¢ : R" " = R, ||Vl < M}, that ||Vl r2(0p,00) &~

||%||,12(3D’d,,). In fact, if we take h = €y, then we would have

ou” Ou?®
Vu'l2do < ¢ honpat? do =
Z:/E)D| ! | 7= c./an e 0X; 3Xj 7

ou” ou? 1/2 ou 1/2
=20 hi—— - nya,) ——do < 20 V' |%d —1%d )
[ hia, moitg e <20(S [ 1vwran) ([ 5 pae)

aD

Thus, Y., [, [Vu'|?de < C [, |24 do.

For the opposite inequality, observe that for each r, s, j fixed, the vector h;nsay? — hynjal?
is perpendicular to N. Because of Lemma 2.1.5

ou” Ou?® out  ou®
./an et dX;0X; 7 /an( ety W(]/’])a)(i 0X; 7
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Hence,
/ |Vul*do < C(/ |Vtu|2d(r>1/2</ |Vu|2do'>1/27
Jan Jan Jan

and so

du
/ |l|2d(r < c/ |Vul*do < c/ |V ).
Jan Ov Jan Jan

Remark 3: In the case in which we are interested, i.e., the case of the systems of elasto-

statics,

ou®  ou” ( oul Out o
8 . = Mdiv @) + =
(]7,,7 (f)X7 (f)X7 ( v “) + 2 Z <8X7 + (f)X7> 9

¥

which clearly does not satisfy

anee > oy g,
Ot

since the quadratic form involves only the symmetric part of the matrix (£7). In this case,

Dii K
of course f)_“ =Tu = Mdivi)N + p{Viu + Vﬁt}N.

14

Remark 4: The inequality
Vil 12 0m,40) < ClIV4i] 125D d0)

holds in the general case, directly from Lemma 2.1.5, by a more complicated algebraic

argument. In fact, as in Remark 2,

ou” Ou?® out  ou®
honoa? do =2 hmoa-? — hi o) —— - d ,
./an et dX;0X; 7 /an( ety W(]/’])a)(i 0X; 7

and for fixed r, s, j, (hynall — hinea}?) is a tangential vector. Thus,

ou” ou’ . .
./917 hgnm;’;axi N, do < C<./9n |Vtu|2d(r>1/2< / |Vu|2d(r>1/2.

JaD

Consider now the matrix d,, = ((],:;77477/'7‘)71. This is a strictly positive matrix, since
rs oS 2 2 ’
ag&&mn” > ClEFnl". Moreover,

ou. ou ou” Ou?®
d (28 (LY s _
”‘(ay>r<(f)y>s (]1,7 3X73X7
ou’ o OU™ ou” du’

L rs
= drtn/ia»4% “mgayy

TOX, X, "TOX, 0N,
. oul L ou” out du”

=d..nray

e M@ —a,
X, aX, "oX, 00X,

t T t T

. Ou .. Ou ., Ou’ du

=d..nray

k?Ja—)(“ : nml(]’mj(f)X( B (]/UZ(()XU (()X/

t T
or o Out Ou

me Oy (f)X“ (f)—)(/

t
= {d,snra;. nn,a
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Now, note that for ¢, 7,/ fixed {d,;nra}! n,a’’,—a!7} is perpendicular to N, by our definition
of d,5, and the symmetry of a;’:

(] ri st iT _ . rt (] st iT _
s TV Oy o, oy g Ty — Gy p Mgy = Oy MMy o O g Mo, — Oy p Mo, —

_ tr st T _ st P 1T P _
= (J,Uknq,nkdmamznm — amznm = 5tsamznm amznm = amznm amznm = 0

Therefore,
ou. 01
/ hned (20 (27) dor < of / i) / Vo)
Jan v v’ Jan Jan
Now,
<f)77> e ou’ L. ou’ e ou’
—) —ann; =naf—— — a’ninn,—— =
gu’r RGN T g x,  TRTRETG Y,
L. ou’ e ou’ (nia’” e ) ou’
=Na, o — QNN N, ——— = N4, — A, NN, —— =
.7(7)(, k 7({)3}(], 7 k ] (()X]‘
u’

= {na} —ajfninin; -~

axX;

But, for 4,7, s fixed, al? — ajinyn; is perpendicular to N, and so

Hain; ma }(](r <

hengd,
/917 ey {ak7nkn7f)N

<C{</ |vt77|230>1/2</ |V77|2d0>1/2—|—/ Vi *do }.
Jan Jan Jan

We now choose h = €n, so that hyn, > C and recall that (d,s) and (a ,mmm ) are strictly
positive definite matrices. We then see that

J it <t et e et
aD JoD Jap on

Now, as |Vii]? = |Vyii]> + | 2L ]2, the remark follows.

Remark 5: In order to show that [, |Vyi|>de < C [, |Ti>de, it suffices to show that
/ \Vii|’do < ¢ / M div @)1 + p{Vii+ Vi'}|do.
Jon Jon

In fact, if this inequality holds, we would clearly have that

/ |V77|2d0<0/ Vi + Vi |*do
Jan

JaD
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(Korn type inequality at the boundary). The Rellich-Payne/Weinberger-Necas identity is,

in this case (with h = e,),

/ nn{ﬁ|Vﬁ—|— Vi'|* + Mdiv @)* }do =

Jon™ 2

=2 7u. {Mdiv @)N + p{Vi + Vi'} N}do.
Jap Oy

But then,
/ \Vii|*do < C( / |V77|2d0>1/2< / IA(div )N + p{Vii + Vﬁt}NPd(r)UQ.
Jan Jan Jan

The rest of part 1 1is devoted to sketching the proof of the above inequality.

Theorem 2.1.6. Let @ solve pAuw + (AN + 1)V div =0 in D, = S(G), where g is nice.
Then, there exists a constant (', which depends only on the Lipschitz constant of ¢ so that

/ |Vii|*do < C / |M(div )T + p{Vi + Vi'}|*do.
Jan Jan
The proof of the above theorem proceeds in two steps. They are:

Lemma 2.1.7. let @ be as in Theorem 2.1.6. Then,

/ N(V77)2d0 <e N(A(div i)l + p{Vu + Vﬁt})Qd(r.
Jap

JAD

Lemma 2.1.8. let @ be as in Theorem 2.1.6. Then,

N (div @) 4+ p{Vi + Vii'})de < O / |M(div )T + p{Vi + Vi'}|*do.

JaD aD

LLemma 2.1.7 is proved by first doing so in the case when the lLipschitz constant is small,
and then passing to the general case by using the ideas of G. David ([13]). Lemma 2.1.8 is
proved by observing that if ' is any row of the matrix A(div @)I + p{Vi + Vi'}, then &
is a solution of the Stokes system

Av=Vpin D
(S) diva=01in D
Flap= f € LX(OD,do)
This is checked directly by using the system of equations pAw + (A 4+ p)Vdiv @ = 0. One

then invokes the following Theorem of E. Fabes, C. Kenig and G. Verchota, whose proof
will be presented in the next section.
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Theorem 2.1.9. Given ]FE L2(0D,da), there exists a unique solution (¥, p) to system
(S) with p tending to 0 at oo, and N(¢) € L?(dD,ds). Moreover,

IN@)r2(p.40) < Cllfll12(50.d0)-

We now turn to a sketch of the proof of Lemma 2.1.7. We will need the following unpub-
lished real variable lemma of G. David (|14]).

Lemma 2.1.10. Tet F : R x R* — R be a function of two variables t € R,z =
(x1,...,2,) € R". Assume that for each z, the function t — F(¢,2) is Lipschitz, with
Iipschitz constant less than or equal to M, and for each 7,1 < 7 < n, the function
x; — F(t,2) is Lipschitz, with Lipschitz constant less than or equal to M;, for any choice
of the other variables. Given an interval I x J =1 x.J; x ... x J,, where the J;’s and [
are 1-dimensional compact intervals, there exists a function G(¢,2) : R x R” — R with
the following properties:

(a) G(t,x) > F(t,z) on I xJ

by WE={({,2)elxJ:F(t,z)=G(t, )}, then |K

> 2|1|J].

(¢) For each i, the function G(¢t,x1, 22, ... ;2 1, —, Tix1,... ,2,) 18 Lipschitz, with Lips-
chitz constant less than or equal to M, and one of the following statements is true:

G AM —4M _ 0G
Either for each 2, — M < —(t,2) < ——, or for each z, < —
ot 5 5 ot

(t,2) < M.

The proof of this lemma is the same as in the 1-dimensional case, treating = as a parameter

(see [13]).

Before we procedd with the proof of Lemma 2.1.7, we would like to point out that in the
analogue of Lemma 2.1.7 for bounded domains, a normalization is necessary since if (x)
solves the systems of elastostatics so does w(x) + d 4+ BX, where a@ is a constant vector,
while B is any antisymmetric 3 x 3 matrix. The right-hand side of the inequality in the
LLemma of course remains unchanged, while the left-hand side increases if B ’increases’.
The most convenient normalization is that for some fixed point X in the domain Vi ( X™)—
Vi(X*)" = 0. This also gives uniqueness modulo constants to problem 2.1.2 in hounded
domains.

We now need to introduce some definitions. Let Dy C RY be a fixed, " domain with

{(2,0) : |=]| = max|z;| <1} C 9D,
{(z,y):0<y <12 <1} C Do CH(z,y): 0 <y <2,z < 2}.

If o : R"" — R is Lipschitz, with [|[Ve|| < M, we construct the mapping 7, : R} — R”
by To(2,y) = (v,cy + 1, * @¢(x)) where n € C5°(R" ") is radial, [n =1, and ¢ = ¢(M) is
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chosen so that T,(R%) C {(x,y) : y > ¢(x)}, and so that T, is a hi-Lipschitzian mapping.
Also, it is clear that T, is smooth for (x,y) with y > 0, and T (2,0) = (x,¢(2)). We
will denote by A, the point T,(0,1). Lemma 2.1.7 is an easy consequence of the following
result.

Lemma2.1.11. Given M > 0 and ¢ with ||[Ve| < M, there exists a constant C = C'(M)
such that for all functions 4 in D, which are Lipschitz in D, which satisfy pAa 4+ (A +
p)Vdivi =0in D, and Vi(A,) = Vi(A,)", we have

||N@(V77)||712(3D’d,,) S CHNLp()\(d]V 77)[ —I— /,L{V?T—l— vqjt})HLQ(ﬁ)D,d(r)-

@

Here N, is the non-tangential maximal operator corresponding to the domain D,.

This lemma will be proved by a series of propositions. Before we proceed, we need to
introduce one more definition. We say that proposition (M, &) holds if whenever ¢ is such
that [|[Ve|| < M, and there exists a constant vector @ with ||@|| < M so that |[Ve —d|| <,
then for all Lipschitz functions @ on D, with gAu 4+ (A 4+ p)Vdiva = 0 in D, with
Vii(A,) = Vi'(A,) we have

@ @

||N@(V77)||712(3D7d,,) < CNy(Mdiv a)l + p{Viu + Vﬁt}HLz(@D’dg)?
where C' = C(M,e).

Note that if proposition (M, e) holds, then the corresponding estimates automatically hold
for all translates, rotates or dilates of the domains D, when ¢ satisfies the conditions in
proposition (M, e). In the rest of this section, a coordinate chart will be a translate, rotate

or dilate of a domain D,. The bottom B, of dD, will be T,(0Dq N (2,0) : 2 € R ).

Proposition 2.1.12. Given M > 0, there exists ¢ = (M) so that propostion (M, e)
holds.

We will not give the proof of Proposition 2.1.12 here. We will just make a few remarks about
its proof. First, in this case the stronger estimate || Ny (Vii)||12(p,4,) < Cl|A(div i) N +
pAVii + Viu'y N\ ;2 0p,40) holds. This is because in this case, the domain D is a small
perturbation of the smooth domain D,,.. For the smooth domain D,,., we can solve problem
2.1.2 by the method of layer potentials (see [27], for example). If € is small, a perturbation
analysis based on the theorem of Coifman-McIntosh-Meyer (|3]) shows that this is still the
case. This easily gives the estimate claimed above.

Proposition 2.1.13. For all M > 0,2 > 0, € (0,0.1), if proposition (M, &) holds, then
propostion (1 — aM,1.1e) holds.

We postpone the proof of Proposition 2.1.13, and show first how Proposition 2.1.12 and
Proposition 2.1.13 yield Lemma 2.1.11.
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Proof of Lemma 2.1.11. We will show that proposition (M, ) holds for any M e. Fix
M, e, and choose N so large that if e(10M) is as in Proposition 2.1.12, then (1.1)Ne(10M) >
N

e. Pick now a; > 0 so that H(] — ;) = 1/10. Then, since proposition (10M,e(10M))
j=1

holds, by Proposition 2.1.12, applying Proposition 2.1.13 N times we see that proposition

(M, e) holds.

We will now sketch the proof of Proposition 2.1.13. We first note that it suffices to show
that

INAV D 20,40y < CINGA(iv DT+ p{ VT + V5| 120 40)

where N@ is the non-tangential maximal operator with a wider opening of the non-tangential
region. This follows because of classical arguments relating non-tangential maximal func-
tions with different openings (see [18]) for example). Pick now ¢ with ||Vl < (1 —a)M,
and such that there exists @ with ||V — || < 1.1e, ||@]] < (1 — a)M. We will choose N,
as follows: Since dD, \ B, is smooth, it is easy to see that we can find a finite number of
coordinate charts (i.e., rotates, translates and dilates of D), which are entirely contained

in D, such that their bottoms B, are contained in @D, such that Ty((x,0) : ||z] < 1/2)
cover D, and such that the ¢’s involved satisfy ||[Vo| < (1 — g)/\/f and there exist @,

such that ||@y| < (1 — g)/\/f7 and ||V — a@y|| < 1.11e. The non-tantential region defining

1
Nyg, on Ty((2,0) = |lz]| < 5) is defined as follows: let F' C {(#,0) : ||z] < 1/2} be a

closed set. Consider the cone on R,y = {(x,y) € R} : blz| < y}, where b is a small
constant. Consider now the domain Dy on R, given by Dp = U,er((2,0)+7v). Then Dp
is the domain above the graph of a Lipschitz function 6, for which ||V < ¢b, for some
absolute constant ¢ (independent of F). Tt is also easy to see that we can take now b so
small, depending only on M and & such that T;(Dr) is the domain above the graph of a

[ipschitz function ¢, with ¢» > 1, and which statisfies

~ o ~ -
Vel < (V= 3™, VY —dyll < 1.110e.

The non-tangential region defining N, for Q € Ty((2,0) : ||=|| < 1/2) is then the image
under Ty, of (x,0) -+, with b chosen as above, suitably truncated, and where @ = Ty((x,0).
Let now, to lighten notation, m = N, (Va@),m = N (A(div @)I + u{Vi + Vi'}).

For ¢t > 0, consider the open-set F;, = {m > t}. We now produce a Whitney type
decomposition of F; into a family of disjoint sets {U;} with the property that each U; is
contained in Ty((x,0) : ||=|] < 1.2) for a coordinate chart D, each U, containes T, (1;),
where [, is a cube in ||z < 1/2, and is contained in Ty (1;), where I is a fixed multiple of
I;. Finally, we can also assume that there exists a constant 5y such that if diam (U;) < 5o,
there exists a point Q; in @D, with dist (Q;,U;) & diam U}, such that m(Q);) < t. Let now
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B > 1bhe given. We claim that there exists & > 0 so small that if £, = U,n{m > Gt,m < it}
then o(F;) < (1 — nm)a(U;), where nar > 0. Assume the claim for the time being. Then,

/ m?do—Q/ t(r(Et)dt—Qﬂz/ to(Eﬁt)dt—Zm?/ to(Q; N Fg)dt <
JOoD, Jo

7

<22ﬁ/ to F)df+25/ to(m > §t)dt <

<ZQ[3 T —nwm) /OO (Q)(]f—l—??—j/mt(r{m>t}dt—

2
=67 (1 w)/ 2da+5—2/ m’do.
JAD,

Thus, if we choose 3 > 1, but so that 3% - (1 — ny) < 1, the desired result follows. Tt
remains to establish the claim. We argue by contradiction. Suppose not, then o(F;) >
(1 —nm)o(U;). Let K; = Tl/j](Ej). If par is chosen sufficiently small, we can gurarantee

il Let now F; = ]:7'74 N 1;, and construct now the Lipschitz function o
corresponding to it, as in the definition of N,. Thus, b > o, [|Ve| < (1 — %)M IV —
ayl| < 1.111e. We now apply Lemma 2.1.10 to W, one variable at a time, to find a Lipschitz
function f, with f > ¢ on [;,such that if F; ={x€l,: [ = ¥}, then |F N F| > co(U)),
with [[Vf] < (1 — %)M, and such that there exists @y, with ||a| < (1 — %)M so that

IVf—da;l < g].]]]e < e. We can also arrange the truncation of our non-tangential

regions in such a way that on the appropriate rotate, translate and dilate of D (which
of course is contained in the corresponding coordinate chart associated to Dy, which is
contained in D),

|M(div )T + p{Vii+ Vi'}| < 6t

To lighten the exposition, we will still denote by D, the translate, rotate and dilate of
D;. Note that proposition (M, e) applies to it it. We divide the sets U; into two types.
Type T are those with diam U; > 1o, and type I those for which diam U; < n,. We first
deal with the U; of type I. In this case, D; has diameter of the order of 1. Because of
the solvability of problem 2.1.2 for balls, and our normalization, we see that on a ball

BcD,, diam Bx1,A, € B, we have
/ |Vi]* < c/ |Adiv @l + p{Vi + Vi
JB JB

Joining A to A, by a finite number of balls, and using interior regularity results for the
system puAi+ (A4 1)V div it = 0, we see that |Vi(A;)| < Cdt, for some abhsolute constant
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C'. Then

Co(U;)3%* < / m’do < ¢ N} (Vu)do <

. Tw(F7mF7) . QDJ‘

i(Ag) — V(A
< Cotpii o [ vy AR T
JaD;

< C(r(Uj)(sth + N?(A(div )l + p{Viu + Vﬁt})zd(r,

>d0<

by (M,e). The last quantity is also bounded by Ca(U;)d%*?, which is a contradiction for
small §. Now, assume that U, is of type II. Note that in this case there exists Q); € 9D,
with dist (Q;,U;) ~ diam U;, and such that |Vi(z)| < ¢ for all 2 in the non-tantential
region associated to @);. Because of this, it is easy to see, using the arguments we used to
bound |[Vii(Af)] in case I, that for all X in a neighborhood of A; and also on the top part
of D¢, we have that |Vu(X)| <t+ C§t. Since for Q € Ty(F;NF;),m(Q) > Bt,and 5> 1,
if § is small enough, we see that we must have N;(Vu)(Q) > m(Q). Hence,

Vii(Ay) — Vii'(Ay)
2

Ny (Vi — | D@ =1 o=,

if §is small and Q € T, (F; N F;). Thus, applying (M,e) to Dy, we see that

cw ey < [ Nywa [FRAL S, o

JTy(FinFy) 2 B

A(A) — Vil A
< / N,c(Vﬁ— [V7( ) 2V7/ ( 'f)]>2d0 < C(/’(Uj)(pt?7

a contradiction if 4 is small. This finishes the proof of Proposition 2.1.13, and hence of
Lemma 2.1.11.

Part 2: The Stokes system of linear hydrostatics

In this part T will sketch the proof of the % results for the Stokes system of hydrostatics.
These results are joint work of E. Fabes, C. Kenig and G. Verchota (|17]). We will keep

using the notation introduced in Part 1.

€ SeeK a vecltor value 11ﬂ(3,i0ﬂ 77: uL Ut u an a SCalar value 11ﬂ(3,i0ﬂ sa,,is iﬂ
We seek tor valued funct Y u? u?) and | lued function p satisfy

Au=Vpin D
(2.2.1) divi=0in D
tan= fE L2(0D,do) in the non-tangential sense
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Theorem 2.2.2 (Also Theorem 2.1.9). Given .]FE L2(0D,dc), there exists a unique
solution (i, p) to (2.2.1), with p tending to 0 at oo, and N(w) € L*(dD,do). Moreover,
(X)) = Kg(X), with g € L*(0D,ds). (K will be defined below).

In order to sketch the proof of 2.2.2, we introduce the matrix I'( X') of fundamental solutions
146, 1 XX
(see the book of Tadyzhenskaya [28]), T(X) = (T';;( X)), where I';;(X) = — =L+ — -7
' ' 87 |X| 87 |X|?

and its corresponding pressure vector

X;

q(X) = (¢'(X)), where ¢'(X) = X

Our solution of (2.2.2) will be given in the form of a double layer potential,

) = K = / {H(QINX ~ QQ)(Q)

where

ol

(H'(Q)T(X — @Q))i = §iq" (X — Q)nj(Q) +

We will also use the single layer potential

In the same way as one establishes 2.1.4,

Lemma 2.2.3. Tet Kg,Sg be defined as above, with g € L?(dD,dc). Then, they both
solve A =Vpin D, and D_ diva=0in D and D_. Also

(a) IN(KG)lr2@0p.40) < Cllgllr2@n.d0)s

1

(0) (K3)*(P) = 43P) ~ po- | {H(@QT(P ~ Q(QUdo(Q)

(c) IN(VSG)r2m.40) < CllGl12(0D,d0)

) <a§g<5‘.c7>.¢>i(P> — i{””(Pg.%(P) - m<P>2n,¢<P>

o [ LPQQQ)

(Np g(P))}

(©) (HSGP*(P) = %3(P) + po. [ {HPI(P — Q)Q)(Q),
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where
al'y,

(HEONX Q) = ni(0) 55

(X = Q) — dijd" (X — Q)ny(X).

For the proof of this lemma in the case of smooth domains, see [28].

The proof of Theorem 2.2.2. (at least the existence part of it), reduces to the invertibility in
1
L2(0D,dc) of the operator 5[—{— K, where Kg(P) = —p.v. [, {H(Q)T(P—Q)}§(Q)de(Q).
As in previous cases, it is enough to show
1 1
(2.2.4) 157 = K*)gllrz@p.amy ~ (T + K7)Gl 230,00

This is shown by using the following two integral identities.

Lemma 2.2.5. Let i be a constant vector in R”™, and suppose that Au = Ap, diva =0,
in D, and that w, p and their derivatives are suitablly small at co. Then,

ou®  Ju’ ou? ou? ou?
h do =2 -h do—2  hy——do.
/ X, OX, L, an ax, /fmp”' ax,

Lemma 2.2.6. let f_lt?p and @ be as in 2.2.5. Then,

ou” ou” o’ ou® ou”
hynep’do = 2 / h, ——pdo — / h,—— o + 2 / hong——mn do.
,/9,7 "ON an  O0X; ON Jan 0X;0X,;

The proofs of 2.2.5 and 2.2.6 are simple applicaitons of the properties of w,p, and the

divergence theorem.

Choosing h = e3, we see that, from 2.2.6 we obtain

Corollary 2.2.7. Let i,p be as in 2.2.6. Then , [, p°do < c [, |Vi|’do, where C
depends only on M.

ou  0u
A consequence of Corollary 2.2.7 and Lemma 2.2.5, is that if ae_ o

= aN P N, then we

have

Corollary 2.2.8. T.et i, p be as in 2.2.5. Then,

o ou?
|—| do =~ / |V i) *do + / [n,——1*do,
/ Jab ' 27: an aX?‘

where the constants of equivalence depend only on M.
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Proof. 2.2.5 clearly implies, by Schwartz’s inequality, that

/ |V77|2d0<0/ |@|2d(r.
Jan Jap Ov

Moreover, arguing as in the second part of the Remark 2 after 2.1.5, we see that 2.2.5
shows that

(f) S
/ \Vii|*de < C / |V i) *do + | pnshgid(ﬂ.
Jap Jon Jon X,

By Corollary 2.2.7, the right-hand side is bounded by

ou’ 1/2
C / Vil*do /2 / N Ydo —I—c/ Vul?do
<.8D| | ) <§7:5)D| 3X7| ) .8D| ' |

2.2.8 follows now, using 2.2.7 once more.

To prove 2.2.4, let @ = S(§). By d) in 2.2.3, Vi and ny 2;‘( are continuous across d1).
Using this fact, 2.2.3 e) and Corollary 2.2.8, 2.2.4 follows. ‘

In closing this part, we would like to point out another boundary value problem for the
Stokes system, which is of physical siginificance, the so-called slip boundary condition

Au=Vpin D
(2.2.9) divi=0in D
(Vi + Vi'YN —p- N)|ap= f € L*(0D,do).

This problem is very similar to (2.1.2). Using the techniques introduced in Part 1, together
with the observation that if Ad = Vp, div 4 = 0 in D, the same is true for each row v of
the matrix [Vi + V' — pl], we have obtained

Theorem 2.2.10. Given ,]FE L2(0D,dc), there exists a unique solution (, p)
which tends to 0 at oo, and with N(Vi) € L2(0D,do). Moreover, (X)) = S(g
ge L*oD,dos).

Part 3: The Dirichlet problem for the biharmonic equation on Lipschitz do-
mains

This part deals with the Dirichlet problem for A? on an arbitrary Lipschitz domain in R™.
The results are joint work of B. Dahlberg, C. Kenig and G. Verchota ([11]). We continue

using the notation introduced before.
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We seek a function u defined in D, such that
A*u=01in D

(2.3.1) ulap= f € L2(9D,do),
8“ |5)D— g <€ 2 (f)D (](r)

where the boundary values are taken non-tangentially a.e.

Theorem 2.3.2. There exists a unique u solving (2.3.1), with

N(Vu) e LX(9D,do), |[IN(Vu)llrz@onaey < C{lgllrz@n.am + 11112 (30.00)

where (' depends only on M.

We will only discuss existence. By 1.1.14, we may assume [ = 0 on f)D Let G(X,Y) be the

Green function for A on 1. Then, since u|sp= 0, we have u(X) = [, G(X,V)Au(Y)dy.
(7
Notice that w(y) = Au(y) is harmonic in D. We claim that w(Y) = a—v(Y)7 where
)
v is a harmonic function in D, with L*(9D,do) Dirichlet data, and that the operator
ou

D vlap— a—N|3D is an invertible map from L?(dD,do) onto L*(dD,ds). This would
establish 2.3.2. In fact, by using the Green’s potential representation, Fubini’s theorem,

and the fact tha

N 7(—,Y) is the density of harmonic measure at Y € D,

/ vTvdo = / 7)(Y)27)(Y)dy = ! / v(z, p(x))de > C / vido.
Jan JD dy 2 Jro—

JaD

This shows that it T': L2(0D,do) — L*(9D,dc) is bounded, it will have a bounded inverse.
To establish the boundedness of T', note that if & is harmonic in D, then the argument
given above shows that

/ hTvdo = @(Y)h(Y)dY.
Jan JD (71/

All we need therefore, is the following bilinear estimate.

Theorem 2.3.3. If v, h are harmonic in D, tend to 0 at oo, then
(77)
| / )(]Y| < (Y||”||r2 an,dr) ||h||712(5)17,r](7)-
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Proof. This theorem is a generalization to Lipschitz domains of the fact that the para-
product of two L% functions is in L' (see [4]).

In order to establish the inequality, because of the invertibility of the double layer potential
(the representation formulain 1.1.1), we can assume that

)= [ B2 una)

with

gl r2@m.a0y < Cll0| 125D d0)-
Thus, since

O -QNg) D
2 9 ¢, :
Voo - Cang g

it suffices to show that
ov

|| 0 / 1
ONg Jp |Y —Q[" 2y

In order to do so, we will obtain a respresentation formula for

0 / 1 v
T yyay.
g v a7y

1

(Y)dYl[r2n.40) < Cllvll12(50.00)-

Fix Q € dD, and let B satisfy Ay B(Y — Q) = W7 i.e., B is the fundamental
solution for A? (for example, if n > 5, B(Y) = (,|Y]* ™). We recall the definition of the
Riesz transforms v; = R;jv,7 =1,... ,n—1. They are harmonic functions, which, together
d d
with v satisfy the generalized Cauchy-Riemann equations (see [35]), i.e., A —R;v,
axX; Ay -
Ov L 1 0 Ov )
and f)_y - — ; a—Tjij. IfY = (2,y), then ma—yv(ﬂ/) =A,B. f)_y = (using the
summation convention)
0? 0? d a0 B 0
(—QB + —B)—v = ——5B-—v— i +
0} oy? oy dxs  dy Ox;0y dy
7> _JdR;v  9*B 0
+ - . Rv.
Ox;0y  Jy dy* Ox;
Let now ey,¢eq,..., €, 1,¢, be the standard basis of R”, with e, pointing in the direction

of the y axis. Then, we can rewrite the right-hand side as

( B —9’B ~0’B ”23219
010y’ dx0y’ 7 Oxy_q 0y’ 7, (7"1'?
”‘i< 9*B “ I*B

mﬁna VB77)> — 2:<(()—y2€77 VR77)>

),V?))—I—

=1

j=1 j=1
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’B 0*B
— 2 _ a2 _ 42 —1 52RB g (7

Tet & = ( — 28 OB o°B a2 .= e, — ——e;. Note that
4 ( 8.77191/7 8.77291/7 Ll 89777,7181/7 2'7:1 f)qﬂ? >7 6,7 (()777(():[/ n (f)yQ 7

div 6} =0, and div @ = 0, and that

R T T KA Z / ER

—/SDD(P) (&(P), N,)do (P +Z/ Riv(P) - (3;(P), N,)do(p),

by the divergence theorem. This can be rewritten as

a 0 a 0
—ni(P)=— B(P — Ny, ——B(P — v(P)do(P
/w[( (P P = Q) 1P BP = Qo P)n(P) +
a 0 0*
+Z/ P PP~ Q) = (P PP = QU Pda(P)
Hence
0
—o(Y)dY =
e Jo 7 aT 0y )
= —ni(P)— VB(P — N, N, (P)=—(VB(P —Q, No)|v(P)do(P
[ P g o (VB = Q). No) +na(PIAT (VBP — QN P)da(P) +
n—1 (r) 82
nmn(P)—r (Y B(P — Q), No) — ny(P)2(VB(P — Q), Ng)Ryv(P)do(P).
+2/[ (P 7 (T BUP = QU Na) = ny(P) S (T B(P — Q). No) yo(P)do( P)
But, by the th f Coif McIntosh-M 3 0 aBP is the kernel
ut, by the theorem of Coifman-McIntosh-Meyer, LLf)—Rf)RTQk (P — @) is the kerne

of a bounded operator in L2(9D,do). Thus,

(f) n—1
f)NQ H Y — Q|n 29y — ()Y | < C{|lvl1290,00) —I—ZHRva D.do) }-

7=1

Finally, we invoke a result of Dahlberg (|8]), who showed that

| Bsvllr2m.40) < Cllollr2om.d0)-

This concludes the proof of 2.3.3.

As a final comment, we would like to point out that in this exposition we have emphasized
non-tangential maximal function estimates, but that optimal Sobolev space estimates also
hold. For example, the solution @ of (2.1.1) is in the Sobolev space H'/?(D), the one of
(2.1.2) in the Sobolev space H*?(D), and the same is true for @ in 2.1.3 ¢). The solution
of (2.2.1) is in H'/2(D), while the one of (2.2.9) is in H*?(D). Finally, the solution u of
2.3.1isin H¥2(D). All of these results can be proved in a unified fashion using a variant of
the proof of Lemma 2.1.11. The details will appear in a forthcoming paper of B. Dahlberg
and C. Kenig [10].
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Hardy spaces and the Neumann Problem in L” for
Laplace’s equation in Lipschitz domains

By Bjorn E. J. Dahlberg*and Carlos E. Kenig*

1. Introduction

The purpose of this paper is to give optimal results for the solvability of the Neumann
problem in Lipschitz domains with data in L.7. We also obtain corresponding end point
results for Hardy spaces. Qur main theorem asserts that if D C R”,n > 3, is a bounded
Lipschitz domain with connected boundary, then there exists e = (D) > 0 such that, for
all f € IP(0D,dr), with 1 < p < 2+¢, and [, fdo = 0, there is a unique (modulo
constants) harmonic function « in 1) with

(1) VT < oDl
and
(1.2) @ = f on 9D.

on

Here o is the surface measure on 9D, and M(Vu), the non-tangential maximal function

of Vu, the gradient of w, is defined, for Q) € D by (for example)

(1.3) M(F)(Q) = sup{|F(X)|: X € D,|X — Q| < 2 dist (X,aD)}.

It is known (see [4]) that if v is harmonic in a Lipschitz domain and M(v) < oo a.e. on
dD, then v has non-tangential limits a.e. on dD. Here “almost everywhere” is taken with
respect to the surface measure on @D, and the existence of the non-tangential limit means

that }](imQ v(X) exists and is finite for all a > 0, where
—

X eTa(Q)
T(Q)={X €D |X Q| <(l+a)dist (X,0D)}.

Consequently, if (1.1) holds, then Vu has non-tangential limits a.e. on @1, and the meaning
of the generlized normal derivative du/dn in (1.2) is the limit of (Vu(X),n(Q)) as X —
Q) € dD non-tangentially. Here (A, B) denotes the inner product in R", and n(Q) the
unit normal to D at Q. As is well known, n((Q)) exists for a.e. @, since D is a Lipschitz
domain.

*Both authors were supported in part by the N.S.F.
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The result was first established for the case p = 2 by Jerison and Kenig (|13]) and for
the case of C'' domains by Fabes, Jodeit and Riviere ([7]). Our extension of the Lipschitz
domain case to the range 1 < p < 2+ ¢ is done by two different methods. The extension to
2 < p < 24¢is done by a real variable argument, using the result for p = 2, and a variant of
the 'good A inequalities. The extension to 1 < p < 2 is accomplished by establishing that
for f € HL(AD), the atomic H' space on 9D, there exists a unique (modulo constants)
solution u of the Neumann problem with data f which satisfies

| M (V)| 11 4oy < C(D)| f]

H;’t(ﬁ)D)-

This is proved by estimating the non-tangential maximal functions of gradients of the
I*solutions with data atoms. We do this in turn by using the regularity theory for
uniformly elliptic operators in selfadjoint form. The full result then follows by interpolation.
Combining our estimates for atoms with the techniques in [8], we are able to obtain a
generalization of the Stein-Weiss theory of Hardy spaces, valid for Lipschitz domains in
R”. This generalizes the results for C'' domains in [8], and some of the two dimensional
results in [14].

The range 1 < p < 2+ e is optimal for the Neumann problem. The estimate (1.1) fails
for p = 1 even for smooth regions (Hardy space results are the appropriate analogue).
Moreover, for each pg > 2 it is possible to construct a Lipschitz domain D, for which (1.1)
fails for p = pg. (See for example [16] for the relevant examples.) The situation is similar
to the case of the Dirichlet problem (see Dahlberg, [5]), where one has for the solution u
of the problem Au=01in D, u = f on 9D,

(1.4) M (u)lre a0y < (D)l 10 (d0)s

whenever 2 — ¢ < p < oo for an ¢ = (D) > 0. The relationship between the results (1.1)
and (1.3) can be best understood by the use of the method of integral equations. For f on
aD, let

D) =~ [ @)X QP io(Q)

T oz o g

be the double layer potential of f, and let

SN = s [ QX QP de(Q)

be the single layer potential of f.

A consequence of the boundedness of the Cauchy integral on Lipschitz curves (see Coifman,
McIntosh and Meyer [2]), is that M(D(f)) and M(VS(f)) take LP(do) into LP(do), 1 <

p < oo. In the classical case when the domain 1) is smooth, one can use the Fredholm theory
to see that the operators D(f)|ap and (0/9dn)S(f)|an are invertibleon LP(do), 1 < p < oo.
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This is the result that was extended to "' domains by Fabes, Jodeit and Riviere [7], using
the work of A. P. Caldeén [1.A]. However, this compactness argument does not extend
to the case of Lipschitz domains (see for example [16] for simple couterexamples). The
invertibility of the layer potentials for general Tipschitz domains was established in 1.%(do)
by Verchota. As a consequence of (1.1) and the analogous estimate

(1.5) M (V)| re@ey < Co DIV Tfll1r00), 1 <p<2+e,

e = &(D), where wu is the solution of the Dirichlet problem, and V¢ denotes the tangential
gradient, we are able to establish that the operator f — D(f)|sp is one-to-one and onto
on [P(do),2 — & < p < oo, and that the operator [ — (9/dn)S(f)|an is one-to-one and
onto Li(do),1 < p < 2+e, where

Ly(de)={fe I’(do): | fdo=0}.
Jan
This is again the optimal range of p’s in both cases.

At this point we would like to point out that the case p =2 of (1.5) is due to Jerison and
Kenig [13], while the general case is due to Verchota [25]. Here we will also give a new
proof of (1.5), analogous to our proof of (1.1). We will also present endpoint results on
the invertibility of D and (9/dn)S on BMO and H), respectively. For a more complete
description of these results, we refer to the body of the paper.

Capitial letters X, VY., 7 will denote points of a fixed domain D C R”, while P, will be
reserved for points in @D. Lower case letters z,y, z are reserved for points in R”™', while
the letters s, ¢ will be reserved for real numbers. As was mentioned before, in the sequel we
assume that n > 3. The results remain valid when n = 2 with the obvious modifications.

2. The Neumann problem on graphs

We begin by treating the case when
D= {(ry) €R" y> o). r € R},

where ¢ : R"' — R is Lipschitz continous; i.e., |¢o(2) — o(2’)| < m|x — /).

We start out by reviewing the Neumann problem with data f € L*(A), A = dD. Let us a
priori assume that f is bounded and has compact support.

IJet
/ ' ’ wn(n/ ) JA ’ / ’
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be the single layer potential of f. Since u is harmonic in ), we have the identity

%,
(2.1) div (|Vul*e — Qa—UVu) =0,

where e = (0, 1).

The results in [2]| show that

IM(Vu)llrzay < ClF Nl

Since Vu(X) = O(|X|'"") as X — oo, it follows from (2.1), the estimate above, and the
divergence theorem applied in the domains D,. = {(z,y) : y > ¢(z) + &, |2|> + y* < p*},
that

Ju  Ou
2 — _ e —
(2.2) /A (IVul*(e,n) 25 ay)d(r 0,

where the derivatives on A are taken as the non-tangential limits from D), of the corre-
sponding expressions in D. This is the Rellich (|21]) identity on A.

To exploit (2.2), let Ty (), Ty(x), ... ,T,—1(2) be an orthonormal basis for the tangent plane
to A at (z,¢(x)). The T;(x) exmt for a.e. z. lLet

|Voru(x, o(x Z| (Vu(z,p(x)), Ti(z))]*.

A well-known argument (see [15], Corollary 2.1.11 for example) shows that there are con-
stants ¢, ¢3, that depend only on the Lipschitz constant m of ¢ such that

(2.3) /‘@‘ do < /|VT7/,|2d(r< Cy / ‘@‘ do.
A

Note that in the above estimate the values of the derivatives of u are taken as the limits
from above the graph, but the same estimate can be obtained by taking limits from below
the graph. et now T f and T_f denote the normal derivatives of Sf as a function in D
and R"\ D respectivly.

We then have (see [15])

(2.4) 1T fllr2ay = ell fllzzay

where ¢ = ¢(m). To establish (2.4), we recall the classical jump relation T+ 7T = I, where
[ is the identity operator (again, see [15] for a proof of this in our case). To prove (2.4) we
only need to remark that |Vrul? is continuous a.e. across A (see [15]). Thus, (2.4) follows
by application of (2.3) in D and R™\ D, together with the jump relation. The boundedness
of T (|2]) together with (2.4) immediately show that T'is one-to-one, with closed range.
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To see that the range of T is all of L2(A), welet U : L*(R” ") — L*(R""") be the pullback
of Tie, Ug="T(goF ")o I, where F': R"' — Ais given by F(x) = (z,¢(x)). Letting
Us denote the operator corresponding to the graph of  — sp(2),0 < s <1, we see easily,
using the results in [2], that ||Us — Us, || < Cls—s1],0 < 5,81 < 1. (See [15] for the details.)
Since Uy = 31, the continuity method shows that /3, and hence T, is onto (see [15], Lemma

2.1.6).

Theorem 2.5. Given any f € L*(N) there is a harmnonic function u in D such that
| M(Vu)|lr2ay < Cm)|[ fllr2ay, and du/dn = f a.e. on A, in the sense of non-tangential
convergence. Any two such harmonic functions differ by a constant. Let ¢ = T 'f. If
n >4 one such function is given by S(g). If n =3 one such solution is given by

74Xj—-éng@@ﬂX’QP”LK)QP7?WﬂQ%

where Xo is any fized point in R™\ D.

Proof. The existence part and the representation formulas follow from the invertibility
of T, and the results of Coifman-McIntosh-Meyer [2] mentioned before. Tt remains to
establish uniqueness. We present here an argument which will be very useful for us later
on in treating the I? case 1 < p < 2. Let w be harmonic in D, with M(Vw) € L*(A),
and dw/dn = 0 a.e. on A. Note first that '/‘DR |IVw|?dX < CR, where Dp = DN {(x,y) :

|7|? + y* < R?}. Consider now the hi-Lipschitzian mapping ¢ : D — R"™\ D given by

P,y) = (v, 0(x) — [y — p(2)]) = (2, 2¢(x) — y).

Define w* on R” \ D by the formula w* = wo ¢ '. A simple calculation shows that
in R” \ D, w* verifies (in the weak sense) the equation div (A(x,y)Vw*) = 0, where
Az, y) = /[T X)) (X))o (X)), where X = ¢ '(x,y), ¢ is the Jacobian matrix of ¢,
and J¢ the Jacobian determinant of ¢. It is easy to see that A € L>*(R"\ D), and
(A(z,9)E, &) > C€)?, where C' = C'(m). Let now

_ ! for (m,y)E D
W%W{Aww>%wﬁw€RWD

and extend w(x,y) to all of R” by setting it equal to w*(z,y) in R"\ D. Since M(Vw) €
L*(A), and dw/On = 0 a.e. on A, it is easy to see that the extended w is a weak solution
in all of R™ of the divergence form elliptic equation with bounded measurable coefficients
div B(z,y)Vw = 0. The extended w also satisfies the estimate ~[ITI<R |IVw|?*dX < CR. By

the Poincaré inequality we see that

/ lw —wr|?’dX < CR?,
JIX|<R
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where wp is the average of w over the ball |X| < R. By the theorem of De Giorgi-Nash
([6], [20]) w is locally Hélder continuous in R™. By the > estimate of Moser (|19]), it
follows that

sup |w(X) —wp| < C(R™" / |w—wR|2dX>1/2§C.
J|z|<R

|z|<R/2

Therefore, the oscillation of w over the ball of radius R remains bounded. By the Liouville
theorem of Moser ([19]) w is a constant. This finishes the proof of Theorem 2.5.

In order to pass to the LP theory, we need to recall some definitions. An atom a is a bounded
function on A with support in a surface ball B = B(Q,r)={P € adD :|P— Q| <r}, such
that [|a||e < 1/0(B) and [ado = 0. The atomic Hardy space
H (AN ={feL'(A): f= Z Ajaj, where a; is an atom and > |);| < oco}.
has norm, for f € H!(A),
A,y = infO> [N f =) Naj,a; atoms}.

For general facts concerning atomic Hardy spaces, see the survey article by Coifman and
Weiss ([3]). In the next lemma we study the action of the gradient of the single layer
potential on atoms. The lemma can be proved if one combines the arguments in [3] with
the results in [2].

Lemma 2.6. et a be an atom on A, and [ = M(VS(a)). Then,

a do < (C

(a) [ 1im<c.

(b) ([ £ao)( [ r@iQ -0 < c.
JA JA

aAq aAq
: Ndo = _
(c) | gatarte = [ 55

((]’)do-:ov ]Sjgnilv

where C' and e > 0 depend only on m, (), is the center of the support of a, and the tangential

vector fields T, are given by Ty = (0,...,1,0,...,00/d2,)(1 + |V|*) "2, where the 1 is
on the jth slot.

We will now establish the analogue of Lemma 2.6 for the solution of the Neumann problem
with data a. This is the central point of our paper.
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Lemma 2.7. Let a be an atom on A and let v be a solution in DD of the Neumann problem

with data a, given by Theorem 2.5. Let f = M(Vu). Then,

() / fdo < C,
() ([ san)( [ @i @m0 ) <,

(c) Af%%@@m‘w<0,

where C' and e are positive constants which depend only on m.

Proof. Because of the translation and dilation invariance of the estimates, we can assume
supp a C {(z, (7)) : 2] < 1}Q, = (0,0) and [la]l.. < 1. Pick g € L*(A) such that
AS[/0n(g) = a on A. We clearly have ||g||72a) < C. Let

D™ = {(z,y) : |z < 2,0(r) <y < p(x) + 2}
We first claim that there is a constant €' = C'(m) such that for some choice of u we have
(2.8) lu(X)| < Cin D\ D~

In order to establish (2.8), we argue as in the uniqueness part of the proof of Theorem (2.5),
and extend u by reflection to R"\ D so that Lu =0in R"\ {(x,¢(x)) : |2| <1}, where .
is a uniformly elliptic operator in divergence from, with bounded measurable coefficients.
(Here we use the support property of a.)

Assume first that n > 4, and let u(X) = S(g)(X) in D. By the reflection, and Schwarz’s
inequality, we have that |u(X)] < C in {X € R” : dist (X, A) > 1}. Let w = max{0, |u| —
c}. w is a non-negative subsolution of I in R\ {(x,¢(x)) : || < 1}, and there is a
constant d > 0 such that for all n-dimensional balls B centered in R" \ {(z,y) : |z| <
2, ly — p(x)| < 2}, of radius rg = ro(m), we have that [{X € B : w(X) = 0} > d.
Furthermore, on such balls B, .fB |[Vw|* < C, by the % estiamte for the non-tangential
maximal function of Vu. Therefore, by a standard variant of the Poincaré inequality, we
have [,w® < (. The sub-mean value inequality for L-subsolutions ([19]) now establishes
(2.8) in the case n > 4. It remains to show (2.8) when n = 3. In this case, we let, for
X e Dou(X)= [ g@HIX=QP " —|Xo— Q" "}do(Q). Schwarz’s inequality now shows
that |u(X)] < Clog(24dist (X, A)) whenever dist (X, A) > 1. Let now X = (2,y) and set
w(X) = max(|u(X)] — ¢,0) for y > p(x) 4+ 1, and 0 otherwise. If ¢ is chosen large enough,
then w is zero in a neighborhood of {(z,y) : y = ¢(x) + 1}, and so w is a subharmonic
function in all of R™. If I'g = {(=,y) : y + yo > —2m]z|}, then w is 0 on 9T if yq is large
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enough, and w has logarithmic growth at oco. By the Phragmen-Lindel6f Theorem (see
[17]), w is identically 0, which yields (2.8) as in the case n > 4.

et g be the fundamental solution of I in R”, with pole at 0. As is well-known, there are
constants (1, and Cy which depend only on the ellipticity constants of 1. (and hence only
on m), such that

CIXP < g(X) < Gyl x>

(see [18]). By (2.8) and the asymptotic expansion of Serrin and Weinberger (Theorem 7 of
[22]), there are constants «, 3,7, and Rg,0 < v, Ry, such that

u(X) = ag(X) + B+ o(X),

for X € R"\ {(z,¢(2)) : |2| < 1} where [o(X)] < 4|X|> ¥ for |X| > Ry, where v
can be bounded in terms of m, while a, 3,7 and Ry can be bounded in terms of v and
||| 7,00 o\ =) We next claim that o = 0. To show this, we recall that if I, = div BV,
Theorem 7 of [22] shows that o = b [(BVu, Vi), where b is a constant that depends on ¢,
and 1 is any C'™ function on R”, which is 0 for |z| < Ry and equals 1 for |z| > Ry > R,.
Let R be large, and set, for 0 < 7,

D(r) = {(z.y) : () +7 < y < pla) + R, |2] < R}.

Clearly, for R large enough, ©» =1 on A(r) = dD(7) — B(7) where B(1) = {(x,¢(x)+ 1) :
|#] < R}. Hence,

/D<BVU,VL/J> = /D<vu,w;> = lim /D(T)<vu7v¢>

T—0

ou ou
=0 ./an(f) v In =0 ./an(f)w ) on
_HTT(])/ (;/)])%—/(;/)])ad(r—().
70 JB(r) noJa

By our construction of B (see the proof of Theorem 2.5), .[R"\D<Bv“’7 Vi) = [(Vu, V;/M)%
where ¢ = 1) 0 ¢. This quanity is also zero. Let

a(R) = / M(Vu)?de,
JAR)
where

A(R) = {(z.¢(r)) : R < || < 2R},

and let

a(l) = / M(Vu)zd(r.
i )ilri<2)
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By Theorem 2.5, a(1) < C||(1,||%2(A) < (.

For @ € A let v(Q) = {X € D : |X — Q] < 2dist (X,A)} and for Q@ € A(R) set

(@) ={X €1(Q): |X — Q] < R}, %2(Q) = 4(Q) \ m(Q), and My(Q) = sup{[Vu(X)]| :
X € (@)}, 1 = 1,2, Observe that if X € (@), then u is harmonic in B = {V :
|V — X| < §R}, where § = 6(m) is small enough, and supy g [u(Y)— 8] < CR>"". Since
Vu(X)| < CR' [ |u(y) — BldY < CR'™"", it follows that

(2.9) / (My(Vu))’de < CR'"™" %,
JaR)

Forr € T =1[1/4,1/2], set
Q. ={(v,y):p(x)<y<elz)+ R, TR < |z| < T 'R),
where 0 is chosen so that for ) € A(R>vm ccQ,

From the > Neumann theory for bounded Lipschitz domains (|13]), it follows that

/ M, (|Vul)’de < C / <@>2d(r <C / |Vul*do,
JA(R) ad Jog.nn

Jagq, n

with €' depending only on m, since du/dn on A, N AD. Integrating in 7 on [ yields

/ M, (|Vu)*)do < CR™ / |Vul?dX
NG

Sy 1\ 2

<CR? u?dX < CR'™ %,

JCyR<|2|<Co R

where the next to the last inequality follows from the inequality of Caciopolli for solutions
of Lu =0 (see [12], for example). Putting this together with (2.9), we see that

/ M(Vu)’doe < CR'™™™%,
NG

which easily yields the lemma.

We shall next study the boundary value properties of harmonic functions in D, with

M(Vu) € L'(A).

Lemma 2.10. Suppose that u is harmonic in D, and M(NVu) € L'(N). Then, Vu has

non-tangential limits a.e. on A, and if Ou/dn = (Vu(Q),n(Q)), then duj/on € H],(A),
with

(2.11) H@

on

S CH M(VU)HTJ(A).
Hai(A)
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Proof. We first remark that by the extension theorem of Varoupoulos (|24]), given ¢ contin-
uous and with compact support in A, there is a continuous function G in D, which agrees
with ¢ on A, which has bounded support, and such that |[VG|dX is a Carleson measure,
with Carleson norm bounded by C'(m)||g|lgmo(a), i-e., for all Q € A, and all » > 0, we have

/ IVGIdX < C(m)r™ | gllsmoay,
J{XeD:|X-Q|<r}

where ||g][Bmo(a) s the smallest constant v, such that for all surface balls B on A there is
a constant B(B) such that

/B|.qx3<B>| < vo(B).

The existence of the non-tangential boundary values of Vu follows from [4]. For 7 > 0 let

(X)) =u(X +(0,7)). Then,

ou . ..
‘ Ag%d(r = ll_T}T(]) /. 95, do
= lim /<VG7 VuﬁdX‘ S CHQHRMO(/\) / M(Vu)d(r,
=01 p JA

by the basic property of Carleson measures (see [11]). Recall now that VMO(A) is the
closure in BMO (A) of the space of continuous functions with compact support, and that

the dual space of VMO (A) is H},(A) (see [3]). This concludes the proof of the lemma.

We are now in position to solve the Neumann problem on a lLipschitz graph, with data in

(M),

Theorem 2.12. et f € H),(N). Then there exists a harmonic function u in D with
M(Vu) € L'(A), and Ou/dn = [ non-tangentially a.e. on A. The function u is unique
modulo constants. Furthermore, there are constants Cy = Cy(m), Cy = Cy(m), Cy = Cz(m)
such that

Chll f] HIL(A) S ||M(v“)||fﬂ(A) < ol f] H1(A)
and
ou
— < Call flla, )
. Lo

Proof. The exisatence of u follows directly from Lemma 2.7 (a). In order to show unique-
ness, let us assume that w is harmonic in D, M(Vw) € L'(A), and dw/dn = 0 non-
tangentialy a.e. on A. We want to conclude that w is a constant. From the sub-mean value
property of |Vw| it follows that

IVw(X)| < C{dist (X, A)} "
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Therefore, adding a suitable constant to w, we have
lw(X)] < C{dist (X, A)}>".

For 7 > 0, let w,(X) = w(X 4 (0,7)). By the estimates above, Sobolev’s inequality and
the assumption on M(Vw), we have that

/‘M%“nwﬂnmdg<<(1
JA

with ' independent of 7. Let now I be the divergence form operator used in the proof of
Lemma 2.7, and let G(X,Y) be its fundamental solution in R™. Fix X € D, |X| < R, and
let ¢ € C5°(R™), be identically 1 for |X| < R, and 0 for |X| > 2R. We can also assume
that R|V|+ R*|Av| < O, where (' is independent of R. Tet G(Y) = G(X,Y)+G(X*,Y),
where X™ is the reflection of X. Then,

me—/aw%wwfh%%w
JA on JA 0

n

+ / G- {2V, Vw,) + w, A }dy
JD
=T+ TT4+17T1I.

Set F'(R)={X: R < |X|<2R}. Then
|II| < CR'-" / |w7|d(r < C<R1fn / |u)7_|(n71)/(”‘*2)d0'>(n*2)/(n*1) 0
JAAF(R) JAAF(R)
as R — oo, and
|fff|<(]/ R1”’|Vu}7|dY—|—0/ R |w,|
JDNF(R) JDNF(R)

< CR>" / M(Vw)do + C(Rin / |w7_|(n71)/(nf?)dy>(7172)/(n71)
Ja JDAF(R)
— 0 as R — oc.

Hence

w(X) = /AG %:(](r

Since G € L(A), the dominated convergence theorem shows that w(X) = lim, jow-(X) =

0. The estimate || M(Vu)|[ria) < Coll fllg (a) follows by construction, while the estimate
Cilf ~
the estimate ||0u/0T}|
f((f)u/(f)ﬂ)d(r = 0. We see that this follows by considering the functions w,.,7 > 0, and

then passing to the limit. This fact, togther with (b) of Lemma 2.7 shows that du/dT; is
a molecule and the estimate follows by the general theory of [3].

m oy < M (Vu)|[riay follows by Lemma 2.10. Finally, it is enough to establish

mony < Callfllm ) when fis an atom. One first shows that

We shall now treat the Neumann problem with .7 data.
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Theorem 2.13. There exists a positive number ¢ = &(n,m) such that for all [ €
LP(N),1 < p < 24¢ there is a harmonic function w in D with || M(NVu)|[rra) < Cl flrea)
and Ou/0n = [ non-tangentially a.e. on N. Furthermore, u is unique modulo constants.

Proof. We first remark that uniqueness for 1 < p < (n — 1) follows by the same argument
as in the uniqueness part of Theorem 2.11. The case n = 3, p = 2 of uniqueness is proved
in Theorem 2.5. The case n = 3,2 < p < 2 4 ¢ of uniqueness will be treated later
on. Next we note that existence, in the range 1 < p < 2 follows by interpolation. We
shall now treat existence in the case p > 2. We remark that this in fact follows from
an abstract argument of A. P. Calderén ([1.B]). We present here an alternative proof,
which also yields uniqueness. Tet f € L>(A) have compact support and let u be the I
Neumann solution with data f, given by Theorem 2.5. Let H = {(x,y) € R",y > 0}
and ¢ : H — D be given by ¢(x,y) = (v,y + ¢(x)) where ¢ is a bi-Lipschitzian mapping
between H and D. Put v = Vuo ¢, and for x € R" ", set m(z) = SUp.,(, [v], where
y(x) =A{(2",y) € H:y > |z’ — x|}. Similarly, set v*(2) = {(«',y) € H : ay > |2/ — 2|},
and m*(x) = sup..(, [v|, where a € (0,1) is a number to be chosen later. Our aim is to
show that there exists ¢ = e(n,m) > 0 such that, if 0 < § < e, then

(2.14) / m*Mde < C / o
JRP! JA

This clearly yields the desired existence results, in the range 2 < p < 24 . In order to
establish (2.14), we need to introduce a bit more notation. Let g(x) = fo¢(z,0), v € R* ',
and h(x) = sup,(1/|7] f,,(]er//:)”Q7 where the sup is taken over all cubes T in R™', that
contain x. Finally, for A > 0 let £\ = {# € R" " : m*(2) > A}. We will show that, for o

sufficiently small,
(2.15) / < ON? + Ca / m2dz.
. {Tn*>k;h§k} . {T)’L*>A}

Let us assume (2.15) for the time being, and use it to establish (2.14). From (2.15) it
immediately follows that, if o is chosen sufficeintly small,

+ C/ m2dax.
JL{h>AINF,

I.et now & and N be positive numbers. Then,

/R [min{m, N}**'dx = 5/NA“(/ m2dar)d>

0 J{m>A}

Fi

Fi

/ midy < C\?
JHy

N N
< 05/ A5+‘|EA|dA+C($/ A“(/ m>dx)d.

0 J0 JL{h>A}

Fi

< Cu[{m > A}], and so

By a classical argument (see [11]),

/Rn1 [min{m, N}]2+5d,7: < C6/(246) / [min(m, N)]2+5dm

JRr

+C / min(h, N)'m?dz.
JRn—
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Thus, if we choose § small enough, we have

/ [min{m, N}]**ds < C / him2d.
JRn—1

JRr

The boundedness of f implies that A is also bounded, and hence the right-hand side is
finite. By monotone convergence, we see that

/ m> T dy < / homidr < + o0
JRr—

JRn

(2.14) now follows from Holder’s inequality and the fact that fan B2t < C.f/\ FHde. Tt
remains to establish (2.15). Let {/;} be a Whitney decomposition on Ky, such that the
cubes 3/, C Ky, and {31} has bounded overlap (see [25]). Here 37} denotes the cube with
the same center as [, and sides 3 times those of 1. We are only interested in Whitney cubes
I such that N {h <A} #£0. For2 <7 <3 let I, ={(z,y):x€7l,0<y<7i(l})},
where 1(1;) denotes the side length of I,. For a set F' C H, we let I = $(F). Clearly
f;w is a Lipschitz domain, with Lipschitz constants bounded independently of &k, 7. Since
I is a Whitney cube, there exists a point a2, € R* "\ E\ with dist (2, I) < C,I(1y).
Put Ay, =0l Ny*(2x), Brr = (0.0 H)\ Ag .. Since 7 € (2,3), the height of By, is
bounded by Cal(1y), i.e., sup{y : (z,y) € Br.} < Cal(l). Also, [v] < X on Ag.. Since
I {h <A} # 0, we have

Nde(r <e / g dr < CN|1).
J 371

J 31

From the .2 Neumann theory for bounded Lipschitz domains, applied to f;w ([13]), we
find that

O o
midr < C/ — ) do
/Ik ‘ Jaio &)

<C/ |Vul?do + CX?| 1,

- Bk,r
where mq(2) = sup{|v(a’,y)| : |# — 2’| < y < 0I(I})}, and § > 0 is chosen so small that
{X e H:|X —(2,0)] <0l(I)} is contained in [} ., for all 2 € I, 7 € (2,3).

If o is chosen small enough, then, for all @ € I, we have that

VX)) s o = 2| <y < OI(Te)} C v (x),

and so, for all 7 € (2,3), we have

/ m’dr < C/M |VulPdo + CN*|1].
J T

- Bk,r
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Integration in 7 from 2 to 3 gives
/ m*dr < Ca / m>dr + CN*| 1],
J J 371

which gives (2.14) by additon of k.

For the uniqueness, in the case n = 3,2 < p < 2 + ¢, note that, keeping the notation we
used above, if M(Vu) € 7.2 < p <2+ e, and du/dn = 0 non-tangentially a.e. on A, the
argument used before shows that

F\].

/ midy < C\?
JHy

But then,

/ m T dr < / SN / m’dz)d)
. Jo JE,

< / SN T Hm > MHdN < C5(2+6) ! /m2+5dr1:7

0

which shows that m is = 0 if § is small enough.

3. Regularity properties for the Dirichlet problem on
graphs

We continue treating domains of the form D = {(z,y) e R" : y > p(x), x € R" '}, where
¢ : R"" — R is Lipschitz continuous, i.e., |p(z) — p(2')] < m|z — 2/|.

We will say that f € L7(A), 1 < p < oo, if g(x) = f(x,¢(x)) has a gradient in LP(R"").
It is easy to check that this is equivalent to the fact that if /' is any extension of f
to R", [V¢F| (defined as in the remarks following (2.2)) belongs to LP(X). Tt is also
easy to see that this is equivalent to the fact that, for any extension F of f, 3F/3f77 ] =
1,...,n—1, belong to LP(A), where Ty,...,T,_, are the vector fields introduced in Lemma
2.6. Moreover, (()F/(f)fj is independent of the particular choice of the extension F, and
depends only on f. We put || f|lzpa) = [[Vagllrr@n—1). Clearly, L7(A) is a Banach space
modulo constants.

We start out by studying the properties of the single layer potential on the L(A) spaces.
The following lemma is the graph version of results of (. Verchota ([25]).

Lemma 3.1.  The single layer potential S maps L*(A) onto Li(A) boundedly, and has a
bounded inverse.
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Proof. The boundedness follows by the definition of L(A), and the theorem of Coifman,
McIntosh and Meyer ([2]). From (2.3) and (2.4), it follows that

%,

(3.2) 178Dl > 1|5
n

SO = Clflen,

I2(A)

The lemma now follows as in the L2-Neumann case.

Theorem 3.3.  For every f € L2(N) there is a harmonic function u in D with M(Vu) €
L2(A), and such that f)?//f)T = f)f/f)T non-tangentially a.e. on Aj1 < 57 < n — 1.

Furthermore, u is unique modulo constants, and
IM(Vu)|lz2eay < ell fllrza)

where C' = C(n,m).

Proof. The existence follows from Lemma 3.1. To show uniqueness, it is enough to show
that if « is harmonic in D, M(Vu) € L*(A), and (f)u/(f)ﬂ =0,7=1,...,n—1 non-
tantentialy a.e. on A, then u is a constant. By our assumption on u, |Vru| =0 a.e. on A.
By the uniqueness in the Neumann problem (Theorem 2.5),

u(X) = ﬂ+/</mx 01" — |Xo — QI "}do(Q).

where X € R”\ D, and g € I.*(A). By (3.2), g = 0, and so u is a constant.

A vector-valued function A : A — RV is a vector-valued atom if A is supported on a
surface ball B={P € A : |[P—Q| < r} for some Q € A, and r > 0,||A|[122) < {o(B)} /2
and [, Ado = 0. We say that f € H{ ,(A)if there are functions f; € L¥(A) with

0
<8T1 Iis a—Tfj’ . 73?“]2)

being vector-valued atoms and
3.3 , k=1,...,n—1, Al < oo
(33) anf Z; an7 >l

We also set || f[lg (ay = inf Y7 [A;], where the A;’s are as in (3.4). Note that H{ ,,(A) is a

Banach space modulo constants.
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Lemma 3.5. The single layer potential S maps H,,(A) into H{ (A) boundedly.

Proof. The proof is standard and will be omitted.

Theorem 3.6. Given f € H! _(A) there is a harmonic function u in D with M(Vu) in

1,at
LY(A), and Ou/OT; = df/0T;, 7 =1,... ,n—1 non-tangentially a.e. on A\. Moreover u is
unique modulo constants, and

IM(NVu)llraoy < Ol ay-

1,at

Proof. For the existence part of the theorem, it is enough to assume (0) = 0, and to show
that if (0f/0Th),...,(0f/IT,_1))is a vector-valued atom supported in {Q € A : |Q] < 1}
and u is the L7 solution of the Dirichlet problem with data f, given in Theorem 3.3, then

M)l n) < €

where (' depends only on the Lipschitz constant of A. By adding a suitable constant to f,
we may assume that f has support in By = {Q € A, |Q| < Ry} where Ry depends only on
the Lipschitz constant of A. Furthermore by Sobolev’s inequality, || f||72(a) < C. By the L2
theory for the Dirichlet problem (see [5]) [u(X)| < C = C(m) for X € D,|X| > 2R, and
u( X)) takes the boundary value zero continuously on A\ By. Let w(z) =0 for R\ D, and
w(X) = [u(X)| for X € D, so that w is subharmonic in R™\ B;. By the Phragmen-Lindelsf
theory (see [17]) we have |w(X)| < C|X|* ", where C' and « only depend on m, and
|#| > 2Ry. Arguing as in the corresponding Neumann problem, we obtain the existence
and the estiamte in Theorem 3.7. We remark that instead of the Phragmen-Lindelf theory
we could have used an odd reflection of u to extend u as a solution of Lu =0 in R™\ By,
and use the Serrin-Weinberger asymptotic expansion just as in the case of the Neumann
problem. To show uniqueness, we assume that u is harmonic in D, M(Vu) € L'(A),
and (f)u/(f)ﬂ = 0,7 =1,...,n — 1, non-tngentially a.e. on A. We must conclude that
u is a constant in D. As in the corresponding uniqueness theorem for the Neumann
problem, we have |Vu(X)| < C{dist (X,A)}' ", and after we add a suitable constant
lu(X)] < C{dist (2,A)}* . Thus, by Sobolev’s inequality, [, |2, | (=2 g < ¢, and
so u = 0 a.e. on A. By the uniqueness in the Neumann problem, it is enough to show
that f = 0 a.e., where f = Ju/dn. let b be a Lipschitz function on A, with compact
support. Let w be the harmonic extension of b to ). By the Phragmen-Lindelsf principle,
lw(X)| < C|X]2% for X € D, X large, where C' > 0,5 > 0. We will now show that for

s,t > 0 we have
ou Ow,
/wsﬁd(r = /ut - do.
JA (f)n g (f)n
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In fact, let R > 0 be large, and let
Qr = {(z,y) 1 2] < R,p(x) <y < @(z) + R}
We then have dQr = Agp U Sgr U Tgr, where
An = {(m o)) [r] < B).
Sk =A{(z,y): [z[ = R, p(r) <y < o(z)+ R},
and
Tr={(zy):|7| <R, y=¢(x)+ R}

Applying Green’s theorem in g, we see that

/ ws%d(r = / ut%d(r.
Jaqx an JaQr an

Since w, € L>(D), and N(Vu) e L'(A),

/ ws(Quy/On)do — /ws((f)ut/(f)n)d(r.
JAg JA

Also,
(f)“’t 2—n—56 pl—n pn—1
wy—-do| < CR™" "R "R —— 0,
JTs (f)n R— o0
while
(f)“’t 2—n—4
wy—-do| < R M(Vu)do ——— 0.
JSg (f)n JM\AR R— o0
2—n—4

Similarly, we know that, for s fixed |Vw,(X)| < C|X , and it is locally bounded in
D. Thus, since u; € L(”‘*])/(”‘*Q)(/\)7 u(Ow,/on) € L'(AN), and so fARut((f)ws/(f)n)d(r —
f/\ u(Ows/On)do. Also,

/ ut%d(r <CR¥™.R"0 . g 0,
Jr, On
while

12 D, C

_/ / i P | [Veo, | d X

R JR |Jsg an R JQr\QR

R27n75
C / g |[dX
R JQr\QR

R27n75 (n—2)/(n—1)
S C - (/ |fu/t|(n1)/(n2)dm> A Rn/n71
I JQoR

R27n75

IA

. R(n72)/(n71)Rn/nf1 — CRf%fnf(S 0.

R—o00

<C

Thus, by a choice of an appropriate sequence of R;’s tending to oo, the claim follows.
Letting t | 0 we see that f/\ wgfdo = 0, and then letting s | 0 we have f/\ bfdo = 0 as
desired.

125



Corollary 3.7. The single layer potential S is a bounded operator from H!,(A) onto
H1

{ at(N). Tt has a bounded inverse, whose norm depends only on the Lipschitz constant of

A.

We now turn to regularity results for the solution of the Dirichlet problem when the data
are in LY(A). This is a new proof of results of Verchota ([25]).

Theorem 3.8.  There exists a positive number ¢ = &(n,m) such that for all f € L7(A), 1 <
p < 2+4 e, there is a harmonic function w in D with M(Vu) in LP(A), and (f)u/(f)ﬂ =
(f)f/(f)fj7 73 = 1,...,n — 1 non-tangentially a.e. on N. Moreover, u is unique modulo
constants and

M (NVu)l[roay < ClUFllreeay

were (' depends only on p,n and m.

Proof. The case 2 < p < 2+ ¢ follows in the same way as in the Neumann case. Since S is
invertible from H ) (A) onto H{ ,,(A) and from L*(A) onto L(A), it follows by interpolation
that S is invertible from LP(A) onto LJ(A), 1 < p < 2, which gives existence for 1 < p < 2.
Uniqueness follows in the same way as in the H{ ,(A) case.

We conclude this section by giving the invertibility properties of layer potentials.

Theorem 3.9. There exists a number £ = e(n,m) > 0 such that S maps L?(\) boundedly
onto LY(N), with a bounded inverse, for 1 < p < 2+ &. Furthermore S is a bounded
invertible mapping from H,,(A) onto H| (N). The operators 0S/0n and D are bounded
and invertible on LP(A) for 1 < p<2+¢e and 2 — & < p < oo respectively. Furthermore
AS/dn is a bounded invertible mapping on H).(N), and D is a bounded invertible mapping
on BMO (A).

4. Bounded Lipschitz domains

In this seciton we will sketch the localization arguments which are necessary to extend the
results in the last two sections to the case of general bounded Lipschitz domains in R”.
The L? theory in the Neumann problem and the L2-regularity in the Dirichlet problem
have been treated in [13| and [25]. The L? regularity in the Dirichlet problem has been
treated in [25].

From now on we will assume that 1) C R”, n > 3, is a bounded Lipschitz domain such
that D* = R” \ D is connected. Atoms are defined as in the graph case, and the atomic
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Hardy space H!,(OD) is also defined as in the graph case. We say that f € L{(dD) if
f € LP(dD,do) and for each coordinate chart (7,¢), there are LP(7Z N dD) functions
g1y 5 Gn1 so that

/R h(x)g;(w, o(x))dr = / ih(m)f(mﬂo(m))dm

Rr»—1 (7”1‘7

for all h € C3°(Z NR™ ). Tt is easy to see that given f € LI(9D), it is possible to define
a unique vector Vrf € R”, at almost every @ € 9D so that |[Vrf|lr»an.d0) is equivalent
to the sum over alla the coordinate cylinders in a given covering of 9D of the L” norms of
the locally defined functions g; for f, occurring in the definition of L{(9D). The resulting
vector field, Vi f, will be called the tangential gradient of f. If F'is a function defined on
R”, V1 F is orthogonal to the normal vector n, and VF = NV F + (0F/0n) - n. In local

coordinates, Vrf may be realized as

(,(]1 ('777 99('77))7 ,(]2(777 99(‘77))7 - 5 Gn ('777 99(‘77))7 0)
—A{(gi(z,0(7)s -+ s o (2,0(2)), 0), M) (0 (0))

L7(0D) may be normed by ||f||r1§’(5)n) = ||f||r/v(5)n) + ||VTf||LP(9D)-

Before we proceed to define the space H{ ,,(0D), we will make a few remarks about it in

the graph case. We say that fis an H{ (A) — L* atom if fis in L7(A), it is supported

in a surface ball B, and A = ((3/dT\)f,...,(d/0T,_)f) (which automatically verifies
Jy Ado = 0) verifies || Al[72(a) < a(B)~"2. We say that f € ﬁ[:,at()\) if fe L=D/=2)(),
and there exist H{ (A) — L7 atoms f; and numbers A; with > |);| < 400, such that
f= E(;; A f;, where the sum is taken in the sense of L*=1D/("=2(A). Moreover, if f €

H! (M), there exists a constant ¢ such that f—c e H! (A). Tet ¢: R"™" — A be given by

1,at 1,at

o(x) = (z,0(x)). Then f € I':H’at(R”‘q) if and only if g(2) = C, [pn i (B(y)/]x —y|"*)dy,
where h € H| (R"7"). Tn fact, such g(z) clearly belong to L=D/ =2 (R} and TLemma

3.5 shows that they are in fact in A} (R""). Conversely, if g € I':IJ’M(I{”‘*])7 then

1,at

g(x) = Cu [onr(h(y)/]z — y[**)dy, where h(y) = 27:1 R;(0/9,,)g, where R; are the
classical Riesz transforms. Note that if we define H] (R""") by using H{ ,(R""") — L7

1,at
atoms, 1 < p < 0o, we obtain the same characterization of H] ,(R” '), which shows that
all these spaces coincide, and have comparable norms. The same fact of course remains
true for H

1,at

function with compact support in A, and [ € I':H’M(/\)7 then #f also belongs to I':H’at(/\).
Our final remark is that if f € H (A), and wu is the solution to the Dirichlet problem

1,at
constructed in Theorem 3.7, then u|x= f, in the sense of non-tangential convergence,

[ (u )2 de < O and |u(X)] < C{dist (X,A)}> ™. Moreover, the uniqueness

then follows without the addendum ’modulo constants’.

(A) This allows one to show in a very simple fashion that if 8 is a Lipschitz

We are now ready to define H{ ,(0D). We say that fis an H{ ,(0D)— L* atom if f is
supported in a coordinate cylinder (7, ), and if A is the graph of ¢, fisan H{ ,(N) — I?
atom. The space H (D) is then defined as the absolutely convergent sums of H{ (9D)—
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1.2 atoms, where the convergence of the sum takes place in the LO*=D/(=2(9 D) norms. Tt
is a Banach space, and if we replace .2 atoms by I” atoms, 1 < p < 0o, we obtain the same
space, with an equivalent norm. Also, if 6 € Lip (9D), and f € H| (0D),0f € H| ,(0D),
and, if f € H| (dD), then f € Le=D/=2(9D). Also, I2(OD) C Hi (OD), for any
1 <p<oo.

The non-tangential regions I',(Q),Q € dD, are defined as I',(Q) ={X € D:|X — Q| <
(1 + a)dist (X,9D)}, while the non-tangential maximal function M(w)(Q) = supxer, (o)
lw(X)|. Finally, we recall that a bounded Lipschitz domain Q is called a starlike Lipschitz
domain (with respect to the origin) if there exists p : S”~' — R, where ¢ is strictly positive,
and |p(0)—@(0")] <ml|0—0'],0,6 € S" ' such that, in polar coordinates (r,0),Q = {(r, ) :
0<r<ep)}

Note that if 1) is an arbitrary bounded Lipschitz domain, and (7, ¢) is a coordinate chart,
with ||[Ve|le < m, then, for appropriate § > 0,a > 0,b > 0 which depend only on m,
the domain D N U is a starlike Lipschitz domain with respect to Xq = (0,b6), where
U=A{(z,y):|x| <t <ad}.

Lemma 4.1. Let Q be a starlike Lipschitz domain, and let u be the [*-solution of the
Neumann problem with data an atom a, centred at Qg € ). Then, there exvists a constant
C', which depends only on the Lipschitz constants of D such that

(o) VTl < C.
(b) M(Vu)*|Q — Qo|" 'do < O,
Jag
(c) lullmy 00) < C,

if we subtract from u an appropriate constant.

Proof. We may assume that the size of the support of a is small. We may also assume that
QCc{y<p(x)} =D, where ¢ : R " — R is Lipschitz with norm depending only on the
Lipschitz character of Q, that 9QNAD D {|X — Qq| < rq} NIQ, where 7o depends only on
the Lipschitz characater of d€), that Qg is the origin and that supp a C {|X — Qo| < ro}.

Let v be the solution of the Neuman problem in D, with data a, given by Lemma 2.7, and
let w be the L?-solution of the Neumann problem in Q, with data dw/0n = 0 on QN ID,
and dw/dn = —dv/In|aq on AN\ (AN N ID). We clearly have u = v 4+ w, and from this

the lemma follows.

Lemma 4.2. el Q be a bounded, starlike Lipschitz domain, and let u be harmonic in €,
with M(Vu) € LY(IQ) and either Vyu = 0 or du/dn = 0 non-tangentially a.e. on 0.

Then, u is a constant.
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Proof. Assume first that du/dn = 0 non-tangentially a.e. on 9. We can show that u is a
constant using a variant of the uniqueness proof in Theorem 2.11, using a radial reflection
across our starlike surface.

If Vyu =0, is constant on 92, we have, if b € Lip (d9), and w is its harmonic extension,

that (with w,.(z) = u(ra))
/ ws%d(r = / ur%d(r.
Joo O Jag — On

Ifwelet r — 1, the right-hand side tends to 0, while the left-hand side tends to [, b(du/dn)
do =10, and so du/dn = 0 a.e. on J§). Therefore u is constant by the previous result.

We are now in a position to give the solution of the Neumann problem with H!,(9D) data,
for a general bounded Lipschitz domain D.

Theorem 4.3. et D C R” be a bounded Lipschitz domain. If u is harmonic in D, with
M(Vu) e L'(9D), then du/dn € H! (dD) and

(44) S C||M(VU)||L1(5)D).

Hai(91)

ou
on

If f € HY(OD), then there is a harmonic function v with M(Vu) € L'(OD) and Ou/dn = f

non-tangentially a.e. on AD. Furthermore, u is unique modulo constants, and

(4.5) IM (V)| am) < CILf]

A, (aD)

u can be chosen so that

(4.6) Il

1,at

@ny < Cllfllm ony-

Proof. As in the proof of LLemma 2.10, the estimate (4.4) follows from Green’s formula,
the extension theorem of Varopoulos (|24]|) and the fact that the dual of VMO (9D) is
H!.(OD). (See [8] for the exact form of the Varopoulos extension theorem that is needed
here.)

In the case when ) is a bounded starlike Lipschitz domain, the rest of the theorem follows
from Lemma 4.1 and Lemma 4.2.

We now pass to the general case. We first establish uniqueness in the general case. Thus,

M(Vu) e L'(9D), and du/dn = 0 a.e. on dD. We can cover a neighborhood of 9D in D,
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with finitely many bounded starlike Lipschitz domains €, C D, such that Mg, (Vu), the
non-tangential maximal function relative to the domain Q;,isin L'(9€;). Thus, if v; = ulq,,
we have dv;/On € H) (05). Tf also 9Q; D B(Q;,3r) N dD, for some r > 0,Q; € D, we
can take the atoms in the atomic decomposition of dv;/dn to have supports that are so
small that they are all contained in 9Q;/B(Q;,2r) (since dv;/dn =0 on B(Q;,3r)NaAD).
It then follows from (b) in Lemma 4.1, and the uniqueness for starlike Lipschitz domains,
that M(Vu) € L?(B(Q;,r)NdD). Since U; B(Q;,r)NAD can be taken to be 9D, it follows
that M(Vu) € I2(9D), and hence u is a constant by the I>-theory (see [13] or [25]).

To show (4.5), it is enough to show that if @ is an atom with support contained in a ball
of radius r, with » < rq = ro(D), then ||M(Vu)|;1@p) < C(D), where u is the solution
of the L>Neumann problem with data a. For § € (1,10) let D() be a domain of the
form {(z,y) : o(2) < y < @(x) + p10, || < p20}, where ¢ is a Lispchitz function. We
can choose numbers py, pa and coordinate systems so that the domains D(0) are starlike
[ipschitz domains contained in D, for ]I < 0 < 10. The number rq is chosen in such a way
that there are finitely many D,(0), 1 <v < N = N(D) such that UdD,(1/4)NnaD = aD,
and such that, for any v we have that either the support of a is contained in 9D N 9D, (4)
or supp a N AD,(3) = 0.

We first claim that for each compact set K C D, we have

(4.7) sup |Vu| < C = C(K, D).
K

To see this, pick n € L>(D), supp n C K and [ n(X)dX = 0. Letting w(X) = C, [|X —
Y2 "n(Y)dY, we have that Aw =1, fan((f)w/(f)n)d(r =0, and ||0w/dn||1.~ o)
< C(K, D)lInllr x)-

Let h solve the Neumann problem in D with data dw/dn and [, h(z)dz = 0. Then,

/undX—/uA(wh)—/ (w—h)a“
JD JD Jan an

If we now note that the normal derivative of w —/his 0 on @D, and we use locally the graph
reflection argument that we used in the proof of Lemma 2.7, it follows that ||w— A/ 7 @p) <

C (K, D)|[n|lr (rxy which yields (4.7).

Let M"? he the non-tangential maximal operator associated to the domain D, (). We can
choose a suitable compact set K C D so that, for all § € (1/4,10) we have

(4.8) / M(Vu)do < Z/ | MY (V) |do + (Y<11p|V7/|

In order to apply (4.8), we shall first study the case when (supp a) N D,(3) = (). From the
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L?Neumann theory, it follows that for 1/4 < § < 3 we have

2
(/ M”’1/4(Vu)d(r> < c/ MU’Q(VU)Qd(f
Joap,(174) Jap,(o)

2
[ ()
JOD,(\D on

C/ |Vu(X)|do.
Jap,@\an

IA
)

IA

Integrating in # from 1/2 to 1 now gives

2
(/ M”’1/4(V7/,)d(r> <C / |Vu(X)|*dX
Jan, (1 /4D Jnu2)
2
<C</ |Vu(X)|dX> :
J Du(3)

The last inequality follows from the graph reflection and the reversed Hélder inequality
for the gradient of the solution of a uniformly elliptic equation in divergence form (see
[12]) together with the fact that one can lower the exponent on the right-hand side of
such a reversed Holder inequality. This last fact was proved by the present authors; see
[10]. Tt is possible to use the graph reflection because supp du/dn N D,(3) = (. Hence,
~[Du(1/4) MYV u)do < C.fny(g) |Vu(X)|dX, and therefore, given € > 0 there is a compact
K. C D such that

(4.9) / M”’1/4(Vu)d(r < 05/ M(NVu)do 4+ C(e) / |Vul.
D, /a) Jan Jx.

If supp a C D, (4), we let v solve the Neumann problem in D, (4), with data @ on 9D, (4)N

aD, and 0 elsewhere on 9D, (4). Tet w = u — v. Since dw/In = 0 on AD,(4) N AD we
have, from the argument leading to (4.9), that

/ MY (Vw)de < 0/ |Vwl|dX
an,(1/4)ndDn

JDu(3)

and therefore

/ M”’1/4(Vu)d(r < 05/ M(Vu)do
aDL(1/4)naD Jan

(4.10)
+ C(e) / |[Vu(X)|dX + C.

Using now (4.8), (4.9) and (4.10), and the weak estimate (4.7), we see that

/ M(Vu)do < Ce M(Vu)do + C(e) + C,
Jan

JAD
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and so, if we choose ¢ small enough
/ M(Vu)do < C = C(D),
Jan

which yields (4.5). Finally, note that because of (4.7), we can subtract a constant C
from w so that supy |u — C| < Ck for all K compact in D. TLet v = u — C. We claim
that |[oflm  @n,a) < C. In fact, we know that, because of the Poincaré inequality on

oD, [, ) [o|("=/("=2)ds < . But, by Lemma 4.1, there exists a constant (), so
that |[v — Cullm @an,ay < €. But then, .[817,,(1) v — O, (" V/(=2de < ' and thus

1,at

|C,] < C. Therefore [[v][g (@ap,ay < C, and (4.6) follows for the case of atoms. The
general case follows from this.

We shall next study the regularity in the Dirichlet problem with H/ 2H(3D) data.

Lemma 4.11. Let f be an H:’at((f)n) — I? atom. If u solves the Dirichlet problem with
boundary values f, then

(a) M(Vu)do < C.

JAD

(b) (/3]7 M(Vufdo‘)( M(V71)2|Q o Q0|(5+1)(n71)d0_>1/5 < 07

JAD

where (Qq is the center of the support of f.

(c) M(Vu)?|Q — Qo|" 'do < C.

JAD

Here C and e > 0 are independent of the H| (OD) — L? atom f.

Proof. 1f we perform a change of scale so that the support of f is of size 1, we see that the
arguments in the graph case (Theorem 3.7), yield the proof of Lemma 4.11.

Theorem 4.12. Let D C R” be a bounded Lipschitz domain. If u is harmonic in D,
with M(Vu) € L'(OD), then v € H| (0D), and

(4.13) lullmy om) < CINM (V)| ap).

If f € H| ,(OD), then there is a harmonic function u with M(NVu) € L'Y(OD) and u = f

non-tangentially a.e. on dD. Furthermore, u is unique,

IM(NVulln@ony < Cllfllm,@m)-

1,at
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Proof. Uniqueness follows from the uniqueness in Theorem 4.3. Next note that existence
in the range 1 < p < 2 follows by interpolation between Theorem 4.3 and the L? results.
Existence in the case p > 2 follows by a minor modification of the corresponding part of
the proof of Theorem 2.12. In fact, the main difference is that in the bounded case there
are two kinds of Whitney cubes [, the small ones and the big ones. The small ones are
treated just as in 2.12, while the big ones are of diameter comparable to that of D, and
hence my is comparable to m on them. The rest of the proof is identical, and is therefore
omitted.

Our next theorem deals with regularity in the Dirichlet problem with L7(9dD) data. Tt was
first proved in [25].

Theorem 4.14. Let D C R” be a bounded Lipschitz domain. There exists a positive
number ¢ = (D) such that for all f € L7(OD), 1 < p < 2+4¢, there is a harmonic function
win D, with M(Vu) in LP(OD), and v = f non-tangentially a.e. on dD. Moreover, u is

unique and

M (Vu)llre@ny < Cllfllren)
where C' depends only on p and D.

Proof. Uniqueness follows from Theorem 4.12. Existence follows just as in Theorem 4.13
in the range 2 < p < 24 &, while the case 1 < p < 2 follows by interpolation.

We will now study the Neumann problem and regularity in the Dirichlet problem for the
domain D* = R"\ D. The I theory for D* can be found in [25]. We will let M* be the
non-tangential maximal operator associated to D*, where the non-tangential regions are

truncated. We let H'(AD) be defined as H! (AD), but add the constant 1 to the atoms.

Theorem 4.15. Given [ € I':f;t((f)D), there exists a harmonic function w in D* with
Ju/dn = [ non-tangentially a.e. on AD, u(X) = o(1) at oo,

M= (Vu)llr@ony < CIlF]

A1.(9D) and |ul| (8D)§C||f||ﬁ;t(8D)'

1,at

Moreover, u is unique. There exists ¢ = &(D) > 0 such that if f € [P(OD), 1 <p<2+4e¢,
then || M*(Nu)||rr@ony < Cll fllrr@ny where C = C(p, D).

Proof. The uniqueness reduces to the L2-uniqueness just as in Theorem 4.3. For existence
in the H!,(AD) case, the atom 1 is taken care of by the L?-theory. The existence and the
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estimate || M*(Vu)||r1(ap) < C for the other atoms are the same as in the proof of Theorem
4.3, the only difference being that the estiamte

/ un

is valid for all n € L>(D*), supp n C K, since u(X) = o(1) at oo. This fact also shows, hy
a small variation of the argument used in Theorem 4.3, that [[ul[m (5p) < C. The case

< C(K, D)Inlln

1 < p <2+ ¢ of the theorem follows in the same way as in Tbeorerﬁ 4.13. Note also that
it M*(Vu) e LYID), and u(X) = o(1) at oo, then du/dn € H},(dD). This is proved in a
similar way to (4.4) in Theorem 4.3.

Theorem 4.16. Given [ € H| 2(OD), there exists a harmonic function u in D* with
u=f on dD non-tangentially a.e., u(X) = o(1) at oo,

« ou
VTl romy < Clf s omy and H

< Cl Al .0

13(5D)
Moreover, u is unique. There exists ¢ = &(D) > 0 such that if f € L}(0OD), 1 <p<2+4e¢,
then || M*(Vu)||rr@any < C|[fllnr@eny, where C'= C(p, D).

Proof. Uniqueness follows as in the proof of uniqueness in Theorem 4.12. FExistence
for atoms follows in the same way as in Lemma 4.11. The estimate |[0u/dn| g 5p) <
| f||H1 ) follows because of the remark before the statement of Theorem 4. 16. The
case 1 < p < 2 + ¢ follows in the same way as in Theorem 4.14.

We are now ready to prove the sharp invertibility properties of the layer potentials.

For P,QQ € dD, P #+ @, let
K(P.Q)= Q- P.n(Q),

where w, is the surface area of the unit sphere in R”, and put Tf(P) = p.v. fan
K(P,Q)f(Q)do(Q). Also, let

1 2-m
e / P QP " £(Q)dr(Q).

The boundedness properties of these operators are the same as for the corresponding op-
erators in the graph case.
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Theorem 4.17.  There is a number go = qo(D), go € (2,00), such that 31 —T* is an
invertible mapping from L5(OD) onto Li(OD) for 1 < p < qo, where L3(OD) = {f €
IP(AD): [, fdo =0}. Also, ST —T* is invertible from H} (D) onto H. (D). There is
a number pg = po(D), po € (1,2) such that ST+T is an invertible mapping of LP(0D) onto
IP(AD) for po < p < oo. Also, T + T is invertible from BMO (0D) onto BMO (9D).
There is a number ro = ro(D), ro € (2,00) such that S is an invertible mapping of LP(0D)
onto I1(OD). Also, S is an invertible mapping from H_ ,(0D) onto H{ (D).

Proof. The proof of this theorem is the same as the corresponding I.? case presented in [25],
using the results of this ection. Finally, we give representation formulas for the solutions
of the Dirichlet and Neumann problem, using layer potential.

Theorem 4.18. Let D C R” be a bounded Lipschitz domain, whose complement is
connected. Let qo,po,ro be the numbers given in Theorem [.17. Let f € LP(AD), py <
p < oo, and let u(X) be the unique solution of the Dirichlet problem given in [5]. Then
a(X) = (1) Lop((X— Qu(QW/IX — QYT+ T) (F)(Q)do(@Q). The same holds
when [ € BMO (0D), and w is the unique solution of the Dirichlet problem given in [9].
Let f € LP(OD), 1 < p < qo, [o, fdo =0, and let u(X) be the unique (modulo constants)
solution of the Neumann problem given in Theorem 4.13. Then,

1

o¥) = o [ X QG T Q)

The same holds when f € H) (D), and u is as in Theorem 4.3. Let f € ILY(9OD), 1 <
p < ro and let u( X)) be the unique solution of the Dirichlet problem given in Theorem /.1/.
Then,

1 2—n g—1
o¥) = o [ QS @)

The same holds when f € H! (D), and u is as in Theorem /.12

1,at

Proof. The proof follows from well-known properties of layer potentials (see [25], for ex-
ample), the uniqueness in all the theorems mentioned and Theorem 4.17.
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