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Foreword

The twenty-fifth AMS Summer Research Institute was devoted to automorphic
forms, representations and L-functions. It was held at Oregon State University,
Corvallis, from July 11 to August 5, 1977, and was financed by a grant from the
National Science Foundation. The Organizing Committee consisted of A. Borel,
W. Casselman (cochairmen:), P. Deligne, H. Jacquet, R. P. Langlands, and J. Tate.
The papers in this volume consist of the Notes of the Institute, mostly in revised
form, and of a few papers written later.

A main goal of the Institute was the discussion of the L-functions attached to
automorphic forms on, or automorphic representations of, reductive groups, the
local and global problems pertaining to them, and of their relations with the L-
functions of algebraic number theory and algebraic geometry, such as Artin L-
functions and Hasse-Weil zeta functions. This broad topic, which goes back to E.
Hecke, C. L. Siegel and others, has undergone in the last few years and is undergo-
ing even now a considerable development, in part through the systematic use of
infinite dimensional representations, in the framework of adelic groups. This devel-
opment draws on techniques from several areas, some of rather difficult access.
Therefore, besides seminars and lectures on recent and current work and open
problems, the Institute also featured lectures (and even series of lectures) of a more
introductory character, including background material on reductive groups, their
representations, number theory, as well as an extensive treatment of some relatively
simple cases.

The papers in this volume are divided into four main sections, reflecting to some
extent the nature of the prerequisites. I is devoted to the structure of reductive
groups and infinite dimensional representations of reductive groups over local
fields. Five of the papers supply some basic background material, while the others
are concerned with recent developments. II is concerned with automorphic forms
and automorphic representations, with emphasis on the analytic theory. The first
four papers discuss some basic facts and definitions pertaining to those, and the
passage from one to the other. Two papers are devoted to Eisenstein series and the
trace formula, first for GL, and there in more general cases. In fact, the trace
formula and orbital integrals turned out to be recurrent themes for the whole
Institute and are featured in several papers in the other sections as well. The main
theme of the last four papers is the restriction of the oscillator representation of the
metaplectic group to dual reductive pairs of subgroups, first in general and then in
more special cases.

IIT begins with the background material on number theory, chiefly on Weil
groups and their L-functions. It then turns to the L-functions attached to automor-
phic representations, various ways to construct them, their (conjectured or proven)
properties and local and global problems pertaining to them. The remaining papers
are mostly devoted to the base change problem for GL, and its applications to the
proof of holomorphy of certain nonabelian Artin series.

Finally, IV relates automorphic representations and arithmetical algebraic
geometry. Over function fields. it gives an introduction to the work of Drinfeld for

X



X FOREWORD

GL,, which constructs systems of /-adic representations whose L-series is a given
automorphic L-function. Over number fields, it is mainly concerned with problems
on Shimura varieties: canonical models, the point of their reductions modulo prime
ideals, and Hasse-Weil zeta functions.

This Institute emphasized representations so that, at least formally, the primary
object of concern was an automorphic representation rather than an automorphic
form. However, there is no substantial difference between the two, and this should
not hide the fact that the theory is a direct outgrowth of the classical theory of
automorphic forms. In order to give a comprehensive treatment of our subject
matter and yet not produce too heavy a schedule, it was decided to omit a number
of topics on automorphic forms which do not fit well at present into the chosen
framework. For example, the Institute was planned to have little overlap with the
Conference on Modular Functions of One Variable held in Bonn (1976). The reader
is referred to the Proceedings of the latter (Springer Lecture Notes 601, 627) and to
those of its predecessor (Springer Lecture Notes 320, 350, 476) for some of those
topics and a more classical point of view. Also, some topics of considerable interest
in themselves such as reductive groups, their infinite dimensional representations,
or moduli varieties, were discussed chiefly in function of the needs of the main
themes of the Institute.

These Proceedings appear in two parts, the first one contains sections I and II,
and the second one sections ITl and IV.

A. BOREL
W. CASSELMAN



Proceedings of Symposia in Pure Mathematics
Vol. 33 (1979), part 1, pp. 3-27

REDUCTIVE GROUPS

T. A. SPRINGER

This contribution contains a review of the theory of reductive groups. Some
knowledge of the theory of linear algebraic groups is assumed, to the extent
covered in §§1-5 of Borel’s report [2] in the 1965 Boulder conference.

§81 and 2 contain a discussion of notion of the “root datum” of a reductive
group. This is quite important for the theory of L-groups. Since the relevant
results are not too easily accessible in the literature (they are dealt with, in a more
general context, in the latter part of the Grothendieck-Demazure seminar [17]), it is
shown how one can deduce these results from the theory of semisimple groups
(which is well covered in the literature). In §§3 and 4 we review facts about the
relative theory of reductive groups. There is more overlap with [2, §6], which
deals with the same material.

§5 contains a discussion of a useful class of Lie groups (the “‘selfadjoint™ ones).
We indicate how the familiar properties of these groups can be established, assum-
ing the algebraic theory of reductive groups.

I am grateful to A. Borel for valuable suggestions and to J. J. Duistermaat for
comments on the material of §5.

1. Root data and root systems. The notion of root datum (introduced in [17,
Exposé XXI] under the name of “donnée radicielle”) is a slight generalization of
the notion of root system, which is quite useful for the theory of reductive groups.
Below is a brief discussion of root data. For more details see [loc. cit.]. For the
theory of root systems we refer to [7].

1.1. Root data. A root datum is a quadruple ¥ = (X, @, XV, ®V) where: X and XV
are free abelian groups of finite type, in duality by a pairing X x XV — Z denoted
by {, >, ® and @V are finite subsets of X and XV and there is a bijection o — oV of
® onto @V. If o € @ define endomorphisms s, and s,, of X, XV, respectively, by

$(x) = x — {x, a¥) a, So) = u — La, uy aV.

Then the following two axioms are imposed:

(RD1) For all x € ® we have {a, aV) = 2;

(RD2) For all « € ® we have s,(D) = @, s, (DY) = OV,
[t follows from (RD1) that s2 = id, s,(@«) = —« (and similarly for s,,). It is clear
from the definition of a root datum that if ¥ = (X, @, XV, @V) is one, then ¥V =
(XV, @Y, X, @) is also one, the dual of ¥.

Let ¥ be as above. Let Q be the subgroup of X generated by @ and denote by X

AMS (MOS) subject classifications (1970). Primary 20G15, 22E1S.
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4 T. A. SPRINGER

the subgroup of X orthogonalto @*. Put V = Q ® Q, Vy = Xy, ® Q. Define sim-
ilarly subgroups @V, Xy of XV and vector spaces V'V, Vy'.
We say that & is semisimple if X, = {0} and toral if @ is empty.

1.2. LeMMA. Q N Xy = {0} and Q + X, has finite index in X.

This is contained in [17]. We sketch a proof. Define a homomorphism
p: X - XVby
p(x) = 2 <x aVdaV

acP
Since {x, p(x)> = Xeo <X, aV>? we have X = Ker p.
Next observe that if a € @ we have p(a) = ¥ {a, p(a)>aV, as follows by summa-
tion over 3 € @ from the identity

o, B¥0%" = {at, BY2BY + {a; Sav (BY))Sav (BY).

This shows that p ® id is a surjection V' — V'V, whence dim ¥V < dim V. By sym-
metry we then have dim V = dim V'V, whence Q () Ker p = {0}. The assertion
now follows readily.

1.3. Root systems. It follows from the proof of 1.2 that ¥V can be identified with
the dual of the vector space V. We write again { , ) for the pairing. Also identify
® with® ® 1 = V and assume that @ # @. We then see that @ is a root system in
V in the sense of [7]. Recall that this means that the following conditions are
satisfied:

(RS1) @ is finite and generates V, moreover 0 ¢ @;

(RS2) for all o € @ there is ¥ € VV such that {a, aV) = 2 and that s, (defined as
before) stabilizes O;

(RS3) for all @ € ® we have aV(®) = Z.

The s, then generate a finite group of linear transformations of V, the Weyl group
W(®) of ©.

If¥ = (X, 9, XV, ®V) is a root datum which is not toral, we call the root system
©® < V the root system of ¥'. The Weyl group W(®) is identified with the group of
automorphisms of X generated by the s, of 1.1 and with the group of automorph-
isms of XV generated by the s,y.

The following observation is sometimes useful.

1.4. LEMMA. Axiom (RD2) is equivalent to:
(RD2')(a) For all a € ® we have s,(D) = ;
(b) the s, (a € O) generate a finite group.

It suffices to prove that (RD2’) implies the second assertion of (RD2). Let a,
Be®. Then s,55, and s, are involutions in the group generated by the s,. We
have by an easy computation,

Ssu(@Sa5p5a(X) = x + (KX, 15(BY)) — <X, 54(8)"))s(B),

where ‘s, is the transpose of s,. Since {s5,(8), S.(8Y)> — {5(B), s.(B)Y> =
B, BY) — {54(B), s.(B)V> =0, we see that the above automorphism of X is
unipotent. Since it lies in a finite group it must be the identity. Hence s,(8)V =
ts,(BY), and the assertion follows by observing that s,, = ’s,,.
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1.5. Properties of root systems. Let ® = V be a root system. Proofs of the pro-
perties reviewed below can be found in [7].

(@) f ae®and Aaedthen A = +1, +£4, +2. The root system @ is called
reduced if for all ¢ € @ the only multiples of « in @ are +a. To every root system,
there belong two reduced root systems, obtained by removing for every « € @ the
longer (or shorter) multiples of a.

(b) @ is the direct sum of root systems @' =« V' and @" <« V' if V=V"@ V"
and @ = @' J @". A root system is irreducible if it is not the direct sum of two
subsystems.

Every root system is a direct sum of irreducible ones.

(c) The only reduced irreducible root systems are the usual ones: 4, (n = 1),
Bn (I’l = 2), Cn (n = 3), Dn (n = 4), EG’ E7, EB’ F41 GZ'

(d) For each dimension # there exists one irreducible nonreduced root system,
denoted by BC, (see below).

ExampLEs. (i) B,. Take V = Q» with standard basis {e, ---, e,}. Then V'V =
Qn, with dual basis {ey, ..., ey}. We have B, = {+e;+e; (i <j) and +e;
(1 24, j=m} If a=*tete; then a¥ = teftef; if a = te thenaV =
+2e,. The Weyl group W(B,) consists of the linear transformations which
permute the coordinates and change their signs in all possible ways.

The aVe V'V form an irreducible root system of type C,. We have W(C,) =~
W(B,).

(i) With the same notations we have BC, = {te;+e; (i <j), te; and +2¢;
(1 £14,j < n)}. Then W(BC,) = W(B,).

1.6. Weyl chambers. Let @ < V be a root system. We now view it as a subset of
Vg = V ®q R. A hyperplane H of Vj is singular if it is orthogonal to an aV. A
Weyl chamber C in Vg is a connected component of the complement of the union
of the singular hyperplanes. To a Weyl chamber one associates an ordering of the
roots: ¢ > 0« (x,av) > Oforallxe C.

a € @ is simple (for this ordering) if it is not the sum of two positive roots. The
set of simple roots 4 is called a basis of ®. We have the following properties.

(a) The Weyl group W(®) acts simply transitively on the set of Weyl chambers.

(b) The s, (« € 4) generate W(®). More precisely, (W, (5,).<) is @ Coxeter system
(see [7)).

(c) Every root is an integral linear combination of simple roots, with coefficients
all of the same sign.

(d) Say that A is connected if it cannot be written as a disjoint union 4 =
4 U 4" where(d" + 4N 4=@.

Then we have: @ is irreducible <> 4 is connected.

A connected 4 leads to a connected Dynkin graph. These are described in [7].

[.7. We collect a few facts about root data to be needed later. First, there is the
notion of direct sum of root data. This is clear and we skip the definition.

Next we have to say something about morphisms of root data. The following
suffices. For more general cases see [7]; see also 2.11(ii) and 2.12.

Let¥ = (X, 0, XV,0V)and ¥’ = (X', @', (X')V, (@')V) be two root data. A
homomorphism f: X’ — X is called an isogeny of ¥ into U’ if:

(a) f'is injective and Im f has finite index in X,
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(b) finduces a bijection of @' onto @ and its transpose !/ induces a bijection of @*
onto (@')V.

Notice that then #f is also an injection XV — (X’)V with finite cokernel. Also,
coker fand coker(!f) are in duality.

ExampLE. Given ¢, we shall construct a ¥ and an isogeny of X into X', which
we shall call the canonical isogeny associated to ¥'.

If L is a subgroup of X we denote by L the largest subgroup containing L such
that L/L is finite. Then L = L if and only if L is a direct summand.

Let Xpand Q beasin I.1. By 1.2 we can view @ as a subset of X/X,. It follows that
Uy = (X/ Xy, @, 0V, ®V) is a semisimple root datum. Likewise, ¥ = (X/0, &, Xy, @)
is a toral root datum. Put ¥ = U] @ ¥;. Then the canonical isogeny f: X —
(X/Xo) ® (X/Q) is the canonical homomorphism of X into the right-hand side.

1.8. Let @ be a root system in the Q-vector space V. The aV (¢ € @) in the dual V"
of V also form a root system @V (the dual or inverse root system). There are finitely
many semisimple root data (X, @, XV, ®V) where X < V, XV < VV. In fact, let Q
and QY be the lattices in V and VVgenerated by @ and @V, respectively, and
define P = {xe V|(x,a¥)e Zforallae @}. PV = VVis defined similarly. Then
Q < P and P/Q is a finite group, in duality with PV/QV. An X as above is then
contained between P and Q and for each such X there is a unique XV between
PV and QV such that (X, @, XV, ®V) is a root datum.

1.9. Let ¥ = (X, @, XV, ®V) be aroot datum. Assume that its root system ® = V
is reduced. Let 4 be a basis of @. Then IV = {aV|a € d} is a basis of the dual root
system @V < V'V,

We call based root datum a sextuple ¥y = (X, @, o, XV, @V, V), where
X, 0, XV, ®V) is a root datum with reduced root system @ and where I is a basis
of @. However, since J and .V determine @ and @\ uniquely, it also makes sense
to view a based root system as a quadruple ¥’y = (X, J, XV, 1V). This we shall do.

2. Reductive groups (absolute theory).

2.1. Let G be a connected reductive linear algebraic group. In this section we
consider the absolute case, where fields of definition do not come in. So we can view
G as a subgroup of some GL(n, ), 2 an algebraically closed field (see [2]). Let S be
a subtorus of G. We define the root system @(G, S) of G with respect to S to be the
set of nontrivial characters of S which appear when one diagonalizes the represen-
tation of S in the Lie algebra g of G, S operating via the adjoint representation.

2.2. The root datum of G. Fix a maximal torus T of G. We shall associate to the
pair (G, T) a root datum (G, T) = (X, @, XV, @V) (also denoted by ((G)).

X is the group of rational characters X*(7") of T. This is a free abelian group of
finite rank. X'Vis the group X ..(T) of 1-parameter multiplicative subgroups of 7, i.e.,
the group of homomorphisms (of algebraic groups) GL; — 7. Then X'V can be put
in duality with X by a pairing ( , ) defined as follows: if x € X*(T), u e X.(T),
then x(u(t)) = t*» (t € Q%).

We take @ = (G, T), the root system of G with respect to 7. To complete the
definition we have to describe @V. If o € @, let T, be the identity component of the
kernel of . This is a subtorus of codimension 1. The centralizer Z, of T, in G is a
connected reductive group with maximal torus T, whose derived group G, is semi-
simple of rank 1, i.e., is isomorphic to either SL(2) or PSL(2). There is a unique
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homomorphism aV: GL, - G, such that T = (Im aV)T,, {a, aV) = 2. These aV
make up @V.

The axiom (RD1) is built into the definition of «V. We use 1.4 to establish (RD2).
Let n, € G, — T, normalize T,. Then nZ e T, and, s, being as in 1.1, we have, for
xeX,teT,

X(ngtngt) = %@,

In fact, working in G, one shows that there is # € XV such that the left-hand side
equals 7*~*»=_One then shows that (a, u) = 2and that (x, u) = 0if {x, V) = 0.
It follows that (RD2’) holds. So @(G) is a root datum. The root system @ is reduced
(for all these facts see [3] or [14]).

2.3. To each a € @ there is associated a unique -homomorphism of algebraic
groups x,: G, —» G, such that

tx, (W)t = x (towu) (teT,uc).
Put U, = Im(x,) and let X, € g be a nonzero tangent vector to U,. Then

g = Lie(T) @ ) 0QX,.
acP
Let B be a Borel subgroup containing 7. There is a unique ordering of @ (as in 1.6)
such that B is generated by 7" and the U, with ¢ > 0, and any B o T is so ob-
tained. It follows that we can associate to the triple (G, B, T) a based root system
do(G, B, T) = (X*(T), 4, X(T), 4V) (or ¢ho(G)), where 4 is the basis of @ deter-
mined by the ordering associated to B.

2.4. Isogenies. An isogeny ¢: G — G’ of algebraic groups is a surjective rational
homomorphism with finite kernel.

ExaMmPLES. (i) The canonical homomorphism SL(2) — PSL(2) (PSL(2) is to be
viewed as the group of linear transformations of the space of 2 x 2-matrices of the
form x — gxg~1, where g € SL(2)). If char Q = 2 this is an isomorphism of abstract
groups, but not of algebraic groups.

(i) Let G be defined over the finite field F,. The Frobenius isogeny G — G raises
all coordinates to the gqth power. It is again an isomorphism of groups, but not of
algebraic groups.

Let G and G’ be connected reductive and let 7 be a maximal torus of G. 4 central
isogeny ¢: G — G’ is an isogeny which (with the notations of 2.3) induces an iso-
morphism in the sense of algebraic groups of U, onto its image, for all a € @.
Equivalently, d¢(X,) # 0 for all ¢ € @ (where d¢ is the induced Lie algebra ho-
momorphism). The image T’ = ¢(7T) is a maximal torus of G'. We shall say that
¢ is a central isogeny of (G, T) onto (G, T").

Let f(#) be the homomorphism X*(T") — X*(T) defined by ¢.

2.5. PROPOSITION. (i) If ¢ is a central isogeny then f(¢) is an isogeny of (G', T")
into (G, T);

(ii) if ¢ and ¢’ are central isogenies of (G, T) onto (G', T") such that f(¢) = f(¢")
then there is t € T with ¢’ = ¢ o Int(z).

That f(¢) has property (a) of 1.7 is equivalent to the fact that ¢ induces a sur-
jection T — T’ with finite kernel. There is a bijection & — &’ of root systems such
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that ¢(U,) = U, or that dp(X,) = X, (choosing X, properly). We then have
Ad(¢(1)) X, = a(t)X,, whence f(¢)(a) = a. Then f(¢)(a’) = (a'), as follows for
example from the equality s, = s, established in the proof of 1.8. This proves (i).

Let 4 be a basis of @. One knows that the U, with @ € 4together with T generate
G. So an isogeny ¢ is completely determined by its restriction to T and to the
U, (a € 4). Since f(¢) determines T — T”, the only freedom one has when f(¢) is
given, is in the choice of the isomorphisms U, = U, (a € 4). The assertion of (ii)
then readily follows.

2.6. Let ¢ be a central isogeny of (G, T') onto (G', T"). Then Ker ¢ lies in T. It is
a finite group isomorphic to Hom(X/Im f(¢), Q*). Let p be the characteristic ex-
ponent of Q. Then this kernel is isomorphic to the p-regular part of X/Im f(¢). It
follows that there is a factorization of ¢: G 5 G/Ker ¢ % G', where r is the
canonical homomorphism and where p is an isomorphism if p = 1 and p is a purely
inseparable isogeny if p > 1 (i.e., such that p is an isomorphism of groups). Let t
be the Lie algebra of T; we have Ker(dg) = t. Now t can be identified with
XV ®z Q. It follows that Ker(dg) is isomorphic to the kernel of f(¢)V ® id:
XV ®zQ - (X')Y ®z 2, which is isomorphic to (X")V/p(X")V + Imf(@)V) ®F,Q.
Hence Ker(dg) = 0 if and only if Coker(f(¢)) (which is dual to Coker(//(¢)))
has order prime to p.

If p > 1 then Ker(dg) is a central restricted subalgebra of g, which is stable
under Ad(G). Let G/Ker(dg) be the quotient of G by Kerd¢ (see [3, p. 376].) It
follows that we can factor ¢, G 5 G/Ker (dg) - G’, where ¢ is the canonical
(central) isogeny of [loc. cit.]. These remarks imply that we can factorize ¢ as
follows:

(1) G =G0 0 Gl Tl GZ 2 ... Gs—l Ts—1 Gs = Gl,

where ¢ = w;_yo - omy. Put g, = w,_yo---om; (i Z 1). Then G, = G/Ker ¢, G;14
= G,/Ker(dg;) (1 = i £ s — 1) and the #; are canonical isogenies.
Also, if

G 2t~ ¢

I

G -6

is a commutative diagram of isogenies, we can arrange the factorizations of ¢ and
& such that there is a diagram with commuting squares

G=G0—’G1 > oo ‘Gs—l GS=GI
® | | | |
G =Gy—> G, = Gy G, =G

Notice that the vertical arrows are uniquely determined once the first one is
given.

2.7. LeMMA. Let ¢ and ¢, be central isogenies of (G, T) onto (G’, T') and (Gy, Ty),
respectively. Assume that Im f(¢) = Im f(¢,). Then(G’, T') and (G1, T) are isomor-
phic.
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Let G" = G’ x G be the image of the homomorphism g — (¢(g), ¢1(g)). Let
¢: G —» G" be the induced homomorphism. Then ¢ is a central isogeny of con-
nected reductive groups and so are the projections z;: G" —» G’, n5: G" - G;. A
straightforward check (working in tori) shows that Ker z; = {e}, Ker dr; = {0}
(i = 1. 2). Hence 7; and =, are isomorphisms, whence the lemma.

2.8. LEMMA. Let U"' be a root datum and let f be an isogeny of U into (G, T). Then
there exist a pair (G', T') and a central isogeny ¢ of (G, T) onto (G', T") such that
U =¢G, T, f(9) = 1.

From the knowledge of f we can recover successively the groups G; figuring in
(1). This allows one to define G’. We omit the details.

2.9. THEOREM. (i) For any root datum U with reduced root system there exist a
connected reductive group G and a maximal torus T in G such that U = (G, T). The
pair (G, T) is unique up to isomorphism;

(i) let T = (G, T, U = H(G', T'). If fis anisogeny of W' into ¥ there exists a
central isogeny ¢ of (G, T) onto (G', T') with f(¢) = f. Two such ¢ differ by an
automorphism Int(t) (t€ T) of G.

Let f be the canonical isogeny ¥ — ¥ of 1.7. Using 2.8 we see that it suffices to
prove the existence statement of (i) for the two cases that ¥ is semisimple or toral.
The second case (¢ = ¢) is easily dealt with: take for G the torus T = Hom(X, Q%).
In the semisimple case the statement follows from the existence theorem of the
theory of semisimple groups which can be dealt with using the theory of Chevalley
groups. (See [18] or [6, part A]. The uniqueness statement of (i) is part of (ii). To
prove (ii) one first reduces to the case that f is an isomorphism (using 2.7 and
2.8).) In the case that G is semisimple the statement of (ii) is Chevalley’s fun-
damental isomorphism theorem, proved, e.g., in [10, Exposé 24], or in [14, Chapter
XI]. The case of a torus G is easy. In the general case, there are central isogenies
G; x S— G,G; x S’ > G', where Gy and G are the derived groups of G and G',
and where S and S’ are tori, such that the corresponding isogenies of root data
are just the canonical ones of 1.7 (see also 2.15).

Now fdefines an isogeny f] of ¢(G; x S")into (G x S)and we may assume that
there exists a central isogeny ¢,: G; x S - G; x S’ with f(¢) = fi.

We can then complete the diagram like (2), with G; x S, G; x S’, G, G’ instead
of G, G, G', G, respectively, and with ¢, as first arrow. The right-hand arrow, which
is uniquely determined by ¢, is then the required isomorphism. The last point of
(ii) follows from 2.5 (ii).

2.10. REMARKS. (i) In the semisimple case the existence statement of 2.9(i) is due
to Chevalley [Séminaire Bourbaki, Exposé 219, 1960-1961]. He constructs a group
scheme G, over Z such that G = G, x ; k. This construction is also discussed in
[6, part A].

A generalization of 2.9, where the field & is replaced by a base scheme, is con-
tained in [17, Exposé XXIV].

(i) The result on the existence of central isogenies of reductive groups contained
in 2.9(ii) is a special case of one on arbitrary isogenies, which we shall briefly indi-
cate. Let ¢: G — G’ be anisogeny of connected reductive groups with ¢(T) = T".
Let f be the induced homomorphism X*(T') € X*(T). Let x,, x, (a €D, ' € D)
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be asin 2.3. One shows that there is a bijection o — a’ of @ onto @’ and a function
q:® — {p"lne N} (p the characteristic exponent) such that the x, and x,. can
be so normalized that ¢(x,(¢)) = x,.(12¢@). It follows that

@) =q@a, flaV) = qa)a’) .

If ¢ is a central isogeny then all g(a) are 1. If ¢ is the Frobenius isogeny of 2.4 then
fis multiplication by g and all g(«) are g.

Such an fis called a p-morphism in [17, Exposé XXI]. The analogue in question
of 2.9(ii) is obtained by assuming f to be a p-morphism and admitting in the
conclusion an arbitrary isogeny ¢. The proof can be given along similar lines,
reducing to the case of an isomorphism. For semisimple G the result is due to
Chevalley [10, Expose 23].

EXAMPLE OF A p-MORPHISM. p = 2, G is semisimple of type B, and, with the
notations of the example in 1.5, we have f(e;) = e, + e, fles) = ¢; — ey

A classification of the possible p-morphisms can be found, e.g., in [17, Exposé
XXI, p.71].

2.11. Let ¢: G —» G’ be a homomorphism of connected reductive algebraic
groups. Let 7 and 7’ be maximal tori in G, G’ with ¢(T) = T'. Assume that Im ¢ is
a normal subgroup of G’. We shall briefly describe the relation between the root
data (G, T) = (X, @, XV, ®V)and (G, T') = (X", 0,(X")V,(@)V). Let [ X' > X
be the dual of ¢: T — T'. In general, fis neither injective nor surjective.

Put®, =0 N Imf, ;=0 — @,. Then @ = @; J @, is a decomposition into
orthogonal subsets (i.e., (D;, DY) = {D,, OY> = 0).

Likewise, if @5 = @' (] Ker f, ®; = @' — @3, then @' = @; U @, is a decompo-
sition into orthogonal subsets. There is a bijection a — a’ of @, onto @; and a
function ¢ : @; — {p”|n € N}, such that for a € @; we have

fla) = q(@e, V) = q(a) (@)

Moreover f(a) = 0 if « € @, and f(a) = 0 if a € ;.

2.12. It follows readily from 2.9(i) that if & is a based root datum with reduced
root system there exists a triple (G, B, T) as in 2.3 with ¢y(G, B, T) = ¥, whichis
unique up to isomorphism. There is no canonical isomorphism of one such triple
onto another one. In fact, based root systems have nontrivial automorphisms.

In this connection the following results should be mentioned. Let ¢o(G, B, T) =
¢o(G). For each a € 4 fix an element u, # e in the group U,. The following is then
an easy consequence of 2.5(ii).

2.13. PROPOSITION. Aut ¢o(G) is isomorphic to the group Aut(G, B, T, {u}a: 1)
of automorphisms of G which stabilize B, T and the set of u,,.

2.14. COROLLARY. There is a split exact sequence
{1} — Int(G) — Aut(G) — Aut ¢o(G) — {1}.

In fact, an isomorphism as in 2.13 defines a splitting. Any two such splittings
differ by an automorphism Int(z) (¢ € T).

2.15. Let G be a connected reductive group, with a maximal torus 7. Put ¢(G, T)
=X, 0, XV, 9V).
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We have a decomposition G = G’ - S, where G’ is the derived group of G (which
is semisimple) and where S is a torus, viz. the identity component of the center C
of G. Wehave T = T’-S, where T’ is a maximal torus of G'.

We use the notations of 1.1 and 1.7.

The following facts can be checked without difficulty.

(@) ¢(G', T') = (X/Xo, D, 0V, ®V) (we view @ as a subset of X/X,, as we may by
1.2).

(b) The character group Hom,g.. (C, Q%) is X/Q, and we have X*(S) = X/0,
XV (S) = Xy.

(c) The isogeny G’ x S — G defines the canonical isogeny of (G, T) (see 1.7).
This fact was already used in the proof of 2.5(ii).

It follows that G is semisimple if and only if (G, T) is semisimple. In that case
we say that G is adjoint if X = Q and simply connected if X = P (notation of 1.8).
From 2.5(ii), using what was said in 1.8, we see that a semisimple group G is adjoint
(resp. simply connected) if and only if a central isogeny ¢: G — G’ (resp. ¢: G' —
G) is an isomorphism.

In the case of a general reductive G we have the following facts.

(d) The derived group G’ is adjoint <> X = Q@ @ Xy < XV = PV @ Xy.

(e) G’ is simply connected <> P = X + (X, ® Q) < 0V = QV.

(f) The center of G is connected < Q = 0 < PV c XV + (Xy ® Q).

3. Reductive groups (relative theory). Here we let a ground field ¥ = Q come into
play. We denote by k the algebraic closure of k in Q and by k; its separable closure.

A linear algebraic group G which is defined over k will be called a k-group. We
then denote by G(k) the group of its k-rational points (and not by G,, as in [2]). If
A is a k-algebra, we denote by G(A4) the group Hom,(k[G], A) (see [2]).

3.1. Forms of algebraic groups [16, 111, §1]. Let G and G’ be k-groups. G’ is said
to be a k-form of G if G and G’ are isomorphic over Q.

ExXAMPLE. &k = R. Then U(n) is an R-form of GL(n).

To describe k-forms one proceeds as follows. The k-group G is completely de-
termined by the group G(k,) of ks rational points. This means the following: if
G — GL(n) is an isomorphism of G onto a closed subgroup of GL(n), everything
being defined over &, then the subgroup G(k,) of GL(, k,) determines G, up to k-iso-
morphism. The fact that G is defined over k is reflected in an action of the Galois
group [, = Gal(k,/k) on G(k,). The k-forms G’ of G can be described as follows
(up to k-isomorphism). We have G’'(k,) = G(k,) and there is a continuous func-
tion c: s — ¢, of [, to the group of k-automorphisms of G (the Galois group being
provided with the Krull topology and the second group with the discrete topol-
ogy), satisfying

(*) Csy = C5 ° s(ct) (S5 te Pk)5

such that the action of [, on G’(k,) (denoted by (s, g) — s = g) is obtained by
“twisting” the original action with ¢: (s * g) = ¢,(s-g). G’ is k-isomorphic to G
if and only if there exists an automorphism ¢ such that ¢, = ¢71-sc.

We say that G’ is an inner form of G if all ¢, are inner automorphisms.

If Cis a group on which [, acts, the continuous functions s — ¢, of [, to C which
satisfy () are called 1-cocycles of [, with values in C. The equivalence classes of
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these cocycles for the relation: (¢,) ~ (c;) if and only if there is ¢ € C such that
c. = c! ¢ - (sc), form the 1-cohomology set Hl(k, C). It has a privileged ele-
ment 1, coming from the constant function ¢, = e.

3.2. Reductive k-groups. Now let G be a connected reductive k-group. It is said to
be quasi-split if it contains a Borel subgroup which is defined over k (this is a very
restrictive property). G is split (over k) if it has a maximal torus which is defined
over k and k-split. In this case G is quasi-split.

ExaMPLE. G = SO(F) (see [2, pp. 15-16]). This is quasi-split but not split if and
only if the dimension » of the underlying vector space is even and the index equals
in — 1.

From the splitting of 2.14 one concludes that G is an inner form of a quasi-split
group.

Now let B be a Borel subgroup of G and T = B a maximal torus, both defined
over k. Let ¢o(G) = (X, 4, XV, 4V) be the based root datum defined by (G, B, T).
If s € I, there is g, € G(k,) such that

int(g,)(sB) = B, int(g)(sT) =T.

Then int(g,)os defines an automorphism of T depending only on s (since the coset
Tg, is uniquely determined). This automorphism determines an automorphism
uc(s) of X, permuting the elements of A (since int(g,) o s fixes B). Itis easy to check
that y; defines a homomorphism yg: I, — Aut ¢o(G). Let G’ be a k-form of G.
Then yuc = pg if and only if G and G’ are inner forms of each other.

3.3. Restriction of the base field [22, 1.3]. Let | = k, be a finite separable exten-
sion of k. Let G be an /-group. Then there exists a k-group H = R,,,G charac-
terized by the following property [2, 1.4]: for any k-algebra 4 we have H(A) =
G(4A ®, ). In particular, H(k) = G(I). Let J be the set of k-isomorphisms / — k.
We then have H(k,) = G(k,)°. The action of I, = Gal(k,/k) on H(k,) is as follows.

If ¢ € G(k,)? is a function on X with values in G(k;), and s € [, then, for g € J,

(s - @)o) = ¢(s - 0).

R,,,G is obtained from G by restriction of the ground field from [/ to k. If G is
connected or reductive then sois R,,, G.

Now let G be connected and reductive. Fix B and T (defined over k) as in 3.2
and let ¢)y(G) be the based root datum defined by (G, B, T'). Then H = R,,,G con-
tains the Borel subgroup B; = B® and the maximal torus 7, = T*. The based
root datum ¢yo(R,,,G) (relative to B; and T)is then ¢o(G)%. The action of I, on the
lattice X? is like before: if s € [, ¢ € X* then (s-@)(0) = ¢(s-0).

3.4. Anisotropic reductive groups. A connected reductive k-group G is called
anisotropic (over k) if it has no nontrivial k-split k-subtorus.

ExaMmpLES. (i) Let F be a nondegenerate quadratic form on a k-vector space
(char k # 2). Let G = SO(F) be the special orthogonal group of F (the identity
component of the orthogonal group O(F)). It is anisotropic over k if and only if F
does not represent 0 over k (the proofiis given in [2, p. 13]).

(ii) If k is a locally compact (nondiscrete) field then G is anisotropic over k if and
only if G(k) is compact.

(iii) If k is any field then G is anisotropic if and only if G(k) has no unipotent
elements # e and the group of its k-rational characters Hom,(G, GL,) is trivial.
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3.5. Properties of reductive k-groups. We next review the properties of reductive
groups. The reference for these is [5].

Let G be a connected reductive k-group. Let S be a maximal k-split torus of G,
i.e., a k-subtorus of G which is k-split and maximal for these properties. Any two
such tori are conjugate over k, i.e., by an element of G(k). Their dimension is called
the k-rank of G.

The root system &(G, S) of G with respect to S (see 2.1) is called the relative root
system of G (notation ,@ or ,&(G)). This is indeed a root system in the sense of
[7], lying in the subspace V of X*(S) ® Q spanned by ,®. Its Weyl group is the
relative Weyl group of G (notation ,W or ,W(G)). Let N(S) and Z(S) denote nor-
malizer and centralizer of S in G; these are k-subgroups. Then N(S)/Z(S) operates
on @ and in V. In fact it can be identified with ,J¥. Any coset of N(S)/Z(S) can be
represented by an element in N(S) (k).

Z(S) is a connected reductive k-group. Its derived group Z(S)’ is a semisimple
k-group which is anisotropic. To a certain extent G can be recovered from Z(S)’
and the relative root system ,® (for details see [19]). There is a decomposition of the
Lie algebra g of G:

g=g0+ 2 8«
as P

where for o € X*(S) we have defined g, = {X € g|Ad(s)X = 52X, se S}. Then
go is the Lie algebra of Z(S). If « € ,@ there is a unique unipotent k-subgroup U,
of G normalized by S, such that its Lie algebra is g,.

In the absolute case (k = Q) S is a maximal torus, @ is the ordinary root system
and the U, are as in 2.3. If G is split over k then S is a maximal torus of G and ,®
coincides with the absolute root system @.

In the general case ,® need not be reduced, nor is dim g, = dim U, always 1.

3.6. Parabolic subgroups. Recall that a parabolic subgroup P of an algebraic
group G is a closed subgroup such that G/P is a projective variety. Equivalently, P
is parabolic if P contains a Borel subgroup of G. '

Now let G be as in 3.5. Then the minimal parabolic k-subgroups of G are con-
jugate over k. If P is one, there is a maximal k-split torus of G such that P is the
semidirect product of k-groups P = Z(S) - R,(P) (R,(P) denotes the unipotent
radical). There is an ordering of ,@ such that P is generated by Z(S) and the U,
of 3.5 with « > 0. The minimal parabolic k-subgroups containing a given S cor-
respond to the Weyl chambers of ,@. They are permuted simply transitively by the
relative Weyl group.

Fix an ordering of ,® and let ,4 be the basis of ,@ defined by it. For any subset
§ < . denote by P, the subgroup of G generated by Z(S) and the U where
a € 0 is a linear combination of the roots of ,.I in which alt roots not in § occur
with a coefficient = 0. Then P,; = G, Py = Pand Py > P.

The P, are the standard parabolic subgroups of G containing P. Any parabolic
k-subgroup Q of G is k-conjugate to a unique Py. If Sy is the identity component of
ﬂaao(Ker #) then S; is a k-split torus of G and we have Py = Z(Sj) - R,(Pp),
a semidirect product of k-groups. The unipotent radical R,(Py) is generated by the
U, where ¢ is a positive root which is not a linear combination of elements of 6.

Let Q be any parabolic k-subgroup of G, with unipotent radical ¥ (which is
defined over k). A Levi subgroup of Q is a k-subgroup L such that Q is the semi-
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direct product of k-groups Q = L. V. It follows from the above that such L exist.
Two Levi subgroups of Q are k-conjugate. If 4 is a maximal k-split torus in the cen-
tre of L, then L = Z(A). If A is any k-split subtorus of G then there is a parabolic
k-subgroup Q of G with Levi subgroup L. Two such Q are not necessarily k-
conjugate (as they are when A4 is a maximal k-split torus). Two parabolic k-sub-
groups Q; and Q, are associated if they have Levi subgroups which are k-conjugate.
This defines an equivalence relation on the set of parabolic k-subgroups.

If O, and Q, are two parabolic k-subgroups, then (Q; N Q2) - R(Q)) is also a
parabolic k-subgroup, contained in Q;. It is equal to Q; if and only if there is a Levi
subgroup of Q; containing a Levi subgroup of Q,. Q; and Q, are called opposite if
Q) N QisaLevisubgroup of Q; and Q,.

3.7. Bruhat decomposition of G(k). Let P and S be as in 3.5 and put U = R,(P).
If we W denote by n, a representation in N(S)(k). The Bruhat decomposition
of G(k) asserts that G(k) is the disjoint union of the double cosets U(k)n,P(k)
(we W).

One can phrase this in a more precise way. If w € ,W there exist two k-sub-
groups U,, U, of U such that U = U,, x U, (product of k-varieties) and that
the map U,, x P - Un,P sending (x, y) onto xn,y is an isomorphism. We then
have

(G/P)(k) = G(k)/P(k) = Uwﬂ(U M)
Wk
where 7 is the projection G — G/P.

If &k = ( this gives a cellular decomposition of the projective variety G/P.

If 6 € ,4 let W, be the subgroup of ,W generated by the reflections defined by
the o € ,4.1f 0, 0’ € .4 there is a bijection of double cosets

Py(k)\G(K)/ Py (k) =~ W(O\WIW(E').

Let 3'be the set of generators of , W defined by ,4. The above assertions (except for
the algebro-geometric ones) then all follow from the fact that (G(k), P(k), Z(S)(k), 2)
is a Tits system in the sense of [7].

3.8. The Tits building. Let G be the connected reductive k-group. We define a
simplicial complex %, the (simplicial) Tits building of (G, k), as follows.

The vertices of % are the maximal nontrivial parabolic k-subgroups of G. A set
(Py,:++, P,) of distinct vertices determines a simplex of &£ if and only if P =
P, ---N P, is parabolic. In that case, the P; are uniquely determined by P. It fol-
lows that the simplices of % correspond to the nontrivial parabolic k-subgroups
~ of G. Let g5 be the simplex defined by P. Then g is a face of gp. if and only if
P’ = P. The maximal simplices correspond to minimal k-parabolics. These sim-
plices are called chambers. A codimension 1 face of a chamber is a wall. Two
chambers are adjacent if they are distinct and have a wall in common. One shows
that any two chambers ¢, ¢’ can be joined by a gallery, i.e., a set of chambers ¢ =
09, 01, *+» 75 = 0, such that ¢; and ¢, are adjacent (0 < i < s).

It is clear that G(k) operates on 4.

One can show (using a concrete geometric realization of the abstract simplicial
complex %) that 4 has the homotopy type of a bouquet of spheres.

For more details about buildings see [20].
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3.9. ExaMmPLES. (i) The preceding results apply when & = , the absolute case.
In particular, we then have the properties of parabolics of 3.6 and the Bruhat
decomposition of 3.7.

(il) G = GL(n) (k arbitrary). This is indeed a reductive k-group. Its Lie algebra
gisthe Lie algebra of alln x n-matrices.

Let S be the subgroup of diagonal matrices. This is a maximal k-split torus which
is also a maximal torus of G (in the absolute sense). Let ¢, € X = X*(S) map
s € S onto its ith diagonal element. The ¢; form a basis of X. The root system
® = @(G, S), which coincides with the relative root system ,®, consists of the
e; — e; € X with i # j. One checks that the root datum of G is given by X = Z»,
XV =2r,0 = {e; — €;};.;, 0/ = {e/ — e };—;, where (¢;) is the basis of X dual
to (e,).

The subgroup B of all upper triangular matrices is a minimal parabolic k-
subgroup. It is a Borel subgroup. Its unipotent radical U is the group of all upper
triangular matrices with ones in the diagonal. The basis .1 of ¢ defined by B is
(e; — €it1)i=i=n—1. The Weyl group W (which coincides with the relative Weyl
group ,W) is isomorphic to the symmetric group &,, viewed as the group of per-
mutations of the basis (e;).

The parabolic subgroups P o B are the groups of block matrices

An Ay -+ Ay

0 Agy -

0 0 Ag
where 4;; is an n; x n;-matrix with n; + --- + n, = n, the 4,; being nonsingular. Its
unipotent radical consists of these matrices where 4,;; = 1 (1 £ i <s). The sub-

group of P of matrices with 4;; = 0 for j > i is a Levi subgroup of P. The center
of L consists of those elements of S at which the elements of A different from one of
the e, — e, (1 =1 £ s) are trivial. Hence with the notations of 3.6, we have
P = P,, where § € 4is the complement of the set of these roots.

A more geometric description of parabolic subgroups is as follows.

Let V = Q. Aflagin Visasequence 0 = V, < V; =-.-c V, = V of distinct
subspaces of V. A k-flag is one where all V; are defined over k, i.e., have a basis
consisting of vectors in k”.

G operates on the set of all flags. The parabolic subgroups of G are then the
isotropy groups of flags. One sees that there is a bijection of the set of all parabol-
ic subgroups of G onto the set of all flags, under which k-subgroups correspond
to k-flags.

. If P is a parabolic subgroup, then the points of G/P can be viewed as the flags
of the same type as P (i.e., such that the subspaces of the flags have a constant
dimension).

The Tits building of (G, k) can then also be described in terms of flags: The sim-
plices correspond to the nontrivial k-flags (i.e., those with s > 1). If 5 is the simplex
defined by the flag £, then g, is a face of ¢, if and only if /” refines f(in the obvious
sense). The chambers correspond to the maximal flags (s = n, dim ¥; = i) and the
vertices of Z are described by the nontrivial k-subspaces of V. We see that the com-
binatorial structure of # pictures the incidences in the projective space P, (k).
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The smallest nontrivial special case is # = 3, k = F,. Here & is a graph with 14
vertices and 21 edges (drawn in [20, p. 210]).

(iii) Let char k& # 2. Let V be a vector space over k (in the sense of algebraic
geometry). Let F be a nondegenerate quadratic form on ¥ which is defined over k.
With respect to a suitable basis of V(k) we have

Fxy, oo, x0) = XX, + XX, + o+ 4 XX g1 + Fo(Xgt1, =5 Xueg)

where F; is anisotropic over k (i.e., does not represent zero nontrivially). The index
q of Fis the dimension of the maximal isotopic subspaces of V(k).

Let G = SO(F) be the special orthogonal group of F. It is a connected semi-
simple k-group. A maximal k-split torus S in G is given by the matrices of the form

diag(ty, -+, t, 1, ooy L7, e, £0).

Then Z(S) is the direct product of S and the anisotropic A-group SO(Fy).

For a description of a minimal parabolic k-subgroup and the determination of
the relative root system ,0@ we refer to [2, p. 16]. The latter is of type B, if 2 # n
and of type D, otherwise. If ¢ < [n/2] there are always subgroups U, of dimen-
sion > 1 (notations of 3.5).

A geometric description of parabolic k-subgroups similar to the one for GL(n)
can be given. They are in this case the isotropy groups of isotropic k-flags in V, i.e.,
flags all of whose subspaces are isotropic with respect to F.

4. Special fields. Let G be a k-group. In this section we discuss some special fea-
tures for particular k.

4.1. Rand C.1f G is a C-group then G(C) has a canonical structure of complex Lie
groups. The latter is connected if and only if G is Zariski-connected (this can be
deduced from Bruhat's lemma, compare 4.2).

Now let k = R. Then G(R) is canonically a Lie group.

4.2. LeMMA. (i) G(R) is compact if and only if the identity component G° is a reduc-
tive anisotropic R-group;
(i1) G(R) has finitely many connected components.

(i) is easily established. As to (ii), it suffices to prove this if G is connected reduc-
tive. In that case one reduces the statement, via Bruhat’s lemma, to the case that
G is either compact or a torus. In these cases the assertion is clear.

G(R) need not be connected if G is Zariski-connected, as one sees in simple cases
(e.g., G = GL(n)).

If G is a C-group then the real Lie group Rgg(G)(R) (see 3.3) is that defined by
the complex Lie group G(C).

4.3. Finite fields. Let k = F, and let k be an algebraic closure. F denotes the
Frobenius automorphism x — x¢ of k/k. The basic result here is Lang’s theorem
[6, p. 171].

4.4. THEOREM. If G is a connected k-group then g — g~1(Fg) is a surjective map of
G(k) onto itself.

Using that G is an inner form of a quasi-split k-group (see 3.1) one deduces that
a connected reductive k-group is quasi-split. A complete classification of simple
k-groups can then be given.
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Before continuing with local and global fields, we must say a little about group
schemes over rings.

4.5. Groups over rings. If G is a k-group, the product and inversion are described
(see [2, p. 4]) by morphisms of algebraic varieties u: G x G — G, p: G — G, which
in turn are given by homomorphisms of k-algebras p*: k[G] — k[G] ®, k[G] and
0*: k[G] — k[G]. These have a number of properties (Which we will not write down)
expressing the group axioms. We thus obtain a description of the notion of linear
algebraic group in terms of the coordinate algebra.

The fact that k is a field does not play any role in this description.

Replacing k by a commutative ring o, we get a notion of “linear algebraic group
G over p”, which is habitually called “‘affine group scheme G over o, which we
abbreviate to o-group. It can be viewed as a functor, cf. [2, p. 4]. We write G(o) for
the group of v-points of G (i.e., the value of the functor at o).

Let o[G] be its algebra. If o’ is an p-algebra we have, by base extension, an o'-
group G x, 0, with algebra o[G] ®, 0’

Let m be a maximal ideal of o and put k(i) = o/m; this is an p-algebra.

DEerINITION. The o-group G has good reduction at m if G x , k(m)is a k(m)-group.
G is smooth if it has good reduction at all maximal ideals m.

EXAMPLE OF BAD REDUCTION. 0 = Z, G is the group of matrices

(b <)

2b a

with a2 — 2b%2 = 1. Then Z[G] = Z[X, Y]/(X? —2Y2—1) and Z[G]® F, ~
F,[X, Y1/(X?), which cannot be the coordinate ring of a linear algebraic group
over F,, since it contains nilpotent elements.

Now let G be a k-group and let o be a subring of k. We shall say that G is de-
finable over o if there exists a smooth o-group G such that G ~ Gy x, k. By abuse
of notation, we sometimes write, if o’ is an p-algebra, G(o’) for Gy(o’). One can also
define when an algebraic variety over k is definable over p; it is clear how to do
this.

ExAMPLE. By a theorem of Chevalley a complex connected semisimple group is
definable over Z [6, A, §4].

4.6. Local fields. Let k be a local field. We denote by o its ring of integers and by
n the maximal ideal of o. The residue field o/m is denoted by F.

A profound study of reductive groups over local field has been made by Bruhat
and Tits. So far, only part of this has been published [9]. For a résumé see [8].
In Tits’ contribution [21] in these PROCEEDINGS more details are given about the
Bruhat-Tits theory. In particular, he discusses the building of a reductive k-
group and the theory of maximal compact subgroups. Here we mention only a few
results.

4.7. LEMMA. Let G be a connected reductive k-group. Then there is an unramified
extension | of k such that G is quasi-split over |.

This can be deduced from the fact that a maximal unramified extension of k is a
field of dimension =< 1 (see [16, p. II-11]).

The group G(k) of k-rational points is a locally compact topological group
(even a Lie group over k). It is a compact group if and only if the identity com-
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ponent GY is a reductive anisotropic k-group. It is shown in the Bruhat-Tits theory
that if G is connected and simply connected simple k-group, there is a finite-dimen-
sional division algebra D with center k such that G(k) ~ SL(1, D).

If G is connected and reductive and is definable over o (which is always the case
if G is k-split, see [8, p.31]), then G(o) is a compact subgroup of G(k). There is a re-
duction map G(v) — G(F), which is surjective.

4.8. Global fields. Now let k be a global field. If v is a valuation of &, let k, be the
corresponding completion of k. If v is nonarchimedean, o, denotes the ring of
integers of k,. If S is a nonempty finite set of valuations of &, containing all the
archimedean ones, denote by og the ring of elements of k which are integral out-
side S. It is a Dedekind ring.

Let G be a connected reductive k-group.

4.9. LEMMA. (i) There is an S such that G is definable over og;

(1) G x , k, is quasi-split for almost all v.

(i) is easily established. Let C be the group of inner automorphisms of G; it is a
semisimple k-group. We identify it with its group of ks rational points. There is
7 € Hl(k, C) such that G, twisted by a cocycle ¢ from 7 (see 3.1), is quasi-split. This is
another way of saying that G is an inner form of a quasi-split group. Now ¢ defines
a principal homogeneous space C. of C over k, i.e., an algebraic variety over k, on
which C acts simply transitively, the action being defined over k (see [16, p. I-58]).
We have y = 1 if and only if C, has a k-rational point. To prove (ii) it now suf-
fices to show that the image of y in Hl(k,, C x , k,) is trivial for almost all v, or that
C, has a k,-rational point for almost all v.

Let v be nonarchimedean such that C x, k, and C, x, k, are definable over
0, 58y C X, k, = Cyp % ky, C; Xk, = C.g X, k,. Assume furthermore that
the reduced group Cy x,, F,, over the residue field F,, is a connected F,-group.
These conditions are satisfied for almost all v. By 4.4, it follows that C. 4 x, F,
has an F,-rational point. A version of Hensel’s lemma then gives that C,  has an
o,-rational point, which shows that C has a k,-rational point. This implies (ii), as
we have seen.

4.10. Adelization. Let A be the adele ring of k. It is a k-algebra, so the group of
A-points G(A4) of G is defined. Let G & GL,, be an embedding over k. Then g —
(g, g71) maps G(A) bijectively onto a closed subset of 47! @ A”**!. Endowed
with the induced topology, G(4) is a locally compact group, the adele group of G.
It has G(k) as a discrete subgroup. The topology on G(4) is independent of the
choice of the embedding G & GL(n). An alternative way to define G(A) is as fol-
lows. Let Sy have the property of 4.9(i). For each finite set of valuations S o S,
the group

G(as) = T1 6o x 1 GGk

is a locally compact group. If S = S’ then G(45) = G(A4s). G(A) can also be de-
fined as the limit group G(A4) = inj limg- 5, G(4;) (this is independent of the choice
of SQ)

For each v, we have an injection G(k,) — G(A).

ExAMPLES. (a) G = GL(1). Then G(4) is the group of idéles (the units of A4).

(b) k = @, G = SL(n). One checks that
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G(4) = SL(n, R) - (];[ SL(», z},)>. G,

from which one sees that there is a surjective continuous map G(A4)/G(Q) —
SL(n, R)/SL(n, Z). More precisely, if one defines, for a positive integer N, the con-
sequence subgroup I'(N) of SL(n, Z)by I'(N) = {y e SL(n, Z) |y = 1(mod N)},
then

G(4)/G(Q) = proj lim SL(n, R)/T'(N).

(c) Let G be a Q-group and let G & GL(n) be an embedding (over Q). Fix a lattice
L in Q7 and let /" be the subgroup of G(Q) of elements stabilizing L.

There exists a connection, similar to that of the previous examples, between
G(A)/G(Q) and G(R)/I (see [1]).

The main results about G(4)/G(k) are as follows (G a connected reductive
k-group). Let X be the group of k-rational characters of G. For each y € X define
a character |y|: G(4) - R* by|x|((g.,)) = I, |x(g.)l, Where ||, is an absolute
value, normalized so as to satisfy the product formula. Let G(A)° be the intersection
of kernels of the |y|, for y € X.

The product formula shows that G(k) = G(4)°.

4.11. THEOREM. (i) G(A)°/G(k) has finite invariant volume;
(ii) (G semisimple) G(A)°/G(k) is compact if and only if G is anisotropic over k.

This is a consequence of reduction theory, due to Borel and Harish-Chandra for
number fields and to Harder for function fields (see [1] and [11]). Notice, that by
restriction of the ground field, it suffices to prove this for k = Q or k = F(T).

5. A class of Lie groups. In this section we discuss a class of Lie groups close to
the groups of real points of reductive R-groups. This is the class of groups occurring
in Wallach’s paper in these PROCEEDINGS (see also [12]). We shall indicate briefly
how the properties of these groups can be deduced from the algebraic properties
of reductive groups, discussed above.

We shall say that an algebraic group G defined over a field of characteristic zero
is reductive if its identity component G° (in the Zariski topology) is so.

5.1. Let G be a Lie group, with Lie algebra g. Its identity component is denoted
by G°. We denote by 9G the intersection of the kernels of all continuous homomor-
phisms G — R¥. Then G is a closed normal subgroup and G/°G is a vector group.

A split component of G is a vector subgroup V of G such that G = °G - V,
G NV = {e}.

We assume henceforth that G possesses the following properties:

(1) There is a reductive R-group G and a morphismy: G — G(R) with finite kernel
whose image is an open subgroup of G(R).

It follows that v induces an isomorphism of g onto the set of real points of Lie
G. We shall often identify g and v(g). It also follows that y(G)? = G(R)? and that
GO has finite index in G (since this is so for G(R), see 4.2(ii), and ker v is finite).

(2) The image of G in the automorphism group of go = g ®¢ C lies in the image
of the identity component G° of G.

The main reason to allow for finite coverings of linear groups is to include the
metaplectic group and all connected semisimple groups with finite center. The
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main use of (2) is to insure that G acts trivially on the center of the universal en-
veloping algebra of g.

5.2. Let 0, be the automorphism of GL(n, R) which sends g to ‘g~1. Let 8 (resp.
Sy) be the set of real symmetric (resp. and positive nondegenerate) n x n-matrices.
Then exp: x —»exp x = 1 + x + x2/2! + --- is an isomorphism of § onto S.
Given s € S, there is a unique analytic subgroup of GL(#, R), isomorphic to R,
contained in Sy, and passing through s. It is contained in any (y-stable Lie
subgroup of GL(n, R) with finitely many connected components which contains s.

5.3. LEMMA. Let G = GL(n, C) be an R-subgroup stable under 0.

(i) Let s € Sy () G(R). Then there exists a Oy-stable R-split torus S of G such that
s € S(R)Y;

(ii) let X € 8 | Lie(G). There is a Oy-stable R-split subtorus of G whose Lie
algebra contains X;

(iii) G is reductive.

The element s generates an infinite subgroup of G, whose Zariski closure is a
torus with the required properties. (ii) follows from (i), applied to exp x. Let U be
the unipotent radical of G, let se G(R). Then s and (0ys)s~1 are unipotent. By (i) the
last element is also semisimple, which implies s=1. Hence U={1}. This proves (iii).

5.4. By definition, a Cartan involution of GL(#, R) is an automorphism conju-
gate to 0y by an inner automorphism. Let G and G be asin 5.1. Let G = GL(n, C)
be an embedding over R. Then »(G) is stable under some Cartan involution ¢ of
GL(n, R). In other words, we may assume, after conjugation, that v(G) is stable
under f, (in which case it is said to be selfadjoint) [1], [15]. Let f (resp. 8) be the
fixed point (resp. —1 eigenspace) of () in g, and K the inverse image in G of the
fixed point set of § in »(G).

5.5. PROPOSITION. The automorphism 0 of g extends uniquely to an automorphism
of G whose fixed point set is K. The map u: (k, x) — k - exp x is an isomorphism of
analytic manifolds of K x 8 onto G.

The automorphisms of G thus defined are the Cartan involutions of G. They
form one conjugacy class with respect to inner automorphisms by elements of G°.
The decomposition G = K - S (S = exp 8) is a Cartan decomposition of G.

After conjugation, we may assume that (¢ = §,. If G = GL(n, R), then K =
O(n), S = Sy and our assertion follows from the polar decomposition of real
matrices. Assume now that v is the identity. Write ge G as a product g = k - s
where k € O(n), s€S,. Then 52 = (0, g)!-ge G, and the unique l-parameter
subgroup in S, through s? (see 5.2)is contained in G. In this group, there is a uni-
que element with square s2, which must then be equal to s. Thus s € G, hence also
k € G. This implies that g is surjective. Injectivity follows from the uniqueness of
the polar decomposition. The decomposition g =  + 8 implies that the tangent
map at any point is bijective; hence 4 is an analytic isomorphism. Thus G is the
direct product of K and a euclidean space.

This proves the proposition when v is the identity. Let G be the simply connected
group with Lie algebra g, K the analytic subgroup of G with Lie algebra f and
7: G — GO the natural projection. Since the fundamental group of K is that of G,
the group K is the universal covering of K; hence ker 7 < K. The automorphism 6
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of g extends to one of G, which fixes K pointwise, hence acts trivially on ker 7,
and goes down to an automorphism of G°. The result for y(G) implies that G =
K - S = K - GO Since ker y acts trivially on g, hence on G%, 6: G — GY extends
obviously to an automorphism of G which fixes K pointwise. The remaining asser-
tions are then obvious.

5.6. COROLLARY. (1) K is a maximal compact subgroup of G,
(ii) K meets every connected component of G.

G is the topological product of K by a connected space S, whence (ii). The first
assertion follows from the fact that every s # 1 in S generates an infinite discrete
subgroup.

Fix a Cartan involution 6§ of GL(n, R) stabilizing v(G). We also denote by 0
the Cartan involution of G defined in 5.5.

5.7. Let C be the center of G. It has again the properties (1), (2) and it is §-stable.
The group corresponding to G is the center of G. The subset corresponding to
S is now a vector group V. It is, in fact, the maximal §-stable vector subgroup
contained in C. Let G; be the derived group of G.

5.8. LEMMA. (i) °G = KG; and V is a split component of G;
(ii) °G has the properties (1), (2) and is (-stable.

KGj is a §-stable closed normal subgroup of G, contained in °G. The Lie algebra
g is the direct sum of those of KG; and of V, which implies (i). As to (ii), for the
algebraic group of (1) we take the Zariski closure of v(°G) in G. Its identity com-
ponent differs from GO only in its center. This implies (2), and the final assertion
is clear.

5.9. Parabolic subgroups. A parabolic subalgebra p of g is a subalgebra such that
pe is the Lie algebra of a parabolic R-subgroup of G°. A parabolic subgroup P of
G is the normalizer in G of a parabolic subalgebra (which then is the Lie algebra of
P). The parabolic subgroups of G correspond to the parabolic R-subgroups of G°.

Let P be a parabolic R-subgroup of G° Let N be its unipotent radical. Put
L=PQ 0P

5.10. LEMMA. (i) L is a Levi subgroup of P;
(ii) the Lie algebra of G is the direct sum of those of N, 6N and L.

5.3(iii) shows that L is reductive. LN is a parabolic R-subgroup of G contained
in P (see 3.6) with unipotent radical N, hence equal to P. This proves (i). Then
(ii) follows by using that P and § P are opposite parabolics.

5.11. Let S be the maximal R-split torus in the center of L. Put 4 = v~1(S(R))",
N =y~ 1(N(R))°. These are subgroups of G. Since 4 is a §-stable vector group, we
have fa = a1 for all a € A. Let P be the parabolic subgroup of G defined by P and
put L = P () §P, M = OL. Then L is the centralizer of 4 in G. Also, L and M are
f#-stable.

5.12. PROPOSITION. (i) L satisfies (1), (2) of 5.1. A is a split component of L and of P;
(ii) (m, a, n) — man defines an analytic diffeomorphism of M x A x N onto P.

Let H be the centralizer of S'in G. Then v(L) = H. Moreover, the identity com-
ponent HY is reductive and is equal to H (] G (the last point because centralizers
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of tori in Zariski-connected algebraic groups are connected, see [3, p. 271)). It fol-
lows that (1) and (2) hold for L. The last point of (i) is easy. From P = LN we
conclude that P = LN = MAN. Now (ii) readily follows.

The decomposition of 5.12(ii) is called the Langlands decomposition of P. There
is a similar decomposition of the Lie algebraof P:p = m + a + .

A parabolic pair in G is a pair (G, A) where P is a parabolic subgroup of G and
A is as above.

5.13. Minimal parabolic subgroups. Now assume that P is a minimal parabolic
subgroup. Then P is a minimal parabolic R-subgroup of G°. In that case the derived
group of L is an anisotropic semisimple R-group. It follows that M is compact.
We then must have M < K (recall that M is §-stable), so M = K [} P. Let © be
the root system of (G, S) (see 3.5). If a € ® put g, = {X e g| Ad(a)X = a*X,
a € A}. Then we also have

8. = {Xeg|[H, X] = da(H)X, H € a}

(a being the Lie algebra of A4). Also, there is an ordering of @ such that n =
22650 Gar 1 = Y40 g (1 and Ou are the Lie algebras of N and §N).

5.14. LEMMA. (i) We have direct sum decompositions
g=a+m+u+6n g=t+a+u
(ii) a is @ maximal commutative subalgebra of 8.

The first decomposition follows by using 5.10(ii). It then follows that f is the
direct sum of m and the space of all X + #X (Xen). Hence t N n = {0}, f + n =
m + n + On. This gives the second decomposition, We also get that 8 is the direct
sum of a and the space of all X — 60X (X € n). Since a commutes with no nonzero
element of n + fn, the assertion of (ii) follows.

From the above we see that @ is also the root system of the symmetric pair
(G, K) (see [13, Chapter VII])).

5.15. PROPOSITION (IWASAWA DECOMPOSITION). (k, a, n) — kan is an analytic
diffeomorphism of K x A x N onto G.

Let ¢ be the map of the statement.

(a) im ¢ is closed. AN is a closed subgroup of G and G/AN is compact (because
G/P and M are compact). Let 7 be the projection G — G/AN. Since K is compact,
im(z o ¢) is closed. Hence so is im ¢ = z~! im(x ° ¢).

(b) im ¢ meets all components of G, since k does (see 4.6(ii)).

(c) The tangent map d¢ is bijective at any point (k, a, #). This follows from the
direct sum decompositiong =t + a + 1.

(a), (b) and (c) imply that im ¢ is open and closed and meets all components.
Hence ¢ is surjective. To finish the proof, it suffices to show that ¢ is injective. It is
enough to prove that kan = a; implies a = a;, k = n = e. Now if this is so we
have 6n = a?nar?. The image under v of the last element is unipotent. It then
follows that a? = af, a = a;, whence fne N ] N = {e}.

5.16. COROLLARY. For any parabolic subgroup P of G we have G = KP.
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Let W be the Weyl group of the root system @. This is the relative Weyl group
of (GY, S) (see 3.5), i.e.,

W = NGO(R) (S)/Zgo(n)(s).
5.17. LEMMA. M meets all components of G.

It suffices to prove this for the case that v(G) = G%R). In that case it follows
from Bruhat’s lemma that the connected components of GO(R) all meet N =
Negow)(S). Let a € @ be a simple root (for the order defined by P), U(,, the uni-
potent subgroup whose Lie algebra is (g,)¢ + (g2.)c (Where the second term is
zero if 20 ¢ @), and U_,, = 0(U,). It is known that U, ,(R) - U_(R)- U»(R)
contains an element of N representing the reflection in W defined by a. It follows
that N © Zgg (5)GP, which implies the assertion.

It follows from the lemma that W = Ng(A)/Z(A).

5.18. LEMMA. W =~ (K () Ng(A))/M.

Let g = kan € Ng(A). Then also (0n)~1a%n € Ng(A). Let wy € Ngog)(S) represent
the element of maximal length of W. Then 0n~1 = wnny!, for some n, e N. We
then have nynyla®n € wylNg(A). The uniqueness statement of Bruhat's lemma then
implies that n;, = e, whence n = e. This implies the assertion.

From 5.18 we see that W is the Weyl group of the symmetric spaces G/K ([13,
p. 244)).

5.19. PROPOSITION (CARTAN DECOMPOSITION). We have G = KAK.

This follows from 5.5 and the following lemma. Here S is as in 5.3 (observe that
K normalizes S).

5.20. LEMMA. S = )i kA

It suffices to prove this for v(G), i.e., when vy = id. Let s € S. Then s lies in a §-
stable R-split torus 8} = G°. Since § is a maximal R-split torus in G° (because P
is a minimal parabolic R-subgroup of G°, see 3.5) we have that §; is conjugate to
a subtorus of § by an element of GO(R). By 5.17 we may take this element to be in
GO(R), hence in G. So there is g e G with a; = g7lsge 4. Writing g = kan we
obtain

nla?.0n-a =an?t-a?-0n

Using again the uniqueness statement of Bruhat’s lemma, as in the proof of 5.18,
we see that @, commutes with n. It follows that s is conjugate to an element of 4 via
K, which is what had to be proved.

5.21. We finally give a brief elementary discussion of the geometric properties of
the symmetric space G/K. We identify it with S (cf. 5.5). Itis a homogeneous space
for G, the action being given by (x, §) — x-5 = xs(0x)71. If x € 8 define | X2 =
Tr(X?). This defines a K-invariant Euclidean distance on 8. The exponential map
exp defines a diffeomorphism of 8 onto S. Its inverse is denoted by log.

Define a Euclidean metric d(,) on A by d(a, b) = ||log a — log b||. This deter-
mines a structure of Euclidean affine space on 4.

We may and shall assume that y=id.
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5.22. LEMMA. Let s, t € S.

(i) There is x € G such that x - sand x - t lie in A;

(ii) if x' is another element with the property of (i) then there is n € G normalizing
A such that xnx’ fixes s and t.

(i) follows from 5.20. To prove (ii) it is sufficient to assume x" = e. Then s, ¢ € 4.
Put x-s = a, x-t = b. It now follows that a~1/2xs1/2 and b—1/2xt1/2]je in K, from
which one concludes that sz~! and ab™! are conjugate in G. The uniqueness part of
Bruhat’s lemma then implies that these elements are conjugate by an element of
the Weyl group W, from which (ii) follows.

5.23. LeMMA. If x € G, x - A = A then x normalizes A in G.

Apply 5.22(ii), taking x' = e, s a regular element of 4, ¢’ = e. It follows that we
may assume x € K and xs(0x)"! = xsx~! = s. Since s is regular, x centralizes 4.
The assertion follows.

5.24. The translates x-A4 of 4 in S are called apartments in S. It follows from
5.23 that for any apartment o/ there is a unique structure of Euclidean affine space
on .« such that any bijection 4 — o7 of the form a +— x-a is an isomorphism of
such spaces.

5.22(i) shows that for any two elements s, ¢ € S there is an apartment ./ con-
taining them. It follows from 5.22(ii) that, if s # ¢, the line in ./ containing s and ¢,
together with its structure of 1-dimensional affine space, is independent of the choice
of «7. We call such lines geodesics in S.

It now also makes sense to speak of the geodesic segment [st], and of the midpoint
of [st].

It also follows that there is a unique G-invariant function d on S x S whose re-
striction to A x A is the function of 5.21.

5.25. PROPOSITION. (i) d is a distance on S;
Gi) if s, t,ue S, d(s, t) = d(s, u) + d(u, t) then u lies on the segment [st];
(iii) a closed sphere {x € X | d(x, a) < r} is compact in X.

It suffices to prove this for the case G = GL(n, R).
A proof of (i) and (ii) is given in the appendix to this section. The proof of (iii)
is easy.

5.26. PROPOSITION. For each s € S there is a unique involutorial analytic diffeo-
morphism o, of S with the following properties:

(@) o, is an isometry (for d),

(b) s is the only fixed point of o,

(c) o, stabilizes all geodesics through s.
We have g,.; = X 00,0 x L.

We may take x = e. The geodesic through e and exp X consists of the exp(£X)
(& € R). Observing that d(e, exp(£X)) is proportional to |£| it follows that the only
possibility for g, is the map ¢ — ¢~1. That this satisfies our requirements is clear.
The final statement follows from the rest.

5.27. LEMMA. Let s, s’ be distinct points of S, let m be the midpoint [ss']. Let t be
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a point of S not lying on the geodesic through s and s'. Then d(t, m) < 1d(t, s) +
1d(t, s").
2 B

Let 0 = 0, then g5 = s’. We have
2d(t, m) = d(t, o(t)) < d(t, s) + d(o(2), s) = d(¢, s) + d(t, s").

If the extreme terms are equal we have, by 5.25(ii) that s lies on [¢, ¢(¢)]. Then so
does s" = g5, and s, 5, t lie on a geodesic, which is contrary to the assumption. The
inequality follows.

If Cis a subset of X we denote by I(C) the subgroup of the group of isometries of
S whose elements stabilize C.

5.28. LEMMA. If C is compact the group I(C) has a fixed point in S.

Let r = inf,cysup,ecd(x, y). Then F = {xe S|sup,cc d(x, y) =r} is the
intersection of the decreasing family of sets F,, = {x € S| sup,ccd(x,y) < r + 1/n}
(n =1, 2, ---). Since these are nonempty and compact (by 5.25 (iii)) it follows that
C is nonempty.

Suppose a, be F, a # b and let m be the midpoint of [ab]. We then have by
5.27, foreach y € C, d(m, y) < %d(a, y) + 1d(b, y) = r, which is impossible. Hence
F consists of only one point. It is clearly fixed by I(C).

5.29. THEOREM. Let M be a compact subgroup of G. Then M fixes a point of S.
This follows by applying 5.28 to an orbit of M in S.

5.30. COROLLARY. M is conjugate to a subgroup of K.
5.31. COROLLARY. All maximal compact subgroups of G are conjugate.

5.32. ReMARKS. (1) In our discussion of the symmetric space S we wanted to
stress, more than is usually done, the analogy with the Bruhat-Tits building 2 of
a p-adic reductive group. We mention a few features of this analogy.

(a) It is clear from our discussion that S can be obtained, like %, by gluing
together apartments (see [21, 2.1]).

(b) We have introduced metric and geodesics in S in the same way as is done in
the case of & (see [9, 2.5] and [21, 2.3)). In the case of #Z an important role is played
in the discussion of the metric, by the retractions onto an apartment [loc. cit., 2.2].
Such retractions can also be introduced in S (an example is the map p used in the
appendix).

(c) The fixed point Theorem 5.29 has a counterpart for % [8, 3.2.4].

(d) I owe the proof of 5.29, using the strong convexity property 5.27, to J. J.
Duistermaat. 5.29 can also be proved via the argument used in [8] (see also
[21, 2.3]) to prove its counterpart for 4. This requires the inequality (m is the mid-
point of [x, y])

d(x, 2)2 + d(y, z)? 2 2d(m, 2)? + 3d(x, y)?,

which can also be established in our situation (e.g. by using that the exponential
map 38— S increases distances).
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Appendix. Proof of 5.25 for G = GL(n, R). A4 is now the group of all diagonal
matrices with positive entries. It suffices to show:

ifa,be A,s€ S, then d(a,b) < d(a, s) + d(s, b) equality holding if and only if s
lies on the segment [ab].

As is well known, s e S being given there is a unique o(s) € 4 and a unique
upper triangular unipotent matrix u(s) such that s = ‘u(s)o(s)u(s). If a € A, we
have p(asa) = p(a)?o(s). We shall prove the following.

LeMMa. d(o(s), €) < d(s, e), equality holding if and only if s € A.

From the lemma it also follows that, for all a € 4, d(o(s), a) < d(s, a). Hence
d(a, b) < d(a, p(s)) + d(o(s), b) < d(a, s) + d(s, b), proving the triangular in-
equality. The case of equality is easily dealt with.

It remains to prove the lemma. Let @; = a, = -+ = a, be the eigenvalues of s
and b; = b, = --- Z b, those of p(s). The lemma asserts that

3 (logh)? = 3. (logay)2.
=1 =1

Results of this kind are known, they can be found, e.g., in H. Weyl, Ges. Abh. Bd.
IV, p. 390. We use Weyl’s method. Let g = p(s)!/2 u(s), sos = ‘g - g. There is a
vector v € R* with gv = b1/2 v. Then (,) denoting the standard inner product in R»,

bl("a V) = (V, SV) § al(v’ V),

whence b; < a;. Applying a similar argument, working in the exterior powers of
R, we see that bib, --- b, < ayap - a,(1 £ p £ n — 1), and, of course, b;b; -+ b,
= a,a, --- a,. We may, and shall, assume that aja, --- a, = 1.

Let ¥V € R” be the subspace of vectors with coordinate sum 0.

Let a; = e; — ey (1 £i<n—1, () is the canonical basis), and define
w; €V by (w;, €;) = 0;; (1 =i, j<n—1). Then o, is the projection onto V
of e + --- + e;. Let x = (log a;, log a,, ---, log a,), y = (log b,, log by, -,
logb,). We then know that

xa)z0, (6ba)20, x—»w)z20 ((A=Lign-1),

and we have to prove that (y,y) £ (x, x). Now (x,x) — (1, ) =(x —y,x — y) +
2(y, x — y). Since y is a linear combination, with positive coefficients, of the w;
and x — y is a similar combination of the «;, we have that (y, x — y) = 0. The
inequality which we have to prove now becomes obvious.

It is clear that we can only have (x, x) = (y, y) if x = y. In that case we have
Tr(s) = Tr(o(s)). But it is immediate that if u(s) # e, we must have

Tr(tu(s)o(s)u(s)) > Tr o(s).
So Tr(s) = Tr p(s) implies p(s) = s. This finishes the proof of the lemma.
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0. Preliminaries.

0.1. Introduction. This is a survey of some aspects of the structure theory of reduc-
tive groups over local fields. Since it is mainly intended for ‘““utilizers”, the main
emphasis will be on statements and examples. The proofs will mostly be omitted,
except for short local arguments which may give a better insight in the way the
theory operates. When proofs are available in the literature (which is not always the
case!), references will be given; references to [8] are often conditional, as explained
in §1.5.

We shall not try to give the historical background of the results exposed here. Let
us merely recall that the theory was initiated by N. Iwahori and H. Matsumoto
[15], who were considering split semisimple groups, that quasi-split and classical
groups were later on studied by H. Hijikata [13], and that, in the generality given
here, most results are due to F. Bruhat and the author [6], [7], [8], [9]. For further
information, one may consult the introduction of [8].

0.2. Notations. The following notations will be used throughout the paper: K
denotes a field endowed with a nontrivial discrete valuation w, the value group
w(K*) (= R) is also called I, v represents the ring of integers, p = 7o with zep
its prime ideal and K = o/p the residue field. We always assume K complete and K
perfect. We consider an algebraic group G defined over K whose neutral com-
ponent G° is reductive, and call S a maximal K-split torus of G, N (resp. Z) the
normalizer (resp. the centralizer) of S in G, *W the finite group N(K)/Z(K) (as
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usual, 7(K) stands for the group of rational points of ? over K), X* = X*(S) =
Homg(S, Mult) (resp. X, = X,(S) = Homg(Mult, S)) the group of characters
(resp. cocharacters) of S, V the real vector space X, ® R, @ = &(G, S) = X*
the set of roots of G relative to S, *W the Weyl group of the root system @ which
we identify with a normal subgroup of *W (equal to *W if G = G°) and U,, for
a € @, the unipotent subgroup of G° normalized by S and corresponding to the root
a (i.e., the group called U, in [3, 5.2)).

1. The apartment of a maximal split torus and the affine root system.

1.1. The split case. As a motivation for what follows, we first consider the case
where G° is split, that is, where S is a maximal torus of G. Then, the groups U, are
K-isomorphic to the additive group. Indeed, the choice of a “Chevalley basis™ in
the Lie algebra of G determines a system of K-isomorphisms y,: Add — U, (an
‘“épinglage”) satisfying the commutation relations of Chevalley [10, p. 27]. Since
K is a local field, its additive group is filtered and so are the groups U, (K), “par
transport de structure”. The terms of those filtrations are conveniently indexed by
affine functions on V:forae @and y € I, a + 7 is such a function and we set

(1) Xa+r = Xa(w-—l[r’ OO])

If we transform the Chevalley basis by Ad s for an element s € S(K), the system
(o) is replaced by (y,) = (x, ° a(s)) and, setting X,., = y, (07! [, ©]), we have

)] Xz;+r = Agtrtwas):

Thus, the terms of the filtrations of the groups U,(K) are unchanged but their
indexation has undergone a translation. The same conclusion holds for an arbitrary
change of Chevalley basis (one just has to replace s by a rational element of the
image of S in the adjoint group).

We may express that conclusion in a more invariant way as follows. There exist
an affine space 4 under V, a system @,; of affine functions on 4 and a mapping
a — X, of @, onto a set of subgroups of G(K) with the following property: to every
Chevalley basis, there corresponds a point 0 € A such that @,; consists of all
functions

3 a:xe—alx —0) + 7 (xed;aec®,rel)

and that, if (y,) denotes the ““épinglage’ associated with the given basis, the group
X, corresponding to the function (3) is given by (1). The group S(K) operates by
translations on 4 in such a way that, for s € S(K), we have

4) STIX S = X

From (2) it follows that the translation v(s) € ¥ of 4 induced by s (i.e., defined by
s(x) = x + v(s) for x € 4) is given by

®) a(v(s)) = — w(a(s)) foreveryae®.

More generally, the normalizer N(K) of S(K) in G(K) operates on 4 by affine trans-
formations in such a way that (4) holds for any s € N(K).

1.2. The apartment A(G, S, K). Our purpose is to generalize the above results to
an arbitrary group G in the following form: to G, S, K, we want to associate an
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affine space A = A(G, S, K) under V on which N(K) operates. a system @, =
0.4G, S, K) of affine functions on A and a mapping o — X, of @, onto a set of
subgroups of G(K), such that the relation 1.1(4) holds for s € N(K), that the vector
parts v(a) of the functions o € O, are the elements of ®, and that, for ae @, the
groups X, with v(a) = a form a filtration of U,(K).

We first proceed with the construction of the space 4; the set @, and the X,’s
will be defined in §§1.6 and 1.4. The relations (5) show us the way. The group
X*(Z) of K-rational characters of Z can be identified with a subgroup of finite index
of X*. Letv: Z(K) — V be the homomorphism defined by

) 1((2) = — w(y(z)) forze Z(K)and ye X*(2Z),

and let Z, denote the kernel of y. Then, 4 = Z(K)/Z, is a free abelian group of rank
dim S = dim V. The quotient W = N(K)/Z, is an extension of the finite group * W
by A. Therefore, there is an affine space 4 (= A(G, S, K)) under ¥ and an extension
of v to a homomorphism, which we shall also denote by v, of N in the group of
affine transformations of 4. If G is semisimple, the system (4, v) is canonical, that
is, unique up to unique isomorphism. Otherwise, it is only unique up to isomor-
phism, but one can, following G. Rousseau [19], “‘canonify” it as follows: calling
2G° the derived group of G° and S; the maximal split torus of the center of
G°, one takes for A the direct product of 4(2G°, G° (N S, K) (which is cano-
nical) and X 4(S;) ® R .The affine space A is called the apartment of S (relative
to G and K). The group N(K) operates on A through W.

1.3. Remark. Since V = Hom(X*, R) = Hom(X*(Z), R), the groups
Hom(X*, I') and Hom(X*(Z), I') are lattices in ¥ and one has

) Hom(X*, I') = »(Z(K)) = A = Hom(X*(Z), I").

If G is connected and split, both inclusions are equalities, but in general they can be
proper. Suppose for instance that G = R;, x Mult, where L is a separable extension
of K of degree n, and let /7 be the value group of L. The group X *(Z) is generated
by the norm homomorphism N;,x, hence has index » in X*. On the other end, A
is readily seen to be equal to n- Hom(X*(Z), I'}). In particular, the first (resp. the
second) inclusion (1) is an equality if and only if the extension L/K is unramified
(resp. totally ramified). A semisimple example is provided by G = SU; with split-
ting field L; exactly the same conclusions as above hold with n = 2 (indeed, in that
case Z = R;,x Mult). One can prove that the first inclusion (1) is an equality when-
ever G splits over an unramified extension of K.

1.4. Filtration of the groups U(K). Let ac @ and ue U (K) — {1}. It is known
(cf. [3, §5]) that the intersection U_,uU_, | N consists of a single element m(u)
whose image in ?W is the reflection r, associated with @, from which follows that
r(u) = v(m(u)) is an affine reflection whose vector part is r,. Let a(a, ) denote the
affine function on 4 whose vector part is @ and whose vanishing hyperplane is the
fixed point set of r(u) and let @’ be the set of all affine functions whose vector
part belongs to @. Fora € ¢, we set X, = {ue U (K) |u = 1or a(a, u) 2 a}.
The following results are fundamental.

1.4.1. For every « as above, X, is a group.

1.42. If a, B € @', the commutator group (X,, Xp) is contained in the group gen-
erated by all Xy, .4 for p,qe N* and pa. + qBe @'
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Clearly, the X,’s with W(&) = a form a filtration of U,(K). We denote by X the
union of all X, foree R, ¢ > 0 (of course, X, = X, for ¢ sufficiently small).
From 1.4.2, it follows that X,. is a normal subgroup of X,, and we set X, =
X,/X .+ Thus, the X,’s, for v(a) = a, are the quotients of the filtration of U, (K)
in question. It is obvious that for n € N(K), one has n™1X, n = X,.,(,)-

1.5. About proofs, references and generalizations. Let us identify A4 with V via the
choice of an “origin” 0, and, for every a € @ and u € U, (K), set ¢, (4) = a(a, u) —a
(e R). The assertions 1.4.1 and 1.4.2 essentially mean that the system of functions
(9o)a < o is a valuation of the root datum (Z(K); (U,(K)), <o), as defined in [8, 6.2].
That fact itself is roughly equivalent with (actually somewhat stronger than) the ex-
istence of a certain BN-pair in the group generated by all U,(K) (cf. [8, 6.5 and
6.2.3(e)]), and with the existence of the affine building of G over K (cf. §2 below
and [8, §7]). Those results have been announced in [6], [7] and [8, 6.2.3(c)]), but
complete proofs by the same authors have not yet appeared (though the case of
classical groups is completely handled in [8, §10], and quasi-split groups are es-
sentially taken care of by [8, 9.2.3]). In the meantime, proofs of closely related
results have been published by H. Hijikata [14] and by G. Rousseau [19].

In the sequel, quite a few statements will be followed by references to [8]; this
will usually mean that the quoted section of [8] contains a proof of the statement
in question once 1.4.1 and 1.4.2 are admitted.

For the sake of simplicity we have assumed that w is discrete and K perfect. In
fact, much of what we shall say until §3.3 remains valid (with suitable reformula-
tions) without those assumptions, provided that 1.4.1 and 1.4.2 hold, and this has
been shown to be always the case except possibly if char K = 2 for some groups G
whose semisimple part has factors of exceptional type and relative rank < 2 (cf.
[8, §10], [25] and [19]).

1.6. The affine root system @,. For every affine function ¢ on 4 whose vector part
a = ¥(a) belongs to @, one has an obvious inclusion X,, & X, (if 2a ¢ @, we set
X,. = {1}) and the quotient X,/X5, has a natural structure of vector space over K
(cf. 3.5.1) whose dimension is finite and will be denoted by d(x). In particular, if
char K = p, X, is a p-group. An affine function « such that a = v(a) € @ is called
an affine root of G (relative to S and K) if d(a) # 0, that is, if X, is not contained in
Xote  Ug(K) (= X, if 2a ¢ ) for any strictly positive constant e. We denote by
0.4(G, S, K) = @, the affine root system of G, i.e., the set of all its affine roots.
Note that if 2a ¢ @, one has a(a, u) € @, for every u e U,(K) — {1}; in particular,
if@isreduced, @, = {a(a, u) |ac ®,uec U(K) — {1}}.

1.7. Half-apartments, chambers, affine Weyl group. For every affine function «
such that @ = v(a) € @, we denote by 4, the set ¢~1([0, o)), by 94, its boundary
a~1(0) and by r, the affine reflection whose vector part is the reflection r, (cf. 1.4)
and whose fixed hyperplane is 94,. The sets 4, (resp. 94,) for a € @, are called the
half-apartments (resp. the walls) of A, and the chambers are defined as the connected
components of the complement in 4 of the union of all walls. The facets of the
chambers are also called the facets of A4; thus, the chambers are the facets of
maximum dimension. If G is quasi-simple the facets (and in particular the cham-
bers) are simplices, if G is semisimple they are polysimplices (i.e., direct products of
simplices) and in general they are direct products of a polysimplex and a real affine
space.
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The group W generated by all r, with o € @, is called the Weyl! group of the affine
root system @,. (If G is not semisimple, this is a slight abuse of language since W
depends not only on @, but also on the subspace of V generated by X, (2G° N S),
where 2G° denotes the derived group of G°.) If G is semisimple, W is the affine
Weyl group of a reduced root system (cf. [S, VI. 2.1]) whose elements are propor-
tional to those of @, but which is not necessarily proportional to @, even if @ is re-
duced (cf. the examples in §§1.15, 1.16).

Clearly, @, is stable by the group W = v(N(K)) (cf. §1.2). It follows that the
half-apartments, the walls and the chambers are permuted by W, and that W is a
normal subgroup of W.

1.8. Bases, local Dynkin diagram, characteristic dimensions. The Weyl group W
is simply transitive on the set of all chambers (i.e., it permutes the chambers transi-
tively and the stabilizer of a chamber in W is reduced to the identity). Let C be a
chamber and let L, ---, L, be the walls bounding C. For i € {0, ---, I}, let a; be the
unique affine root such that L; = 94,, and }a; ¢ @.. The set {a; | i =0, ---, [}
is called the basis of @,¢ associated to C.

Let a; be the vector part of o, and let us introduce in the dual of V a positive de-
finite scalar product ( , ) invariant by the (ordinary) Weyl group *W. To @,
one associates a (local) Dynkin diagram 4 = 4 (@) obtained as follows:

The elements ¢; of a basis are represented by dots v;, called the vertices of the
diagram;

if 2¢; € @, the vertex v; is marked with a cross;

two distinct vertices v;, v, are joined by an empty, a simple, a double, a
triple or a fat segment (edge of the diagram) according as the integer A,; =
4(a;, a,)?/(a;,a;)(a;, a;) equals 0, 1, 2, 3 or 4 (in the latter case, g, is a positive multiple
of —a,);

if ; = 2 or 3 (which implies that (a;, a;) # (a;, a))) orif 4;; = 4and a; # —a,,
the edge joining v; and v; is oriented by an arrow pointing toward the vertex re-
presenting the “shortest” of the two roots a; and a;.

Since the chambers are permuted simply transitively by W,

1.8.1. the Dynkin diagram does not depend, up to canonical isomorphism, on the
choice of the chamber C.

It is easily seen that the system (4, @) is determined up to isomorphism by the
Dynkin diagram 4 and the dimension of 4 (i.e., the relative rank of G). The Coxeter
diagram underlying the Dynkin diagram—i.e., deduced from it by disregarding the
crosses and arrows—is the Coxeter diagram of W, hence the Coxeter diagram of an
affine reflection group (cf. [5, V.3.4, and VI.4.3], where our “‘diagrams” are called
‘““graphes”).

Conversely, consider any Coxeter diagram which is the diagram of an affine
reflection group, orient all double and triple edges and possibly some fat ones, and
mark some vertices (possibly none) with a cross. Then, the diagram thus obtained
is the local Dynkin diagram A of some group G over some field K if and only if, for
every vertex v marked with a cross, all edges having v as an extremity are double or
fat and none of them is oriented away from v.

The necessity of the condition is obvious. As for the sufficiency, the classification
of §4 even shows that for any given /locally compact local field K, every diagram
satisfying the above condition is the local Dynkin diagram of some semisimple
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group G over K: indeed, it is an easy matter to list all irreducible diagrams in ques-
tion, and one verifies readily that they all appear in the tables of §4. Note that the
above statement, or alternatively the tables of §4, provide the classification of all
affine root systems, for a suitable “abstract” definition of such systems, which the
interested reader will have no difficulty to formulate (cf. also [8, 1.4], where the
affine root systems are called ““échelonnages”, and, for the reduced case, [17]).

If the vertex v of 4 represents the affine root a, we set d(v) = d(a) + dQ2a)
(= d(a) if 2a ¢ ®.1), where the function 4 is defined as in §1.6. The integer d(v)
of course depends not only on 4 and v but on the group G itself. In the tables of
84, the value of d(v) is indicated for every v whenever it is notequalto 1. If G is
split or if the residue field K is algebraically closed, all d(v) are equal to 1.

1.9. Root system attached to a point of A and special points. For x € A, we denote
by @, the subset of @ consisting of the vector parts of all affine roots vanishing in
x, and by W, the group generated by all reflections r, for o € @, and a(x) = 0
(cf. §1.7). To x, we also associate as follows a set 7, of vertices of the local Dynkin
diagram 4: there is an element w of the Weyl group W which carries x in the closure
of the “fundamental chamber” C and one sets I, = {v; |wx ¢ L;}, with the notations
of §1.8; that I, is independent of the choice of w follows from well-known pro-
perties of Coxeter groups: cf., e.g., [S, V. 3.3, Proposition 1]. The objects @,, W,,
I, depend only on the facet F containing x and will also be denoted by @r, W, Ir.

The set @, is a (not necessarily closed) subroot system of ® whose Weyl group is
the vector part of W, and whose (ordinary) Dynkin diagram is obtained by delet-
ing from 4 the vertices belonging to /, and all edges containing such a vertex. The
set I, has a nonempty intersection with every connected component of 4 and, con-
versely, every set of vertices with that property is the set , for some x.

The point x is called special for @ if every element of the root system @ is pro-
portional to some element of @,, that is, if ® and @, have the same Weyl group.
When it is so, W is the semidirect product of W, by the group of all translations
contained in W; similarly, if G is connected, W is the semidirect product of W, by
v(Z(K)) = Z(K)/Z,(cf. 1.2).

The fact for a point x to be special can be recognized from the set of vertices I,
as follows. A vertex of the Coxeter diagram of an irreducible affine reflection group
is called special if by deleting from the diagram that vertex and all adjoining edges,
one obtains the Coxeter diagram of the corresponding finite (spherical) reflection
group. (Equivalently: such a diagram being the Coxeter diagram underlying the
extended Dynkin diagram—‘graphe de Dynkin complété” in the terminology of
[S]—of a reduced root system, the special vertices are the vertex representing the
minimum root and all its transforms by the automorphisms of the diagram.)
Clearly, such vertices exist. Now, x € A4 is special if and only if 7, consists of one
special vertex out of each connected component of 4. In particular, special points
always exist. In the tables of §4, the special vertices are marked with an s or an As
(““hyperspecial points”: see below).

1.10. Behaviour under field extension and hyperspecial points. Let K; be a Galois
extension of K with Galois group Gal(K;/K) = 6, and let S| be a maximal K;-
split torus of G containing S and defined over K. Such a torus exists for instance
in the following cases:

if G is quasi-split over K (obvious!);
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if K is the maximal unramified extension of K [6(c), 3, Corollaire 1];

if the residue field KX is finite and K;/K is unramified.

(The latter condition is necessary as is shown by the following example due to
Serre: suppose that @ has even order and no subgroup of index 2, and that G is the
norm one group of a division quaternion algebra; then G splits over K; but none
of its maximal tori does.) Let 4; = A(G, S}, K;) be the apartment of S; and let
O1as = Duf(G, Sy, K7) be the corresponding affine root system. The Galois group
O operates on A, (‘“‘canonified” as in §1.2) “par transport de structure”, and 4
can be identified with the fixed point set 45.

That identification is not quite obvious. To characterize it, we have to describe
an operation of N(K) on A§ (cf. 1.2). First observe that 4§ clearly is an affine space
under V. Let now n € N(K), let N, be the normalizer of S; in G and let v, be the
canonical homomorphism of N;(K,) into the group of affine transformations of A4;.
Since the conjugate #S) is a maximal K -split torus of Z, there exists z € Z(K;) with
n' = nz-1 e Ni(Kj). Upon multiplying z by a suitable element of (Z (] N;) (K;), one
may choose it so that v,(n’) stabilizes 49. Let now y(z) be the element of V defined
by the relation 1.2(1) where w must be replaced by the valuation of K;. Then n =
n'z operates on A¢ through v;(n') o v(z). That this action is independent of the
choices made and indeed defines an operation of N(K) on A9 is best seen by using
the “building” of G over K; defined in §2: that building contains A9 and is
operated upon by G(K)), hence by N(K), and one verifies that N(K) stabilizes A¢
and operates on it as described above. Note that, more generally, the results of
§2.6 show that if S] is any maximal K,-split torus of G containing S, 4 can be
naturally identified with an affine subspace of A(G, S;, K;); much of what we shall
say here extends to that situation.

1.10.1. If Ky/K is unramified, @ consists of all nonconstant restrictions o4, with
@€ ¢1af.

That is no longer true in general when K;/K is ramified. An obvious example is
provided by the case where G is split over K. Then, S; = S, 4; = 4, and if we
identify 4 with ¥ as in §1.1, we have @y = {a + 7] ae®, ye '} and Qi =
{a + rlae®, y e I}, where I', denotes the value group of Kj.

From 1.10.1, it follows readily that

1.10.2. If K\/K is unramified, every point of A which is special for @ is also
special for Q.

The above example shows that that assertion becomes false without the assump-
tion on K;/K. A point x € A4 is called hyperspecial if there exist K;, S; as above such
that K,/K is unramified, that G splits over K; and that x is special for @1,;. Then, it
is easily seen, using 1.10.2, that the same holds for any Galois unramified splitting
field K, of G and any choice of S, (assuming that such a torus exists). More in-
trinsic characterizations of the hyperspecial points will be given in 3.8.

If G is quasi-split and splits over an unramified extension of K, hyperspecial points
do exist. Indeed, take for K; the minimum splitting field of G and (obligatorily)
S1 = Z, let a, -+, a, be a basis of the root system @(G, S;) invariant by © and
choose a;, -+, a; € P14 50 that v(a;) = a; and that {a, ---, a;} is stable by O (the
possibility of such a choice readily follows from the description of A4 and @, given
in §1.1). Then, the equations a; = --- = o, = 0 define an affine subspace of 4,
invariant by O (in fact a single point if G is semisimple), and every point invariant
by 6 in that subspace belongs to 4 and is clearly hyperspecial.
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Suppose G is quasi-simple. We say that a vertex v of the local Dynkin diagram is
hyperspecial (with respect to G) if the points x € 4 such that I, = {v} are hyper-
special (a property which depends only on v obviously). In the tables of §4, hyper-
special vertices are marked with an As.

Let now K be the maximal unramified extension of K. The group G is said to be
residually quasi-split over K if there is a chamber of A4, stable by Gal(K;/K), and
hence meeting A. We say that G is residually split if A is fixed by Gal(K;/K), that is,
if G has the same rank over K and over K, i.e., if S; = S. For an explanation of
the terminology and another definition, cf. 3.5.2.

1.10.3. If the residue field K is finite, G is residually quasi-split. If K is algebraically
closed, G is residually split.

By a well-known result of R. Steinberg, if K is algebraically closed, G is quasi-
split. From that, it follows that:

1.10.4. Every residually split group is quasi-split.

If K is finite and, more generally, if G is residually quasi-split, G has a “natural
splitting field””. Indeed, there is a smallest unramified extension K’ of K on which G
is residually split, namely the smallest splitting field of S; (which does not depend
on the choice of that torus), and the group G, being quasi-split over K’, has a
smallest splitting field K” over K'. The field K" can also be characterized among all
splitting fields of G over K as the unique one for which the pair consisting of the
degree [K”: K] and the ramification index e(K"/K) is minimal for the lexicographic
ordering.

1.11. Absolute and relative local Dynkin diagram; the index. In this section, K,
denotes the maximal unramified extension of K, and A4,, S;, @:.f have the same
meaning as in §1.10. As in the classical, “global” situation (cf. [22] and the
references given there), one associates to G, K, S; (in fact, to G, K alone: cf. §2.4)
a local index consisting of

the Dynkin diagram 4; of @, (absolute local Dynkin diagram),

the action of & = Gal (K;/K) on 4, ‘“‘par transport de structure”, and

a O-invariant set of vertices of 4, called the distinguished vertices.

The latter are characterized as follows: to define @,.;, one uses a chamber C; of
A, whose closure contains a chamber of 4 (such a Cy exists by 1.10.1), and then, the
distinguished vertices are those representing the elements of the basis of @y, asso-
ciated to Cy (§1.8) whose restriction to A4 is not constant.

Residually quasi-split and residually split groups can be characterized as follows
in terms of the index. The group G is residually quasi-split if and only if the orbits
of @ in the set of all nondistinguished vertices are unions of full connected com-
ponents of -I;, and G is residually split if and only if © operates trivially on 4,
all vertices of ., are distinguished and the smallest splitting field of the connected
center of G is totally ramified.

The index of G determines its relative local Dynkin diagram 4 = 4(G, S, K)
and the integers d(v) (cf. §1.8) uniquely. We shall indicate an easy algorithm which
allows us, in most cases, to deduce the latter from the former. First of all, there is a
canonical bijective correspondence v — O(v) between the vertices of 4 and the or-
bits of O in the set of distinguished vertices of 4;. For every vertex v (resp. every
pair {v, v'} of vertices) of 4, let 4,,, (resp. 4, ,,-) denote the subdiagram of 4,
obtained by removing from it all vertices not belonging to O(v) (resp. O(v) U
O(v")) and all edges containing such vertices, and let 4, , (resp. 4 ,-) be the
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subdiagram of 4, , (resp. 4, ,,+) consisting of its connected components which con-
tain at least one distinguished vertex. Then, 4, ,, together with the action of 6 =
Gal(K,/K) on it and the set of distinguished orbits it contains, is the index (in the
sense of [3] and [22]) of a semisimple group of relative rank one over K, the integer
d(v) is half the total number of absolute roots of that group and vis marked with a
cross in 4 if and only if the relative root system of the group in question has type
BC, (if K is finite—or more generally if all vertices of 4, , are distinguished—that
means that 4, , is a disjoint union of diagrams of type A45,).

As for the edge of @ joining v and v/, its type is determined by 4, ,,., O(v) and
O(v"). If no connected component of 4, ,,» meets both O(v) and O(v'), then v and
V' are joined by an “‘empty edge”. Otherwise, @ permutes transitively the connected
components of 4, ,,- and the result can be described in terms of any one of them,
say 45 .- If the latter has only two vertices v; € O(v) and v; € O(V'), then v and v’ are
joined in 4 in the same way as v; and v; in 47 ,,. Thus, we may assume that 47 ,,,
has at least three vertices. Suppose first that 47 ,, is not a full connected component
of 4. Then, there is an “admissible index” (i.e., an index appearing in the tables of
[22]) of relative rank 2 whose underlying Dynkin diagram is 4 ,,, and whose dis-
tinguished orbits are O(v) N 4 ,» and O(V') N 4 ,,-; indeed, it follows from the
assertions 3.5.2 below that to {v,v'} is canonically associated a quasi-simple group
defined over a certain extension of K and having such an index. The relative Dynkin
diagram corresponding to that index, which can be computed by simple explicit
formulae given in [22, 2.5], provides the nature of the edge joining v and V' in 4.
The following table gives the result in the case where all vertices of 47 ,,. are dis-
tinguished (e.g., in the case where the residue field K is finite); in the first row,
which represents 4 ,,-, the sets O(v) | 4 ,,-and O(V') () 4; ,, are circled:

45 o 'o<©<@:@@<@
— o —

corresponding edge in 4 ‘

X

There remains to consider the case where 45 ,,. is a full connected component of
4,, which means that v, v' are the two vertices of the local Dynkin diagram of a
quasi-simple factor of relative rank 1 of G (cf. §1.12). Here we shall restrict our-
selves to the case where all vertices are distinguished and simply refer the reader to
the tables of §4 which give 4 in all the cases that can occur.

1.12. Reduction to the absolutely quasi-simple case; restriction of scalars. We
shall now indicate how the local Dynkin diagram—with the attached integers d(v)—
and the index of an arbitrary group G can be deduced from those of related ab-
solutely simple groups.

First of all, those data are the same for G and for the adjoint group of G°. Thus,
we may assume that G is connected and adjoint, hence is a direct product of K-
simple groups. Then, the Dynkin diagram—with the d(v) attached—and the index
of G are the disjoint unions of the Dynkin diagrams and the indices of its simple
factors.
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There remains to consider the case where G is K-simple, which means [3, 6.21]
that G = R;,x H, where L is a separable extension of K, H is an absolutely simple
group defined over L and R;,, denotes, as usual, the restriction of scalars. We
shall, more generally, assume that G = R, ,x H for an arbitrary reductive group
H; this allows us to decompose the extension L/K into its unramified and its totally
ramified parts and to handle the two cases separately.

If L/K is totally ramified, the index, the local Dynkin diagram and the integers
d(v) are the same for G, K as for H, L.

If L/K is unramified, the index of G, K consists of [L: K] copies of the index of
H, L permuted transitively by Gal(K;/K) whose operation on the whole diagram
is “induced up” from the operation of Gal(K;/L) on one copy, the relative local
Dynkin diagram of G, K is the same as that of H, L, and the integers d(v) are
[L: K] times as big.

1.13. The case of simply connected groups. In §1.7, we have seen that the Weyl
group W of @, is a normal subgroup of W = N(K)/Z(K). When G is semisimple
and simply connected, one has W = W. In this and in other instances, nonsimply
connected groups behave with respect to the “local theory” in a way similar to non-
connected groups with respect to the classical theory.

1.14. Example. General linear groups. Let D be a finite dimensional central divi-
sion algebra over K. The unique extension of the valuation @ to D will also be
denoted by w. Suppose that G = GL, p, the algebraic group defined by G(L) =
GL,(D ® L) for any K-algebra L, and take for S the “group of invertible diagonal
matrices with central entries”, that is, the split torus whose group of rational
points S(K) consists of all diagonal matrices Diag(s;, ---, s,) with s; € K*. The
homomorphisms e;: Mult — S defined by

ei(t) = Diag(l, BRE) 1, t—la 19 BRE) 1)1

with the coefficient z~1 in the ith place (i = 1, ---, n) form a basis of X 4 and hence of
V = X, ® R.If(a,),<;<, is the dual basis in the dual of V, the relative roots of G
are the characters a,; = a; — a; (i # j), the group U, (K) consists of the matrices

 ud) =1+ ((g) withg, =5i6/d (deD),
and N(K) is the group of all invertible monomial matrices
n(o;dy, -+ d,) = ((g:)) withgy; = 0/7 d,,

where ¢ is a permutation of {1, ---, n} and d;e D* (= D — {0}). For d € D*, one
has, with the notations of 1.4,

)] m(u;(d)) = w;(—dDu;(du;(—d™Y) = n(o; dy, -+, d,),
where ¢ is the transposition of iand j, d; = d,d; = —d 'and d, = 1 for k # i, j.
We may identify the apartment 4 with ¥ in such a way that
))(n(O'; dla Tty dn)) <Z V,'€,'> = Zv;'ei Wlth v;(t') =V + CU(d,)
=1 =1

ETFO avoid confusion, we adhere to the notations of [8, §10] which, unfortunately, impose
this somewhat unnatural choice of the basis (e;) (and, consequently, of (a;)). This remark also
applies to §§1.15 and 1.16.
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From (1) and the definition of a(a, ), it now follows that ala;;, u;/(d)) = a;; + w(d).
Thus

()] Qo = {a;; + 7|0, je{l, -, n}i#jrel}

and the filtration of U, (K) by the groups X, with v(a) = a;; (cf. §1.4) is the
image of the natural filtration of D by the isomorphism d — u;;(d). In particular,
for any a € @, the integer d(a) of §1.6 is equal to the dimension of the residual
algebra of D over K. The description of the walls and half-apartments is readily
deduced from (2). The chambers are prisms with simplicial bases, one of them, call
it C, being defined by the inequalities a; < a; < -+ < a, < q; + w(w;), where
m; denotes a uniformizing element of D. The corresponding basis consists of the
affine roots a;;4; (( = 1, ---, n —1) and a,; + w(x;), and we see that the local
Dynkin diagram is a cycle of length » (affine diagram of type A4,_;). The special
points are all the points of the one-dimensional facets of the chambers, that is, all
the points 3] v,e; where v; — v; is an integral multiple of w(z,) for all i; they are
hyperspecial if and only if D = K.

1.15. Example. Quasi-split special unitary groups in odd dimension. Let L be a
separable quadratic extension of K. The valuation of L extending w will also be
called w, and we denote by 7z, a uniformizing element of L, by I'; the value group
w(L*) = Z - w(x,) and by 7 the nontrivial K-automorphism of L. Let n be a strictly
positive integer and set I = {+1, ---, £n}. In L?+1 we consider the hermitian form

(1) h: ((x—m Tty xn), (y—m o 9yn)) Land ;Ix::y—i + xay()'

Suppose that G is the algebraic group SU(k) and let the torus S be defined by
S(K)={Diag (d_,, -, d,)|d; € K and d_,d;=dy=1 for all i}. The homomorphisms
e;: Mult » S (i = 1,---, n) defined by eft) = Diag(d_,,---, d,) with d_, = ¢,
d; =t1,d; =1forj # +i form a basis of X,. If we denote by (a,);<,=, the
dual basis and if we set a_; = —a; and a;; = a; + a;, we have ¢ = {a,;|i,j€el,
J# xi} U {a; 2a;1iel}. For ¢, de L such that c'c + d + d* =0 and i, jel
with j # +1i, we define the following elements of G(K):

u;(c) = 1+ ((g,)) withg_;; = ¢, g_; ; = —cand all other g,, = 0,

ufc,d) =1+ ((g,) withg_;o = —c*, g_;; = d, go; = ¢ and all other g,, = 0.

Then, U, (K) = {u;(c) | ce L}, U,(K) = {ufc,d) | c,de L, c'c + d + d* = 0}
and U, (K) = {u{0, d)|de L, d + d* = 0}. The group N(K) consists of all
matrices of determinant one of the form n(s; d_,, -+, d,) = ((g;})) with g;; =
0,9 d;, where ¢ is a permutation of I U {0} = {—n, ---, n} which fixes 0 and pre-
serves the partition of 7 in pairs (—i, i), and the d,’s are elements of L such that
di;d; = 1foralli.

For ¢ € L, one has, with the notations of 1.14,

m(uij(c)) = U (—cDu()u_;,_(—c?)

2
( ) = n(a; d—m Tty dn)

where ¢ is the permutation (i, —j) (j, —i),d_; = ¢\, d_; = — (), d; = —c, d;

= ¢® and all other d, are equal to 1. Similarly, for ¢, d as above with ¢ # 0 (and
hence d # 0),

(3) m(u,-(c, d)) = u—i(_Cd—I’ (dr)—l)u,_(c, d)u_,'(—C(df)—], (dr)—l)
= n(a; d—-m ) dn)
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where ¢ is the transposition (i, —i), d_; = (d*)7}, dy = — d*d~1, d; = d and all
other d, are equal to 1.

We may identify the apartment A4 with ¥ in such a way that, for v, ---, v,e R
and settingv_; = — v;, one has

@ V(o3 oy, 4) (35 vies) = 3 vier with vy = v, + w(d).
=1 =1

From (2), (3), (4) and the definition of a(a, u), it follows that

for ¢ # 0, a(a;j, u;(c)) = a;; + w(c),

for ¢, d as above and ¢ # 0, a(a;, 4; (c, d)) = a; + $ w(d),

for de L* with d + d* = 0, a(2a;, u,(0, d)) = 2a; + w(d).

Setting " = {w(d)lde L*, d + d* = 0}, we see that for ye ' (resp. yel")
a;; + 7 (resp. 2a; + 7) is an affine root for all i, j. Furthermore, the filtration of
U, (K) (resp. Uy, (K)) by the subgroups X, is the image of the natural filtration of
L (resp. its intersection with the subgroup {d|de L, d + d* = 0}) by the isomor-
phism ¢ — u(c) (resp. d — uf0, d)). In particular, the corresponding values of
the integer d(a) of §1.6 are d(2a; + 7) = 1 and d(a;; + 7) = 1 or 2 according as
L/K is ramified or not.

To determine under which condition a; + % 7 € @, we first note that, with the
notations of §1.4, X, .. »= {uc, d)lcc + d + d* =0, w(d) = 7}. By definition,
a; + 37e€®y if and only if X, ., » & X, 1101+ Uy, for every strictly positive e.
That means that there exists ¢ € L such that

®) 7 = sup {w(d) | ctc + d+ d* = O}.

More precisely, an easy computation shows that, with the notations of §1.6, the
group X,,‘.J,T,Z/Xz‘,‘.ﬂ is isomorphic to the residue field of L or is trivial according
as whether or not 7 is given by (5) for some c; thus, we see that, in the first case
(i.e., when a; + 4 7€ ®y), d(a; + 1) = 2 or 1 according as L/K is unramified or
ramified. If we set 6 = sup {w(d) |de L,d + d* + 1 = 0}, a real number which is
strictly negative if L/K is ramified and char K = 2, and = 0 otherwise, the right-
hand side of (5) can be written w(c’c) + 6 = 2w(c) + J, and we conclude that

D = {a;; + r|i,jeI,j¢ ti,rel} U {2a; + r|ieI,reI”}
Ufa; + 3r|iel, ye2l + d}.

Let us show that
(6) if L/K is ramified, 6 ¢ [".

Indeed, assume the contrary and let x, ye Lbesuchthatx +x* + 1 =y +y* =0
and w(x) = w(y) = ¢. Upon multiplying y by a suitable unit of K, we may assume
that xy~1 + 1 = 0(mod x;), but then (x + y) + (x + »)* + 1 = 0 and w(x + y)
> ¢, which contradicts the maximality of §.

In view of (6), one of the following holds:

@) L/K is unramified and /"= ', = [,
®) L/K is ramified, ' = 2/, and [ = 2", + § + o(xy).

In both cases, I U (277 + 0) = [I'y; therefore, the walls are the vanishing sets of
the affine functions a;; + 7 and 2a; + 7, with y € I, and the inequalities 0 < @, <
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a; < -+ < a, < % w(m) define a chamber. The corresponding basis is {a;, a_;,
oy A_ppr 28, + (7))} if 0 is an even multiple of w(x;) and {a_, + } w(x)),
Q_pi1,m > A-1,2, 2a;} otherwise. It follows from (7), (8) that in the first case, 2a,
is an affine root if and only if L/K is unramified, and in the second case (where
L/K is necessarily ramified) 2a_, + w(x) is never an affine root. As a result, we see
that, whatever the value of §, the local Dynkin diagram, together with the attached
integers d(v) (cf. §1.8) are

(9) :X=¢r—4 ----- —y ix—l—l ifn=1
3 22 2 2 31

or

(10) ety It ifn =1
1 11 1 1 1 1 1

according as L/K is unramified or ramified.

A point v = 3%, ve; € A is special if and only if either v; e I} for all i or
v; — %o(m,) € I for all i. It is hyperspecial if and only if L/K is unramified and
v; € I for all i, which means that I, consists of the vertex at the right end of the
diagram (9).

1.16. Example. Quasi-split but nonsplit orthogonal groups. Let L be a separable
quadratic extension of K and let n be an integer = 2. In the space K» @ L @ K7,
viewed as a (2n + 2)-dimensional vector space over K, we consider the quadratic
form

q: (X_py s x,) > D X% + Np X (xo€ L; x; e K for i # 0)
=1

(where Np,g: L — K denotes the norm), and we suppose that G is the orthogonal
group O(q). The elements of G(R), for any K-algebra R, are conveniently repre-
sented by (2n + 1) x (2n + 1) matrices ((g;;))-n=:, j<»n Where g;;€ R if both i
and j are not zero, gy, € LR if j # 0, g,oe Homg(L, R)if i # 0, and gy €
Homg(L, L) ®k R. For S, we take the group of diagonal matrices Diag(d_,, -, d,)
withd_.d; =1 for 1 <i < n and dy = id. The characters a;: Diag(d_,, -, d,)
—d_;for1 i < nform abasis of X*(S) and if weseta_; = —a;, a;; = a; + a;
and I = {41, ---, +n}, we have

O = {a;|i, jel, j # +i} U {a;|iel},

a root system of type B,,.

Here, we shall simply describe the affine root system @, and the local Dynkin
diagram without giving the details of the calculations, which can be found, in a
more general setting (covering also the groups handled in the previous section) in
[8, 10.1]. Calling again /') the value group of L, one has, for a suitable identification
of Aand V,

¢af= {ag]+T|l7JEI’]¢ i_l:- TGP} U {at'_*_rliEI’TePl}‘

If the extension L/K is unramified, the inequalities 0 < q; < --- < @, <
w(w) — a,, define a chamber, the corresponding basis of @y is {a}, a_y 4, -,
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A_pitm G—nt1,—n + ()} and the local Dynkin diagram, together with the at-
tached integers d(v), is

1
Q)] e <¢.=-=. ifn=2>.
2 1 1 1 1N\ 1 2 1

The special vertices are the two endpoints on the ramified side of the diagram (the
two endpoints of the diagram if n = 2); both correspond to hyperspecial points of
A. If L/K is ramified, the inequalities 0 < a; < -+ < a, < }w(x) define a chamber,
the corresponding basis is

{al’ A_1,2 """ Oyl Q—n + %w(ﬂ)}

and the local Dynkin diagram is

11 1 1 171
The special vertices are the two endpoints of the diagram and they do not cor-
respond to hyperspecial points. Note that in the unramified case, the Weyl group

W is an affine reflection group of type B,, whereas in the ramified case, it is of type
C,.

2. The building.

2.1. Definitions. The building # = %(G, K) of G over K can be constructed by
“gluing together” the apartments of the various maximal K-split tori of G. More
precisely, a definition of 4 is provided by the following statement where by “G(K)-
set”, we mean a set with a left action of G(K) on it.

Let A = A(G, K) be given as in §1.2. Then, there exists one and, up to unique
isomorphism, only one G(K)-set & containing A and having the following properties:
B = \Jgecw) 84, the group N(K) stabilizes A and operates on it through v (cf. §1.2)
and for every affine root a, the group X, of §1.4 fixes the half-apartment A, =
a~1([0, o0 )) pointwise.

(N.B. The “canonicity” of the building 4 is the same as that of 4: cf. §1.2.)

The proof roughly goes as follows. We assume that G is semisimple (which is no
essential restriction). Modulo 1.4.1 and 1.4.2—as explained in §1.5—the existence
of # is proved in [8, 7.4]. It is then clear that there is a “universal” G(K)-set Z with
the given properties, which is obtained by taking the quotient of the direct product
G(K) x A by a certain equivalence relation. The canonical mapping of 4 in the
building .# defined in [8, 7.4.2] is obviously surjective, and it is also injective be-
cause, asisreadily verified, the stabilizer of a point of 4 contains the stabilizer of its
image in .#. Thus, .# maps onto any G(K)-set & with the required properties and,
using [8, 7.3.4], one shows that the stabilizers of the points of 4 cannot be bigger
in 4 than they are in # without “eating more of N(X)” than they are allowed to by
the prescribed action of N(K) on A4.

The sets g4 with g € G(K) are called the apartments of the building. The apart-
ment gA can be identified with “the” apartment of the maximal split torus &S.
That gives a one-to-one correspondence between the apartments of % and the
maximal K-split tori of G: indeed, g4 is the only apartment stable by ¢S(X) (the
proof of [8, 2.8.11] shows that) and ¢ N(K), which determines ¢S, is the stabilizer of
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gA in G(K). “In most cases™, g4 can also be characterized as the fixed-point set in
2 of the group of units ¢S° = {s € £S(K)|w(y(s)) = 0 for all characters y € X*(¢S)},
but that is not always true (for more precise statements, cf. §3.6).

In this context, it is worthwhile to note also that the half-apartment A4, (for
a € @) is never the fixed-point set of the group X : indeed, if 4 is metrized in the
way described below (§2.3), there is a constant ¢ such that for every point x € 4, at
distance d of the wall 94, the whole ball with center x and radius cd is pointwise
fixed by X, (cf. [8, 7.4.33]).

If S, is the maximal split torus of the center of G° and if Gy, ---, G,, are the almost
simple factors of G°, the building # is canonically isomorphic with the direct product
of the buildings #(S;, K) (which is an affine space) and 4(G;, K) (i = 1, ---, m). If
G is K-anisotropic (i.e., if S = {1}), 4 consists of a single point. If G = R, x H,
where L is a separable extension of K and H is a reductive group over L, the build-
ings #(G, K) and #(H, L) are canonically isomorphic.

2.2. Affine structures, facets, retractions, topology and other canonical structures
on 4. Since the stabilizer N(K) of A in G(K) preserves its affine structure and its
partition in facets, each apartment g4 of # (with g e G(K)) is endowed with a
natural structure of real affine space and a partition in facets. Those structures
agree on intersections. Indeed,

2.2.1. If A" and A" are two apartments, there is an element of G(K) which maps A’
onto A" and fixes the intersection A' (| A" pointwise; furthermore, A' (| A" is a
closed convex union of facets in A’ (hence also in A”) [8, 7.4.8].

From that, we deduce a partition of :# in facets, among which those which are
open in apartments are called chambers. In particular, if G° is quasi-simple (resp.
semisimple), Z is a simplicial (resp. polysimplicial) complex.

Given two facets of 4, there is an apartment containing them both [8, 7.4.18].
In particular, given two points x, y € 4, there is an apartment which contains them
and it follows from 2.2.1 that, for ¢t € [0, 1] = R, the point (1 —f)x + ¢y, which s
well defined in any such apartment, is independent of it. The set {(1 —#)x + 1y]
t € [0, 11} is called the geodesic segment joining x and y in 4.

Let A’ be an apartment and let C = A’ be a chamber. For every apartment con-
taining C, there is a unique isomorphism of affine spaces of that apartment onto A4’
which fixes C pointwise. In view of 2.2.1, all those isomorphisms can be glued
together in a mapping p,..c: B — A’ called the retraction of 44 onto A" with center
C. Clearly, geodesic segments are mapped by p,... onto broken lines (connected
unions of finitely many geodesic segments).

The building 2 is commonly endowed with a topology invariant by G(K) which
is most naturally defined via the metric considered below (2.3), but which can also
be more canonically defined as the weakest topology such that all p,.c are con-
tinuous. If the residue field K is finite, that topology makes 4 into a locally compact
space and coincides with the “CW-topology™ (that is, the quotient topology of
the natural topology of the disjoint union of all apartments). Otherwise, it is strictly
weaker than the latter. In all cases, the topological space 44 is contractible; indeed,
for every point x € &, the mappings ¢,: # — & defined by p(y) = tx + (1-1#)y
form a homotopy from the identity to the retraction of & onto {x} [8, 7.4.20].

A subset of 4 is called bounded if its image by some retraction p,..c is bounded,
in which case its image by every such retraction is bounded, as is easily seen. As
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usual, a subset H of G(K) is called bounded if for every K-regular function f on G,
the set w(f(H)) is bounded from below. The action of G(K) on & is bounded and
“proper” in the following sense: in the mapping (g, b)—(gb, b) of G(K) x % in
4 x B, bounded subsets of G(K) x #—i.e., subsets of products of bounded sets—
are mapped onto bounded sets, and the inverse images of bounded subsets of &
x & are bounded. If X is finite, “bounded” becomes synonymous with “relatively
compact”; in particular, the action of G(K) on & is proper in the usual sense.

2.3. Metric and simplicial decomposition. In various questions, buildings play
for p-adic reductive groups the same role as the symmetric spaces in the study of
noncompact real simple Lie groups (cf. [24, §5] and the references given there).
This section shows some aspects of the analogy; cf. also [18, 5.32]. Note that,
unlike those introduced in §2.2, the structures considered here are not canonical, at
least when G is not semisimple.

Let us choose in V a scalar product invariant under the Weyl group *W. If G is
quasi-simple, such a scalar product is unique up to a scalar factor, and there are
various ‘“natural’” ways of normalizing it (Killing form, prescription of the length
of short coroots, etc.). Canonical choices are also possible—componentwise—if G
is semisimple, but not in general. From the scalar product in question, one deduces
a Euclidean distance on 4, hence, through the action of G(K), on any apartment.
From 2.2.1, it follows that two points x, y of & have the same distance d(x, y) in
all apartments containing them, and the properties of the retractions p ... described
in §2.2 readily imply that the building & endowed with the distance function 4:
B x B — Ry is acomplete metric space [8, 2.5]. The associated topology coincides
with that defined in §2.2. Again using the retractions p4..c one shows [8, 3.2.1]
that d satisfies the following inequality, where x, y, z, me & and d(x, m) =
d(y,m) = }d(x,y):

d(x, 2)2 + d(y, 2)? Z 2d(m, 2)* + }d(x, y)*

In Riemannian geometry, that inequality characterizes the spaces with nega-
tive sectional curvatures (hence is valid in noncompact irreducible symmetric
spaces!); as in the Riemannian case, it can be used here to prove the following
fixed-point theorem:

2.3.1. A bounded group of isometries of & has a fixed point [8, 3.2.4]. Interesting
applications are provided by Galois groups (‘“‘Galois descent” of the building)
and by bounded subgroups of G(K) (cf. §3.2).

In some applications (cf., e.g., [2]), it is useful to dispose of a simplicial decom-
position of & invariant under G(K). To obtain it, it suffices to choose a simplicial
decomposition of 4 invariant under N(K) and finer than the partition in facets—it
is easily seen that such a decomposition always exists—and to carry it over to all
apartments by means of the G(K)-action. If G is semisimple, one can more directly
use the canonical barycentric subdivision of the partition of B in polysimplical
facets. If G is quasi-simple, that partition itself meets the requirements.

2.4. Dynkin diagram; special and hyperspecial points. Let C be a chamber of .
Starting from any apartment containing C, we can, following §1.8, define a local
Dynkin diagram (G, C) which, in view of 2.2.1, does not depend, up to unique
isomorphisms, on the choice of the apartment. If C’is another chamber, 1.8.1,
applied to any apartment containing C and C’, provides an isomorphism ¢¢.¢:
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A(G,C) — 4A(G, C’) which, again by 2.2.1, is independent of the apartment in ques-
tion. All those isomorphisms are coherent: if C, C’, C" are three chambers, one
has gerc = @erer © Perc- Thus, we can talk about the local Dynkin diagram A(G) =
A(G, K) of G over K, adiagram which is well-defined up to unique isomorphisms.
The same is true of the absolute local Dynkin diagram (§1.11), which is nothing else
but the diagram 4(G, K)) of G over the unramified closure K of K, and of the local
index (§1.11).

The definitions of §§1.9 and 1.10 can be immediately transposed to arbitrary
points x and arbitrary facets F of the building #: one chooses an apartment con-
taining x or F, uses the definition under consideration and deduces from 2.2.1 that
the result is independent of the apartment chosen. Thus, to every point x (resp.
facet F) of 4 is canonically associated a set I, (resp. I) of vertices of 4(G) and a
root system @, (resp. @), the latter being only defined up to noncanonical iso-
morphisms. We can also talk about special and hyperspecial points of %. The
criterion in terms of I, for a point x to be special (last paragraph of §1.9) remains
of course valid. A necessary condition for the existence of hyperspecial points is
that G split over an unramified extension of K; that condition is also sufficient if G
is quasi-split.

To every vertex v of the diagram 4(G) is attached an integer d(v): the definition
given in §1.8 made reference to an apartment A but the result is independent of its
choice, always by 2.2.1. If the residue field K is finite, isomorphic with F,, the
number d(v) can be interpreted as follows: a facet F of codimension one and “type
v, that is, such that I is the complement of v in the set of all vertices of 4(G), is
contained in the closure of exactly g + 1 chambers (cf. §3.5).

2.5. Action of (Aut G)(K) on # and 4; conjugacy classes of special and hyper-
special points. The group (Aut G)(K) of all K-automorphisms of G and, in par-
ticular, the group G,4(K) of rational points of the adjoint group G4 of G°, act on
% and on the local Dynkin diagram 4 = 4(G) ‘“‘par transport de structure”.
Through the canonical homomorphism int: G - Aut G, that gives an action of
G(K) on & and on 4. The action of G(K) on & provided by the definition of 4 as a
G(K)-set coincides with this one if G is semisimple but not in general; however, the
induced actions on 4 are always the same. We call & = 5(G, K) the image of G(K)
in Aut 4.

If G is semisimple and simply connected, it operates trivially on 4, i.e., § = {1}
(another illustration of the “philosophy”’ of §1.13).

Suppose G connected. Then, Z'is also the image of Z(K) in Aut 4, and it can be
computed as follows. We denote by G a simply connected covering of the derived
group of G, by S the maximal split torus of G whose image in G is contained in S,
by Z the centralizer of S in G, by S, the maximal subtorus of S which is central in
G and by Z, the image of Z(K) in Z(K). Then, S(K), Z, and Z, = {z € Z(K)|
w(x(2)) = 0 for all y e X*(Z)} (cf. §1.2) are normal subgroups of Z(K) and their
product Si(K) - Z; - Z, is the kernel of the action of Z(K) on 4; thus 5 =
Z(K)/(S((K) - Z, - Z,). If Gis quasi-split—in particular if X is algebraically closed—
Z and Z are tori and the computation of 5 is particularly easy. Note that, in most
interesting cases, the subgroup £ of Aut 4is uniquely determined by the underlying
“abstract” group.

Two facets F and F’ of & are in the same orbit of G(K)—for any one of the two
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actions of G(K) on # described above—if and only if I and I, (cf. §2.4) are in the
same orbit of £. In particular, if G is semisimple and simply connected, the orbits of
G(K) in the set of special points of 9 are in canonical one-to-one correspondence with
the sets of vertices of A consisting of one special vertex out of each connected com-
ponent. :

Suppose G semisimple. If Gis K-split, the group G,4(K) permutes transitively
the special points of &#: that is an immediate consequence of Proposition 2 in
[5,VI.2.2]. A case analysis shows that, for any semisimple G, G,(K) permutes
transitively the special points except possibly if the Coxeter diagram underlying
A has a connected component of the form

Suppose now that G is quasi-simple and that the Coxeter diagram in question
is one of those above. Then, obvious necessary conditions for G,4(K) (and even
(Aut G)(K)) to permute transitively the special points are the existence of an auto-
morphism of 4 permuting its two special vertices, and the equality of the numbers
d(v) attached to them. One verifies that if the residue field K is finite, those conditions
are also sufficient.

For arbitrary G, if # has hyperspecial points, the facets consisting of such points—
hence the points themselves if G is semisimple—are permuted transitively by G,4(K).

2.6. Behaviour under field extensions.

The buildings behave functorially with respect to Galois extensions.

More precisely, for every Galois extension K; of K, we can consider the building
A(G, K;), on which the Galois group Gal(K;/K) acts naturally (in the nonsemi-
simple case, one has to ‘“‘canonify’’ the apartments—and hence %#—as described in
§1.2), and there is a unique system of injections

(x,x, B(G, Ky) = B(G, Ky) (K1,K; Galois extensions of K with K; = Kj)

with the following properties:

the image of ¢x,x, is pointwise fixed by Gal(Ky/K);

the restriction of ¢y, to any apartment of %4(G, K;) is an affine mapping into
an apartment of (G, K5);

¢k,x, 18 G(K;)-covariant;

if Ky « K; = K, one has has ¢k ¢, = ¢x.x, © (iox,

The last property allows us to identify coherently every #(G, K;) with its image
by every ¢x,x,-

2.6.1. If K,/K is unramified (or even tamely ramified: cf. [19]), & is the fixed point
set of Gal(K,/K) in B(G, K,) and the apartment A = A(G, S, K) is the intersection
of # with the apartment A(G, Sy, K) of any maximal Ki-split K-torus S of G contain-
ing S. Still assuming that K,/K is unramified, one deduces from 1.10.2 that a point
x of B which is special in (G, K) is also special in B ; if furthermore G is split over
K, the point x is hyperspecial.

If K/K is wildly ramified, the fixed point set of Gal(K;/K) in #(G, K;) may be
strictly bigger than 4: it then looks like the building # “covered with barbs”.
Suppose for example that G is split and is not a torus, that K = @, and that Kj is
totally ramified over K and different from K (which implies that K;/K is wildly
ramified). The apartment 4 = A(G, S, K) of 4 is also an apartment of %(G, K;).
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Let F be a facet of codimension one of A4 with respect to K; which is not a facet
with respect to K (cf. the example following 1.10.1). By the last assertions of §§1.8
and 2.4, there is exactly one chamber of #(G, K;) not contained in 4 and whose
closure contains F; it must of course be fixed by Gal(K;/K) and cannot be con-
tained in £ since F is not a facet of 4.

For a proof of the above results and a more detailed analysis of the situation,
cf. [19].

2.7. Example. Groups of relative rank 1. The building of a semisimple group of
relative rank 1 is a contractible simplicial complex of dimension 1, i.e., a tree. All
its vertices are special points. If K = F, and if d, d’ are the integers d(v) attached to
the two vertices of the Dynkin diagram, each edge of the tree has one vertex of
order ¢¢ + 1 and one vertex of order ¢4 + 1 (cf. §2.4). Consider for instance the
special orthogonal group of a nonsplit quadratic form in 5 variables over Q,: here,
d = 1, d’ = 2, and the building looks as suggested by the picture below. In that
case, the vertices of order 5 are hyperspecial and the others are not.

2.8. Example. SL; and GL3. Suppose that G = SLs. The building 4 = 4(G, K)
is a 2-dimensional simplicial complex whose maximal simplices are equilateral
triangles, for the metric introduced in §2.3. The apartments are Euclidean planes

triangulated in the familiar way:

To picture the building itself, one must imagine it “‘ramifying” along every edge,
each edge belonging to ¢ + 1 triangles if ¢ = card K. The link of each vertex in%
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is the “spherical building” of SLy(K), that is, the “flag complex” of a projective
plane over K, a picture of which can be found in [24] or [26] for the special case
where K = F,. All vertices of & are hyperspecial.

The building Z(GL;, K) is the direct product of % and an affine line.

2.9. Example. General linear groups. We adopt the hypotheses and the notations
of §1.14. In particular, D denotes a finite dimensional central division algebra over
Kand G = GL,,  (thus G(K) = GL,(D)). Then, the building # = %(G, K) can be
interpreted as the set 4" of all “additive norms” in D», that is, of all functions
¢: D" > R U {+ o0} such that

o(x + y) z inf{p(x), p(»)}  (x,ye D",
p(xd) = p(x) + w(d) (xe D», de D).

More precisely, if we identify the apartment A with ¥ as in §1.14, the mapping
A — A which maps 3%, v,e; onto the norm

(xla B xn) Land inf{w(xi) - V,-Ii = 13 Ty n}

extends—of course uniquely—to an isomorphism of G(K)-sets & — A~, where
G(K) operates on A4~ by (gp)(x) = ¢(g71x). A norm ¢ is special—i.e., corresponds
to a special point of B—if and only if there is a basis (b,),<;<, of the vector space
D and a real number f'such that

go(ii b,~d,~> =f+inf{o@)i =1, 1 (d eD);

¢ is hyperspecial if and only if it is special and D = K.

A similar interpretation of %(SL, p, K) can be found in [8, p. 238]. The space
A" has been first considered by O. Goldman and N. Iwahori [12].

2.10. Example. Special unitary groups. Let L, w, w;, I, = and ¢ have the same
meaning as in §1.15. In particular, L is a separable quadratic extension of K and
6 =sup{w(d)|deL, d + d° = 1}. Let E be a finite dimensional vector space
over L endowed with a nondegenerate hermitian form 4 relative to 7, and suppose
that G = SU(h). Then, the building # of G over K, which is also, by the way, the
building of U(%), can be interpreted as the set .47, of all additive norms ¢: E —
R U {+ oo} satisfying the inequalities

w(h(x, x)) = 2p(x)—0 (xeE),
w(h(x, ) Z p(x) + ¢(»)  (x,yeE),

and maximal with that property (cf. [8, p. 239] for a more general result).

Suppose further that £ = L2#+1 and that Ais asin 1.15(1). Then, the identification
of # and 4", can be described more explicitly as follows: with the notations of
§1.15, the mapping 4 — 47, which maps )%, v,e; onto the norm

(x—m B xn) nd inf{w(xi)_ Vis CU(x—,') + v, w(xo) —5” § i é n}

extends uniquely to an isomorphism of G(K)-sets & — A47,. A norm ¢ € A7, is spe-
cial—i.e., corresponds to a special point of #—if and only if there is a basis
(b,)<,=, of E with respect to which 4 has the form 1.15(1) and a constant fe 4/
such that, for x; € L,
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1) o3 b)) = inflan) —f; alx) +f, o) 3|15 15 n}

(one can then choose the basis (b;) so that f = 0 or }w(z;)). The norm ¢ is hyper-
special if L/K is unramified and if there is a basis (b,) of E such that (1) holds for

f=0.

3. Stabilizers and centralizers. From now on, G is assumed to be connected.

3.1. Notations; a BN-pair. For every algebraic extension K; of K with finite
ramification index and every subset Q2 of the building #(G, K;), we denote by
G(K;)? the group of all elements of G(K;) fixing 2 pointwise. If Q is reduced to a
point x, we also write G(K;)* for G(K)“. Note that if Fis a facet of #4(G, K;) and if
x is a point of F ““in general position”, one has G(K;)F = G(K;)*. The stabilizers
G(K)* of special (resp. hyperspecial) points x € & are called special (resp. hyper-
special) subgroups of G(K).

We recall that if G is semisimple and simply connected, the group W =
N(K)/Z(K) coincides with the Weyl group W of the affine root system @,;. As be-
fore, we set Z = %(G, K).

3.1.1. Suppose that W = W. Then G(K)F = G(K)* for every facet F of % and
every x € F. Furthermore, if C is a chamber of A = A(G, S), the pair (G(K)¢, N(K))
is a BN-pair (or Tits system: cf. [5], [23]) in G(K) with Weyl group W. In that case,
the groups G(K)* for x € 4 are called the parahoric subgroups of G(K) (cf. [8]),
but we shall avoid using that terminology here in order not to prejudge of its
most suitable extension to the nonsimply connected case. An alternative con-
struction of the building 4 starting from the above BN-pair (which can be defined
independently of the building, as we shall see) and using the parahoric subgroups
defined by means of that BN-pair is given in [8, §2].

Let 2 be a nonempty subset of the apartment 4 whose projection on the building
of the semisimple part of G (cf. last paragraph of 2.1) is bounded. For any root
a e, let a(a, 2) denote the smallest affine root whose vector part is ¢ and which is
positive on (. Let @’ be the set of all nondivisible roots—i.e., all roots a € @ such
that la ¢ @—and let @'t (resp. @) be the set of all nondivisible roots which
are positive (resp. negative) with respect to a basis of @, arbitrarily chosen. Set
N(K)? = N(K) | G(K)? and let Z, and X, be defined as in §§1.2 and 1.4. Then
one has the following group-theoretical description of G(K)? (cf. [8,6 .4.9, 6.4.48,
7.4.4)):

If X*(Q) denotes the group generated by all X, 5 with ac®'*, the product
mapping ] sepr+ Xaw@ oy = XHQ) is bijective for every ordering of the factors of
the product and one has G(K)? = X=(Q) - X*(Q) - N(K)?. If Q contains an open
subset of A, the product mapping [ ,cpr Xo(0 0y X Z. — G(K)? is bijective for every
ordering of the factors of the product.

3.2. Maximal bounded subgroup. For every nonempty subset Q of &4, G(K)? is a
bounded subgroup of G(K) (cf. §2.2). If the residue field K is finite, G(K)? is even
compact and, in what follows, “maximal bounded” can be replaced by ‘“‘maximal
compact”.

From 2.3.1, one easily deduces that:



REDUCTIVE GROUPS OVER LOCAL FIELDS 51

every bounded subgroup of G(K) is contained in a maximal one and every maximal
bounded subgroup is the stabilizer G(K)* of a point x of 8.

It is now clear that if x belongs to a facet of minimal dimension of #, G(K)* is a
maximal bounded subgroup of G(K), in particular, special subgroups are maximal
bounded subgroups. From 3.1.1, it follows that the above two statements give a
complete description of the maximal bounded subgroups in the simply connected
case:

if G is semisimple and simply connected, the maximal bounded subgroups of G(K) are
precisely the stabilizers of the vertices of the building #; they form []7—; (I; + 1) con-
Jjugacy classes, where I, ---, I, denote the relative ranks of the quasi-simple factors of G.

For an analysis of the nonsimply connected case, cf. [8, 3.3.5].

3.3. Various decompositions. Let C be a chamber of 4 = A(G, S). We identify 4
with the vector space ¥ in such a way that 0 becomes a special point contained in
the closure of C; in particular, G(K)O is a special subgroup of G(K). Set D = R¥ - C
(a “vector chamber”) and B = G(K)°; if K is finite or, more generally, if G is re-
sidually quasi-split, and if G is simply connected, B is an Iwahori subgroup of G(K)
(cf. §3.7). Let U™ be the group generated by all U, for which a|.—and hence a|p,—
is positive and let Y be the “intersection of ¥ and W, that is, the group of all
translations of 4 contained in W; thus, Y is the image of Z(K) by the homomor-
phism v of §1.2. Set Y, = Y (| D (closure of D) and Z(K), = y~1(Y,), a subsemi-
group of Z(K).

3.3.1. Bruhat decomposition. One has G(K) = BN(K)B and the mapping BnB —
v(n) (n € N(K)) is a bijection of the set {BgB | g € G(K)} onto W.

If n e N(K) and y(n) = w, we also write BnB = BwB, as usual. If K = F,, the
cardinality ¢,, of BwB/B (used for instance in [1]) is given by the following formula
in terms of the integers d(v) of §1.8: set w = r;---r,wy, where (rq, ---, ) is a reduced
word in the Coxeter group W and wy(C) = C, and let v; be the vertex of 4 repre-
senting r;; then g,, = g4 with d = X}/, d(v;). In particular, we have another inter-
pretation of d(v): ¢g?® = q, ., where r(v) denotes the fundamental reflection cor-
responding to the vertex v of 4.

More generally, for any K, the quotient BwB/B has a natural structure of “per-
fect variety” over K, in the sense of Serre [Publ. Math. L. H.E.S. 7 (1960), 1.4], and,
as such, it is isomorphic to a K-vector space of dimension X%_; d(v,), with the above
notations.

3.3.2. Iwasawa decomposition. One has G(K) = G(K)°Z(K)U*(K) and the map-
ping G(K)zU*(K) ~ »(z) (z € Z(K)) is a bijection of {G(K)’gUH(K)| g € G(K)}
onto Y.

3.3.3. Cartan decomposition. One has G(K) = G(K)°Z(K)G(K)° and the map-
ping G(K)*2G(K)° — v(z) (z € Z(K)4) is a bijection of {G(K)’%¢G(K)|g € G(K)}
onto Y.

In particular, we see that if X is finite, the convolution algebra of all functions
G(K) — C with compact support which are bi-invariant under G(K)? (Hecke al-
gebra) has a canonical basis indexed by Y .. That algebra is commutative.

For the proofs and some generalizations of the above results, cf. [8, §4].

3.4. Some group schemes. The results of this section and the next are special
cases of results which will be established in [9].
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It is well known that the maximal bounded subgroups of SL,(K) are the group
SL,(o) and its conjugates under GL,(K). It is natural to ask whether, more gener-
ally, the maximal bounded subgroups of G(K) can always be interpreted as the
groups of units of some naturally defined o-structures on G. A positive answer is
provided by the statement 3.4.1 below. In this section, we denote by G the derived
group of G and by pr,, the canonical projection %4(G, K;) —» %A(G, K;) (cf. the
last paragraph of 2.1) for any K.

3.4.1. If Q is a nonempty subset of an apartment of B whose projection pry(Q) is
bounded, there is a smooth affine group scheme %, over o, unique up to unique isomor-
phism, with the following properties:

the generic fiber G g of 9 is G;

for every unramified Galois extension K, of K with ring of integers oy, the group
Zo(og,) is equal to G(K1)? (cf. 3.1), where Q is identified with its canonical image in
the building (G, K,) (cf. 2.6).

Clearly, ¢, depends only on the closed convex hull of pr(Q).

The following two statements are easy consequences of the definitions.

3.4.2. If G is split, the group schemes %, associated to the special points x of #
are the Chevalley group schemes with generic fiber G.

3.4.3. Let K, be an unramified Galois extension of K with ring of integers vy,, let
Q < % be as above and let Q, be the canonical image of Qin #, = %(G, K,) (2.6).
Then %, is the group scheme over vk, deduced from &g, by change of base. Con-
versely, let @ be a smooth group scheme over o with generic fiber G and suppose that,
by change of base from v to vk, ¥ becomes a group scheme %, with (), < %,
as in 3.4.1; then pr(Q,) is stable by Gal(K,/K), and if it is pointwise fixed by
Gal(K;/K), hence can be identified with a subset of %B(G, K) (cf. 2.6.1) whose
inverse image by pr,, in B we denote by (Q, one has ¢ = %,,.

If Q' is any nonempty subset of the closure of Q, the inclusion homomorphisms
G(K))? - G(K;))?, for K, as in 3.4.1, define a morphism of group schemes ¢, —
%, which we denote by p,.,. We represent by G, and poo the algebraic group
defined over K and the K-homomorphism obtained from %, and p,., by reduction
mod p.

3.4.4. The reduction homomorphism %y(0) = G(K)° — G,(K) is surjective.

3.5. Reduction mod p. Let Q be as in 3.4. Our next purpose is to investigate the
group G,. We assume, without loss of generality, that O < A(G, S). Then, the well-
defined split torus scheme whose generic fiber is S is a closed subscheme of %,
and its reduction mod p, called S, is a maximal K-split torus of G,. The character
group of S is canonically isomorphic with the character group X* of S and will be
identified with it; similarly, we identify the cocharacter group of S with X,. The
neutral component G° of G possesses a unique Levi subgroup containing S, which
we denote by G¢; it is defined over K. We suppose {2 convex.

Let F be a facet meeting 2 and of maximal dimension with that property. Since
F satisfies all the conditions imposed on ©, the reductive group G is defined and it
also contains S. One shows that the identity map of S onto itself extends uniquely to
an isomorphism G§d — G'&d; if F < (), that is nothing else but the restriction of
por to G4, In the sequel, we shall be mainly concerned with the group G

The notion of coroot associated with a root a is usually defined for split groups
(cf. [11, XX, 2.8], [20, §1]). In view of the next statement, we extend it as follows to
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arbitrary reductive groups: if 2a is not a root, we simply take the coroot associated
with a in the split subgroup of maximal rank defined in [3, §7]; if 2a is a root, we
define the coroot associated with a as being twice the coroot associated with 2a
(X, being written additively).

3.5.1. The root system of G4 with respect to S is the system ®r (cf. 1.9); in partic-
ular, its Dynkin diagram is obtained from the local Dynkin diagram A(G, K) by
deleting the vertices belonging to I (cf. 1.9) and all edges containing such vertices.
The coroot associated with a root a € O is the same for G4 as for G. If U, denotes the
unipotent subgroup of G'gd corresponding to a, the group U,(K) is nothing else but the
group X, of §1.4, where « is the affine root vanishing on F and whose vector part is a.

Applying that to the unramified closure of K, one gets the following immediate
consequence.

3.5.2. The index of G%&d over K, in the sense of [3] and [22], is obtained from the
local index of G by deleting from 4, all vertices belonging to the orbits O(v) with
v € I (the notations are those of §1.11) and all edges containing such vertices. In
particular, if G is residually quasi-split (resp. residually split), G is quasi-split
(resp. split). When F is a chamber, then G is residually quasi-split (resp. residually
split) if and only if G&4 is a torus (resp. a split torus).

If G is simply connected, the group G, is connected. In general, the group of com-
ponents of G, is easily computed when one knows the group 5, = 5(G, K;) (cf.
§2.5), where K; is the maximal unramified extension of K. Here, we shall give the
result only in the case of a facet.

3.5.3. The group of components of Gy is canonically isomorphic with the intersec-
tion of the stabilizers of the orbits O(v) with v € I in the group 5,. A component is
defined over K if and only if the corresponding element of 5, is centralized by
Gal(K,/K). If K is finite, every component of Gr which is defined over K has a K-
rational point (by Lang’s theorem).

The groups G give an insight into the geometry of the building through the
following statement:

3.5.4. The link of F in B is canonically isomorphic with the spherical building of
Gd over K, i.e. the “building of K-parabolic subgroups” of G54 (cf. [23, 5.2)).

The groups G%d also provide an alternative definition of the integers d(v) of
§1.8. Suppose F is of codimension one and let v be the complement of I in the
set of all vertices of 4. Then, G*« has semisimple K-rank 1 and d(v) is the dimension
of its maximal unipotent subgroups, or, equivalently, the dimension of the variety
G%/Pr, where Py is a minimal K-parabolic subgroup of G, the neutral component of
Gr. This, together with 3.5.4, implies the interpretation of d(v) given in 2.4. If G
is residually split, G3/P is a projective line, hence d(v) = 1; in particular, we re-
cover the last statement of §1.8.

While 3.5.2 gives an easy algorithm to determine the type of G4, 3.5.1, applied
to the unramified closure of K, actually provides the absolute isomorphism class of
that group. Here is an immediate application of that. Suppose that G is quasi-
simple, simply connected and residually split and that F is a special point. Then,
G%d is a simply connected quasi-simple group except if the local Dynkin diagram
is the following one:

) I =
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and if I is the vertex marked with a . Indeed, it is readily verified that in all other
cases, ¢ contains all nonmultipliable relative roots of G, and the assertion follows
from [4, 2.23 and 4.3]. In the exceptional case above, G is a special orthogonal
group, hence not simply connected. Using the fact that in a simply connected group
the derived group of the centralizer of a torus is also simply connected, one easily
deduces from the preceding result the following more general one. Let us say that
a special vertex of the absolute local Dynkin diagram 4, is good if it is not the vertex
* of a connected component of type (1) of that diagram. Then if G is semisimple and
simply connected and if | ),;,0(v) contains a good special vertex out of each
connected component of 4,, the derived group of G4 is simply connected.

3.6. Fixed points of groups of units of tori. Let M be a subgroup of the group of
units S, = {s € S(K) | w(y(s)) = 0forall y € X*} of S. We wish to find under which
condition the apartment A = A(G, S) is the full fixed point set Z¥ of M in 4.
From the properties of the building recalled in §2.2, one deduces that 4 = #M
if and only if, for every facet F of 4 of codimension one, the only chambers con-
taining F in their closure and fixed by M are the two chambers of 4 with those pro-
perties. By 3.5.4, that means that the image M of M in S(K) has only two fixed
points in the spherical building of G over K. If a is any one of the two nondivi-
sible roots in @, that condition amounts to a(M) # {1}. Thus, we conclude
that:

3.6.1. A necessary and sufficient condition for A to be the full fixed point set of M
inBisthat a(M) ¢ 1+p forevery relative root a € 9.

In particular,

if K has at least four elements (resp. if K = F,) A is always (resp. never) the full
fixed point set of S, in B.

The preceding discussion also gives information on the fixed point set of the
group of units S;, of a nonsplit torus S; which becomes maximal split over an
unramified Galois extension K; of K: one applies 3.6.1 to the action of S;, on
% (G, K7) and one goes down to & by Galois descent, using 2.6.1. In that way, one
gets the following result for instance:

If Sy is an anisotropic torus which becomes maximal split over an unramified Galois
extension of K, then S\(K) has a unigue fixed point in the building 2.

By contrast, it is easily shown that if S; is a maximal torus of G = SL, whose
splitting field is ramified, then S;(K) necessarily fixes a chamber of % and possibily
more than one?; for a similar torus S} in PGL,, S;(K) may have a single fixed point
in 4 and may have more than one.

3.7. Iwahori subgroups; volume of maximal compact subgroups. In this section, we
suppose G residually quasi-split; remember that that is no assumption if the
residue field K is finite (1.10.3).

To every chamber C of the building 4, we associate as follows a subgroup Iw(C)
of G(K), called the Iwahori subgroup corresponding to C: if G& denotes the neutral
component of the algebraic group G, (cf. 3.4), Iw(C) is the inverse image in
%-(0) = G(K)C of the group G&(K) under the reduction homomorphism (o) —
G(K). Clearly, all Iwahori subgroups of G(K) are conjugate. From 3.5.2, it follows
that G is a solvable group, hence is the semidirect product of a torus 7 by a uni-

* This answers a question of G. Lusztig.
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potent group U. By general results on smooth group schemes, it follows that Iw(C)
is the semidirect product of 7(K) by a pronilpotent group Iw,(C) ; if K has finite
characteristic p, Iw,(C) is a pro-p-group, and if X is finite, 7(K) is of course a finite
group, of order prime to p.

If x is a point of the closure of C, the image of G by the homomorphism Pxc:
Gc — G, is a Borel subgroup B of G,, and the kernel of g, is a connected uni-
potent group. It follows that p,c maps G¢(K) onto B(K) and consequently, by
3.4.4, that Iw(C) is the inverse image of B(K) in G(K)* = %,(0) under the reduc-
tion homomorphism. Thus, the Iwahori subgroups of G(K) can also be defined as
the inverse images in the stabilizers G(K)*, for x € 4, of the K-Borel subgroups of
the reductions G,.

Now, suppose that K is finite. Then, G(K) is a unimodular locally compact group
of which the Iwahori subgroups are compact open subgroups. Therefore, there is
a unique Haar measure y for which the Iwahori subgroups have volume 1. From
the above, it follows that, for any x € 4, the volume of G(K)* with respect to 4 is
the index [G(K): B(K)] where B is any K-Borel subgroup of G,. If x is “in general
position” in the facet F of # containing it, one has G, = G and the assertions
3.5.2 and 3.5.3 provide an effective way of computing that volume knowing the
local index of G (together with the correspondence v — O(v) of 1.11), the set I,
of vertices of 4 and the group &) = 5(G, K;) (cf. 2.5), where K] is the unramified
closure of K.

3.8. Hyperspecial points and subgroups. From 3.5.1 and 3.5.3, one easily deduces
the following characterization of the hyperspecial points of % defined in §1.10:

3.8.1. 4 point x of & is hyperspecial if and only if the neutral component of the
group G is reductive, in which case G, itself is connected and hence reductive.

One can also show that the schemes &, corresponding to the hyperspecial points
x are the only smooth group schemes over o with generic fiber G and reductive
reduction. Thus, the hyperspecial subgroups of G(K) can be characterized as the
groups of units of such group schemes.

3.8.2. Suppose that K is finite and that G(K) possesses hyperspecial subgroups (a
condition satisfied, for instance, if G is quasi-split and has an unramified splitting
Jield: cf. 1.10); then, the hyperspecial subgroups of G(K) are among all compact
subgroups of G(K), those whose volume is maximum.

The proof, using §§3.5 and 3.7, is not difficult.

3.9. The global case. Let L be a global field. For every finite extension L’ of L and
every place v of L', we denote by o, (resp. v,) the ring of integers of L’ (resp. of the
completion L;). Let H be a reductive linear group defined over L. We suppose H
embedded in the general linear group GL, and, for every L’ and v as above, we set
H(v,) = H(L;) N GL,(0,). Another way of viewing that group consists in con-
sidering the v, -group scheme structure #,, “on H” defined by the standard lattice
0} in L”—in more precise terms, #,, is the schematic closure of H in the standard
general linear group scheme ¥.%, , —; then H(o,) = #,,(v,). For any ring R con-
taining v, we denote by # g the group scheme over R deduced from s, by change
of base.

3.9.1. At almost all finite places v of L, 5, is the group scheme 3, associated with
a hyperspecial point x of the building %(H, L,); hence H(v,) is a hyperspecial sub-
group of H(L,).
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Indeed, let L’ be a Galois extension of L over which the group H splits, and let
#,,- be a Chevalley group scheme over v, with generic fiber #;,. Since the group
schemes #,,. and J#,,. have the same generic fiber, they “coincide™ at almost all
places of L’. Since almost all places of L’ are unramified over their restrictions to
L, the assertion now follows from 3.4.2, 3.4.3 and 2.6.1.

3.10. Example. General linear groups. Suppose that G = GL,. The Iwahori sub-
groups of GL (K) are the subgroups conjugated to

B = {((g,)|g: € v*, gijevfori < jand g; ep fori = j}.

Let (b;);<;<, be the canonical basis of K7. For 1 < r < n, let /, be the lattice in
K7 generated by {b;/z|i < r} U {b;i > r} and let P, be the stabilizer of A, in
GL,(K). Thus, P, is the group of all matrices whose determinant is a unit and
which have the following form

ron—r

r < N >

n—r\go| o /
where the notation means that the upper left corner is an r x r matrix with coef-
ficients in o, the upper right corner an r x (n — r) matrix with coefficients in
7~ 1o, etc. The group B is the centralizer in GL,(K) of the chamber C described in
§1.14. The subgroups P, are special and every special subgroup is conjugate to
any one of them. The P,’s are the stabilizers of the points of % contained in a

one-dimensional facet of C; with the notations of §2.9, the points fixed by P,
correspond to the norms of the form

(x1, -+, x,) = inf({w(x) + o(r) — c|i < r} U {o(x) —c|i > r})

for some constant ¢ € R. If v is any such point, the scheme %, is the Chevalley
scheme ““on”” GL, defined by the lattice /,. One can describe the scheme %, whose
group of units is B, by embedding GL, in GL,. by means of the sum of »n times the
standard representation, and considering in K the lattice 4; @ --- ®A,,.

Note that B is the stabilizer of any point of C. The corresponding statement for
G = PGL, is not true. For instance, the image in PGL,(K) of the group generated
by B and by the linear transformation

Q) by by o by bim!

is the stabilizer of the “center of gravity” y of the chamber of 2 (PGL,,K) project-
ing C. That group is also a maximal bounded subgroup of PGL,(K). The scheme
@, can be described by means of a lattice in the Lie algebra of G = PGL, on which
G acts by the adjoint representation. If F denotes the cyclic group of order »
generated by the reduction mod p of the image of (1) in PGL,, the group G, is the
semidirect product of F by a connected group; in particular, its group of com-
ponents is cyclic of order #.

3.11. Example. Quasi-split special unitary group in odd dimension. We take over all
hypotheses and notations from 1.15 and denote by v, the ring of integers of L.
Let A€ L be such that A + A* + 1 = 0 and that (1) = J (we recall that § is de-
fined as sup{w(d) |de L, d + d* + 1 = 0}). We suppose the uniformizing element
7y chosen in such a way that (Az;) + (Az;)* = 0: if L/K is unramified the pos-
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sibility of such a choice is obvious and if L/K is ramified it follows from 1.15(6).
Let (b,)_,<;<. be the canonical basis of L2l For 0 £ r < n, we consider the-
basis (b{”)_, <, <, defined by b{” = b,/x, fori < —r, b =b; for —r <i <0
and b{" = Ab;fori > 0, and we denote by A, the o, -lattice generated by that basis.
Note that if 6§ = w(A) = 0, which is always the case except if L/K is ramified and
char K =2, A, is also generated by the basis {b,/z; |i < —r} U {b;li = —r}.
The stabilizer P, of A, in G(K) is also the stabilizer of the point v, of V=4 c &
(with the conventions of 1.15) determined by
a,(v,)=%5 1fz§r,
=10 + o(xy)) ifi>r

The points v, are the vertices of the chamber defined by the inequalities 16 < a; <

- < a, < 10 + Lw(w;); they correspond, by v — I, to the vertices of the dia-
grams (9) and (10) of 1.15 in the natural order, from left to right. The scheme %,
is the p;-structure on G defined by the lattice A,.

We shall now briefly investigate the algebraic group G, obtained from G,, by
reduction mod p. We choose r once and for all and use primed letters to designate
the coordinates with respect to the basis (b/?). With those coordinates, the her-
mitian form A is given by

h((x), () = x5V + Z{ (Axyl; + x5 y)

A & P
+ — Z (xiry—i - x—ti yl)

Ty i=r+l
We set £ = A,/zA,. That is a 2(2n + 1)-dimensional vector space over K and one
shows that the natural morphism G, —» GL(E) is a monomorphism; in other words
G,, can be viewed as a subgroup of GL(E). From this point on, we must treat
separately the unramified and the ramified case.

First case. L/K is unramified. Then, E is also a vector space over the residue field

L of L. By reduction mod 7;, the antihermitian form 7z,4/A° becomes the antiher-
mitian form A;: ((%}), (7)) = Xk, (X0, — %, 7)) in E, with obvious nota-
tion. Let E, be the kernel of that form, defined by the equations x; = 0 for |i| > r,
and let A, o be the inverse image of Ej in A,. We now consider the restriction of 4
to A,y x A, owhich, by reduction mod p, becomes the hermitian form

_ r
hZ: ((xi)—réiér’ (yi)—r-i-iér) = XOT.)—)O + —Zl (lr xi}—)—i + /1)?-,‘)7{)

in Ey. Finally, G, can be described as the stabilizer of the pair (%, %) in the group
Rz (SLZ(E)), that is, the special linear group of the L-vector space E “considered
as an algebraic group over K by restriction of scalars. Let E; be the subspace of
E defined by the equations x; = 0 for —r < i < r, and let , denote the restriction
of the antihermitian form 4, to E; x E;. Then, G, clearly contains the group
SU(hy) x SU(hy), which is nothing else but its Levi subgroup Gz (cf. 3.5). Observe
that, in conformity with 3.5.1, the diagram obtained from the diagram (9) of 1.15
by deleting its (+ + 1)st vertex and the adjoining edges is a diagram of type BC, x
C,_,, which is indeed the type of the relative root system of SU(k;) x SU(hy).
Second case. L/K is ramified. Then, the scalar multiplication by 7, in 4,, reduced
mod 7, provides an endomorphism y: E — E, obviously centralized by G,,, and
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whose kernel is equal to its image v(E). The quotient £ = E/u(E) is canonically
isomorphic with the quotient A,/z;4, and will be identified with it. From the fact
that v is centralized by G, , it follows that the projection £ — E induces a homo-
morphism of K-algebraic groups G, — GL(E) whose kernel is unipotent. Here, we
shall only describe the image G, of that homomorphism, leaving as an exercise the
determination of the full structure of G,,r.

By reduction mod z;, the antihermitian form z;4/A* becomes the alternating
form hy: (%), (7)) = Xty (% 7.; — %, 7)) in E. Let E, be the kernel of that
form, defined by the equations x; = O for |i|] > r, and let A, o be the inverse image
of Ey in /A,. We now consider the function g: A, o — K defined by g(x) = A(x, x).
By reduction, it becomes the quadratic form g: E; — K given by

r
q((x;')-réiér) = x(l)z - Z )—Cl—zx;

Finally, the group G, _is the group of all elements of SL(E) stabilizing hy and induc-
ing on E; an element of the (reduced) group SO(g). Let E; be the subspace of E
defined by the equations x; = 0 for —r < i < r and let &, denote the restriction of
hy to E, x E;. Then Sp(h;) x SO(g) is a Levi subgroup of G,, , which is the iso-
morphic image in that group of the Levi subgroup Gied of G, . Asin the unramified
case, we can test the statement 3.5.1, this time by using the diagram (10) of 1.15
which provides, for Gi¢4, a root system of type B, x C,_,.

Note that, also in the unramified case, we could have, instead of the restriction of
h to A, x A, considered its “contraction” ¢q: A, — K defined by g(x) =
h(x, x), thus making the treatment of the two cases still more similar. On the other
hand, we have introduced A in order to reduce the case distinction to a minimum;
in the unramified case, as well as if char K # 2, we could have replaced 1 by 1 every-
where, thus simplifying the equations somewhat.

3.12. Example. Quasi-split but nonsplit special orthogonal group. Now, we take
over the hypotheses and notations of §1.16 except that we take for G the special
orthogonal group SO(g). We shall not, as in §3.11, treat that example in any
systematic way. Our only aim here isto give anexample of a vertex v of the building
such that G, is not connected. We suppose that L/K is unramified. Let /A be the
lattice 0” @ wo, @ 0” in K» @ L @ K~ where o, is the ring of integers of L. The
stabilizer P of A in G(K) is also the stabilizer of the point v € ¥ = A defined by
a(v») = tw(z) for 1 £ i £ n, which is a vertex of the chamber described in §1.16.
In the diagram (1) of §1.16, I, is the vertex at the extreme left. As in §3.11, one
can describe G, as a subgroup of GL(E), where E is the K-vector space A/zA. By
reduction, the form g, restricted to A, becomes the quadratic form 7 : (X;)_,</<, —
%, %_;% in E, with obvious notations (%, belongs to the residue field of L if
i = 0 and to K otherwise). Let £, be the two-dimensional kernel of g defined by
the equations x; = 0 for i # 0, and let  be the quadratic form in E = E/EO image
of g. Clearly, G, preserves the form g. Therefore, the projection E — E induces a
K-homomorphism G, — O(§). One verifies that that homomorphism is surjective
(in particular, G, is not connected) and that it maps G isomorphically onto
SO(9). If ¢ denotes the nontrivial K-automorphism of L, the linear transformation
(X)) —nzizn &> (Xpy X_yi1s ***» X1, X§, X1, ***» Xn—1» X_,), Which belongs to P, provides
by reduction an element of G,(K) which is mapped into O(3) but not into SO(g).
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4. Classification.

4.1. Introduction. To finish with, we give the classification of simple groups
in the case where the residue field X is finite, which will be assumed from now on.
We recall that, in the characteristic zero case, that classification has been given first
by M. Kneser [16]. The tables 4.2 and 4.3, together with the comments in §4.5,
provide a list of all central isogeny classes of absolutely quasi-simple groups over
K. For each type of group, they give the following information, where K; denotes
the unramified closure of K:

a name of the shape ¢X where the symbol X represents the absolute local Dynkin
diagram 4; (1.11) with the notations of [8, 1.4.6]—except that our C-BC cor-
responds to the C-BCM of [8]—and where a is the order of the automorphism
group of 4, induced by Gal(K,/K); for residually split groups, @ = 1 and the
superscript a is omitted from the notation; note that the index on the right of X is
the relative rank over K, hence equal to the number of vertices of 4; minus one;
primes, double primes, etc. are used to distinguish types of groups which would
otherwise have the same name;

the symbol representing the affine root system (or échelonnage) in the notations
of [8]; in the residually split case, that symbol coincides with the name of the type
and is not given separately; note that the right part of the symbol gives the type of
the relative root system ® and, in particular, that the index on the right of it is the
relative rank over K, hence equal to the number of vertices of the relative local
Dynkin diagram 4 minus one;

the local index (§1.11), the relative local Dynkin diagram 4 (§1.8) and the
integers d(v) attached to its vertices (§1.8); the action of Gal(K;/K) on 4,—
through a cyclic group of order a (see above)—is essentially characterized by its
orbits in the set of vertices of 4;, orbits which are exhibited as follows: the elements
of the orbit O(v) corresponding to a vertex v of 4 (1.11) are placed close together on
the same vertical line as v (in the few cases, such as 2D,, 2Dj , etc., where two
vertices of 4 are on the same vertical, the correspondence v — O(v) should be clear
from the way the diagrams are drawn); since K is finite G is residually quasi-split
(1.10.3), hence all vertices of 4, are distinguished except for the unique anisotropic
type 44,_; (§1.11), and there is no need for a special notation like the circling of
orbits, as in [22]; hyperspecial vertices (§1.10) are marked with an As and the other
special vertices (§1.9) with an s;

the index of the form, in the “usual’ sense of [3] and [22]; for simplicity, we do
not represent that index by a picture but rather by the corresponding symbol in the
notation of [22]; we recall that that symbol carries, among other, the following in-
formation: the absolute type of the group, the absolute rank, the relative rank
(already provided by the symbol representing @) and the order of the auto-
morphism group of the ordinary Dynkin diagram induced by the Galois group of
the separable closure of K.

In the case of the inner forms of 4, the diagrams are, for technical reasons, re-
placed by explanations in words.



60

J. TITS

4.2. Residually split groups.

Name Local Dynkin diagram Index [22]
A,(nz=2) A cycle of length n + 1 all vertices of which 1485,
are hyperspecial
|mm—]
A, hs ks 141
hs
B" (n g 3) =—---- F—< Bn.n
hs
s
B-C,(nz3) =t—---- ZAévlz)—l,n
s
C.,(nz2) I w— cy,
hs hs
C-B,(nz2) ;=1=t~—| ----- r——t::::sl 2DV, ,
C-BC,(n22) S — 2450,
s s
C-BC, L 2441
s s
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Name Local Dynkin diagram Index [22]
hs hs
....... _< DY)
(n = 4) hs hs
hs
Eg hs 1EQ 6
hs
£ —t——t I t g Ef ;
hs hs
Es ————t————t I + EQs
hs
——t—t—
Fiy hs Fi.
— =t
Fi 5 22,
Gz hs G2
G} — 3D4,5 01 8Dy 5
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4.3. Nonresidually split groups.

Affine root
system Local index and relative
Name (notations of local Dynkin diagram. Index [22]
8, 1.4.6])
The absolute local Dynkin diagram 4, is a cycle
of length md on which Gal(K,/K) acts through a
L B Ay cyclic group of order d generated by a rotation | 1 A'(;j)_l I
of the cycle. The relative diagram is a cycle of '
(m =3, length m all vertices of which are special but not
dz 2) hyperspecial and carry the number d.
4, is as above, with m = 2
Az A Ais d d 145D
(d g 2) S N
4, is as above, with m = 1, or, if d = 2, consists
A4 %] of a fat segment whose vertices are permuted by 1A§'1)1,0
Gal(K,/K)and 4 = @
@dz2
Z"4érn—l Cm c ----- :> ZAZ(rln)—l, m
(m=z2) 2 2 2
hs C s
“on C-BCh - R 2AS0 1 ms
(m 2 3) X Fe—p———t------ _.___’=>='2 3 3x
N
24! C-BCY 3 3 248
X j——— X
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Affine root
system Local index and relative
Name f;olti:.lg]!;s of local Dynkin diagram. Index [22]
vy | ooy |G A
mz=2 2
=2 ECEE NI
: s
24, C-BC]Y 3 AL
X ——
s hs

B, C-B, >o—| ----- —t== B,,n1

(nz3) 2

;=-(=0—| ----- »——0=)=s1

2B-C, C-BCH, -=- - 2AL) 1
(n=3) 2z —jm e =} S
N s
e e ey

2Com—1 ¢BCY, |G - Ci2 1, m
(m=3) ] N 3 . 2 2 _ % 2 42
s s

2Cq C-BC}V : c®

3,1
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Affine root
system Local index and relative
Name |(notations of local Dynkin diagram. Index [22)
[8, 1.4.6))
ZCZm Cm '<j J"--_--P < CZ(rzrz, m
2
(mz2) S S R T
) s
ZCZ Al 2 C2(,2)1
Pm—
5 s
C = 22
2C-B,,,_ C-BC},_ > DD
C-Ban-y 13 2 2 2 2 2
(m _2— 3) X ‘s":ﬁ—‘ """ 4—ﬁ=s1
2C-B, C-BC! C:: 2D
oy
s s
2C-B,), c-pem | =< T DRy
(mz2) - 22 1.2
) s
2C-B, C-BCH 2 2D

1]
ta
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Affine root
system . .
: Local index and relative
Name (notations of local Dynkin diagram. Index [22]
[8, 1.4.6))
2p, B, e < 2D,
(n=4) 2 hs
- —K
hs
2D, C-B, , >¢———|—---- »——¢< 1D, ,
(n 24 2 - -
s ' T s
2Dy, B-C, DR,
2
(m = 3) 2 2 2 2 < )
2
s
D5, 11 B-BC,, | - 2Dy
(m = 3) 2
3 2 2 2 < 5
X P
s
2
2D} B-BC,? i 2D
3 2s
X l< s
2
3D, G, 3 3Dy,
——=|

*This “‘échelonnage” is missing in the table of [8, p. 29].
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Affine root
system Local index and relative
Name [(notations of bt Index [22
a (8, 1.4.6]) local Dynkin diagram. (22]
Dy, C-BCL, < — iDE,
(m=z3) k;z 3.2 2:4
s
4D, C-BCH 4 D
P
s s
4D2m+1 C'BC,In_l C::__: ------ .__‘< 1Dé2+1, m—1
m=3 3 2 2 4
(m23) WU S S SN
s
4Dy C-BC! Cz D&
3 4 ’
X Iremnm—
§ s
2E, Fy :2 ) 2E§ 4
hs o '
3E6 G% <3_:_;‘; 1 Eé,ez
i s
’E; Fi 2 2 12 E3,
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4.4. Interpretation. We shall now repeat the classification in classical terms. The
following enumeration gives a representative of every central isogeny class of
absolutely quasi-simple groups over K and, in each case, the name of the cor-
responding type, with the notations of the first column of the Tables 4.2 and 4.3.

Special linear group SL, of a d2-dimensional central division K-algebra
(md = 2). The typeis94,,,_;.

Special unitary group SU(h) of a hermitian form 4 in r variables (r = 3) with Witt
index r’ over a quadratic extension L of K. If L/K is ramified, we assume r # 4
because the case r = 4 is more adequately represented by an ordinary special
orthogonal group in 6 variables or a quaternionic special orthogonal group in 3
variables according as r’ = 2 or 1. If the form 4 is split, the type is 24,_; if L/K
is unramified and C-BC,, (r = 2n + 1) or B-C,, (r = 2n) otherwise. If 4 is not split,
one has r = 2r’ + 2 and the type is 24,_, or 2B-C,.,; according as L/K is un-
ramified or ramified.

Special orthogonal group SO(q) of a quadratic form g in r variables (r = 6) with
Witt index r’ over K. If r is even, we denote by L the center of the even Clifford
algebra of g which is isomorphic to K @ K (form g of discriminant one or Arf
invariant zero) or is a quadratic extension of K. If L/K is unramified (in particular
if L =K@ K), we assume r # 6 because the case r = 6 is more adequately re-
presented by a special unitary group in 4 variables. If r = 2r’ (resp. 2r' + 1), the
type is D,. (resp. B,.). If r = 2r' + 2, L is a quadratic extension of K and the type
is2D,.; or C-B,. according as L/K is unramified or ramified. Finally, if r = 2r' + 3
(resp. 2r '+ 4), the type is 2B, (resp. 2D, ,5).

The symplectic group in 2n = 4 variables is of type C,,.

Special unitary group of a quaternion hermitian form in r variables (r = 2) re-
lative to the standard involution. The Witt index is always maximal and the type is
2C,.

Special orthogonal group SO(q) of a quaternionic g-quadratic form in r variables
(r z 3) relative to an involution ¢ of the quaternion algebra whose space of sym-
metric elements is 3-dimensional (cf. [21], [23]; if char K # 2, ¢g-quadratic amounts
to g-hermitian and the group is also the special unitary group of an antihermitian
form relative to the standard involution). Let r’ be the Witt index of the form and
L the center of its “even” Clifford algebra Cl(g) (cf. [21]). If L/K is unramified (in
particular if L =~ K @ K), we assume r # 3 because the case r = 3 is more ade-
quately represented by a special unitary group in 4 variables; if furthermore r =
2r’, we also assume r # 4 because the case r = 2r' = 4 is more adequately re-
presented, through the triality principle, by an ordinary special orthogonal group
in 8 variables with Witt index 2. One always has 2r' <r < 2r' + 3. If r = 2r/,
‘one has L =~ K @ K and the group is of type 2D). If r = 2r' + 1 (resp. 2r’ + 2),
L is a quadratic extension of K and the type is 2D} (resp. ¢D,) or 2C-B,_; according
as L/K is unramified or ramified. If r = 2r’ + 3, one has L =~ K @ K and the type
is 4D,.

Quasi-split triality D,. Let L denote the splitting field, which is a cyclic extension
of degree 3 or a Galois extension of degree 6 with Galois group &s. If L/K is unra-
mified (hence cyclic of degree 3), the type is 3D,; otherwise, it is G}.

Split exceptional groups. The type has the same name G,, F;, E;, E; or Eg as the
absolute type of the group.
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Quasi-split groups of type Eg. The type is 2Eg or F} according as the quadratic
splitting field L is unramified or ramified.

Nongquasi-split groups of type Eg and E,. They are the forms of Eg and E; con-
structed by means of a central division algebra of dimension 9 and 4 respectively;
their types are 3Eg and 2E;.

4.5. Invariants. All types of groups listed in the Tables 4.2, 4.3 exist over an arbi-
trary field K with finite residue field. The central isogeny class corresponding to a
given name is always unique except in the following cases.

The isogeny classes of type 44,,,_; for d = 5 are classified by the pairs of op-
posite central division algebras of dimension d2 over K; their number is therefore
1¢(d), where ¢ is the Euler function.

The isogeny classes of the types B-C,, 2B-C,, C-B,, C-B,, C-BC,, and F} are
classified by the ramified quadratic extensions of K, namely the extension always
called L in §4.4.

The groups of type G} are classified by the Galois extensions L of K which are
either cyclic of degree 3 or noncyclic of degree 6.

4.6. The classification kit. The following experimental facts provide a handy way
of reconstructing the classification. First note that, except for ?4,_,, each type in
the Tables 4.2 and 4.3 is completely characterized by the local Dynkin diagram and
the integers d(v) attached. Now, consider a connected Coxeter diagram of affine
type and rank (number of vertices) at least three, attach an integer to all vertices,
mark some of them (possibly none) with a cross and orient each double or triple
link with an arrow. Then a necessary and sufficient condition for the existence of a
semisimple group G having the resulting diagram as its relative local Dynkin
diagram with the given integers as d(v) is that all subdiagrams formed by the pairs
of vertices belong to one of the following types, representing the ordinary Dynkin
diagrams of quasi-split groups of relative rank two:

d d
d d == d _d
X X 2d d
d d == 3d d
— ><3d d =5

The group G can furthermore be chosen to be absolutely quasi-simple if and only if
the integers d(v) are relatively prime or if the underlying Coxeter diagram is a cycle.
As for the types of relative rank one, whose underlying Coxeter diagram is +,
they can be obtained as “limit cases” of types of higher ranks, but we shall not
elaborate on that.
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REPRESENTATIONS OF REDUCTIVE
LIE GROUPS

NOLAN R. WALLACH

The purpose of this article is to give an introduction to the representation theory
of real, reductive Lie groups (see §1 for the precise class of groups to be studied).
Our main goal is the Langlands, Harish-Chandra classification of irreducible re-
presentations of such groups. §87 and 8 are devoted to a study of intertwining
operators for GL(2, R) and GL(2, C) and to a detailed exposition of how the
classification specializes to GL(2, R) and to GL(2, C).

The representation theory of reductive Lie groups is a vast subject. A complete
survey of the subject would be a very ambitious task. It would also involve a size-
able monograph rather than an article of modest size. It is for this reason that we
limit ourselves to a single path through the subject leading to the classification.
Many important aspects of the theory are hardly discussed (e.g., the detailed theory
of the discrete series [5], [6], [19], intertwining operators [13], [14], the Plancherel
theorem [8], [9], [10]). However, we feel that the material covered will give the
reader an idea of the flavor of the subject. Much of the material that is not covered
in this article will appear in other articles in this volume. There are several surveys
of the subject of representations of semisimple Lie groups that are available
(notably [20]). The reader interested in a deeper pursuit of the subject should con-
sult the monographs of G. Warner [22].

1. The class of groups to be studied.

1.1. Let & be an algebraic group over C defined over R. We denote by ®(R) the
real points of & and by &° the identity component of &.

1.2. The type of group we will be studying will be a Lie group, G, having the
following properties:

(1) There is an algebraic group & defined over R and a Lie group homomorphism
7: G = G(R) so that y(G) is open in §(R) and y: G — 7(G) is a finite covering.

(2) &° is reductive.

(3) Ad(7(G)) = Ad(®°). Here Ad denotes the adjoint representation of 8° on the
Lie algebra of &°.

1.3. Our basic examples are GL(#, R) and GL(n, C) (looked upon as the real
points of an algebraic group defined over R). One of the main reasons for in-
troducing a broader class of groups than linear groups is to include the “meta-
plectic” group, a two-fold covering of Sp(n, R).

" AMS (MOS) subject classifications (1970). Primary 22E45.
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1.4. Let G be as in 1.2. Let X(G) denote the group of all continuous homomor-
phisms of G into R* = R — (0). Set °G = {ge G | [x(g)| = 1, x € X(G)}.

1.5. If H is a Lie group, we will denote by Y the Lie algebra of H. Ad will denote
the adjoint representation of H on . §j; will denote the complexification of §.

1.6. Let G satisfy the conditions in 1.2. Then it is not hard to show that there is a
nondegenerate, Ad(G)-invariant, symmetric bilinear form, B, on g and an involu-
tive automorphism, 6, of G such that:

(1) Bis f-invariant and (X, Y) = — B(X, 0Y) is positive definite.

(2) There is a maximal compact subgroup, K, of G so that K° < {ge G |0(g) =
g} is an open subgroup.

For such G we fix B, 6, K. Let ¢ denote the center of g. Set °c = {X ec| X = X}.
Then exp (°c) = K ) exp(c).Set 3 = {X ec| 0X = —X}. Let Z = exp(3). ThenZ
is called the split component of G.

1.7. It is not hard to show that the map Z x °G — G, (z, g) — zg is a Lie group
isomorphism.

1.8. We now look at our examples. If G = GL(n, F), F=Ror C,set B(X, Y) =
Re (tr XY). Set X = — X* (here X* denotes the conjugate transpose of the matrix
X).°G = {geGl||detg|=1}, Z = {alla > 0}. K = O(n) if F = R and K = U(n)
if F=C.

2. Admissible representations.

2.1. WefixGasin 1.2, Band Kasin 1.6.

2.2. Let H be a separable Hilbert space. Let GL(H) denote the group of all
invertible, bounded operators on H. A representation (z, H) of G on H is a homo-
morphism z: G - GL(H) so that

(1) The map G x H —» H, g, v — n(g)v is continuous.

(7, H) is said to be unitary if z(g) is unitary for g € G.

2.3. Let || --- || denote the operator norm on End(H). The principle of uniform
boundedness implies that if @ = G is a compact subset then ||z(g)|| £ Clw) < o©
for g € w. This implies that if (, ) is the Hilbert space structure on H and we set
v, wy = [i (z(k)v, m(k)w) dk (here dk denotes Haar measure with total mass 1 on
K) then {, ) gives the same topology on H as (, ) and 7|y is unitary relative to
{, >. We therefore assume that 7| is unitary.

2.4. Fix a Haar measure dg on G (G is unimodular). If fe C(G) (C~ with com-
pact support) we can define z(f): H - H by

M) <z, w) = fe flg) <a(g)v, w) dg and |z(f)l = Cw)lfl, if
supp f < w(see2.3, || f|l; the L1 norm of f).

If fe C=(K) set m(f) equal to (z|£)(f).

2.5. Let &£(K) denote the set of equivalence classes of irreducible, unitary re-
presentations of K. If y € &(K) fix (7,, V;) e 7. Then dimV, < oo. Set a, (k) =
(dim V)tr z,(k™1), k € K.

Then zg(a,) is a projection operator on H. Set zx(e,)H = H,. Then H =
@,H, Hilbert space direct sum.

2.6. A representation (z, H) of G is said to be admissible if dim H, < oo for
r € &(K).

2.7. A representation (z, H) is said to be irreducible if the only closed z(G)-
invariant subspaces of H are (0) and H.
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2.8. THEOREM (HARISH-CHANDRA [2]). (1) If (=, H) is an irreducible unitary re-
presentation of G then (z, H) is admissible.

(2) If (z, H) is an admissible representation of G and if F = &(K) is a finite subset
thenifve @,cr H, the map g — 7(g)v is real analytic.

2.9. Let (=, H) be an admissible representation of G. Set H,, equal to the algebraic
sum of the H,, y € &(K). If ve H, set H() = X,cx Cr(k)v. Then Hy = {ve H|
dimH(v) < oo}. ‘

2.10.If v € Hy then Theorem 2.8 implies:

(DIfX eg, w(X)v = (d/dt)zx(exp tX)v],=o exists.

@ Ifk e K, X e gthen n(k)n(X)w = w(Ad(k)X)x(k)v.

2.11. 2.10 (2) implies that if X e g, v e H,. Then z(k)z(X)v € n(g)- H(v). Thus
dim H(z(X)v) < co. This implies z(X)v € H, for v e Hj, X € g. Just as in the case
dim H < oo we find

(DIfX, Yegthenz[X, Y] = z(X)z(Y) — z(Y)z(X) = [z(X), z(Y)] on H,,.

2.12. 2.10, 2.11 lead naturally to the notion of a (g, K)-module. A (g, K)-module
is a complex vector space V such that

(1) Vis a g-module. That is, there is a linear map g® V' =V, X ® v —» Xv
suchthat[X, Y] -v=X -Yv - Y - X1, X, Yeg

(2) V is a K-module. That is there is a map K x V — V linear in the V-variable
suchthatl - v = vand k; - (kpv) = (kik) - v, ki, kp e K.

(3) If ve ¥V then dim};,.x Ck - v < oo and if W < V is a finite dimensional
K-invariant subspace of V then:

(a) K acts completely reducibly on W.

(b) Themap K x W — W, k,w — k - wis continuous (hence real analytic).

@ If Xetandve Vthen

Xv = (d/dr) exp tX - V|i=.

B)IfkeK,Xeg, veVthenk - X - v = (AdkK)X) - (k-v).

2.13. If V, W are K-modules (resp. g-modules) then we denote by Homg(W, V)
(resp. Homy(W, ¥)) the space of linear maps 4: W — V such that Ak-w = k- 4w,
keK,we W(resp. AXw = XAw, X eg, we W).If V, W are (g, K)-modules we set
Hom, (W, V) = Hom(W, V) | Homg(W, V).

2.14. A (g, K)-module V is said to be admissible if for any y € &(K),
dim Homg(V,, V) < oo. We set V(1) = X actomgw,v) AV, = V. V(7) is called
the y-isotypic subspace of V.

2.15. If (z, H) is an admissible representation of G and if we set V, = H, with
action X - v = z(X)v, ve V, X e g. Then 2.10(1), (2), 2.11(1) imply that ¥ is an
admissible (g, K)-module.

2.16. A (g, K)-module, V, is said to be irreducible if the only g- and K-invariant
subspaces are ¥ and (0).

2.17. THEOREM (HARISH-CHANDRA [2]). If (%, H) is an admissible representation of
G then (z, H) is irreducible if and only if V, is an irreducible (g, K)-moudle.

2.18. If (%;, Hy), i = 1, 2, are representations of G then an intertwining operator
from (z,, H;) to (zy, H,) is a continuous linear map A4: H; — H,sothat 4 - 7,(g) =
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7o(g) o A. w1, m, are said to be equivalent if there is a bijective intertwining operator
from 7, to m,. If 7, 7w, are unitary representatives of G then x,, 7, are said to be
unitarily equivalent if there is a bijective unitary intertwining operator from =
to my.

2.19. THEOREM (HARISH-CHANDRA [4]). If (n;, H;) are unitary, admissible re-
presentations of G then =, w, are unitarily equivalent if and only if V, and V,,
are isomorphic (that is, there is a bijective element of Homg x(V7,, V,))-

2.20. A (g, K)-module, V, is said to be unitary if there is a positive definite inner
product ¢, > on ¥ so that:

(1) <kv, kw) = (v, w), ke K,

) <Xy, wy = —{v, Xw), X eg.

2.21. THEOREM (HARISH-CHANDRA [2], [3]). Let V be an admissible (g, K)-module.
A necessary and sufficient condition for V = V, with & an admissible, unitary re-
presentation of G is that V be unitary.

2.22. The results of this section imply that the determination of the set &(G) of
equivalence classes of irreducible unitary representations of G is the same as
finding the set &(g, K) of isomorphism classes of irreducible, unitary, admissible
(g, K)-modules. This can be done in two steps. The first is to determine the set
ll(g, K) of isomorphism classes of irreducible, admissible (g, K)-modules. The
second is to determine which elements of [I(g, K) have a unitary representative. The
first step has been carried out in Langlands’ classification (an alternate classification
has been given by Vogan which should have important and far-reaching conse-
quences). The second step is far from complete. There should be some discussion
of the literature on this problem in the lectures of Knapp and Zuckerman [14].

3. Infinitesimal characters.
3.1. Let g be a Lie algebra over a field. Let T(g) be the tensor algebra over g.
Let I(g) be the right and left ideal in T(g) generated by the elements

X®Y-Y®X—I[X, Y]

Set U(g) = T(g)/I(g). Letj: g — U(g) be defined by j(X) = X + I(g).

3.2. (U(g), j) or U(g) is called the universal enveloping algebra of g. We note that
JIX, Y] = j(X)j(Y) — J(Y)j(X) = [j(X), j(Y)]. U(g) is called the universal envelop-
ing algebra of g because of the following universal mapping property:

If ¢: g — E, E an associative algebra with unit such that ¢[X, Y] = [p(X), p(Y)],
then there exists a unique algebra homomorphism ¢ of U(g) into E so that

@ o) = 1,

®) (J(X)) = (X).

3.3. In particular, every g-module is naturally a U(g)-module.

3.4. THEOREM (CF. [11]). Let Xy, ---, X, be a basis of g. Then the monomials
X7t -+ Xj» form a basis of U(g).

3.5. Theorem 3.4 is usually referred to as the Poincaré-Birkhoff-Witt (P-B-W)
theorem. In particular it implies that j: g — U(g) is injective. We therefore suppress
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the j and look upon g as a subalgebra of U(g) under the commutator of the associa-
tive multiplication.

3.6. Let G be as in 1.2. Let g be its Lie algebra (as per our conventions). Let g¢
be the complexification of g. Let 2(gc) = £ be the center of U(ge).

3.7. We note that if g € G then Ad(g): gc — g¢ extends to an automorphism of
U(ge). 1.2 (3) implies that if z € 2° and g € G then Ad(g)z = z.

3.8. Recall that a Cartan subalgebra 1) of g¢ is a subalgebra of g¢ such that

(1) § is abelian.

(2) If h e § then ad(h) diagonalized on ge.

(3) 5 is maximal subject to (1), (2).

3.9. Cartan subalgebras always exist. (E.g., if G = GL(n, R) then g = M,(R)
with [X, Y] = XY — YX and g, = M,(C). We can take §) to be the diagonal
matrices in g¢.)

3.10. Let | be a Cartan subalgebra of g¢. If « € h* set (g¢), = {X e gcll4, X] =
a(H)X, H €b}. Set 4 = {aeh*la #0, (gc), # 0}. Then 4 is called the root
system of (g¢, §)). We have X3 c4(gc), + b = ge-

3.11. Let B also denote the complex linear extension of B to g, (see 1.6). Then
B |4y is nondegenerate. Let (, ) denote the dual bilinear form to B [, on bh*.
If w e dset s,h = h — 2(a(h)/{a, ad)H, where H, € is defined by B(H,, h) =
a(h), he . Let W(4) be the group generated by the s,, a € 4, in GL(Y). W(J4) is
called the Weyl group of 4. We let W(d)actonh* bys - A = Aos7L

3.12. If s € W(4) then it is well known (cf. [11]) that there is g € ®° so that s =
Ad(g)ly.

3.13. A system of positive roots for 41is a subset, 4%, of 4 satisfying

(D)4 = 4+ U {—ala € 4} disjoint union.

) Ifa,Bedtanda + fe dthena + Se 4.

We note that if @, 8 € 4 then {a, ) € R. Let Y = 3 RH,. Then Bly,q, is
positive definite. Let hr = {h € hgla(h) # 0, a € 4}. Then Y # @. 4 is finite.
For h € Y, set 4t(h) = {a € dla(h) > 0}.

3.14. Let 4* be a system of positive roots for 4. Set n™ = ¥, (gc).. Set
b = § + n'. Then b is called a Borel subalgebra of g¢. Set 1~ = X ,c 4+(ge)—a-

3.15. By P-B-W, U(ge) = U(H) @ (n"U(ge) + U(ge)n™). It is easily checked that
Z < U(h) @ nU(ge) and & = U(h) @ U(ge)n'. Using these observations we see
that if p: 27 — U(§) is the projection into the U(§)-factor in the above direct sum
decomposition then p: & — U(}) is an algebra homomorphism.

3.16. Let u: U(h) — U(H) be defined by u(1) = 1, u(h) = h — o(h) - 1, u(hyhy) =
wChy)ulhe). Sety = pop.

3.17. THEOREM (HARISH-CHANDRA, CF. [1]). (1) The map v: & — U(H) is injective
with image equal to UQ)¥ @ = {he UH)|s - h = h, s € W(4)}.

(2) 7 is independent of the choice of 4. Set 7 = 1, .

(3) If x: & — Cis a homomorphism such that y(1) = 1 then there is A € §* so that
x(2) = A(7(2)), z€ Z. Here A: U(h) — C is the extension to U() of the linear map
h — A(h) of finto C.

(4) Set for Aeb*, y,(2) = A(p(2)), z€ Z. Then y, = y, if and only if A' = sA
Jfor some s € W(J).
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3.18. The hard part of Theorem 3.17 is (1). (3) follows from the fact that U(f)
is integral over U(§)" 9. (4) is just a restatement of (1).

3.19. Let ¥ be an admissible (g, K)-module. Then V = @,csx) V(7). f z€e &
then z - V(r) = V(7), r € &(K). Since dim V(7) < oo we see that |, can be put
in upper triangular form.

3.20. Set for a homomorphism y: 2 — C,

V, = {veV|(z—x(z))% = 0 for ze &, d depending only on v}.

The discussion in 3.19 implies that V is the (g, K)-module direct sum of the Vy’s.

3.21. If Vis irreducible and V, # O, then V, = V. Let W = {veV|z-v =
x(2)v, ze Z}. Since ¥, = Vit is clear that W # 0. But W is clearly a (g, K)-sub-
module of V. Hence W = V. y is called the infinitesimal character of the (g, K)-
module V.

3.22. THEOREM (CHEVALLEY, HARISH-CHANDRA, CF. [22]). Let w be the order of
W(4). Then there exist elements uy, ---, u,, of U(§) so that U(%) = Ju,U(§)% 9.

3.23. THEOREM (HARISH-CHANDRA, CF. [22]). If V is a (g, K)-module, finitely
generated as a U(g)-module, and if V =V, for some y, then V is admissible. Further-
more, if V is nonzero, then V has a nonzero irreducible quotient.

4. The principal series.

4.1. Let G be asin 1.2. Let P = G be a subgroup of G. Then P is said to be a
parabolic subgroup of G if

(1) P is its own normalizer in G.

(2) pc contains a Borel subalgebra of g. (see 3.14).

4.2. Let a; be a maximal abelian subalgebra of g contained in £ = {X €]
B(X, t) =0}. If h e ay then ad h diagonalizes on g (indeed if 4 € q then th = h).
Let, for Aeaf, g = {Xeglad h - X = A(WX, h € ap}. Set A ={Aeaflg? #(0),
A # 0}. Fix hy € ag so that A(hg) # 0, A€ A. Set A+ = {2 € AlA(hy) > 0}. Set
Ny = Xizesrg Set My equal to the centralizer of Ay = exp ap in G. Then Py =
M,Nj is a parabolic subgroup of G. If P is a parabolic subgroup of G then there
isge G so that gPyg~! = P.

4.3. The Iwasawa decomposition of G says that G = KP, if P, is as above. Thus
if P is a parabolic subgroup of G then P o kPyk~! for some k € K. Hence G = KP.

4.4. Fix (Py, Ap) as in 4.2. Then (P, 4p) is known as a minimal parabolic pair.
°My = My (] K (see 1.5). Ay is a split component of M| chosen as in 1.6.

4.5. Let P be a parabolic subgroup of G. Let N be the unipotent radical of P.
Let M = P OP. Then P = MN. M = °M - A with 4 a split component of M
chosen as in 1.6. (P, A) is said to be a parabolic pair or p-pair. (P, 4) is said to be
standard if 4 = 4, and P o P,. Each p-pair is conjugate in G to a unique standard
p-pair.

4.6. If (P, A) is a p-pair, P = MN, then M satisfies the conditions of 1.2. Suppose
that (P, A) is standard. Then M ( K plays the role of K for G. The notion of
admissible will be relative to M ] K.

4.7. Let (P, A) be a standard p-pair. P = MN = °MAN. Let (g, H,) be a finitely
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generated admissible representation of M. Let g, denote the modular function of
MN. Then 0p(°man) = a?r = %P if g = exp H and 2px(H) = tr(ad H|,),
Hea.

4.8. We form a representation (z(P, g), H?-?) of G as follows:

(1) Set HP. equal to the space of all measurable functions f: K — H, such that
flkm) = o(m)~Yf(k), me K \ M, ke Kand |f|? = [¢|f(K)]|?dk < co.

(2) If fe HP? extend f to G by f(kp) = 0,(p)"1/2 a(p)"Lf(k),forpe P, ke K.
Set (z(g)f) (x) = flg7'x) (z = (P, 0)).

4.9. THEOREM. (%(P, 0), HP-9) = I(P, ¢) is an admissible representation of G.

4.10. Theorem 4.9 can be derived from Theorem 3.23.

4.11. Set V(P, o) equal to the corresponding admissible (g, K)-module (i.e.,
V(P, o) = V., © = n(P, 0)). Let ¥, denote the (m, K () M)-module corresponding
to ¢.

4.12. If fe V(P, o), f is real analytic by Theorem 2.8(2). We define j(f) = f(1),

fe V(P, o). Then it is easy to see

(1) j: V(P, 0) > V, is a surjective (m, K (| M)-module homomorphism.

(2) Kerj o n - V(P, o).

This implies that ¥, is a quotient of the (m, K [} M)-module V(P, ¢)/nV(P, o).

4.13. The following result can be proved using Theorems 3.22, 3.23, the sub-
quotient theorem (Harish-Chandra [3], Lepowsky [16], Rader [18]) combined with
a technique of Casselman using the asymptotic expansion of matrix entries of
admissible representations (cf. Mili¢i¢ [17]). For a proof that does not use asymp-
totic expansions, see [21].

4.14. THEOREM. Let V be an admissible (g, K)-module. Let (P, A) be a standard
p-pair, P = MN. Then

(1) V #nb.

(2) If V is finitely generated then V[nV is a finitely generated (m, M (\ K)-module.

4.15. The particular case of 4.14, (P, A) = (Py, Ap) has an interesting conse-
quence, °My = M, (| K. Hence a finitely generated, admissible (m, K | M)-
module is finite dimensional.

4.16. Let V be a nonzero admissible, finitely generated (g, K)-module. Then
1 £ dimV/nyV < oo by the observation of 4.15. Let W be a nonzero irreducible
quotient of V/ngV as an (m, K (| My)-module. Then ay acts by v € (a)c. We can
therefore look upon W as a representation (¢, H,) of M,. Set & = §p/%0. Let u:
V' — W be the composition of natural maps. Define, for v e V, C(v)(k) = u(k™1-v).
Thenclearly, C: V — HPo»¢ = Hand C(k - v) = k - C(v).

4.17. LEMMA. Set & = mp, . Then C((Xv)) = n(X)C(v) forve V, X eg.

ProoF. We note C(k - X - v) = C(Ad(k)X - k - v). Hence zn(k)C(X -v) =
C(Ad(k)X - kv). Thus it is enough to show that

1) CX - v) (1) = (=(X)C() (1), for X e g, ve V. (1) is not hard in light of

(2) g =t @ ay @ 1y, and the discussion in 4.12.

4.18. THEOREM (THE SUBREPRESENTATION THEOREM OF CASSELMAN). If V is an
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irreducible admissible (g, K)-module then V is isomorphic with a (g, K)-submodule of
V(Py, o) for an appropriate irreducible representation of M.

PRrOOF. Let C be asin 4.16. Then C # 0 and hence C is injective.

4.19. COROLLARY. Let V be an irreducible, admissible (g, K)-module. Then V
is isomorphic with V , where (z, H) is an irreducible, admissible representation of G.

4.20. Let (P, A) be a standard p-pair, P = MN. Let V be an admissible, irredu-
cible (g, K)-module. Then V/nV is a finitely generated, nonzero, admissible (m,
K 1 M)-module. Hence V/uV has an irreducible, nonzero quotient. Corollary
4.19 implies that this quotient is of the form V', for (¢, H,) an irreducible admissible
representation of M. Arguing as in 4.16 and Lemma 4.17 we have:

4.21. THEOREM. Let V be an irreducible, admissible (g, K)-module. Let (P, A)
be a standard p-pair P = MN. Then

(1) V/uV has a nonzero irreducible (m, K (| M)-module quotient.

Q) If W is an irreducible (m, K (| M)-module quotient of V[uV then W =V,
and V is isomorphic with a (g, K)-submodule of V(P, 652 o).

5. Exponents.

5.1. We retain the notation of §4.

5.2. Let(P, A), P = MN be a standard p-pair. Then M (| Py, = *Pis a minimal
parabolic subgroup of M. Then *Py= *MyAo*Ny, *My = “MyA,. (*Py, Ag) will
be used for M in the same way as (P, 4p) is used for G. We note that Ny = *NyN.

5.3. If ¥ is an admissible, finitely generated (g, K)-module then it is easy to see
that

(1) VingV = (V[uV)[*ny(V/nV).

5.4. Let V be as in 5.3. Let (P, A) be a standard p-pair. Set E(P, V;) = {v — pplv
a weight of a on ¥/nV}. 5.3(1) implies that E(P, V) = {ul, |u € E(Py, V)}.

5.5. If (P, A) is a p-pair let J(P, A) be the set of weights of a on n. Then J(P, 4)
is called the set of roots of (P, A). An element A € J(P, A) is said to be simple if
A cannot be written in the form A; + -+ + A, ¥ = 2, with , € J(P, 4),i =1, -+,
r. Set °J(P, A) equal to the set of simple roots of (P, 4).

5.6. Set °3y(Pg, ) = {ay, -+, a;}. Let Hy, ---, H; € aq be defined by ai(H,) = 0;;
and H; 1 3 (3 the Lie algebra of Z, the split component of G chosen as in 1.6).
Set Dy = YRH;. Then qy = 3 @ D,, orthogonal direct sum.

5.7. Let B, € D§ be defined by <{B;, a;> = 8;;. If F <= {1, ---, I} set D§(F) =
{veD§lv = — Digr X:f; + Dicryias x; >0, y; Z O}

5.8. LeMMA (LANGLANDS [15)]). D§ is the disjoint union of the D§(F).

59. Ify e DE(F) sety° = — YepX;f;if v = — Xiaerx8; + Xicpyioi If @, €
Diwesayoa > fifa - = XNza,z,eR 2,20,i=1,-,1L

5.10. LeMMA (LANGLANDS [15]). If A, v € D§ and A > v then 2° > »°.

5.11. Let &,(G) denote the set of equivalence classes of irreducible, admissible
(g, K)-modules V, such that if v € E(V, Py) then Re(v|p,) € DF(D).
5.12.If F < {1, ---, 1} then we can construct a standard p-pair (Pr, 4) as follows:
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Set ap = {H e apla,(H) = 0, i€ F}. Set 3p = {1 € Z(Py, Ag)|Al,, # 0}. Set np =
Yrez(Mg)z. Set M equal to the centralizer in G of Ar = exp ap. Then MpNp =
P and (Pp, Ap) is a standard p-pair. It is well known (cf. [22]) that every standard
p-pair is of the form (Pr, 4p).

5.13. LEMMA. Let V be an irreducible, admissible (g, K)-module. Then there exist
F < {1, ---, 1}, and an irreducible, admissible representation (g, H,) of My, so that if
v € E(g, *Py) then Re (v|p,) € D§(F) and V is isomorphic with a (g, K)-submodule of
V(P F> 0)‘

Note. In particular, V, € &(Mp).

PrROOF. Let L(V, Py) = {Re v |p, | v € E(V, Py)}. Let ue L(V, Py) be a minimal
element. Then y € D§(F) for a unique F < {1, ---, [}. Let (P, A) be the correspond-
ing standard p-pair. Since V/ngV = (V/nV)[*ny(V/nV) we see that there is ye
E(V[nV, *Py) so that Re 7|p, = u. This implies that there is a quotient W of V/nV
so that y e E(W, *Py). If 5’ € E(W, *Py) then %'|, = yl,. Thus if g = — X;epx;8;
+ XierYitti, X; > 0,i€F, y; = 0then Re 7'|p, = — X;epx:8; + Xjerzia; With
z; € R.If we show that z; = 0 we will have completed the proof of the lemma. Sup-
pose only z;,---,z;, <0. Then Re y'[p) £ — DierXify + Zicr—ty, -, ipZil-
Set ¢/ = Re7|py 0" = — DierX:B;i + Dicr—iy, -+, ipZioti- Then y' < 1" and hence
°u <X °u". But °y” = °u. Hence °y’ < °u. But 4 was assumed to be minimal.
Hence °y = °y/. This implies the result.

5.14. Let &,(G) be the set of equivalence classes of irreducible, admissible
(g, K)-modules ¥ such thatif v € E(V, Py) then Re v(H;) > Ofori = 1, ---, L.

5.15. LEMMA. Let V be an irreducible (g, K)-module such that the equivalence class
of Vis in &,(G) but is not in &,G). Then there are a standard p-pair, (P, A), and
an irreducible admissible representation (o, H,) of M so that

(1) if a € A then o(a) = y(a)] and if H € a (| Dy then |y(exp H)| = 1,

Q) V, e &4 M), and V is isomorphic with a subrepresentation of V(P, o).

5.16. The proof of this lemma is essentially the same as the proof of Lemma
5.13.

6. The discrete series and the Langlands classification.

6.1. We maintain the notation of §5. Let (z, H) be an irreducible unitary re-
presentation of G. If v, w € H then [{z(g)v, w)| = ¢,,.(g) satisfies

(1) o.u(82) = Pou(g)forgeG,ze Z
This is because 7(z) = x(z)I, x a unitary character of Z.

(z, H) is said to be square-integrable if ¢, , € L¥G/Z) for all v, w € H.

6.2. Let &5(G) denote the set of isomorphism classes of the V, (z, H) an irre-
ducible square-integrable representation of G.

6.3. THEOREM (HARISH-CHANDRA [6], CASSELMAN, CF. MiLiéic [17]). (1)
&AG) = 84G).

(2) If V is a representative of an element of &,G) then there is a 1-dimensional
(g, K)-module W so that the class of V @ W € &5(G).
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6.4. Theorem 6.3 is proved using the relationship between the elements of
E(V, Py) and the leading exponents of V in the sense of Harish-Chandra (cf.
Warner [22, Chapter 9]). This relationship is due to Harish-Chandra and Cassel-
man (see also Mili¢ié [17]).

6.5. COROLLARY. If V is a representative of an element of &,G) then there is a
1-dimensional (g, K)-module W so that V ® W is unitary.

6.6 This result follows from the fact that V(P, ¢) is unitary if ¢ is unitary and
5.15.

6.7. THEOREM (LANGLANDS [15]). Let F = {1, ---, I} (see 5.6, 5.7). Let (o, H,)
be an irreducible admissible representation of My so that if v € E(V,, *(Pr),) then
Re v|p, € D§(F). Then V(Pp, o) has a unique nonzero, irreducible, submodule denoted
J(Pr, 0). Furthermore if F' < {l,---, I} and ¢’ satisfies the above properties for
Mg, then J(Pg, o) is isomorphic with J(Pg., ¢") if and only if F' = F and ¢ is
equivalent with ¢'.

6.8. The first part of Theorem 6.7 is proved by using the relationship between
intertwining operators and certain limit formulae. The second statement is proved
using the limit formulae alluded to above and an argument similar to the proof of
Lemma 5.13.

6.9. Theorem 6.7 combined with Harish-Chandra’s classification of the elements
of &4(G) (see [6]), Lemma 5.13 and Lemma 5.15 give the complete classification of
irreducible (g, K)-modules.

7. The principal series for GL(2, R) and GL(2, C).

7.1. Let G = GL(2, F), F = R or C. We take 0, B, K, etc. as in 1.8. We take P,
to be the group of upper triangular matrices in G and P, to be the group of lower
triangular matrices in G. M, is then the group of all diagonal matrices in G.

7.2. We denote by [h;, h;] the diagonal matrix with diagonal entries A4, h,.
We also use the notation

n(x) = [(1) ﬂ and a(x) = BC 0}

7.3. We note that 3}(Py, 4g) ={A} and that 3] (Py, 4g) ={—2} with A([x;, x5])
= X1 — Xg.

7.4. Up to normalization of Haar measure on N, (resp. Ny), dn(x) = dx (resp.
dn(x) = dx) where dx denotes Lebesgue measure on F.

7.5. If F = C (resp. R) we define for k;, k; € Z (resp. ky, ky € {0, 1}), z1, 22 € C,
by by 2y, o(P1she]) = Hikfe |hy|a—#1 |yl 2752, Then &, 4, . ., is the most general ir-
reducible admissible representation of M,. We extend &, ,, . ., to Pq (resp. Py) by
making it take the value 1 on n(x) (resp. 7(x)).

7_.6. LEMMA. If ky, ky, 2y, 2, are as in 7.5 and if Re(z;y — z) <0, if f €
V(PO’ ekl, ko, 21, zz) then
(Alls, e 21, 2 )0 = [, ) dn = A()

converges absolutely and uniformly for k € K and defines a (g, K)-module homo-
morphism of V(Py, o) into V(Py, 6) (6 = &4, by, 21, 2)-



REPRESENTATIONS OF REDUCTIVE LIE GROUPS 81

PrROOF.  (A(f))(k) = ([y05,m) " %0(a(n))"'f (k(kn)) dn where & kD) =
05(P), ke K, p € Py and if ge G then g = k(g)a(g)n with k(g) e K, a(g) € 4,
and n e N,.

Now, | f(k(kn))] < | fllo (|l --- l is the L_-norm). Thus to prove the absolute
and uniform convergence we must only show that

o o 08,() 7172 |a(a(n))| L dn < oo.

Writing n as n(x) a direct computation gives

I a(n(x)) = [(1 + xB)71/2,(1 + x3)1/2].

Set d = dimgF. Then (II) implies that the integrand in (I) is given by
(III) (1 + |x|2)—d/2+Re(z1—zz)/2

which is integrable on F if Re(z; — z) < 0.

The fact that Af eV (Py, o) is proved by a simple change of variables. The uniform
convergence of the integral implies that 4 is a (g, K)-module homomorphism.

7.7. We now focus our attention on the case F = R. In this case K = 0(2).
We use the notation ¢, for elements of {0, 1}.

7.8. Set = diag(l, — 1) € K and set

cos @ sin 6
k() = [— sin @ cos 0}’ 0¢€R.
SO0Q2) = {k(®)l0 e R}, K = SO2) U 5SOQ2). nk(@)y~ = k(—0).

7.9. We now describe £(K). Let W be an irreducible finite dimensional K-
module. Then there is wy € W so that k(0) - wy = ¢"wy, 0 € R and e Z, fixed.
k(gypwy = e "opwy. Thus if I # 0, w is completely determined by /. Since we can
replace wy by yw, we can take / > 0. Let W, [ = 1, 2, ---, denote the K-module we
just described. If I = 0, set Wy = {we W|k(0)w = w, 0 € R}. Then 5 - Wy = W,,.
Hence since 72 = 1 we see W = W, dimW =1 and w=w, we W or gw
= —w, we W. We use the notation W3 for the trivial representation of K and
Wi for the case » - —1.

7.10. We leave it to the reader to check that Ad|x on g is a direct sum of two
copies of W§ and one copy of W,.

7.11. We note that

MWW, =Wy @ W,_,forl k>0

QW ®Wsg=W,e=0o0rl.

@) W@ Wy = W§ withe” = ¢ + ¢ mod 2.

7.12. Let y, denote the equivalence class of W,, I > 0. Let y§ denote the equi-
valence class of W§, e =0, 1.

7.13. Using the formulas of 7.5 we see that if ¥ is an admissible (g, K)-module
then

M g- V) = Vi + V) + V@ if 1 > 0.

@ g V(r) € V(rp) + V(r), e = 0,1.

7.14. Since (Py, Ay) is a minimal p-pair we can take M, = M, N K =
{[77], 772]"'7: =t 19 i= la 2} Let V = V(&el,ez,zl,zzy PO) gel,ez,zl,zzloMo = esl,ez with
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&, o([m> 72)) = 7iin®. Frobenius reciprocity implies that dim¥(y) is the num-
ber of times &, ., occurs in 7oy,

7.15. We leave it to the reader to check thatif r,ey, I=1, 2, tfe 1,
e =0,]1, then

1) Bloas, = Eoo-

(2) zblorsy = 11

(3) tilonry, = Eo.0 @ &1, 1f I is even, [ > 0.

(4) TII°M0 = &1’0 ® &0’1 if /is odd.

7.16. Let V = V(£ ¢y 20, Po)- Then 7.15 implies dim V(y) < 1 for 7 € &(K)
and .
(I) If g, + & is even then V' = V(r§) @ @0V (r20)-
(I) If ; + ey is odd then V = @ V(rat1)-

7.17. LEMMA. Set, for zinC, k in Z
a(2) = 1202/ ((z + D2)II(QA + z + k)2)I'((1 + z — k)/2)

where I' is the gamma function (cf. [23]).

Set g = &, 42,2 Then if V.= V(Py, o) then as a K-module V is isomorphic with
V(Py, 0). If Re(z; — z5)< O set A = Aley, €9, 21, 22). Let us denote by 7, either 1§
or 18. If fe V(7)) then Af = af(z; — z)f.

PRrOOF. 7.16 implies that 4 is a scalar on each V(y). Using the formula at the
beginning of the proof of Lemma 7.6 and an easy computation, it follows that, on
V(rs), A is given by the following scalar:

) 'r_o (@ + ixX)[(1 + x2)/2)#(1 + xB)Lra—=2)72 gy,

In (1) use the change of variables e = (1 + ix)/(1 + x¥)1/2, —z/2 < t < 7/2.
Then the integral becomes

2 2;:2 cos(kt)(cos(t))~+a—=) df,

The lemma now follows from Whittaker and Watson [23, p. 263, Exercise 39]
and the duplication formula for the gamma function [23, p. 240].

7.18. We now concentrate our attention on the case F = C. For the remainder
of this section G will denote GL(2, C) and K will denote U(2).

7.19. As is well known, the map S! x SU(2) —» U(2) (S! the circle group) given
by z, k — zk is a two-fold covering of U(2).

If (z, V) is an irreducible unitary representation of K and if z is in S then z(z[)
= ztI for some k depending only on 7. Hence the restriction of ¢ to SU(2) is
irreducible.

The irreducible, unitary representations of SU(2) are determined up to equi-
valence by their dimension. If (z, V) is the d + 1 dimensional representation of
SU(2) then it is well known that 7(el) = ¢?I, ¢ = + 1. Hence k + d is even.

7.20. We have completely described &(K). £(K) is the set of all y,, , withme Z,
neZ and n = 0 and m + n even. Here 7,,, denotes the class of all irreducible
(z, W) with dim W = n + 1 and ¢ (zI) = z»] for ze SL.
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7.21. Let & 4, = &y ko, 2, lons, It 18 an easy consequence of the classification of
representations of SU(2) that

n
Tmonlom, = @0 & (ntm—27) /2, (m—nt2)) / 2-
=

7.22. Using 7.21 and Frobenius reciprocity we find that if V' = V(Py, &, 1,21, 0)
then

V= j@o V(T kit vy +24) 5
furthermore each V(y) is irreducible as a representation of K.

7.23. LEMMA. Set, for 0 < r < n, r, n integers and for z in C
b, ,(z) = 2z(z + n)1 H1 (z=n+2( - D)z +n-2).
j=

IfV = V(Py, & iy 2,2 and if Re(zy — 25) < Othen
A(ky, ks, z1, Zz)IV(r,,ﬁ,,z, ythgiz) = Dim—trizs (22 — 2L

7.24. This lemma is proved using an argument similar to the proof of Lemma
7.17. The proof is more complicated and even less enlightening. It is therefore
omitted.

7.25. Lemmas 7.17 and 7.23 imply that the A(ky, ko, z;, z2) originally defined for
Re(z; — z;) < 0 have a meromorphic continuation to C x C. The reader is ad-
vised to consult the lectures of Knapp and Zuckerman for more information on
these intertwining operators.

8. The representations of GL(2, R) and GL(2, C).
8.1. We retain the notation of §7. We first look at the case of G = GL(2, R).

8.2. LEMMA. V = V(Py, &, oy, 2, 2,) IS reducible if and only if

Dk=2z —2,eZ —{0}.

(2) e + &5 + 1 =0mod 2.
If V(Py, &.,, ¢y, 2, ) 15 reducible then

@fzi—z2=-k—-1,kz0,6 + & =kmod 2, then J(Py, &, ., ...,) =7
is finite dimensional and indeed dim J = k + 1 and V|J is irreducible.

®If zy—z2=k+1, k=0, ¢ +e=k mod 2, then V contains
Ve, o120, )/ Gy ey, 20, 2) @S its unique nontrivial submodule and J(¢,,, ., ., .) as its
unique nontrivial quotient module.

ProOF. Let W < V be a nonzero submodule. Then W = @ W(y)

(1) If W(r;) # 0 with lim,_., j, = co then W contains V(y,4s) for all k
= 0. Hence dim V/W < co.

Indeed, suppose j; = 2 and j;4; > j; + 2. Then j;;; — j; = 2m, m = 2. Hence
VIW)(7 ji+2)s +++s (VIW)(7 ji+2m—2) are nonzero. But (V/W)(y;) = 0, (V/ W) j+2m)
= 0. Now 7.13 implies g - @74(V/W)(7 ;420 < D (VIW)1;,424)- Hence

M (VIW)r j;+24) s a finite dimensional (g, K)-submodule of V/W. The finite
dimensional representations of G restricted to K are of one of the following forms:

(@) Wi @ D)=;Wy or
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(b) Dosi< i Wart.

This gives a contradiction proving (1).

(1) easily implies that if ¥ is reducible then ¥ has a nonzero finite dimensional
submodule or a nonzero finite dimensional quotient module.

(2) If Wis a finite dimensional (g, K)-module, then W/n,W is isomorphic as an
My-module with §¥2¢, ., , ., With z; —z; = —k -1,k 20, ke Z and ¢ + &
= k mod 2.

This is just the theorem of the lowest weight for G.

Combining (1), (2) and the fact that the dual (g, K)-module to V(Py, &, ., ., ,) is
V(Po, &y 1, 2, 2,) 81VES the lemma.

8.3. LeMMA. Set V = V(Py, &, c;,z,2)- Suppose that z; — z; = —k — 1, ke
Z,kz0ande + e, =k mod 2. Set J = J(&,, ., 2, Po)- Then the class of V|J
is in &4G).

PRrROOF. E(V]J, Py) = A, A)~1 (23 — z;)A by 8.2 and 4.21.

8.4. Using the results of §8§4, 5, 6 we have a complete classification of irreducible,
admissible, (g, K)-modules (see also Jacquet-Langlands [12]).

(I) The finite dimensional (g, K)-modules J(&,, ., ., .» Po) With z; — z, =
—k—-1,k=0,keZand ¢ + e, = k mod 2.

(I) The V(&,, ¢, 2,20 Po) With z; —2, ¢ Z — {0} or if z; —z, = k € Z then
€1 + & # k + 1 mod 2. Furthermore V(¢,, ., .,z Po) = V(€ep ey, 23,20 Po)-

(Ill) ¢(G): Forzy — z; = —k —land k=0, ke Zande; + &, = k mod 2,
Del. enk itz V(&el, &2, 21, 22 PO)/J(eel, €2. 21, 22 Py).

8.5. We now give a classification of the irreducible, unitary (g, K)-modules. We
first need a lemma.

8.6. LEMMA. If Re(z; — z3) < O then J(Py, &, ., ., .,) is unitary if and only if the
Jollowing conditions are satisfied:

(1) z; + z, is pure imaginary,

(2) Zy — 23 € R,

(3) A(ey, &3, 21, 23) is positive semidefinite.

ProoF. We observe thatif Re(z; —z;) < 0then A(ey, &3, 21, 22)V(Pos &y ey, 0)
= J(Py, &, &, 21, ) (use Lemma 8.2 and Lemma 7.17). The conjugate dual admissible
(g, K)-module to V(Py, &, ., 2, ) 18 V(Po, &.,, ¢, —2,, —z,) (this is a computation). Thus
J(Po, &\, ¢, 2, 2,) 18 €quivalent with its conjugate dual if and only if z; = —2, and
zo = —Z. This implies the necessity of conditions (1) and (2). To complete the
proof we observe that A(ey, &, 21, z;) composed with the sesquilinear pairing of
the Vs gives a sesquilinear pairing of the corresponding J with itself.

8.7. Lemmas 8.6 and 8.4 combined with Lemma 7.17 immediately give a com-
plete classification of the elements of &(G). We give the list:

(1) The unitary principal series. V(Py, &,, ., ., »,) With z, z; € iR.

(2) The discrete series. D, ., ; ,Withke Z,k =2 0,¢; + ¢, = kmod 2 and z € iR.

(3) The complementary series. V(&,, o 2.2) With z; 4+ z3 € iR, &y + &2 = 0
mod2andz; —z,eR, -1 <z — 2, <O.

(4) The unitary characters of G.

8.8. We now look at the case when G = GL(2, C). We use the notation of 7.20.
We note that:
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Tom @ Turym = 0§j§mi€xt_)(m,m’) Twinw,mim—2; a0 Adlg = 702 + 70,2-
8.9. Using the formulae in 8.8 the following result is provided in precisely the
same way as Lemma 8.2.

8.10. LEMMA. Let Re(zy — z5) < 0. Then V(Py, &, 4, .., -,) i reducible if and only
if

M)z —2z,=-k-2,k=20, keZ,

(@ |ky —ko| < k.
If V is reducible then the corresponding J is finite dimensional.

8.11. Lemma 8.10 combined with the results of §6 give the classification of the

irreducible, admissible (g, K)-modules:
(D ¢46) = @.

(IT) The finite dimensional representations: J(Py, &, 1, ..z) With z; — z5 =
—k —2,k=z0,keZand |k; —k;| < k.

(II) The V(&4 12,2 Po) With Re(zy —z) < 0 and z; — zp # —k — 2,
keZ,k=20o0rz —z,= —k —2and |k; —k;| > k.

(IV) The V(Py, &ppupepz) With Re(z; — z5) = 0 and V(Py, &4 4,0,2) =
V(PO’ ‘Skz, k1, 22, zl) if Re 21 — 23 = 0.

8.12. Using the analogue of Lemma 4.6 for GL(2, C) (the proof is exactly the
same) and Lemma 7.23 it is not hard to give the following classification of the
irreducible, admissible, unitary (g, K)-modules:

(I) The unitary characters of G.
(ID) The unitary principal series: V(Po, &y, 1, 2. 2)> Z; € iR, j = 1, 2.

(II) The complementary series: V(Py, & 4, 2. 2)> 21 + Z2€ IR, 2 — z; € R,
0>z —z;,> —2and ky — ky = 0.
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REPRESENTATIONS OF GL,(R) AND GL,(C)

A. W. KNAPP

1. SL,(R). We shall give lists of the irreducible finite-dimensional representa-
tions, the irreducible unitary representations, and the nonunitary principal series.
Then we discuss reducibility questions, asymptotic expansions, and the Langlands
classification. Let g = (¢ %) be a typical element of G = SLy(R).

Irreducible finite-dimensional representations. %,, n = 0, an integer.

Space = { f polynomial on R of degree n},
FA8)f(x) = (bx + d)*f((ax + o)/(bx + d)).

Finite-dimensional representations of G are fully reducible.

Unitary representations. The irreducible unitary representations were classified
by Bargmann [1]. We give realizations in function spaces on the line or upper half-
plane. Realizations on the circle or disc are possible also.

(1) Discrete series 9; and 9;, n = 2.

Space for 9} = {fanalytic forImz > 0| | f]2 = Ijlf(z)lzy""z dxdy < oo},
Imz>0

" _ gl Gz +c >
P4 = (bz + dy (L),

The space for 2, is not 0 because (z + i)™ is in it. The representation @; is
obtained by using complex conjugates. All these representations are irreducible,
unitary, and square-integrable. The square-integrability (of a matrix coefficient)
will be shown below.

(2) Principal series - and 22—+, ve R.

Space for 22*.iv = L2(R),

2E0(g)f(x) = |bx + d[717f((ax + o)/(bx + d)) if +,

= sgn(bx + d)|bx + d|71=7f((ax + ¢)/(bx + d)) if —.

These representations are all unitary, and all but 2.0 are irreducible. Equivalences
Phiv > gt~ and P =~ P~ are implemented by analytic continuations of
intertwining operators that we give below. 2%.% is really the induced representation
Ind§; n(0c ® e ® 1) with G acting by right translation and with the functions

restricted to N = (1 9). Here MAN is the upper triangular group, ¢ is trivial or
signum on M ={ + I}, and the character of 4 is

<et 0) vt
0 et) ¢

AMS (MOS) subject classifications (1970). Primary 22—02; Secondary 22E45.
© 1979, American Mathematical Society
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(3) Complementary series 5,0 < s < 1.

Space for ¢ ={f: R~ | |f]2 = |~ = @0 dxdy o},

—o  |x — |t

G =bx + d=f(EEE),
These are irreducible unitary. They arise from certain nonunitary principal series
(see below) by redefining the inner product.

(4) Others. There is the trivial representation, and there are two “limits of dis-
crete series,” 27 and 97. The group action with 97 and 927 is like that in discrete
series, but the norm is different. We have the relation #-9 ~ 91 @ 27.

Nonunitary principal series. #*%, [eC.

Space = L2 (R, (1 + x2)Retdx)

254g)f(x) = |bx + d|"1f((ax + ¢)/(bx + d)) if +,
sga(bx + d)lbx + d |74 ((ax + o)f(bx + d)) if —.

Reducibility. We can see some reducibility in 22+ on a formal level by specializ-
ing the parameter { and by passing from z in the upper half-plane to x on the real
axis. We obtain the following continuous inclusions:

F, S PH—@th  if peven,
c P @t ifpodd, n = 0;

D@ Dy = Pl if n even,
c p-nl ifnodd,nz 1.

There is no other reducibility. The quotient by an & is the sum of two 2’s, and
vice versa.
Asymptotics. Let k, be the rotation

(ot sin ).

The maximal compact subgroup K = {k,} is abelian, and its irreducible represen-
tations are one-dimensional, k; — e™ with m an integer. We have

G = KA*K with A+ = {a, =<g 2 ),z > 0}

and Haar measure is of the form dg = c sinh 2¢ dk, dky dt if g = kya,k,. Let U(g)
be an admissible representation of G, and let ¢, and ¢, transform under K accord-
ing to ky — ™9 and ky — ¢, Then

(U(2) 91, p2) = (Ulkoarko)p1, pz) = exp(i(m6’ + my0)) (Ula)ps, p2)-

Thus to test whether a matrix coefficient is in some L? class on G, it is enough to
test (U(a))¢p1, ¢2) and use the measure sinh 2¢dt, ¢ = 0.
EXAMPLE. 9 (k,)(z + i)™ = e™(z + i)™ Then
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(@f(a)z + i)™ (z + i)™)

= II ent[x + i(y + 1)]™[e2x — i(e®y + 1)]7y" 2 dx dy.
Im z>0

By residues the right side is
=C,,j:e‘”‘(y + 1+ e—Zt)l—Znyn—Z dy’

and this in turn, after the change of variables y = y'(1 + e7%), is = c,(cosh ).
Then

_" ol dg = e, j’ :(cosh £y~ sinh 2t dr,

which is finite for n > 1. Thus this matrix coefficient is square-integrable on G.
A theorem in functional analysis due to Godement [3] implies that all matrix coef-
ficients are square-integrable on G.

In the example, we could see the matrix coefficient was square-integrable by
computation. There is a general technique, due to Harish-Chandra, for getting at
the behavior of matrix coefficients by means of differential equations. Let

1 0 01 00

h=(o -1} e=(0 0} 7=(10)
be a basis for the Lie algebra of G. The Casimir operator = 1h? + ef + fe is
a member of the universal enveloping algebra. For SLy(R), 2 generates the center
of the universal enveloping algebra. (For larger groups, it must be replaced in this
discussion by the whole center of the universal enveloping algebra.) It acts as a
scalar on each representation in our lists, hence on each matrix coefficient. Take
a matrix coefficient whose two K-dependences are according to known characters
of K, and regard the matrix coefficient as an unknown function. Then the equation
Q(coefficient) = c(coefficient) leads to a second order ordinary differential equa-
tion on 4%, with ¢ as independent variable. The classical substitution is s = cosh ¢,
and the resulting differential equation has three singularities, all regular; we are
interested in the behavior at s = oo. (If the “known characters” of K are trivial,
this is Legendre’s equation.) This substitution does not generalize well, and Harish-
Chandra’s treatment of this equation amounts to making the substitution z = =2
instead. The resulting differential equation has four singularities, all regular, and
we expand about z = 0, using standard regular-singular-point theory. The result
is that

(=] o0
coefficient(q,) = e~ 1401} ¢ 72 + e—(l‘O’Zod,,e‘Z"‘
n=0 n=

except when { is an integer, in which case there may be factors of ¢ that arise from
factors log z in the solution. If one of the leading terms vanishes, the whole cor-
responding infinite sum vanishes.

The eigenvalue of @ determines {, and in particular the matrix coefficients of
=L lead to the expansion with { present. From this expansion, we can read off
Lt-integrability conditions, since we are to integrate for ¢ = 0 the pth power against
sinh 2¢ dt, which is comparable with e?’dt. We see that 2*.» has coefficients in
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L2t¢(G) for every e> 0, but not in L%(G). Discrete series 9 with n = 2 have one
sum absent, in order to have coefficients in L?(G). Representations with coefficients
in L?*¢ for every e> 0 are said to be tempered. The tempered representations are
P+ and 9% with n = 1. Notice how in general the two leading terms give some
information about where imbeddings occur as subrepresentations in the nounitary
principal series; Wallach dealt with this point in his lectures.

Langlands classification. For general G, Langlands parametrizes the irreducible
admissible representations by triples (P, w, v), where P = MAN is a standard
parabolic, 7 is (the class of)) an irreducible tempered representation of M, and v is
a complex-valued linear functional on the Lie algebra of 4 with real part in the
open positive Weyl chamber. The Langlands representation Jp(ﬂ,', v) is the unique
irreducible quotient of Indg(z ® ¢ ® 1). In our case, P = (¥ %) is minimal para-
bolic, or P = G.

Case P minimal. There are two (one-dimensional) representations of M = {+1I},
and the functional v enters as the complex number { with Re { > 0; the character
of A is a, = exp(v log a,) = exp({t). The Langlands list then includes the unique
irreducible quotient of 2*.¢ for each { with Re { > 0.

Case P = G. Here v is irrelevant, and M = G. We simply get the irreducible
tempered representations of G. The Langlands classification itself does not address
the question of what these are, though one of the theorems implies for our G that
they are subrepresentations of discrete series or unitary principal series.

Intertwining operators. The Langlands classification theorem describes the uni-
que irreducible quotient more precisely than we have done. Kunze and Stein [4]
showed in 1960 that the operator

/= .‘. — xf-(—y))’ﬁy‘ for 215,

N J‘ -1 CEl)) (6) L P
I — yl1=¢

intertwines #¢ with 2L, Note that the integral is convergent only if Re { > 0.
Later [5] they found a formula in the induced picture, namely f — [y f(Aw~lg) dn,
where N = (19) and w = (_9}). This is the composition of two operators,
f— S5 f(Aig) dn and a relatively trivial translation operator by w~!. Define
AP : P:7 :v)f(x) = [5f(#x) di. Under the Langlands conditions on v, this in-
tegral is convergent if fis K-finite. The theorem is that

Jpo(m, v) = Ind§(z ® e» ® 1)/ker A(P: P: 7:v) = Image A(P: P: 7:v).

2. QOther groups.

GL,(R). To pass from SLy(R) to the group SL%(R) of matrices of determinant
+ 1, we first induce the representations of SL,(R). The £2’s and & s split into two
equivalent pieces, and the 2’s yield irreducibles on SLF(R) that restrict back to
2T ® 9~ on SLy(R). This construction gives us the representations of SLF(R).
Then to pass to GLy(R), we paste on a character of the group R+

SL,(C). This group has finite-dimensional representations given by two integer
parameters; the representations can be realized in spaces of polynomials in z and
z on C. The group has no discrete series. We have
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