(¥ WILEY

AN INTRODUCTION TO
NUMERICAL ANALYSIS FOR
ELECTRICAL AND COMPUTER ENGINEERS

CHRISTOPHER J. ZAROWSKI



AN INTRODUCTION TO
NUMERICAL ANALYSIS
FOR ELECTRICAL AND
COMPUTER ENGINEERS

Christopher J. Zarowski
University of Alberta, Canada

Wl LEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC. PUBLICATION

TLFeBOOK



TLFeBOOK



AN INTRODUCTION TO
NUMERICAL ANALYSIS
FOR ELECTRICAL AND
COMPUTER ENGINEERS

TLFeBOOK



TLFeBOOK



AN INTRODUCTION TO
NUMERICAL ANALYSIS
FOR ELECTRICAL AND
COMPUTER ENGINEERS

Christopher J. Zarowski
University of Alberta, Canada

Wl LEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC. PUBLICATION

TLFeBOOK



Copyright © 2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400,
fax 978-646-8600, or on the Web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services, please contact our Customer Care
Department within the United States at 877-762-2974, outside the United States at 317-572-3993 or
fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Zarowski, Christopher J.
An introduction to numerical analysis for electrical and computer engineers / Christopher
J. Zarowski.
p. cm.

Includes bibliographical references and index.
ISBN 0-471-46737-5 (coth)

1. Electric engineering—Mathematics. 2. Computer science—Mathematics. 3. Numerical
analysis I. Title.

TK153.Z37 2004
621.3'01'518—dc22
2003063761

Printed in the United States of America.

10987654321

TLFeBOOK



In memory of my mother
Lilian
and of my father
Walter

TLFeBOOK



TLFeBOOK



CONTENTS

Preface xiii
1  Functional Analysis Ideas 1
Introduction 1

Some Sets 2

1.3 Some Special Mappings: Metrics, Norms, and Inner Products 4
1.3.1  Metrics and Metric Spaces 6

1.3.2  Norms and Normed Spaces 8

1.3.3  Inner Products and Inner Product Spaces 14

1.4  The Discrete Fourier Series (DFS) 25
Appendix 1.A Complex Arithmetic 28
Appendix 1.B Elementary Logic 31
References 32
Problems 33

2  Number Representations 38
2.1  Introduction 38

2.2 Fixed-Point Representations 38

2.3 Floating-Point Representations 42

2.4 Rounding Effects in Dot Product Computation 48

2.5  Machine Epsilon 53
Appendix 2.A Review of Binary Number Codes 54
References 59
Problems 59

3  Sequences and Series 63
3.1 Introduction 63

3.2 Cauchy Sequences and Complete Spaces 63

3.3  Pointwise Convergence and Uniform Convergence 70

3.4  Fourier Series 73

3.5 Taylor Series 78

vii

TLFeBOOK



viii

CONTENTS

3.6
3.7
3.8

Asymptotic Series
More on the Dirichlet Kernel
Final Remarks

Appendix 3.A COordinate Rotation DI gital C omputing

(CORDIC)

3.A.1 Introduction

3.A.2  The Concept of a Discrete Basis
3.A.3 Rotating Vectors in the Plane
3.A.4  Computing Arctangents

3.A.5  Final Remarks

Appendix 3.B Mathematical Induction

Appendix 3.C Catastrophic Cancellation

References

Problems

Linear Systems of Equations

4.1
4.2
4.3

44
4.5
4.6
4.7
4.8

Introduction
Least-Squares Approximation and Linear Systems

Least-Squares Approximation and Ill-Conditioned Linear
Systems

Condition Numbers

LU Decomposition

Least-Squares Problems and QR Decomposition
Iterative Methods for Linear Systems

Final Remarks

Appendix 4.A Hilbert Matrix Inverses
Appendix 4.B SVD and Least Squares
References

Problems

Orthogonal Polynomials

5.1
52
53
54
5.5
5.6

5.7

Introduction

General Properties of Orthogonal Polynomials
Chebyshev Polynomials

Hermite Polynomials

Legendre Polynomials

An Example of Orthogonal Polynomial Least-Squares
Approximation

Uniform Approximation

97
103
107

107
107
108
112
114
115
116
117
119
120

127

127
127

132
135
148
161
176
186
186
191
193
194

207

207
207
218
225
229

235
238

TLFeBOOK



CONTENTS

References
Problems

Interpolation

6.1  Introduction

6.2  Lagrange Interpolation
6.3  Newton Interpolation
6.4  Hermite Interpolation
6.5  Spline Interpolation
References

Problems

Nonlinear Systems of Equations

7.1  Introduction
7.2  Bisection Method
7.3  Fixed-Point Method

7.4  Newton—Raphson Method
7.4.1  The Method
7.4.2  Rate of Convergence Analysis

7.4.3  Breakdown Phenomena
7.5  Systems of Nonlinear Equations

7.5.1  Fixed-Point Method

7.5.2  Newton—Raphson Method
7.6  Chaotic Phenomena and a Cryptography Application
References
Problems

Unconstrained Optimization

8.1  Introduction

8.2 Problem Statement and Preliminaries

8.3  Line Searches

8.4  Newton’s Method

8.5  Equality Constraints and Lagrange Multipliers
Appendix 8.A MATLAB Code for Golden Section Search
References

Problems

Numerical Integration and Differentiation

9.1 Introduction

ix

241
241

251

251
252
257
266
269
284
285

290

290
292
296
305
305
309

311
312

312
318
323
332
333

341

341
341
345
353
357
362
364
364

369
369

TLFeBOOK



X CONTENTS

9.2  Trapezoidal Rule 371
9.3  Simpson’s Rule 378
9.4  Gaussian Quadrature 385
9.5 Romberg Integration 393
9.6  Numerical Differentiation 401
References 406
Problems 406
10 Numerical Solution of Ordinary Differential Equations 415
10.1 Introduction 415
10.2  First-Order ODEs 421
10.3 Systems of First-Order ODEs 442
10.4 Multistep Methods for ODEs 455
10.4.1 Adams—Bashforth Methods 459

10.4.2 Adams—Moulton Methods 461

10.4.3 Comments on the Adams Families 462

10.5 Variable-Step-Size (Adaptive) Methods for ODEs 464
10.6  Stiff Systems 467
10.7 Final Remarks 469
Appendix 10.A°  MATLAB Code for Example 10.8 469
Appendix 10.B°  MATLAB Code for Example 10.13 470
References 472
Problems 473
11 Numerical Methods for Eigenproblems 480
11.1 Introduction 480
11.2 Review of Eigenvalues and Eigenvectors 480
11.3 The Matrix Exponential 488
11.4 The Power Methods 498
11.5 QR Iterations 508
References 518
Problems 519
12 Numerical Solution of Partial Differential Equations 525
12.1  Introduction 525
12.2 A Brief Overview of Partial Differential Equations 525
12.3  Applications of Hyperbolic PDEs 528
12.3.1 The Vibrating String 528

12.3.2 Plane Electromagnetic Waves 534

TLFeBOOK



CONTENTS xi

12.4 The Finite-Difference (FD) Method 545
12.5 The Finite-Difference Time-Domain (FDTD) Method 550
Appendix 12.A° MATLAB Code for Example 12.5 557
References 560
Problems 561
13 An Introduction to MATLAB 565
13.1 Introduction 565
13.2  Startup 565
13.3 Some Basic Operators, Operations, and Functions 566
13.4 Working with Polynomials 571
13.5 Loops 572
13.6 Plotting and M-Files 573
References 577
Index 579

TLFeBOOK



TLFeBOOK



PREFACE

The subject of numerical analysis has a long history. In fact, it predates by cen-
turies the existence of the modern computer. Of course, the advent of the modern
computer in the middle of the twentieth century gave greatly added impetus to the
subject, and so it now plays a central role in a large part of engineering analysis,
simulation, and design. This is so true that no engineer can be deemed competent
without some knowledge and understanding of the subject. Because of the back-
ground of the author, this book tends to emphasize issues of particular interest to
electrical and computer engineers, but the subject (and the present book) is certainly
relevant to engineers from all other branches of engineering.

Given the importance level of the subject, a great number of books have already
been written about it, and are now being written. These books span a colossal
range of approaches, levels of technical difficulty, degree of specialization, breadth
versus depth, and so on. So, why should this book be added to the already huge,
and growing list of available books?

To begin, the present book is intended to be a part of the students’ first exposure
to numerical analysis. As such, it is intended for use mainly in the second year
of a typical 4-year undergraduate engineering program. However, the book may
find use in later years of such a program. Generally, the present book arises out of
the author’s objections to educational practice regarding numerical analysis. To be
more specific

1. Some books adopt a “grocery list” or “recipes” approach (i.e., “methods” at
the expense of “analysis”) wherein several methods are presented, but with
little serious discussion of issues such as how they are obtained and their
relative advantages and disadvantages. In this genre often little consideration
is given to error analysis, convergence properties, or stability issues. When
these issues are considered, it is sometimes in a manner that is too superficial
for contemporary and future needs.

2. Some books fail to build on what the student is supposed to have learned
prior to taking a numerical analysis course. For example, it is common for
engineering students to take a first-year course in matrix/linear algebra. Yet,
a number of books miss the opportunity to build on this material in a manner
that would provide a good bridge from first year to more sophisticated uses
of matrix/linear algebra in later years (e.g., such as would be found in digital
signal processing or state variable control systems courses).

xiii

TLFeBOOK



xiv PREFACE

3. Some books miss the opportunity to introduce students to the now quite vital
area of functional analysis ideas as applied to engineering problem solving.
Modern numerical analysis relies heavily on concepts such as function spaces,
orthogonality, norms, metrics, and inner products. Yet these concepts are
often considered in a very ad hoc way, if indeed they are considered at all.

4. Some books tie the subject matter of numerical analysis far too closely to
particular software tools and/or programming languages. But the highly tran-
sient nature of software tools and programming languages often blinds the
user to the timeless nature of the underlying principles of analysis. Further-
more, it is an erroneous belief that one can successfully employ numerical
methods solely through the use of “canned” software without any knowledge
or understanding of the technical details of the contents of the can. While
this does not imply the need to understand a software tool or program down
to the last line of code, it does rule out the “black box” methodology.

5. Some books avoid detailed analysis and derivations in the misguided belief
that this will make the subject more accessible to the student. But this denies
the student the opportunity to learn an important mode of thinking that is a
huge aid to practical problem solving. Furthermore, by cutting the student
off from the language associated with analysis the student is prevented from
learning those skills needed to read modern engineering literature, and to
extract from this literature those things that are useful for solving the problem
at hand.

The prospective user of the present book will likely notice that it contains material
that, in the past, was associated mainly with more advanced courses. However, the
history of numerical computing since the early 1980s or so has made its inclusion
in an introductory course unavoidable. There is nothing remarkable about this. For
example, the material of typical undergraduate signals and systems courses was,
not so long ago, considered to be suitable only for graduate-level courses. Indeed,
most (if not all) of the contents of any undergraduate program consists of material
that was once considered far too advanced for undergraduates, provided one goes
back far enough in time.

Therefore, with respect to the observations mentioned above, the following is a
summary of some of the features of the present book:

1. An axiomatic approach to function spaces is adopted within the first chapter.
So the book immediately exposes the student to function space ideas, espe-
cially with respect to metrics, norms, inner products, and the concept of
orthogonality in a general setting. All of this is illustrated by several examples,
and the basic ideas from the first chapter are reinforced by routine use
throughout the remaining chapters.

2. The present book is not closely tied to any particular software tool or pro-
gramming language, although a few MATLAB-oriented examples are pre-
sented. These may be understood without any understanding of MATLAB

TLFeBOOK



PREFACE XV

(derived from the term matrix laboratory) on the part of the student, how-
ever. Additionally, a quick introduction to MATLAB is provided in Chapter
13. These examples are simply intended to illustrate that modern software
tools implement many of the theories presented in the book, and that the
numerical characteristics of algorithms implemented with such tools are not
materially different from algorithm implementations using older software
technologies (e.g., catastrophic convergence, and ill conditioning, continue
to be major implementation issues). Algorithms are often presented in a
Pascal-like pseudocode that is sufficiently transparent and general to allow
the user to implement the algorithm in the language of their choice.

. Detailed proofs and/or derivations are often provided for many key results.
However, not all theorems or algorithms are proved or derived in detail
on those occasions where to do so would consume too much space, or not
provide much insight. Of course, the reader may dispute the present author’s
choices in this matter. But when a proof or derivation is omitted, a reference
is often cited where the details may be found.

. Some modern applications examples are provided to illustrate the conse-
quences of various mathematical ideas. For example, chaotic cryptography,
the CORDIC (coordinate rotational digital computing) method, and least
squares for system identification (in a biomedical application) are considered.

. The sense in which series and iterative processes converge is given fairly
detailed treatment in this book as an understanding of these matters is now
so crucial in making good choices about which algorithm to use in an appli-
cation. Thus, for example, the difference between pointwise and uniform
convergence is considered. Kernel functions are introduced because of their
importance in error analysis for approximations based on orthogonal series.
Convergence rate analysis is also presented in the context of root-finding
algorithms.

. Matrix analysis is considered in sufficient depth and breadth to provide an
adequate introduction to those aspects of the subject particularly relevant to
modern areas in which it is applied. This would include (but not be limited
to) numerical methods for electromagnetics, stability of dynamic systems,
state variable control systems, digital signal processing, and digital commu-
nications.

. The most important general properties of orthogonal polynomials are pre-
sented. The special cases of Chebyshev, Legendre, and Hermite polynomials
are considered in detail (i.e., detailed derivations of many basic properties
are given).

. In treating the subject of the numerical solution of ordinary differential
equations, a few books fail to give adequate examples based on nonlin-
ear dynamic systems. But many examples in the present book are based on
nonlinear problems (e.g., the Duffing equation). Furthermore, matrix methods
are introduced in the stability analysis of both explicit and implicit methods
for nth-order systems. This is illustrated with second-order examples.

TLFeBOOK



Xvi PREFACE

Analysis is often embedded in the main body of the text rather than being rele-
gated to appendixes, or to formalized statements of proof immediately following a
theorem statement. This is done to discourage attempts by the reader to “skip over
the math.” After all, skipping over the math defeats the purpose of the book.

Notwithstanding the remarks above, the present book lacks the rigor of a math-
ematically formal treatment of numerical analysis. For example, Lebesgue measure
theory is entirely avoided (although it is mentioned in passing). With respect to
functional analysis, previous authors (e.g., E. Kreyszig, Introductory Functional
Analysis with Applications) have demonstrated that it is very possible to do this
while maintaining adequate rigor for engineering purposes, and this approach is
followed here.

It is largely left to the judgment of the course instructor about what particular
portions of the book to cover in a course. Certainly there is more material here
than can be covered in a single term (or semester). However, it is recommended
that the first four chapters be covered largely in their entirety (perhaps excepting
Sections 1.4, 3.6, 3.7, and the part of Section 4.6 regarding SVD). The material of
these chapters is simply too fundamental to be omitted, and is often drawn on in
later chapters.

Finally, some will say that topics such as function spaces, norms and inner
products, and uniform versus pointwise convergence, are too abstract for engineers.
Such individuals would do well to ask themselves in what way these ideas are
more abstract than Boolean algebra, convolution integrals, and Fourier or Laplace
transforms, all of which are standard fare in present-day electrical and computer
engineering curricula.

Engineering past Engineering present Engineering future

]

Christopher Zarowski

TLFeBOOK



1 Functional Analysis Ideas

1.1 INTRODUCTION

Many engineering analysis and design problems are far too complex to be solved
without the aid of computers. However, the use of computers in problem solving
has made it increasingly necessary for users to be highly skilled in (practical)
mathematical analysis. There are a number of reasons for this. A few are as follows.

For one thing, computers represent data to finite precision. Irrational numbers
such as 77 or +/2 do not have an exact representation on a digital computer (with the
possible exception of methods based on symbolic computing). Additionally, when
arithmetic is performed, errors occur as a result of rounding (e.g., the truncation of
the product of two n-bit numbers, which might be 2n bits long, back down to n
bits). Numbers have a limited dynamic range; we might get overflow or underflow
in a computation. These are examples of finite-precision arithmetic effects. Beyond
this, computational methods frequently have sources of error independent of these.
For example, an infinite series must be truncated if it is to be evaluated on a com-
puter. The truncation error is something “additional” to errors from finite-precision
arithmetic effects. In all cases, the sources (and sizes) of error in a computation
must be known and understood in order to make sensible claims about the accuracy
of a computer-generated solution to a problem.

Many methods are “iterative.” Accuracy of the result depends on how many
iterations are performed. It is possible that a given method might be very slow,
requiring many iterations before achieving acceptable accuracy. This could involve
much computer runtime. The obvious solution of using a faster computer is usually
unacceptable. A better approach is to use mathematical analysis to understand why
a method is slow, and so to devise methods of speeding it up. Thus, an important
feature of analysis applied to computational methods is that of assessing how
much in the way of computing resources is needed by a given method. A given
computational method will make demands on computer memory, operations count
(the number of arithmetic operations, function evaluations, data transfers, etc.),
number of bits in a computer word, and so on.

A given problem almost always has many possible alternative solutions. Other
than accuracy and computer resource issues, ease of implementation is also rel-
evant. This is a human labor issue. Some methods may be easier to implement
on a given set of computing resources than others. This would have an impact

An Introduction to Numerical Analysis for Electrical and Computer Engineers, by C.J. Zarowski
ISBN 0-471-46737-5 (© 2004 John Wiley & Sons, Inc.

TLFeBOOK



2 FUNCTIONAL ANALYSIS IDEAS

on software/hardware development time, and hence on system cost. Again, math-
ematical analysis is useful in deciding on the relative ease of implementation of
competing solution methods.

The subject of numerical computing is truly vast. Methods are required to handle
an immense range of problems, such as solution of differential equations (ordi-
nary or partial), integration, solution of equations and systems of equations (linear
or nonlinear), approximation of functions, and optimization. These problem types
appear to be radically different from each other. In some sense the differences
between them are true, but there are means to achieve some unity of approach in
understanding them.

The branch of mathematics that (perhaps) gives the greatest amount of unity
is sometimes called functional analysis. We shall employ ideas from this subject
throughout. However, our usage of these ideas is not truly rigorous; for example,
we completely avoid topology, and measure theory. Therefore, we tend to follow
simplified treatments of the subject such as Kreyszig [1], and then only those ideas
that are immediately relevant to us. The reader is assumed to be very comfortable
with elementary linear algebra, and calculus. The reader must also be comfortable
with complex number arithmetic (see Appendix 1.A now for a review if necessary).
Some knowledge of electric circuit analysis is presumed since this will provide
a source of applications examples later. (But application examples will also be
drawn from other sources.) Some knowledge of ordinary differential equations is
also assumed.

It is worth noting that an understanding of functional analysis is a tremendous
aid to understanding other subjects such as quantum physics, probability theory
and random processes, digital communications system analysis and design, digital
control systems analysis and design, digital signal processing, fuzzy systems, neural
networks, computer hardware design, and optimal design of systems. Many of the
ideas presented in this book are also intended to support these subjects.

1.2 SOME SETS

Variables in an engineering problem often take on values from sets of numbers.
In the present setting, the sets of greatest interest to us are (1) the set of integers
Z={..-3,-2,-1,0,1,2,3...}, (2) the set of real numbers R, and (3) the set of
complex numbers C = {x + jy|j = ~/—1, x, y € R}. The set of nonnegative inte-
gersis ZT =1{0,1,2,3,...,} (so Z* C Z). Similarly, the set of nonnegative real
numbers is RT = {x € R|x > 0}. Other kinds of sets of numbers will be introduced
if and when they are needed.

If A and B are two sets, their Cartesian product is denoted by A x B =
{(a,b)|la € A, b € B}. The Cartesian product of n sets denoted Ag, A1, ..., Ap—1
is A() X A1 X -+ X An—l = {(ao,al, ce ,an_1)|ak (S Ak}.

Ideas from matrix/linear algebra are of great importance. We are therefore also
interested in sets of vectors. Thus, R” shall denote the set of n-element vectors
with real-valued components, and similarly, C"* shall denote the set of n-element

TLFeBOOK



SOME SETS 3

vectors with complex-valued components. By default, we assume any vector x to
be a column vector:

x = N (1.1)

Xn—2
Xn—1

Naturally, row vectors are obtained by transposition. We will generally avoid using
bars over or under symbols to denote vectors. Whether a quantity is a vector will
be clear from the context of the discussion. However, bars will be used to denote
vectors when this cannot be easily avoided. The indexing of vector elements x; will
often begin with O as indicated in (1.1). Naturally, matrices are also important. Set
R™*™ denotes the set of matrices with n rows and m columns, and the elements are
real-valued. The notation C"*" should now possess an obvious meaning. Matri-
ces will be denoted by uppercase symbols, again without bars. If A is an n x m
matrix, then

A= [ap,q]p=0,..‘,n—l, q=0,....m—1- (1.2)

Thus, the element in row p and column g of A is denoted a 4. Indexing of rows
and columns again will typically begin at 0. The subscripts on the right bracket “]”
in (1.2) will often be omitted in the future. We may also write a, instead of a, 4
where no danger of confusion arises.

The elements of any vector may be regarded as the elements of a sequence of
finite length. However, we are also very interested in sequences of infinite length.
An infinite sequence may be denoted by x = (xx) = (xo, x1, X2, . ..), for which xj
could be either real-valued or complex-valued. It is possible for sequences to be
doubly infinite, for instance, x = (xg) = (..., X_2, X_1, X0, X1, X2, . . .).

Relationships between variables are expressed as mathematical functions, that is,
mappings between sets. The notation f|A — B signifies that function f associates
an element of set A with an element from set B. For example, f|R — R represents
a function defined on the real-number line, and this function is also real-valued;
that is, it maps “points” in R to “points” in R. We are familiar with the idea
of “plotting” such a function on the xy plane if y = f(x) (i.e., x,y € R). It is
important to note that we may regard sequences as functions that are defined on
either the set Z (the case of doubly infinite sequences), or the set ZT (the case
of singly infinite sequences). To be more specific, if, for example, k € Z™T, then
this number maps to some number xj that is either real-valued or complex-valued.
Since vectors are associated with sequences of finite length, they, too, may be
regarded as functions, but defined on a finite subset of the integers. From (1.1) this
subset might be denoted by Z, ={0,1,2,...,n —2,n — 1}.

Sets of functions are important. This is because in engineering we are often
interested in mappings between sets of functions. For example, in electric circuits
voltage and current waveforms (i.e., functions of time) are input to a circuit via volt-
age and current sources. Voltage drops across circuit elements, or currents through

TLFeBOOK



4 FUNCTIONAL ANALYSIS IDEAS

circuit elements are output functions of time. Thus, any circuit maps functions from
an input set to functions from some output set. Digital signal processing systems
do the same thing, except that here the functions are sequences. For example, a
simple digital signal processing system might accept as input the sequence (xj),
and produce as output the sequence (y,) according to

_*n + Xn+1

Yn = > (1.3)

for which n € Z+.

Some specific examples of sets of functions are as follows, and more will be
seen later. The set of real-valued functions defined on the interval [a, b] C R that
are n times continuously differentiable may be denoted by C"[a, b]. This means
that all derivatives up to and including order n exist and are continuous. If n =0
we often just write C[a, b], which is the set of continuous functions on the interval
[a, b]. We remark that the notation [a, b] implies inclusion of the endpoints of the
interval. Thus, (a, b) implies that the endpoints a and b are not to be included [i.e.,
if x € (a, b), then a < x < b].

A polynomial in the indeterminate x of degree n is

pu(x) =Y puax”. (1.4)

k=0

Unless otherwise stated, we will always assume p, i € R. The indeterminate x
is often considered to be either a real number or a complex number. But in
some circumstances the indeterminate x is merely regarded as a “placeholder,”
which means that x is not supposed to take on a value. In a situation like this
the polynomial coefficients may also be regarded as elements of a vector (e.g.,
Pn=1Pno Pn1 - pn,,l]T). This happens in digital signal processing when we
wish to convolve! sequences of finite length, because the multiplication of polyno-
mials is mathematically equivalent to the operation of sequence convolution. We
will denote the set of all polynomials of degree n as P". If x is to be from the
interval [a, b] C R, then the set of polynomials of degree n on [a, b] is denoted
by P"[a, b]. If m < n we shall usually assume P"[a, b] C P"[a, b].

1.3 SOME SPECIAL MAPPINGS: METRICS, NORMS,
AND INNER PRODUCTS

Sets of objects (vectors, sequences, polynomials, functions, etc.) often have cer-
tain special mappings defined on them that turn these sets into what are commonly
called function spaces. Loosely speaking, functional analysis is about the properties

IThese days it seems that the operation of convolution is first given serious study in introductory signals
and systems courses. The operation of convolution is fundamental to all forms of signal processing,
either analog or digital.

TLFeBOOK



SOME SPECIAL MAPPINGS: METRICS, NORMS, AND INNER PRODUCTS 5

of function spaces. Generally speaking, numerical computation problems are best
handled by treating them in association with suitable mappings on well-chosen
function spaces. For our purposes, the three most important special types of map-
pings are (1) metrics, (2) norms, and (3) inner products. You are likely to be already
familiar with special cases of these really very general ideas.

The vector dot product is an example of an inner product on a vector space, while
the Euclidean norm (i.e., the square root of the sum of the squares of the elements in
a real-valued vector) is a norm on a vector space. The Euclidean distance between
two vectors (given by the Euclidean norm of the difference between the two vectors)
is a metric on a vector space. Again, loosely speaking, metrics give meaning to the
concept of “distance” between points in a function space, norms give a meaning
to the concept of the “size” of a vector, and inner products give meaning to the
concept of “direction” in a vector space.’

In Section 1.1 we expressed interest in the sizes of errors, and so naturally the
concept of a norm will be of interest. Later we shall see that inner products will
prove to be useful in devising means of overcoming problems due to certain sources
of error in a computation. In this section we shall consider various examples of
function spaces, some of which we will work with later on in the analysis of
certain computational problems. We shall see that there are many different kinds
of metric, norm, and inner product. Each kind has its own particular advantages
and disadvantages as will be discovered as we progress through the book.

Sometimes a quantity cannot be computed exactly. In this case we may try to
estimate bounds on the size of the quantity. For example, finding the exact error
in the truncation of a series may be impossible, but putting a bound on the error
might be relatively easy. In this respect the concepts of supremum and infimum
can be important. These are defined as follows.

Suppose we have E C R. We say that E is bounded above if E has an upper
bound, that is, if there exists a B € R such that x < B forall x e E. If E # 0
(empty set; set containing no elements) there is a supremum of E [also called a
least upper bound (lub)], denoted

sup E.

For example, suppose E = [0, 1), then any B > 1 is an upper bound for E, but
sup E = 1. More generally, sup E < B for every upper bound B of E. Thus, the
supremum is a “tight” upper bound. Similarly, £ may be bounded below. If E has
a lower bound there is a b € R such that x > b for all x € E. If E # ¢, then there
exists an infimum [also called a greatest lower bound (glb)], denoted by

inf E.

For example, suppose now E = (0, 1]; then any b <0 is a lower bound for E,
but inf £ = 0. More generally, inf E > b for every lower bound b of E. Thus, the
infimum is a “tight” lower bound.

2The idea of “direction” is (often) considered with respect to the concept of an orthogonal basis in a

vector space. To define “orthogonality” requires the concept of an inner product. We shall consider this
in various ways later on.

TLFeBOOK



6 FUNCTIONAL ANALYSIS IDEAS

1.3.1 Metrics and Metric Spaces

In mathematics an axiomatic approach is often taken in the development of analysis
methods. This means that we define a set of objects, a set of operations to be
performed on the set of objects, and rules obeyed by the operations. This is typically
how mathematical systems are constructed. The reader (hopefully) has already seen
this approach in the application of Boolean algebra to the analysis and design of
digital electronic systems (i.e., digital logic). We adopt the same approach here.
We will begin with the following definition.

Definition 1.1: Metric Space, Metric A metric space is a set X and a
function d|X x X — R¥, which is called a metric or distance function on X.
If x, y, z € X then d satisfies the following axioms:

M1) d(x,y) =0 if and only if (iff) x = y.
M2) d(x,y)=d(y,x) (symmetry property).
M3) d(x,y) <d(x,z)+d(z,y) (triangle inequality).

We emphasize that X by itself cannot be a metric space until we define d. Thus,
the metric space is often denoted by the pair (X, d). The phrase “if and only
if” probably needs some explanation. In (M1), if you were told that d(x, y) =0,
then you must immediately conclude that x = y. Conversely, if you were told that
x =y, then you must immediately conclude that d(x, y) = 0. Instead of the words
“if and only if” it is also common to write

dix,y) =06 x=y.
The phrase “if and only if” is associated with elementary logic. This subject is
reviewed in Appendix 1.B. It is recommended that the reader study that appendix

before continuing with later chapters.
Some examples of metric spaces now follow.

Example 1.1 Set X = R, with
d(x,y) =|x =yl (1.5)
forms a metric space. The metric (1.5) is what is commonly meant by the “distance
between two points on the real number line.” The metric (1.5) is quite useful in
discussing the sizes of errors due to rounding in digital computation. This is because
there is a norm on R that gives rise to the metric in (1.5) (see Section 1.3.2).
Example 1.2 The set of vectors R"” with

n—1 1/2
d(x,y) = [Z [x — yk]z} (1.6)

k=0

TLFeBOOK



SOME SPECIAL MAPPINGS: METRICS, NORMS, AND INNER PRODUCTS 7

forms a (Euclidean) metric space. However, another valid metric on R" is given by

n—1

dy(x,y) =Y I — il (1.6b)
k=0

In other words, we can have the metric space (X, d), or (X, d1). These spaces are
different because their metrics differ.

Euclidean metrics, and their related norms and inner products, are useful in pos-
ing and solving least-squares approximation problems. Least-squares approximation
is a topic we shall consider in detail later.

Example 1.3 Consider the set of (singly) infinite, complex-valued, and bounded
sequences

X = {x = (x0, x1, x2, .. )|xx € C, |xx| < c(x)(all k)}. (1.7a)

Here c(x) > 0 is a bound that may depend on x, but not on k. This set forms a
metric space that may be denoted by [*°[0, oo] if we employ the metric

d(x,y) = sup |x; — ykl. (1.7b)
keZ+

The notation [0, co] emphasizes that the sequences we are talking about are only
singly infinite. We would use [—o0, oo] to specify that we are talking about doubly
infinite sequences.

Example 1.4 Define J = [a, b] C R. The set C[a, b] will be a metric space if

d(x,y) =sup|x(t) = y(1)|. (1.8)

teJ

In Example 1.1 the metric (1.5) gives the “distance” between points on the real-
number line. In Example 1.4 the “points” are real-valued, continuous functions of
t € [a, b]. In functional analysis it is essential to get used to the idea that functions
can be considered as points in a space.

Example 1.5 The set X in (1.7a), where we now allow c(x) — oo (in other
words, the sequence need not be bounded here), but with the metric

oo
1 |xk — Yl
d(x,y)ZZZkH 1+ [xx — il "
k=0

is a metric space. (Sometimes this space is denoted s.)

TLFeBOOK



8 FUNCTIONAL ANALYSIS IDEAS

Example 1.6 Let p be a real-valued constant such that p > 1. Consider the
set of complex-valued sequences

o
X = x:(xo,xl,xz,...)|xkeC,Z|xk|p<oo}. (1.10a)
k=0

This set together with the metric

1/p

o0
d(x,y) =[x — wl” (1.10b)
k=0

forms a metric space that we denote by /[0, co].

Example 1.7 Consider the set of complex-valued functions on [a, b] C R

b
X = {x(t) / Ix ()% dt <oo} (1.11a)

for which
1/2

b
d(x,y) = [/ lx(1) — y(r)lzdz] (1.11b)

is a metric. Pair (X, d) forms a metric space that is usually denoted by L>[a, b].

The metric space of Example 1.7 (along with certain variations) is very impor-
tant in the theory of orthogonal polynomials, and in least-squares approximation
problems. This is because it turns out to be an inner product space too (see
Section 1.3.3). Orthogonal polynomials have a major role to play in the solution
of least squares, and other types of approximation problem.

All of the metrics defined in the examples above may be shown to satisfy the
axioms of Definition 1.1. Of course, at least in some cases, much effort might be
required to do this. In this book we largely avoid making this kind of effort.

1.3.2 Norms and Normed Spaces

So far our examples of function spaces have been metric spaces (Section 1.3.1).
Such spaces are not necessarily associated with the concept of a vector space.
However, normed spaces (i.e., spaces with norms defined on them) are always
associated with vector spaces. So, before we can define a norm, we need to recall
the general definition of a vector space.

The following definition invokes the concept of a field of numbers. This concept
arises in abstract algebra and number theory [e.g., 2, 3], a subject we wish to avoid
considering here.? It is enough for the reader to know that R and C are fields under

3This avoidance is not to disparage abstract algebra. This subject is a necessary prerequisite to under-
standing concepts such as fast algorithms for digital signal processing (i.e., fast Fourier transforms, and
fast convolution algorithms; e.g., see Ref. 4), cryptography and data security, and error control codes
for digital communications.

TLFeBOOK



SOME SPECIAL MAPPINGS: METRICS, NORMS, AND INNER PRODUCTS 9

the usual real and complex arithmetic operations. These are really the only fields
that we shall work with. We remark, largely in passing, that rational numbers (set
denoted Q) are also a field under the usual arithmetic operations.

Definition 1.2: Vector Space A vector space (linear space) over a field K is
a nonempty set X of elements x, y, z, ... called vectors together with two algebraic
operations. These operations are vector addition, and the multiplication of vectors
by scalars that are elements of K. The following axioms must be satisfied:

(V1) If x, y € X, then x + y € X (additive closure).

(V2) If x,y,z € X, then (x +y) + z = x 4+ (y + z) (associativity).

(V3) There exists a vector in X denoted O (zero vector) such that for all x € X,
we have x + 0 =0+ x = x.

(V4) For all x € X, there is a vector —x € X such that —x +x =x +
(—=x) = 0. We call —x the negative of a vector.

(V5) For all x,y € X we have x + y = y + x (commutativity).

(V6) If x € X and a € K, then the product of a and x is ax, and ax € X.

(V) If x,y € X, and a € K, then a(x + y) = ax + ay.

(V8) If a,b € K, and x € X, then (¢ + b)x = ax + bx.

(V9) If a,b € K, and x € X, then ab(x) = a(bx).

(V10) If x € X, and 1 € K, then 1x = x multiplication of a vector by a unit

scalar; all fields contain a unit scalar (i.e., a number called “one”).

In this definition, as already noted, we generally work only with K = R, or K = C.
We represent the zero vector by 0 just as we also represent the scalar zero by 0.
Rarely is there danger of confusion.

The reader is already familiar with the special instances of this that relate to the
sets R"” and C". These sets are vector spaces under Definition 1.2, where vector
addition is defined to be

X0 Yo X0 + Yo
X n X1+ x
xX+y= . + . = . , (1.12a)
Xn—1 Yn—1 Xp—1+ Yn—1
and multiplication by a field element is defined to be
axg
axi
ax = . . (1.12b)
axn—1
The zero vector is 0 = [00---00]7, and —x = [—xg —x1 - - —xy_1]T. If X = R"

then the elements of x and y are real-valued, and a € R, but if X = C" then the

TLFeBOOK



10 FUNCTIONAL ANALYSIS IDEAS

elements of x and y are complex-valued, and a € C. The metric spaces in Exam-
ple 1.2 are therefore also vector spaces under the operations defined in (1.12a,b).
Some further examples of vector spaces now follow.

Example 1.8 Metric space Cla, b] (Example 1.4) is a vector space under the
operations
x+ @ =x@) +y@), (@x)@)=ax@), (1.13)

where o« € R. The zero vector is the function that is identically zero on the interval
la, b].

Example 1.9 Metric space I2[0, oo] (Example 1.6) is a vector space under the
operations
x+y:(x01x19"')+(y07y1"")=('x0+y07x1+y17"')1
ax = (axg, ¢X1, ...). (1.14)
Here o € C.

If x,y €?[0,00], then some effort is required to verify axiom (V1). This
requires the Minkowski inequality, which is

00 1/p 00 0 1/p
{Z lxk + ml’] < [Z mw} + [Z mw} : (1.15)
k=0 k=0 k=0

Refer back to Example 1.6; here we employ p = 2, but (1.15) is valid for p > 1.
Proof of (1.15) is somewhat involved, and so is omitted here. The interested reader
can see Kreyszig [1, pp. 11-15].

1/p

We remark that the Minkowski inequality can be proved with the aid of the
Holder inequality

00 00 I/p I 1/q
> bl < [Z mw} [Z mw} (1.16)
k=0 k=0 k=0

for which here p > 1 and % + é =1.
We are now ready to define a normed space.

Definition 1.3: Normed Space, Norm A normed space X is a vector space
with a norm defined on it. If x € X then the norm of x is denoted by

[Ix]] (read this as “norm of x”).
The norm must satisfy the following axioms:

(N1) ||x|| = O (i.e., the norm is nonnegative).

TLFeBOOK



SOME SPECIAL MAPPINGS: METRICS, NORMS, AND INNER PRODUCTS 11

N2) ||x]|=0<x=0.
(N3) |lax]|] = |a| ||x]|. Here « is a scalar in the field of X (i.e., € K; see
Definition 3.2).

(N4) [Ix + yII < lIxIl + |lyl| (triangle inequality).
The normed space is vector space X together with a norm, and so may be properly
denoted by the pair (X, || - ||). However, we may simply write X, and say “normed
space X,” so the norm that goes along with X is understood from the context of
the discussion.

It is important to note that all normed spaces are also metric spaces, where the
metric is given by

dx,y)=llx =yl (x,y € X). (1.17)

The metric in (1.17) is called the metric induced by the norm.
Various other properties of norms may be deduced. One of these is:

Example 1.10  Prove | [[y|| — [lx]| | = [ly — x]|.
Proof From (N3) and (N4)
Iyl =Illy =x + x|l < |ly = x[| + x|, [Ix][ = llx =y + yll < [y = x|| +[Iy]l
Combining these, we obtain
I =1l < 1y = x[l Iyl = [lx[| = =[ly = x]I.
The claim follows immediately.

We may regard the norm as a mapping from X to set R: || - [||X — R. This
mapping can be shown to be continuous. However, this requires generalizing the
concept of continuity that you may know from elementary calculus. Here we define
continuity as follows.

Definition 1.4: Continuous Mapping Suppose X = (X, d) and Y = (Y, d)
are two metric spaces. The mapping 7'|X — Y is said to be continuous at a point
xo € X if for all € > O there is a § > 0 such that

d(Tx, Txp) <€ forall x satisfying d(x, xo) < 6. (1.18)

T is said to be continuous if it is continuous at every point of X.

Note that T'x is just another way of writing 7'(x). (R, |- ) is a normed space; that
is, the set of real numbers with the usual arithmetic operations defined on it is a

TLFeBOOK



12 FUNCTIONAL ANALYSIS IDEAS

vector space, and the absolute value of an element of R is the norm of that element.
If we identify Y in Definition 1.4 with metric space (R, |- |), then (1.18) becomes

d(Tx, Txo) =d(||x||, llxol) = | llx|| — [Ixoll | <€, d(x,x0) = |lx —xol| <38.
To make these claims, we are using (1.17). In other words, X and Y are normed

spaces, and we employ the metrics induced by their respective norms. In addition,
we identify T with || - ||. Using Example 1.10, we obtain

| 1lxfl = flxoll | < llx — xoll < 4.

Thus, the requirements of Definition 1.4 are met, and so we conclude that norms
are continuous mappings.
We now list some other normed spaces.

Example 1.11 The Euclidean space R" and the unitary space C" are both
normed spaces, where the norm is defined to be

1/2

n—1
llxl] = [Z kalz} : (1.19)
k=0

For R” the absolute value bars may be dropped.* It is easy to see that d(x, y) =
|lx — y|| gives the same metric as in (1.6a) for space R". We further remark that
for n = 1 we have ||x]|| = |x].

Example 1.12 The space /7[0, oo] is a normed space if we define the norm

to be
o0 1/1’
x|l = [Z mw} (1.20)
k=0

for which d(x, y) = ||x — y|| coincides with the metric in (1.10b).

Example 1.13 The sequence space [°°[0, oo] from Example 1.3 of Section 1.3.1
is a normed space, where the norm is defined to be

llx]] = sup [xl, (1.21)
keZ+

and this norm induces the metric of (1.7b).

4Suppose z=x+jy (j =+/—1, x,y € R) is some arbitrary complex number. Recall that 2 # |22
in general.

TLFeBOOK



SOME SPECIAL MAPPINGS: METRICS, NORMS, AND INNER PRODUCTS 13

Example 1.14 The space Cla, b] first seen in Example 1.4 is a normed space,
where the norm is defined by

|1x] = sup [x(7)]. (1.22)

teJ

Naturally, this norm induces the metric of (1.8).

Example 1.15 The space L?[a, b] of Example 1.7 is a normed space for the

norm
b 1/2
[lx|| = |:/ Ix(t)lzdt:| . (1.23)

This norm induces the metric in (1.11b).

The normed space of Example 1.15 is important in the following respect.
Observe that

b
=k =/ ()P dr. (1.24)

Suppose we now consider a resistor with resistance R. If the voltage drop across its
terminals is v(¢) and the current through it is i (¢), we know that the instantaneous
power dissipated in the device is p(f) = v(¢)i(¢). If we assume that the resistor is
a linear device, then v(¢t) = Ri(¢t) via Ohm’s law. Thus

() = v(0)i(t) = Ri%(1). (1.25)

Consequently, the amount of energy delivered to the resistor over time interval
t € [a, b] is given by

b
E:R/ﬂmm. (1.26)

a

If the voltage/current waveforms in our circuit containing R belong to the space
L?[a, b], then clearly E = R||i||*>. We may therefore regard the square of the L>
norm [given by (1.24)] of a signal to be the energy of the signal, provided the
norm exists. This notion can be helpful in the optimal design of electric circuits
(e.g., electric filters), and also of optimal electronic circuits. In analogous fashion,
an element x of space 12[0, co] satisfies

o0
el =) Iul* < oo (1.27)
k=0

[see (1.10a) and Example 1.12]. We may consider ||x||2 to be the energy of the
single-sided sequence x. This notion is useful in the optimal design of digital filters.

TLFeBOOK



14 FUNCTIONAL ANALYSIS IDEAS

1.3.3 Inner Products and Inner Product Spaces

The concept of an inner product is necessary before one can talk about orthogonal
bases for vector spaces. Recall from elementary linear algebra that orthogonal
bases were important in representing vectors. From a computational standpoint,
as mentioned earlier, orthogonal bases can have a simplifying effect on certain
types of approximation problem (e.g., least-squares approximations), and represent
a means of controlling numerical errors due to so-called ill-conditioned problems.
Following our axiomatic approach, consider the following definition.

Definition 1.5: Inner Product Space, Inner Product An inner product space
is a vector space X with an inner product defined on it. The inner product is a
mapping (-, -)|X x X — K that satisfies the following axioms:

an (x+y,z)=(x, 20+, 2)-

(12) (oex, y) = alx, y).

I3) (x,y) = (y, x)*.

(I4) (x,x) >0,and (x,x) =0« x =0.

Naturally, x, v,z € X, and « is a scalar from the field K of vector space X. The
asterisk superscript on (y, x) in (I3) denotes complex conjugation.’

If the field of X is not C, then the operation of complex conjugation in (I3) is
redundant.

All inner product spaces are also normed spaces, and hence are also metric
spaces. This is because the inner product induces a norm on X

lIx1] = [{x, x)]"/? (1.28)
for all x € X. Following (1.17), the induced metric is
d(x,y) =[x — yll = [{x — y,x — )"/~ (1.29)

Directly from the axioms of Definition 1.5, it is possible to deduce that (for
x,y,z€ Xand a,b € K)

(ax + by, z) = a(x, z) + b(y, 2), (1.30a)
(x,ay) = a*(x,y), (1.30b)

and
(x,ay 4+ bz) = a*(x,y) +b*(x, 2). (1.30c)

The reader should prove these as an exercise.

SIf z = x + yj is a complex number, then its conjugate is z* = x — yj.

TLFeBOOK



SOME SPECIAL MAPPINGS: METRICS, NORMS, AND INNER PRODUCTS 15

We caution the reader that not all normed spaces are inner product spaces. We
may construct an example with the aid of the following example.

Example 1.16 Let x, y be from an inner product space. If || - || is the norm
induced by the inner product, then ||x + y||*> + ||x — y||> = 2(||x||> + [|y||*). This
is the parallelogram equality.

Proof Via (1.30a,c) we have

Ix + Y7 = (x+y,x+y) =, x+ ¥+, x+y)
= (x,x) +{x,y) +(y, x) +{y, y),

and
x = yIP = (x —y,x —y) = (x, x —y) — (¥, x — ¥)

= <x7x> - ()C, )’) - <y1-x) + (yv y)
Adding these gives the stated result.

It turns out that the space /P[0, oo] with p # 2 is not an inner product space. The
parallelogram equality can be used to show this. Consider x = (1, 1,0,0,...),y =
(1,-1,0,0,...), which are certainly elements of /7[0, co] [see (1.10a)]. We see that

xll = 1yl =27, [1x + Il = [lx — yI| = 2.

The parallelogram equality is not satisfied, which implies that our norm does not
come from an inner product. Thus, /70, co] with p # 2 cannot be an inner product
space.

On the other hand, /[0, oo] is an inner product space, where the inner product
is defined to be

(x,y) = . (1.31)
k=0

Does this infinite series converge? Yes, it does. To see this, we need the Cauchy-
Schwarz inequality.® Recall the Holder inequality of (1.16). Let p =2, so that
q = 2. Then the Cauchy—Schwarz inequality is

1/2 172

o0
donl| (1.32)
k=0

o o

2
Z Xk vkl < Z | x|
k=0 k=0

5The inequality we consider here is related to the Schwarz inequality. We will consider the Schwarz
inequality later on. This inequality is of immense practical value to electrical and computer engineers.
It is used to derive the matched-filter receiver, which is employed in digital communications systems,
to derive the uncertainty principle in quantum mechanics and in signal processing, and to derive the
Cramér—Rao lower bound on the variance of parameter estimators, to name only three applications.

TLFeBOOK



16 FUNCTIONAL ANALYSIS IDEAS

Now

[{x, y)| =

o0
> vk
k=0

The inequality in (1.33) follows from the triangle inequality for | - |. (Recall that the
absolute value operation is a norm on R. Itis alsoanormon C;if z = x + jy € C,
then |z| = /x2 + y2.) The right-hand side of (1.32) is finite because x and y are
in 12[0, oco]. Thus, from (1.33), (x, y) is finite. Thus, the series (1.31) converges.
It turns out that Cl[a, b] is not an inner product space, either. But we will not
demonstrate the truth of this claim here.
Some further examples of inner product spaces are as follows.

o
<> el (1.33)
k=0

Example 1.17 The Euclidean space R" is an inner product space, where the
inner product is defined to be

n—1
(r,y) =D Xy (1.34)
k=0

The reader will recognize this as the vector dot product from elementary linear
algebra; that is, x - y = (x, y). It is well worth noting that

(x,y)y =x"y. (1.35)

T

Here the superscript T denotes fransposition. So, x' is a row vector. The inner

product in (1.34) certainly induces the norm in (1.19).

Example 1.18 The unitary space C" is an inner product space for the inner
product

n—1
(x,y)= mef- (1.36)
k=0

Again, the norm of (1.19) is induced by inner product (1.36). If H denotes the
operation of complex conjugation and transposition (this is called Hermitian trans-
position), then

v =gy vi]

(row vector), and
(x,y) = yx. (1.37)

Example 1.19 The space L?[a, b] from Example 1.7 is an inner product space
if the inner product is defined to be

b
(x,y) = / x(£)y*(t) dt. (1.38)

TLFeBOOK



SOME SPECIAL MAPPINGS: METRICS, NORMS, AND INNER PRODUCTS 17

The norm induced by (1.38) is

b 1/2
lx|| = [/ |x(z>|2dr} : (1.39)

This in turn induces the metric in (1.11b).
Now we consider the concept of orthogonality in a completely general manner.

Definition 1.6: Orthogonality Let x, y be vectors from some inner product
space X. These vectors are orthogonal iff

(x,y) =0.

The orthogonality of x and y is symbolized by writing x L y. Similarly, for subsets
A, BC Xwewritex L Aifx Laforalla e A,and A L Bifa L bforalla € A,
and b € B.

If we consider the inner product space R?, then it is easy to see that
([IO]T, [0 I]T) =0, so [01]7, and [10]7 are orthogonal vectors. In fact, these
vectors form an orthogonal basis for R, a concept we will consider more gen-
erally below. If we define the unit vectors eg = [1 017, and e; = [01]7, then we
recall that any x € R? can be expressed as x = xpeg + x1ej. (The extension of
this reasoning to R” for n > 2 should be clear.) Another example of a pair of
orthogonal vectors would be x = \/iz[l 117, and y = \/iz[l — 1]7. These too form

an orthogonal basis for the space R.
Define the functions

0, x<Oandx >1
¢(X)—{ I, 0<x<1 (1.40)
and
0, x<Oandx>1
V(x) = I, 0<x<3 ) (1.41)
~-1, 1=<x<1

Function ¢ (x) is called the Haar scaling function, and function ¥ (x) is called the
Haar wavelet [5]. The function ¢ (x) is also called an non-return-to-zero (NRZ)
pulse, and function ¥ (x) is also called a Manchester pulse [6]. It is easy to con-
firm that these pulses are elements of L?(R) = L%(—o00, 00), and that they are
orthogonal, that is, (¢, 1) = 0 under the inner product defined in (1.38). This is
so because

o0 1
(. V) =/ ¢(x)1ﬁ*(X)dX=/O Y(x)dx = 0.

TLFeBOOK



18 FUNCTIONAL ANALYSIS IDEAS

Thus, we consider ¢ and ¥ to be elements in the inner product space LZ(R), for
which the inner product is

x. ) =/ YOy @) dt.

It turns out that the Haar wavelet is the simplest example of the more general class
of Daubechies wavelets. The general theory of these wavelets first appeared in
Daubechies [7]. Their development has revolutionized signal processing and many
other areas.” The main reason for this is the fact that for any f(r) € L*(R)

FO= > > (f V) Var), (1.42)

n=—0o0 k=—00

where v, (1) = 2"/?y (2"t — k). This doubly infinite series is called a wavelet
series expansion for f. The coefficients f, x = (f, ¥n.x) have finite energy. In
effect, if we treat either k or n as a constant, then the resulting doubly infinite
sequence is in the space 12[—00, oo]. In fact, it is also the case that

DY fakl < oo (1.43)

n=—00 k=—00

It is to be emphasized that the ¥ used in (1.42) could be (1.41), or it could be
chosen from the more general class in Ref. 7. We shall not prove these things in
this book, as the technical arguments are quite hard.

The wavelet series is presently not as familiar to the broader electrical and
computer engineering community as is the Fourier series. A brief summary of the
Fourier series is as follows. Again, rigorous proofs of many of the following claims
will be avoided, though good introductory references to Fourier series are Tolstov
[8] or Kreyszig [9]. If f € L?(0, 27), then

o
f@0y= )" fel™,  j=v-1, (1.44)
n=—oo
where the Fourier (series) coefficients are given by

2

fom— [ e ar. (1.45)
2 0
We may define
e,(t) =exp(jnt) (t€(0,2n), neZ) (1.46)

TFor example, in digital communications the problem of designing good signaling pulses for data
transmission is best treated with respect to wavelet theory.

TLFeBOOK



SOME SPECIAL MAPPINGS: METRICS, NORMS, AND INNER PRODUCTS 19

so that we see

_ LT " ar = 1.47
<f,en>—§/0 fw e ar = f. (1.47)

The series (1.44) is the complex Fourier series expansion for f. Note that for
nkeZ
expljn(t + 2mk)] = expljnt] exp[2n jnk] = exp[jnt]. (1.48)

Here we have used Euler’s identity
e/* = cosx + jsinx (1.49)

and cos(2rk) = 1, sin(2rk) = 0. The function e/ is therefore 2m-periodic; that
is, its period is 2. It therefore follows that the series on the right-hand side of
(3.40) is a 2w -periodic function, too. The result (1.48) implies that, although f in
(1.44) is initially defined only on (0, 27r), we are at liberty to “periodically extend”
f over the entire real-number line; that is, we can treat f as one period of the
periodic function

fy =) f@+2mk) (1.50)

kel

for which f(¢) = f(t) for ¢t € (0, 2m). Thus, series (1.44) is a way to represent
periodic functions. Because f € L%(0, 27), it turns out that

Y 1l <00 (151)

n=—oo

so that (f,) € I*[—00, 00].
Observe that in (1.47) we have “redefined” the inner product on L2(0, 27) to be

1 2
(x,y)= 2—/ x()y*(t)dt (1.52)
7 Jo

which differs from (1.38) in that it has the factor % in front. This variation also

happens to be a valid inner product on the vector space defined by the set in (1.11a).
Actually, it is a simple example of a weighted inner product.
Now consider, for n # m

1 o i 1 . 2
(en, em) = —/ /MMt gy — — Y [ef("—m)t]
2 Jo 27 j(n —m) 0
lerj(nfm) -1 1—-1
= on =5 = (1.53)
2mj(n —m) 27wj(n —m)
Similarly
1 2 . 1 2
(en, en) = _/ e/M"Me I dt = —/ dt =1. (1.54)
2” 0 27T 0

So, e, and e, (if n # m) are orthogonal with respect to the inner product in (1.52).

TLFeBOOK



20 FUNCTIONAL ANALYSIS IDEAS

From basic electric circuit analysis, periodic signals have finite power. Therefore,
series (1.44) is a way to represent finite power signals.® We might therefore consider
the space L2(0, 277) to be the “space of finite power signals.” From considerations
involving the wavelet series representation of (1.42), we may consider L%(R) to
be the “space of finite energy signals.” Recall also the discussion at the end of
Section 1.3.2 (last paragraph).

An example of a Fourier series expansion is the following.

Example 1.20 Suppose that

1, O<t<m

f(t)={ 0 gt <om (1.55)

A sketch of this function is one period of a 27 -periodic square wave. The Fourier
coefficients are given by (for n # 0)

1 2 . 1 T . 2 .
fo=— f@®e /"dt = — / e M dy —/ e " dy
2 0 2w 0 T

SN L PVl R et i
27 jn 0o jn b4 2 jn

_ 11— Jnm 2 jm/zej"”/z — e Jnm/2 2 inx /2 g (nn)

= = —¢ = —e R

14 jn n 2j b197)
(1.56)
where we have made use of

1 ) .
sinx = —[e/* —e /Y. (1.57)
J

This is easily derived using the Euler identity in (1.49). For n = 0, it should be
clear that fo = 0.

The coefficients f, in (1.56) involve expressions containing j. Since f(t) is
real-valued, it therefore follows that we can rewrite the series expansion in such a
manner as to avoid complex arithmetic. It is almost a standard practice to do this.
We now demonstrate this process:

> 2 [ ™ 1 ™
jnt _ 2 — —jnm/2 (_ ) jnt ——jnm/2 (_ ) jnt
Z fae - Zne sin 2n e/ + Z ne sin 2n e
n=—oo n=1 n=—0oo
_2 i 1e_j””/2 sin (zn) e/t 4 i lej””/2 sin (zn) e~ int
i el 2 o 2

8In fact, using phasor analysis and superposition, you can apply (1.44) to determine the steady-state
output of a circuit for any periodic input (including, and especially, nonsinusoidal periodic functions).
This makes the Fourier series very important in electrical/electronic circuit analysis.

TLFeBOOK



SOME SPECIAL MAPPINGS: METRICS, NORMS, AND INNER PRODUCTS 21
21 7w N .
- = Z Zsin (—i’l) I:ejnte—jnn/Z + e—jntejmz/Z]
Tin 2
n=

= %i %cos [n (t - %)] sin (%n)

Here we have used the fact that (see Appendix 1.A)

eInte=ImnI2 o =it pimn/2 — 9 Re [e/" e IT/2] = 2 cos [n (t — %)] .

This is so because if z = x + jy, then z + z* = 2x = 2 Re [z]. Since
cos(o + ) = cosa cos B — sina sin S,
we have
[(t n)] () nn+,(t)_7m
cos — — ) | = cos(nt) cos — + sin(nt) sin —.
"2 2 2

However, if n is an even number, then sin(wn/2) = 0, and if # is an odd number,
then cos(n/2) = 0. Therefore

4301 T LT
;; ;cos [n (t — E)] sin (En>
o

4 g ) P
= rg} il sin [(2n + 1)t] sin [(Zn + 1)5] ’

but sin?[(2n + l)%] = 1, so finally we have

o0

> . 4 1
f@y =Y fael" = - > P sin[(2n + 1z].

n=—o0 n=0

It is important to note that the wavelet series and Fourier series expansions have
something in common, in spite of the fact that they look quite different and indeed
are associated with quite different function spaces. The common feature is that both
representations involve the use of orthogonal basis functions. We are now ready to
consider this in a general manner.

Begin by recalling from elementary linear algebra that a basis for a vector space
such as X = R"” or X = C”" is a set of n vectors, say

BZ{EO»€1a~-~,€n—1} (158)

such that the elements ¢, (basis vectors) are linearly independent. This means that
no vector in the set can be expressed as a linear combination of any of the others.

TLFeBOOK



22 FUNCTIONAL ANALYSIS IDEAS

In general, it is not necessary that (eg, e;,) = 0 for n # k. In other words, indepen-
dence does not require orthogonality. However, if set B is a basis (orthogonal or
otherwise) then for any x € X (vector space) there exists a set of coefficients from
the field of the vector space, say, b = {bg, b1 ..., by,—1}, such that

n—1
x = Zbké’k- (1.59)
k=0

We say that spaces R" and C" are of dimension n. This is a direct reference to the
number of basis vectors in B. This notion generalizes.

Now let us consider a sequence space (e.g., [2[0,c0]). Suppose x =
(x0, X1, x2,...) € 12[0, oo]. Define the following unit vector sequences:

eo=(1,0,0,0,...), e =(0,1,0,0,...), e2=1(0,0,1,0,...), etc. (1.60)

Clearly o
x = Zxk€k~ (1.61)
k=0

It is equally clear that no vector e; can be expressed as a linear combination of
any of the others. Thus, the countably infinite set? B = {eo, e1, €2, ...} forms a
basis for [2[0, oo]. The sequence space is therefore of infinite dimension because
B has a countable infinity of members. It is apparent as well that, under the inner
product defined in (1.31), we have (e,, €;;) = 8,—m. Sequence § = (§,) is called
the Kronecker delta sequence. It is defined by

1, n=0
8n={ 0 n£0 - (1.62)

Therefore, the vectors in (1.60) are mutually orthogonal as well. So they happen to
form an orthogonal basis for /[0, oc]. Of course, this is not the only possible basis.
In general, given a countably infinite set of vectors {ex|k € ZT} [no longer neces-
sarily those in (1.60)] that are linearly independent, and such that e € 1210, oo},
for any x € 12[0, oo] there will exist coefficients a; € C such that

o
x=Y aex. (1.63)
k=0
In view of the above, consider the following linearly independent set of vectors
from some inner product space X:

B ={exlex € X, kel (1.64)

9A set A is countably infinite if its members can be put into one-to-one (1-1) correspondence with
the members of the set Z+. This is also equivalent to being able to place the elements of A into 1-1
correspondence with the elements of Z.

TLFeBOOK



SOME SPECIAL MAPPINGS: METRICS, NORMS, AND INNER PRODUCTS 23

Assume that this is a basis for X. In this case for any x € X, there are coefficients
ay such that
X = Zakek, (1.65)

keZ

We define the set B to be orthogonal iff for all n, k € Z
(en, er) = Sp—k. (1.66)

Assume that the elements of B in (1.64) satisfy (1.66). It is then easy to
see that

(x,en) = <Zakek, en> = (axex, e) (using (I1))
k

k

= Zak(ek, en) (using (12))
k

= ZSk,nak (using (1.66))
k

so finally we may say that
(x, ey) = ay. (1.67)

In other words, if the basis B is orthogonal, then

x =Y (x.eer (1.68)

keZ

Previous examples (e.g., Fourier series expansion) are merely special cases of this
general idea. We see that one of the main features of an orthogonal basis is the
ease with which we can obtain the coefficients a;. Nonorthogonal bases are harder
to work with in this respect. This is one of the reasons why orthogonal bases are
so universally popular.

A few comments on terminology are in order here. Some would say that the
condition (1.66) on B in (1.64) means that B is an orthonormal set, and we would
say that condition

(en, ex) = 0pbp_i

is the condition for B to be an orthogonal set, where «;, is not necessarily unity
(i.e., equal to one) for all n. However, in this book we often insist that orthogonal
basis vectors be “normalized” so condition (1.66) holds.

We conclude the present section by considering the following theorem. It was
mentioned in a footnote that the following Schwarz inequality (or variations of it)
is of very great value in electrical and computer engineering.

TLFeBOOK



24 FUNCTIONAL ANALYSIS IDEAS

Theorem 1.1: Schwarz Inequality Let X be an inner product space, where
x,y € X. Then

[Ce, yI < {lxI] 1] (1.69)

Equality holds iff {x, y} is a linearly dependent set.

Proof 1If y =0 then (x,0) =0, and (1.69) clearly holds in this special case.
Let y # 0. For all scalars « in the field of X we must have [via inner product
axioms and (1.30)]

0= |lx —ayll® = (x — ay, x —ay)
= (x,x) —a™(x, y) — al(y, x) —a™(y, y)].
If we select a* = (y, x)/(y, y), then the quantity in the brackets [-] vanishes. Thus
(v, %) |(x, »)
(x, ) =Ix|]> = =2
(¥, ») Iyl

[using (x, y) = (y, x)*, i.e., axiom (I3)]. Rearranging, this yields

0§<.X,.x)—

e, 2 < 11Xy,

and the result (1.69) follows (we must take positive square roots as ||x|| > 0, and
lx| = 0).

Equality holds iff y =0, or else ||x —ay||> =0, hence x —ay =0 [recall
(N2)], so x = ay, demonstrating linear dependence of x and y.

We may now see what Theorem 1.1 has to say when applied to the special case of
a vector dot product.

Example 1.21 Suppose that X is the inner product space of Example 1.17.

Since
n—1
[ ) =D xn
k=0

1/2
and ||x|| = [ZZ;(]) x,%] , we have from Theorem 1.1 that

172 1/2

n—1
[Z y,%:| . (1.70)
k=0

n—1

n—1
Zxk)’k = [Z X} }
k=0 k=0

If yx = ax; (o € R) for all k € Z,, then

n—1 n—1

2
> x| =lal 3,
k=0 k=0

TLFeBOOK



THE DISCRETE FOURIER SERIES (DFS) 25
1/2 1/2
and [ZZ;& y,f] = |ot] [ " x,f] , hence
n—1 172 n—1 172 n—1
5| (2] —era
k=0 k=0 k=0
Thus, (1.70) does indeed hold with equality when y = ax.

1.4 THE DISCRETE FOURIER SERIES (DFS)

The subject of discrete Fourier series (DFS) and its relationship to the complex
Fourier series expansion of Section 1.3.3 is often deferred to later courses (e.g.,
signals and systems), but will be briefly considered here as an additional example
of an orthogonal series expansion.

The complex Fourier series expansion of Section 1.3.3 was for 2m-periodic
functions defined on the real-number line. A similar series expansion exists for
N-periodic sequences such as X = (x,); that is, for N € {2, 3,4, ...} C Z, consider

T =) Xk (1.71)
keZ

where x = (x;) is such that x, = 0 for n < 0, and for n > N as well. Thus, x is
just one period of x. We observe that

oo o0 o0

ButmN = Y XngmN+kN = D XatmtbN = Y XnirN = %n
k=—o00 k=—00 r=—00

(r = m 4+ k). This confirms that x is indeed N-periodic (i.e., periodic with period
N). We normally assume in a context such as this that x,, € C. We also regard x
as a vector: x = [xg x; --- xy_1]7 € CV. An inner product may be defined on
the space of N-periodic sequences according to

(£.5) = (x.y) = y"x (1.72)
(recall Example 1.18), where y € CV is one period of y. We assume, of course,

that x and y are bounded sequences so that (1.72) is well defined.
Now define ex = [ex0 ex,1 -+ ek’N_l]T e CN according to

2
een=exp|iZkn], (1.73)
, plivy

where n € Zy. The periodization of ey = (ex ) is

Bn =Y Chnimn (1.74)

meZ

TLFeBOOK



26 FUNCTIONAL ANALYSIS IDEAS

yielding e; = (é.,). That (1.73) is periodic with period N with respect to index n
is easily seen:

2 2 .
Ck.nimN = €Xp ]Wk(n +mN) | =exp ]Wkn exp [j2mkm] = eg .

It can be shown (by exercise) that [using definition (1.72)]

N= 2 2
(@r. &) = (ex.er) = »_ exp [_J-Wm} exp [kan]
n=0
N-—1
2 N, k—r=90
= Z exp [ ]W(k — r)ni| = { 0. otherwise - (1.75)

n=0

Thus, if we consider (ex ), and (e, ,) with k = r we find that these sequences are
orthogonal, and so form an orthogonal basis for the vector space C". From (1.75)
we may write

(e, er) = NOk—r. (1.76)
Thus, there must exist another vector X = [Xo X1 --- Xy—1]7 € CV such that
=
Xp = Z Xy exp [ j —kn] 1.77)
for n € Zy. In fact
N—-1
(x,e;) = ) xney,

0
N-1 (N-1 o
Xk exp J—kn exp —Jﬁrn
0 k=0

| V=t N—1
=% Xk{Zexp[]—(k—r)ni”

k=0 n=0
| V-l
=5 2 Xk(No) = X, (1.78)
k=0
That is
Xi = Z Xn exp[ ]—kn] (1.79)
for k € Zy.

TLFeBOOK



THE DISCRETE FOURIER SERIES (DFES) 27

In (1.77) we see x,+mN = x, for all m € Z. Thus, (x,) in (1.77) is N-periodic,
and so we have X, = % Z,](vz_ol X exp [jzw”kn] with X given by (1.79). Equation
(1.77) is the discrete Fourier series (DFS) expansion for an N-periodic complex-
valued sequence x such as in (1.71). The DFS coefficients are given by (1.79).
However, it is common practice to consider only X, for n € Zy, which is equivalent
to only considering the vector x € CV. In this case the vector X € CV given by
(1.79) is now called the discrete Fourier transform (DFT) of the vector x, and the
expression in (1.77) is the inverse DFT (IDFT) of the vector X. We observe that
the DFT, and the IDFT can be concisely expressed in matrix form, where we define

the DFT matrix
2
F= [exp (—j—nkn):| e CVxN, (1.80)
N kneZy

and we see from (1.77) that F~1 = % F* (IDFT matrix). Thus, X = Fx. We remark
that the symmetry of F (i.e., F = F Ty means that either k or n in (1.80) may be
interpreted as row or column indices.

The DFT has a long history, and its invention is now attributed to Gauss
[10]. The DFT is of central importance to numerical computing generally, but
has particularly great significance in digital signal processing as it represents a
numerical approximation to the Fourier transform, and it can also be used to
efficiently implement digital filtering operations via so-called fast Fourier trans-
form (FFT) algorithms. The construction of FFT algorithms to efficiently compute
X = Fx (and x = F~'X) is rather involved, and not within the scope of the
present book. Simply note that the direct computation of the matrix-vector product
X = Fx needs N? complex multiplications and N (N — 1) complex additions. For
N =27 (p e{l,2,3,...}), which is called the radix-2 case, the algorithm of Coo-
ley and Tukey [11] reduces the number of operations to something proportional to
Nlog, N, which is a substantial savings compared to N2 operations with the direct
approach when N is large enough. Essentially, the method in Ref. 11 implicitly fac-
tors F according to F' = F,Fj,_1 - -- Fy, where the matrix factors Fj € CN*N are
sparse (i.e., contain many zero-valued entries). Note that multiplication by zero is
not implemented in either hardware or software and so does not represent a compu-
tational cost in the practical implementation of the FFT algorithm. It is noteworthy
that the algorithm of Ref. 11 also has a long history dating back to the work of
Gauss, as noted by Heideman et al. [10]. It is also important to mention that fast
algorithms exist for all possible N # 27 [4]. The following example suggests one
of the important applications of the DFT/DFS.

Example 1.22 Suppose that x, = Ae/ with 0 = ZW”m for m=1,2,...,
% — 1 (N is assumed to be even here). From (1.79) using (1.75)

X = ANSp—r. (1.81)

TLFeBOOK



28 FUNCTIONAL ANALYSIS IDEAS

Now suppose instead that x, = Ae~/%" so similarly

N-1 o
Xy =A Zoexp [—jﬁn(m +k)]
n=

N-1

2
—A 2; exp [jﬁnn(N —m— k)} — ANSN -t (1.82)
n=

Thus, if now x, = A cos(6n) = $A[e/%" + ¢/, then from (1.81) and (1.82), we
must have

X = YAN[Spm_k + SN —m—t]- (1.83)
We observe that X; = 0 for all kK # m, N — m, but that
Xm=%tAN, and Xy_, = 1AN.

Thus, Xj is nonzero only for indices k =m and k = N —m corresponding to
the frequency of (x,), which is 6 = %”m The DFT/DEFS is therefore quite use-
ful in detecting “sinusoids” (also sometimes called “tone detection”). This makes
the DFT/DFS useful in such applications as narrowband radar and sonar signal

detection.

Can you explain the necessity (or, at least, the desirability) of the second equality
in Eq. (1.82)?

APPENDIX 1.A COMPLEX ARITHMETIC

Here we summarize the most important facts about arithmetic with complex num-
bers z € C (set of complex numbers). You shall find this material very useful in
electric circuits, as well as in the present book.

Complex numbers may be represented in two ways: (1) Cartesian (rectangular)
form or (2) polar form. First we consider the Cartesian form.

In this case z € C has the form z = x + jy, where x, y € R (set of real num-
bers), and j = +/—1. The complex conjugate of z is defined to be z* = x — jy (so
it ==

Suppose that z; = x; + jy; and zo = x2 + jy» are two complex numbers. Addi-
tion and subtraction are defined as

2122 =1 £x2)+ j(y1 £y2)

TLFeBOOK



COMPLEX ARITHMETIC 29
[e.g., 14+2j)+(B—-5j)=4—-3j,and (14+2j)— (3—5j)=—-2+7j]. Using
j* = —1, the product of z; and z; is
2122 = (x1 + jy)(x2 + jy2)
= x1x2 + j2y1y2 + jyixa + jxiya
= (x1x2 — y1y2) + j(x1y2 + x2y1)-
‘We note that
£ ) ) 2 2
22 =(x+jy)x —jy) =x"+y =1z]%,

s0 |z| = v/x2 + y? defines the magnitude of z. For example, (1 +2j)(3 —5j) =
13 4 j. The quotient of z; and z» is defined to be

2z (it jyDee —jy2)

2 227 X3 +y3

_ (rxa +yiy2) + j oy — xi1y2)
X3+
X1+ 2 J.X2y1 —X1)2
X3+ y3 X3+ y3
where the last equality is z1/z» in Cartesian form.
Now we may consider polar form representations. For z = x + jy, we may
regard x and y as the x and y coordinates (respectively) of a point in the Cartesian

plane (sometimes denoted R?).!® We may therefore express these coordinates in
polar form; thus, for any x and y we can write

x =rcosf, y=rsinb,
where r > 0, and 6 € [0, 27), or 8 € (—m, w]. We observe that
X2+ y2 = r2(0(>s2 6 + sin’ 0) = r2,
so |z| =r.

Now recall the following Maclaurin series expansions (considered in greater
depth in Chapter 3):

0 | x2n—l
L 1y
sin x Z( ) 2 1)
n=1
0 . x2n—2
= =
Ccos x Z( ) =)
n=1
0 n—1
X
X
e_;mqn

10This suggests that z may be equivalently represented by the column vector [xy]”. The vector inter-
pretation of complex numbers can be quite useful.

TLFeBOOK



30 FUNCTIONAL ANALYSIS IDEAS

These series converge for —oo < x < 0o. Observe the following:

) (]x)n 1 o ]x)(Zn—l)—l (jx)(2n—l)
JxX —
¢ Z(n—l)v Z|:[(2n—l)—l]' Yoo |

n=1

where we have split the summation into terms involving even n and odd n. Thus,
continuing

ejx |:j2n—2 2n—-2 j2n—1x2n—1 :|

=21 T =)

Mg 18

2n—2 2n—1
on— X . X . On— on—
J2n 2 |: +J :| (JJZn 2 — J2n 1)

en—2)! T 2n—-1

n=1

2n—1

(_1)"—1ﬁ + i(_l)"—lxi
(2n —2)! = 2n — 1!

( 2n—2 (JZ)n l_( 1)1‘1 1)

= cosXx + jsinx.

M

3
I
_

Thus, e/* = cos x + j sinx. This is justification for Euler’s identity in (1.49). Addi-
tionally, since e™/* = cosx — j sinx, we have

e 4 eI = 2cosx, elf —ei¥ = 2j sinx.
These immediately imply that

. el¥ — e7I* el 4 eI
sinx = ————, cosx = ———
2j 2

These identities allow for the conversion of expressions involving trig(onometric)
functions into expressions involving exponentials, and vice versa. The necessity to
do this is frequent. For this reason, they should be memorized, or else you should
remember how to derive them “on the spot” when necessary.

Now observe that

re’® = rcos6 + jrsiné,

so that if z = x + jy, then, because there exist » and 6 such that x = r cos8 and
y = rsinf, we may immediately write

z=rel’.

TLFeBOOK



ELEMENTARY LOGIC 31
This is z in polar form. For example (assuming that 6 is in radians)

L+ j =24 1+ j=23714,
1—j =274 —1—j=+2e370/4
It can sometimes be useful to observe that

j= ej”/z, —j= e_j”/z, and —1=¢%7

If z; = r1e/%, and z5 = rpe/%, then

B0
22 rn

2122 = rirpel O,

In other words, multiplication and division of complex numbers is very easy when
they are expressed in polar form.

Finally, some terminology. For z = x + jy, we call x the real part of z, and we
call y the imaginary part of z. The notation is

x= Re[z], y= Im[z].

That is, z = Re [z] + j Im [z].

APPENDIX 1.B  ELEMENTARY LOGIC

Here we summarize the basic language and ideas associated with elementary logic
as some of what is found here appears in later sections and chapters of this book.
The concepts found here appear often in mathematics and engineering literature.

Consider two mathematical statements represented as P and Q. Each statement
may be either true or false. Suppose that we know that if P is true, then Q is
certainly true (allowing the possibility that Q is true even if P is false). Then we
say that P implies Q, or Q is implied by P, or P is a sufficient condition for Q,
or symbolically

P=Q or Q<«P.

Suppose that if P is false, then Q is certainly false (allowing the possibility

that Q may be false even if P is true). Then we say that P is implied by Q, or O
implies P, or P is a necessary condition for Q, or

P&=Q or Q=P
Now suppose that if P is true, then Q is certainly true, and if P is false, then

Q is certainly false. In other words, P and Q are either both true or both false.
Then we say that P implies and is implied by Q, or P is a necessary and sufficient

TLFeBOOK



32 FUNCTIONAL ANALYSIS IDEAS

condition for Q, or P and Q are logically equivalent, or P if and only if Q, or
symbolically
P & 0.

A common abbreviation for “if and only if” is iff:

The logical contrary of the statement P is called “not P.” It is often denoted by
either P or ~ P. This is the statement that is true if P is false, or false if P is true.
For example, if P is the statement “x > 1,” then ~ P is the statement “x < 1.” If
P is the statement “f(x) # 0 for all x € R,” then ~ P is the statement “there is
at least one x € R for which f(x) = 0.” We may write

x—5x2+4=0&x=1 or x =2,

but the converse is not true because x* — 5x% 44 = 0 is a quartic equation pos-
sessing four possible solutions. We may write

x=3:x2=3x,

but we cannot say x> = 3x = x = 3 because x = 0 is also possible.
Finally, we observe that

P = Q isequivalentto ~ P <~ Q,
P < Q is equivalent to ~ P =~ Q,
P < Q is equivalent to ~ P < ~ Q;

that is, taking logical contraries reverses the directions of implication arrows.

REFERENCES

1. E. Kreyszig, Introductory Functional Analysis with Applications, Wiley, New
York, 1978.

2. A. P. Hillman and G. L. Alexanderson, A First Undergraduate Course in Abstract Alge-
bra, 3rd ed., Wadsworth, Belmont, CA, 1983.

3. R. B.J. T. Allenby, Rings, Fields and Groups: An Introduction to Abstract Algebra,
Edward Arnold, London, UK, 1983.

4. R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading,
MA, 1985.

5. C. K. Chui, Wavelets: A Mathematical Tool for Signal Analysis. SIAM, Philadelphia,
PA, 1997.

6. R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation,
and Noise, 3rd ed., Houghton Mifflin, Boston, MA, 1990.

7. 1. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets,” Commun. Pure
Appl. Math. 41, 909-996 (1988).

TLFeBOOK



PROBLEMS 33

8. G. P. Tolstov, Fourier Series (transl. from Russian by R. A. Silverman), Dover Publi-
cations, New York, 1962.

9. E. Kreyszig, Advanced Engineering Mathematics, 4th ed., Wiley, New York, 1979.

10. M. T. Heideman, D. H. Johnson and C. S. Burrus, “Gauss and the History of the Fast
Fourier Transform,” IEEE ASSP Mag. 1, 14-21 (Oct. 1984).

11. J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex
Fourier Series,” Math. Comput., 19, 297-301 (April 1965).

PROBLEMS

1.1. (a) Finda,b € R in

1+2j
i L —a+bj
3
(b) Find r,6 € R in
—3—|—j=rej9

(Of course, choose r > 0, and 0 € (—m, ].)

1.2. Solve for x € C in the quadratic equation
x? —2rcosfx +r2=0.

Here r > 0, and 6 € (—m, ]. Express your solution in polar form.

1.3. Let 6, and ¢ be arbitrary angles (so 6, ¢ € R). Show that
(cos@ + jsin@)(cos¢ + jsing) = cos(@ + ¢) + jsin(@ + ¢).
1.4. Prove the following theorem. Suppose z € C such that
z=rcosf + jrsinf

for which r = |z| >0, and 6 € (—m, ]. Let n € {1,2,3,...} (i.e,, n is a
positive integer). The n different nth roots of z are given by

1/”[ (9+2nk> . (9 ~|—27rk>i|
r cos\ ——— |+ yjysm|{ — ]|,
n n

fork=0,1,2,...,n—1.
1.5. State whether the following are true or false:

@ |x|<2=>x<2
(b) x| <3«0<x<3

TLFeBOOK



34

1.6.

1.7.

1.8.

1.9.

FUNCTIONAL ANALYSIS IDEAS

C©x—y>0=>x>y>0
d xy=0=x=0andy=0
(e) x =10 & x* = 10x

Explain your answer in all cases.

Consider the function

—x24+2x+1, 0<x<1
x2—2x+%, l<x<2

f(X)={

Find

su x), inf x).
Sup f00. inf, £

Suppose that we have the following polynomials in the indeterminate x:

n m
a(x) = Zakxk, b(x) = ijxj.
k=0 j=0

Prove that
n—+m
c(x) =ax)b(x) = Z clxl,
=0
where

n
= Z arb;_y.
k=0

[Comment: This is really asking us to prove that discrete convolution is
mathematically equivalent to polynomial multiplication. It explains why the
MATLAB routine for multiplying polynomials is called conv. Discrete con-
volution is a fundamental operation in digital signal processing, and is an
instance of something called finite impulse response (FIR) filtering. You will
find it useful to note that a; = 0 for k < 0, and k > n, and that b; = 0 for
Jj <0, and j > m. Knowing this allows you to manipulate the summation
limits to achieve the desired result.]

Recall Example 1.5. Suppose that x; = 2K*1, and that y; = 1 for k € Z+.
Find the sum of the series d(x, y). (Hint: Recall the theory of geometric

. _ N+
series. For example, Z,/(VZO ak =1 = ifa # 1)

Prove that if x # 1, then

n
S, = Z kxk—1
k=1

TLFeBOOK



PROBLEMS 35

is given by

1= (n+ Dx" + nx"t!
B (1—x)?

Sn

What is the formula for S, when x =1 ? (Hint: Begin by showing that
Sp—xSy=14+x+x24- +x" 1 —pxn)

1.10. Recall Example 1.1. Prove that d(x, y) in (1.5) satisfies all the axioms for a
metric.

1.11. Recall Example 1.18. Prove that (x, y) in (1.36) satisfies all the axioms for
an inner product.

1.12. By direct calculation, show that if x, y, z are elements from an inner product
space, then

llz = xI1? + 1z = yII* = 3lIx = yI? +2llz — S + WP

(Appolonius’ identity).

1.13. Suppose x, y € R? (three-dimensional Euclidean space) such that
x=01 1 117, y=11 -1 117,

Find all vectors z € R? such that (x, z) = (y, z) = 0.

1.14. The complex Fourier series expansion method as described is for f €
L2(0,27). Find the complex Fourier series expansion for f € L%(0,T),
where 0 < T < oo (i.e., the interval on which f is defined is now of arbitrary
length).

1.15. Consider again the complex Fourier series expansion for f € L%(0,2r).
Specifically, consider Eq. (1.44). If f(¢) € R for all ¢ € (0, 27), then show
that f, = f*,. [The sequence ( f;;) is conjugate symmetric.] Use this to show
that for suitable a,, b, € R (all n) we have

o0

Z foel™ = ag + Z[an cos(nt) + b, sin(nt)].

n=—00 n=1

How are the coefficients a, and b, related to f,, ? (Be very specific. There
is a simple formula.)

1.16. (a) Suppose that f € L%(0, 27r), and that specifically

1, O<t<m
Jj, mw<t<2m

f(t)Z{

Find f;, in Eq. (1.44) using (1.45); that is, find the complex Fourier series
expansion for f (). Make sure that you appropriately simplify your series
expansion.

TLFeBOOK



36

1.17.

1.18.

1.19.

1.20.

FUNCTIONAL ANALYSIS IDEAS
(b) Show how to use the result in Example 1.20 to find the complex Fourier
series expansion for f(¢) in (a).

This problem is about finding the Fourier series expansion for the wave-
form at the output of a full-wave rectifier circuit. This circuit is used in
AC/DC (alternating/direct-current) converters. Knowledge of the Fourier
series expansion gives information to aid in the design of such converters.

(a) Find the complex Fourier series expansion of

2 T
sin —T[t elL? 0,—1 .
T 2

(b) Find the sequences (a,), and (b,) in

f@) =ag+ Z |:a,, cos <271Tnt> + by, sin <2jTTnt)]

n=1

[ =

for f(¢) in (a). You need to consider how T is related to 77.

Recall the definitions of the Haar scaling function and Haar wavelet in
Eqs. (1.40) and (1.41), respectively. Define ¢y ,(t) = 2¥/2¢ (2%t — n), and
Yion (1) = 25/ (2% — n). Recall that (£ (1), g(1)) = [ f(1)g*(t) dt is the
inner product for L*(R).

(a) Sketch ¢y ,(t), and Yy, (2).
(b) Evaluate the integrals

/oo Pen(t)dt, and /OO Y, () dt.
(¢) Prove that
<¢k,n(t)v d)k,m(t)) = Sn—m»

Prove the following version of the Schwarz inequality. For all x, y € X (inner
product space)
| Re [{x, )| < [IxI| l[yll

with equality iff y = Bx, and B € R is a constant.

[Hint: The proof of this one is not quite like that of Theorem 1.1. Consider
(ax + y,ax +y) > 0 with @ € R. The inner product is to be viewed as a
quadratic in «.]

The following result is associated with the proof of the uncertainty principle
for analog signals.

Prove that for f(r) € L>(R) such that |¢r|f(t) € L>(R) and fV () =
df (t)/dt € L*(R), we have the inequality

00 2 00 00
Re[/ tf(t)[f“)(t)]*dt} 5[/ Itf(t)lzdt} [[ If“)(t)lzdt]-

TLFeBOOK



PROBLEMS 37
1.21. Suppose ex = [ek.0 €x,1 -+ ek.N-2 ek,N_l]T e CV, where
27
ek,n = exp ]Wkn

and k€ Zy. If x,y € CV recall that (x,y) =Y xxyi. Prove that
(ex, er) = NOk—_,. Thus, B = {ex|k € Zy} is an orthogonal basis for CV,
Set B is important in digital signal processing because it is used to define
the discrete Fourier transform.

TLFeBOOK



2 Number Representations

2.1 INTRODUCTION

In this chapter we consider how numbers are represented on a computer largely with
respect to the errors that occur when basic arithmetical operations are performed
on them. We are most interested here in so-called rounding errors (also called
roundoff errors). Floating-point computation is emphasized. This is due to the
fact that most numerical computation is performed with floating-point numbers,
especially when numerical methods are implemented in high-level programming
languages such as C, Pascal, FORTRAN, and C++. However, an understanding
of floating-point requires some understanding of fixed-point schemes first, and so
this case will be considered initially. In addition, fixed-point schemes are used to
represent integer data (i.e., subsets of Z), and so the fixed-point representation is
important in its own right. For example, the exponent in a floating-point number
is an integer.

The reader is assumed to be familiar with how integers are represented, and
how they are manipulated with digital hardware from a typical introductory dig-
ital electronics book or course. However, if this is not so, then some review of
this topic appears in Appendix 2.A. The reader should study this material now if
necessary.

Our main (historical) reference text for the material of this chapter is Wilkin-
son [1]. However, Golub and Van Loan [4, Section 2.4] is also a good refer-
ence. Golub and Van Loan [4] base their conventions and results in turn on
Forsythe et al. [5].

2.2 FIXED-POINT REPRESENTATIONS

We now consider fixed-point fractions. We must do so because the mantissa in a
floating-point number is a fixed-point fraction.

We assume that fractions are ¢ 4 1 digits long. If the number is in binary, then
we usually say “¢r + 1 bits” long instead. Suppose, then, that x is a (¢ 4+ 1)-bit
fraction. We shall write it in the form

()2 = xp.x1x2 - - x—1x (xx € {0, 1}). 2.1

An Introduction to Numerical Analysis for Electrical and Computer Engineers, by C.J. Zarowski
ISBN 0-471-46737-5 (© 2004 John Wiley & Sons, Inc.

38

TLFeBOOK



FIXED-POINT REPRESENTATIONS 39

The notation (x), means that x is in base-2 (binary) form. More generally, (x),
means that x is expressed as a base-r number (e.g., if » = 10 this would be the
decimal representation). We use this notation to emphasize which base we are
working with when necessary (e.g., to avoid ambiguity). We shall assume that
(2.1) is a two’s complement fraction. Thus, bit x¢ is the sign bit. If this bit is 1,
we interpret the fraction to be negative; otherwise, it is nonnegative. For example,
(1.1011)2 = (—0.3125)19. [To take the two’s complement of (1.1011),, first com-
plement every bit, and then add (0.0001),. This gives (0.0101); = (0.3125)1¢.] In
general, for the case of a (r + 1)-bit two’s complement fraction, we obtain

—l<x<l-=-27", (2.2)
In fact
j— — — —t —
(=110 =(1.00...00)2, (1 —=2""0=0(0.11...11),. (2.3)
t bits t bits

We may regard (2.2) as specifying the dynamic range of the (¢ + 1)-bit two’s
complement fraction representation scheme. Numbers beyond this range are not
represented. Justification of (2.2) [and (2.3)] would follow the argument for the
conversion of two’s complement integers into decimal integers that is considered
in Appendix 2.A.

Consider the set {x € R| — 1 < x <1 —27"}. In other words, x is a real number
within the limits imposed by (2.2), but it is not necessarily equal to a (# + 1)-bit
fraction. For example, x = V2 —1 is in the range (2.2), but it is an irrational
number, and so does not possess an exact (# + 1)-bit representation. We may choose
to approximate such a number with ¢ + 1 bits. Denote the (¢ 4 1)-bit approximation
of x as Q[x]. For example, Q[x] might be the approximation to x obtained by
selecting an element from set

B={b,=—142""nn=0,1,....,2"T' — 1} cR (2.4)

that is the closest to x, where distance is measured by the metric in Example 1.1.
Note that each number in B is representable as a (¢ + 1)-bit fraction. In fact, B is the
entire set of (¢ + 1)-bit two’s complement fractions. Formally, our approximation
is given by
Olx] = argmin |x — by. (2.5)
ne{0,1,...,21+1 -1}

The notation “argmin” means “let Q[x] be the b, for the n in the set
{0, ..., 20+ — 1} that minimizes |x — b,|.” In other words, we choose the
argument b, that minimizes the distance to x. Some reflection (and perhaps con-
sidering some simple examples for small ¢) will lead the reader to conclude that
the error in this approximation satisfies

lx — Qx]| <27V, (2.6)

TLFeBOOK



40 NUMBER REPRESENTATIONS

The error € = x — Q[x] is called quantization error. Equation (2.6) is an upper
bound on the size (norm) of this error. In fact, in the notation of Chapter 1, if
[lx|| = |x]|, then ||e|| = ||x — Q[x]|| <2~“*D. We remark that our quantization
method is not unique. There are many other methods, and these will generally lead
to different bounds.

When we represent the numbers in a computational problem on a computer,
we see that errors due to quantization can arise even before we perform any oper-
ations on the numbers at all. However, errors will also arise in the course of
performing basic arithmetic operations on the numbers. We consider the sources
of these now.

If x, y are coded as in (2.1), then their sum might not be in the range specified
by (2.2). This can happen only if x and y are either both positive or both negative.
Such a condition is fixed-point overflow. (A test for overflow in two’s complement
integer addition appears in Appendix 2.A, and it is easy to modify it for the problem
of overflow testing in the addition of fractions.) Similarly, overflow can occur when
a negative number is subtracted from a positive number, or if a positive number
is subtracted from a negative number. A test for this case is possible, too, but we
omit the details. Other than the problem of overflow, no errors can occur in the
addition or subtraction of fractions.

With respect to fractions, rounding error arises only when we perform multipli-
cation and division. We now consider errors in these operations.

We will deal with multiplication first. Suppose that x and y are represented
according to (2.1). Suppose also that xo = yp = 0. It is easy to see that the product
of x and y is given by

= (0 + 2127 12T G0+ Y27 32T
= x0y0 + (¥oy1 +X150)2 ™" 4 -+ xy 277 2.7)

This implies that the product is a (2¢ + 1)-bit number. If we allow x and y to be
either positive or negative, then the product will also be 2¢ + 1 bits long. Of course,
one of these bits is the sign bit. If we had to multiply several numbers together,
we see that the product wordsize would grow in some proportion to the number of
factors in the product. The growth is clearly very rapid, and no practical computer
could sustain this for very long. We are therefore forced in general to round off the
product p back down to a number that is only # 4 1 bits long. Obviously, this will
introduce an error.

How should the rounding be done? There is more than one possibility (just as
there is more than one way to quantize). Wilkinson [1, p. 4] suggests the following.
Since the product p has the form

(p)2 = po.p1p2---Pi—1PtPe+1--- P (pr € {0, 1}) (2.3)

TLFeBOOK



FIXED-POINT REPRESENTATIONS 41

we may add 2~CFD to this product, and then simply discard the last ¢ bits of the
resulting sum (i.e., the bits indexed 7 + 1 to 2¢). For example, suppose ¢ = 4, and
consider

0.00111111 = p
+0.00001000 = 27
0.01000111

Thus, the rounded product is (0.0100),. The error involved in rounding in this
manner is not higher in magnitude than %2_’ =2"0+D_ Define the result of the
rounding operation to be fx[p] = fx[xy], so then

lp— fx[pll < 527" (2.9)

[For the previous example, p = (0.00111111),, and so fx[p] = (0.0100),.] It is
natural to measure the sizes of errors in the same way as we measured the size of
quantization errors earlier. Thus, (2.9) is an upper bound on the size of the error
due to rounding a product. As with quantization, other rounding methods would
generally give other bounds. We remark that Wilkinson’s suggestion amounts to
“ordinary rounding.”

Finally, we consider fixed-point division. Again, suppose that x and y are rep-
resented as in (2.1), and consider the quotient ¢ = x/y. Obviously, we must avoid
y = 0. Also, the quotient will not be in the permitted range given by (2.2) unless
|y| > |x|. This implies that when fixed-point division is implemented either the
dividend x or the divisor y need to be scaled to meet this restriction. Scaling is
multiplication by a power of 2, and so should be implemented to reduce rounding
error. We do not consider the specifics of how to achieve this. Another problem
is that x/y may require an infinite number of bits to represent it. For example,
suppose

_(0.0010); _ (0.125)59 _ (1
3

7700110, ~ (037510 _>10 = 00D

The bar over 01 denotes the fact that this pattern repeats indefinitely. Fortunately,
the same recipe for the rounding of products considered above may also be used
to round quotients. If fx[g] again denotes the result of applying this procedure to
q, then

lg — fxlqll < 327" (2.10)

We see that the difficulties associated with division in fixed-point representations
means that fixed-point arithmetic should, if possible, not be used to implement
algorithms that require division. This forces us to either (1) employ floating-point
representations or (2) develop algorithms that solve the problem without the need
for division operations.

Both strategies are employed in practice. Usually choice 1 is easier.

TLFeBOOK



42 NUMBER REPRESENTATIONS
2.3 FLOATING-POINT REPRESENTATIONS

In the previous section we have seen that fixed-point numbers are of very limited
dynamic range. This poses a major problem in employing them in engineering
computations since obviously we desire to work with numbers far beyond the
range in (2.2). Floating-point representations provide the definitive solution to this
problem. We remark (in passing) that the basic organization of a floating-point
arithmetic unit [i.e., digital hardware for floating-point addition and subtraction
appears in Ref. 2 (see pp. 295-306)]. There is a standard IEEE format for floating-
point numbers. We do not consider this standard here, but it is summarized in
Ref. 2 (see pp. 304-306). Some of the technical subtleties associated with the
IEEE standard are considered by Higham [6].

Following Golub and Van Loan [4, p. 61], the set F (subset of R) of floating-
point numbers consists of numbers of the form

X = XQ.X1X2 - Xp_1X; X 1€, (2.11)

where x¢ is a sign bit (which means that we can replace xo by =; this is done in
Ref. 4), and r is the base of the representation [typically » = 2 (binary), or r = 10
(decimal); we will emphasize » = 2]. Therefore, x; € {0, 1,...,r —2,r — 1} for
1 <k <t. These are the digits (bits if » = 2) of the mantissa. We therefore see
that the mantissa is a fraction. ! It is important to note that x| % 0, and this has
implications with regard to how operations are performed and the resulting rounding
errors. We call e the exponent. This is an integer quantity such that L <e < U.
For example, we might represent e as an n-bit two’s complement integer. We will
assume this unless otherwise specified in what follows. This would imply that
(e)) = e,_1€,_2 - --e1ep, and so

2l <<l (2.12)
(see Appendix A for justification). For nonzero x € F, then
m<|x| <M, (2.13a)

where
m=r""1 M=rY1-r". (2.13b)

Equation (2.13) gives the dynamic range for the floating-point representation. With
r = 2 we see that the total wordsize for the floating-point number is # + n + 1 bits.
In the absence of rounding errors in a computation, our numbers may initially

be from the set
G ={x eRlm < |x| < M}U{0}. (2.14)

lIncluding the sign bit the mantissa is (for » = 2) ¢ + 1 bits long. Frequently in what follows we shall
refer to it as being only ¢ bits long. This is because we are ignoring the sign bit, which is always
understood to be present.

TLFeBOOK



FLOATING-POINT REPRESENTATIONS 43

This set is analogous to the set {x € R| —1 < x <1 — 27"} that we saw in the
previous section in our study of fixed-point quantization effects. Again following
Golub and Van Loan [4], we may define a mapping (operator) fI|G — F. Here
¢ = fl[x] (x € G) is obtained by choosing the closest ¢ € F to x. As you might
expect, distance is measured using || - || = | - |, as we did in the previous section.
Golub and Van Loan call this rounded arithmetic [4], and it coincides with the
rounding procedure described by Wilkinson [1, pp. 7-11].

Suppose that x and y are two floating-point numbers (i.e., elements of F) and
that “op” denotes any of the four basic arithmetic operations (addition, subtrac-
tion, multiplication, or division). Suppose |x op y| ¢ G. This implies that either
|x op y| > M (floating-point overflow), or 0 < |x op y| < m (floating-point under-
flow) has occurred. Under normal circumstances an arithmetic fault such as over-
flow will not happen unless an unstable procedure is being performed. The issue
of “numerical stability” will be considered later. Overflows typically cause runtime
error messages to appear. The underflow arithmetic fault occurs when a number
arises that is not zero, but is too small to represent in the set F. This usually poses
less of a problem than overflow. 2 However, as noted before, we are concerned
mainly with rounding errors here. If |x op y| € G, then we assume that the com-
puter implementation of x op y will be given by fI[x op y]. In other words, the
operator fI models rounding effects in floating-point arithmetic operations. We
remark that where floating-point arithmetic is concerned, rounding error arises in
all four arithmetic operations. This contrasts with fixed-point arithmetic wherein
rounding errors arise only in multiplication and division.

It turns out that for the floating-point rounding procedure suggested above

fllx op yl = (x op y)(1 +¢), (2.15)

where
lel < gri7f(=27" if r=2). (2.16)

We shall justify this only for the case r = 2. Our arguments will follow those of
Wilkinson [1, pp. 7-11].
Let us now consider the addition of the base-2 floating-point numbers

X = X0.X] - Xy X2% (2.17a)
[ —
=my
and
Y =Y0.y1- -y X2, (2.17b)
—
=my

and we assume that |x| > |y|. (If instead |y| > |x|, then reverse the roles of x and
v.) If ey —ey > t, then
fllx +yl==x. (2.18)

2Underflows are simply set to zero on some machines.

TLFeBOOK



44 NUMBER REPRESENTATIONS

For example, if ¢ = 4, and x = 0.1001 x 2%, and y = 0.1110 x 2~!, then to add
these numbers, we must shift the bits in the mantissa of one of them so that both
have the same exponent. If we choose y (usually shifting is performed on the
smallest number), then y = 0.00000111 x 2*. Therefore, x +y = 0.10010111 x
24, but then fI[x + y] = 0.1001 x 2* = x.

Now if instead we have e, — e, < t, we divide y by 2™ by shifting its man-
tissa e, — e, positions to the right. The sum x + 2% “ y is then calculated exactly,
and requires < 2¢ bits for its representation. The sum is multiplied by a power of 2,
using left or right shifts to ensure that the mantissa is properly normalized [recall
that for x in (2.11) we must have x; # 0]. Of course, the exponent must be modi-
fied to account for the shift of the bits in the mantissa. The 2¢-bit mantissa is then
rounded off to ¢ bits using fI. Because we have |m| 4297 |my| <14+ 1=2,
the largest possible right shift is by one bit position. However, a left shift of up to ¢
bit positions might be needed because of the cancellation of bits in the summation
process. Let us consider a few examples. We will assume that t = 4.

Example 2.1 Let x = 0.1001 x 2%, and y = 0.1010 x 2!. Thus
0.10010000 x 2*

+0.00010100 x 2*
0.10100100 x 2*

and the sum is rounded to 0.1010 x 24 (computed sum).
Example 2.2 Let x = 0.1111 x 2%, and y = 0.1010 x 22. Thus

0.11110000 x 2*
+0.00101000 x 2*
1.00011000 x 2*

but 1.00011000 x 2* = 0.100011000 x 23, and this exact sum is rounded to 0.1001
x 25 (computed sum).

Example 2.3 Let x = 0.1111 x 27%, and y = —.1110 x 27*. Thus
0.11110000 x 2~*

—0.11100000 x 2~*
0.00010000 x 2~*

but 0.00010000 x 2~% = 0.1000 x 2~7, and this exact sum is rounded to 0.1000 x
27 (computed sum). Here there is much cancellation of the bits leading in turn
to a large shift of the mantissa of the exact sum to the left. Yet, the computed sum
is exact.

TLFeBOOK



FLOATING-POINT REPRESENTATIONS 45

We observe that the computed sum is obtained by computing the exact sum,
normalizing it so that the mantissa so.S1 - - - S;—15:Sr+1 - - - §2; satisfies s1 =1 (i.e.,
s1 # 0), and then we round it to ¢ places (i.e., we apply fI). If the normalized
exact sum is s = my X 2°(= x + y), then the rounding error ¢’ is such that |¢/| <
%2” 2¢ . Essentially, the error €’ is due to rounding the mantissa (a fixed-point
number) according to the method used in Section 2.2. Because of the form of my,
%295 <|s| < 2%, and so

fllx+yl=x+y)1 +e€) (2.19)

which is just a special case of (2.15). This expression requires further explanation,
however. Observe that

s = flls)l _ls =G +eDl €l _ 1o=toes

Is| Is| Is| |s]
which is the relative error’ due to rounding. Because we have %2“‘ <|s| < 2%,
this error is biggest when |s| = %2“‘, so therefore we conclude that

Is = fls1I <27, (2.20)
|51

From (2.19) fI[s] = s + se, so that |s — fI[s]| = |s||e|, or |e| = |s — fl[s]l/|s].
Thus, |e| <277, which is (2.16). In other words, |€’| is the absolute error, and |€|
is the relative error.

Finally, if x =0 or y = 0 then no rounding error occurs: € = 0. Subtraction
results do not differ from addition.

Now consider computing the product of x and y in (2.17). Since x = m, x 2%,
and y = my x 2% with x; # 0, and y; # 0 we must have

13 < Imymy| < 1. (2.21)

This implies that it may be necessary to normalize the mantissa of the product with
a shift to the left, and an appropriate adjustment of the exponent as well. The 2z-bit
mantissa of the product is rounded to give a ¢-bit mantissa. If x =0, or y = 0 (or
both x and y are zero), then the product is zero.

3In general, if a is the exact value of some quantity and a is some approximation to a, the absolute
error is ||a — a||, while the relative error is

lla —all

(a #0).

[all

The relative error is usually more meaningful in practice. This is because an error is really “big” or
“small” only in relation to the size of the quantity being approximated.

TLFeBOOK



46 NUMBER REPRESENTATIONS

We may consider a few examples. We will suppose ¢ = 4. Begin with x =
0.1010 x 22, and y = 0.1111 x 2!, so then

xy = 0.10010110 x 23,

and so fl[xy] = 0.1001 x 23 (computed product). If now x = 0.1000 x 2%, y =
0.1000 x 271, then, before normalizing the mantissa, we have

xy = 0.01000000 x 23,
and after normalization we have
xy = 0.10000000 x 22

so that fI[xy] = 0.1000 x 2> (computed product). Finally, suppose that x =
0.1010 x 29, and y =0.1010 x 20, 50 then the unnormalized product is

xy = 0.01100100 x 2°
for which the normalized product is
xy = 0.11001000 x 27!,

so finally fI[xy] =0.1101 x 2~! (computed product).

The application of fI to the normalized product will have exactly the same
effect as it did in the case of addition (or of subtraction). This may be under-
stood by recognizing that a 2¢-bit mantissa will “look the same” to operator f/
regardless of how that mantissa was obtained. It therefore immediately follows
that

Flixyl = @) + o), (2.22)

which is another special case of (2.15), and |e| < 277, which is (2.16) again.
Now consider the quotient x/y, for x and y # 0 in (2.17),

X my X 2%

q=—

my
y my x 2¢ N my

X 2470 =mg x 2% (2.23)

(so my =my/my, and e; = ex — ey). The arithmetic unit in the machine has an
accumulator that we assume contains m, and which is “double length” in that it
is 2t bits long. Specifically, this accumulator initially stores xg.xy---x;0---0. If

t bits
|mx| > |my| the number in the accumulator is shifted one place to the right, and

S0 e, is increased by one (i.e., incremented). The number in the accumulator is
then divided by m, in such a manner as to give a correctly rounded ¢-bit result.
This implies that the computed mantissa of the quotient, say, m,; = qo.q1 - - g,

TLFeBOOK



FLOATING-POINT REPRESENTATIONS 47

satisfies the normalization condition ¢; = 1, so that % < |mg4| < 1. Once again we
must have

X X
fl [_} =21+ (2.24)
vl oy

such that |e| < 277, Therefore, (2.15) and (2.16) are now justified for all instances
of op.

We complete this section with a few examples. Suppose x = 0.1010 x 22, and
y = 0.1100 x 272, then

0.1010 x 22 0.10100000 x 22

X
1= T 01100x 22~ 0.1100 x 2-2
0.10100000
= x2*=10.11010101 x 2*
0.1100 x

so that fI[g] = 0.1101 x 2* (computed quotient). Now suppose that x = 0.1110 x
23, and y = 0.1001 x 272, and so

0.1110 x 23 0.01110000 x 24

X
1= 3 701001 x 22~ 0.1001 x 2-2
0.01110000
= x2°=0.11000111 x 2°
0.1001 x

so that fI[g] = 0.1100 x 2° (computed quotient).

Thus far we have emphasized ordinary rounding, but an alternative implemen-
tation of f1 is to use chopping. If x = (Z,fil xk2_k) x 2¢, then, for chopping
operator fI, we have fl[x] == (}j_; xx27%) x 2¢ (chopping x to #+1 bits
including the sign bit). Thus, the absolute error is

l€'] = |x — fI[x]| = i a2k 2¢ <2¢ i 27k
k=t+1 k=t+1
(as xx = 1 for all k > 1), but since Y} 72, ., 27F =277, we must have
l€') = |x — fllx]] < 2772°,
and so the relative error for chopping is

_ oAl 2

— 1
x| Toe

€]

(because we recall that |x| > %26 ). We see that the error in chopping is somewhat
bigger than the error in rounding, but chopping is somewhat easier to implement.

TLFeBOOK



48  NUMBER REPRESENTATIONS
2.4 ROUNDING EFFECTS IN DOT PRODUCT COMPUTATION

Suppose x, y € R". We recall from Chapter 1 (and from elementary linear algebra)
that the vector dot product is given by

n—1

oy =xTy=y"x =) xme (2.25)
k=0

This operation occurs in matrix—vector product computation (e.g., y = Ax, where
A € R™M), digital filter implementation (i.e., computing discrete-time convolu-
tion), numerical integration, and other applications. In other words, it is so common
that it is important to understand how rounding errors can affect the accuracy of a
computed dot product.

We may regard dot product computation as a recursive process. Thus

n—1 n—2
Sn—1 = Zxkyk = Zxk))k + Xp—1Yn—1 = Sp—2 + Xp—1Yn—1-
k=0 k=0
So
Sk = Sk—1 + Xk Yk (2.26)
for k=0,1,...,n—1, and s_; = 0. Each arithmetic operation in (2.26) is a

separate floating-point operation and so introduces its own error into the over-
all calculation. We would like to obtain a general expression for this error. To
begin, we may model the computation process according to

So = fllxoyol

§1= flSo + fllxiy1]]

$p = fIIS1 + fllx2y2]]

Sp—2 = fl[§n—3 + fllxp—2yn-211
Sp—1 = fl[fn—Z + fllxp—1yn-11l. (2.27)

From (2.15) we may write

50 = (xoyo) (1 + 80)
St =[50 + (xiyD (1 +8DI(1 +€1)
S2 = [81 + (2y2) (1 + 82)1(1 + €2)

TLFeBOOK



ROUNDING EFFECTS IN DOT PRODUCT COMPUTATION 49
Sn— = [Sn—3 + (xXn—2Yn—2)(1 + 8,—2)1(1 + €,-2)
Sn—t = [Sn—2 + (Xp—1yn—1)A + 8D +€,4-1), (2.28)

where |8x| <27' (for k=0,1,...,n—1), and |e| <27" (for k=1,2,...,
n — 1), via (2.16). It is possible to write*

n—1 n—1
ot =Y xan(l+ ) = su1+ Y X%tk (2.29)
k=0 k=0
where
n—1
L+ y=+80) [[(+e)eo=0). (2.30)
j=k

Note that the IT notation means, for example

n
ka = X0X1X2 " Xp—1Xn, (2.31)
k=0

where IT is the symbol to compute the product of all x; for k =0, 1, ..., n. The

similarity to how we interpret X notation should therefore be clear.
The absolute value operator is a norm on R, so from the axioms for a norm
(recall Definition 1.3), we must have

n—1

st = Sucal = IxTy = FITY <) el nl. (2.32)
k=0

In particular, obtaining this involves the repeated use of the triangle inequality.
Equation (2.32) thus represents an upper bound on the absolute error involved in
computing a vector dot product. Of course, the notation f/[x” y] symbolizes the
floating-point approximation to the exact quantity x”y. However, the bound in
(2.32) is incomplete because we need to appropriately bound the numbers yx.

To obtain the bound we wish involves using the following lemma.

Lemma 2.1: We have
l+x<e*, x>0 (2.33a)
e <1+1.0lx, 0<x <.0l. (2.33b)
4Equation (2.29) is most easily arrived at by considering examples for small n, for instance

53 =xpy0(1 +380)(1 +€0)(1 + (1 +e2)(1 +€3) +x1y1(1 + )1+ €)1+ €2)(1 +€3)

+x2y2(14+82)(1 +€2)(1 + €3) + x3y3(1 4+ 83)(1 + €3),

and using such examples to “spot the pattern.”

TLFeBOOK



50 NUMBER REPRESENTATIONS

Proof Begin with consideration of (2.33a). Recall that for —oo < x < 00

o0 xn
X -
e _Zn!. (2.34)
n=0
Therefore
o0 xn
e =1+x +Z—'
= n!
so that
o0 xn
X _ r
l+x=e¢e Zn!’
n=2

but the terms in the summation are all nonnegative, so (2.33a) follows immediately.
Now consider (2.33b), which is certainly valid for x = 0. The result will follow

if we prove
ef —1
<1.01 (x #0).
X
From (2.34)
e —1 > x™ > x™
x Z(m+1)! 2(m+1)!
m=0 m=1
so we may also equivalently prove instead that
0 XM
> —— <001
m=1 (m + 1)'
for 0 < x < 0.01. Observe that
0 m
X ! 1o, 13 ! 2, 34,4
- - _ — — e < — -
n;(m+1)! T Tt s
(0.¢] 1 o
k k
= — = — —_ 1 —
X+ Zx 2x + X X
k=2 k=0
1 1 I 1+x
S l-x 2 27 1—x
It is not hard to verify that
11
R
2 1—x

for 0 < x < 0.01. Thus, (2.33b) follows.

TLFeBOOK



ROUNDING EFFECTS IN DOT PRODUCT COMPUTATION 51
Ifn=1,2,3,..., and if 0 < nu < 0.01, then

A +uw)" < ()" [via (2.333)]
<14+ 1.0lnu [via (2.33b)]. (2.35)

Now if |8;| <u fori =0,1,...,n — 1 then

n—1 n—1

[Ta+s) <JJa+1sD < +w"

i=0 i=0

so via (2.35)

n—1

[Ja+6)<1+101nu, (2.36)
i=0

where we must emphasize that 0 < nu < 0.01. Certainly there is a § such that

n—1

1+6= ]‘[(1 +8), (2.37)
i=0

and so from (2.36), |§| < 1.01nu. If we identify y; with § in (2.33) for all £, then

lvk] < 1.01nu (2.38)

for which we consider u = 27 [because in (2.30) both |¢;| and |§;| < 277]. Using
(2.38) in (2.32), we obtain

n—1

"y = FUxT Y1 < 1.0Tnu Y ey, (2.39)
k=0

but ZZ;(]) Xk ve| = ZZ;(]) |xk||vk|, and this may be symbolized as |x|”|y| (so that
Ix| = [xollx1] - - - |[xa—1117). Thus, we may rewrite (2.39) as

IxTy — £lixTy]| < 1.01nulx|T|y|. (2.40)
Observe that the relative error satisfies

Ty = fUT Y
IxTy| -

x|yl

1.01nu .
IxTy|

(2.41)

The bound in (2.41) may be quite large if |x|7|y| > |xTy|. This suggests the
possibility of a large relative error. We remark that since u = 277, nu < 0.01 will
hold in all practical cases unless n is very large (a typical value for ¢ is t = 56).
The potentially large relative errors indicated by the analysis we have just made
are a consequence of the details of how the dot product was calculated. As noted
on p. 65 of Ref. 4, the use of a double-precision accumulator to compute the dot

TLFeBOOK



52 NUMBER REPRESENTATIONS

product can reduce the error dramatically. Essentially, if x and y are floating-
point vectors with 7-bit mantissas, the “running sum” s [of (2.26)] is built up in
an accumulator with a 2¢-bit mantissa. Multiplication of two ¢-bit numbers can
be stored exactly in a double-precision variable. The large dynamic floating-point
range limits the likelihood of overflow/underflow. Only when final sum s,_; is
written to a single-precision memory location will there be a rounding error. It
therefore follows that when this alternative procedure is employed, we get

FlxTy1=xTy(A 4+ 68) (2.42)

for which |§] &~ 27" (= u). Clearly, this is a big improvement.
The material of this section shows

1. The analysis required to obtain insightful bounds on errors can be quite
arduous.

2. Proper numerical technique can have a dramatic effect in reducing errors.
3. Proper technique can be revealed by analysis.

The following example illustrates how the bound on rounding error in dot prod-
uct computation may be employed.

Example 2.4 Assume the existence of a square root function such that
flV/x] = /x(1 +¢€) and |¢| < u. We use the algorithm that corresponds to the
bound of Eq. (2.40) to compute x” x (x € R"), and then use this to give an algo-
rithm for ||x|| = v/xTx. This can be expressed in the form of pseudocode:

S_1:=0;

for k := 0ton — 1 do begin
Sk = Sk_1 +XE;
end;

IIXIl := /Sn=1:

We will now obtain a bound on the relative error due to rounding in the computation
of ||x||. We will use the fact that /1 +x < 1+ x (for x > 0).
Now

fl[xTx] —xTx

€6 = — fllx"x] =xTx(1 4+ €)),

xTx
and via (2.41)
ler] < 1.01nu bl Ix]
= Ty
l|x][?
= 1.01lnu 5 = 1.01nu
[Ix]|
(x T Ixl = 32020 I l? = Sp—g x2 = IlxI1%, and [[x][?] = [|x]|?). So in “short-

hand” notation, fI[/ fl[xTx]]1 = fI[||x||], and
FlxIN = vVaTxy/1+e(14¢€) =|lx]lv1+ e (1 +e),

TLFeBOOK



MACHINE EPSILON 53

and /T4 € <1+¢€,s0
SUIxIT = x4+ €D (1 +€).
Now (1 +€1)(1 +€) =1+ €] + € + €1€, implying that
[lx][(L+ e (1 4 €) = [Ix][ + |[x]|[(e1 + € + €1€)
so therefore
U] < 1lxl] 4 1lxll(e1 4 € + €re€),

and thus
SUxNT = 11x]l

x| <le1 + €+ €€l <u+1.01nu + 1.01nu>
X

=u[l 4+ 1.01n 4 1.01nu].

Of course, we have used the fact that |e]| < u.

2.5 MACHINE EPSILON

In Section 2.3 upper bounds on the error involved in applying the operator fI were
derived. Specifically, we found that the relative error satisfies

| = lx — fI[x]| - { 2t (rounding) (2.43)

x|  — | 27" (chopping)

As suggested in Section 2.4, these bounds are often denoted by u; that is, u = 277
for rounding, and u = 27'*! for chopping. The bound u is often called the unit
roundoff [4, Section 2.4.2].

The details of how floating-point arithmetic is implemented on any given com-
puting machine may not be known or readily determined by the user. Thus, u
may not be known. However, an “experimental” approach is possible. One may
run a simple program to “estimate” u, and the estimate is the machine epsilon,
denoted €)s. The machine epsilon is defined to be the difference between 1.0 and
the next biggest floating-point number [6, Section 2.1]. Consequently, €y = 27+,
A pseudocode to compute €y is as follows:

stop :=1;
eps:=1.0;
while stop == 1 do begin
eps := eps/2.0;
X :=1.0 + eps;
ifx <1.0
begin

TLFeBOOK



54 NUMBER REPRESENTATIONS

stop :=0;
end;
end,;
eps := 2.0 % eps;

This code may be readily implemented as a MATLAB routine. MATLAB stores
eps (= €)r) as a built-in constant, and the reader may wish to test the code above
to see if the result agrees with MATLAB eps (as a programming exercise).

In this book we shall (unless otherwise stated) regard machine epsilon and unit
roundoff as practically interchangeable.

APPENDIX 2.A REVIEW OF BINARY NUMBER CODES

This appendix summarizes typical methods used to represent integers in binary.
Extension of the results in this appendix to fractions is certainly possible. This
material is normally to be found in introductory digital electronics books. The
reader is here assumed to know Boolean algebra. This implies that the reader
knows that 4 can represent either algebraic addition, or the logical OrR operation.
Similarly, xy might mean the logical AND of the Boolean variables x and y, or it
might mean the arithmetic product of the real variables x and y. The context must
be considered to ascertain which meaning applies.

Below we speak of “complements.” These are used to represent negative inte-
gers, and also to facilitate arithmetic with integers. We remark that the results of
this appendix are presented in a fairly general manner. Thus, the reader may wish,
for instance, to see numerical examples of arithmetic using two’s complement (2’s
comp.) codings. The reader can consult pp. 276—-280 of Ref. 2 for such examples.
Almost any other books on digital logic will also provide a source of numerical
examples [3].

We may typically interpret a bit pattern in one of four ways, assuming that the
bit pattern is to represent a number (negative or nonnegative integer). An example
of this is as follows, and it provides a summary of common representations (e.g.,
for n = 3 bits):

Bit Pattern Unsigned Integer 2’s Comp. 1’s Comp. Sign Magnitude
0 0 O 0 0 0 0
0 0 1 1 1 1 1
0 1 0 2 2 2 2
0o 1 1 3 3 3 3
1 0 O 4 —4 -3 -0
1 0 1 5 -3 -2 -1
1 1 0 6 -2 -1 -2
1 1 1 7 -1 -0 -3

TLFeBOOK



REVIEW OF BINARY NUMBER CODES 55

In the four coding schemes summarized in this table, the interpretation of the bit
pattern is always the same when the most significant bit (MSB) is zero. A similar
table for n = 4 appears in Hamacher et al. [2, see p. 271].

Note that, philosophically speaking, the table above implies that a bit pattern
can have more than one meaning. It is up to the engineer to decide what meaning
it should have. Of course, this will be a function of purpose. Presently, our purpose
is that bit patterns should have meaning with respect to the problems of numerical
computing; that is, bit patterns must represent numerical information.

The relative merits of the three signed number coding schemes illustrated in the
table above may be summarized as follows:

Coding Scheme Advantages Disadvantages
2’s complement Simple adder/subtracter Circuit for finding the 2’s comp.
circuit more complex than circuit for
Only one code for 0 finding the 1’s comp.
1’s complement Easy to obtain the 1’s comp. Circuit for addition and
of a number subtraction more complex
than for the 2’s comp.
adder/subtracter
Two codes for 0
Sign magnitude Intuitively obvious code Has the most complex

adder/subtracter circuit
Two codes for O

The following is a summary of some formulas associated with arithmetic (i.e.,
addition and subtraction) with r’s and (r — 1)’s complements. In binary arithmetic
r = 2, while in decimal arithmetic r = 10. We emphasize the case r = 2.

Let A be an n-digit base-r number (integer)

A=A, 1Ap2---A1Ap

where Ay € {0,1,...,r —2,r —1}. Digit A,_; is the most significant digit
(MSD), while digit Ag is the least significant digit (LSD). Provided that A is
not negative (i.e., is unsigned), we recognize that to convert A to a base-10 repre-
sentation (i.e., ordinary decimal number) requires us to compute

n—1
Z Akrk.
k=0

If A is allowed to be a negative integer, the usage of this summation needs modi-
fication. This is considered below.
The r’s complement of A is defined to be

Mm— A, A#£0

0. A=0 (2.A.1)

r’s complement of A = A* = {

TLFeBOOK



56 NUMBER REPRESENTATIONS
The (r — 1)’s complement of A is defined to be
(r — 1)’s complement of A = A=0"-1)—-A (2.A.2)

It is important not to confuse the bar over the A in (2.A.2) with the Boolean NOT
operation, although for the special case of r = 2 the bar will denote complemen-
tation of each bit of A; that is, for r =2

where the bar now denotes the logical NOT operation. More generally, if A is a
base-r number

A=@r—1)—A1 =D)=A2 - r=1)=A1 r—=1)=-A4Ag

Thus, to obtain A, each digit of A is subtracted from r — 1. As a consequence,
comparing (2.A.1) and (2.A.2), we see that

A*=A+1 (2.A.3)

where the plus denotes algebraic addition (which takes place in base r).
Now we consider the three (previously noted) different methods for coding
integers when r = 2:

1. Sign-magnitude coding
2. One’s complement coding
3. Two’s complement coding

In all three of these coding schemes the most significant bit (MSB) is the sign bit.
Specifically , if A,—1 = 0, the number is nonnegative, and if A,,_; = 1, the number
is negative. It can be shown that when the complement (either one’s or two’s) of
a binary number is taken, this is equivalent to placing a minus sign in front of the
number. As a consequence, when given a binary number A = A,_1A,—2--- A1Ap
coded according to one of these three schemes, we may convert that number to a
base-10 integer according to the following formulas:

1. Sign-Magnitude Coding. The sign-magnitude binary number A = A, _1A;—2
--+ A1Ag (Ag € {0, 1}) has the base-10 equivalent

n—2
ZA,-z", A1 =0
P (2.A.4)
n—2
—> A2, A =1
i=0

TLFeBOOK



REVIEW OF BINARY NUMBER CODES 57

With this coding scheme there are two codings for zero:

(0)10 = (000 - --00)2 = (100 - - - 00),

n n

. One’s Complement Coding. In this coding we represent —A as A. The one’s
complement binary number A = A,,_1A;,—2---A1Ap (Ar € {0, 1}) has the
base-10 equivalent

n—2
d A2 A, =0
A=1 = (2.A.5)
n—2
“> A2 A =1
i=0

With this coding scheme there are also two codes for zero:

(0)19 = (000---00), = (111---11),

n n

. Two’s Complement Coding. In this coding we represent —A as A* (= A + 1).
The two’s complement binary number A = A,,_1A,—2--- A1Ag (Ar € {0, 1})
has the base-10 equivalent

n—2
A=-2"""A, 1+ ) A2 (2.A.6)
i=0
The proof is as follows. If A,_; = 0, then A > 0 and immediately the base-10

equivalent is A = Z?;oz A;2" (via the procedure for converting a number in
base-2 to one in base-10), which is (2.A.6) for A,_; = 0. Now, if A,,_| =1,
then A < 0, and so if we take the two’s complement of A we must get |A[:

Al =A+1
=1-A-DA—-Ap—2)---(1—A)1—Ap)+00---01

n

n—1

— 2(1 — A2 +1
i=0
n—2
=21 = A )+ ) (1 - A2 +1
i=0

n—2 - n—2
=Y 2 41-) A2(A, = 1)
=0 i =0

TLFeBOOK



58 NUMBER REPRESENTATIONS
1 _ 2n 1 1— n+1
+1—ZA 2! (VlaZa = L
n—2
-y
i=0

and so A = —2""1 4 3172 A;21, which is (2.A.6) for A,_; = 1.
In this coding scheme there is only one code for zero:

(0)10 = (000 - - - 00)2

n

When n-bit integers are added together, there is the possibility that the sum may
not fit in n bits. This is overflow. The condition is easy to detect by monitoring
the signs of the operands and the sum. Suppose that x and y are n-bit two’s
complement coded integers, so that the sign bits of these operands are x,,_; and
Yn—1. Suppose that the sum is denoted by s, implying that the sign bit is s,_;. The
Boolean function that tests for overflow of s = x 4 y (algebraic sum of x and y) is

T =xp—1Yn—15n—1+ Xn—1Yy_15n—1-

The first term will be logical 1 if the operands are negative while the sum is
positive. The second term will be logical 1 if the operands are positive but the sum
is negative. Either condition yields T = 1, thus indicating an overflow. A similar
test may be obtained for subtraction, but we omit this here.

The following is both the procedure and the justification of the procedure for
adding two’s complement coded integers.

Theorem 2.A.1: Two’s Complement Addition If A and B are n-bit two’s
complement coded numbers, then compute A + B (the sum of A and B) as though
they were unsigned numbers, discarding any carryout.

Proof Suppose that A > 0, B > 0; then A + B will generate no carryout from
the bit position n — 1 since A,—1 = B,—1 = 0 (i.e., the sign bits are zero-valued),
and the result will be correct if A + B < 2"~!. (If this inequality is not satisfied,
then the sign bit will be one, indicating a negative answer, which is wrong. This
amounts to an overflow.)

Suppose that A > B > 0; then

A+ (-B)=A+B*=A+2"-B=2"4+A-B,

and if we discard the carryout, this is equivalent to subtracting 2" (because the
carryout has a weight of 2"). Doing this yields A + (—B) = A — B.

TLFeBOOK



PROBLEMS 59

Similarly
(rA)+B=A*+B=2"—A+B=2"+B—A,

and discarding the carry out yields (—A) + B = B — A.
Again, suppose that A > B > 0, then

(—A)+(-B)=A"+B*=2"-A+2"-B=2"+[2"— (A+ B)]
=2"+(A+B)"

so discarding the carryout gives (—A) + (—B) = (A + B)*, which is the desired
two’s complement representation of —(A + B), provided A + B < 2"~!. (If this
latter inequality is not satisfied, then we have an overflow.)

The procedure for subtraction (and its justification) follows similarly. We omit
these details.

REFERENCES

1. J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood
Cliffs, NJ, 1963.

2. V. C. Hamacher, Z Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.,
McGraw-Hill, New York, 1990.

3. J. F. Wakerly, Digital Design Principles and Practices, Prentice-Hall, Englewood Cliffs,
NJ, 1990.

4. G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins Univ.
Press, Baltimore, MD, 1989.

5. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical
Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

6. N. J. Higham, Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA,
1996.

PROBLEMS

2.1. Let fx[x] denote the operation of reducing x (a fixed-point binary fraction)
to t 4+ 1 bits (including the sign bit) according to the Wilkinson rounding
(ordinary rounding) procedure in Section 2.2. Suppose that a = (0.1000),,
b = (0.1001);, and ¢ = (0.0101)3, so t = 4 here. In arithmetic of unlimited
precision, we always have a(b + ¢) = ab + ac. Suppose that a practical com-
puting machine applies the operator fx[-] after every arithmetic operation.

(@) Find x = fx[fx[ab] + fx[ac]].
(b) Find y = fx[afx[b+ c]].

Do you obtain x = y?

TLFeBOOK



60

2.2

2.3.

24.

NUMBER REPRESENTATIONS

This problem shows that the order of operations in an algorithm implemented
on a practical computer can affect the answer obtained.

Recall from Section 2.2 that
_ (1 _
q= (3)]0 = (0.01),.

Find the absolute error in representing g as a (¢ + 1)-bit binary number. Find
the relative error. Assume both ordinary rounding and chopping (defined at
the end of Section 2.3 with respect to floating-point arithmetic).

Recall that we define a floating-point number in base r to have the form
X = X0.X1X2 - Xr_1X; X71°,
~—
=f

where xo € {+, —} (sign digit), x; € {0, 1,...,r — 1} fork=1,2,...,t, ¢
is the exponent (a signed integer), and x1 # 0 (so r~! < |f| < 1) if x # 0.
Show that for x # 0

m < |x| <M,
where for L < e < U, we have
m=r=t M=rY1-r).

Suppose r = 10. We may consider the result of a decimal arithmetic operation
in the floating-point representation to be

o0
x=+ <Zxk10—’<> x 10,
k=1

(a) If fl[x] is the operator for chopping, then
fllx] = (£x1x2 - - xp—1x) x 10,

thus, all digits x; for k > ¢ are forced to zero.

(b) If fl[x] is the operator for rounding then it is defined as follows. Add
0.00---01 to the mantissa if x;41 > 5, but if x;4; < 5, the mantissa is
—_———

t+1 digits
unchanged. Then all digits x; for k > ¢ are forced to zero.

Show that the absolute error for chopping satisfies the upper bound
lx — fIlx]] < 107710°,
and that the absolute error for rounding satisfies the upper bound

lx — fllx]| < $107"10¢.

TLFeBOOK



2.5.

2.6.

2.7.

2.8.

PROBLEMS 61

Show that the relative errors satisfy

X = Flix]l _ 10'="  (chopping)
x| - %101—f (rounding)

el =

Suppose that = 4 and r = 2 (i.e., we are working with floating-point binary
numbers). Suppose that we have the operands

x =0.1011 x 1073, y = —0.1101 x 10%.

Find x + y, x — y, and xy. Clearly show the steps involved.

Suppose that A € R"*", x € R", and that fI[Ax] represents the result
of computing the product Ax on a floating-point computer. Define |A| =
[ai.j1)ij=0.1....n-1, and |x] = [lxo|[x1] -~ [xu—1]]". We have

fl[Ax] = Ax + e,

where e € R” is the error vector. Of course, e models the rounding errors
involved in the actual computation of product Ax on the computer. Justify
the bound

le] < 1.01nu|Al|x|.

Explain why a conditional test such as

if x # y then begin
fi=f/x—y);
end;

is unreliable.
(Hint: Think about dynamic range limitations in floating-point arithmetic.)

Suppose that x:[xox1-~-xn_1]T is a real-valued vector, ||x||co =

1/2
maxo<k<n—1 |Xk|, and that we wish to compute |[x||2 =[ Z;(l) x,g]

Explain the advantages, and disadvantages of the following algorithm with
respect to computational efficiency (number of arithmetic operations, and
comparisons), and dynamic range limitations in floating-point arithmetic:

m := |IX]|oo:

s:=0;

for k := 0ton — 1 do begin
S =5+ (X /m)2;
end;

|IXll2 := m/s;

Comments regarding computational efficiency may be made with respect to
the pseudocode algorithm in Example 2.4.

TLFeBOOK



62 NUMBER REPRESENTATIONS

2.9. Recall that for x2 + bx + ¢ = 0, the roots are

—b+ /b2 —4c —b —+/b? —4c
XNl=— xXxp=——
: 2 2 2
If b = —0.3001, ¢ = 0.00006, then the “exact” roots for this set of parame-

ters are
x1 = 0.29989993, x, = 2.0006673 x 1074,

Let us compute the roots using four-digit (i.e., t = 4) decimal (i.e., r = 10)
floating-point arithmetic, where, as a result of rounding quantization b, and
c are replaced with their approximations

b=-0.3001 =b, ©=0.00013#c.

Compute X,, which is the approximation to x obtained using b and ¢ in
place of b and c. Show that the relative error is

22 075

X2

(i.e., the relative error is about 75%). (Comment: This is an example of
catastrophic cancellation.)

2.10. Suppose a, b € R, and x = a — b. Floating-point approximations to a and b
are a = flla] = a(l +¢,) and b= fI[b] = b(1 + €p), respectively. Hence
the floating-point approximation to x is £ = a — b. Show that the relative
error is of the form

ol 1]
T la—bl"

|e|:'x_

What is «? When is |e| large?

2.11. For a # 0, the quadratic equation ax” + bx + ¢ = 0 has roots given by

. —b + +/b? — 4ac . —b — +/b? — 4ac
l: -_— 2 = .
2a 2a

For ¢ # 0, quadratic equation cx? + bx 4 a = 0 has roots given by

o —b + Vb* — 4ac o —b — Vb% —4dac
1= Xy = :
2c 2c

(a) Show that xjx) = 1 and x2x] = 1.

(b) Using the result from Problem 2.10, explain accuracy problems that can
arise in computing either x; or x; when b> > |4ac|. Can you use the
result in part (a) to alleviate the problem? Explain.

TLFeBOOK



3 Sequences and Series

3.1 INTRODUCTION

Sequences and series have a major role to play in computational methods. In this
chapter we consider various types of sequences and series, especially with respect
to their convergence behavior. A series might converge “mathematically,” and yet
it might not converge “numerically” (i.e., when implemented on a computer). Some
of the causes of difficulties such as this will be considered here, along with possible
remedies.

3.2 CAUCHY SEQUENCES AND COMPLETE SPACES

It was noted in the introduction to Chapter 1 that many computational processes
are “iterative” (the Newton—Raphson method for finding the roots of an equation,
iterative methods for linear system solution, etc.). The practical effect of this is to
produce sequences of elements from function spaces. The sequence produced by the
iterative computation is only useful if it converges. We must therefore investigate
what this means.

In Chapter 1 it was possible for sequences to be either singly or doubly infinite.
Here we shall assume sequences are singly infinite unless specifically stated to the
contrary.

We begin with the following (standard) definition taken from Kreyszig
[1, pp. 25-26]. Examples of applications of the definitions to follow will be con-
sidered later.

Definition 3.1: Convergence of a Sequence, Limit A sequence (x,) in a
metric space X = (X, d) is said to converge, or to be convergent iff there is an
x € X such that

lim d(x,,x) =0. (3.1)
n—oQ

The element x is called the limit of (x,) (i.e., limit of the sequence), and we may
state that
lim x, = x. (3.2)
n—oo

An Introduction to Numerical Analysis for Electrical and Computer Engineers, by C.J. Zarowski
ISBN 0-471-46737-5 (© 2004 John Wiley & Sons, Inc.

63

TLFeBOOK



64 SEQUENCES AND SERIES

We say that (x,) converges to x or has a limit x. If (x,) is not convergent, then
we say that it is a divergent sequence, or is simply divergent.

A shorthand expression for (3.2) is to write x, — x. We observe that sequence (x;)
is defined to converge (or not) with respect to a particular metric here denoted d
(recall the axioms for a metric space from Chapter 1). We remark that it is possible
that, for some (x,) in some set X, the sequence might converge with respect to
one metric on the set, but might not converge with respect to another choice of
metric. It must be emphasized that the limit x must be an element of X in order
for the sequence to be convergent.

Suppose, for example, that X = (0, 1] C R, and consider the sequence x, =
nl?(n € Z™7). Suppose also that d(x, y) = |x — y|. The sequence (x,) does not
converge in X because the sequence “wants to go to 0.” But 0 is not in X. So the
sequence does not converge. (Of course, the sequence converges in X = R with
respect to our present choice of metric.)

It can be difficult in practice to ascertain whether a particular sequence con-
verges according to Definition 3.1. This is because the limit x may not be known
in advance. In fact, this is almost always the case in computing applications of
sequences. Sometimes it is therefore easier to work with the following:

Definition 3.2: Cauchy Sequence, Complete Space A sequence (x,) in a
metric space X = (X, d) is called a Cauchy sequence iff for all € > 0 there is an
N(€) € ZT such that

d(xXm, xp) < € 3.3)

for all m,n > N(€). The space X is a complete space iff every Cauchy sequence
in X converges.

We often write N instead of N (€), because N may depend on our choice of €. It
is possible to prove that any convergent sequence is also Cauchy.

We remark that, if in fact the limit is known (or at least strongly suspected),
then applying Definition 3.1 may actually be easier than applying Definition 3.2.

We see that under Definition 3.2 the elements of a Cauchy sequence get closer to
each other as n and m increase. Establishing the “Cauchiness” of a sequence does
not require knowing the limit of the sequence. This, at least in principle, simplifies
matters. However, a big problem with this definition is that there are metric spaces
X in which not all Cauchy sequences converge. In other words, there are incomplete
metric spaces. For example, the space X = (0, 1] with d(x, y) = |x — y| is not
complete. Recall that we considered x, = 1/(n + 1). This sequence is Cauchy,!
but the limit is 0, which is not in X. Thus, this sequence is a nonconvergent Cauchy
sequence. Thus, the space (X, | -|) is not complete.

IWe see that

1 1
m+1 n+1

=

n—m 1 1
d(xXm, xn) = m = Z_;

TLFeBOOK



CAUCHY SEQUENCES AND COMPLETE SPACES 65

A more subtle example of an incomplete metric space is the following. Recall
space Cla, b] from Example 1.4. Assume that @ = 0 and b = 1, and now choose
the metric to be

1
d(x,y) = /0 x(t) — y(0)] di (3.4)

instead of Eq. (1.8). Space C[O0, 1] with the metric (3.4) is not complete. This
may be shown by considering the sequence of continuous functions illustrated
in Fig. 3.1. The functions x,,(¢) in Fig. 3.1a form a Cauchy sequence. (Here we
assume m > 1, and is an integer.) This is because d(x,,, x,) is the area of the
triangle in Fig. 3.1b, and for any € > 0, we have

d(xy,, xn) < €

whenever m,n > 1/(2¢). (Suppose n > m and consider that d(x,,, x,) = %(% -
%) < ﬁ < €.) We may see that this Cauchy sequence does not converge. Observe
that we have

xn) =0 for te[0,3], xu()=1 for t€lam, 1],

3[=

A
I
I
.I.
I
I
I
I
I
I
I
I

Figure 3.1 A Cauchy sequence of functions in C[0, 1].

For any € > 0 we may find N(¢) > 0 such that for n > m > N(¢)

If n < m, the roles of n and m may be reversed. The conditions of Definition 3.2 are met and so the
sequence is Cauchy.

TLFeBOOK



66 SEQUENCES AND SERIES

where a,, = % + % Therefore, for all x € C[O, 1],

1
d(xm,X)=/ |Xm (1) — x(1)| dt
0

1/2 am 1
=/ |x(t)|dt+f Ixm(t)—x(t)|dt+/ 11— x(1)| dt.
0 12 am

The integrands are all nonnegative, and so each of the integrals on the right-hand
side are nonnegative, too. Thus, to say that d(x,,, x) — 0 implies that each integral
approaches zero. Since x(¢) is continuous, it must be the case that

x(H)=0 for te€[0,%), x(H)=1 for te (4,1l

However, this is not possible for a continuous function. In other words, we have
a contradiction. Hence, (x,) does not converge (i.e., has no limit in X = C[0, 1]).
Again, we have a Cauchy sequence that does not converge, and so C[0, 1] with
the metric (3.4) is not complete.

This example also shows that a sequence of continuous functions may very well
possess a discontinuous limit. Actually, we have seen this phenomenon before.
Recall the example of the Fourier series in Chapter 1 (see Example 1.20). In this
case the series representation of the square wave was made up of terms that are all
continuous functions. Yet the series converges to a discontinuous limit. We shall
return to this issue again later.

So now, some metric spaces are not complete. This means that even though a
sequence is Cauchy, there is no guarantee of convergence. We are therefore faced
with the following questions:

1. What metric spaces are complete?
2. Can they be “completed” if they are not?

The answer to the second question is “Yes.” Given an incomplete metric space,
it is always possible to complete it. We have seen that a Cauchy sequence does
not converge when the sequence tends toward a limit that does not belong to the
space; thus, in a sense, the space “has holes in it.” Completion is the process of
filling in the holes. This amounts to adding the appropriate elements to the set that
made up the incomplete space. However, in general, this is a technically difficult
process to implement in many cases, and so we will never do this. This is a job
normally left to mathematicians.

We will therefore content ourselves with answering the first question. This will
be done simply by listing complete metric spaces that are useful to engineers:

1. Sets R and C with the metric d(x, y) = |x — y| are complete metric spaces.

TLFeBOOK



CAUCHY SEQUENCES AND COMPLETE SPACES 67
2. Recall Example 1.3. The space [*°[0, oo] with the metric

d(x,y) = sup |xp — yl (3.5
keZ+
is a complete metric space. (A proof of this claim appears in Ref. 1, p. 34.)
3. The Euclidean space R" and the unitary space C" both with metric

n—1 172
d(x,y) = [Z i — )’k|2j| (3.6)
k=0

are complete metric spaces. (Proof is on p. 33 of Ref. 1.)

4. Recall Example 1.6. Fixing p, the space [”[0, co] such that 1 < p < oo is a
complete metric space. Here we recall that the metric is

00 1/p
d(x,y) = [Z k. — ml’} : (3.7)
k=0

5. Recall Example 1.4. The set C[a, b] with the metric

d(x,y) = sup |x(r) = y(®)] (3.8)
tela,b]

is a complete metric space. (Proof is on pp. 36—37 of Ref. 1.)

The last example is interesting because the special case C[0, 1] with metric (3.4)
was previously shown to be incomplete. Keeping the same set but changing the
metric from that in (3.4) to that in (3.8) changes the situation dramatically.

In Chapter 1 we remarked on the importance of the metric space L?[a, b] (recall
Example 1.7). The space is important as the “space of finite energy signals on the
interval [a, b].” (A “finite power” interpretation was also possible.) An important
special case of this was L%(R) = L%(—00, 00). Are these metric spaces complete?
Our notation implicitly assumes that the set (1.11a) (Chapter 1) contains the so-
called Lebesgue integrable functions on [a, b]. In this case the space L*[a, b] is
indeed complete with respect to the metric

1/2

b
d(x,y>=[/ |x<r)—y(t>|2dz] . (3.9)

Lebesgue integrable functions” have a complicated mathematical structure, and we
have promised to avoid any measure theory in this book. It is enough for the reader

20ne of the “simplest” introductions to these is Rudin [2]. However, these functions appear in the
last chapter [2, Chapter 11]. Knowledge of much of the previous chapters is prerequisite to studying
Chapter 11. Thus, the effort required to learn measure theory is substantial.

TLFeBOOK



68 SEQUENCES AND SERIES

to assume that the functions in L2%[a, b] are the familiar ones from elementary
calculus.?

The complete metric spaces considered in the two previous paragraphs also
happen to be normed spaces; recall Section 1.3.2. This is because the metrics are
all induced by suitable norms on the spaces. It therefore follows that these spaces
are complete normed spaces. Complete normed spaces are called Banach spaces.

Some of the complete normed spaces are also inner product spaces. Again, this
follows because in those cases an inner product is defined that induced the norm.
Complete inner product spaces are called Hilbert spaces. To be more specific, the
following spaces are Hilbert spaces:

1. The Euclidean space R” and the unitary space C" along with the inner product

n—1
(x,y) = Zxky,f (3.10)
k=0

are both Hilbert spaces.
2. The space L>[a, b] with the inner product

b
{(x, y) =/ x(Oy*(ndt (3.1

is a Hilbert space. [This includes the special case L%(R).]
3. The space /[0, oo] with the inner product

(X, y) = xyp (3.12)
k=0

is a Hilbert space.

We emphasize that (3.10) induces the metric (3.6), (3.11) induces the metric (3.9),
and (3.12) induces the metric (3.7) (but only for case p = 2; recall from Chapter 1
that /”[0, oo] is not an inner product space when p # 2). The three Hilbert spaces
listed above are particularly important because of the fact, in part, that elements in
these spaces have (as we have already noted) either finite energy or finite power
interpretations. Additionally, least-squares problems are best posed and solved
within these spaces. This will be considered later.

Define the set (of natural numbers) N = {1, 2, 3, .. .}. We have seen that sequences
of continuous functions may have a discontinuous limit. An extreme example of this
phenomenon is from p. 145 of Rudin [2].

3These “familiar” functions are called Riemann integrable functions. These functions form a proper
subset of the Lebesgue integrable functions.

TLFeBOOK



CAUCHY SEQUENCES AND COMPLETE SPACES 69

Example 3.1 For n € N define
xn (1) = lim [cos(n!mt)]*".
m—0o0

When n!t is an integer, then x, () = 1 (simply because cos(wk) = £1 for k € Z).
For all other values of ¢, we must have x, () = 0 (simply because | cos f| < 1 when
t is not an integral multiple of 7). Define

x(t) = nl_i)ngoxn(t).

If ¢ is irrational, then x,, (t) = O for all n. Suppose that ¢ is rational, that is, suppose
t = p/q for which p, g € Z. In this case n!f is an integer when n > g in which
case x(t) = 1. Consequently, we may conclude that

0, ¢ is irrational

1, t is rational (3.13)

x(r) = lim lim [cos(n!m?)]"" = {
n—oo m—0o0

We have mentioned (in footnote 3, above) that Riemann integrable functions are a
proper subset of the Lebesgue integrable functions. It turns out that x(¢) in (3.13)
is Lebesgue integrable, but not Riemann integrable. In other words, you cannot use
elementary calculus to find the integral of x(¢) in (3.13). Of course, x(¢) is a very
strange function. This is typical; that is, functions that are not Riemann integrable
are usually rather strange, and so are not commonly encountered (by the engineer).
It therefore follows that we do not need to worry much about the more general
class of Lebesgue integrable functions.

Limiting processes are potentially dangerous. This is illustrated by a very simple
example.

Example 3.2 Suppose n, m € N. Define

m

Xm,n = .
m-+n

(This is a double sequence. In Chapter 1 we saw that these arise routinely in wavelet
theory.) Treating n as a fixed constant, we obtain

lim x,,=1
m— 00 ’

SO
Iim lim x,, =1.
n— 00 m—o0 !

Now instead treat m as a fixed constant so that

lim Xy, =0
n—oo

TLFeBOOK



70 SEQUENCES AND SERIES

which in turn implies that

lim lim x,, =0.
m— 00 n— 00 ’

Interchanging the order of the limits has given two completely different answers.

Interchanging the order of limits clearly must be done with great care.
The following example is simply another illustration of how to apply Defini-
tion 3.2.

Example 3.3 Define

="
n+1

Xp =1+ (neZzh.

This is a sequence in the metric space (R, | - |). This space is complete, so we need
not know the limit of the sequence to determine whether it converges (although
we might guess that the limit is x = 1). We see that

D" (D"
m+1 n+1

1 1 1
< + < _
“"m+1 n+1"m

1
d(Xpm, Xp) = +;’

where the triangle inequality has been used. If we assume [without loss of generality
(commonly abbreviated w.l.o.g.)] that n > m > N(€) then

11
—+- <
nm n

< €.

S|

So, for a given € > 0, we select n > m > 2/e. The sequence is Cauchy, and so it
must converge.

We close this section with mention of Appendix 3.A. Think of the material in it
as being a very big applications example. This appendix presents an introduction
to coordinate rotation digital computing (CORDIC). This is an application of a
particular class of Cauchy sequence (called a discrete basis) to the problem of
performing certain elementary operations (e.g., vector rotation, computing sines
and cosines). The method is used in application-specific integrated circuits (ASICs),
gate arrays, and has been used in pocket calculators. Note that Appendix 3.A also
illustrates a useful series expansion which is expressed in terms of the discrete basis.

3.3 POINTWISE CONVERGENCE AND UNIFORM CONVERGENCE

The previous section informed us that sequences can converge in different ways,
assuming that they converge in any sense at all. We explore this issue further here.

TLFeBOOK



POINTWISE CONVERGENCE AND UNIFORM CONVERGENCE 71

Definition 3.3: Pointwise Convergence Suppose that (x, (1)) (n € ZT) is a
sequence of functions for which ¢t € S C R. We say that the sequence converges
pointwise iff there is an x(¢) (t € §) so that for all € > 0 there is an N = N(e, t)
such that

|xp (1) —x(2)] <€ (3.14)

for n > N. We call x the limit of (x,) and write
x(t) = lim x,(t) (€S). (3.15)
n— o

We emphasize that under this definition N may depend on both ¢ and ¢. We may
contrast Definition 3.3 with the following definition.

Definition 3.4: Uniform Convergence Suppose that (x,(t)) (n € ZT) is a
sequence of functions for which r € S C R. We say that the sequence converges
uniformly iff there is an x(¢) (¢ € S) so that for all € > 0 there is an N = N (¢)
such that

X, (1) —x(2)| <€ (3.16)

for n > N. We call x the limit of (x,) and write

x(t) = nlif%ox”(t) (tes). (3.17)

We emphasize that under this definition N never depends on ¢, although it may
depend on €. It is apparent that a uniformly convergent sequence is also point-
wise convergent. However, the converse is not true; that is, a pointwise convergent
sequence is not necessarily uniformly convergent. This distinction is important in
understanding the convergence behavior of series as well as of sequences. In par-
ticular, it helps in understanding convergence phenomena in Fourier (and wavelet)
series expansions.

In contrast with the definitions of Section 3.2, under Definitions 3.3 and 3.4 the
elements of (x,) and the limit x need not reside in the same function space. In
fact, we do not ask what function spaces they belong to at all. In other words, the
definitions of this section represent a different approach to convergence analysis.

As with the Definition 3.1, direct application of Definitions 3.3 and 3.4 can be
quite difficult since the limit, assuming it exists, is not often known in advance
(i.e., a priori) in practice. Therefore, we would hope for a convergence criterion
similar to the idea of Cauchy convergence in Section 3.2 (Definition 3.2). In fact,
we have the following theorem (from Rudin [2, pp. 147-148]).

Theorem 3.1: The sequence of functions (x,) defined on S C R converges
uniformly on S iff for all € > O there is an N such that

[xm (1) — xp(£)] < € (3.18)

forall n,m > N.

TLFeBOOK



72 SEQUENCES AND SERIES

This is certainly analogous to the Cauchy criterion seen earlier. (We omit the
proof.)

Example 3.4 Suppose that (x,) is defined according to

xp(t) = t€(0,1)and n € N.

nt+1’

A sketch of x, (¢) for various n appears in Fig. 3.2. We see that (“by inspection”)
x, — 0. But consider for all € > 0

1
nt + 1

<e€

(1) — 0] =

which implies that we must have

1/1
n>-|-—-1)=N
r \€

so that N is a function of both ¢ and €. Convergence is therefore pointwise, and is
not uniform.

Other criteria for uniform convergence may be established. For example, there is
the following theorem (again from Rudin [2, p. 148]).

Theorem 3.2: Suppose that
Iim x,(t) =x@) (ted).
n— o0
Define
My, = sup |x, (1) — x(1)].

teS

Then x, — x uniformly on S iff M,, — 0 as n — oo.

Figure 3.2 A plot of typical sequence elements for Example 3.4; here, t € [0.01, 0.99].

TLFeBOOK



FOURIER SERIES 73

Figure 3.3 A plot of typical sequence elements for Example 3.5.

The proof is really an immediate consequence of Definition 3.4, and so is omitted
here.

Example 3.5 Suppose that

t
Xn(t)zm, teRand n € N.

A sketch of x, (¢) for various n appears in Fig. 3.3. We note that

de,()  (I+nt>)-1—1-Qnt)  1—n*
dt [1 + nt2)? [ 4022

for t = :tﬁ. We see that

1 1
+— ) =F+—.
. ( Jn ) 27n
We also see that x,, — 0. So then

My = sup |x, ()| =

1
teR 2\/ﬁ ‘
Clearly, M,, — 0 as n — oo. Therefore, via Theorem 3.2, we immediately conclude
that x,, — x uniformly on the real number line.

3.4 FOURIER SERIES
The Fourier series expansion was introduced briefly in Chapter 1, where the behav-

ior of this series with respect to its convergence properties was not mentioned. In
this section we shall demonstrate the pointwise convergence of the Fourier series

TLFeBOOK



74 SEQUENCES AND SERIES

by the analysis of a particular example. Much of what follows is from Walter [17].
However, of necessity, the present treatment is not so rigorous.
Suppose that

g) = %(n —t), O0<t<2m. (3.19)

The reader is strongly invited to show that this has Fourier series expansion

o0

231 .
g == k; £ sin(kn). (3.20)

The procedure for doing this closely follows Example 1.20. In our analysis to
follow, it will be easier to work with

o0

b4 1 .
F) =780 = > L sin(kn). (3.21)
k=1
Define the sequence of partial sums
|
Sp(t) = Z 3 sin(kt) (n € N). (3.22)
k=1
So we infer that
lim S,(t) = f(), (3.23)
n—o0

but we do not know in what sense the partial sums tend to f(¢). Is convergence
pointwise, or uniform?
We shall need the special function

n . l
D, (t) = ! [% + Zcos(kt):| _ s+ )t (3.24)
k=1

b4 21 sin(31)

This function is called the Dirichlet kernel. The second equality in (3.24) is not
obvious. We will prove it. Consider that

i 1t (w D, (1)) L 1t + S 1t (kt)
m | — = —sin| — m| — oS
S\ 2" ) 2%\ 2 kz:ls e

1 I 1 1< 1
Sin(zt)ﬂLEE Sin<k+§>t+52 sin(i—k)t

k=1 k=1

1 1 | — 1 1< 1

:ESin<§t)+§kg_lsin<k+§>t—Ekg_lsin<k—§>ta

N | =

(3.25)

TLFeBOOK



FOURIER SERIES 75

where we have used the identity sinacosb = % sin(a + b) + % sin(a — b). By
expanding the sums and looking for cancellations

1mn k + 1 sin k t min + t sin t . .26
S . S

Applying (3.26) in (3.25), we obtain

. (1 D b 1
sin <§t> (D, (1)) = 3 sin (n + E)t

so immediately

1 sin(n + 1)t
Dy (t) = —712
27 sin(51)

and this establishes (3.24). Using the identity sin(a 4+ b) = sina cos b + cosa sin b,
we may also write

1 | sin(nt) cos(%t)
2

D,(t) = — 1 + cos(nt):| . (3.27)
sin(51)

For ¢ > 0, using the form of the Dirichlet kernel in (3.27), we have

t t[ g 1
n/ D,(x)dx = / [w + lcos(n)c):| dx
0 0

2sin(%x) 2
Usi ' 1 cos(3 1
=/ sin(nx) dx+/ sin(nx) —C?S(fx)—— dx
o X 0 2sin(3x) X
1 t
+—/ cos(nx)dx. (3.28)
2 Jo

We are interested in what happens when ¢ is a small positive value, but n is large.
To begin with, it is not difficult to see that

1 [! 1
lim — cos(nx)dx = lim — sin(nt) = 0. (3.29)
n— 00 0 n—oo 2n
Less clearly
t 1 cos(Lx 1
lim | sin(nx)|= (12 ) 1 dx =0 (3.30)
n—>00 Jq 2 sin(zx) X

TLFeBOOK



76 SEQUENCES AND SERIES

(take this for granted). Through a simple change of variable

! sin(nx) " sin x
I(nt) = de = | 2L g (3.31)
0 X 0 X
In fact o -
f MY e =Z (3.32)
0 X 2

This is not obvious, either. The result may be found in integral tables [18, p. 483].
In other words, even for very small ¢, /(nt) does not go to zero as n increases.
Consequently, using (3.29), (3.30), and (3.31) in (3.28), we have (for big n)

t
n/ Dy (x)dx ~ I (nt). (3.33)
0

The results in the previous paragraph help in the following manner. Begin by
noting that

n n t t n
S, (1) = Z % sin(kt) = /; /O cos(kx) dx = /O L; cos(kx)j| dx

k=1

L S coston) | dx— Limx [ Dyrydx — Lt via G4y
_/0 E—i-];cos(x) X—E—N/ n(x)x_i via (3.24)).

0

(3.34)
So from (3.33)

Sp(t) ~ I (nt) — it. (3.35)
Define the sequence 7, = %n. Consequently
1
Su(ty) = [(w) — —m. (3.36)
2n
Asn — oo, t, — 0, and S, (t,) — I (). We can say that for big n

Sp(0+) ~ I (). (3.37)

Now, f(0+) = 5, so for big n

0 2 [7si
5. 0H) _/ SIUY ik ~ 118, (3.38)
fO+) = x

Numerical integration is needed to establish this. This topic is the subject of a later
chapter, however.

We see that the sequence of partial sums S, (0+) converges to a value bigger
than f(0+) as n — oo. The approximation S,(¢) therefore tends to “overshoot”

TLFeBOOK



FOURIER SERIES 77

the true value of f(¢) for small ¢. This is called the Gibbs phenomenon, or Gibbs

overshoot. We observe that r = 0 is the place where f () has a discontinuity. This

tendency of the Fourier series to overshoot near discontinuities is entirely typical.
We note that f(7) = S,,(r) = 0 for all n > 1. Thus, for any € > 0

If () = Su(m) <€

for all n > 1. The previous analysis for + = 0+, and this one for r = 7= show that
N (in the definitions of convergence) depends on 7. Convergence of the Fourier
series is therefore pointwise and not uniform. Generally, the Gibbs phenomenon is
a symptom of pointwise convergence.

We remark that the Gibbs phenomenon has an impact in the signal processing
applications of series expansions. Techniques for signal compression and signal
enhancement are often based on series expansions. The Gibbs phenomenon can
degrade the quality of decompressed or reconstructed signals. The phenomenon
is responsible for “ringing artifacts.” This is one reason why the convergence
properties of series expansions are important to engineers.

Figure 3.4 shows a plot of f(¢), S,(¢) and the error

En(t) = Su(t) — f(0). (3.39)

The reader may confirm (3.38) directly from the plot in Fig. 3.4a.

Amplitude

Figure 3.4 Plots of the Fourier series expansion for f(¢) in (3.21), S, (¢) [of (3.22)] for
n = 30, and the error E,(¢) = S, (t) — f(2).

TLFeBOOK



78 SEQUENCES AND SERIES

E,, (t) (error signals)

Figure 3.5 E;,(¢) of (3.39) for different values of n.

We conclude this section by remarking that

2
lim / |Ea()>dt =0, (3.40)
n—oo 0

that is, the energy of the error goes to zero in the limit as n goes to infinity.
However, the amplitude of the error in the vicinity of a discontinuity remains
unchanged in the limit. This is more clearly seen in Fig. 3.5, where the error is
displayed for different values of n. Of course, this fact agrees with our analysis.
Equation (3.40) is really a consequence of the fact that (recalling Chapter 1) S, (¢)
and f () are both in the space L?(0,2r). Rigorous proof of this is quite tough,
and so we omit the proof entirely.

3.5 TAYLOR SERIES

Assume that f(x) is real-valued and that x € R. One way to define the derivative
of f(x) at x = x¢ is according to

FOw) = Muzm _ fim L0 =00 (3.41)
dx X—> X0 X — Xq
The notation is g
£ = LI (3.42)
dx"
(so f@(x) = f(x)). From (3.41), we obtain
f@) =~ fxo) + £ (x0)(x — x0). (3.43)

But how good is this approximation? Can we obtain a more accurate approximation
to f(x) if we know f ) (xg) forn > 1? Again, what is the accuracy of the resulting
approximation? We consider these issues in this section.

TLFeBOOK



TAYLOR SERIES 79
Begin by recalling the following theorem.

Theorem 3.3: Mean-Value Theorem If f(x) is continuous for x € [a, b]
with a continuous derivative for x € (a, b), then there is a number & € (a, b) such

that
f) — fla)
a

S =r"®. (3.44)

Therefore, if a = x¢ and b = x, we must have

f) = fxo) + fPE) (x — xo). (3.45)

This expression is “exact,” and so is in contrast with (3.43). Proof of Theo-
rem 3.3 may be found in, for example, Bers [19, p. 636]. Theorem 3.3 generalizes
to the following theorem.

Theorem 3.4: Generalized Mean-Value Theorem Suppose that f(x) and
g(x) are continuous functions on x € [a, b]. Assume £ (x), and g (x) exist and
are continuous, and g(l)(x) # 0 for x € (a, b). There is a number £ € (a, b) such

that
fb) = f@ _ fPE
gb) —g@)  gVE)’

Once again the proof is omitted, but may be found in Bers [19, p. 637].

The tangent to f(x) at x = xq is given by 7(x) = f(x0) + £V (x0)(x — x0)
(t(x0) = f(x0) and D (xp) = f(l)(xo)). We wish to consider # (x) to be an approx-
imation to f(x), so the error is

(3.46)

fx) —1(x) =e(x)

or

f) = fxo) + £V x0)(x — x0) + e(x). (3.47)
Thus
e(x) — fx) = f(x0) . f(l)(xo)-
X — X0 X — X0
But
lim L& =S@0) _ay,
X—>x0 X — X0
so immediately
: e(x)
lim =0. (3.48)

X—Xx0 X — X0

From (3.47) e(xg) = 0, and also from (3.47), we obtain

FP@) = FD(xg) + eV (), (3.49)

TLFeBOOK



80 SEQUENCES AND SERIES

so eD(xp) = 0. From (3.49), f(2) (x) = @ (x) (so we now assume that f(x) has
a second derivative, and we will also assume that it is continuous). Theorem 3.4
has the following corollary.

Corollary 3.1 Suppose that f(a) = g(a) =0, so for all b # a there is a &€ €
(a, b) such that
f) D)

gb)y  ghE)’

(3.50)

Now apply this corollary to f(x) =e(x), and g(x) = (x — x0)%, with a = xo,
b = x. Thus, from (3.50)

e(x)  eW(r)
(x —x0)2  2(t — xp)

(3.51)

(t € (x0,x)). Apply the corollary once more to f(t) =eW(7), and g(r) =
2(t — xp):

e(l)(‘[) _1 @) _1 )
e —ay 2° ©=3/7® (3.52)
(¢ € (x0,7)). Apply (3.51) in (3.52)
e(x)

1
_ e
G _x? AN

or (for some & € (xg, x))

e(x) = 5 fPE)(x — x0)%. (3.53)
If | fP(1)] < M; fort € (xg, x), then
)] < %lex — xol? (3.54)
and
fx) = fxo) + £V (xo)(x — x0) + e(x), (3.55)

for which (3.54) is an upper bound on the size of the error involved in approxi-
mating f(x) using (3.43).

Example 3.6 Suppose that f(x) = /x; then

1 1
(1) _ 2) -
frw =g ST =T

Suppose that xo = 1, and x = xg + 6x = 1 + §x. Thus, via (3.55)

Vi=VT+8x =14 fDD8x +e(x) = 1+ 16x +e(x),

TLFeBOOK



TAYLOR SERIES 81

so if, for example, [8x| < %, then |f@(x)| <2 (for x € (%, D) so My =2,

and so
le(x)| < (8x)?

via (3.54). This bound may be compared to the following table of values:

8x VT+6x 1+ 368x e(x) (6x)?

—% 0.5000 0.6250 —0.1250 0.5625
—% 0.7071 0.7500 —0.0429 0.2500
0 1.0000 1.0000 0.0000 0.0000
% 1.2247 1.2500 —0.0253 0.2500
% 1.3229 1.3750 —0.0521 0.5625

It is easy to see that indeed |e(x)| < (8x)2.
We mention that Corollary 3.1 leads to [’Hdpital’s rule. It therefore allows us
to determine
lim L&)
im

x—a g(x)

when f(a) = g(a) = 0. We now digress briefly to consider this subject. The rule
applies if f(x) and g(x) are continuous at x = a, if f(x) and g(x) have continu-
ous derivatives at x = a, and if g (x) # 0 near x = a, except perhaps at x = a.

I'Hopital’s rule is as follows. If limy ¢ f(x) = limy_q g(x) = O and zimﬁa%
exists, then
- f P
lim = lim .
g0 xoa gMx)

(3.56)

The rationale is that from Corollary 3.1 for all x # a there is a £ € (a, b) such that
[ _ D@ o JARIG)
T = e .SO.’ if x 1s.close to a. then & must also be close to a, and &)
is close to its limit. I’'Hopital’s rule is also referred to as “the rule for evaluating
the indeterminate form %.” If it happens that f(U(a) = gV (a) = 0, then one may
[P
@

GO €
im 1

x—a g(x) T x—>a g(z)(x) ’

attempt I’Hopital’s rule yet again; that is, if lim,_,, exists, then

Example 3.7 Consider

d .
—[sinx — ¥ + 1]

. sinx —e* +1 .
lim — = lim dx
x—0 X x—0 d 2
—[x7]
dx
. cosx —e~ . —sinx —e* 1
=lim —=1lm — = ——
x—0 2x x—0 2 2

TLFeBOOK



82 SEQUENCES AND SERIES

for which the rule has been applied twice. Now consider instead

d
-2 gt =%l
N ax —Am g
x—0 X X _[2+4x]
dx
. =2 1
=lim — = ——
x—0 4 2

This is wrong | I’Hopital’s rule does not apply here because f(0) =1, and g(0) =2
(i.e., we do not have f(0) = g(0) = 0 as needed by the theory).

The rule can be extended to cover other indeterminate forms (e.g., %). For example,
consider

1
080 _ piy x_
1 x—0

1
X x2

)
An interesting case is that of finding

1 X
lim (1 + —) .
X—> 00 X

This is an indeterminate of the form 1°°. Consider

1
log, (1 + ;)

1 X
lim log, (1 + —) = lim
xX—00 X X—>00 1

=

1+ - 1
= lim ———— = lim ——— =1.
X—>00 1 X—> 00 1

X

The logarithm and exponential functions are continuous functions, so it happens to
be the case that

1\" 1\*
1 = lim loge(l—i——) =loge[lim <1+—) ]
X—00 X xX—>00 X

TLFeBOOK



TAYLOR SERIES 83

that is, the limit and the logarithm can be interchanged. Thus

. 1)*
el — eloge[xgrgo(1+'v) ]

so finally we have
1 X

lim (1 + —> =e. (3.57)
X

X—>00

More generally, it can be shown that

lim (1+—f)"==eX. (3.58)

n— 00 n

This result has various applications, including some in probability theory relating to
Poisson and exponential random variables [20]. An alternative derivation of (3.57)
appears on pp. 64-65 of Rudin [2], but involves the use of the Maclaurin series
expansion for e. We revisit the Maclaurin series for e* later.

We have demonstrated that for suitable & € (xg, x)

f@) = fxo) + fPxo)(x — x0) + 3 FPE)(x — x0)?
(recall (3.55)). Define
p(x) = f(xo) + P (xo)(x — x0) + 4 F P (x0) (x — x0)> (3.59)

so this is some approximation to f(x) near x = xo. Equation (3.43) is a linear
approximation to f(x), and (3.59) is a quadratic approximation to f(x). Once
again, we wish to consider the error

fx) — px) =ex). (3.60)
We note that
pxo) = f(xo), pPxo) = fPx0),  p@xo) = P (x0). (3.61)

In other words, the approximation to f(x) in (3.59) matches the function and its
first two derivatives at x = xg. Because of (3.61), via (3.60)

e(x0) = eV (x0) = ¢ (x0) = 0, (3.62)
and so via (3.59) and (3.60)

D) = V) (3.63)

TLFeBOOK



84 SEQUENCES AND SERIES

(because p® (x) = 0 since p(x) is a quadratic in x). As in the derivation of (3.53),
we may repeatedly apply Corollary 3.1:

e(x) _ e(l)([l)
(x —x0)3  3(t] — x0)2 for 11 € (xp, x)
Dty P
311 —x0)>  3-2(12 — x0) for 13 € (x0, 11)
¢ (1) e® (&)

= f € (xo, 12),
3.2 —x0) 3.2 or & € (x0, 12)

which together yield

ex)  fO®

G_xp 32 for & € (xg, x)

or
1

e(x) = 3—f<3’(s>(x - x0)*

o1 (3.64)

for some & € (xg, x). Thus
_ ) I .o 2
S&x) = fxo)+ f7 (xo)(x — x0) + ﬁf (x0)(x — x0)" +e(x).  (3.65)

Analogously to (3.54), if |f(3)(t)| < Mj for t € (xg, x), then we have the error
bound

le(x)| < Mslx — xof.

3.66
3.2-1 (3.66)
We have gone from a linear approximation to f (x) to a quadratic approximation
to f(x). All of this suggests that we may generalize to a degree n polynomial
approximation to f(x). Therefore, we define

Pa(¥) =) puklx —x0)*, (3.67)
k=0
where
L ow
Pnk = Ef (x0). (3.68)
Then
@) =pa(x) +epr1(x), (3.69)
where the error term is
eny1(x) = FODE) (x — xo)" ! (3.70)

(n+ 1!



TAYLOR SERIES 85

for suitable & € (xp, x). We call p,(x) the Taylor polynomial of degree n. This
polynomial is the approximation to f(x), and the error e,11(x) in (3.70) can be
formally obtained by the repeated application of Corollary 3.1. These details are
omitted. Expanding (3.69), we obtain

1
fx) = fxo) + £V (xo)(x — x0) + Ef(z) (x0) (x — x0)2

1 1
ot = 0 (x = x0)" + mf("“)(é)(x —x0)"t (371

which is the familiar Taylor formula for f(x). We remark that

19 o) = pi? (x0) (3.72)
fork=0,1,...,n—1,n. So we emphasize that the approximation p, (x) to f(x)

is based on forcing p,(x) to match the first n derivatives of f(x), as well as
enforcing p,(xo) = f(xo). If | f"*D(¢)| < M,4 for all ¢ € I [interval I contains
(x0, x)], then

1
lens1(X)| < ————Mpi1]x — xo|" . (3.73)
+ m+ DU

If all derivatives of f(x) exist and are continuous, then we have the Taylor series
expansion of f(x), namely, the infinite series

o0

1
Fe) =3 P00 —x0)t. (3.74)

k=0
The Maclaurin series expansion is a special case of (3.74) for xo = 0:

o0

1
Fe =3 = rO0x" (3.75)

k=0

If we retain only terms k = O to k = n in the infinite series (3.74) and (3.75), we
know that e,,41(x) gives the error in the resulting approximation. This error may
be called the truncation error (since it arises from truncation of the infinite series
to a finite number of terms). Now we consider some examples.

First recall the binomial theorem

(a+m”=§:<z>x%*ﬁ (3.76)

k=0

where

nyo 3.77
(k)_mm—mr 3.77)

TLFeBOOK



86 SEQUENCES AND SERIES

In (3.76) we emphasize that n € Z*. But we can use Taylor’s formula to obtain an
expression for (a + x)® when « # 0, and o is not necessarily an element of Z™.
Let us consider the special case

f) =1+ x)"
for which (if k > 1)
FO@) =al@—D@—=2) (@ —k+ (1 +x)*7k (3.78)

These derivatives are guaranteed to exist, provided x > —1. We will assume this
restriction always applies. So, in particular

FOO) =al@—D@—=2)-(@—k+1) (3.79)

giving the Maclaurin expansion

n 1
A+ =14 le@—1- @ —k+ Dl
k=1
b e )@= (1 B (3.80)
(n+1)! ’

for some & € (xg, x). We may extend the definition (3.77), that is, define

(g):1,(2‘>=%a(a—1)-.-(a—k+1)(k31) (3.81)

so that (3.80) becomes

n

(1+x)% = Z( (z )xk—i- < " f_ | ) (1 + &)@ lyntl, (3.82)

k=0

=pu(x) =ep41(x)

for x > —1.

Example 3.8 We wish to compute [1.03]'/3 with n = 2 in (3.82), and to esti-
mate the error involved in doing so. We have x = 0.03, o = % and £ € (0, .03).
Therefore from (3.82) [1 4+ x]'/3 is approximated by the Taylor polynomial

1
% 1 1
=1 3 214 —x——x2
p2(x) +(1)x+<2>x +3x 5%

[1.03]'3 &~ p(0.03) = 1.009900000

W=

SO

TLFeBOOK



TAYLOR SERIES 87

but [1.03]'/3 = 1.009901634, so e3(x) = 1.634 x 10~°. From (3.82)
3 1345 5 —8/3.3
e3(x) = 3 (1+8)3 “x =3—4(1+$) x7,

and so 3(0.03) = 34 106 (148733 =2 %1075 4+ £)7%3. Since 0 < £ < 0.03,
we have

1.5403 x 107% < €3(.03) < 1.6667 x 107°,

The actual error is certainly within this range.

If f(x) = 7. and if xo = 0, then
( 1)n+1 n+l
= Z( Dfxk + — (3.83)
| —
=pa(x) =
This may be seen by recalling that
X": K 1— O[n+l
ot = _—a (x #1). (3.84)
So Y F_o(—=Dxk = H_l&%, and thus
Z( l)k . (_l)n—i-lxn+l B 1— (_1)n+1xn+1 (_l)n—i-lxn+l B 1
pars 14+x - 14+x 14+x T l4x

This confirms (3.83). We observe that the remainder term r(x) in (3.83) is not given
by en+1(x) in (3.82). We have obtained an exact expression for the remainder using
elementary methods.

Now, from (3.83), we have

1 1)
—=1_t+t2_t3++(_1)l’l—ltl‘l—l+( ) ,
I+1 1+t
and we see immediately that
*odt 1 1
1 1 = — =x— —x*+ =i
og, (1 +x) /0 1 X% +3x
(_l)n—lxn fx I
+oF——+ (D" dt . 3.85
" (=D L T4r (3.85)

=r(x)

TLFeBOOK



88 SEQUENCES AND SERIES

For x > 0, and 0 < ¢ < x we have %ﬂ < 1, implying that

Xy X xn+1
O</ dts/t"dt: (x > 0).
o L+t 0 n+1

For —1 < x < 0 with x <t < 0, we have

1 1 1
< =
I+t 1+4+x 1-—|x|
SO
X ooyn 1 X 1 n+1 n+1
/ dt‘ < / t"dt| = a = x| .
o 1+t 1 —1|x]|Jo I—|x]|n+1 A=|xPpm+1)
Consequently, we may conclude that
_xn+l x>0
n—|—l k) -
[r(x)| < ! . (3.86)
—— —-1<x<0
(I =1lxD@+ 1)

Equation (3.85) gives us a means to compute logarithms, and (3.86) gives us a
bound on the error.
Now consider (3.83) with x replaced by x:

1 n o (_1)n+1x2n+2
k=0

Replacing n with n — 1, replacing x with ¢, and expanding, this becomes

1

B (_1)nt2n
1412

R 0 § K
=1 1+ 12

’

where, on integrating, we obtain

*odt 1 1 1
tan_1x=/ =x—=x"4+ x> — =x’
o 1412 3 5 7

(_1)n—1x2n—1 X t2n
e — -1 ——dt. 3.88
to +(=1) [0 T (3.88)

=r(x)

ﬁ < 1 for all # € R, it follows that

Because
|)C |2n+1

< :
Ir()] < 1

(3.89)

TLFeBOOK



TAYLOR SERIES 89

We now have a method of computing 7. Since 7 = tan~! (1), we have

AR S S OISR o OO (3.90)
4 375777 m—1 '

and

1) <
r =T

(3.91)

Using (3.90) to compute m is not efficient with respect to the number of arith-
metic operations needed (i.e., it is not computationally efficient). This is because
to achieve an accuracy of about 1/n requires about n/2 terms in the series [which
follows from (3.91)]. However, if x is small (i.e., close to zero), then series (3.88)
converges relatively quickly. Observe that

1 Xty

=tan"'x +tan"!y. (3.92)
1—xy

tan

xﬂ =1, so

Suppose that x = 2, and y = 3, then

1 1
% = tan~! <§> +tan~! <§> . (3.93)

It is actually faster to compute tan~! (%), and tan~! (%) using (3.88), and for these
obtain 7 using (3.93) than to compute tan~!(1) directly. In fact, this approach (a
type of “divide and conquer” method) can be taken further by noting that

tan~! l = tan~! 1 +tan*1 l tan~! 1 = tan~! l +tan*1 1
2) 3 7)° 3) 5 8

implying that
1 1 1
% =2tan"! <§) +tan™! <7> +2tan”! <§) . (3.94)

Now consider f(x) = ¢*. Since f® (x) = ¢* for all k € ZT we have for xo = 0
the Maclaurin series expansion

=y % (3.95)

k=0

This is theoretically valid for —oo < x < co. We have employed this series before
in various ways. We now consider it as a computational tool for calculating e*.
Appendix 3.C is based on a famous example in Forsythe et al. [21, pp. 14-16].
This example shows that series expansions must be implemented on computers

TLFeBOOK



90 SEQUENCES AND SERIES

with rather great care. Specifically, Appendix 3.C shows what can happen when we
compute ¢~20 by the direct implementation of the series (3.95). Using MATLAB
as stated e720 & 4.1736 x 10~°, which is based on keeping terms k = 0 to 88
(inclusive) of (3.95). Using additional terms will have no effect on the final answer
as they are too small. However, the correct value is actually =20 = 2.0612 x 1077,
as may be verified using the MATLAB exponential function, or using a typical
pocket calculator. Our series approximation has resulted in an answer possessing
no significant digits at all. What went wrong? Many of the terms in the series
are orders of magnitude bigger than the final result and typically possess rounding
errors about as big as the final answer. The phenomenon is called catastrophic
cancellation (or catastrophic convergence). As Forsythe et al. [21] stated, “It is
important to realize that this great cancellation is not the cause of error in the
answer; it merely magnifies the error already present in the terms.” Catastrophic
cancellation can in principle be eliminated by carrying more significant digits in the
computation. However, this is costly with respect to computing resources. In the
present problem a cheap and very simple solution is to compute ¢ using (3.95),
and then take the reciprocal, i.e., use e20 =1 /ezo.
An important special function is the gamma function:

I'(z) = /oo xT e ™ dx. (3.96)
0

Here, we assume z € R. This is an improper integral so we are left to wonder if

M

lim x¥le™ dx
M—o0 Jo

exists. It turns out that the integral (3.96) converges for z > 0, but diverges for

7z < 0. The proof is slightly tedious, and so we will omit it [22, pp. 273-274]. If
z =n € N, then consider

I'(n) = /oox"—le—x dx. (3.97)
0

Now

00 M
'h+1) = / x"e ™ dx = lim xte ™ dx
0 M— o0 0

M
= lim —x”e_"l([)” +n x"le™* dx
M —o00 0

(via [udv =uv — [vdu, ie., integration by parts). Therefore

C(n+1) =n/oox"_le_x dx = nI'(n). (3.98)
0

TLFeBOOK



TAYLOR SERIES 91

We see that (1) = [ e ™ dx = [—e*]{° = 1. Thus, ['(n + 1) = n!. Using the
gamma function in combination with (3.95), we may obtain Stirling’s formula

n! ~ 2an"t12en (3.99)

which is a good approximation to n! if n is big. The details of a rigorous derivation
of this are tedious, so we give only an outline presentation. Begin by noting that

o0 o0
n! = / xte ™ dx = f MY
0 0

Letx =n+ ¥, SO
00
n! = e—"/ o In(n+y)—y dy.
—n
Now, since nln(n +y) = nln [n (1 + %)] =nlnn+nln (1 + %) we have
00
n! = e_”/ enlnn+nln(1+%)_y dy
—n
00
— e—nnn/ enln(l+%)—y dy.
—n

Using (3.85), that is

2 3
Yy y y
m(142) =2 2
n +n n 2}12—|—3113
we have s 3
y y y
(142)y= 24 2
i +n 2n  3n?
SO

If now y = /nv, then dy = /ndv, and so
[e’e) 2 3
n! = n”+%e_”/ ¢ TTIET dw.
—/n

So if n is big, then

TLFeBOOK



92 SEQUENCES AND SERIES

If we accept that
o0
/ e 2 dx = V2n, (3.100)
—00

then immediately we have

1
~ n+ 5 —
n! ~2an"" 27",

and the formula is now established. Stirling’s formula is very useful in statistical
mechanics (e.g., deriving the Fermi—Dirac distribution of fermion particle energies,
and this in turn is important in understanding the operation of solid-state electronic
devices at a physical level).

Another important special function is

1 . (x —m)?
<0 | —
V2mo? P 202

which is the Gaussian function (or Gaussian pulse). This function is of immense
importance in probability theory [20], and is also involved in the uncertainty princi-
ple in signal processing and quantum mechanics [23]. A sketch of g(x) for m = 0,
with o2 = 1, and 62 = 0.1 appears in Fig. 3.6. For m = 0 and o> = 1, the standard
form pulse

glx) = ] , —00 <X <O (3.101)

fx) = le_nexz/z (3.102)

is sometimes defined [20]. In this case we observe that g(x) = % f (" — ) We will
show that

* 2 1
e dx = SV7, (3.103)
0

which can be used to obtain (3.100) by a simple change of variable. From [22]
(p. 262) we have

Figure 3.6 Plots of two Gaussian pulses, where g(x) in (3.101) for m = 0, with o2 =
1,0.1.

TLFeBOOK



TAYLOR SERIES 93
Theorem 3.5: Let limy_, o x” f(x) = A. Then

1. [ f(x)dx converges if p > 1 and —oo < A < o0.
2. [ f(x)dx diverges if p <1 and A # 0 (A may be infinite).

We see that lim,_, o e =0 (perhaps via I’Hopital’s rule). So in The-

orem 3.5 f(x) = e_xz, and p =2, with A =0, and so fooo e‘"2 dx converges.

Define
M 2 M 2
Iy =/ e " dx:/ eV dy
0 0
and let limp; o0 I3y = I. Then
M 2 M 2 M M 2 2
I} = (/ e dx) </ e dy) =/ / e~ dx dy
0 0 0 0
:/ /e_("z"’yz)dxdy
Rm

for which Ry is the square OABC in Fig. 3.7. This square has sides of length M.
Since e~ @) < 0, we obtain

/ /e*(x2+y2)dx dy < I/%,, S/ /ef(x2+y2) dxdy, (3.104)
Ry Ry
y

— - - - E

— — A B
M2

M
- T 7o c D X

Figure 3.7 Regions used to establish (3.103).

TLFeBOOK



94 SEQUENCES AND SERIES

where R; is the region in the first quadrant bounded by a circle of radius M.
Similarly, Ry is the region in the first quadrant bounded by a circle of radius ~/2M.
Using polar coordinates, 7> = x% + y? and dx dy = r dr d¢, so (3.104) becomes

/2 oM 5 /2 p2M X
/ e rdrdg < I, 5/ / e rdrde. (3.105)
¢=0 Jr=0 ¢=0 Jr=0
Since —%%e‘xz — xe=*" we have fOM re="’ dr = —%[e—"z]{? = %[1 - e_Mz].
Thus, (3.105) reduces to
%[1 —e M1 < 13 < %[1 _ M, (3.106)

If we now allow M — oo in (3.106), then 11%/1 — 7, implying that I? = I or
I = %ﬁ This confirms (3.103).

In probability theory it is quite important to be able to compute functions such
as the error function

erf(xr) = —— / et ar (3.107)
N ' '

This has wide application in digital communications system analysis, for example.
No closed-form* expression for (3.107) exists. We may therefore try to compute
(3.107) using series expansions. In particular, we may try working with the Maclau-
rin series expansion for e¢*:

erf(x)—i/x iﬁ dt
VT i k!

x=—12

B 2 Sl (_1)kx2k+l
=7 ,; T (3.108)

However, to arrive at this expression, we had to integrate an infinite series term
by term. It is not obvious that we can do this. When is this justified?
A power series is any series of the form

f&) =Y alx —xo. (3.109)
k=0

Clearly, Taylor and Maclaurin series are all examples of power series. We have the
following theorem.

4A closed-form expression is simply a “nice” formula typically involving more familiar functions such
as sines, cosines, tangents, polynomials, and exponential functions.

TLFeBOOK



TAYLOR SERIES 95

Theorem 3.6: Given the power series (3.109), there is an R > 0 (which may
be R = 400) such that the series is absolutely convergent for |x — xo| < R, and is
divergent for |x — xo| > R. At x —xp = R and at x — x9 = —R, the series might
converge or diverge.

Series (3.109) is absolutely convergent if the series
o0
h(x) =Y lag(x — x0)F| (3.110)
k=0

converges. We remark that absolutely convergent series are convergent. This means
that if (3.110) converges, then (3.109) also converges. (However, the converse is
not necessarily true.) We also have the following theorem.

Theorem 3.7: If

o0
o)=Y ar(x —xp)* for |x—xol <R,
k=0

where R > 0 is the radius of convergence of the power series, then f(x) is
continuous and differentiable in the interval of convergence x € (xo — R, xo + R),
and

FP@) = kap(x — x)F", (3.111a)

k=1

! _OO ak Nk
/xof(z)dz_];kH(x x0)¥ . (3.111b)

This series [Eq. (3.111a,b)] also has a radius of convergence R.

As a consequence of Theorem 3.7, Eq. (3.108) is valid for —oo < x < oo (i.e., the
radius of convergence is R = +00). This is because the Maclaurin expansion for
e* had R = +o0.

Example 3.9 Here we will find an expression for the error involved in trun-
cating the series for erf(x) in (3.108).

From (3.71) for some & € [0, x] (interval endpoints may be included because of
continuity of the function being approximated)

nok

X
et = E F"‘en(x),
k=0 '
—_——

=pn(x)

TLFeBOOK



96 SEQUENCES AND SERIES

where
en(x) = m Exntl,
Thus, where x = —t2, so for some & such that —12 <£&£<0
e = pu(=1) + en(—12),
and hence

erf(x) = i/x (—zz)dr+i/xe (—t%) dt
VTl Pn e lo " '

=qn (x) =€n(x)
where the degree n polynomial
2 X n (—1)k[2k 2 n (_1)kx2k+l
qn<x>=—/ )L e
V7 Jo P k! ﬁk:o k!'k + 1)

is the approximation, and we are interested in the error

€n(x) = erf(x) — gn(x) = % fo ' en(—1%) dt.

Clearly

2 (-1 n+1 X
€n(x) = —7( ) / 121268 dt,

where we recall that £ depends on ¢ in that —1? <& <0. There is an integral
mean-value theorem, which states that for f(¢), g(t) € Cla, b] (and g(¢) does not
change sign on the interval [a, b]) there is a { € [a, b] such that

b b
/ e f() di = £(©) / ¢y dr.

Thus, there is a ¢ € [—xz, 0], giving

2 (_1)n+l x2n+3
ex) = —eb -~ -
JTo (n+ D! 2n 43

Naturally the error expression in Example 3.9 can be used to estimate how many
terms one must keep in the series expansion (3.108) in order to compute erf(x) to
a desired accuracy.

TLFeBOOK



ASYMPTOTIC SERIES 97
3.6 ASYMPTOTIC SERIES

The Taylor series expansions of Section 3.5 might have a large radius of conver-
gence, but practically speaking, if x is sufficiently far from x(, then many many
terms may be needed in a computer implementation to converge to the correct
solution with adequate accuracy. This is highly inefficient. Also, if many terms
are to be retained, then rounding errors might accumulate and destroy the result.
In other words, Taylor series approximations are really effective only for x suf-
ficiently close to xg (i.e., “small x). We therefore seek expansion methods that
give good approximations for large values of the argument x. These are called the
asymptotic expansions, or asymptotic series. This section is just a quick introduction
based mainly on Section 19.15 in Kreyszig [24]. Another source of information on
asymptotic expansions, although applied mainly to problems involving differential
equations, appears in Lakin and Sanchez [25].

Asymptotic expansions may take on different forms. That is, there are different
“varieties” of such expansions. (This is apparent in Ref. 25.) However, we will
focus on the following definition.

Definition 3.5: A series of the form

ck
Zx—k (3.112)

for which c; € R (real-valued constants), and x € R is called an asymptotic expan-
sion, or asymptotic series, of a function f(x), which is defined for all sufficiently
large x if, for every n € Z*

[f(x)—(Z;—l;>:|x”—>O as x — 00, (3.113)

k=0

and we shall then write

o0

f(x)NZ;—i-

k=0

It is to be emphasized that the series (3.112) need not converge for any x. The
condition (3.113) suggests a possible method of finding sequence (c). Specifically

f)—co—=0 or co= lim f(x),
[f(x)—co—c—l]x—>0 or c; = lim[f(x)— colx,
X xX—00
[ c1

f(x)—co—;—x—z] 250 or c» = lim [f(x)—co—i—l]xz,

X—>00

TLFeBOOK



98 SEQUENCES AND SERIES

or in general

n—1
e = lim [f(x) = %] X" (3.114)

k=0

for n > 1. However, this recursive procedure is seldom practical for generating
more than the first few series coefficients. Of course, in some cases this might
be all that is needed. We remark that Definition 3.5 can be usefully extended
according to

FG0) ~ g(x) + h(x) [Z %] (3.115)
k=0
for which
f(x) g(x) > Ck
e ~Zx—k. (3.116)
k=

The single most generally useful method for getting (cx) is probably to use “inte-
gration by parts.” This is illustrated with examples.

Example 3.10 Recall erf(x) from (3.107). We would like to evaluate this func-
tion for large x [whereas the series in (3.108) is better suited for small x; see the
error expression in Example 3.9]. In this regard it is preferable to work with the
complementary error function

fo(x) = 1 — erf(x) 2/00 ' (3.117)

erfc(x) =1 —erf(x) = — e . .
NEE

We observe that erf(co) = 1 [via (3.103)]. Now let T = #2, so that dr = 17~ 1/2dz.

With this change of variable

1 ©
T = — “2¢ " dr. 3.118
erfc(x) ﬁ/xz 172 T dt ( )

Now observe that via integration by parts, we have

g 12 1 [ _3
T2 T dr = —t Ve — = T 2e " dt
¥2 * 2 J2

1 2 1 % 3
=—eF —= T 2e¢ " dr,
X

X 2 /2
o0 o0
3 3 5
/ 1Tl T dr = —t e — —/ T 2e N dt
x2 2 e
1 2 3 [
——3€_X ——/ T 2e " dr,
X 2 J2

TLFeBOOK



ASYMPTOTIC SERIES 99

and so on. We observe that this process of successive integration by parts has
generated integrals of the form

o
Fo(x) = / G2 g (3.119)
x2

for n € ZT, and we see that erfc(x) = ﬁFo(x). So, if we apply integration by
parts to Fy(x), then

o0
F,,(x):/ 1= @tD/2,-7 g
x2

o0
_T—(2n+l)/26—r|;<2> _ 2”24‘ 1 f 32,1 4o
X2

o0
@D = 2”24‘ 1 / 32,1 4o
2
X

so that we have the recursive expression

1 > 2n+1

F,(x) = e "

e (3.120)

which holds for n € Z*. This may be rewritten as

1 2n+1

2
e’ F,(x) = T —e" Fpp1(x). (3.121)

Repeated application of (3.121) yields

2 1 I
e Fo(x) = ——ze F1(x),
x 2
2 1 1 1-3 2
e FO(X)=;—2x3+7€ F(x),
ol L 18 135 e o
e N=———F+ —— — ———" " F(x
0 x  2x3 | 22x5 o8 3
and so finally
) 11 13 | n —3)
exFo(X)=|:;—2x—3 ﬁ—“wl-( n" W}
=Sm-1(x)
1.3.. |
pep 2@l ep o) (3.122)

2]’!

TLFeBOOK



100 SEQUENCES AND SERIES

From this it appears that our asymptotic expansion is

1 1.3

3.-(2n—3)
23 TS R T T

1 1
¢’ Fy(x) ~ - S N +oo (3.123)

on—1y2n—1

However, this requires confirmation. Define K,, = (—=2)7"[1 -3 .- (2rn — 1)]. From
(3.122), we have

[e*” Fo(x) — Son_1 ) Ix¥™ = K,e x2VF, (x). (3.124)

We wish to show that for any fixed n = 1,2, 3, ... the expression in (3.124) on
the right of the equality goes to zero as x — oo. In (3.119) we have

1 1
LOnr D2 = on

for all T > x2, which gives the bound

o0 e—f 1 oo e—X
— -7 —
Fa(x) = [xz L@ntD/2 dr < T / e dr = O (3.125)

52

But this implies that

2 op—i 2 oy € | K|
|Kn|ex X " Fn(x) S |Kn|ex X " x2n+1 = x2

[Knl
x2

and — 0 for x — oo. Thus, immediately, (3.123) is indeed the asymptotic

. 2
expansion for e¢* Fy(x). Hence

1
erfc(x) ~ —e

_x2[1 L3 yeden=y
Jr

; o ﬁ + 2245 - on—1y2n—1
(3.126)

We recall from Section 3.4 that the integral fox “tﬂ dt was important in analyzing

the Gibbs phenomenon in Fourier series expansions. We now consider asymptotic
approximations to this integral.

Example 3.11 The sine integral is
¥ sint
Si(x) = f bl P (3.127)
0 t
and the complementary sine integral is

.
t
si(x):/ %dt. (3.128)
X

TLFeBOOK



ASYMPTOTIC SERIES 101

It turns out that si(0) = %, which is shown on p. 277 of Spiegel [22]. We wish to
find an asymptotic series for Si(x). Since

o0 H t X H t o0 3 t
T / S g = / S+ / ST ar = Si(x) +si(x),  (3.129)
2 Jo ot 0 .t

we will consider the expansion of si(x). If we integrate by parts in succession, then

© 1 * ]
/ flsintdtz—cosx—l~/ —zcostdt,
X t
X X

o 1 1
/ t_zcostdtz——zsinx+2~/ —3sintdt,
X t
X X

o 1 |
/ t_3sintdt=—3cosx—3~f —4costdt,
X X x I

o 1 1
/ t_4costdt=——4sinx+4-/ —Ssintdt,
X t
X X

and so on. If n € N, then we may define

o0 o0
Sp(x) = / t"sintdt, c,(x) = / t " costdt. (3.130)
X X
Therefore, for odd n .
Sp(x) = —-COSx —n Cnt1(x), (3.131a)
X
and for even n {
cn(x) = —— sinx +n s;+1(x). (3.131b)
X

We observe that s;(x) = si(x). Repeated application of the recursions (3.131a,b)
results in

1-1 1-1 .
s1(x) = Tcosx—F?smx— 1-2s53(x)

1-1 1-1 . 1-2 1-2-3
= ——CcosXx + —— sinx — —— cosx —
X x2 x3 x4

sinx +1-2-3-4s5(x),

or in general

1-1 1-2 2n —2)!
s1(x) = cosx |:T—x_3+...+(_1)n+lWi|
1-1 1-2-3 2n — 1)!
+ sinx |:—2——+...+(_1)"+1#:|
X X x“n
+ (=" (2n)s2p41(x) (3.132)

TLFeBOOK



102 SEQUENCES AND SERIES
for n € N (with 0! = 1). From this, we obtain
[51(x) = S22 (x)]x*" = (= 1)" (2n)1x*" 52041 (x) (3.133)

for which Sy, (x) is appropriately defined as those terms in (3.132) involving sin x
and cos x. It is unclear whether

lim x*sp,11(x) =0 (3.134)
X—> 00

for any n € N. But if we accept (3.134), then

1.1 1.2 2n — 2)!
5i(r) ~ Sz (x) = cosx [— e (—1)”“%}
X X X
1.1 1-2:3 2n — 1)1
+sinx [—2 - —4+~-~+(—1)"+1%]. (3.135)
X X X

Figure 3.8 shows plots of Si(x) and the asymptotic approximation 7 — So,(x) for
n =1, 2,3. We observe that the approximations are good for “large x,” but poor
for “small x,” as we would expect. Moreover, for small x, the approximations are

Amplitude

: !
2 3 4 5 6 7 8 9

0 i i i i i i
10

(@) X

2 L L T T — T . —]

1T : =T — Si() |-
° - - =n=1
S of ,/./ n=2|
%_ , — . n=3
g 2 T

Sl Y ]

/

_ ) I I I I I I

1.6 1.8 2 2.2 2.4 2.6 2.8 3
(b) x

Figure 3.8 Plot of Si(x) using MATLAB routine sinint, and plots of % — Sy, (x) forn =
1,2,3. The horizontal solid line is at height 7 /2.

TLFeBOOK



MORE ON THE DIRICHLET KERNEL 103

better for smaller n. This is also reasonable. Our plots therefore constitute informal
verification of the correctness of (3.135), in spite of potential doubts about (3.134).

Another approach to finding (cg) is based on the fact that many special func-
tions are solutions to particular differential equations. If the originating differential
equation is known, it may be used to generate sequence (cx). However, this section
was intended to be relatively brief, and so this method is omitted. The interested
reader may see Kreyszig [24].

3.7 MORE ON THE DIRICHLET KERNEL

In Section 3.4 the Dirichlet kernel was introduced in order to analyze the manner
in which Fourier series converge in the vicinity of a discontinuity of a 2 -periodic
function. However, this was only done with respect to the special case of g(¢) in
(3.19). In this section we consider the Dirichlet kernel D, (t) in a more general
manner.

We begin by recalling the complex Fourier series expansion from Chapter 1
(Section 1.3.3). If f(r) € L*(0, 27), then

o= 37 fae™, (3.136)

where f, = (f, en), with ¢, (t) = ¢/, and

2w
(x,y) = i/ x(0)y*(t)dt. (3.137)
2 0

An approximation to f(t) is the truncated Fourier series expansion
L .
() = Z fae" e L0, 27). (3.138)
n=—L

The approximation error is
eL(t) = f(t) — fL(t) € L*(0, 27). (3.139)

We seek a general expression for €7 (¢) that is hopefully more informative than
(3.139). The overall goal is to generalize the error analysis approach seen in
Section 3.4. Therefore, consider

L

) =f0) = Y (frenen(t)

n=—L

TLFeBOOK



104 SEQUENCES AND SERIES

[via f,, = (f, en), and (3.138) into (3.139)]. Thus

L 1 2 )
@ =rfo- Y {E [ reoe s ae) o

n=—L
1 2 L )
=f0—= [ f@1 Y "I dx (3.140)
2 0 7
Since
L . L
D e =142 cosln(t — x)] (3.141)
n=—L n=1

(show this as an exercise), via (3.24), we obtain

sin[(L + 5)(t = »)]
sin[$(r — x)]

L
1+ ZZcos[n(t —x)] =

n=1

=2nDr(t — x). (3.142)

Immediately, we see that

2
er(t)y=f(@) — A fx)Dp(t —x)dx, (3.143)
where also (recall (3.139))
2
fL@) = A fxX)DL(t —x)dx. (3.144)

Equation (3.144) is an alternative integral form of the approximation to f(¢) origi-
nally specified in (3.138). The integral in (3.144) is really an example of something
called a convolution integral. The following example will demonstrate how we
might apply (3.143).

Example 3.12 Suppose that

sint, O<t<m
f(t)_{O, T <t<?2mw

Note that f(¢) is continuous for all #, but that f(l)(t) = df(t)/dt is not continuous
everywhere. For example, £ (¢) is not continuous at r = . Plots of fy (¢) for
various L (see Fig. 3.10) suggest that f; (#) converges most slowly to f(¢) near
t = . Can we say something about the rate of convergence?

TLFeBOOK



MORE ON THE DIRICHLET KERNEL 105

Therefore, consider

17 sin[(L+ D —x)]
= — dx. 3.145
() 5 /0 sin x sin[%(n ] X ( )

Now

sin [%(n — x)i| = sin <%) cos <%x> — cos (%) sin <%x> = cos <%x> ,

and since sinx = Zsin(%x) cos(%x) so (3.145) reduces to
1 /™ . /1 . 1
fr(m) = ;/ sin <§x> sin |:(L + 5) ( —x)} dx
0
L L+1 L 1 L L 1 d
=5 A {cos|:( + )x—( +§>ni|—cos[ x—( +§>n“ X
L S [ T 1) ’
_2n<L+1)[Sm[ i x_< T2 ”Ho
1 L L 1 4
~gz o[- (1 3)7 ],
_ 1 L vsin (L 1 1 . 1
_727((L+1)|: +s1n< +§)n]_27r—L|:_ +s1n< +§)n]

1 2L +1—(—DE

T2t LIL+ D) (3.146)

We see that, as expected
lim f7(x)=0.
L—>o0

Also, (3.146) gives €, () = — fr (), and this is the exact value for the approxi-
mation error at t = s for all L. Furthermore

1
leL (7m)| I

for large L, and so we have a measure of the rate of convergence of the error, at
least at the point t = . (Symbol “o” means “proportional to.”)

We remark that f(¢) in Example 3.12 may be regarded as the voltage drop
across the resistor R in Fig. 3.9. The circuit in Fig. 3.9 is a simple half-wave

TLFeBOOK



106 SEQUENCES AND SERIES

Ideal diode
N
1
+
o <+> R S i)

Figure 3.9 An electronic circuit interpretation for Example 3.12; here, v(z) = sin(¢) for
all t € R.

1.2 T
"""""""""""""""" L —HKh=sin() |
: . —.. L=3
N S == L=10
@ 08|\ T S L _
o . . .
= . . :
= i i i
€ : . . !
< /T b s e —
o v
A . LS R ]
- N~ T
—0.2 | | | I | |
1 2 3 4 5 6 7

Figure 3.10 A plot of f(#) and Fourier series approximations to f(¢) [i.e., fr(f) for
L =3,10].

rectifier circuit. The reader ought to verify as an exercise that

(I BN S L
fL(t) = —+ <sint + ————-cosnt. (3.147)
T 2 = (1 —n?%)

Plots of f1(¢t) for L = 3, 10 versus the plot of f(¢) appear in Fig. 3.10.

TLFeBOOK



COORDINATE ROTATION DI GITAL COMPUTING (CORDIC) 107
3.8 FINAL REMARKS

We have seen that sequences and series might converge “mathematically” yet not
“numerically.” Essentially, we have seen three categories of difficulty:

1. Pointwise convergence of series leading to irreducible errors in certain regions
of the approximation, such as the Gibbs phenomenon in Fourier expansions,
which arises in the vicinity of discontinuities in the function being approxi-
mated

2. The destructive effect of rounding errors as illustrated by the catastrophic
convergence of series

3. Slow convergence such as illustrated by the problem of computing 7 with

the Maclaurin expansion for tan™! x

We have seen that some ingenuity may be needed to overcome obstacles such
as these. For example, a divide-and-conquer approach helped in the problem of
computing 7. In the case of catastrophic convergence, the problem was solved by
changing the computational algorithm. The problem of overcoming Gibbs overshoot
is not considered here. However, it involves seeking uniformly convergent series
approximations.

APPENDIX 3.A COORDINATE ROTATATION DI GITAL
C OMPUTING (CORDIC)

3.A.1 Introduction

This appendix presents the basics of a method for computing “elementary func-
tions,” which includes the problem of rotating vectors in the plane, computing
tan~! x, sin6, and cosf. The method to be used is called “coordinate rotation
digital computing” (CORDIC), and was invented by Jack Volder [3] in the late
1950s. However, in spite of the age of the method, it is still important. The method
is one of those great ideas that is able to survive despite technological changes. It
is a good example of how a clever mathematical idea, if anything, becomes less
obsolete with the passage of time.

The CORDIC method was, and is, desirable because it reduces the problem of
computing apparently complicated functions, such as trig functions, to a succession
of simple operations. Specifically, these simple operations are shifting and adding.
In the 1950s it was a major achievement just to build systems that could add two
numbers together because all that was available for use was vacuum tubes, and to a
lesser degree, discrete transistors. However, even with the enormous improvements
in computing technology that have occurred since then, it is still important to reduce
complicated operations to simple ones. Thus, the CORDIC method has survived
very well. For example, in 1980 [5] a special-purpose CORDIC VLSI (very large
scale integration) chip was presented. More recent references to the method will

TLFeBOOK



108 SEQUENCES AND SERIES

be given later. Nowadays, the CORDIC method is more likely to be implemented
with gate-array technology.

Since the CORDIC method involves the operations of shifting and adding only,
once the mathematics of the method is understood, it is easy to build CORDIC
computing hardware using the logic design methods considered in typical elemen-
tary digital logic courses or books.> Consideration of CORDIC computing also
makes a connection between elementary mathematics courses (calculus and linear
algebra) and computer hardware systems design, as well as the subject of numerical
analysis.

3.A.2 The Concept of a Discrete Basis

The original paper of Volder [3] does not give a rigorous treatment of the mathe-
matics of the CORDIC method. However, in this section (based closely on Schelin
[6]), we will begin the process of deriving the CORDIC method in a mathemati-
cally rigorous manner. The central idea is to represent operands (e.g, the 6 in sin 6)
in terms of a discrete basis. When the discrete basis representation is combined
with appropriate mathematical identities the CORDIC algorithm results.

Let R denote the set of real numbers. Everything we do here revolves around
the following theorem (From Schelin [6]).

Theorem 3.A.1: Suppose that 6, € R for k € {0, 1, 2, 3, ...} satisfy 6y > 0; >
0> --- >0, >0, and that

n
< Y 0j+6, for 0<k<n, (3.A.la)
j=k+1

and suppose 6 € R satisfies

n
o1 <> 0, (3.A.1b)
j=0

If 6 =0, and 6*+D = 9®) 4 5.6, for 0 < k < n, where

1, ife>e®
Sk —{ L ite - e® (3.A.1¢)
then
n
0 -6 <> 0;+6, for 0<k=<n, (3.A.1d)

=k
and so in particular |# — 6" +D| < g,.

5The method is also easy to implement in an assembly language (or other low-level) programming
environment.

TLFeBOOK



COORDINATE ROTATION DI GITAL C OMPUTING (CORDIC) 109

Proof We may use proof by mathematical induction® on the index k. For k = 0

n n
0 —6Q1=101<> 6, <> 6 +6,
j=0 j=0

via (3.A.1b).
Assume that |0 — %] < Z;f:k 0; + 6, is true, and consider |0 — %D, Via
(3.A.1¢), 8 and 8 — 0® have the same sign, and so

10— 6%V =10 — 0D — 56] = 116 — 6] — 6y .

Now, via the inductive hypothesis (i.e., |6 — G(k)l < Z'}zk 0; + 6,), we have

n n
06001 —0 <Y 0+ —O= > 0;+06. (3.A.2a)
j=k j=k+1

Via (3.A.1a), we obtain

n
- Z 9j +6, | <—0
j=k+1

so that

n
—| Y b+ | <1009 -0 (3.A.2b)
j=k+1

Combining (3.A.2a) with (3.A.2b) gives

n
0 — 0% D =110 —0®1 -6 < Y 0, +6,
j=k+1

so that (3.A.1d) holds for & replaced by k + 1, and so (3.A.1d) holds via induction.

We will call this result Schelin’s theorem. The set {6;} is called a discrete basis
if it satisfies the restrictions given in the theorem.

In what follows we will interpret 0 as an angle. However, note that 6 in this
theorem could be more general than this. Now suppose that we define

Op = tan" 127K (3.A.3)

for k=0,1,...,n. Table 3.A.1 shows typical values for 6; as given by (3.A.3).
We see that good approximations to 6 can be obtained from relatively small n
(because from Schelin’s theorem |6 — 9("+1)| < 6,).

A brief introduction to proof by mathematical induction appears in Appendix 3.B.

TLFeBOOK



110 SEQUENCES AND SERIES

TABLE 3.A.1 Values
for Some Elements of
the Discrete Basis given

by Eq. (3.A.3)

k O = tan~ 127k
0 45°

1 26.565°

2 14.036°

3 7.1250°

4 3.5763°

Clearly, these satisfy 8y > 01 > --- > 6, > 0, which is one of the restrictions in
Schelin’s theorem.

The mean-value theorem of elementary calculus says that there exists a & €
[x0, xo0 + A] such that

df (x)
dx

_ flo+ A) — fxo)
o A

x=¢
so if f(x) =tan~!x, then df (x)/dx = 1/(1 4+ x?), and thus

L _ GG
14 xe[2—k+D) 2—k] 2—k _ 2—(k+1)
Ok — Ok+1 1

= =
2=k _ 2—(k+1) 1+ x2 ot

because the slope of tan~! x is largest at x = 2~**D and this in turn implies

o~k _ o=+ 2k+2 _ ok+1 2k+1
Ok — Okt1 < 1226t — [ 422G+ | 3 22G+D)
and ok
Ok = 11 2%
because tan~! x > x L tan!x = (= 0), fork=0,1,...,n (letx =275
"For x > 0
1 d x 1—x?

> — =
14+x2 ~dx 1422 (1+x2)2
2
(certainly 1 > % for x > 0)

/’X X 1 X
= dt > —— = tan”  x >
o 1+12 14 x2 1+ x2

TLFeBOOK



COORDINATE ROTATION DI GITAL C OMPUTING (CORDIC) 111

Now, as a consequence of these results

Ok — Op = (Ok — Ok+1) + Okp1 — Ok42) +-- -+ Gn—2 — Op—1) + (On—1 — 6)
n—1

= (6 —6+1)
—k

j=

n—1 P i
2/+1 2/+1
- ]Zk 1 4 22G+D (9" “hmE g 22<f'+‘>)

[A
M=
<
~.
N
<
~.
[V
—
+ | o
N ~
(3]
~
N—"

implying that

n
< D> 0+
j=k+1

for k=0,1,...,n, and thus (3.A.1a) holds for {#;} in (3.A.3), and so (3.A.3) is
a concrete example of a discrete basis. If you have a pocket calculator handy then

it is easy to verify that
3

> 60, =9273 > 90°,
j=0

so we will work only with angles 6 that satisfy |#| < 90°. Thus, for such 6, there
exists a sequence {8y} such that &; € {—1, 41}, where

n
=73 &bk +en1 = 0" + e, (3.A4)
k=0

where |€,41] <6, = tan—!1 27", Equation (3.A.1c) gives us a way to find {6;}. We
can also write that any angle 6 satisfying |6| < % (radians) can be represented

exactly as

o
0 = Zakek
k=0

for appropriately chosen coordinates {5;}.
In the next section we will begin to see how useful it is to be able to represent
angles in terms of the discrete basis given by (3.A.3).

TLFeBOOK



112 SEQUENCES AND SERIES

3.A.3 Rotating Vectors in the Plane

No one would disagree that a basic computational problem in electrical and com-
puter engineering is to find

7 =e%2, 6eR, (3.A.5)

where j = +/—1, z=x+ jy, and 7/ = x" + jy’ (x,y,x,y € R). Certainly, this
problem arises in the phasor analysis of circuits, in computer graphics (to rotate
objects, for example), and it also arises in digital signal processing (DSP) a lot.®

Thus, z and 7’ are complex variables. Expressing them in terms of their real and
imaginary parts, we may rewrite (3.A.5) as

x' +jy = (cos@ + jsin@)(x + jy) =[x cosh — ysinO] + j[xsinh + y cosf],

and this can be further rewritten as the matrix—vector product

x/ cosf —sinf x
|: y i| _[ sin 6 cosf ]|: y :| (3.A.6)
which we recognize as the formula for rotating the vector [xy]” in the plane to

[x'y]7.
Recall the trigonometric identities

tan 6 1
sinf = ————, cosf = ———, B.A.7)
V1 +tan26 /1 +tan26

and so for § = 6; in (3.A.3)

2k 1
e cosbty = ———.
V14272% V14272

Thus, to rotate x; + jyr by angle 8;.6x to xr+1 + jyik+1 is accomplished via

Xkt 1 1 1 827k i| [ Xk }
_ , 3.A.9
[ Vi+1 } 1+ 22k [ s27k 1 Yk ( )

81n DSP it is often necessary to compute the discrete Fourier transform (DFT), which is an approximation
to the Fourier transform (FT) and is defined by

sinfy = (3.A.8)

N-1

2mkn
X = Z exp (—‘/ N xk),

k=0

where {x;} is the samples of some analog signal, i.e., x; = x(kT), where k is an integer and T is a
positive constant; x(¢) for t € R is the analog signal. Note that additional information about the DFT
appeared in Section 1.4.

TLFeBOOK



COORDINATE ROTATION DI GITAL C OMPUTING (CORDIC) 113

where we’ve used (3.A.6). From Schelin’s theorem, 9 tD ~ 9, so if we wish to
rotate xo + jyo = x 4+ jy by 0D to x, 11 4+ jyas1 (R x' 4 jy') then via (3.A.9)

Lo )= (M=) [ ]

1 —8271 J X0
"[512—1 : ][30 X w | (3.A.10)

Define
K, = (3.A.11)
" H«/1+2 2
where []}_qax = anpn_10—2 - - - a1ap.
Consider
Fnt1 | 1 8,27 1 —52°! 1 =& X0
It | | 827" 1 827! 1 s 1 yo |’
(3.A.12)

which is the same expression as (3.A.10) except that we have dropped the multi-
plication by K,. We observe that to implement (3.A.12) requires only the simple
(to implement in digital hardware, or assembly language) operations of shifting
and adding. Implementing (3.A.12) rotates x + jy by approximately the desired
amount, but gives a solution vector that is a factor of 1/K, longer than it should
be. Of course, this can be corrected by multiplying [£,+1 $.41]7 by K, if desired.
Note that in some applications, this would not be necessary.
Note that

cosf —sinf ~ K 1 —8,27"
sinf cosf o§2T 1

1 —8271 1 =&
'[512—1 | ][30 | ] (3.A.13)

and so the matrix product in (3.A.12) [or (3.A.10)] represents an efficient approxi-
mate factorization of the rotation operator in (3.A.6). The approximation gets better
and better as n increases, and in the limit as n — oo becomes exact.

The computational complexity of the CORDIC rotation algorithm may be des-
cribed as follows. In Eq. (3.A.10) there are exactly 2n shifts (i.e., multiplications
by 27%), and 21 + 2 additions, plus two scalings by factor K. As well, only n + 1
bits of storage are needed to save the sequence {&x}.

We conclude this section with a numerical example to show how to obtain the
sequence {3y} via (3.A.lc).

TLFeBOOK



114 SEQUENCES AND SERIES

Example 3.A.1 Suppose that we want to rotate a vector by an angle of 6 =
20°, and we decide that n = 4 gives sufficient accuracy for the application at hand.
Via (3.A.1c) and Table 3.A.1, we have

0@ =o°
0 = gy = 45° as §p = +1 since 6 > @ = 0°
0@ =0 456,
= 45° — 26.565° as §; = —1 since § < §V
= 18.435°
0% =0 + 8,0,
= 18.435° 4 14.036° as 8, = +1 since 6§ > 62
= 32.471°
0@ =6 4536
=32.471° — 7.1250° as 83 = —1 since 6 < 6O
= 25.346°
00 =0 + 5404
= 25.346° — 3.5763° as 84 = —1 since 6 < 6@
=21.770° ~ 6

Via (3.A.4) and |§ — 0@ tD| < g,
les| = 1.770° < 64 = 3.5763°

so the error bound in Schelin’s theorem is actually somewhat conservative, at least
in this special case.

3.A.4 Computing Arctangents

The results in Section 3.A.3 can be modified to obtain a CORDIC algorithm for
computing an approximation to # = tan~!(y/x). The idea is to find the sequence
{6klk =0,1,...,n—1,n} to rotate the vector [ x y 17 =1 xo Y0 17 to the
vector [x;, y,,]T, where y, ~ 0. More specifically, we would select §; so that
[kl < 1yl .

Let 6 denote the approximation to 6. The desired algorithm to compute 6 may
be expressed as Pascal-like pseudocode:

TLFeBOOK



COORDINATE ROTATION DI GITAL C OMPUTING (CORDIC) 115

for k := 0 to n do begin
if yx > 0 then begin
8 == —1;
end
else begin
8 = +1;
end ;
6= —8KO + 6;
Xieq1 =X — k2 Ky
Yt = 827 Kxi + v
end ;

In this pseudocode

Xk+1 | 1 —827k Xk
et || &27F 1 e |’
and we see that for the manner in which sequence {8} is constructed by the

pseudocode, the inequality | yk+1| < |yk| is satisfied. We choose n to achieve the
desired accuracy of our estimate 6 of 0, specifically, |6 — 9| < 6,.

3.A.5 Final Remarks

As an exercise, the reader should modify the previous results to determine a
CORDIC method for computing cosf, and sinf. [Hint: Take a good look at
(3.A.13).]

The CORDIC philosophy can be extended to the computation of hyperbolic
trigonometric functions, logarithms® and other functions [4, 7]. It can also perform
multiplication and division (see Table on p. 324 of Schelin [6]). As shown by Hu
and Naganathan [9], the rate of convergence of the CORDIC method can be accel-
erated by a method similar to the Booth algorithm (see pp. 287-289 of Hamacher
et al. [10]) for multiplication. However, this is at the expense of somewhat more
complicated hardware structures. A roundoff error analysis of the CORDIC method
has been performed by Hu [8]. We do not present these results in this book as they
are quite involved. Hu claims to have fairly tight bounds on the errors, however.
Fixed-point and floating-point schemes are both analyzed. A tutorial presentation
of CORDIC-based VLSI architectures for digital signal processing applications
appears in Hu [11]. Other papers on the CORDIC method are those by Timmer-
mann et al. [12] and Lee and Lang [13] (which appeared in the IEEE Transactions
on Computers, “Special Issue on Computer Arithmetic” of August 1992). An alter-
native summary of the CORDIC method may be found in Hwang [14]. Many of
the ideas in Hu’s paper [11] are applicable in a gate-array technology environ-
ment. Applications include the computation of discrete transforms (e.g., the DFT),
digital filtering, adaptive filtering, Kalman filtering, the solution of special linear

9A clever alternative to the CORDIC approach for log calculations appears in Lo and Chen [15], and
a method of computing square roots without division appears in Mikami et al. [16].

TLFeBOOK



116 SEQUENCES AND SERIES

systems of equations (e.g., Toeplitz), deconvolution, and eigenvalue and singular
value decompositions.

APPENDIX 3.B  MATHEMATICAL INDUCTION

The basic idea of mathematical induction is as follows. Assume that we are given
a sequence of statements

S0, S5 ooy Sny e

and each §; is true or it is false. To prove that all of the statements are true (i.e.,
to prove that S, is true for all n) by induction: (1) prove that S, is true for n = 0,
and then (2) assume that S, is true for any n = k and then show that S, is true for
n=k+1.

Example 3.B.1 Prove

n

i nn+1)2n+1)

S S LA IC R
i=0

Proof We will use induction, but note that there are other methods (e.g., via z
transforms). For n = 0, we obtain

0
D2 1
So=Yi*=0 and whzozo,
i=0

Thus, S, is certainly true for n = 0.
Assume now that S, is true for n = k so that

k

o k(k+1)(2k+1)
Sk=Zz2=T. (3.B.1)
i=0
We have
k+1 k
Sier = it =D P+ (k+ 1 =S+ (k+ 17
i=0 i=0
and so
k(k+1)2k + 1 k+1)(k+2)2k +3
Sk+(k+1)2=$+(k+l)2=( X 6)( )
nn+1)2n+1)
=7|n:k+l

where we have used (3.B.1).

TLFeBOOK



CATASTROPHIC CANCELLATION 117

Therefore, S, is true for n = k + 1 if S, is true for n = k. Therefore, S,, is true
for all n > 0 by induction.

APPENDIX 3.C CATASTROPHIC CANCELLATION

The phenomenon of catastrophic cancellation is illustrated in the following out-
put from a MATLAB implementation that ran on a Sun Microsystems Ultra 10
workstation using MATLAB version 6.0.0.88, release 12, in an attempt to compute
exp(—20) using the Maclaurin series for exp(x) directly:

term k x~k/ k
0 1.000000000000000
1 -20.000000000000000
2 200.000000000000000
3 -1333.333333333333258
4 6666 .666666666666970
5 -26666.666666666667879
6 88888.888888888890506
7 -253968.253968253964558
8 634920.634920634911396
9 -1410934.744268077658489
10 2821869.488536155316979
11 -5130671.797338464297354
12 8551119.662230772897601
13 -13155568.711124267429113
14 18793669.587320379912853
15 -25058226.116427175700665
16 31322782.645533967763186
17 -36850332.524157606065273
18 40944813.915730677545071
19 -43099804.121821768581867
20 43099804.121821768581867
21 -41047432.496973112225533
22 37315847.724521011114120
23 -32448563.238713916391134
24 27040469.365594934672117
25 -21632375.492475949227810
26 16640288.840366113930941
27 -12326139.881752677261829
28 8804385.629823340103030
29 -6071990.089533339254558
30 4047993.393022226169705
31 -2611608.640659500379115
32 1632255.400412187911570
33 -989245.697219507652335
34 581909.233658534009010
35 -332519.562090590829030
36 184733.090050328260986
37 -99855.724351528784609
38 52555.644395541465201

TLFeBOOK



118

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

exp(-20) from sum of the above terms

SEQUENCES AND SERIES

-26951
13475
-6573

3130
-1455
661
-294
127
-54
22

-9

3.

-1

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

-0

0.

.612510534087050
.806255267041706
.564026959533294
.268584266443668
.938876402997266
.790398364998850
.129065939999407
.882202582608457
.417958545790832
.674149394079514
.254754854726333
701901941890533
.451726251721777
558356250662222
.210700471948008
078037211832596
.028377167939126
010134702835402
.003556036082597
001226219338827
.000415667572484
000138555857495
.000045428149998
000014654241935
.000004652140297
000001453793843
.000000447321182
000000135551873
.000000040463246
000000011900955
.000000003449552
000000000985586
.000000000277630
000000000077119
.000000000021129
000000000005710
.000000000001523
000000000000401
.000000000000104
000000000000027
.000000000000007
000000000000002
.000000000000000
000000000000000
.000000000000000
000000000000000
.000000000000000
000000000000000
.000000000000000
000000000000000

True value of exp(-20)

0.000000004173637

0.000000002061154

TLFeBOOK



REFERENCES 119
REFERENCES

1. E. Kreyszig, Introductory Functional Analysis with Applications, Wiley, New York,
1978.

2. W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York, 1976.

3. J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Trans. Electron.
Comput. EC-8, 330-334 (Sept. 1959).

4. J. S. Walther, “A Unified Algorithm for Elementary Functions,” AFIPS Conf. Proc.,
Vol. 38, 1971 Spring Joint Computer Conf., 379-385 May 18-20, 1971.

5. G. L. Haviland and A. A. Tuszynski, “A CORDIC Arithmetic Processor Chip,” IEEE
Trans. Comput. C-29, 68-79 (Feb. 1980).

6. C. W. Schelin, “Calculator Function Approximation,” Am. Math. Monthly 90, 317-325
(May 1983).

7. J.-M. Muller, “Discrete Basis and Computation of Elementary Functions,” IEEE Trans.
Comput. C-34, 857-862 (Sept. 1985).

8. Y. H. Hu, “The Quantization Effects of the CORDIC Algorithm,” IEEE Trans. Signal
Process. 40, 834-844 (April 1992).

9. Y. H. Hu and S. Naganathan, “An Angle Recoding Method for CORDIC Algorithm
Implementation,” IEEE Trans. Comput. 42, 99—102 (Jan. 1993).

10. V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.,
McGraw-Hill, New York, 1990.

11. Y. H. Hu, “CORDIC-Based VLSI Architectures for Digital Signal Processing,” IEEE
Signal Process. Mag. 9, 16-35 (July 1992).

12. D. Timmermann, H. Hahn, and B. J. Hosticka, “Low Latency Time CORDIC Algo-
rithms,” IEEE Trans. Comput. 41, 1010-1015 (Aug. 1992).

13. J. Lee and T. Lang, “Constant-Factor Redundant CORDIC for Angle Calculation and
Rotation,” IEEE Trans. Comput. 41, 1016-1025 (Aug. 1992).

14. K. Hwang, Computer Arithmetic: Principles, Architecture, and Design, Wiley, New
York, 1979.

15. H.-Y. Lo and J.-L. Chen, “A Hardwired Generalized Algorithm for Generating the Log-
arithm Base-k by Iteration,” IEEE Trans. Comput. C-36, 1363—-1367 (Nov. 1987).

16. N. Mikami, M. Kobayashi, and Y. Yokoyama, “A New DSP-Oriented Algorithm for
Calculation of the Square Root Using a Nonlinear Digital Filter,” IEEE Trans. Signal
Process. 40, 1663-1669 (July 1992).

17. G. G. Walter, Wavelets and Other Orthogonal Systems with Applications, CRC Press,
Boca Raton, FL, 1994.

18. I. S. Gradshteyn and I. M. Ryzhik, in Table of Integrals, Series and Products, A. Jeffrey,
ed., 5th ed., Academic Press, San Diego, CA, 1994.

19. L. Bers, Calculus: Preliminary Edition, Vol. 2, Holt, Rinehart, Winston, New York, 1967.

20. A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd ed.,
Addison-Wesley, Reading, MA, 1994.

21. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical
Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

22. M. R. Spiegel, Theory and Problems of Advanced Calculus (Schaum’s Outline Series).
Schaum (McGraw-Hill), New York, 1963.

TLFeBOOK



120

SEQUENCES AND SERIES

23. A. Papoulis, Signal Analysis, McGraw-Hill, New York, 1977.
24. E. Kreyszig, Advanced Engineering Mathematics, 4th ed., Wiley, New York, 1979.

25. W. D. Lakin and D. A. Sanchez, Topics in Ordinary Differential Equations, Dover Pub-
lications, New York, 1970.

PROBLEMS

3.1.

3.2

3.3.

34.

Prove the following theorem: Every convergent sequence in a metric space
is a Cauchy sequence.

Let f,(x) =x" forn € {1,2,3,...} =N, and f,,(x) € C[0, 1] for all n € N.

(a) What is f(x) = lim,_ « fn(x) (for x € [0, 1])?
(b) Is f(x) € C[O, 1]?

Sequence (x,) is defined to be x, = (n 4+ 1)/(n + 2) for n € Z+. Clearly, if
X =[0,1) CR, then x,, € X for all n € Z*. Assume the metric for metric
space X is d(x,y) = |x —y| (x,y € X).

(a) What is x = lim,, s o0 X, ?
(b) Is X a complete space?
(c) Prove that (x,) is Cauchy.

Recall Section 3.A.3 wherein the rotation operator was defined [Eq. (3.A.6)].
(a) Find an expression for angle 6 such that for y % 0

cosf® —sind x| | X

sin @ cos y | | 0|

=G ()

where x’ is some arbitrary nonzero constant.

(b) Prove that G—1(0) = GT () [i.e., the inverse of G(0) is given by its
transpose].

(¢) Consider the matrix

4
A= 1
0

NSRS )

0
1
4

Let 0y, x,» denote an array (matrix) of zeros with n rows, and m columns.
Find G(#1), and G(6>) so that

|: 1 01x2 j||: G(01) O2x1

A =R,
O2x1 G(62) 01x2 1 }

=0T

where R is an upper triangular matrix (defined in Section 4.5, if you do
not recall what this is).

TLFeBOOK



PROBLEMS 121

(d) Find O~ 7T (inverse of Q7).

(Comment: The procedure illustrated by this problem is important in various
applications such as solving least-squares approximations, and in finding the
eigenvalues and eigenvectors of matrices.)

3.5. Review Appendix 3.A. Suppose that we wish to rotate a vector [xy]” € R?
through an angle 6 = 25° &£ 1°. Find n, and the required delta sequence (Jy)
to achieve this accuracy.

3.6. Review Appendix 3.A. A certain CORDIC routine has the following pseu-
docode description:

Input x and z (|z| < 1);
Yo :=0;z9:=2
for k := 0ton — 1 do begin
if z, < 0 then begin
8 =—1;
end
else begin
‘Sk = +1;
end;
Vst =Y + 5x27K;
Zqq =2ZK — 5k2_k;
end;

The algorithm’s output is y,. What is y,,?
3.7. Suppose that
t

)= ——
X (1) N+t

for n € Z*, and t € (0, 1) C R. Show that (x,(¢)) is uniformly convergent
on S =(0,1).

3.8. Suppose that u,, > 0, and also that Z;.,O:o u, converges. Prove that ]_[Zozo(l +
u,) converges.

[Hint: Recall Lemma 2.1 (of Chapter 2).]
3.9. Prove that lim,_, o, x" =0 if |x| < 1.

3.10. Prove that for a, b, x € R

1 - 1 1
l4+la—bl ~ 14+la—x|1+]b—x|

(Comment: This inequality often appears in the context of convergence proofs
for certain series expansions.)

TLFeBOOK



122 SEQUENCES AND SERIES

3.11. Consider the function

N

2
Ky@) = —— 3" D, (x)
N + 1 n=0

[recall (3.24)]. Since D, (x) is 2m-periodic, Ky (x) is also 2z -periodic. We
may assume that x € [—m, ].

(a) Prove that

1 1—cos(N+ 1x

K =
N @) N +1 1 —cosx

[Hint: Consider Y-, sin ((n + %)x) =Im [Z,ILO ej(”+%)x] ]
(b) Prove that
Ky(x) = 0.

(¢) Prove that -

1
— Ky(x)dx = 1.
2 J_»

[Comment: The partial sums of the complex Fourier series expansion of the
2m-periodic function f(x) (again x € [—m, ]) are given by

N

IN@ =) fael™,

n=—N

where f, = 5 [7 f(x)e™/"™* dx. Define

1 N
oN() = 1 D fal).
n=0

It can be shown that

e

1
oNx)=—— | flr=DKy()dt.

It is also possible to prove that oy (x) — f(x) uniformly on [—m, 7] if f(x)
is continuous. This is often called Fejér’s theorem.)

3.12. Repeat the analysis of Example 3.12 for f7 (0).
3.13. If f(t) € L*(0,27) and f(¢) = Y ez fnel™, show that

1 2 5 B 0 )
= [ rera= 3 nk

n=—oo

TLFeBOOK



3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

PROBLEMS 123

This relates the energy/power of f(#) to the energy/power of its Fourier
series coefficients.

[Comment: For example, if f(¢) is one period of a 2w -periodic signal, then
the power interpretation applies. In particular, suppose that f(z) =i(¢) a
current waveform, and that this is the current into a resistor of resistance R;
then the average power delivered to R is

1 2
= —/ Ri%(t)dt.]
2 0

Use the result of Example 1.20 to prove that

i(l)" .

n=0
Prove that
Lo(rsinlL 40
27 Jo sin[$1] 2
Use mathematical induction to prove that

(1 1)">1+in
=70

for all n € N.

Use mathematical induction to prove that
(I1+n">1+nh

for all n € N, with &7 > —1. (This is Bernoulli’s inequality.)

Use mathematical induction to prove that 4" + 2 is a multiple of 6 for all
n € N.

Conjecture a formula for (n € N)

n

1
S=y ———,
" ];k(k+ 1)

and prove it using mathematical induction.

Suppose that f(x) =tanx. Use (3.55) to approximate f(x) for all x €
(—1,1). Find an upper bound on |e(x)|, where e(x) is the error of the
approximation.

TLFeBOOK



124

3.21.

3.22.

3.23.

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.

SEQUENCES AND SERIES

Given f(x) = x%+ 1, find all £ € (1, 2) such that

f2) — f)
5 .

FO® =5

Use (3.65) to find an approximation to /1 + x for x € ( }T’ %). Find an upper
bound on the magnitude of e(x).

Using a pocket calculator, compute (0.97)!/3 for n = 3 using (3.82). Find
upper and lower bounds on the error e;4+1(x).

Using a pocket calculator, compute [1 .05]1/4 using (3.82). Choose n = 2 (i.e.,
quadratic approximation). Estimate the error involved in doing this using the
error bound expression. Compare the bounds to the actual error.

5(1)-

Show that

Show that

for j=1,2,...,n—1,n.

Show that for n > 2

k=1
For
pn(k) = < Z )pk(l -pRo<p<1,
where k =0, 1, ..., n, show that
(n—kp
k+1)=—p, (k).
Pn( ) (k+1)(1_p)pn( )

[Comment: This recursive approach for finding p, (k) extends the range of
n for which p,(k) may be computed before experiencing problems with
numerical errors.]

Identity (3.103) was confirmed using an argument associated with Fig. 3.7. A
somewhat different approach is the following. Confirm (3.103) by working

with
2
L /00 e 2ax| = 1 /OO /oo P02 gy dy.
V21 J—o00 27 J oo J—o0

TLFeBOOK



PROBLEMS 125
(Hint: Use the Cartesian to polar coordinate conversion x = rcosf,y =
rsinf.)

3.30. Find the Maclaurin (infinite) series expansion for f(x) = sin~! x. What is
the radius of convergence? [Hint: Theorem 3.7 and Eq. (3.82) are use-
ful.]

3.31. From Eq. (3.85) for x > —1

n (_l)k—lxk
log, (1 4 x) = ZT + r(x), (3.P.1)
k=1
where
1 n+l
?x , X = 0
r@l=g " e (3.P2)
ey —L<x=0
[Eq. (3.86)]. For what range of values of x does the series
o0 k—1,.k
=D""'x
log, (1 +x) = Z —
k=1
converge? Explain using (3.P.2).
3.32. The following problems are easily worked with a pocket calculator.
(a) It can be shown that
~ (=D
: _ - 2k+1
sin(x) = 1;) ETER erni3(x), (3.P.3)
where .
< ——— x| 3.P4
le2n43(x)] < (2n+3)!|x| (3.P.4)

Use (3.P.4) to compute sin(x) to 3 decimal places of accuracy for x = 1.5
radians. How large does n need to be?

(b) Use the approximation

N
-1 n—lxn
tog, (1 + 0~ 3 T

n=1

to compute log,(1.5) to three decimal places of accuracy. How large
should N be to achieve this level of accuracy?

TLFeBOOK



126

3.33.

3.34.

3.35.

3.36.

SEQUENCES AND SERIES

Assuming that
n

2 T o 2r —1r
_/ sin x dx—ZZ 7" (—1)
TJo x e @r+1DH@2r+ 1!

27T2n+1
<
T 2n+2)2n+2)!

show that for suitable n

2 (7 sinx
— —dx > 1.17.
T Jo X

What is the smallest n needed? Justify Eq. (3.P.5).

Using integration by parts, find the asymptotic expansion of

o0
c(x):/ cos 2 dt.
X

Using integration by parts, find the asymptotic expansion of

o0
s(x) = / sin#2 dt.
X

(3.P.5)

Use MATLAB to plot (on the same graph) function Ky (x) in Problem 3.11

for N =2,4, 15.

TLFeBOOK



4 Linear Systems of Equations

4.1 INTRODUCTION

The necessity to solve linear systems of equations is commonplace in numerical
computing. This chapter considers a few examples of how such problems arise
(more examples will be seen in subsequent chapters) and the numerical problems
that are frequently associated with attempts to solve them. We are particularly inter-
ested in the phenomenon of ill conditioning. We will largely concentrate on how
the problem arises, what its effects are, and how to test for this problem.1 In addi-
tion to this, we will also consider methods of solving linear systems other than the
Gaussian elimination method that you most likely learned in an elementary linear
algebra course.”> More specifically, we consider LU and QR matrix factorization
methods, and iterative methods of linear system solution. The concept of a singular
value decomposition (SVD) is also introduced.

We will often employ the term “linear systems” instead of the longer phrase
“linear systems of equations.” However, the reader must be warned that the phrase
“linear systems” can have a different meaning from our present usage. In signals
and systems courses you will most likely see that a “linear system” is either a
continuous-time (i.e., analog) or discrete-time (i.e., digital) dynamic system whose
input/output (I/O) behavior satisfies superposition. However, such dynamic systems
can be described in terms of linear systems of equations.

4.2 LEAST-SQUARES APPROXIMATION AND LINEAR SYSTEMS

Suppose that f(x), g(x) € L?[0, 1], and that these functions are real-valued. Recall-
ing Chapter 1, their inner product is therefore given by

1
(f.g) = /0 FOg(0) dx. @.1)

TMethods employed to avoid ill-conditioned linear systems of equations will be mainly considered in
a later chapter. These chiefly involve working with orthogonal basis sets.

2Review the Gaussian elimination procedure now if necessary. It is mandatory that you recall the basic
matrix and vector operations and properties [(AB)T = BT AT etc.] from elementary linear algebra,
too.

An Introduction to Numerical Analysis for Electrical and Computer Engineers, by C.J. Zarowski
ISBN 0-471-46737-5 (© 2004 John Wiley & Sons, Inc.

127

TLFeBOOK



128 LINEAR SYSTEMS OF EQUATIONS

Note that here we will assume that all members of LZ[0, 1] are real-valued (for
simplicity). Now assume that {¢, (x)|n € Zy} form a linearly independent set such
that ¢, (x) € L2[0, 1] for all n. We wish to find the coefficients a,, such that

N—-1
f)~ D angu(x) for x €0, 1]. (4.2)

n=0

A popular approach to finding a, [1] is to choose them to minimize the functional

V(o) =1f(x) = ) andu @I, (4.3)

where, for future convenience, we will treat @, as belonging to the vector a =
lagai - - -an—ran—1]17 € RY. Of course, in (4.3) || fI|?> = (f, f) via (4.1). We are
at liberty to think of

e(x) = f(X) = ) anpn(x) (4.4)

n=0

as the error between f(x) and its approximation ), a,$,(x). So, our goal is to
pick a to minimize [le(x)||2, which, we have previously seen, may be interpreted
as the energy of the error e(x). This methodology of approximation is called least-
squares approximation. The version of this that we are now considering is only
one of a great many variations. We will see others later.

We may rewrite (4.3) as follows:

N—
Via)=If(x) = > andu (@)
N—-1 N—-1
= <f - Z andn, [ — Z ak¢k>
n=0 k=0
N—-1
f)r= <f, > ak¢>k>
k=0
N—-1 N-1 N—-1
- <Z anbn, f> + <Z andn, Z ak¢k>
n=0 n=0 k=0

N-1 N-—1
=IF1P =D arlfode) = D anldn. f)

N—-1

+ axan (Pr, Pn)
0 k=0

2

=~

n

TLFeBOOK



LEAST-SQUARES APPROXIMATION AND LINEAR SYSTEMS 129

N-1
=1FIP =2 alf. i)

k=0
N—-1N-1

+ > akan(r. ¢n)- (4.5)

n=0 k=0

Naturally, we have made much use of the inner product properties of Chapter 1.
It is very useful to define

o =% g={(f D) Tk = (bn bx), (4.6)
along with the vector
g =1lgog1---gn-11" eRY, (4.7a)
and the matrix
R = [ry ] € RVV, (4.7b)

We immediately observe that R = R’ (i.e., R is symmetric). This is by virtue of
the fact that r, x = (¢n, Pk) = (Pk, Pn) = rk.n. Immediately we may rewrite (4.5)
in order to obtain the quadratic form>

V(a) =a’ Ra —2aTg+,o. 4.8)

The quadratic form occurs very widely in optimization and approximation prob-
lems, and so warrants considerable study. An expanded view of R is

- 1 1 1 .
/O¢>(2)(X)dx /0¢()(X)¢1(X)dx /O¢>O(X)¢N—1(X)dx

1 1 1
/¢o(X)¢1(X)dx _/cbf(X)dx f¢>1(X)¢N—1(X)dx

R = 0 0 1

1 1 L
[ oowsnawds [Coiwoyoiods o [T mas |
4.9)

Note that the reader must get used to visualizing matrices and vectors in the general
manner now being employed. The practical use of linear/matrix algebra demands
this. Writing programs for anything involving matrix methods (which encompasses
a great deal) is almost impossible without this ability. Moreover, modern software
tools (e.g., MATLAB) assume that the user is skilled in this manner.

3The quadratic form is a generalization of the familiar quadratic ax? 4 bx + ¢, for which x € C (if
we are interested in the roots of a quadratic equation; otherwise we usually consider x € R) , and also
a,b,c e R.

TLFeBOOK



130 LINEAR SYSTEMS OF EQUATIONS

It is essential to us that R~! exist (i.e., we need R to be nonsingular). Fortu-
nately, this is always the case because {¢,|n € Zy} is an independent set. We shall
prove this. If R is singular, then there is a set of coefficients «; such that

N—-1
> il ¢;) =0 (4.10)
i=0

for j € Zy. This is equivalent to saying that the columns of R are linearly depen-
dent. Now consider the function

N—
fo) =) aigix)

so if (4.10) holds for all j € Zy, then

(f, 5) <Zal¢>l,¢,> i (i, ¢j) =0

for all j € Zy. Thus

N-1 N— -1
Y ailf. ¢ Z [Z ¢,,¢1>}— :
j=0 j=0

implying that

or in other words, (f, f) = ||fA||2 =0, and so f(x) =0 for all x € [0, 1]. This
contradicts the assumption that {¢,|n € Zy} is a linearly independent set. So R~
must exist.

From (4.3) it is clear that (via basic norm properties) V(a) > 0 for all a € RV.
If we now assume that f(x) =0 (all x € [0, 1]), we have p =0, and g = O too.
Thus, al Ra > 0 for all a.

Definition 4.1: Positive Semidefinite Matrix, Positive Definite Matrix  Sup-
pose that A = AT and that A € R"*". Suppose that x € R". We say that A is
positive semidefinite (psd) iff

xT Ax >0
for all x. We say that A is positive definite (pd) iff
xTAx >0

for all x # 0.

TLFeBOOK



LEAST-SQUARES APPROXIMATION AND LINEAR SYSTEMS 131

If A is psd, we often symbolize this by writing A > 0, and if A is pd, we often
symbolize this by writing A > 0. If a matrix is pd then it is clearly psd, but the
converse is not necessarily true.

So far it is clear that R > 0. But in fact R > 0. This follows from the linear
independence of the columns of R. If the columns of R were linearly dependent,
then there would be an a # 0 such that Ra = 0, but we have already shown that
R~ exists, so it must be so that Ra = 0 iff a = 0. Immediately we conclude that
R is positive definite.

Why is R > 0 so important? Recall that we may solve ax? + bx 4+ ¢ = 0 (x € C)
by completing the square:

b 7? b2

2 _

ax +bx+c_a[x+2—] +c——. 4.11)
a

Now if a > 0, then y(x) = ax>+bx +chasa unique minimum. Since y(l)(x) =
2ax +b =0forx = —%, this choice of x forces the first term of (4.11) (right-hand
side of the equality) to zero, and we see that the minimum value of y(x) is

b b? dac — b*
S P 4.12
y( 2a> e 4a (“4.12)

Thus, completing the square makes the location of the minimum (if it exists), and
the value of the minimum of a quadratic very obvious. For the same purpose we
may complete the square of (4.8):

V(a)=la— R 'g)"Rla— R 'gl+p—g" R 'g. (4.13)

It is quite easy to confirm that (4.13) gives (4.8) (so these equations must be
equivalent):

la— R 'gl"Rla—R™"gl+p—¢"R'g
=[a" —¢g" (R N[Ra—gl+p—g"R'g
=a’Ra — gTR_lRa - aTg + gTR_lg +p0— gTR_lg
=a'Ra—gla—a"g+p=a"Ra—2a"g+ p.

We have used (R™1)T = (RT)~! = R™!, and the fact that aTg = gTa. If vector
X=a— R_lg, then

[a — Rilg]TR[a — Rilg] = xTRx.

So, because R > 0, it follows that xTRx > 0 for all x # 0. The last two terms of
(4.13) do not depend on a. So we can minimize V (a) only by minimizing the first
term. R > 0 implies that this minimum must be for x = 0, implying a = a, where

&—R71g=0,

or
Ra=g. (4.14)

TLFeBOOK



132 LINEAR SYSTEMS OF EQUATIONS

Thus
a = argmin V (a). (4.15)

acRN

We see that to minimize |le(x)||> we must solve a linear system of equations,
namely, Eq. (4.14). We remark that for R > 0, the minimum of V (a) is at a unique
location a € RY; that is, the minimum is unique.

In principle, solving least-squares approximation problems seems quite simple
because we have systematic (and numerically reliable) methods to solve (4.14)
(e.g., Gaussian elimination with partial pivoting). However, one apparent difficulty
is the need to determine various integrals:

1 1
a= [ ron = [ swawar.

Usually, the independent set {¢x|k € Zy} is chosen to make finding r, ; rela-
tively straightforward. In fact, sometimes nice closed-form expressions exist. But
numerical integration is generally needed to find gi. Practically, this could involve
applying series expansions such as considered in Chapter 3, or perhaps using
quadratures such as will be considered in a later chapter. Other than this, there
is a more serious problem. This is the problem that R might be ill-conditioned.

4.3 LEAST-SQUARES APPROXIMATION AND ILL-CONDITIONED
LINEAR SYSTEMS

A popular choice for an independent set {¢(x)} would be
de(x) =x* for xe€[0,1], k € Zy. (4.16)

Certainly, these functions belong to the inner product space LQ[O, 1]. Thus, for
f(x) € L?[0, 1] an approximation to it is

N-1

f) =" ax* eP¥70, 1], (4.17)

k=0

and so we wish to fit a degree N — 1 polynomial to f(x). Consequently

1
gk = / XK f(x)dx (4.182)
0
which is sometimes called the kth moment* of f(x) on [0, 1], and also
1 1
e = / Gn ()i (x) dx = / Y P (4.18b)
b o 0 n+k+1

forn,k e Zy.

4The concept of a moment is also central to probability theory.

TLFeBOOK



LEAST-SQUARES APPROXIMATION AND ILL-CONDITIONED LINEAR SYSTEMS 133

For example, suppose that N = 3 (i.e., a quadratic fit); then

T
1 1 1
g= / f(x)dx / xf(x)dx / xzf(x) dx | , (4.19a)
0 0 0
=80 =g =
and
1 L1
2 3 roo o1 foz
R = % % % = rio ri1 riz s (4.19b)
1 1 1 2o ra21 2
3 4 5
and & = [ap a1 @217, so we wish to solve
11 C ! ]
1 - = fx)dx
2 3 A
111 a0 ‘
- = = a | = / xf(x)dx . (4.20)
2 3 4 G 0
2
1 1 1 1 )
3 4 5 i [0 x“f(x)dx |

We remark that R does not depend on the “data” f(x), only the elements of g
do. This is true in general, and it can be used to advantage. Specifically, if f(x)
changes frequently (i.e., we must work with different data), but the independent
set does not change, then we need to invert R only once.

Matrix R in (4.19b) is a special case of the famous Hilbert matrix [2—4]. The
general form of this matrix is (for any N € N)

B 1 1

1 Z Z

2 3

1 1 1

2 3 4

rR=| 1 1 1
3 4 5

1 1 1
L N N+1 N+2

2N -1 |

e RV*N, 4.21)

Thus, (4.20) is a special case of a Hilbert linear system of equations. The matrix R
in (4.21) seems “harmless,” but it is actually a menace from a numerical computing

standpoint. We now demonstrate this concept.

TLFeBOOK



134 LINEAR SYSTEMS OF EQUATIONS

Suppose that our data are something very simple. Say that

f(x)=1 forall x e][0,]1].

In this case g = fol xkdx = ﬁ Therefore, for any N € N, we are compelled to
solve
r 1 1 1 .
1 — — — 1
2 3 N |
1 1 1 1 ao 3
2 3 4 N+1 aj 1
1 1 1 1 a =| 3 (4.22)
3 4 5 N+2 :
: : : an_1
B o 1
- ... L N
LN N+1 N+2 2N —1

A moment of thought reveals that solving (4.22) is trivial because g is the first
column of R. Immediately, we see that

a=1[100---00]". (4.23)

(No other solution is possible since R~! exists, implying that Ra = g always
possesses a unique solution.)

MATLAB implements Gaussian elimination (with partial pivoting) using the
operator “\” to solve linear systems. For example, if we want x in Ax =y for
which A~! exists, then x = A\y. MATLAB also computes R using function “hilb”;
that is, R = hilb(/V) will result in R being set to a N x N Hilbert matrix. Using the
MATLAB ““\” operator to solve for a in (4.22) gives the expected answer (4.23) for
N <50 (at least). The computer-generated answers are correct to several decimal
places. (Note that it is somewhat unusual to want to fit polynomials to data that
are of such large degree.) So far, so good.

Now consider the results in Appendix 4.A. The MATLAB function “inv” may
be used to compute the inverse of matrices. The appendix shows R~! (computed
via inv) for N = 10, 11, 12, and the MATLAB computed product RR™! for these
cases. Of course, RR™ ' =1 (identity matrix) is expected in all cases. For the
number of decimal places shown, we observe that RR~! % I. Not only that, but
the error E = RR™ — I rapidly becomes large with an increase in N. For N = 12,
the error is substantial. In fact, the MATLAB function inv has built-in features to
warn of trouble, and it does so for case N = 12. Since RR™! is not being computed
correctly, something has clearly gone wrong, and this has happened for rather small
values of N. This is in striking contrast with the previous problem, where we wanted
to compute a in (4.22). In this case, apparently, nothing went wrong.

We may consider changing our data to f(x) = xV~!. In this case gy = 1/(N +
k) for k € Zy. The vector g in this case will be the last column of R. Thus,

TLFeBOOK



CONDITION NUMBERS 135

mathematically, @ = [00---001]7. If we use MATLAB “\” to compute a for this
problem we obtain the computed solutions:

4 =10.0000 0.0000 0.0000 0.0000
0.0002 —0.0006 0.0013 —0.00170.0014 —0.0007 1.0001]7 (N = 11),
= [0.0000 0.0000 0.0000 —0.0002 ... 0.0015 —0.0067

Qx>

0.0187 —0.0342 0.0403 —0.0297 0.0124 0.9978]7 (N = 12).

The errors in the computed solutions a here are much greater than those experienced
in computing a in (4.23).

It turns out that the Hilbert matrix R is a classical example of an ill-conditioned
matrix (with respect to the problem of solving linear systems of equations). The
linear system in which it resides [i.e., Eq. (4.14)] is therefore an ill-conditioned
linear system. In such systems the final answer (which is a here) can be exquisitely
sensitive to very small perturbations (i.e., disturbances) in the inputs. The inputs
in this case are the elements of R and g. From Chapter 2 we remember that R
and g will not have an exact representation on the computer because of quantiza-
tion errors. Additionally, as the computation proceeds rounding errors will cause
further disturbances. The result is that in the end the final computed solution can
deviate enormously from the correct mathematical solution. On the other hand, we
have also shown that it is possible for the computed solution to be very close to
the mathematically correct solution even in the presence of ill conditioning. Our
problem then is to be able to detect when ill conditioning arises, and hence might
pose a problem.

44 CONDITION NUMBERS

In the previous section there appears to be a problem involved in accurately com-
puting the inverse of R (Hilbert matrix). This was attributed to the so-called ill
conditioning of R. We begin here with some simpler lower-order examples that
illustrate how the solution to a linear system Ax = y can depend sensitively on A
and y. This will lead us to develop a theory of condition numbers that warn us that
the solution x might be inaccurately computed due to this sensitivity.

We will consider Ax = y on the assumption that A € R"*", and x, y € R".
Initially we will assume n = 2, so

|:6100 001i||:X0i|:|:YOi| (4.24)
ajp ar X yi | '

In practice, we may be uncertain about the accuracy of the entries of A and y.
Perhaps these entities originate from experimental data. So the entries may be
subject to experimental errors. Additionally, as previously mentioned, the elements

TLFeBOOK



136 LINEAR SYSTEMS OF EQUATIONS

of A and y cannot normally be exactly represented on a computer because of the
need to quantize their entries. Thus, we must consider the perturbed system

a a da Sa X )
00 dor | 00 01 Yo | _ Yo || 9 (425
app aii Saio dai X1 y1 dy1
-_— | —— —_——
—5A -t =3y

The perturbations are §A and 6y. We will assume that these are “small.” As you
might expect, the practical definition of “small” will force us to define and work
with suitable norms. This is dealt with below. We further assume that the computing
machine we use to solve (4.25) is a “magical machine” that computes without
rounding errors. Thus, any errors in the computed solution, denoted x here, can be
due only to the perturbations §A and §y. It is our hope that X ~ x. Unfortunately,
this will not always be so, even for n = 2 with small perturbations.

Because n is small, we may obtain closed-form expressions for A7l x, [A+
8A]7!, and £. More specifically

1 _
Al ——— [ @i ol } : (4.26)
appail —apiaio [ —a10 aoo
and
1
[A+8A] " =
(aoo + dago)(a11 + dar) — (ao1 + dap1)(aio + daio)
an +édair - —(aor + daopr)
. 4.27
[ —(a10 +3ai0)  (aoo + dago) (4-27)

The reader can confirm these by multiplying A~! as given in (4.26) by A. The
2 x 2 identity matrix should be obtained. Using these formulas, we may consider
the following example.

Example 4.1 Suppose that

1 -0l
Az[z .01] yz[

Nominally, the correct solution is

.

Let us consider different perturbation cases:

)

TLFeBOOK



CONDITION NUMBERS 137

1. Suppose that

o o B -
SA_[O '005], sy=[0 01".

In this case

£=101.1429 —85.7143]".

2. Suppose that

|0 0 _ T
8A_[0 _.03] sy=[0 0]".

for which

1 -0l
A+3A=[2 —.02 }

This matrix is mathematically singular, so it does not possess an inverse. If
MATLAB tries to compute x using (4.27), then we obtain

£=1.0x10"7 x [-0.0865 —8.6469]"

and MATLAB issues a warning that the answer may not be correct. Obvi-
ously, this is truly a nonsense answer.

3. Suppose that

10 0 . T
A = [ 0 —0 :|,8y_[0.10 —0.05]".

In this case

£ =[-1.1500 —325.0000]".

It is clear that small perturbations of A and y can lead to large errors in the
computed value for x. These errors are not a result of accumulated rounding errors
in the computational algorithm for solving the problem. For computations on a
“nonmagical” (i.e., “real”’) computer, this should be at least intuitively plausible
since our formulas for x are very simple in the sense of creating little opportunity
for rounding error to grow (there are very few arithmetical operations involved).
Thus, the errors x — X must be due entirely (or nearly so) to uncertainties in the
original inputs. We conclude that the real problem is that the linear system we
are solving is too sensitive to perturbations in the inputs. This naturally raises the
question of how we may detect such sensitivity.

In view of this, we shall say that a matrix A is ill-conditioned if the solution x
(in Ax = y) is very sensitive to perturbations on A and y. Otherwise, the matrix
is said to be well-conditioned.

TLFeBOOK



138 LINEAR SYSTEMS OF EQUATIONS

We will need to introduce appropriate norms in order to objectively measure
the sizes of objects in our problem. However, before doing this we make a few
observations that give additional insight into the nature of the problem. In Example
4.1 we note that the first column of A is big (in some sense), while the second
column is small. The smallness of the second column makes A close to being
singular. A similar observation may be made about Hilbert matrices. For a general
N x N Hilbert matrix, the last two columns are given by

- L -
N —1 N
1 1
N N +1
1 1
L 2N -2 2N -1

For very large N, it is apparent that these two columns are almost linearly depen-
dent; that is, one may be taken as close to being equal to the other. A simple
numerical example is that ﬁ ~ 1.%1. Thus, at least at the outset, it seems that
ill-conditioned matrices are close to being singular, and that this is the root cause
of the sensitivity problem.

We now need to extend our treatment of the concept of norms from what we
have seen in earlier chapters. Our main source is Golub and Van Loan [5], but
similar information is to be found in Ref. 3 or 4 (or the references cited therein).
A fairly rigorous treatment of matrix and vector norms can be found in Horn and
Johnson [6].

Suppose again that x € R". The p-norm of x is defined to be

n—1 I/p
lIxllp = [Z mw} : (4.28)
k=0

where p > 1. The most important special cases are, respectively, the 1-norm, 2-
norm, and oo-norm:

n—1

el =) il (4.29)
k=0

lIxll2 = [x"x]"2, (4.29b)

lIxlloo =  max |xgl. (4.29¢)
0<k<n-—1

The operation “max” means to select the biggest |xi|. A unit vector with respect
to norm || - || is a vector x such that ||x|] = 1. Note that if x is a unit vector with

TLFeBOOK



CONDITION NUMBERS 139

respect to one norm, then it is not necessarily a unit vector with respect to another
choice of norm. For example, suppose that x = [‘/T§ %]T; then

V341 V3
— Xl = =

= 1, =
I1xl12 x[lt 5 >

The vector x is a unit vector under the 2-norm, but is not a unit vector under the
1-norm or the co-norm.

Norms have various properties that we will list without proof. Assume that
x,y € R". For example, the Héolder inequality [recall (1.16) (in Chapter 1) for
comparison] is

Tyl < HlxllplIyllg (4.30)

for which % + [ll = 1. A special case is the Cauchy—-Schwarz inequality

Tyl < Hxll2llyll2, (4.31)
which is a special instance of Theorem 1.1 (in Chapter 1). An important feature of
norms is that they are equivalent. This means that if || - ||, and || - ||g are norms
on R”, then there are c{, ¢c; > 0 such that

ctllxlle = [lxllp < c2llx]la (4.32)

for all x € R". Some special instances of this are

llxll2 < llxIh < ~/nllx]l2, (4.33a)
lIxlloe < llxll2 < v/nllx|lco, (4.33b)
xlloo = Ilxll1 < n]lx|loo- (4.33¢)

Equivalence is significant with respect to our problem in the following manner.
When we define condition numbers below, we shall see that the specific value of
the condition number depends in part on the choice of norm. However, equivalence
says that if a matrix is ill-conditioned with respect to one type of norm, then it
must be ill-conditioned with respect to any other type of norm. This can simplify
analysis in practice because it allows us to compute the condition number using
whatever norms are the easiest to work with. Equivalence can be useful in another
respect. If we have a sequence of vectors in the space R”, then, if the sequence is
Cauchy with respect to some chosen norm, it must be Cauchy with respect to any
other choice of norm. This can simplify convergence analysis, again because we
may pick the norm that is easiest to work with.

In Chapter 2 we considered absolute and relative error in the execution of
floating-point operations. In this setting, operations were on scalars, and scalar
solutions were generated. Now we must redefine absolute and relative error for
vector quantities using the norms defined in the previous paragraph. Since ¥ € R"

TLFeBOOK



140 LINEAR SYSTEMS OF EQUATIONS

is the computed (i.e., approximate) solution to x € R" it is reasonable to define the
absolute error to be

€ = ||x — x||, (4.34a)
and the relative error is .
e = 2=l (4.34b)
[lx]]

Of course, x # 0 is assumed here. The choice of norm is in principle arbitrary.
However, if we use the co-norm, then the concept of relative error with respect to
it can be made equivalent to a statement about the correct number of significant
digits in X:

¥ = *lloo 19— (4.35)

1200

In other words, the largest element of the computed solution X is correct to approx-
imately d decimal digits. For example, suppose that x = [1.256 —2.554]7, and
£ =1[1.251 —2.887]"; then £ — x = [—0.005 — 0.333]", and so

12 = xlloo = 0.333,  ||x]|oc = 2.554,

so therefore €, = 0.1304 ~ 10~!. Thus, % has a largest element that is accurate to
about one decimal digit, but the smallest element is observed to be correct to about
three significant digits.

Matrices can have norms defined on them. We have remarked that ill condi-
tioning seems to arise when a matrix is close to singular. Suitable matrix norms
can allow us to measure how close a matrix is to being singular, and thus gives
insight into its condition. Suppose that A, B € R™*" (so A and B are not neces-
sarily square matrices). || - |||[R"*" — R is a matrix norm, provided the following
axioms hold:

(MN1) [|A]] =0 for all A, and ||A|| =0iff A =0.

(MN2) [|A + Bl| < [|All + |IB]l.

(MN3) ||lxA||l = || ||A]]. Constant « is from the same field as the elements of
the matrix A.

In the present context we usually consider « € R. Extensions to complex-valued
matrices and vectors are possible. The axioms above are essentially the same as for
the norm in all other cases (see Definition 1.3 for comparison). The most common
matrix norms are the Frobenius norm

[lAllF = (4.36a)

TLFeBOOK



CONDITION NUMBERS 141

and the p-norms

|| Ax]|
I|All, = sup L.
w0 X1

(4.36b)
We see that in (4.36b) the matrix p-norm is dependent on the vector p-norm. Via
(4.36b), we have

[[Ax]lp < [IAllpllx]lp- (4.36c¢)

We may regard A as an operator applied to x that yields output Ax. Equation
(4.36¢) gives an upper bound on the size of the output, as we know the size of A
and the size of x as given by their respective p-norms. Also, since A € R™*" it
must be the case that x € R”, but y € R”. We observe that

it

This is an alternative means to compute the matrix p-norm: Evaluate ||Ax||, at all
points on the unit sphere, which is the set of vectors {x|||x||, = 1}, and then pick
the largest value of ||Ax||,. Note that the term “sphere” is an extension of what
we normally mean by a sphere. For the 2-norm in n dimensions, the unit sphere is
clearly

[Allp = sup
x#0

)H = max1||Ax||p. (4.37)
)4

X
[lx]lp l1x|lp=

xl = [ +x2 +-- +x2 12 =1 (4.38)

This represents our intuitive (i.e., Euclidean) notion of a sphere. But, say, for the
1-norm the unit sphere is

llxll = Ixol + xi| +-- -+ [xp—1[ = L. (4.39)
Equations (4.38) and (4.39) specify very different looking surfaces in n-dimensional
space. A suggested exercise is to sketch these spheres for n = 2.

As with vector norms, matrix norms have various properties. One property pos-
sessed by the matrix p-norms is called the submultiplicative property:

IIABIl, < IAllplIBll, AeR™", BeR"™. (4.40)

(The reader is warned that not all matrix norms possess this property; a coun-
terexample appears on p. 57 of Golub and Van Loan [5]). A miscellany of other
properties (including equivalences) is

[1All2 < [1AllF < +/nllAll2, (4.41a)
max |a; ;| < [|All2 < vmnmax|a; |, (4.41b)
i, i,j

TLFeBOOK



142 LINEAR SYSTEMS OF EQUATIONS

All1 = ma il 4.41c
Al jezégm,,ﬂ (4.41c)
n—1
1Al oo = m%xz lai . (441d)
j=0
1
—1Alloe < 1Al < V/ml|Allso (4.41e)
Jn
1
—lAlll < lAll, < All;. 441
ﬁn Il < lAll2 < VallAllx (4.41f)

The equivalences [e.g., (4.41a) and (4.41b)] have the same significance for
matrices as the analogous equivalences for vectors seen in (4.32) and (4.33).

From (4.41c,d) we see that computing matrix 1-norms and co-norms is easy.
However, computing matrix 2-norms is not easy. Consider (4.37) with p = 2:

l[All2 = max [[Ax]]2. (4.42)
llxll=1

Let R = ATA e R™" (no, R is not a Hilbert matrix here; we have “recycled” the
symbol for another use), so then

I|Ax|3 = xTAT Ax = xT Rx. (4.43)

Now consider n = 2. Thus

xTRx = [xox1] |: 700 ol i| [ 0 i| , (4.44)

ro ri X1
where rg; = rio because R = RT. The vectors and matrix in (4.44) multiply out
to become
xTRx = Vo()x(% + 2ro1xox1 + r11x12. (4.45)
Since ||A||3 = max|y|,=1 ||Ax||3, we may find || A[|3 by maximizing (4.45) subject
to the equality constraint ||x||% =1,ie, xTx = xg + x12 = 1. This problem may
be solved by using Lagrange multipliers (considered somewhat more formally in
Section 8.5). Thus, we must maximize
V() =x"Rx — Alx"x — 1], (4.46)

where A is the Lagrange multiplier. Since

Vix)= r()oxg ~+ 2ro1xox1 + rllxl2 — )»[xg +x% —1],

TLFeBOOK



CONDITION NUMBERS 143

we have
aVv
(x) = 2rgoxo + 2ro1x1 — 2Axo =0,
0x0
aV(x)
= 2ro1xo + 2r11x1 — 2Ax1 =0,
0x1

and these equations may be rewritten in matrix form as

ro0 701 X0 | _ s | X0 (4.47)
ro i1 X x| '

In other words, Rx = Ax. Thus, the optimum choice of x is an eigenvector of
R = AT A. But which eigenvector is it?

First note that A~! exists (by assumption), so x’Rx =xTATAx =
(Ax)T(Ax) > 0 for all x # 0. Therefore, R > 0. Additionally, R = R”, so all
of the eigenvalues of R are real numbers.’ Furthermore, because R > 0, all of its
eigenvalues are positive. This follows if we consider Rx = Ax, and assume that
A <0. In this case x” Rx = AxTx = Al|x||3 < 0 for any x # 0. [If A =0, then
Rx =0-x =0 implies that x =0 (as R~! exists), so x’ Rx = 0.] But this con-
tradicts the assumption that R > 0, and so all of the eigenvalues of R must be
positive. Now, since [|Ax||3 = xT AT Ax = xT Rx = xT (Ax) = A||x][3, and since
||x||§ = 1, it must be the case that ||Ax||§ is biggest for the eigenvector of R cor-
responding to the biggest eigenvalue of R. If the eigenvalues of R are denoted A;
and Ao with A1 > Ag > 0, then finally we must have

IIA|3 = 2. (4.48)

This argument can be generalized for all n > 2. If R > 0, we assume that all
of its eigenvalues are distinct (this is not always true). If we denote them by
A0s A ..., An—1, then we may arrange them in decreasing order:

A1 > Ap—2 > ---> A1 > Ag > 0. (4.49)

Therefore, for A € R™*"
IA[I3 = A1 (4.50)

The problem of computing the eigenvalues and eigenvectors of a matrix has its own
special numerical difficulties. At this point we warn the reader that these problems
must never be treated lightly.

SIf A is a real-valued symmetric square matrix, then we may prove this claim as follows. Suppose
that for eigenvector x of A, the eigenvalue is A, that is, Ax = Ax. Now ((Ax)*)T = ((Ax)*)T, and so
T AT = 32*(x*)T . Therefore, (x*)T ATx = 2*(x*)Tx. But x*)TATx = )T Ax = A(x*)T x, so
finally AT x = 2(x*)Tx, so we must have A = A*. This can be true only if A € R.

TLFeBOOK



144 LINEAR SYSTEMS OF EQUATIONS

Example 4.2 Let det(A) denote the determinant of A. Suppose that R = AT A,

where . 0.5
Rz[o.s I ]

We will find ||A]|;. Consider

s e ][]

We must solve det(LI — R) = 0 for A. [Recall that det(A] — R) is the characteristic

polynomial of R.] Thus

4

det(M—R):det([ A_le ;251 D:(x_l)z_lzo,

and (A — 1)> — 3 =22 =21+ 2 =0, for

(-t J(=22-4-1-3 54,

1
2.1 T2 T

So, A =3, A = % Thus, ||A||% =A = %, and so finally

- 2>
Al —\/3
2 2

(We do not need the eigenvectors of R to compute the 2-norm of A.)

We see that the essence of computing the 2-norm of matrix A is to find the zeros
of the characteristic polynomial of AT A. The problem of finding polynomial zeros
is the subject of a later chapter. Again, this problem has its own special numerical

difficulties that must never be treated lightly.

We now derive the condition number. Begin by assuming that A € R"*", and
that A~! exists. The error between computed solution £ to Ax = y and x is

e=x—1X.
Ax =y, but AX # y in general. So we may define the residual
r=y— Ax.

We see that
Ae=Ax —Ax=y—Ax =r.

4.51)

(4.52)

(4.53)

Thus, e = A~ 'r. We observe that if ¢ = 0, then r =0, but if r is small, then e
is not necessarily small because A~' might be big, making A~!r big. In other

TLFeBOOK



CONDITION NUMBERS 145

words, a small residual r does not guarantee that X is close to x. Sometimes r is
computed as a cursory check to see if x is “reasonable.” The main advantage of
r is that it may always be computed, whereas x is not known in advance and so
e may never be computed exactly. Below it will be shown that considering r in
combination with a condition number is a more reliable method of assessing how
close x is to x.

Now, since e = A~!r, we can say that |le]|, = [|[A7!r|l, < ||A7|plIr]l, [via
(4.36¢)]. Similarly, since r = Ae, we have ||r||, = [|Ae|l, < ||Allplle]lp. Thus
rllp -1
<llellp < 1A IplIrllp- (4.54)
Allp

Similarly, x = A~!y, so immediately

[y1lp
1Al

<llxllp < A7 Ipllyllp- (4.55)

If [|x||, # 0, and ||y||, # O, then taking reciprocals in (4.55) yields

L1 liAl
— =< < . (4.56)
HA= I plylp — Il = 1lyllp
We may multiply corresponding terms in (4.56) and (4.54) to obtain
1 1l llell - 1l
— < <A |pllAllp =2 (4.57)
HAZ Al Il — lxllp yllp
We recall from (4.34b) that €, = H)ICI;\)T,‘JP = ||||§HZ , SO
1 11y -1 rilp
<& = |[A7 IpllAll . (4.58)
A= Al 11, — P
We call A
lrllp _ Iy — Ax]lp (4.59)
yllp Iyl p
the relative residual. We define
kp(A) = |AllpI1A7"]], (4.60)

to be the condition number of A. It is immediately apparent that «,(A) > 1 for
any A and valid p. We see that €, is between 1/k,(A) and «,(A) times the
relative residual. In particular, if k,(A) >> 1 (i.e., if the condition number is very
large), even if the relative residual is tiny, then €, might be large. On the other
hand, if «,(A) is close to unity, then €, will be small if the relative residual is
small. In conclusion, if k,(A) is large, it is a warning (not a certainty) that small

TLFeBOOK



146 LINEAR SYSTEMS OF EQUATIONS

perturbations in A and y may cause X to differ greatly from x. Equivalently, if k , (A)
is large, then a small r does not imply that X is close to x.

A rule of thumb in interpreting condition numbers is as follows [3, p. 229], and
is more or less true regardless of p in (4.60). If k,(A) ~ d x 10, where d is a
decimal digit from one to nine, we can expect to lose (at worst) about k digits of
accuracy. The reason that p does not matter too much is because we recall that
matrix norms are equivalent. Therefore, for this rule of thumb to be useful, the
working precision of the computing machine/software package must be known.
For example, MATLAB computes to about 16 decimal digits of precision. Thus,
k > 16 would give us concern that x is not close to x.

Example 4.3 Suppose that

A:[i l;e }6R2X2,|e|<<1.

We will determine an estimate of k1(A). Clearly

At LU —t+e | [ boo bor
e| —1 1 bio bu |’
We have

1

1
> laiol = lagol + latol =2, lai1| = laoi| + lan| = [1 — €| + 1,
i=0 i=0

so via (4.41c¢), ||All1 = max{2, [l — €|+ 1} ~ 2. Similarly

—1+e€
€

1 1
2 1

E [biol = |bool + |b1ol = o E [bi1] = |bo1| + |b11| = E+

i=0 i=0

1
-2

so again via (4.41c) [|[A7'||; = max {I?z\’ + %} ~ % Thus

4
K1(A) ~ o

We observe that if € = 0, then A~! does not exist, so our approximation to «(A)
is a reasonable result because

lim «k;(A) = oo.
le|]—0

We may wish to compute x2(A) = ||A||2]|A~"||>. We will suppose that A €
R and that A~! exists. But we recall that computing matrix 2-norms involves
finding eigenvalues. More specifically, || A| |% is the largest eigenvalue of R = AT A

TLFeBOOK



CONDITION NUMBERS 147

[recall (4.50)]. Suppose, as in (4.49), that Ag is the smallest eigenvalue of R for
which the corresponding eigenvector is denoted by v, that is, Rv = Agv. Then we
observe that R~'v = %v. In other words, 1/ is an eigenvalue of R~!. By similar

reasoning, 1/ for k € Z, must all be eigenvalues of R~!. Thus, 1/1¢ will be the
biggest eigenvalue of R~!. For present simplicity assume that A is a normal matrix.
This means that AAT = AT A = R. The reader is cautioned that not all matrices A
are normal. However, in this case we have R~! = A71A~T = A=T AL, [Recall
that (A=) = (AT)~! = A=T.] We have that ||A~!]|3 is the largest eigenvalue of
A7TA=1 but R~! = A=T A~ since A is assumed normal. The largest eigenvalue
of R~! has been established to be 1 /Ao, so it must be the case that for a normal
matrix A (real-valued and invertible)

An—1

Kk2(A) = o

(4.61)

that is, A is ill-conditioned if the ratio of the biggest to smallest eigenvalue of
AT A is large. In other words, a large eigenvalue spread is associated with matrix
ill conditioning. It turns out that this conclusion holds even if A is not normal; that
is, (4.61) is valid even if A is not normal. But we will not prove this. (The interested
reader can see pp. 312 and 340 of Horn and Johnson [6] for more information.)

An obvious difficulty with condition numbers is that their exact calculation often
seems to require knowledge of A~!. Clearly this is problematic since computing
A~! accurately may not be easy or possible (because of ill conditioning). We seem
to have a “chicken and egg” problem. This problem is often dealt with by using
condition number estimators. This in turn generally involves placing bounds on
condition numbers. But the subject of condition number estimation is not within
the scope of this book. The interested reader might consult Higham [7] for further
information on this subject if desired. There is some information on this matter in
the treatise by Golub and Van Loan [5, pp. 128-130], which includes a pseudocode
algorithm for co-norm condition number estimation of an upper triangular nonsin-
gular matrix. We remark that ||A||; is sometimes called the spectral norm of A,
and is actually best computed using entities called singular values [5, p. 72]. This
is because computing singular values avoids the necessity of computing A~!, and
can be done in a numerically reliable manner. Singular values will be discussed in
more detail later.

We conclude this section with a remark about the Hilbert matrix R of Section 4.3.
As discussed by Hill [3, p. 232], we have

k2(R) o eV

for some o > 0. (Recall that symbol o« means “proportional to.”) Proving this is
tough, and we will not attempt it. Thus, the condition number of R grows very
rapidly with N and explains why the attempt to invert R in Appendix 4.A failed
for so small a value of N.

TLFeBOOK



148  LINEAR SYSTEMS OF EQUATIONS
4.5 LU DECOMPOSITION

In this section we will assume A € R?*", and that A~! exists. Many algorithms
to solve Ax = y work by factoring the matrix A in various ways. In this section
we consider a Gaussian elimination approach to writing A as

A=LU, 4.62)

where L is a nonsingular lower triangular matrix, and U is a nonsingular upper
triangular matrix. This is the LU decomposition (factorization) of A. Naturally,
L,UeR"™ and L =[l; ;], U = [u;,;]. Since these matrices are lower and upper
triangular, respectively, it must be the case that

lijj=0 for j>i and uij=0 for j<i. (4.63)

For example, the following are (respectively) lower and upper triangular matrices:

0 0 1 2 3
L=(11 0], U=| 0 4 5
11 1 0 0 6

These matrices are clearly nonsingular since their determinants are 1 and 24, respec-
tively. In fact, L is nonsingular iff /; ; # 0 for all i, and U is nonsingular iff u; ; # 0
for all j. We note that with A factored as in (4.62), the solution of Ax = y becomes
quite easy, but the details of this will be considered later. We now concentrate on
finding the factors L, U.

We begin by defining a Gauss transformation matrix Gy such that

1 .- 0 0 -« 079 xo ] [ xo ]|
_ 0 1 0 0 Xk—1 _ Xi—1
Gux = 0 —T,f | 0 o = 0 (4.64)
L 0 —‘L'k_l 0 1 1L *n—1 | L 0 _
for X
=" i=k,...,n—1 (4.65)
Xk—1

The superscript k£ on rj]? does not denote raising 7; to a power; it is simply part of
the name of the symbol. This naming convention is needed to account for the fact
that there is a different set of t values for every Gy. For this to work requires that
xx—1 # 0. Equation (4.65) followed from considering the matrix—vector product

TLFeBOOK



LU DECOMPOSITION 149

in (4.64):
—‘L’lka,1 +x =0

k
— T 1 Xk—1 + Xk1 = 0

k
=T, _1Xk—1+ Xp—1 = 0.

We observe that G is “designed” to annihilate the last n — k elements of vector
x. We also see that G is lower triangular, and if it exists, always possesses an
inverse because the main diagonal elements are all equal to unity. A lower triangular
matrix where all of the main diagonal elements are equal to unity is called unit
lower triangular. Similar terminology applies to upper triangular matrices. Define
the kth Gauss vector

KT k_k k
@) =100ty Tyl (4.66)
k zeros
The kth unit vector is
esz[()...()l 0---0 1. (4.67)
~—— ~——

k zeros n—k—1 zeros

If 7 is an n x n identity matrix, then

Gr=1-71rel | (4.68)
for k =1,2,...,n — 1. For example, if n = 4, we have
1 0 0 0] 1 0 0 0
-7l 1.0 0 0 1 00
Gi=l ot ol| 9T|o - 10|
_131 00 1 0 —‘1,'32 0 1
1 0 0 0]
01 0 O
G=|00 1 o (4.69)
| 0 0 -7 1

The Gauss transformation matrices may be applied to A, yielding an upper trian-
gular matrix. This is illustrated by the following example.

Example 4.4 Suppose that

1 2 3 4

-t 2

A=l o921 3 |G
00 1 1

TLFeBOOK



150 LINEAR SYSTEMS OF EQUATIONS

We introduce matrices A%, where A% = GkAk_1 fork=1,2,...,n — 1, and finally
U= A""1 Once again, A is not the kth power of A, but rather denotes the kth
matrix in a sequence of matrices. Now consider

00
00 -1
1 0
0 1

SN = DN
—_ = N W
—_— ) = N
SO O =
SN W N
—_— W

0

for which the ril entries in the first column of G depend on the first column of
A° (ie., of A) according to (4.65). Similarly

1 00 0 1 2 3 4 1 2 3 4
G2A1:0100 ()355:0355:A2

0 -3 10 0 213 00 -7 -1

o oo 1 JLOO T 00 1 1

for which the riz entries in the second column of G» depend on the second column
of A!, and also

100 0 1 2 3 4 12 3 4
03 5 5
Goazo| 0 L 00 03 5 5| S5y
001 0 00 —35 —3 00 —% —3
: _
00 21 00 1 1 00 o ¢

for which the ri3 entries in the third column of G3 depend on the third column of
A?. We see that U is indeed upper triangular, and it is also nonsingular. We also

see that
U=G3G,G A.
—_——

=L,

Since the product of lower triangular matrices is a lower triangular matrix, it is the
case that L1 = G3G,G is lower triangular. Thus

A=L7'U.

Since the inverse (if it exists) of a lower triangular matrix is also a lower triangular
matrix, we can define L = Ll_l, and so A = LU. Thus

1 ~—1/~-1
L=G7'G6;'67"

From this example it appears that we need to do much work in order to find G,;l.
However, this is not the case. It turns out that

Gil=1+7re] . (4.70)

TLFeBOOK



LU DECOMPOSITION 151

This is easy to confirm. From (4.68) and (4.70)

-1 kT kT kT kT kT _k,T
GG, = -t MU +Tep_1=1—1"e_1+T ¢ —T e_1T €4

=1- tkekaltkekal.

But from (4.66) and (4.67) ekT_lrk = 0, so finally Gka_1 =1.

To obtain t,.k from (4.65), we see that we must divide by x;_;. In our matrix
factorization application of the Gauss transformation, we have seen (in Example
4.4) that x;_; will be an element of A*. These elements are called pivots. It
is apparent that the factorization procedure cannot work if a pivot is zero. The
occurrence of zero-valued pivots is a common situation. A simple example of a
matrix that cannot be factored with our algorithm is

A:[(l) (1)] (4.71)
In this case
S ) (S I
and from (4.65)
gof_ge 1 (4.73)

This result implies that not all matrices possess an LU factorization. Let det(A)
denote the determinant of A. We may state a general condition for the existence of
the LU factorization:

Theorem 4.1: Since A =[a; ;i j=0,...n—1 € R"*" we define the kth leading
principle submatrix of A to be Ay = [a; ], j=0,... k-1 € Rk for k=1,2,...,n
(sothat A = A,, and A1 = [agp] = app). There exists a unit lower triangular matrix
L and an upper triangular matrix U such that A = LU, provided that det(Ax) # 0
for all k =1,2..., n. Furthermore, with U = [u; ;] € R**" we have det(A;) =

[TiZo ui.i-
The proof is given in Golub and Van Loan [5]. It will not be considered here. For

A in (4.71), we see that A; = [0] =0, so det(A;) = 0. Thus, even though Al
exists, it does not possess an LU decomposition. It is also easy to verify that for

1 4
A=| 2 8 ,
0 -1
although A~! exists, again A does not possess an LU decomposition. In this case
we have det(A,) = det ; g = 0. Theorem 4.1 leads to a test of positive

definiteness according to the following theorem.

TLFeBOOK



152 LINEAR SYSTEMS OF EQUATIONS

Theorem 4.2: Suppose R € R"*" with R = R”. Suppose that R = LDLT,
where L is unit lower triangular, and D 1is a diagonal matrix (L =
Ui jlij=0,..n—1, D = [d; jli j=0,...u-1)- If d; ; > O for all i € Z,,, then R > 0.

Proof L is unit lower triangular, so for any y € R" there will be a unique
x € R” such that

y= LTx (yT = xTL)
because L~ ! exists. Thus, assuming D > 0

n—1
xTRx =xTLDLTx =yTDy = Zyizd,',i >0
i=0
for all y # 0, since d;; > 0 for all i € Z,. In fact, Zl’f—é y?d;; = 0 iff y; = 0 for

all i € Z,. Consequently, x” Rx > 0 for all x # 0, and so immediately R > 0.

We relate D in Theorem 4.2 to U in Theorem 4.1 according to U = DLT . If the
LDL”T decomposition of a matrix R exists, then matrix D immediately tells us
whether R is pd just by viewing the signs of the diagonal elements.

We may define (as in Example 4.4) Ak = [a{fj], where k =0,1,...,n — 1 and
AY = A. Consequently

X aiy!
=L = % (4.74)
Y=l ap_y g
fori =k, k+1,...,n— 1. This follows because G contains rik , and as observed

in the example above, ‘L'ik depends on the column indexed k — 1 in A*=1 Thus, a
pseudocode program for finding U can therefore be stated as follows:

A0 =A;
for k :=1ton — 1 do begin
fori:=kton —1do begin

o= aﬁL /a’,ij,kq; {This loop computes ¥}
end;
AK = GAK=1; { Gy contains ¥ via (4.64) }
end;
U = An—1 .
We see that the pivots are alktll o fork=1,2,...,n—1. Now

U=G,-1G,—2---G2G1A.

SO
A=6y'6y 61,6 U 4.75)

=L

TLFeBOOK



LU DECOMPOSITION 153

Consequently, from (4.70), we obtain
= +lelya+ 2y ("l )_1+Zr el . (4.76)

To confirm the last equality of (4.76), consider deﬁning L, = G;l ~--G,;1 for

m=1,...,n—1. Assume that L,, = [ + > j_ 1T ek |» which is true for m =1
because L = Gfl =1+ rleg. Consider L, 41 =L Gmlrl,

J (1+Zr el 1) (I + el
m
=I+ZtkekT,1 ol T+ZT el
k=1

But ekT_lr’”H =0fork=1,...,m from (4.66) and (4.67). Thus

m m+1
§ k,T 1,T § k,T
L,n+l = I + T ek_l + Tm+ em = I + T ek_l.

Therefore, (4.76) is valid by mathematical induction. (A simpler example of a
proof by induction appears in Appendix 3.B.) Because of (4.76), the previous
pseudocode implicitly computes L as well as U. Thus, if no zero-valued pivots
are encountered, the algorithm will terminate, having provided us with both L
and U. [As an exercise, the reader should use (4.76) to find L in Example 4.4
simply by looking at the appropriate entries of the matrices Gy; that is, do not
use L = G1_1G2_1G3_1. Having found L by this means, confirm that LU = A.] We
remark that (4.76) shows that L is unit lower triangular.

It is worth mentioning that certain classes of matrix are guaranteed to possess
an LU decomposition Suppose that A € R"*" with A = AT and A > 0. Let v =
[vo - Vk_1 0 -0 17; then, if v # 0, we have vT Av > 0, but if Ay is the kth
—

—uT n— k Zeros

leading principle submatrix of A, then
v Av = uTAku >0

which holds for all k = 1,2, ..., n. Consequently, Ay > O for all k, and so Ak_1
exists for all k. Since Ak_1 exists for all k, it follows that det(Ay) # O for all k.
The conditions of Theorem 4.1 are met, and so A possesses an LU decomposi-
tion. That is, all real-valued, symmetric positive definite matrices possess an LU
decomposition.

TLFeBOOK



154 LINEAR SYSTEMS OF EQUATIONS

We recall that the class of positive definite matrices is an important one since
they have a direct association with least-squares approximation problems. This was
demonstrated in Section 4.2.

How many floating-point operations (flops) are needed by the algorithm for
finding the LU decomposition of a matrix? Answering this question gives us an
indication of the computational complexity of the algorithm. Neglecting multipli-
cation by zero or by one, to compute A¥ = G;AF~! requires (n —k)(n — k + 1)
multiplications, and the same number of additions. This follows from considering
the product G; AK~! with the factors partitioned into submatrices according to

Ik 0 A= k-l
Gi=| * e TR L 4.77)
T Ink 0 Al

where I is a k x k identity matrix, Ty is (n — k) x k and is zero-valued except for
its last column, which contains —t* [see (4.64)]. Similarly, AS;' is (k — 1) x
k=1, A](‘)1 is (k—1)x (m—k+1), and A]fl_l is (m—k+1)xmn—k+1).
From the pseudocode, we see that we need Zkfl(n — k) division operations.
Operation A¥ = Gy A¥~! is executed for k =1 to n — 1, so the total number of
operations is:

n—1

> (n—k)(n —k+1) multiplications
k=1

n—1

> (n—k)(n—k+1) additions

k=1

Z(n —k) divisions
We now recognize that

, (4.78)

i N(N+1) i NN+ DN+ 1)
6

where the second summation identity was proven in Appendix 3.B. The first sum-
mation identity may be proved in a similar manner. Therefore

n—1 n—1
Z(n—k)(n—k+1)=Z[n2+n—(2n+1)k+k2]
k=1 k=1
n—1
= (1= D@* +n) - (2n+1)2k+2k2
k=1 k=1

TLFeBOOK



LU DECOMPOSITION 155

=-n’ — -n, (4.79a)
n—1 n—1 1 1
l;(n k) =n(n—1) — I;k = Enz - n (4.79b)

So-called asymptotic complexity measures are defined using

Definition 4.2: Big O We say that f(n) = O(g(n)) if thereis a 0 < ¢ < oo,
and an N € N (N < 00) such that

f(n) <cgn)
foralln > N.

Our algorithm needs a total of f(n) = 2(%n3 — %n) + %nz — %n = %n3 + %nz —
%n flops. We may say that 0 n?) operations (flops) are needed (so here g(n) =
n3). We may read O3 as “order n-cubed,” so order n-cubed operations are
needed. If one operation takes one unit of time on a computing machine we say
the asymptotic time complexity of the algorithm is O(n®). Parameter n (matrix
order) is the size of the problem. We might also say that the time complexity
of the algorithm is cubic in the size of the problem since the number of oper-
ations f(n) is a cubic polynomial in n. But we caution the reader about flop
counting:

“Flop counting is a necessarily crude approach to the measuring of program efficiency
since it ignores subscripting, memory traffic, and the countless other overheads asso-
ciated with program execution. We must not infer too much from a comparison of
flops counts. ... Flop counting is just a ‘quick and dirty’ accounting method that
captures only one of several dimensions of the efficiency issue.”

—Golub and Van Loan [5, p. 20]

Asymptotic complexity measures allow us to talk about algorithmic resource
demands without getting bogged down in detailed expressions for computing time,
memory requirements, and other variables. However, the comment by Golub and
Van Loan above may clearly be extended to asymptotic measures.
Suppose that A is LU-factorable, and that we know L and U. Suppose that we
wish to solve Ax = y. Thus
LUx =y, (4.80)

and define Ux = z, so we begin by considering

Lz=y. 4.81)

TLFeBOOK



156 LINEAR SYSTEMS OF EQUATIONS

In expanded form this becomes

loo 0 0 0 20 Yo

Lo I 0 cee 0 71 V1

b0 I lp - 0 22 = 2| (4.82)
In10 et o120 icine Zn—1 Yn—1

Since L~! exists, solving (4.81) is easy using forward elimination (forward substi-
tution). Specifically, from (4.82)

Yo
70 = —
lo.0

1
z1 = —[y1 — zol1,0]
I

1
20 = ?[yz —20l2,0 — 211211

-1 = [yn 1= szln 1k:|

ln 1,n—1

lhus, in gene] al
l yk itk,i ( )

for k=1,2,...,n—1 with z0 = yo/lp,0. Since we now know z, we may solve
Ux = z by backward substitution. To see this, express the problem in expanded
form:

uo,0 uo,1 - uo,n—-2 Uo,n—1 X0 20
0 ur1r -+ ULw—2 Ui n—1 X1 71
: : : = . (4.84)
0 0 o Up—2p-2 Up-2n-1 Xn—2 in-2
0 0 ce 0 Un—1,n—-1 Xn—1 Zn—1

From (4.84), we obtain

Zn—1
Xn—1=
Un—1,n—1
1
Xp—p = ——[2p—2 — xn—lun—Z,n—l]
Un—2n-2

TLFeBOOK



LU DECOMPOSITION 157

1
Xp—3 = ——[2p-3 — Xn—1Un—-3,n—1 — xn—2un—3,n—2]
Un—3,n-3

uo,0

1 n—1
P [ : z} |
k=1

In general
1 n—1
Xe = | 2~ > xiug (4.85)
k.k i=k+1
for k=n—-2,...,0 with x,_1 = z,—1/un—1,n—1. The forward-substitution and

backward-substitution algorithms that we have just derived have an asymptotic
time complexity of O(n?). The reader should confirm this as an exercise. This
result suggests that most of the computational effort needed to solve for x in
Ax =y lies in the LU decomposition stage.

So far we have said nothing about the performance of our linear system solution
method with respect to finite precision arithmetic effects (i.e., rounding error).
Before considering this matter, we make a few remarks regarding the stability of
our method. We have noted that the LU decomposition algorithm will fail if a zero-
valued pivot is encountered. This can happen even if Ax = y has a solution and A
is well-conditioned. In other words, our algorithm is actually unstable since we can
input numerically well-posed problems that cause it to fail. This does not necessarily
mean that our algorithm should be totally rejected. For example, we have shown
that positive definite matrices will never result in a zero-valued pivot. Furthermore,
if A > 0, and it is well-conditioned, then it can be shown that an accurate answer
will be provided by the algorithm despite its faults. Nonetheless, the problem of
failure due to encountering a zero-valued pivot needs to be addressed. Also, what
happens if a pivot is not exactly zero, but is close to zero? We might expect that
this can result in a computed solution x that differs greatly from the mathematically
exact solution x, especially where rounding error is involved, even if A is well-
conditioned.

Recall (2.15) from Chapter 2,

fllx op yl = (x op y)(1 +¢€) (4.86)

for which |e| <277, If we store A in a floating-point machine, then, because of
the necessity to quantize we are really storing the elements

LfI[AN),; = fllaij] = aij(1 + €, ) (4.87)

TLFeBOOK



158 LINEAR SYSTEMS OF EQUATIONS

with |¢; | < 27", Suppose now that A, B € R™*"; we then define®
|A] = [la;,j|] € R"", (4.88)

and by B < A, we mean b; ; < g; ; for all i and j. So we may express (4.87) more
compactly as
| fI[A] — Al < ulAl, (4.89)

where u =27, since |¢; j| <27

Forsythe and Moler [4, pp. 104—-105] show that the computed solution Z to
Lz =y [recall (4.81)] as obtained by forward substitution is actually the exact
solution to a perturbed lower triangular system

(L+38L)z =y, (4.90)
where §L is a lower triangular perturbation matrix, and where
6L < 1.01nu|L]. (4.91)

A very similar bound exists for the problem of solving Ux = z by backward-
substitution. We will not derive these bounds, but will simply mention that the
derivation involves working with a bound similar to (2.39) in Chapter 2. From
(4.91) we have relative perturbations ll l” | < 1.01nu. It is apparent that since u
is typically quite tiny, unless n (matrix order) is quite huge, these relative pertur-
bations will not be significant. In other words, forward substitution and backward
substitution are very stable procedures that are quite resistant to the effects of
rounding errors. Thus, any difficulties with our linear system solution procedure in
terms of a rounding error likely involve only the LU factorization stage.

The rounding error analysis for our Gaussian elimination algorithm is even more
involved than the effort required to obtain (4.91), so again we will content ourselves
with citing the main result without proof. We cite Theorem 3.3.1 in Golub and Van
Loan [5] as follows.

Theorem 4.3: Assume that A is an n x n matrix of floating-point numbers.
If no zero-valued pivots are encountered during the execution of the Gaussian
elimination algorithm for which A is the input, then the computed triangular factors
(here denoted Land U ) satisfy

LU =A+3A (4.92a)

such that o
[8A] <3(m — Du(|A| + |L||U)) + 0(u2). (4.92b)

OThere is some danger in confusing this with the determinant. That is, some people use |A| to denote
the determinant of A. We will avoid this here by sticking with det(A) as the notation for determinant
of A.

TLFeBOOK



LU DECOMPOSITION 159

In this theorem the term O (u?) denotes a part of the error term dependent on u?.

This is quite small as u? =272 (rounding assumed), and so may be practically
disregarded. The term arises in the work of Golub and Van Loan [5] because those
authors prefer to work with slightly looser bounding results than are to be found
in the volume by Forsythe and Moler [4]. The bound in (4.92b) gives us cause for
concern. The perturbation matrix § A may not be small. This is because |I:| |0 | can
be quite large. An example of this would be

1 4 1
A= 2 8.001 1 |,
0 -1 1
for which
. 1 0 0 . 1 4 1
L= 2 1 0|, U=] 0 0.001 -1
0 —1000 1 0 0 -999
This has happened because
1 4
A= o0 0001 -1 |,
0 -1 1

which has a11,1 = 0.001. This is a small pivot and is ultimately responsible for
giving us “big” triangular factors. Clearly, the smaller the pivot the bigger the
potential problem. Golub and Van Loan’s [5] Theorem 3.3.2 (which we will not
repeat here) goes on to demonstrate that the errors in the computed triangular
factors can adversely affect the solution to Ax = LUx = y as obtained by forward
substitution and backward substitution. Thus, if we use the computed solutions L
and U in LU = v, then the computed solution X may not be close to x.

How may our Gaussian elimination LU factorization algorithm be modified to
make it more stable? The standard solution is to employ partial pivoting. We do not
consider the method in detail here, but illustrate it with a simple example (Example
4.5). Essentially, before applying a Gauss transformation Gy, the rows of matrix
AF=1 are permuted (i.e., exchanged) in such a manner as to make the pivot as
large as possible while simultaneously ensuring that AX is as close to being upper
triangular as possible. Permutation operations have a matrix description, and such
matrices may be denoted by Pr. We remark that Pk_1 = PkT.

Example 4.5 Suppose that

TLFeBOOK



160 LINEAR SYSTEMS OF EQUATIONS

Thus
100770 1 071 41
GiPA=| -3 1 0 100 2 8 1
. oo 1 JLOO 1 ][O -1 1
r 1 0 07T 2 8 11 2 8 1
1 1
= -3 10 1 4 1 |=|0 0 5 [=A4"
. 0 0 1 /L0 -1 1 | 0 -1 1
and
1 0 0771 00 2 8 1
G,PA'=] 0 1 0 00 1 0o o0 1
100 1 ][0 10 0 —1 1
1.0 07 2 1
=010 0 -1 1 |=A42
00 1 ][0 ]

for which U = A%. We see that P, interchanges rows 2 and 3 rather than 1 and
2 because to do otherwise would ruin the upper triangular structure we seek. It is
apparent that

G, P,G1PIA=U,

so that
A=rlcr'py'Go' L,
—_—
=L
for which
101
L=|100
010

This matrix is manifestly not lower triangular. Thus, our use of partial pivoting to
achieve algorithmic stability has been purchased at the expense of some loss of
structure (although Theorem 3.4.1 in Ref. 5 shows how to recover much of what
is lost.”) Also, permutations involve moving data around in the computer, and this
is a potentially significant cost. But these prices are usually worth paying.

TIn general, the Gaussian elimination with partial pivoting algorithm generates
Gu_1Py—1---G PG PI1A=U,

and it turns out that
P,_1---PbPIA=LU

for which L is unit lower triangular, and U is upper triangular. The expression for L in terms of the
factors Gy, is messy, and so we omit it. The interested reader can see pp. 112—113 of Ref. 5 for details.

TLFeBOOK



LEAST-SQUARES PROBLEMS AND QR DECOMPOSITION 161

It is worth mentioning that the need to trade off algorithm speed in favor of sta-
bility is common in numerical computing; that is, fast algorithms often have stability
problems. Much of numerical computing is about creating the fastest possible stable
algorithms. This is a notoriously challenging engineering problem.

A much more detailed account of Gaussian elimination with partial pivoting
appears in Golub and Van Loan [5, pp. 108—116]. This matter will not be discussed
further in this book.

4.6 LEAST-SQUARES PROBLEMS AND gk DECOMPOSITION

In this section we consider the QR decomposition of A € R"*" for which m > n,
and A is of full rank [i.e., rank (A) = n]. Full rank in this sense means that the
columns of A are linearly independent. The QR decomposition of A is

A= QOR, (4.93)

where Q € R™*™ is an orthogonal matrix [i.e., QT Q = QQT =1 (identity
matrix)], and R € R™*" is upper triangular in the following sense:

[ o0 ro, ron—1 |
0 ri -1
R=| 0o o Facint | = [ 7; } (4.94)
0 0 0
L0 0 0o |

Here R € R"*" is a square upper triangular matrix and is nonsingular because A
is full rank. The bottom block of zeros in R of (4.94) is (m — n) X n.

It should be immediately apparent that the existence of a QR decomposition
for A makes it quite easy to solve for x in Ax =y, if A~! exists (which implies
that in this special case A is square). Thus, Ax = QRx =y, and so Rx = Q7 y.
The upper triangular linear system Rx = QT y may be readily solved by backward
substitution (recall the previous section).

The case where m > n is important because it arises in overdetermined least-
squares approximation problems.We illustrate with the following example based on
a real-world problem.? Figure 4.1 is a plot of some simulated body core temperature

8This example is from the problem of estimating the circadian rhythm parameters of human patients
who have sustained head injuries. The estimates are obtained by the suitable processing of various
physiological data sets (e.g., body core temperature, heart rate, blood pressure). The nature of the injury
has made the patients’ rhythms deviate from the nominal 24-h cycle. Correct estimation of rhythm
parameters can lead to improved clinical treatment because of improved timing in the administering of

TLFeBOOK



162 LINEAR SYSTEMS OF EQUATIONS

lllustration of least-squares fitting

w
-~
S

T - T
-+ - Noisy data with trend
— - Linear trend component
—— Model H

w
N
.

)
o
©

10 20 30 40 50 60 70 80 90
Time (hours)

Patient temperature (Celcsius)
w
N

)
I
o

o

Figure 4.1 Simulated human patient temperature data to illustrate overdetermined least-
squares model parameter estimation. Here we have N = 1000 samples f; (the dots), for
Ty = 300 (seconds), T =24 (hours), a =2 x 10~7°C/s, b = 37°C, and ¢ = 0.1°C. The
solution to (4.103) is a = 2.0582 x 10~7°C/s, b = 36.9999°C, ¢ = 0.1012°C.

measurements from a human patient (this is the noisy data with trend). The data
has three components:

1. A sinusoidal component
2. Random noise.
3. A linear trend.

Our problem is to estimate the parameters of the sinusoid (i.e., the amplitude,
period, and phase), which represents the patient’s circadian rhythm. In other words,
the noise and trend are undesirable and so are to be, in effect, removed from the
desired sinusoidal signal component. Here we will content ourselves with estimating
only the amplitude of the sinusoid. The problem of estimating the remaining param-
eters is tougher. Methods to estimate the remaining parameters will be considered
later. (This is a nonlinear optimization problem.)
We assume the model for the data in Fig. 4.1 is the analog signal

(27
f(@) =at+ b+ csin <7t> + n(t). (4.95)

Here the first two terms model the trend (assumed to be a straight line), the third
term is the desired sinusoidal signal component, and 7(¢) is a random noise com-
ponent. We only possess samples of the signal f, = f(nT) (i.e., t = nTy), for
n=0,1,..., N — 1, where T; is the sampling period of the data collection system.

medication. We emphasize that the model in (4.95) is grossly oversimplified. Indeed, a better model is

to replace term at + b with subharmonic, and harmonic terms of sin (2T”t> A harmonic term is one

of frequency ZT”n, while a subharmonic has frequency ZT” % Cosine terms should also be included in
the improved model.

TLFeBOOK



LEAST-SQUARES PROBLEMS AND QR DECOMPOSITION 163

We assume that we know 7 which is the period of the patient’s circadian rhythm.
Our model also implicitly assumes knowledge of the phase of the sinusoid, too.
These are very artificial assumptions since in practice these are the most important
parameters we are trying to estimate, and they are never known in advance. How-
ever, our present circumstances demand simplification. Our estimate of f,, may be
defined by

. 2
fo=aT,n+b+csin <7”nT> (4.96)

This is a sampled version of the analog model, except the noise term has been
deleted.

We may estimate the unknown model parameters a, b, ¢ by employing the same
basic strategy we used in Section 4.2, specifically, a least-squares approach. Thus,
defining x =[a b c]” (vector of unknown parameters), we strive to minimize

N—-1 N—-1 R
V) =Y er =Y fa— ful® (4.97)
n=0 n=0

with respect to x. Using matrix/vector notation was very helpful in Section 4.2,
and it remains so here. Define

. (27 T
v, =|Tyn 1 sin 7Tsn . (4.98)
Thus
en = fu—vlx. (4.99)
We may define the error vector e =1[ey e; --- en_117, data vector f=
[fo f1 - fN_l]T, and the matrix of basis vectors
T
Yo
vf
A= _ e RV*3, (4.100)
T
Un—1
Consequently, via (4.99)
e=f — Ax. 4.101)

Obviously, we would like to have e = 0, which implies the desire to solve Ax = f.
If we have N =3 and A~! exists, then we may uniquely solve for x given any
f. However, in practice, N >> 3, so our linear system is overdetermined. Thus,
no unique solution is possible. We have no option but to select x to minimize e in

TLFeBOOK



164 LINEAR SYSTEMS OF EQUATIONS

some sense. Once again, previous experience from Section 4.2 says least-squares

is a viable choice. Thus, since ||e||§ =ele = Z,Ilv 01 2 we consider

Vix)y=ele= fTf —2xT AT F +xT ATAx 4.102
(*) r f - ( )

[which is a more compact version of (4.97)]. This is yet another quadratic form
[recall (4.8)]. We see that P € R¥*3, and g € R?. In our problem A is full rank so
from the results in Section 4.2 we see that P > 0. Naturally, from the discussions
of Sections 4.3 and 4.4, the conditioning of P is a concern. Here it turns out that
because P is of low order (largely because we are interested only in estimating
three parameters) it typically has a low condition number. However, as the order
of P rises, the conditioning of P usually rapidly worsens; that is, ill conditioning
tends to be a severe problem when the number of parameters to be estimated rises.
From Section 4.2 we know that the optimum choice for x, denoted %, is obtained
by solving the linear system

Px =g. (4.103)

The model curve of F1g 4.1 (solid hne) is the curve obtained using X in (4.96).
Thus, since x = [a b 1t we plot f,, for a, b ¢ in place of a, b, c in (4.96).
Equation (4.103) can be written as

ATAz = ATy (4.104)

This is just the overdetermined linear system AX = f multiplied on the left (i.e.,
premultiplied) by A”. The system (4.104) is often referred to in the literature as
the normal equations.

How is the previous applications example relevant to the problem of QR fac-
torizing A as in Eq. (4.93)? To answer this, we need to consider the condition
numbers of A, and of P = AT A, and to see how orthogonal matrices Q facili-
tate the solution of overdetermined least-squares problems. We will then move on
to the problem of how to practically compute the QR factorization of a full-rank
matrix. We will consider the issue of conditioning first since this is a justification
for considering QR factorization methods as opposed to the linear system solution
methods of the previous section.

Singular values were mentioned in Section 4.4 as being relevant to the problem
of computing spectral norms, and so of computing x2(A). Now we need to consider
the consequences of

Theorem 4.4: Singular Value Decomposition (SVD)  Suppose A € R™*";
then there exist orthogonal matrices

= [uouy - um—11 € R, V = [vov - - - vp—1] € R™"
such that
¥ = UT AV = diag (09, 01, . . ., op—1) € R p = min{m, n}, (4.105)

where 0p > 01 > ... >0,-1 > 0.

TLFeBOOK



LEAST-SQUARES PROBLEMS AND QR DECOMPOSITION 165

An outline proof appears in Ref. 5 (p. 71) and is omitted here. The nota-

tion diag(oo, ...,0p—1) means a diagonal matrix with main diagonal elements
00, ..., 0p_1. For example, if m =3,n =2, then p =2, and
g O
vlrav=| 0 o |,
0 O

but if m = 2, n = 3, then again p = 2, but now

T _ o0 0 0
U AV—|: 0 o Oi|.

The numbers o; are called singular values. Vector u; is the ith left singular vector,
and v; is the ith right singular vector. The following notation is helpful:

0;(A) = the ith singular value of A (i € Z),).
Omax (A) = the biggest singular value of A.
Omin(A) = the smallest singular value of A.
We observe that because AV = U, and ATU = VET we have, respectively
Av; = oju;, ATu; = ojv; (4.106)

fori € Z,. Singular values give matrix 2-norms; as noted in the following theorem.

Theorem 4.5:
||A||2 =00 = Umax(A)~

Proof Recall the result (4.37). From (4.105) A=UXVT so
|Ax||3 = xT AT Ax,

and

ATA=veTzv! = Zo viv] € R™", (4.107)
For any x € R” there exist d; such that

x = Zdiv,- (4.108)

(because V is orthogonal so its column vectors form an orthogonal basis for R”).
Thus

n—1n—1

n—1
lIx]13 = x x_Zde,v, vj = Zd? (4.109)
i=0

i=0 j=0

TLFeBOOK



166 LINEAR SYSTEMS OF EQUATIONS

(via v['vj = 8_;). Now

p—1 p—1
AT Ax =) o op) ] x) =) o tx vi)?, (4.110)
i=0 =0

but

(x,vi)=<Zdjvj,vi>=2dj(vi,vj):di. (4.111)
J J
Using (4.111) in (4.110), we obtain
n—1
lAx||3 =) ofd} 4.112)
i =0

for which it is understood that oiz =0fori > p — 1. We maximize ||Ax||% subject
to constraint ||x||% = 1, which means employing Lagrange multipliers; that is, we

maximize . .
n— n—

Ld) =) ofd} —» (Zd}- 1), (4.113)
i=0 i=0

where d = [do dy --- dy—1]%. Thus

AL(d) 5
i 207d; —21d; =0,
or
oldj = Ad;. (4.114)
From (4.114) into (4.112)
n—1
IAx|3 =1 d} =» (4.115)

i=0

for which we have used the fact that ||x||% =1 in (4.109). From (4.114) X is the
eigenvalue of a diagonal matrix containing ol.z. Consequently, A is maximized for
A = 0. Therefore, ||A||2 = op.

Suppose that
002...20"‘71>o'r=~-~:()'p71:0, (4116)

then
rank (A) =r. 4.117)

TLFeBOOK



LEAST-SQUARES PROBLEMS AND QR DECOMPOSITION 167

Thus, the SVD of A can tell us the rank of A. In our overdetermined least-squares
problem we have m > n and A is assumed to be of full-rank. This implies that
r = n. Also, p = n. Thus, all singular values of a full-rank matrix are bigger than
zero. Now suppose that A~! exists. From (4.105) A~! = VE~1UT. Immediately,
1A~ l2 = 1/0min(A). Hence

Omax (A)

K2(A) = ||AlLIA7 |2 = .
Omin(A)

(4.118)

Thus, a large singular value spread is associated with matrix ill conditioning. [Recall
(4.61) and the related discussion.] As remarked on p. 223 of Ref. 5, Eq. (4.118)
can be extended to cover full-rank rectangular matrices with m > n:

Omax(A)
Omin(A) ’

A € R rank (A) =n = ko (A) = (4.119)

This also holds for the transpose of A because AT = VEXTUT, so AT has the
same singular values as A. Thus, k2(AT) = k2(A). Golub and Van Loan [5, p. 225]
claim (without formal proof) that k(AT A) = [k2(A)]?. In other words, if the linear
system Ax = f is ill-conditioned, then AT A% = AT f is even more ill-conditioned.
The condition number of the latter system is the square of that of the former system.
More information on the conditioning of rectangular matrices is to be found in
Appendix 4.B. This includes justification that k2 (AT A) = [«k2(A)]>.

A popular approach toward solving the normal equations A” A% = AT f is based
on Cholesky decomposition

Theorem 4.6: Cholesky Decomposition If R € R"*" is symmetric and pos-
itive definite, then there exists a unique lower triangular matrix L € R**" with
positive diagonal entries such that R = LL”. This is the Cholesky decomposition
(factorization) of R.

Algorithms to find this decomposition appear in Chapter 4 of Ref. 5. We do not
consider them except to note that if they are used, then the computed solution to
AT A%z = AT £, which we denote by X, may satisfy

X = £ll2

= xulka(A)), (4.120)
[1X]12

where u is as in (4.89). Thus, this method of linear system solution is potentially
highly susceptible to errors due to ill-conditioned problems. On the other hand,
Cholesky approaches are computationally efficient in that they require about n3/3
flops (Floating-point operations). Clearly, Gaussian elimination may be employed
to solve the normal equations as well, but we recall that Gaussian elimination
needed about 2n3/3 flops. Gaussian elimination is less efficient because it does
not account for symmetry in matrix R. Note that these counts do not take into
consideration the number of flops needed to determine AT A and AT f, and do

TLFeBOOK



168 LINEAR SYSTEMS OF EQUATIONS

not account for the number of flops needed by the forward/backward substitution
steps. However, the comparison between Cholesky decomposition and Gaussian
elimination is reasonably fair because these other steps are essentially the same for
both approaches.

Recall that |le||3 = |[|Ax — f||3. Thus, for orthogonal matrix Q

10T el3 =107 el" QTe =" QQTe =eTe = [le|5. (4.121)

Thus, the 2-norm is invariant to orthogonal transformations. This is one of the
more important properties of 2-norms. Now consider

llell3 = 110" Ax — Q" £113. (4.122)
Suppose that
T f
0 f=[ 7l } (4.123)
for which f* € R”, and f' € R™™". Thus, from (4.94) and QT A = R, we obtain
Rx — f4
QTAx - 0" f = ,f : (4.124)
—f
implying that
llell3 = IRx — £“113 + Il f'113. (4.125)
Immediately, we see that
Ri = f“. (4.126)

The least-squares optimal solution X is therefore found by backward substitution.
Equally clearly, we see that

min |[e][3 = [1/']13 = pis. (4.127)

This is the minimum error energy. Quantity ,0% g is also called the minimum sum
of squares, and e is called the residual [5]. It is easy to verify that k> (Q) =1
(Q is orthogonal). In other words, orthogonal matrices are perfectly conditioned.
This means that the operation Q7 A will not result in a matrix that is not as well
conditioned as A. This in turn suggests that solving our least-squares problem
using QR decomposition might be numerically more reliable than working with
the normal equations. As explained on p. 230 of Ref. 5, this is not necessarily
always true, but it is nevertheless a good reason to contemplate QR approaches to
solving least-squares problems.’

91f the residual is big and the problem is ill-conditioned, then neither QR nor normal equation methods
may give an accurate answer. However, QR approaches may be more accurate for small residuals in
ill-conditioned problems than normal equation approaches.

TLFeBOOK



LEAST-SQUARES PROBLEMS AND QR DECOMPOSITION 169
How may we compute Q? There are three major approaches:

1. Gram-Schmidt algorithms
2. Givens rotation algorithms
3. Householder transformation algorithms

We will consider only Householder transformations.

We begin by a review of how vectors are projected onto vectors. Recall the
law of cosines from trigonometry in reference to Fig. 4.2a. Assume that x, y € R".
Suppose that ||x — y||o = a, ||x||2 = b, and that ||y||, = c. Therefore, where 0 is
the angle between x and y (0 < 6 < radians)

a* = b* + c¢* — 2bccos ), (4.128)
or in terms of the vectors x and y, Eq. (4.128) becomes
[lx = yI13 = [1x113 + [1Y113 = 2llx]]2lll2 cos 6. (4.129)
In terms of inner products, this becomes

(x =y, x —y) = (x,x) + (¥, ¥) = 2[(x, )12 [{y, ¥)1"? cos b,

which reduces to

(x, ¥) =[x, )12 [(y, )12 cos 6,

or
(x, ¥) = lIxll2llyll2 cos 6. (4.130)
y X-y
0
(a) X
X
p4
[%
y
(b) P,x

Figure 4.2 Illustration of the law of cosines (a) and the projection of vector x onto vector
y (b).

TLFeBOOK



170 LINEAR SYSTEMS OF EQUATIONS

Now consider Fig. 4.2b. Vector Pyx is the projection of x onto y, where Py denotes
the projection operator that projects x onto y. It is immediately apparent that

[[Pyx|l2 = [|x[|2 cos 6. (4.131)

This is the Euclidean length of Pyx. The unit vector in the direction of y is y/||y||>.

Therefore
||x||2 cos @

Pyx = ———. (4.132)
[Iyll2
But from (4.130) this becomes
Pyx = y2>y (4.133)
lyllz
Since (x,y) = xTy = yTx, we see that
P y'x L (4.134)
X = y = yy .
ST TE R AT
In (4.134) yyT € R™ ", so the operator Py has the matrix representation
1
Py, = T ||2yy (4.135)
In Fig. 4.2b we see that z = x — Pyx, and that
1
z2=U—-P)x = ” ||2yy (4.136)
which is the component of x that is orthogonal to y. We observe that
1 yivlgy™ 1
Pl =——yyyy' = = Syy” (4.137)
[y Ivl3 IyI3

If A2= A, we say that matrix A is idempotent. Thus, projection operators are
idempotent. Also, Py = Py so projection operators are also symmetric.
In Fig. 4.3, x, y,z € R"?, and yTz = 0. Define the Householder transformation

matrix .
yy

l1yl15

We see that H =1 — 2P, [via (4.135)]. Hence Hx is as shown in Fig. 4.3; that
is, the Householder transformation finds the reflection of vector x with respect to
vector z, and z L y (Definition 1.6 of Chapter 1). Recall the unit vector ¢; € R”

(4.138)

e, =[0---010---0]7,

i zeros

TLFeBOOK



LEAST-SQUARES PROBLEMS AND QR DECOMPOSITION 171

HX

Figure 4.3 Geometric interpretation of the Householder transformation operator H. Note
that zTy =0.

soeo=[10--- 0]7. Suppose that we want Hx = aeq for some a € R with a # 0;
that is, we wish to design H to annihilate all elements of x except for the top
element. Let y = x 4+ aeq; then

yix =@l + aeg)x = xTx + axg (4.139a)
(as x = [xp x1 -+ xy—1]7), and
17113 = (7 + ereg ) (x + aveo) = x7x + 200 + . (4.139b)
Therefore . .
Hx:x—Zyy 2)C:)C—Zy x2y
Iyl Iyl

so from (4.139), this becomes

5 (T x 4+ axp) (x + aep)

Hx =x
l1y113

xTx + axg)x + ot(yTx)eo
Iy113

= X —

T T
_[L— Txx+“m 2]»—m1;%m. (4.140)
x'x 4+ 2ax0 + o lyl15

To force the first term to zero, we require
xTx + 20x0 + o — 2(xTx 4+ axg) = 0,

T

which implies that a’=x x, or in other words, we need

o = £[x|]. (4.141)

TLFeBOOK



172 LINEAR SYSTEMS OF EQUATIONS

Consequently, we select y = x &£ ||x||2€p. In this case

T T
Hx:—Zay x2€0=—20[ X X +axo 5€0
lyl15 xTx + 2ax) + o
2
a” 4+ axg
= = —aep = Fl|x|l2¢€0, (4.142)

—2a—————¢
202 + 2axg 0

so Hx = aeg for a = —a if y = x + aeg with a = £||x]|».

Example 4.6 Suppose x =[4 3 0]7, so [|x||» =5. Choose a = 5. Thus
y=[9 3 0], and

T 1 -36 =27 0

H=1-22___| 227 3 0
T 45
Yy 0 0 45
We see that
1 -36 =27 0 4 1 —-225 -5
0 0 45 0 0 0

so Hx = —aey.

The Householder transformation is designed to annihilate elements of vectors. But
in contrast with the Gauss transformations of Section 4.5, Householder matrices
are orthogonal. To see this observe that

T T
HTH = [1 . 2%] [1 - 2&}
y

y yTy
b yyTyyT
=1 -4 +4— 5
yiy [y*y]
T T
=1—4% +4% =1
yly = yTy

Thus, no matter how we select y, x2(H) = 1. Householder matrices are therefore
perfectly conditioned.
To obtain R in (4.94), we define

7 Iy 0 mxm
Hk_[ ) Hk}eR , (4.143)

TLFeBOOK



LEAST-SQUARES PROBLEMS AND QR DECOMPOSITION 173
where k = 1,2, ...,n, Iy_; is an order k — 1 identity matrix, Hy is an order m —
k + 1 Householder transformation matrix. We design Hj to annihilate elements k
tom — 1 of column k — 1 in A*¥~!, where A% = A, and

AF = {3 AT, (4.144)

so A" = R (in (4.94)). Much as in Section 4.5, we have AX = [a{fj] e R™*" and
we assume m > n.

Example 4.7 Suppose

0 0 0
a a a
10 41 92
A ZAO — O O O €R4X3,
dyy dyp dp
0
a3y d3; diz
and so therefore
- 0 0 0 -1 1 17
F % x x ] oo o1 4o Ayo 91 G
0 0 0 1 1
a a a 0 a a
1 ~ 0 X X X X 10 %11 4 1 4
Al = B1A° = - ,
1 X X X X | 0 a4
Y % % x 20 %1 4y 21 9»
L - 0 0 0 1 1
L d30 431 43 L 0 a3 a3 |
| 1 1 -1 1 1
10 0 0 Apo 91 G ypo o1 Ao
1 1 2 2
A2 — Al = 0 x x x 0 ay ap . 0 aj aj
= - 0 x X X 0 al al - 0 0 612 ’
0 x x x 21 922 2
L - 1 1 2
L 0 as;  az 0 0 az, |
and 1 1 1
10 0 0 Qoo 91 Y2
2 2
A fap2—| 01 00 0 ajy app
Tl 0 0 x x 0 0 a2
0 0 x x 2
L 2
0 0 a3

1 1
po o1 Yoo

0 a2 a*

_ 11 12 —R.
0 0 a3
0 0 0

TLFeBOOK



174 LINEAR SYSTEMS OF EQUATIONS

The x signs denote the Householder matrix elements that are not specified. This
example is intended only to show the general pattern of elements in the matrices.

Define r
5t = [allzj,k—l ‘11]{(,21—1 afnill,k—l] e R", (4.145)
so if xkF =[x xk ... xk ]T then x¥ = ¢! and so
= 1ro M m—k i = Yitk—1k-1
k (kT
y )

Hy = Iiy—py1 — 27(yk)Tyk, (4.146)
where y* = x* + ||xk||2e(]§, and eé =[10 --- 0] e R"**1_ A pseudocode anal-

ogous to that for Gaussian elimination (recall Section 4.5) is as follows:

AD = A
for k := 1 to n do begin
fori:=0tom — k do begin
x,’.‘ = at‘(+_k171,k71; {This loop makes xK}
end;
= x~k + sign(x’&)kangg;
Ak .= H, AK=1. ( H) contains H via (4.146) }
end;
R:=A";

k

From (4.143) H Hy = I, because H; Hy = I,y_k+1, and of course [/ | Ir_1 =
I;_1; that is, ﬁk is orthogonal for all k. Since

R=A"=H,H, |- - HH A, (4.147)
we have o ~
A=alA] - AT R. (4.148)
——
=0

Thus, the pseudocode above implicitly computes Q because it creates the orthog-
onal factors Hy.
In the pseudocode we see that

yE = xk 4 sign(xf) 1125 |2eb. (4.149)

Recall from (4.141) that « = %||x||2, so we must choose the sign of «. It is best that
a = sign(xp)||x]|2, where sign(xg) = +1 for xo > 0, and sign(xp) = —1 if xg < 0.
This turns out to ensure that H remains as close as possible to perfect orthogonality
in the face of rounding errors. Because ||x||> might be very large or very small,
there is a risk of overflow or underflow in the computation of ||x||;. Thus, it
is often better to compute y from x/||x||c. This works because scaling x does

TLFeBOOK



LEAST-SQUARES PROBLEMS AND QR DECOMPOSITION 175

not mathematically alter H (which may be confirmed as an exercise). Typically,
m >> n (e.g., in the example of Fig. 4.1 we had m = N = 1000, while n = 3),
so, since I:Ik € R™ " " we rarely can accumulate and store the elements of I:Ik for
all k as too much memory is needed for such a task. Instead, it is much better to
observe that (for example) if H € R"*™_ A € R™*" then, as y € R™, we have

yy’ 2
HA = [1 - 27} A=A— ——yATy". (4.150)
yly yly

From (4.150) ATy € R”", which has jth element

m—1

ATyl =) ar v 4.151)
k=0

for j=0,1,...,.n—1.If g = 2/yTy, then, from (4.150) and (4.151), we have

m—1
[HAY.; = ai.j — Byi [Z a, jyk} (4.152)

k=0

for i=0,1,...,m—1, and j=0,1,...,n—1. A pseudocode program that
implements this is as follows:

B:=2/yTy;
forj =0ton—1do begin
-1
=30 Ak Vk:
s = Bs;
forj:=0tom — 1 do begin
ajj:=aj— Sy
end;
end;

This program is written to overwrite matrix A with matrix HA. This reduces
computer system memory requirements. Recall (4.123), where we see that Q7 f
must be computed so that f* can be found. Knowledge of f* is essential to
compute X via (4.126). As in the problem of computing ﬁkAk’l, we do not wish
to accumulate and save the factors H in

o' f=H,H,_,-- - H f. (4.153)

Instead, Q7 f would be computed using an algorithm similar to that suggested by
(4.152).

All the suggestions in the previous paragraph are needed in a practical imple-
mentation of the Householder transformation matrix method for QR factorization.
As noted in Ref. 5, the rounding error performance of the practical Householder
OR factorization algorithm is quite good. It is stated [5] as well that the number of
flops needed by the Householder method for finding x is greater than that needed by

TLFeBOOK



176 LINEAR SYSTEMS OF EQUATIONS

Cholesky factorization. Somewhat simplistically, the Cholesky method is computa-
tionally more efficient than the Householder method, but the Householder method
is less susceptible to ill conditioning and to rounding errors than is the Cholesky
method. More or less, there is therefore a tradeoff between speed and accuracy
involved in selecting between these competing methods for solving the overde-
termined least-squares problem. The Householder approach is also claimed [5] to
require more memory than the Cholesky approach.

4.7 ITERATIVE METHODS FOR LINEAR SYSTEMS

Matrix A € R is said to be sparse if most of its n? elements are zero-valued.
Such matrices can arise in various applications, such as in the numerical solution
of partial differential equations (PDEs). Sections 4.5 and 4.6 have presented such
direct methods as the LU and QR decompositions (factorizations) of A in order to
solve Ax = b (assuming that A is nonsingular). However, these procedures do not
in themselves take advantage of any structure that may be possessed by A such
as sparsity. Thus, they are not necessarily computationally efficient procedures.
Therefore, in the present section, we consider iferative methods to determine x € R”
in Ax = b. In this section, whenever we consider Ax = b, we will always assume
that A~! exists. Iterative methods work by creating a Cauchy sequence of vectors
(x%)) that converges to x.!0 Iterative methods may be particularly advantageous
when A is not only sparse, but is also large (i.e., large n). This is because direct
methods often require the considerable movement of data around the computing
machine memory system, and this can slow the computation down substantially. But
a properly conceived and implemented iterative method can alleviate this problem.

Our presentation of iterative methods here is based largely on the work of
Quarteroni et al. [8, Chapter 4]. We use much of the same notation as that in
Ref. 8. But it is a condensed presentation as this section is intended only to convey
the main ideas about iterative linear system solvers.

In Section 4.4 matrix and vector norms were considered in order to characterize
the sizes of errors in the numerical estimate of x in Ax = b due to perturbations
of A, and b. We will need to consider such norms here. As noted above, our goal
here is to derive a methodology to generate vector sequence (x*)!! such that

lim x® = x, (4.154)
k—o00
where x = [xg x; -+ x,_1]7 € R” satisfies Ax =b and x® = [x(()k) x{k)

x,(lli)l]T € R". The basic idea is to find an operator T such that x &) = 75 ®) (=

T(x®)), for k =0,1,2,.... Because (x®) is designed to be Cauchy (recall

104 such, we will be revisiting ideas first seen in Section 3.2.

INote that the “(k)” in x® does not denote the raising of x to a power or the taking of the kth
derivative, but rather is part of the name of the vector. Similar notation applies to matrices. So, Ak s
the kth power of A, but A® s not.

TLFeBOOK



ITERATIVE METHODS FOR LINEAR SYSTEMS 177

Section 3.2) for any € > 0, there will be an m € Z* such that [|x"™) —x|| <€
[recall that d(x®, x) = ||x® — x||]. The operator T is defined according to

x®D = gy® 4 7 (4.155)

where x(© e R” is the starting value (initial guess about the solution x), B € R**"
is called the iteration matrix, and f € R” is derived from A and b in Ax = b. Since
we want (4.154) to hold, from (4.155) we seek B and f such that x = Bx + f, or
A7'p = BA7'b + f (using Ax = b, implying x = A~'b), so

f=U—-BA b (4.156)
The error vector at step k is defined to be
e® = x® _ x (4.157)

and naturally we want limg_, o, ¢®) = 0. Convergence would be in some suitably
selected norm.

As matters now stand, there is no guarantee that (4.154) will hold. We achieve
convergence only by the proper selection of B, and for matrices A possessing
suitable properties (considered below). Before we can consider these matters we
require certain basic results involving matrix norms.

Definition 4.3: Spectral Radius Let s(A) denote the set of eigenvalues of
matrix A € R"*". The spectral radius of A is

p(A) = max |A|.
res(A)

An important property possessed by p(A) is as follows.

Property 4.1 If A € R™" with € > 0, then there is a norm denoted || - ||¢
(i.e., a norm perhaps dependent on ¢€) satisfying the consistency condition (4.36¢),
and such that

[lAlle < p(A) +e.
Proof See Isaacson and Keller [9].

This is just a formal way of saying that there is always a matrix norm that is
arbitrarily close to the spectral radius of A

p(A) = HlﬁllAll (4.158)
with the infimum (defined in Section 1.3) taken over all possible norms that satisfy
(4.36¢). We say that the sequence of matrices (A®) [with AR € R"™"] converges

to A € R™" iff
klim |A® — A|| = 0. (4.159)
— 00

TLFeBOOK



178 LINEAR SYSTEMS OF EQUATIONS

The norm in (4.159) is arbitrary because of norm equivalence (recall discussion on
this idea in Section 4.4).

Theorem 4.7: Let A € R"*"; then

lim A¥=0< p(A) < 1. (4.160)

k— o0

As well, the matrix geometric series Z/fio Ak converges iff p(A) < 1. In this

instance
o0

ZA" = —-A""L 4.161)

k=0

So, if p(A) < 1, then matrix I — A is invertible, and also

| <11 = A)~! (4.162)

T < —
14 |A] 1 —1lA]|

where || - || here is an induced matrix norm (i.e., (4.36b) holds) such that ||A|| < 1.

Proof We begin by showing (4.160) holds. Let p(A) < 1 so there must be an
€ > 0 such that p(A) < 1 — ¢, and from Property 4.1 there is a consistent matrix
norm || - || such that

I[All = p(A) +€ < L.

Because [recall (4.40)] of ||A¥|| < ||A||F < 1, and the definition of convergence,
as k — 0o, we have A¥ — 0 € R™". Conversely, assume that limg_, o, A¥ =0,
and let A be any eigenvalue of A. For eigenvector x (# 0) of A associated with
eigenvalue A, we have A¥x = A*x, and so limy s oo ¥ = 0. Thus, [A] < 1, and
hence p(A) < 1. Now consider (4.161). If A is an eigenvalue of A, then 1 — A is
an eigenvalue of / — A. We observe that

I—AT+A+A%+ . A" Ay =1 — AL (4.163)

Since p(A) < 1, I — A has an inverse, and letting n — oo in (4.163) yields

o
(I—A) Z Ak =T
k=0
so that (4.161) holds.
Now, because matrix norm || - || satisfies (4.36b), we must have ||/|| = 1. Thus

L=l < [ = Al I = A7 < A+ AT = A7,

TLFeBOOK



ITERATIVE METHODS FOR LINEAR SYSTEMS 179
which gives the first inequality in (4.162). Since I = (I — A) + A, we have
I-A'"=1+AU-4)""
so that
I =A< T+ AN TT = A7)
Condition ||A|] < 1 implies that this yields the second inequality in (4.162).

We mention that in Theorem 4.7 an induced matrix norm exists to give ||A|| <
1 because of Property 4.1 (recall that (A®) s convergent, giving p(A) < 1).
Theorem 4.7 now leads us to the following theorem.

Theorem 4.8: Suppose that f € R” satisfies (4.156); then (x®)) converges to
x satisfying Ax = b for any x@ iff p(B) < 1.

Proof From (4.155)-(4.157), we have
KD = D _ o = gy ® 4 f—x= Bx® + (1 —B)A™ b —x
=Be® 4+ Bx+ (I —-B)A b —x
=Be® + Bx +x — Bx —x
= Be®,

Immediately, we see that
e® = Bke©® (4.164)

for k € Z*. From Theorem 4.7

lim B¥e©® =0

k—o00

for all ¢ e R” iff p(B) < 1.

On the other hand, suppose p(B) > 1; then there is at least one eigenvalue A of
B such that |A| > 1. Let e© be the eigenvector associated with A, so Be©® = 2¢O
implying that e® = 3% But this implies that e® 4 0 as k — oo since |A| > 1.

This theorem gives a general condition on B so that iterative procedure (4.155)
converges. Theorem 4.9 (below) will say more. However, our problem now is to
find B. From (4.158), and Theorem 4.7 a sufficient condition for convergence is
that ||B|| < 1, for any matrix norm.

A general approach to constructing iterative methods is to use the additive
splitting of the matrix A according to

A=P—N, (4.165)

TLFeBOOK



180 LINEAR SYSTEMS OF EQUATIONS

where P, N € R"™ " are suitable matrices, and P~! exists. Matrix P is sometimes
called a preconditioning matrix, or preconditioner (for reasons we will not consider
here, but that are explained in Ref. 8). To be specific, we rewrite (4.155) as

D = piny® y plp,

that is, for k € Z*
Px*th — Nx® 4 p (4.166)

so that f = P~ b, and B= P 'N. Alternatively

x D — x® 4 p=lip - Ax B, (4.167)
—_—
=r®

where r® is the residual vector at step k. From (4.167) we see that to obtain
x*+1D requires us to solve a linear system of equations involving P. Clearly, for
this approach to be worth the trouble, P must be nonsingular, and be easy to invert
as well in order to save on computations.

We will now make the additional assumption that the main diagonal elements of
A are nonzero (i.e., a; ; # 0 for all i € Z,). All the iterative methods we consider in
this section will assume this. In this case we may express Ax = b in the equivalent
form

1 n—1
xi=—|bi— ) ajxj (4.168)

aji pars

J#i

fori =0,1,...,n—1.
The expression (4.168) immediately leads to, for any initial guess x(©, the
Jacobi method, which is defined by the iterations

-1
l n
(k+1) (k)
X; =— | b — a;ix; (4.169)
' aii | JZ:(:) v
j#i
for i =0,1,...,n—1. It is easy to show that this algorithm implements the
splitting
P=DN=D—-A=L+U, (4.170)
where D = diag(ao.0,a1,1, .., an—1,n—1) (i.., diagonal matrix that is the main
diagonal elements of A), L is the lower triangular matrix such that /;; = —a;;
if i >j,and [;; =0 1if i < j, and U is the upper triangular matrix such that
ujj = —a;j if j > i, and u;; = 0 if j <i. Here the iteration matrix B is given by
B=B; =P 'N=D'L+U)=1-D""A. 4.171)

TLFeBOOK



ITERATIVE METHODS FOR LINEAR SYSTEMS 181

The Jacobi method generalizes according to

n—1
*k+1) _ @ . () (k)
X; = a—ii b; — Z aijx;’ | + (I = w)x;"’, 4.172)
Jj=0
j#i
where i =0, 1,...,n — 1, and w is the relaxation parameter. Relaxation parame-

ters are introduced into iterative procedures in order to control convergence rates.
The algorithm (4.172) is called the Jacobi overrelaxation (JOR) method. In this
algorithm the iteration matrix B takes on the form

B=Bj(w) =wB;+ (1 —-w)l, (4.173)
and (4.172) can be expressed in the form (4.167) according to
x D = x® 4 D10 (4.174)
The JOR method satisfies (4.156) provided that @ # 0. The method is easily seen
to reduce to the Jacobi method when o = 1.

An alternative to the Jacobi method is the Gauss—Seidel method. This is defined
as

i—1 n—1
1 l
k+1 k+1 k
b= T T | s
aii —0 L
= j=i+1
where i =0, 1,...,n — 1. In matrix form (4.175) can be expressed as
Dx®*D — p 4 x&+D 4 Ux(k), (4.176)

where D, L, and U are the same matrices as those associated with the Jacobi
method. In the Gauss—Seidel method we implement the splitting

P=D-L, N=U (4.177)

with the iteration matrix
B=Bgs=(D-L)"'U. (4.178)
As there is an overrelaxation method for the Jacobi approach, the same idea applies

for the Gauss—Seidel case. The Gauss—Seidel successive overrelaxation (SOR)
method is defined to be

i n—1
D = 2 = Y a3 a4 a— e, @179)

TLFeBOOK



182 LINEAR SYSTEMS OF EQUATIONS
again fori =0, 1,...,n — 1. In matrix form this procedure can be expressed as
Dx® D = b + Lx®*D 1 Ux®P1 4+ (1 — w)Dx®

or
[l —wD 'LIx**) = oD b+ [(1 = )] + oD 'UW, (4.180)

for which the iteration matrix is now
B = Bgs(w)=[I —oD 'LI7'[1 — w)I + oD~ 'U]. (4.181)
We see from (4.180) (on multiplying both sides by D) that
[D — wLlx**) = wb + [(1 — @)D + 0Ux™®,

so from the fact that A = D — (L 4 U) [recall (4.170)], this may be rearranged as
1 -1
A *D = x® 4 [—D —~ L] r® (4.182)
w

(r® = b — Ax®), which is the form (4.167). Condition (4.156) holds if w # 0.
The case w = 1 corresponds to the Gauss—Seidel method in (4.175). If w € (0, 1),
the technique is often called an underrelaxation method, while for w € (1, 00) it
is an overrelaxation method.

We will now summarize, largely without proof, results concerning the conver-
gence of (x®)) to x for sequences generated by the previous iterative algorithms.
We observe that every iteration in any of the proposed methods needs (in the worst
case, assuming that A is not sparse) O (n?) arithmetic operations. The total number
of iterations is m, and is needed to achieve desired accuracy [lx™ — x|| < e, and
so in turn the total number of arithmetic operations needed is O (mn?). Gaussian
elimination needs O (n3) operations to solve Ax = b, so the iterative methods are
worthwhile computationally only if m is sufficiently small. If m is about the same
size as n, then little advantage can be expected from iterative methods. On the
other hand, if A is sparse, perhaps possessing only O(n) nonzero elements, then
the iterative methods require only O (mn) operations to achieve [x™ — x|| < e.
We need to give conditions on A so that x> — x, and also to say something about
the number of iterations needed to achieve convergence to desired accuracy.

Let us begin with the following definition.

Definition 4.4: Diagonal Dominance Matrix A € R"*" is diagonally domi-
nant if

n—1
jaiil > Y laij] (4.183)
j=0
J#
fori =0,1,...,n—1.

TLFeBOOK



ITERATIVE METHODS FOR LINEAR SYSTEMS 183

‘We mention here that Definition 4.4 is a bit different from Definition 6.2 (Chapter 6),
where diagonal dominance concepts appear in the context of spline interpolation
problems. It can be shown that if A in Ax = b is diagonally dominant according to
Definition 4.4, then the Jacobi and Gauss-Seidel methods both converge. Proof for
the Jacobi method appears in Theorem 4.2 of Ref. 8, while the Gauss—Seidel case is
proved by Axelsson [10].

If A= AT, and A > 0 both the Jacobi and Gauss—Seidel methods will converge.
A proof for the Gauss—Seidel case appears in Golub and Van Loan [5, Theo-
rem 10.1.2]. The Jacobi case is considered in Ref. 8. Convergence results exist for
the overrelaxation methods JOR and SOR. For example, if A = AT with A > 0,
the SOR method is convergent iff 0 < w < 2 [8]. Naturally, we wish to select @ so
that convergence occurs as rapidly as possible (i.e., m in [lx™ — x|| < € is min-
imal). However, the problem of selecting the optimal value for w is well beyond
the scope of this book.

We recall that our iterative procedures have the general form in (4.155), where
it is intended that x = Bx + f. We may regard y = Tx = Bx + f as a mapping
T|R"™ — R”". On linear vector space R"” we may define the metric

d(x,y) = max |x; — yj| (4.184)
JEZLy,

(recall the properties of metrics from Chapter 1). Space (R", d) is a complete metric
space [11, p. 308]. From Kreyszig [11] we have the following theorem.

Theorem 4.9: If the linear system x = Bx + f is such that

n—1
D bl <1
j=0

fori =0,1,...,n — 1 then solution x is unique. The solution can be obtained as
the limit of the vector sequence (x®) for k =0, 1,2, ... (x@ is arbitrary), where

x®HD = pe® 4 g
and where for o = max;cz, Z?;(l) |bij|, we have the error bounds
(m) &= my o 4T )
dx", x) < ——d(x a0y < ——d (™, xMY). (4.185)
l —« l -«
Proof We will give only an outline proof. This theorem is really just a special
instance of the contraction theorem, which appears and is proved in Chapter 7 (see

Theorem 7.3 and Corollary 7.1).
The essence of the proof is to consider the fact that

n—1
d(Tx,Ty) = ?é%x Zobij(xj —yj)
J=

TLFeBOOK



184 LINEAR SYSTEMS OF EQUATIONS

n—1

< max |x,' —yjlmaxZ|b,~j|
jEZn ’ ieZn _O

n—1
=d(x, y) ma biil,
(x ”iezf;o' il

so d(Tx, Ty) < ad(x, y), if we define

n—1

o =max1bij| = [|Bll
Jj=0
[recall (4.41d)].

In this theorem we see that if « < 1, then x*) — x. In this case d(Tx, Ty) <
d(x,y) for all x, y € R". Such a mapping T is called a contraction mapping (or
contractive mapping). We see that contraction mappings have the effect of moving
points in a space closer together. The error bounds stated in (4.185) give us an
idea about the number of iterations m needed to achieve |[x™™ — x|| <€ (¢ >
0). We emphasize that condition @ < 1 is sufficient for convergence, so (x®)
may converge to x even if this condition is violated. It is also noteworthy that
convergence will be fast if « is small, that is, if ||B]|e is small. The result in
Theorem 4.8 certainly suggests convergence ought to be fast if p(B) is small.

Example 4.8 We shall consider the application of SOR to the problem of
solving Ax = b, where

SO = B
O = A=
—_—h = O
~ - O O
AW -

We shall assume that x© = [0000]7. Note that SOR is not the best way to solve
this problem. A better approach is to be found in Section 6.5 (Chapter 6). This
example is for illustration only. However, it is easy to confirm that

x =[0.1627 0.3493 0.4402 0.8900]".

Recall that the SOR iterations are specified by (4.179). However, we have not
discussed how to terminate the iterative process. A popular choice is to recall that
r® =p — Ax® [see (4.167)], and to stop the iterations when for k = m

{7 (™|
<
| O]

(4.186)

TLFeBOOK



ITERATIVE METHODS FOR LINEAR SYSTEMS 185

Number of iterations needed by SOR
150 T T T T T T T T T

100 - .
g
50 | .
0 Az v Nl 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
w

Figure 4.4 Plot of the number of iterations m needed by SOR as a function of w for the
parameters of Example 4.8 in order to satisfy the stopping condition ||r(m) [loo/| |r(0 lloo < T.

for some 7 > 0 (a small value). For our present purposes || - || shall be the norm
in (4.29¢), which is compatible with the needs of Theorem 4.9. We shall choose
7 = 0.001.

We observe that A is diagonally dominant, so convergence is certainly expected
for w = 1. In fact, A > 0 so convergence of the SOR method can be expected for
all w € (0, 2). Figure 4.4 plots the m that achieves (4.186) versus w, and we see
that there is an optimal choice for w that is somewhat larger than w = 1. In this
case though the optimal choice does not lead to much of an improvement over
choice w = 1.

For our problem [recalling (4.170)], we have

T 40 0 0 0 0 0 0
0400 1 0 00
D=1069040/'t=| o -1 00|
(000 4 0 0 —1 0
0 -1 0 0

0 0 -1
U=lo o -1

0 0 0

From (4.178)
0.0000 —0.2500 0.0000 0.0000

0.0000  0.0625 —-0.2500  0.0000
0.0000 —0.0156  0.0625 —0.2500
0.0000  0.0039 —-0.0156  0.0625

Bgs =

We therefore find that ||Bgs||co = 0.3281. It is possible to show (preferably using
MATLAB or some other software tool that is good with eigenproblems) that

TLFeBOOK



186 LINEAR SYSTEMS OF EQUATIONS

p(Bgs) = 0.1636. Given (4.185) in Theorem 4.9 we therefore expect fast con-
vergence for our problem since « is fairly small. In fact

l|Bgs|I%

(m—ﬂ&sl

||x (D — L) 'bl|s (4.187)

—1BGslloo

[using x@ =0, x) = (D — L)~'h]. For the stopping criterion of (4.186) we
obtained (recalling that = 1, and 7 = 0.001) m = 5 with

x® =10.1630 0.3490 0.4403 0.8899]"

so that
1x® — x]|o = 3.6455 x 1074,

The right-hand side of (4.187) evaluates to

[1BGs|l%
1 —|Bgslloo

Thus, (4.187) certainly holds true.

I1(D — L) 'b||oo = 4.7523 x 1073.

4.8 FINAL REMARKS

We have seen that inaccurate solutions to linear systems of equations can arise
when the linear system is ill-conditioned. Condition numbers warn us if this is
a potential problem. However, even if a problem is well-conditioned, an inac-
curate solution may arise if the algorithm applied to solve it is unstable. In the
case of problems arising out of algorithm instability, we naturally replace the
unstable algorithm with a stable one (e.g., Gaussian elimination may need to
be replaced by Gaussian elimination with partial pivoting). In the case of an
ill-conditioned problem, we may try to improve the accuracy of the solution by
either

1. Using an algorithm that does not worsen the conditioning of the underlying
problem (e.g., choosing QR factorization in preference to Cholesky factor-
ization)

2. Reformulating the problem so that it is better conditioned

We have not considered the second alternative in this chapter. This will be done
in Chapter 5.
APPENDIX 4.A HILBERT MATRIX INVERSES

Consider the following MATLAB code:

R = hilb(10);
inv(R)

TLFeBOOK



ans =

1.0e+12 *

Columns 1 through 7

Columns 8

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0008
.0166
.1529
.7358
.0376
.3636
.2675
. 7231

0.3804

R*inv (R)

ans =

Columns 1

1

Columns 8

-0.
0.
0.

-0.

.0000
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0001
0000
0000

-0.0000
0.0000
-0.0000
0.0000
-0.0002
0.0005
-0.0008
0.0008
-0.0004
0.0001

through

0.0000
-0.0004
0.0085
-0.0788
0.3820
-1.0643
1.7659
-1.7231
0.9122
-0.2021

through

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

[eNeNeNeoNoNeNoNol o)

through

-0.0001
-0.0001
-0.0001
-0.0000

[eNelNeNeNoNeNel o Ne)

10

O ooo

.0000
.0000
.0001
.0010
.0043
.0112
.0178
.0166
.0085
.0018

.0000
.0001
.0018
.0171
.0832
.2330
.3883
.3804
.2021
.0449

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000

-0.
-0.
-0.
.0000
-0.
-0.
-0.
-0.
-0.
-0.

.0000
.0000
.0010
.0082
.0379
.1010
.1616
.1529
.0788
L0171

0000
0000
0000

0000
0000
0000
0000
0000
0000

HILBERT MATRIX INVERSES

Oo0Oo0Oo0OoO0O—+000O0

.0000
.0002
.0043
.0379
L1767
L4772
L7712
.7358
.3820
.0832

.0001
.0001
.0001
.0000
.0000
.0000
.0000
.0000
.0000
.0000

OO0OO0OO0O—+0000O0

0.
.0005
0.
.1010
0.
.3014
2.
.0376
.0643
.2330

1

0000

0112

4772

1208

.0001
.0001
.0000
.0000
.0000
.0000
.0000
.0001
.0000
.0000

-0.
-0.
-0.
-0.
-0.
-0.
.9999
-0.
-0.
-0.

.0000
.0008
.0178
.1616
L7712
.1208
.4803
.3636
. 7659
.3883

0001
0002
0001
0000
0000
0000

0000
0001
0000

187

TLFeBOOK



188 LINEAR SYSTEMS OF EQUATIONS

0.0000 -0.0000 0.0000
-0.0000 -0.0000 0.0000
0.0000 -0.0000 0.0000
1.0000 -0.0000 0.0000
0.0000 1.0000 0.0000
-0.0000 -0.0000 1.0000

R = hilb(11);

inv(R)

ans =
1.0e+14 *

Columns 1 through 7

0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000
-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000
0.0000 -0.0000 0.0000 -0.0000 0.0002 -0.0006 0.0012
-0.0000 0.0000 -0.0000 0.0003 -0.0019 0.0064 -0.0137
0.0000 -0.0000 0.0002 -0.0019 0.0110 -0.0381 0.0817
-0.0000 0.0000 -0.0006 0.0064 -0.0381 0.1329 -0.2877
0.0000 -0.0000 0.0012 -0.0137 0.0817 -0.2877 0.6270
-0.0000 0.0001 -0.0016 0.0183 -0.1101 0.3902 -0.8555
0.0000 -0.0000 0.0013 -0.0149 0.0905 -0.3227 0.7111
-0.0000 0.0000 -0.0006 0.0068 -0.0415 0.1487 -0.3292
0.0000 -0.0000 0.0001 -0.0013 0.0081 -0.0293 0.0651

Columns 8 through 11

-0.0000 0.0000 -0.0000 0.0000
0.0001 -0.0000 0.0000 -0.0000
-0.0016 0.0013 -0.0006 0.0001
0.0183 -0.0149 0.0068 -0.0013
-0.1101 0.0905 -0.0415 0.0081
0.3902 -0.3227 0.1487 -0.0293
-0.8555 0.7111 -0.3292 0.0651
1.1733 -0.9796 0.4553 -0.0903
-0.9796 0.8212 -0.3830 0.0762
0.4553 -0.3830 0.1792 -0.0357
-0.0903 0.0762 -0.0357 0.0071

R*inv(R)
ans =

Columns 1 through 7

0.9997 -0.0009 0.0022 0.0028 -0.0164 0.0558 -0.1229
-0.0002 0.9992 0.0020 0.0023 -0.0132 0.0454 -0.1029
-0.0002 -0.0007 1.0018 0.0019 -0.0112 0.0385 -0.0844
-0.0002 -0.0006 0.0016 1.0017 -0.0097 0.0331 -0.0736
-0.0002 -0.0006 0.0015 0.0015 0.9915 0.0285 -0.0638
-0.0002 -0.0005 0.0014 0.0013 -0.0076 1.0258 -0.0581

TLFeBOOK



-0.0002
-0.0001
-0.0001
-0.0001
-0.0001

-0.
-0.
-0.
-0.
-0.

0005
0005
0004
0004
0004

Columns 8 through

.1665
.1351
.1125
.0964
.0858
.0745
.0696
.0635
.0581
.0536
.0527

OO0 O —+0000O0O0OO0O

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

0.
-0.
-0.

R = hilb(12);

inv(R)

1405
1165
0973
0844
0739
0661
0592
0547
9495
0458
0445

O oOoOoOoo

11

O+~ 000000 O0OO0OO

.0013
.0012
.0011
.0010
.0010

.0652
.0530
.0452
.0385
.0341
.0300
.0280
.0251
.0235
.0213
.0207

0.
0.
0.
0.
0.

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
.9976

0012
0011
0010
0009
0009

0091
0071
0058
0047
0041
0037
0033
0029
0028
0024

-0
-0
-0
-0
-0

HILBERT MATRIX INVERSES

.0070
.0063
.0059
.0053
.0052

0.
0.
0.
0.
0.

0234
0216
0201
0187
0179

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND

ans =

1.0e+15 *

Columns 1 through 7

0.0000
-0.0000
0.0000
-0.0000
0.0000
-0.0000
0.0000
-0.0000
0.0000
-0.0000
0.0000
-0.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

Columns 8 through

-0.0000
0.0000
-0.0011
0.0151
-0.1107
0.4863
-1.3544
2.4505

.0000
.0000
.0013
.0173
.1275
.5639
.5793
.8712

.0000
.0000
.0000
.0000
.0001
.0002
.0006
.0011
.0013
.0009
.0004
.0001

.0000
.0000
.0009
.0124
.0920
.4090
.1510

2.1015

.0000
.0000
.0000
.0001
.0008
.0032
.0086
.0151
.0173
.0124
.0050
.0009

.0000
.0000
.0004
.0050
.0377
.1686
.4765
.8732

= 2.632091e-17.

.0000
.0000
.0001
.0008
.0054
.0229
.0624
.1107
.1276
.0920
.0377
.0067

.0000
.0000
.0001
.0009
.0067
.0301
.0855
.1572

-0.
.0000
-0.
.0032
-0.
.0990
-0.
.4863
-0.
.4090
-0.
.0301

0000

0002

0229

2720

5640

1686

0.
-0.
-0.
-0.
-0.

-1

-1

9468
0474
0448
0406
0395

.0000
.0000
.0006
.0086
.0624
-0.

0.
.3545
.5794
.1511

0.
-0.

2720
7528

4765
0855

189

TLFeBOOK



190 LINEAR SYSTEMS OF EQUATIONS

-2.8713 3.3786 -2.4821 1.0348 -0.1869
2.1016 -2.4822 1.8297 -0.7651 0.1385
-0.8732 1.0348 -0.7651 0.3208 -0.0582
0.1572 -0.1869 0.1386 -0.0582 0.0106

R*inv (R)
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.632091e-17.

ans =

Columns 1 through 7

1.0126 -0.0066 -0.0401 0.0075 0.1532 -0.8140 2.2383
0.0113 0.9943 -0.0361 0.0100 0.1162 -0.6265 1.7168
0.0103 -0.0050 0.9673 0.0106 0.0952 -0.5300 1.4834
0.0094 -0.0045 -0.0299 1.0104 0.0797 -0.4573 1.2725
0.0087 -0.0041 -0.0275 0.0104 1.0703 -0.4038 1.0986
0.0081 -0.0037 -0.0255 0.0102 0.0621 0.6416  0.9971
0.0075 -0.0034 -0.0237 0.0099 0.0554 -0.3245 1.9062
0.0071 -0.0032 -0.0222 0.0095 0.0495 -0.2944 0.8232
0.0066 -0.0030 -0.0209 0.0093 0.0439 -0.2686 0.7246
0.0063 -0.0028 -0.0197 0.0087 0.0424 -0.2532 0.7002
0.0059 -0.0026 -0.0187 0.0087 0.0372 -0.2307 0.6309
0.0057 -0.0024 -0.0177 0.0081 0.0358 -0.2168 0.6064
Columns 8 through 12
-4.0762 4.7656 -3.5039 1.4385 -0.2183
-3.1582  3.7754 -2.7520 1.1123 -0.1649
-2.6250 3.1055 -2.3301 0.9219 -0.1390
-2.2676 2.6602 -1.9922 0.7905 -0.1163
-1.9863 2.4023 -1.7139 0.7104 -0.0992
-1.7969 2.1094 -1.5430 0.6289 -0.0897
-1.6133 1.9258 -1.4043 0.5581 -0.0779
-0.4658 1.7598 -1.2734 0.5146 -0.0715
-1.3047 2.5762 -1.1445 0.4629 -0.0651
-1.2793 1.5098 -0.1055 0.4424 -0.0619
-1.1387 1.3438 -0.9873 1.3955 -0.0529
-1.1025 1.2998 -0.9395 0.3809 0.9474
diary off

The MATLAB rcond function (which gave the number RCOND above) needs
some explanation. A useful reference on this is Hill [3, pp. 229-230]. It is based on
a condition number estimator in the old FORTRAN codes known as “LINPACK”.
It is based on 1-norms. rcond(A) will give the reciprocal of the 1-norm condition
number of A. If A is well-conditioned, then rcond(A) will be close to unity (i.e.,
close to one), and will be very tiny if A is ill-conditioned. The rule of thumb
involved in interpreting an rcond output is “if rcond(A) ~ d x 107, where d is
a digit from 1 to 9, then the elements of xcomp can usually be expected to have
k fewer significant digits of accuracy than the elements of A” [3]. Here xcomp

TLFeBOOK



SVD AND LEAST SQUARES 191

is simply the computed solution to Ax = y; that is, in the notation of the present
set of notes, * =xcomp. MATLAB does arithmetic with about 16 decimal digits
[3, p- 228], so in the preceding example of a Hilbert matrix inversion problem for
N = 12, since RCOND is about 10~!7, we have lost about 17 digits in computing
R~!. Of course, this loss is catastrophic for our problem.

APPENDIX 4.B SVD AND LEAST SQUARES

From Theorem 4.4, A = UX VT, so this expands into the summation
p—1
A= o] (4.A.1)
i=0
But if r = rank (A), then (4.A.1) reduces to
r—1
A=Y o] (4.A.2)
i=0

In the following theorem ,Ozs = ||fl||% = ||AX — fII% [see (4.127)], and X is the
least-squares optimal solution to Ax = f.

Theorem 4.B.1: Let A be represented as in (4.A.2) with A € R™*" and m > n.

If f € R" then
r—1 T
=Y (”i ‘f> v, (4.A.3)

i=0 oi
m—1
pis =y Wl )7 (4.A4)

Proof For all x € R", using the invariance of the 2-norm to orthogonal trans-
formations, and the fact that VVT = I, (n x n identity matrix)

lAx — fIE =0T AV(VIx) = U f1I5 = [|1Za = UT £113, (4.A5)

where o = VTx, so as o = [a - - -ap—1]17 we have &; = v] x. Equation (4.A.5)
expands as

|Ax — fI3 =" Tsa —22TSTUT 4+ fTUUT §, (4.A.6)

TLFeBOOK



192 LINEAR SYSTEMS OF EQUATIONS

which further expands as

|Ax — £} = 202012 —2Za,a,u f+ Z
i=0 i=0

_ m—1
Z Ol—ZOllO',M f+[u f] +Z
i=0 i=r
1
= loie; —u! 17+ Z[u (4.A.7)
i=0 i=r
To minimize this we must have o;a; — ul.Tf =0, and so
1 7
o =—u; f (4.A.8)
[ef}
fori € Z,. Asa = VT x, we have x = Vo, soif we set @, = - - - = a1 = 0, then

from Eq. (4.A.8), we obtain

r—1 —
=D Z
i=0 i=0
which is (4.A.3). For this choice of X from (4.A.7)
m—1
1A% = f113 =) [u] f1* = pis.
i=r
which is (4.A.4).
Define AT = VX tUT (again A € R"*" with m > n), where
* = diag(a, ', ..., 0, 1,0,...,0) e R™"™. (4.A.9)
We observe that

v = %. (4.A.10)

We call AT the pseudoinverse of A. We have established that if rank (A) = n,
then AT A% = AT f, so £ = (AT A)~'AT f, which implies that in this case AT =
(ATA)" AT If A € R and A™! exists, then AT = A7,

If A=! exists (i.e., m =n and rank (A) = n), then we recall that xp(A) =
[|A||2]|A=" 2. If A € R™*" and m > n, t